pid namespaces: changes to show virtual ids to user
[safe/jmp/linux-2.6] / kernel / futex.c
1 /*
2  *  Fast Userspace Mutexes (which I call "Futexes!").
3  *  (C) Rusty Russell, IBM 2002
4  *
5  *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6  *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7  *
8  *  Removed page pinning, fix privately mapped COW pages and other cleanups
9  *  (C) Copyright 2003, 2004 Jamie Lokier
10  *
11  *  Robust futex support started by Ingo Molnar
12  *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13  *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14  *
15  *  PI-futex support started by Ingo Molnar and Thomas Gleixner
16  *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17  *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18  *
19  *  PRIVATE futexes by Eric Dumazet
20  *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21  *
22  *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
23  *  enough at me, Linus for the original (flawed) idea, Matthew
24  *  Kirkwood for proof-of-concept implementation.
25  *
26  *  "The futexes are also cursed."
27  *  "But they come in a choice of three flavours!"
28  *
29  *  This program is free software; you can redistribute it and/or modify
30  *  it under the terms of the GNU General Public License as published by
31  *  the Free Software Foundation; either version 2 of the License, or
32  *  (at your option) any later version.
33  *
34  *  This program is distributed in the hope that it will be useful,
35  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
36  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
37  *  GNU General Public License for more details.
38  *
39  *  You should have received a copy of the GNU General Public License
40  *  along with this program; if not, write to the Free Software
41  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
42  */
43 #include <linux/slab.h>
44 #include <linux/poll.h>
45 #include <linux/fs.h>
46 #include <linux/file.h>
47 #include <linux/jhash.h>
48 #include <linux/init.h>
49 #include <linux/futex.h>
50 #include <linux/mount.h>
51 #include <linux/pagemap.h>
52 #include <linux/syscalls.h>
53 #include <linux/signal.h>
54 #include <linux/module.h>
55 #include <linux/magic.h>
56 #include <linux/pid.h>
57 #include <linux/nsproxy.h>
58
59 #include <asm/futex.h>
60
61 #include "rtmutex_common.h"
62
63 #define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
64
65 /*
66  * Priority Inheritance state:
67  */
68 struct futex_pi_state {
69         /*
70          * list of 'owned' pi_state instances - these have to be
71          * cleaned up in do_exit() if the task exits prematurely:
72          */
73         struct list_head list;
74
75         /*
76          * The PI object:
77          */
78         struct rt_mutex pi_mutex;
79
80         struct task_struct *owner;
81         atomic_t refcount;
82
83         union futex_key key;
84 };
85
86 /*
87  * We use this hashed waitqueue instead of a normal wait_queue_t, so
88  * we can wake only the relevant ones (hashed queues may be shared).
89  *
90  * A futex_q has a woken state, just like tasks have TASK_RUNNING.
91  * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
92  * The order of wakup is always to make the first condition true, then
93  * wake up q->waiters, then make the second condition true.
94  */
95 struct futex_q {
96         struct plist_node list;
97         wait_queue_head_t waiters;
98
99         /* Which hash list lock to use: */
100         spinlock_t *lock_ptr;
101
102         /* Key which the futex is hashed on: */
103         union futex_key key;
104
105         /* For fd, sigio sent using these: */
106         int fd;
107         struct file *filp;
108
109         /* Optional priority inheritance state: */
110         struct futex_pi_state *pi_state;
111         struct task_struct *task;
112 };
113
114 /*
115  * Split the global futex_lock into every hash list lock.
116  */
117 struct futex_hash_bucket {
118         spinlock_t lock;
119         struct plist_head chain;
120 };
121
122 static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
123
124 /* Futex-fs vfsmount entry: */
125 static struct vfsmount *futex_mnt;
126
127 /*
128  * Take mm->mmap_sem, when futex is shared
129  */
130 static inline void futex_lock_mm(struct rw_semaphore *fshared)
131 {
132         if (fshared)
133                 down_read(fshared);
134 }
135
136 /*
137  * Release mm->mmap_sem, when the futex is shared
138  */
139 static inline void futex_unlock_mm(struct rw_semaphore *fshared)
140 {
141         if (fshared)
142                 up_read(fshared);
143 }
144
145 /*
146  * We hash on the keys returned from get_futex_key (see below).
147  */
148 static struct futex_hash_bucket *hash_futex(union futex_key *key)
149 {
150         u32 hash = jhash2((u32*)&key->both.word,
151                           (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
152                           key->both.offset);
153         return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
154 }
155
156 /*
157  * Return 1 if two futex_keys are equal, 0 otherwise.
158  */
159 static inline int match_futex(union futex_key *key1, union futex_key *key2)
160 {
161         return (key1->both.word == key2->both.word
162                 && key1->both.ptr == key2->both.ptr
163                 && key1->both.offset == key2->both.offset);
164 }
165
166 /**
167  * get_futex_key - Get parameters which are the keys for a futex.
168  * @uaddr: virtual address of the futex
169  * @shared: NULL for a PROCESS_PRIVATE futex,
170  *      &current->mm->mmap_sem for a PROCESS_SHARED futex
171  * @key: address where result is stored.
172  *
173  * Returns a negative error code or 0
174  * The key words are stored in *key on success.
175  *
176  * For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode,
177  * offset_within_page).  For private mappings, it's (uaddr, current->mm).
178  * We can usually work out the index without swapping in the page.
179  *
180  * fshared is NULL for PROCESS_PRIVATE futexes
181  * For other futexes, it points to &current->mm->mmap_sem and
182  * caller must have taken the reader lock. but NOT any spinlocks.
183  */
184 int get_futex_key(u32 __user *uaddr, struct rw_semaphore *fshared,
185                   union futex_key *key)
186 {
187         unsigned long address = (unsigned long)uaddr;
188         struct mm_struct *mm = current->mm;
189         struct vm_area_struct *vma;
190         struct page *page;
191         int err;
192
193         /*
194          * The futex address must be "naturally" aligned.
195          */
196         key->both.offset = address % PAGE_SIZE;
197         if (unlikely((address % sizeof(u32)) != 0))
198                 return -EINVAL;
199         address -= key->both.offset;
200
201         /*
202          * PROCESS_PRIVATE futexes are fast.
203          * As the mm cannot disappear under us and the 'key' only needs
204          * virtual address, we dont even have to find the underlying vma.
205          * Note : We do have to check 'uaddr' is a valid user address,
206          *        but access_ok() should be faster than find_vma()
207          */
208         if (!fshared) {
209                 if (unlikely(!access_ok(VERIFY_WRITE, uaddr, sizeof(u32))))
210                         return -EFAULT;
211                 key->private.mm = mm;
212                 key->private.address = address;
213                 return 0;
214         }
215         /*
216          * The futex is hashed differently depending on whether
217          * it's in a shared or private mapping.  So check vma first.
218          */
219         vma = find_extend_vma(mm, address);
220         if (unlikely(!vma))
221                 return -EFAULT;
222
223         /*
224          * Permissions.
225          */
226         if (unlikely((vma->vm_flags & (VM_IO|VM_READ)) != VM_READ))
227                 return (vma->vm_flags & VM_IO) ? -EPERM : -EACCES;
228
229         /*
230          * Private mappings are handled in a simple way.
231          *
232          * NOTE: When userspace waits on a MAP_SHARED mapping, even if
233          * it's a read-only handle, it's expected that futexes attach to
234          * the object not the particular process.  Therefore we use
235          * VM_MAYSHARE here, not VM_SHARED which is restricted to shared
236          * mappings of _writable_ handles.
237          */
238         if (likely(!(vma->vm_flags & VM_MAYSHARE))) {
239                 key->both.offset |= FUT_OFF_MMSHARED; /* reference taken on mm */
240                 key->private.mm = mm;
241                 key->private.address = address;
242                 return 0;
243         }
244
245         /*
246          * Linear file mappings are also simple.
247          */
248         key->shared.inode = vma->vm_file->f_path.dentry->d_inode;
249         key->both.offset |= FUT_OFF_INODE; /* inode-based key. */
250         if (likely(!(vma->vm_flags & VM_NONLINEAR))) {
251                 key->shared.pgoff = (((address - vma->vm_start) >> PAGE_SHIFT)
252                                      + vma->vm_pgoff);
253                 return 0;
254         }
255
256         /*
257          * We could walk the page table to read the non-linear
258          * pte, and get the page index without fetching the page
259          * from swap.  But that's a lot of code to duplicate here
260          * for a rare case, so we simply fetch the page.
