futex: use fast_gup()
[safe/jmp/linux-2.6] / kernel / futex.c
1 /*
2  *  Fast Userspace Mutexes (which I call "Futexes!").
3  *  (C) Rusty Russell, IBM 2002
4  *
5  *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6  *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7  *
8  *  Removed page pinning, fix privately mapped COW pages and other cleanups
9  *  (C) Copyright 2003, 2004 Jamie Lokier
10  *
11  *  Robust futex support started by Ingo Molnar
12  *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13  *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14  *
15  *  PI-futex support started by Ingo Molnar and Thomas Gleixner
16  *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17  *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18  *
19  *  PRIVATE futexes by Eric Dumazet
20  *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21  *
22  *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
23  *  enough at me, Linus for the original (flawed) idea, Matthew
24  *  Kirkwood for proof-of-concept implementation.
25  *
26  *  "The futexes are also cursed."
27  *  "But they come in a choice of three flavours!"
28  *
29  *  This program is free software; you can redistribute it and/or modify
30  *  it under the terms of the GNU General Public License as published by
31  *  the Free Software Foundation; either version 2 of the License, or
32  *  (at your option) any later version.
33  *
34  *  This program is distributed in the hope that it will be useful,
35  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
36  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
37  *  GNU General Public License for more details.
38  *
39  *  You should have received a copy of the GNU General Public License
40  *  along with this program; if not, write to the Free Software
41  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
42  */
43 #include <linux/slab.h>
44 #include <linux/poll.h>
45 #include <linux/fs.h>
46 #include <linux/file.h>
47 #include <linux/jhash.h>
48 #include <linux/init.h>
49 #include <linux/futex.h>
50 #include <linux/mount.h>
51 #include <linux/pagemap.h>
52 #include <linux/syscalls.h>
53 #include <linux/signal.h>
54 #include <linux/module.h>
55 #include <linux/magic.h>
56 #include <linux/pid.h>
57 #include <linux/nsproxy.h>
58
59 #include <asm/futex.h>
60
61 #include "rtmutex_common.h"
62
63 int __read_mostly futex_cmpxchg_enabled;
64
65 #define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
66
67 /*
68  * Priority Inheritance state:
69  */
70 struct futex_pi_state {
71         /*
72          * list of 'owned' pi_state instances - these have to be
73          * cleaned up in do_exit() if the task exits prematurely:
74          */
75         struct list_head list;
76
77         /*
78          * The PI object:
79          */
80         struct rt_mutex pi_mutex;
81
82         struct task_struct *owner;
83         atomic_t refcount;
84
85         union futex_key key;
86 };
87
88 /*
89  * We use this hashed waitqueue instead of a normal wait_queue_t, so
90  * we can wake only the relevant ones (hashed queues may be shared).
91  *
92  * A futex_q has a woken state, just like tasks have TASK_RUNNING.
93  * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
94  * The order of wakup is always to make the first condition true, then
95  * wake up q->waiters, then make the second condition true.
96  */
97 struct futex_q {
98         struct plist_node list;
99         wait_queue_head_t waiters;
100
101         /* Which hash list lock to use: */
102         spinlock_t *lock_ptr;
103
104         /* Key which the futex is hashed on: */
105         union futex_key key;
106
107         /* Optional priority inheritance state: */
108         struct futex_pi_state *pi_state;
109         struct task_struct *task;
110
111         /* Bitset for the optional bitmasked wakeup */
112         u32 bitset;
113 };
114
115 /*
116  * Split the global futex_lock into every hash list lock.
117  */
118 struct futex_hash_bucket {
119         spinlock_t lock;
120         struct plist_head chain;
121 };
122
123 static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
124
125 /*
126  * We hash on the keys returned from get_futex_key (see below).
127  */
128 static struct futex_hash_bucket *hash_futex(union futex_key *key)
129 {
130         u32 hash = jhash2((u32*)&key->both.word,
131                           (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
132                           key->both.offset);
133         return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
134 }
135
136 /*
137  * Return 1 if two futex_keys are equal, 0 otherwise.
138  */
139 static inline int match_futex(union futex_key *key1, union futex_key *key2)
140 {
141         return (key1->both.word == key2->both.word
142                 && key1->both.ptr == key2->both.ptr
143                 && key1->both.offset == key2->both.offset);
144 }
145
146 /*
147  * Take a reference to the resource addressed by a key.
148  * Can be called while holding spinlocks.
149  *
150  */
151 static void get_futex_key_refs(union futex_key *key)
152 {
153         if (!key->both.ptr)
154                 return;
155
156         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
157         case FUT_OFF_INODE:
158                 atomic_inc(&key->shared.inode->i_count);
159                 break;
160         case FUT_OFF_MMSHARED:
161                 atomic_inc(&key->private.mm->mm_count);
162                 break;
163         }
164 }
165
166 /*
167  * Drop a reference to the resource addressed by a key.