261          */
262         err = get_user_pages(current, mm, address, 1, 0, 0, &page, NULL);
263         if (err >= 0) {
264                 key->shared.pgoff =
265                         page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
266                 put_page(page);
267                 return 0;
268         }
269         return err;
270 }
271 EXPORT_SYMBOL_GPL(get_futex_key);
272
273 /*
274  * Take a reference to the resource addressed by a key.
275  * Can be called while holding spinlocks.
276  *
277  */
278 inline void get_futex_key_refs(union futex_key *key)
279 {
280         if (key->both.ptr == 0)
281                 return;
282         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
283                 case FUT_OFF_INODE:
284                         atomic_inc(&key->shared.inode->i_count);
285                         break;
286                 case FUT_OFF_MMSHARED:
287                         atomic_inc(&key->private.mm->mm_count);
288                         break;
289         }
290 }
291 EXPORT_SYMBOL_GPL(get_futex_key_refs);
292
293 /*
294  * Drop a reference to the resource addressed by a key.
295  * The hash bucket spinlock must not be held.
296  */
297 void drop_futex_key_refs(union futex_key *key)
298 {
299         if (!key->both.ptr)
300                 return;
301         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
302                 case FUT_OFF_INODE:
303                         iput(key->shared.inode);
304                         break;
305                 case FUT_OFF_MMSHARED:
306                         mmdrop(key->private.mm);
307                         break;
308         }
309 }
310 EXPORT_SYMBOL_GPL(drop_futex_key_refs);
311
312 static u32 cmpxchg_futex_value_locked(u32 __user *uaddr, u32 uval, u32 newval)
313 {
314         u32 curval;
315
316         pagefault_disable();
317         curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval);
318         pagefault_enable();
319
320         return curval;
321 }
322
323 static int get_futex_value_locked(u32 *dest, u32 __user *from)
324 {
325         int ret;
326
327         pagefault_disable();
328         ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
329         pagefault_enable();
330
331         return ret ? -EFAULT : 0;
332 }
333
334 /*
335  * Fault handling.
336  * if fshared is non NULL, current->mm->mmap_sem is already held
337  */
338 static int futex_handle_fault(unsigned long address,
339                               struct rw_semaphore *fshared, int attempt)
340 {
341         struct vm_area_struct * vma;
342         struct mm_struct *mm = current->mm;
343         int ret = -EFAULT;
344
345         if (attempt > 2)
346                 return ret;
347
348         if (!fshared)
349                 down_read(&mm->mmap_sem);
350         vma = find_vma(mm, address);
351         if (vma && address >= vma->vm_start &&
352             (vma->vm_flags & VM_WRITE)) {
353                 int fault;
354                 fault = handle_mm_fault(mm, vma, address, 1);
355                 if (unlikely((fault & VM_FAULT_ERROR))) {
356 #if 0
357                         /* XXX: let's do this when we verify it is OK */
358                         if (ret & VM_FAULT_OOM)
359                                 ret = -ENOMEM;
360 #endif
361                 } else {
362                         ret = 0;
363                         if (fault & VM_FAULT_MAJOR)
364                                 current->maj_flt++;
365                         else
366                                 current->min_flt++;
367                 }
368         }
369         if (!fshared)
370                 up_read(&mm->mmap_sem);
371         return ret;
372 }
373
374 /*
375  * PI code:
376  */
377 static int refill_pi_state_cache(void)
378 {
379         struct futex_pi_state *pi_state;
380
381         if (likely(current->pi_state_cache))
382                 return 0;
383
384         pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
385
386         if (!pi_state)
387                 return -ENOMEM;
388
389         INIT_LIST_HEAD(&pi_state->list);
390         /* pi_mutex gets initialized later */
391         pi_state->owner = NULL;
392         atomic_set(&pi_state->refcount, 1);
393
394         current->pi_state_cache = pi_state;
395
396         return 0;
397 }
398
399 static struct futex_pi_state * alloc_pi_state(void)
400 {
401         struct futex_pi_state *pi_state = current->pi_state_cache;
402
403         WARN_ON(!pi_state);
404         current->pi_state_cache = NULL;
405
406         return pi_state;
407 }
408
409 static void free_pi_state(struct futex_pi_state *pi_state)
410 {
411         if (!atomic_dec_and_test(&pi_state->refcount))
412                 return;
413
414         /*
415          * If pi_state->owner is NULL, the owner is most probably dying
416          * and has cleaned up the pi_state already
417          */
418         if (pi_state->owner) {
419                 spin_lock_irq(&pi_state->owner->pi_lock);
420                 list_del_init(&pi_state->list);
421                 spin_unlock_irq(&pi_state->owner->pi_lock);
422
423                 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
424         }
425
426         if (current->pi_state_cache)
427                 kfree(pi_state);
428         else {
429                 /*
430                  * pi_state->list is already empty.
431                  * clear pi_state->owner.
432                  * refcount is at 0 - put it back to 1.
433                  */
434                 pi_state->owner = NULL;
435                 atomic_set(&pi_state->refcount, 1);
436                 current->pi_state_cache = pi_state;
437         }
438 }
439
440 /*
441  * Look up the task based on what TID userspace gave us.
442  * We dont trust it.
443  */
444 static struct task_struct * futex_find_get_task(pid_t pid)
445 {
446         struct task_struct *p;
447
448         rcu_read_lock();
449         p = find_task_by_pid_ns(pid,
450                         current->nsproxy->pid_ns);
451
452         if (!p || ((current->euid != p->euid) && (current->euid != p->uid)))
453                 p = ERR_PTR(-ESRCH);
454         else
455                 get_task_struct(p);
456
457         rcu_read_unlock();
458
459         return p;
460 }
461
462 /*
463  * This task is holding PI mutexes at exit time => bad.
464  * Kernel cleans up PI-state, but userspace is likely hosed.
465  * (Robust-futex cleanup is separate and might save the day for userspace.)
466  */
467 void exit_pi_state_list(struct task_struct *curr)
468 {
469         struct list_head *next, *head = &curr->pi_state_list;
470         struct futex_pi_state *pi_state;
471         struct futex_hash_bucket *hb;
472         union futex_key key;
473
474         /*
475          * We are a ZOMBIE and nobody can enqueue itself on
476          * pi_state_list anymore, but we have to be careful
477          * versus waiters unqueueing themselves:
478          */
479         spin_lock_irq(&curr->pi_lock);
480         while (!list_empty(head)) {
481
482                 next = head->next;
483                 pi_state = list_entry(next, struct futex_pi_state, list);
484                 key = pi_state->key;
485                 hb = hash_futex(&key);
486                 spin_unlock_irq(&curr->pi_lock);
487
488                 spin_lock(&hb->lock);
489
490                 spin_lock_irq(&curr->pi_lock);
491                 /*
492                  * We dropped the pi-lock, so re-check whether this
493                  * task still owns the PI-state:
494                  */
495                 if (head->next != next) {
496                         spin_unlock(&hb->lock);
497                         continue;
498                 }
499
500                 WARN_ON(pi_state->owner != curr);
501                 WARN_ON(list_empty(&pi_state->list));
502                 list_del_init(&pi_state->list);
503                 pi_state->owner = NULL;
504                 spin_unlock_irq(&curr->pi_lock);
505
506                 rt_mutex_unlock(&pi_state->pi_mutex);
507
508                 spin_unlock(&hb->lock);
509
510                 spin_lock_irq(&curr->pi_lock);
511         }
512         spin_unlock_irq(&curr->pi_lock);
513 }
514
515 static int
516 lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
517                 union futex_key *key, struct futex_pi_state **ps)
518 {
519         struct futex_pi_state *pi_state = NULL;
520         struct futex_q *this, *next;
521         struct plist_head *head;
522         struct task_struct *p;
523         pid_t pid = uval & FUTEX_TID_MASK;
524
525         head = &hb->chain;
526
527         plist_for_each_entry_safe(this, next, head, list) {
528                 if (match_futex(&this->key, key)) {
529                         /*
530                          * Another waiter already exists - bump up
531                          * the refcount and return its pi_state:
532                          */
533                         pi_state = this->pi_state;
534                         /*
535                          * Userspace might have messed up non PI and PI futexes
536                          */
537                         if (unlikely(!pi_state))
538                                 return -EINVAL;
539
540                         WARN_ON(!atomic_read(&pi_state->refcount));
541                         WARN_ON(pid && pi_state->owner &&
542                                 pi_state->owner->pid != pid);
543
544                         atomic_inc(&pi_state->refcount);
545                         *ps = pi_state;
546
547                         return 0;
548                 }
549         }
550
551         /*
552          * We are the first waiter - try to look up the real owner and attach
553          * the new pi_state to it, but bail out when TID = 0
554          */
555         if (!pid)
556                 return -ESRCH;
557         p = futex_find_get_task(pid);
558         if (IS_ERR(p))
559                 return PTR_ERR(p);
560
561         /*
562          * We need to look at the task state flags to figure out,
563          * whether the task is exiting. To protect against the do_exit
564          * change of the task flags, we do this protected by
565          * p->pi_lock:
566          */
567         spin_lock_irq(&p->pi_lock);
568         if (unlikely(p->flags & PF_EXITING)) {
569                 /*
570                  * The task is on the way out. When PF_EXITPIDONE is
571                  * set, we know that the task has finished the
572                  * cleanup:
573                  */
574                 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
575
576                 spin_unlock_irq(&p->pi_lock);
577                 put_task_struct(p);
578                 return ret;
579         }
580
581         pi_state = alloc_pi_state();
582
583         /*
584          * Initialize the pi_mutex in locked state and make 'p'
585          * the owner of it:
586          */
587         rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
588
589         /* Store the key for possible exit cleanups: */
590         pi_state->key = *key;
591
592         WARN_ON(!list_empty(&pi_state->list));
593         list_add(&pi_state->list, &p->pi_state_list);
594         pi_state->owner = p;
595         spin_unlock_irq(&p->pi_lock);
596
597         put_task_struct(p);
598
599         *ps = pi_state;
600
601         return 0;
602 }
603
604 /*
605  * The hash bucket lock must be held when this is called.
606  * Afterwards, the futex_q must not be accessed.
607  */
608 static void wake_futex(struct futex_q *q)
609 {
610         plist_del(&q->list, &q->list.plist);
611         if (q->filp)
612                 send_sigio(&q->filp->f_owner, q->fd, POLL_IN);
613         /*
614          * The lock in wake_up_all() is a crucial memory barrier after the
615          * plist_del() and also before assigning to q->lock_ptr.
616          */
617         wake_up_all(&q->waiters);
618         /*
619          * The waiting task can free the futex_q as soon as this is written,
620          * without taking any locks.  This must come last.
621          *
622          * A memory barrier is required here to prevent the following store
623          * to lock_ptr from getting ahead of the wakeup. Clearing the lock
624          * at the end of wake_up_all() does not prevent this store from
625          * moving.
626          */
627         smp_wmb();
628         q->lock_ptr = NULL;
629 }
630
631 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
632 {
633         struct task_struct *new_owner;
634         struct futex_pi_state *pi_state = this->pi_state;
635         u32 curval, newval;
636
637         if (!pi_state)
638                 return -EINVAL;
639
640         spin_lock(&pi_state->pi_mutex.wait_lock);
641         new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
642
643         /*
644          * This happens when we have stolen the lock and the original
645          * pending owner did not enqueue itself back on the rt_mutex.
646          * Thats not a tragedy. We know that way, that a lock waiter
647          * is on the fly. We make the futex_q waiter the pending owner.
648          */
649         if (!new_owner)
650                 new_owner = this->task;
651
652         /*
653          * We pass it to the next owner. (The WAITERS bit is always
654          * kept enabled while there is PI state around. We must also
655          * preserve the owner died bit.)
656          */
657         if (!(uval & FUTEX_OWNER_DIED)) {
658                 int ret = 0;
659
660                 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
661
662                 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
663
664                 if (curval == -EFAULT)
665                         ret = -EFAULT;
666                 if (curval != uval)
667                         ret = -EINVAL;
668                 if (ret) {
669                         spin_unlock(&pi_state->pi_mutex.wait_lock);
670                         return ret;
671                 }
672         }
673
674         spin_lock_irq(&pi_state->owner->pi_lock);
675         WARN_ON(list_empty(&pi_state->list));
676         list_del_init(&pi_state->list);
677         spin_unlock_irq(&pi_state->owner->pi_lock);
678
679         spin_lock_irq(&new_owner->pi_lock);
680         WARN_ON(!list_empty(&pi_state->list));
681         list_add(&pi_state->list, &new_owner->pi_state_list);
682         pi_state->owner = new_owner;
683         spin_unlock_irq(&new_owner->pi_lock);
684
685         spin_unlock(&pi_state->pi_mutex.wait_lock);
686         rt_mutex_unlock(&pi_state->pi_mutex);
687
688         return 0;
689 }
690
691 static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
692 {
693         u32 oldval;
694
695         /*
696          * There is no waiter, so we unlock the futex. The owner died
697          * bit has not to be preserved here. We are the owner:
698          */
699         oldval = cmpxchg_futex_value_locked(uaddr, uval, 0);
700
701         if (oldval == -EFAULT)
702                 return oldval;
703         if (oldval != uval)
704                 return -EAGAIN;
705
706         return 0;
707 }
708
709 /*
710  * Express the locking dependencies for lockdep:
711  */
712 static inline void
713 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
714 {
715         if (hb1 <= hb2) {
716                 spin_lock(&hb1->lock);
717                 if (hb1 < hb2)
718                         spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
719         } else { /* hb1 > hb2 */
720                 spin_lock(&hb2->lock);
721                 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
722         }
723 }
724
725 /*
726  * Wake up all waiters hashed on the physical page that is mapped
727  * to this virtual address:
728  */
729 static int futex_wake(u32 __user *uaddr, struct rw_semaphore *fshared,
730                       int nr_wake)
731 {
732         struct futex_hash_bucket *hb;
733         struct futex_q *this, *next;
734         struct plist_head *head;
735         union futex_key key;
736         int ret;
737
738         futex_lock_mm(fshared);
739
740         ret = get_futex_key(uaddr, fshared, &key);
741         if (unlikely(ret != 0))
742                 goto out;
743
744         hb = hash_futex(&key);
745         spin_lock(&hb->lock);
746         head = &hb->chain;
747
748         plist_for_each_entry_safe(this, next, head, list) {
749                 if (match_futex (&this->key, &key)) {
750                         if (this->pi_state) {
751                                 ret = -EINVAL;
752                                 break;
753                         }
754                         wake_futex(this);
755                         if (++ret >= nr_wake)
756                                 break;
757                 }
758         }
759
760         spin_unlock(&hb->lock);
761 out:
762         futex_unlock_mm(fshared);
763         return ret;
764 }
765
766 /*
767  * Wake up all waiters hashed on the physical page that is mapped
768  * to this virtual address:
769  */
770 static int
771 futex_wake_op(u32 __user *uaddr1, struct rw_semaphore *fshared,
772               u32 __user *uaddr2,
773               int nr_wake, int nr_wake2, int op)
774 {
775         union futex_key key1, key2;
776         struct futex_hash_bucket *hb1, *hb2;
777         struct plist_head *head;
778         struct futex_q *this, *next;
779         int ret, op_ret, attempt = 0;
780
781 retryfull:
782         futex_lock_mm(fshared);
783
784         ret = get_futex_key(uaddr1, fshared, &key1);
785         if (unlikely(ret != 0))
786                 goto out;
787         ret = get_futex_key(uaddr2, fshared, &key2);
788         if (unlikely(ret != 0))
789                 goto out;
790
791         hb1 = hash_futex(&key1);
792         hb2 = hash_futex(&key2);
793
794 retry:
795         double_lock_hb(hb1, hb2);
796
797         op_ret = futex_atomic_op_inuser(op, uaddr2);
798         if (unlikely(op_ret < 0)) {
799                 u32 dummy;
800
801                 spin_unlock(&hb1->lock);
802                 if (hb1 != hb2)
803                         spin_unlock(&hb2->lock);
804
805 #ifndef CONFIG_MMU
806                 /*
807                  * we don't get EFAULT from MMU faults if we don't have an MMU,
808                  * but we might get them from range checking
809                  */
810                 ret = op_ret;
811                 goto out;
812 #endif
813
814                 if (unlikely(op_ret != -EFAULT)) {
815                         ret = op_ret;
816                         goto out;
817                 }
818
819                 /*
820                  * futex_atomic_op_inuser needs to both read and write
821                  * *(int __user *)uaddr2, but we can't modify it
822                  * non-atomically.  Therefore, if get_user below is not
823                  * enough, we need to handle the fault ourselves, while
824                  * still holding the mmap_sem.
825                  */
826                 if (attempt++) {
827                         ret = futex_handle_fault((unsigned long)uaddr2,
828                                                  fshared, attempt);
829                         if (ret)
830                                 goto out;
831                         goto retry;
832                 }
833
834                 /*
835                  * If we would have faulted, release mmap_sem,
836                  * fault it in and start all over again.
837                  */
838                 futex_unlock_mm(fshared);
839
840                 ret = get_user(dummy, uaddr2);
841                 if (ret)
842                         return ret;
843
844                 goto retryfull;
845         }
846
847         head = &hb1->chain;
848
849         plist_for_each_entry_safe(this, next, head, list) {
850                 if (match_futex (&this->key, &key1)) {
851                         wake_futex(this);
852                         if (++ret >= nr_wake)
853                                 break;
854                 }
855         }
856
857         if (op_ret > 0) {
858                 head = &hb2->chain;
859
860                 op_ret = 0;
861                 plist_for_each_entry_safe(this, next, head, list) {
862                         if (match_futex (&this->key, &key2)) {
863                                 wake_futex(this);
864                                 if (++op_ret >= nr_wake2)
865                                         break;
866                         }
867                 }
868                 ret += op_ret;
869         }
870
871         spin_unlock(&hb1->lock);
872         if (hb1 != hb2)
873                 spin_unlock(&hb2->lock);
874 out:
875         futex_unlock_mm(fshared);
876
877         return ret;
878 }
879
880 /*
881  * Requeue all waiters hashed on one physical page to another
882  * physical page.
883  */
884 static int futex_requeue(u32 __user *uaddr1, struct rw_semaphore *fshared,
885                          u32 __user *uaddr2,
886                          int nr_wake, int nr_requeue, u32 *cmpval)
887 {
888         union futex_key key1, key2;
889         struct futex_hash_bucket *hb1, *hb2;
890         struct plist_head *head1;
891         struct futex_q *this, *next;
892         int ret, drop_count = 0;
893
894  retry:
895         futex_lock_mm(fshared);
896
897         ret = get_futex_key(uaddr1, fshared, &key1);
898         if (unlikely(ret != 0))
899                 goto out;
900         ret = get_futex_key(uaddr2, fshared, &key2);
901         if (unlikely(ret != 0))
902                 goto out;
903
904         hb1 = hash_futex(&key1);
905         hb2 = hash_futex(&key2);
906
907         double_lock_hb(hb1, hb2);
908
909         if (likely(cmpval != NULL)) {
910                 u32 curval;
911
912                 ret = get_futex_value_locked(&curval, uaddr1);
913
914                 if (unlikely(ret)) {
915                         spin_unlock(&hb1->lock);
916                         if (hb1 != hb2)
917                                 spin_unlock(&hb2->lock);
918
919                         /*
920                          * If we would have faulted, release mmap_sem, fault
921                          * it in and start all over again.
922                          */
923                         futex_unlock_mm(fshared);
924
925                         ret = get_user(curval, uaddr1);
926
927                         if (!ret)
928                                 goto retry;
929
930                         return ret;
931                 }
932                 if (curval != *cmpval) {
933                         ret = -EAGAIN;
934                         goto out_unlock;
935                 }
936         }
937
938         head1 = &hb1->chain;
939         plist_for_each_entry_safe(this, next, head1, list) {
940                 if (!match_futex (&this->key, &key1))
941                         continue;
942                 if (++ret <= nr_wake) {
943                         wake_futex(this);
944                 } else {
945                         /*
946                          * If key1 and key2 hash to the same bucket, no need to
947                          * requeue.
948                          */
949                         if (likely(head1 != &hb2->chain)) {
950                                 plist_del(&this->list, &hb1->chain);
951                                 plist_add(&this->list, &hb2->chain);
952                                 this->lock_ptr = &hb2->lock;
953 #ifdef CONFIG_DEBUG_PI_LIST
954                                 this->list.plist.lock = &hb2->lock;
955 #endif
956                         }
957                         this->key = key2;
958                         get_futex_key_refs(&key2);
959                         drop_count++;
960
961                         if (ret - nr_wake >= nr_requeue)
962                                 break;
963                 }
964         }
965
966 out_unlock:
967         spin_unlock(&hb1->lock);
968         if (hb1 != hb2)
969                 spin_unlock(&hb2->lock);
970
971         /* drop_futex_key_refs() must be called outside the spinlocks. */
972         while (--drop_count >= 0)
973                 drop_futex_key_refs(&key1);
974
975 out:
976         futex_unlock_mm(fshared);
977         return ret;
978 }
979
980 /* The key must be already stored in q->key. */
981 static inline struct futex_hash_bucket *
982 queue_lock(struct futex_q *q, int fd, struct file *filp)
983 {
984         struct futex_hash_bucket *hb;
985
986         q->fd = fd;
987         q->filp = filp;
988
989         init_waitqueue_head(&q->waiters);
990
991         get_futex_key_refs(&q->key);
992         hb = hash_futex(&q->key);
993         q->lock_ptr = &hb->lock;
994
995         spin_lock(&hb->lock);
996         return hb;
997 }
998
999 static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1000 {
1001         int prio;
1002
1003         /*
1004          * The priority used to register this element is
1005          * - either the real thread-priority for the real-time threads
1006          * (i.e. threads with a priority lower than MAX_RT_PRIO)
1007          * - or MAX_RT_PRIO for non-RT threads.
1008          * Thus, all RT-threads are woken first in priority order, and
1009          * the others are woken last, in FIFO order.
1010          */
1011         prio = min(current->normal_prio, MAX_RT_PRIO);
1012
1013         plist_node_init(&q->list, prio);
1014 #ifdef CONFIG_DEBUG_PI_LIST
1015         q->list.plist.lock = &hb->lock;
1016 #endif
1017         plist_add(&q->list, &hb->chain);
1018         q->task = current;
1019         spin_unlock(&hb->lock);
1020 }
1021
1022 static inline void
1023 queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
1024 {
1025         spin_unlock(&hb->lock);
1026         drop_futex_key_refs(&q->key);
1027 }
1028
1029 /*
1030  * queue_me and unqueue_me must be called as a pair, each
1031  * exactly once.  They are called with the hashed spinlock held.
1032  */
1033
1034 /* The key must be already stored in q->key. */
1035 static void queue_me(struct futex_q *q, int fd, struct file *filp)
1036 {
1037         struct futex_hash_bucket *hb;
1038
1039         hb = queue_lock(q, fd, filp);
1040         __queue_me(q, hb);
1041 }
1042
1043 /* Return 1 if we were still queued (ie. 0 means we were woken) */
1044 static int unqueue_me(struct futex_q *q)
1045 {
1046         spinlock_t *lock_ptr;
1047         int ret = 0;
1048
1049         /* In the common case we don't take the spinlock, which is nice. */
1050  retry:
1051         lock_ptr = q->lock_ptr;
1052         barrier();
1053         if (lock_ptr != NULL) {
1054                 spin_lock(lock_ptr);
1055                 /*
1056                  * q->lock_ptr can change between reading it and
1057                  * spin_lock(), causing us to take the wrong lock.  This
1058                  * corrects the race condition.
1059                  *
1060                  * Reasoning goes like this: if we have the wrong lock,
1061                  * q->lock_ptr must have changed (maybe several times)
1062                  * between reading it and the spin_lock().  It can
1063                  * change again after the spin_lock() but only if it was
1064                  * already changed before the spin_lock().  It cannot,
1065                  * however, change back to the original value.  Therefore
1066                  * we can detect whether we acquired the correct lock.
1067                  */
1068                 if (unlikely(lock_ptr != q->lock_ptr)) {
1069                         spin_unlock(lock_ptr);
1070                         goto retry;
1071                 }
1072                 WARN_ON(plist_node_empty(&q->list));
1073                 plist_del(&q->list, &q->list.plist);
1074
1075                 BUG_ON(q->pi_state);
1076
1077                 spin_unlock(lock_ptr);
1078                 ret = 1;
1079         }
1080
1081         drop_futex_key_refs(&q->key);
1082         return ret;
1083 }
1084
1085 /*
1086  * PI futexes can not be requeued and must remove themself from the
1087  * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1088  * and dropped here.
1089  */
1090 static void unqueue_me_pi(struct futex_q *q)
1091 {
1092         WARN_ON(plist_node_empty(&q->list));
1093         plist_del(&q->list, &q->list.plist);
1094
1095         BUG_ON(!q->pi_state);
1096         free_pi_state(q->pi_state);
1097         q->pi_state = NULL;
1098
1099         spin_unlock(q->lock_ptr);
1100
1101         drop_futex_key_refs(&q->key);
1102 }
1103
1104 /*
1105  * Fixup the pi_state owner with current.
1106  *
1107  * Must be called with hash bucket lock held and mm->sem held for non
1108  * private futexes.
1109  */
1110 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
1111                                 struct task_struct *curr)
1112 {
1113         u32 newtid = task_pid_vnr(curr) | FUTEX_WAITERS;
1114         struct futex_pi_state *pi_state = q->pi_state;
1115         u32 uval, curval, newval;
1116         int ret;
1117
1118         /* Owner died? */
1119         if (pi_state->owner != NULL) {
1120                 spin_lock_irq(&pi_state->owner->pi_lock);
1121                 WARN_ON(list_empty(&pi_state->list));
1122                 list_del_init(&pi_state->list);
1123                 spin_unlock_irq(&pi_state->owner->pi_lock);
1124         } else
1125                 newtid |= FUTEX_OWNER_DIED;
1126
1127         pi_state->owner = curr;
1128
1129         spin_lock_irq(&curr->pi_lock);
1130         WARN_ON(!list_empty(&pi_state->list));
1131         list_add(&pi_state->list, &curr->pi_state_list);
1132         spin_unlock_irq(&curr->pi_lock);
1133
1134         /*
1135          * We own it, so we have to replace the pending owner
1136          * TID. This must be atomic as we have preserve the
1137          * owner died bit here.
1138          */
1139         ret = get_futex_value_locked(&uval, uaddr);
1140
1141         while (!ret) {
1142                 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1143
1144                 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
1145
1146                 if (curval == -EFAULT)
1147                         ret = -EFAULT;
1148                 if (curval == uval)
1149                         break;
1150                 uval = curval;
1151         }
1152         return ret;
1153 }
1154
1155 /*
1156  * In case we must use restart_block to restart a futex_wait,
1157  * we encode in the 'arg3' shared capability
1158  */
1159 #define ARG3_SHARED  1
1160
1161 static long futex_wait_restart(struct restart_block *restart);
1162
1163 static int futex_wait(u32 __user *uaddr, struct rw_semaphore *fshared,
1164                       u32 val, ktime_t *abs_time)
1165 {
1166         struct task_struct *curr = current;
1167         DECLARE_WAITQUEUE(wait, curr);
1168         struct futex_hash_bucket *hb;
1169         struct futex_q q;
1170         u32 uval;
1171         int ret;
1172         struct hrtimer_sleeper t;
1173         int rem = 0;
1174
1175         q.pi_state = NULL;
1176  retry:
1177         futex_lock_mm(fshared);
1178
1179         ret = get_futex_key(uaddr, fshared, &q.key);
1180         if (unlikely(ret != 0))
1181                 goto out_release_sem;
1182
1183         hb = queue_lock(&q, -1, NULL);
1184
1185         /*
1186          * Access the page AFTER the futex is queued.
1187          * Order is important:
1188          *
1189          *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1190          *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
1191          *
1192          * The basic logical guarantee of a futex is that it blocks ONLY
1193          * if cond(var) is known to be true at the time of blocking, for
1194          * any cond.  If we queued after testing *uaddr, that would open
1195          * a race condition where we could block indefinitely with
1196          * cond(var) false, which would violate the guarantee.
1197          *
1198          * A consequence is that futex_wait() can return zero and absorb
1199          * a wakeup when *uaddr != val on entry to the syscall.  This is
1200          * rare, but normal.
1201          *
1202          * for shared futexes, we hold the mmap semaphore, so the mapping
1203          * cannot have changed since we looked it up in get_futex_key.
1204          */
1205         ret = get_futex_value_locked(&uval, uaddr);
1206
1207         if (unlikely(ret)) {
1208                 queue_unlock(&q, hb);
1209
1210                 /*
1211                  * If we would have faulted, release mmap_sem, fault it in and
1212                  * start all over again.
1213                  */
1214                 futex_unlock_mm(fshared);
1215
1216                 ret = get_user(uval, uaddr);
1217
1218                 if (!ret)
1219                         goto retry;
1220                 return ret;
1221         }
1222         ret = -EWOULDBLOCK;
1223         if (uval != val)
1224                 goto out_unlock_release_sem;
1225
1226         /* Only actually queue if *uaddr contained val.  */
1227         __queue_me(&q, hb);
1228
1229         /*
1230          * Now the futex is queued and we have checked the data, we
1231          * don't want to hold mmap_sem while we sleep.
1232          */
1233         futex_unlock_mm(fshared);
1234
1235         /*
1236          * There might have been scheduling since the queue_me(), as we
1237          * cannot hold a spinlock across the get_user() in case it
1238          * faults, and we cannot just set TASK_INTERRUPTIBLE state when
1239          * queueing ourselves into the futex hash.  This code thus has to
1240          * rely on the futex_wake() code removing us from hash when it
1241          * wakes us up.
1242          */
1243
1244         /* add_wait_queue is the barrier after __set_current_state. */
1245         __set_current_state(TASK_INTERRUPTIBLE);
1246         add_wait_queue(&q.waiters, &wait);
1247         /*
1248          * !plist_node_empty() is safe here without any lock.
1249          * q.lock_ptr != 0 is not safe, because of ordering against wakeup.
1250          */
1251         if (likely(!plist_node_empty(&q.list))) {
1252                 if (!abs_time)
1253                         schedule();
1254                 else {
1255                         hrtimer_init(&t.timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1256                         hrtimer_init_sleeper(&t, current);
1257                         t.timer.expires = *abs_time;
1258
1259                         hrtimer_start(&t.timer, t.timer.expires, HRTIMER_MODE_ABS);
1260
1261                         /*
1262                          * the timer could have already expired, in which
1263                          * case current would be flagged for rescheduling.
1264                          * Don't bother calling schedule.
1265                          */
1266                         if (likely(t.task))
1267                                 schedule();
1268
1269                         hrtimer_cancel(&t.timer);
1270
1271                         /* Flag if a timeout occured */
1272                         rem = (t.task == NULL);
1273                 }
1274         }
1275         __set_current_state(TASK_RUNNING);
1276
1277         /*
1278          * NOTE: we don't remove ourselves from the waitqueue because
1279          * we are the only user of it.
1280          */
1281
1282         /* If we were woken (and unqueued), we succeeded, whatever. */
1283         if (!unqueue_me(&q))
1284                 return 0;
1285         if (rem)
1286                 return -ETIMEDOUT;
1287
1288         /*
1289          * We expect signal_pending(current), but another thread may
1290          * have handled it for us already.
1291          */
1292         if (!abs_time)
1293                 return -ERESTARTSYS;
1294         else {
1295                 struct restart_block *restart;
1296                 restart = &current_thread_info()->restart_block;
1297                 restart->fn = futex_wait_restart;
1298                 restart->arg0 = (unsigned long)uaddr;
1299                 restart->arg1 = (unsigned long)val;
1300                 restart->arg2 = (unsigned long)abs_time;
1301                 restart->arg3 = 0;
1302                 if (fshared)
1303                         restart->arg3 |= ARG3_SHARED;
1304                 return -ERESTART_RESTARTBLOCK;
1305         }
1306
1307  out_unlock_release_sem:
1308         queue_unlock(&q, hb);
1309
1310  out_release_sem:
1311         futex_unlock_mm(fshared);
1312         return ret;
1313 }
1314
1315
1316 static long futex_wait_restart(struct restart_block *restart)
1317 {
1318         u32 __user *uaddr = (u32 __user *)restart->arg0;
1319         u32 val = (u32)restart->arg1;
1320         ktime_t *abs_time = (ktime_t *)restart->arg2;
1321         struct rw_semaphore *fshared = NULL;
1322
1323         restart->fn = do_no_restart_syscall;
1324         if (restart->arg3 & ARG3_SHARED)
1325                 fshared = &current->mm->mmap_sem;
1326         return (long)futex_wait(uaddr, fshared, val, abs_time);
1327 }
1328
1329
1330 /*
1331  * Userspace tried a 0 -> TID atomic transition of the futex value
1332  * and failed. The kernel side here does the whole locking operation:
1333  * if there are waiters then it will block, it does PI, etc. (Due to
1334  * races the kernel might see a 0 value of the futex too.)
1335  */
1336 static int futex_lock_pi(u32 __user *uaddr, struct rw_semaphore *fshared,
1337                          int detect, ktime_t *time, int trylock)
1338 {
1339         struct hrtimer_sleeper timeout, *to = NULL;
1340         struct task_struct *curr = current;
1341         struct futex_hash_bucket *hb;
1342         u32 uval, newval, curval;
1343         struct futex_q q;
1344         int ret, lock_taken, ownerdied = 0, attempt = 0;
1345
1346         if (refill_pi_state_cache())
1347                 return -ENOMEM;
1348
1349         if (time) {
1350                 to = &timeout;
1351                 hrtimer_init(&to->timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
1352                 hrtimer_init_sleeper(to, current);
1353                 to->timer.expires = *time;
1354         }
1355
1356         q.pi_state = NULL;
1357  retry:
1358         futex_lock_mm(fshared);
1359
1360         ret = get_futex_key(uaddr, fshared, &q.key);
1361         if (unlikely(ret != 0))
1362                 goto out_release_sem;
1363
1364  retry_unlocked:
1365         hb = queue_lock(&q, -1, NULL);
1366
1367  retry_locked:
1368         ret = lock_taken = 0;
1369
1370         /*
1371          * To avoid races, we attempt to take the lock here again
1372          * (by doing a 0 -> TID atomic cmpxchg), while holding all
1373          * the locks. It will most likely not succeed.
1374          */
1375         newval = task_pid_vnr(current);
1376
1377         curval = cmpxchg_futex_value_locked(uaddr, 0, newval);
1378
1379         if (unlikely(curval == -EFAULT))
1380                 goto uaddr_faulted;
1381
1382         /*
1383          * Detect deadlocks. In case of REQUEUE_PI this is a valid
1384          * situation and we return success to user space.
1385          */
1386         if (unlikely((curval & FUTEX_TID_MASK) == task_pid_vnr(current))) {
1387                 ret = -EDEADLK;
1388                 goto out_unlock_release_sem;
1389         }
1390
1391         /*
1392          * Surprise - we got the lock. Just return to userspace:
1393          */
1394         if (unlikely(!curval))
1395                 goto out_unlock_release_sem;
1396
1397         uval = curval;
1398
1399         /*
1400          * Set the WAITERS flag, so the owner will know it has someone
1401          * to wake at next unlock
1402          */
1403         newval = curval | FUTEX_WAITERS;
1404
1405         /*
1406          * There are two cases, where a futex might have no owner (the
1407          * owner TID is 0): OWNER_DIED. We take over the futex in this
1408          * case. We also do an unconditional take over, when the owner
1409          * of the futex died.
1410          *
1411          * This is safe as we are protected by the hash bucket lock !
1412          */
1413         if (unlikely(ownerdied || !(curval & FUTEX_TID_MASK))) {
1414                 /* Keep the OWNER_DIED bit */
1415                 newval = (curval & ~FUTEX_TID_MASK) | task_pid_vnr(current);
1416                 ownerdied = 0;
1417                 lock_taken = 1;
1418         }
1419
1420         curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
1421
1422         if (unlikely(curval == -EFAULT))
1423                 goto uaddr_faulted;
1424         if (unlikely(curval != uval))
1425                 goto retry_locked;
1426
1427         /*
1428          * We took the lock due to owner died take over.
1429          */
1430         if (unlikely(lock_taken))
1431                 goto out_unlock_release_sem;
1432
1433         /*
1434          * We dont have the lock. Look up the PI state (or create it if
1435          * we are the first waiter):
1436          */
1437         ret = lookup_pi_state(uval, hb, &q.key, &q.pi_state);
1438
1439         if (unlikely(ret)) {
1440                 switch (ret) {
1441
1442                 case -EAGAIN:
1443                         /*
1444                          * Task is exiting and we just wait for the
1445                          * exit to complete.
1446                          */
1447                         queue_unlock(&q, hb);
1448                         futex_unlock_mm(fshared);
1449                         cond_resched();
1450                         goto retry;
1451
1452                 case -ESRCH:
1453                         /*
1454                          * No owner found for this futex. Check if the
1455                          * OWNER_DIED bit is set to figure out whether
1456                          * this is a robust futex or not.
1457                          */
1458                         if (get_futex_value_locked(&curval, uaddr))
1459                                 goto uaddr_faulted;
1460
1461                         /*
1462                          * We simply start over in case of a robust
1463                          * futex. The code above will take the futex
1464                          * and return happy.
1465                          */
1466                         if (curval & FUTEX_OWNER_DIED) {
1467                                 ownerdied = 1;
1468                                 goto retry_locked;
1469                         }
1470                 default:
1471                         goto out_unlock_release_sem;
1472                 }
1473         }
1474
1475         /*
1476          * Only actually queue now that the atomic ops are done:
1477          */
1478         __queue_me(&q, hb);
1479
1480         /*
1481          * Now the futex is queued and we have checked the data, we
1482          * don't want to hold mmap_sem while we sleep.
1483          */
1484         futex_unlock_mm(fshared);
1485
1486         WARN_ON(!q.pi_state);
1487         /*
1488          * Block on the PI mutex:
1489          */
1490         if (!trylock)
1491                 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
1492         else {
1493                 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
1494                 /* Fixup the trylock return value: */
1495                 ret = ret ? 0 : -EWOULDBLOCK;
1496         }
1497
1498         futex_lock_mm(fshared);
1499         spin_lock(q.lock_ptr);
1500
1501         if (!ret) {
1502                 /*
1503                  * Got the lock. We might not be the anticipated owner
1504                  * if we did a lock-steal - fix up the PI-state in
1505                  * that case:
1506                  */
1507                 if (q.pi_state->owner != curr)
1508                         ret = fixup_pi_state_owner(uaddr, &q, curr);
1509         } else {
1510                 /*
1511                  * Catch the rare case, where the lock was released
1512                  * when we were on the way back before we locked the
1513                  * hash bucket.
1514                  */
1515                 if (q.pi_state->owner == curr &&
1516                     rt_mutex_trylock(&q.pi_state->pi_mutex)) {
1517                         ret = 0;
1518                 } else {
1519                         /*
1520                          * Paranoia check. If we did not take the lock
1521                          * in the trylock above, then we should not be
1522                          * the owner of the rtmutex, neither the real
1523                          * nor the pending one:
1524                          */
1525                         if (rt_mutex_owner(&q.pi_state->pi_mutex) == curr)
1526                                 printk(KERN_ERR "futex_lock_pi: ret = %d "
1527                                        "pi-mutex: %p pi-state %p\n", ret,
1528                                        q.pi_state->pi_mutex.owner,
1529                                        q.pi_state->owner);
1530                 }
1531         }
1532
1533         /* Unqueue and drop the lock */
1534         unqueue_me_pi(&q);
1535         futex_unlock_mm(fshared);
1536
1537         return ret != -EINTR ? ret : -ERESTARTNOINTR;
1538
1539  out_unlock_release_sem:
1540         queue_unlock(&q, hb);
1541
1542  out_release_sem:
1543         futex_unlock_mm(fshared);
1544         return ret;
1545
1546  uaddr_faulted:
1547         /*
1548          * We have to r/w  *(int __user *)uaddr, but we can't modify it
1549          * non-atomically.  Therefore, if get_user below is not
1550          * enough, we need to handle the fault ourselves, while
1551          * still holding the mmap_sem.
1552          *
1553          * ... and hb->lock. :-) --ANK
1554          */
1555         queue_unlock(&q, hb);
1556
1557         if (attempt++) {
1558                 ret = futex_handle_fault((unsigned long)uaddr, fshared,
1559                                          attempt);
1560                 if (ret)
1561                         goto out_release_sem;
1562                 goto retry_unlocked;
1563         }
1564
1565         futex_unlock_mm(fshared);
1566
1567         ret = get_user(uval, uaddr);
1568         if (!ret && (uval != -EFAULT))
1569                 goto retry;
1570
1571         return ret;
1572 }
1573
1574 /*
1575  * Userspace attempted a TID -> 0 atomic transition, and failed.
1576  * This is the in-kernel slowpath: we look up the PI state (if any),
1577  * and do the rt-mutex unlock.
1578  */
1579 static int futex_unlock_pi(u32 __user *uaddr, struct rw_semaphore *fshared)
1580 {
1581         struct futex_hash_bucket *hb;
1582         struct futex_q *this, *next;
1583         u32 uval;
1584         struct plist_head *head;
1585         union futex_key key;
1586         int ret, attempt = 0;
1587
1588 retry:
1589         if (get_user(uval, uaddr))
1590                 return -EFAULT;
1591         /*
1592          * We release only a lock we actually own:
1593          */
1594         if ((uval & FUTEX_TID_MASK) != task_pid_vnr(current))
1595                 return -EPERM;
1596         /*
1597          * First take all the futex related locks:
1598          */
1599         futex_lock_mm(fshared);
1600
1601         ret = get_futex_key(uaddr, fshared, &key);
1602         if (unlikely(ret != 0))
1603                 goto out;
1604
1605         hb = hash_futex(&key);
1606 retry_unlocked:
1607         spin_lock(&hb->lock);
1608
1609         /*
1610          * To avoid races, try to do the TID -> 0 atomic transition
1611          * again. If it succeeds then we can return without waking
1612          * anyone else up:
1613          */
1614         if (!(uval & FUTEX_OWNER_DIED))
1615                 uval = cmpxchg_futex_value_locked(uaddr, task_pid_vnr(current), 0);
1616
1617
1618         if (unlikely(uval == -EFAULT))
1619                 goto pi_faulted;
1620         /*
1621          * Rare case: we managed to release the lock atomically,
1622          * no need to wake anyone else up:
1623          */
1624         if (unlikely(uval == task_pid_vnr(current)))
1625                 goto out_unlock;
1626
1627         /*
1628          * Ok, other tasks may need to be woken up - check waiters
1629          * and do the wakeup if necessary:
1630          */
1631         head = &hb->chain;
1632
1633         plist_for_each_entry_safe(this, next, head, list) {
1634                 if (!match_futex (&this->key, &key))
1635                         continue;
1636                 ret = wake_futex_pi(uaddr, uval, this);
1637                 /*
1638                  * The atomic access to the futex value
1639                  * generated a pagefault, so retry the
1640                  * user-access and the wakeup:
1641                  */
1642                 if (ret == -EFAULT)
1643                         goto pi_faulted;
1644                 goto out_unlock;
1645         }
1646         /*
1647          * No waiters - kernel unlocks the futex:
1648          */
1649         if (!(uval & FUTEX_OWNER_DIED)) {
1650                 ret = unlock_futex_pi(uaddr, uval);
1651                 if (ret == -EFAULT)
1652                         goto pi_faulted;
1653         }
1654
1655 out_unlock:
1656         spin_unlock(&hb->lock);
1657 out:
1658         futex_unlock_mm(fshared);
1659
1660         return ret;
1661
1662 pi_faulted:
1663         /*
1664          * We have to r/w  *(int __user *)uaddr, but we can't modify it
1665          * non-atomically.  Therefore, if get_user below is not
1666          * enough, we need to handle the fault ourselves, while
1667          * still holding the mmap_sem.
1668          *
1669          * ... and hb->lock. --ANK
1670          */
1671         spin_unlock(&hb->lock);
1672
1673         if (attempt++) {
1674                 ret = futex_handle_fault((unsigned long)uaddr, fshared,
1675                                          attempt);
1676                 if (ret)
1677                         goto out;
1678                 uval = 0;
1679                 goto retry_unlocked;
1680         }
1681
1682         futex_unlock_mm(fshared);
1683
1684         ret = get_user(uval, uaddr);
1685         if (!ret && (uval != -EFAULT))
1686                 goto retry;
1687
1688         return ret;
1689 }
1690
1691 static int futex_close(struct inode *inode, struct file *filp)
1692 {
1693         struct futex_q *q = filp->private_data;
1694
1695         unqueue_me(q);
1696         kfree(q);
1697
1698         return 0;
1699 }
1700
1701 /* This is one-shot: once it's gone off you need a new fd */
1702 static unsigned int futex_poll(struct file *filp,
1703                                struct poll_table_struct *wait)
1704 {
1705         struct futex_q *q = filp->private_data;
1706         int ret = 0;
1707
1708         poll_wait(filp, &q->waiters, wait);
1709
1710         /*
1711          * plist_node_empty() is safe here without any lock.
1712          * q->lock_ptr != 0 is not safe, because of ordering against wakeup.
1713          */
1714         if (plist_node_empty(&q->list))
1715                 ret = POLLIN | POLLRDNORM;
1716
1717         return ret;
1718 }
1719
1720 static const struct file_operations futex_fops = {
1721         .release        = futex_close,
1722         .poll           = futex_poll,
1723 };
1724
1725 /*
1726  * Signal allows caller to avoid the race which would occur if they
1727  * set the sigio stuff up afterwards.
1728  */
1729 static int futex_fd(u32 __user *uaddr, int signal)
1730 {
1731         struct futex_q *q;
1732         struct file *filp;
1733         int ret, err;
1734         struct rw_semaphore *fshared;
1735         static unsigned long printk_interval;
1736
1737         if (printk_timed_ratelimit(&printk_interval, 60 * 60 * 1000)) {
1738                 printk(KERN_WARNING "Process `%s' used FUTEX_FD, which "
1739                        "will be removed from the kernel in June 2007\n",
1740                        current->comm);
1741         }
1742
1743         ret = -EINVAL;
1744         if (!valid_signal(signal))
1745                 goto out;
1746
1747         ret = get_unused_fd();
1748         if (ret < 0)
1749                 goto out;
1750         filp = get_empty_filp();
1751         if (!filp) {
1752                 put_unused_fd(ret);
1753                 ret = -ENFILE;
1754                 goto out;
1755         }
1756         filp->f_op = &futex_fops;
1757         filp->f_path.mnt = mntget(futex_mnt);
1758         filp->f_path.dentry = dget(futex_mnt->mnt_root);
1759         filp->f_mapping = filp->f_path.dentry->d_inode->i_mapping;
1760
1761         if (signal) {
1762                 err = __f_setown(filp, task_pid(current), PIDTYPE_PID, 1);
1763                 if (err < 0) {
1764                         goto error;
1765                 }
1766                 filp->f_owner.signum = signal;
1767         }
1768
1769         q = kmalloc(sizeof(*q), GFP_KERNEL);
1770         if (!q) {
1771                 err = -ENOMEM;
1772                 goto error;
1773         }
1774         q->pi_state = NULL;
1775
1776         fshared = &current->mm->mmap_sem;
1777         down_read(fshared);
1778         err = get_futex_key(uaddr, fshared, &q->key);
1779
1780         if (unlikely(err != 0)) {
1781                 up_read(fshared);
1782                 kfree(q);
1783                 goto error;
1784         }
1785
1786         /*
1787          * queue_me() must be called before releasing mmap_sem, because
1788          * key->shared.inode needs to be referenced while holding it.
1789          */
1790         filp->private_data = q;
1791
1792         queue_me(q, ret, filp);
1793         up_read(fshared);
1794
1795         /* Now we map fd to filp, so userspace can access it */
1796         fd_install(ret, filp);
1797 out:
1798         return ret;
1799 error:
1800         put_unused_fd(ret);
1801         put_filp(filp);
1802         ret = err;
1803         goto out;
1804 }
1805
1806 /*
1807  * Support for robust futexes: the kernel cleans up held futexes at
1808  * thread exit time.
1809  *
1810  * Implementation: user-space maintains a per-thread list of locks it
1811  * is holding. Upon do_exit(), the kernel carefully walks this list,
1812  * and marks all locks that are owned by this thread with the
1813  * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
1814  * always manipulated with the lock held, so the list is private and
1815  * per-thread. Userspace also maintains a per-thread 'list_op_pending'
1816  * field, to allow the kernel to clean up if the thread dies after
1817  * acquiring the lock, but just before it could have added itself to
1818  * the list. There can only be one such pending lock.
1819  */
1820
1821 /**
1822  * sys_set_robust_list - set the robust-futex list head of a task
1823  * @head: pointer to the list-head
1824  * @len: length of the list-head, as userspace expects
1825  */
1826 asmlinkage long
1827 sys_set_robust_list(struct robust_list_head __user *head,
1828                     size_t len)
1829 {
1830         /*
1831          * The kernel knows only one size for now:
1832          */
1833         if (unlikely(len != sizeof(*head)))
1834                 return -EINVAL;
1835
1836         current->robust_list = head;
1837
1838         return 0;
1839 }
1840
1841 /**
1842  * sys_get_robust_list - get the robust-futex list head of a task
1843  * @pid: pid of the process [zero for current task]
1844  * @head_ptr: pointer to a list-head pointer, the kernel fills it in
1845  * @len_ptr: pointer to a length field, the kernel fills in the header size
1846  */
1847 asmlinkage long
1848 sys_get_robust_list(int pid, struct robust_list_head __user * __user *head_ptr,
1849                     size_t __user *len_ptr)
1850 {
1851         struct robust_list_head __user *head;
1852         unsigned long ret;
1853
1854         if (!pid)
1855                 head = current->robust_list;
1856         else {
1857                 struct task_struct *p;
1858
1859                 ret = -ESRCH;
1860                 rcu_read_lock();
1861                 p = find_task_by_pid_ns(pid,
1862                                 current->nsproxy->pid_ns);
1863                 if (!p)
1864                         goto err_unlock;
1865                 ret = -EPERM;
1866                 if ((current->euid != p->euid) && (current->euid != p->uid) &&
1867                                 !capable(CAP_SYS_PTRACE))
1868                         goto err_unlock;
1869                 head = p->robust_list;
1870                 rcu_read_unlock();
1871         }
1872
1873         if (put_user(sizeof(*head), len_ptr))
1874                 return -EFAULT;
1875         return put_user(head, head_ptr);
1876
1877 err_unlock:
1878         rcu_read_unlock();
1879
1880         return ret;
1881 }
1882
1883 /*
1884  * Process a futex-list entry, check whether it's owned by the
1885  * dying task, and do notification if so:
1886  */
1887 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
1888 {
1889         u32 uval, nval, mval;
1890
1891 retry:
1892         if (get_user(uval, uaddr))
1893                 return -1;
1894
1895         if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
1896                 /*
1897                  * Ok, this dying thread is truly holding a futex
1898                  * of interest. Set the OWNER_DIED bit atomically
1899                  * via cmpxchg, and if the value had FUTEX_WAITERS
1900                  * set, wake up a waiter (if any). (We have to do a
1901                  * futex_wake() even if OWNER_DIED is already set -
1902                  * to handle the rare but possible case of recursive
1903                  * thread-death.) The rest of the cleanup is done in
1904                  * userspace.
1905                  */
1906                 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
1907                 nval = futex_atomic_cmpxchg_inatomic(uaddr, uval, mval);
1908
1909                 if (nval == -EFAULT)
1910                         return -1;
1911
1912                 if (nval != uval)
1913                         goto retry;
1914
1915                 /*
1916                  * Wake robust non-PI futexes here. The wakeup of
1917                  * PI futexes happens in exit_pi_state():
1918                  */
1919                 if (!pi && (uval & FUTEX_WAITERS))
1920                                 futex_wake(uaddr, &curr->mm->mmap_sem, 1);
1921         }
1922         return 0;
1923 }
1924
1925 /*
1926  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
1927  */
1928 static inline int fetch_robust_entry(struct robust_list __user **entry,
1929                                      struct robust_list __user * __user *head,
1930                                      int *pi)
1931 {
1932         unsigned long uentry;
1933
1934         if (get_user(uentry, (unsigned long __user *)head))
1935                 return -EFAULT;
1936
1937         *entry = (void __user *)(uentry & ~1UL);
1938         *pi = uentry & 1;
1939
1940         return 0;
1941 }
1942
1943 /*
1944  * Walk curr->robust_list (very carefully, it's a userspace list!)
1945  * and mark any locks found there dead, and notify any waiters.
1946  *
1947  * We silently return on any sign of list-walking problem.
1948  */
1949 void exit_robust_list(struct task_struct *curr)
1950 {
1951         struct robust_list_head __user *head = curr->robust_list;
1952         struct robust_list __user *entry, *next_entry, *pending;
1953         unsigned int limit = ROBUST_LIST_LIMIT, pi, next_pi, pip;
1954         unsigned long futex_offset;
1955         int rc;
1956
1957         /*
1958          * Fetch the list head (which was registered earlier, via
1959          * sys_set_robust_list()):
1960          */
1961         if (fetch_robust_entry(&entry, &head->list.next, &pi))
1962                 return;
1963         /*
1964          * Fetch the relative futex offset:
1965          */
1966         if (get_user(futex_offset, &head->futex_offset))
1967                 return;
1968         /*
1969          * Fetch any possibly pending lock-add first, and handle it
1970          * if it exists:
1971          */
1972         if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
1973                 return;
1974
1975         next_entry = NULL;      /* avoid warning with gcc */
1976         while (entry != &head->list) {
1977                 /*
1978                  * Fetch the next entry in the list before calling
1979                  * handle_futex_death:
1980                  */
1981                 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
1982                 /*
1983                  * A pending lock might already be on the list, so
1984                  * don't process it twice:
1985                  */
1986                 if (entry != pending)
1987                         if (handle_futex_death((void __user *)entry + futex_offset,
1988                                                 curr, pi))
1989                                 return;
1990                 if (rc)
1991                         return;
1992                 entry = next_entry;
1993                 pi = next_pi;
1994                 /*
1995                  * Avoid excessively long or circular lists:
1996                  */
1997                 if (!--limit)
1998                         break;
1999
2000                 cond_resched();
2001         }
2002
2003         if (pending)
2004                 handle_futex_death((void __user *)pending + futex_offset,
2005                                    curr, pip);
2006 }
2007
2008 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
2009                 u32 __user *uaddr2, u32 val2, u32 val3)
2010 {
2011         int ret;
2012         int cmd = op & FUTEX_CMD_MASK;
2013         struct rw_semaphore *fshared = NULL;
2014
2015         if (!(op & FUTEX_PRIVATE_FLAG))
2016                 fshared = &current->mm->mmap_sem;
2017
2018         switch (cmd) {
2019         case FUTEX_WAIT:
2020                 ret = futex_wait(uaddr, fshared, val, timeout);
2021                 break;
2022         case FUTEX_WAKE:
2023                 ret = futex_wake(uaddr, fshared, val);
2024                 break;
2025         case FUTEX_FD:
2026                 /* non-zero val means F_SETOWN(getpid()) & F_SETSIG(val) */
2027                 ret = futex_fd(uaddr, val);
2028                 break;
2029         case FUTEX_REQUEUE:
2030                 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, NULL);
2031                 break;
2032         case FUTEX_CMP_REQUEUE:
2033                 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, &val3);
2034                 break;
2035         case FUTEX_WAKE_OP:
2036                 ret = futex_wake_op(uaddr, fshared, uaddr2, val, val2, val3);
2037                 break;
2038         case FUTEX_LOCK_PI:
2039                 ret = futex_lock_pi(uaddr, fshared, val, timeout, 0);
2040                 break;
2041         case FUTEX_UNLOCK_PI:
2042                 ret = futex_unlock_pi(uaddr, fshared);
2043                 break;
2044         case FUTEX_TRYLOCK_PI:
2045                 ret = futex_lock_pi(uaddr, fshared, 0, timeout, 1);
2046                 break;
2047         default:
2048                 ret = -ENOSYS;
2049         }
2050         return ret;
2051 }
2052
2053
2054 asmlinkage long sys_futex(u32 __user *uaddr, int op, u32 val,
2055                           struct timespec __user *utime, u32 __user *uaddr2,
2056                           u32 val3)
2057 {
2058         struct timespec ts;
2059         ktime_t t, *tp = NULL;
2060         u32 val2 = 0;
2061         int cmd = op & FUTEX_CMD_MASK;
2062
2063         if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI)) {
2064                 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
2065                         return -EFAULT;
2066                 if (!timespec_valid(&ts))
2067                         return -EINVAL;
2068
2069                 t = timespec_to_ktime(ts);
2070                 if (cmd == FUTEX_WAIT)
2071                         t = ktime_add(ktime_get(), t);
2072                 tp = &t;
2073         }
2074         /*
2075          * requeue parameter in 'utime' if cmd == FUTEX_REQUEUE.
2076          * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
2077          */
2078         if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
2079             cmd == FUTEX_WAKE_OP)
2080                 val2 = (u32) (unsigned long) utime;
2081
2082         return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
2083 }
2084
2085 static int futexfs_get_sb(struct file_system_type *fs_type,
2086                           int flags, const char *dev_name, void *data,
2087                           struct vfsmount *mnt)
2088 {
2089         return get_sb_pseudo(fs_type, "futex", NULL, FUTEXFS_SUPER_MAGIC, mnt);
2090 }
2091
2092 static struct file_system_type futex_fs_type = {
2093         .name           = "futexfs",
2094         .get_sb         = futexfs_get_sb,
2095         .kill_sb        = kill_anon_super,
2096 };
2097
2098 static int __init init(void)
2099 {
2100         int i = register_filesystem(&futex_fs_type);
2101
2102         if (i)
2103                 return i;
2104
2105         futex_mnt = kern_mount(&futex_fs_type);
2106         if (IS_ERR(futex_mnt)) {
2107                 unregister_filesystem(&futex_fs_type);
2108                 return PTR_ERR(futex_mnt);
2109         }
2110
2111         for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
2112                 plist_head_init(&futex_queues[i].chain, &futex_queues[i].lock);
2113                 spin_lock_init(&futex_queues[i].lock);
2114         }
2115         return 0;
2116 }
2117 __initcall(init);