168  * The hash bucket spinlock must not be held.
169  */
170 static void drop_futex_key_refs(union futex_key *key)
171 {
172         if (!key->both.ptr)
173                 return;
174
175         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
176         case FUT_OFF_INODE:
177                 iput(key->shared.inode);
178                 break;
179         case FUT_OFF_MMSHARED:
180                 mmdrop(key->private.mm);
181                 break;
182         }
183 }
184
185 /**
186  * get_futex_key - Get parameters which are the keys for a futex.
187  * @uaddr: virtual address of the futex
188  * @shared: NULL for a PROCESS_PRIVATE futex,
189  *      &current->mm->mmap_sem for a PROCESS_SHARED futex
190  * @key: address where result is stored.
191  *
192  * Returns a negative error code or 0
193  * The key words are stored in *key on success.
194  *
195  * For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode,
196  * offset_within_page).  For private mappings, it's (uaddr, current->mm).
197  * We can usually work out the index without swapping in the page.
198  *
199  * fshared is NULL for PROCESS_PRIVATE futexes
200  * For other futexes, it points to &current->mm->mmap_sem and
201  * caller must have taken the reader lock. but NOT any spinlocks.
202  */
203 static int get_futex_key(u32 __user *uaddr, struct rw_semaphore *fshared,
204                          union futex_key *key)
205 {
206         unsigned long address = (unsigned long)uaddr;
207         struct mm_struct *mm = current->mm;
208         struct page *page;
209         int err;
210
211         /*
212          * The futex address must be "naturally" aligned.
213          */
214         key->both.offset = address % PAGE_SIZE;
215         if (unlikely((address % sizeof(u32)) != 0))
216                 return -EINVAL;
217         address -= key->both.offset;
218
219         /*
220          * PROCESS_PRIVATE futexes are fast.
221          * As the mm cannot disappear under us and the 'key' only needs
222          * virtual address, we dont even have to find the underlying vma.
223          * Note : We do have to check 'uaddr' is a valid user address,
224          *        but access_ok() should be faster than find_vma()
225          */
226         if (!fshared) {
227                 if (unlikely(!access_ok(VERIFY_WRITE, uaddr, sizeof(u32))))
228                         return -EFAULT;
229                 key->private.mm = mm;
230                 key->private.address = address;
231                 return 0;
232         }
233
234 again:
235         err = get_user_pages_fast(address, 1, 0, &page);
236         if (err < 0)
237                 return err;
238
239         lock_page(page);
240         if (!page->mapping) {
241                 unlock_page(page);
242                 put_page(page);
243                 goto again;
244         }
245
246         /*
247          * Private mappings are handled in a simple way.
248          *
249          * NOTE: When userspace waits on a MAP_SHARED mapping, even if
250          * it's a read-only handle, it's expected that futexes attach to
251          * the object not the particular process.
252          */
253         if (PageAnon(page)) {
254                 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
255                 key->private.mm = mm;
256                 key->private.address = address;
257         } else {
258                 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
259                 key->shared.inode = page->mapping->host;
260                 key->shared.pgoff = page->index;
261         }
262
263         get_futex_key_refs(key);
264
265         unlock_page(page);
266         put_page(page);
267         return 0;
268 }
269
270 static inline
271 void put_futex_key(struct rw_semaphore *fshared, union futex_key *key)
272 {
273         drop_futex_key_refs(key);
274 }
275
276 static u32 cmpxchg_futex_value_locked(u32 __user *uaddr, u32 uval, u32 newval)
277 {
278         u32 curval;
279
280         pagefault_disable();
281         curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval);
282         pagefault_enable();
283
284         return curval;
285 }
286
287 static int get_futex_value_locked(u32 *dest, u32 __user *from)
288 {
289         int ret;
290
291         pagefault_disable();
292         ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
293         pagefault_enable();
294
295         return ret ? -EFAULT : 0;
296 }
297
298 /*
299  * Fault handling.
300  * if fshared is non NULL, current->mm->mmap_sem is already held
301  */
302 static int futex_handle_fault(unsigned long address,
303                               struct rw_semaphore *fshared, int attempt)
304 {
305         struct vm_area_struct * vma;
306         struct mm_struct *mm = current->mm;
307         int ret = -EFAULT;
308
309         if (attempt > 2)
310                 return ret;
311
312         down_read(&mm->mmap_sem);
313         vma = find_vma(mm, address);
314         if (vma && address >= vma->vm_start &&
315             (vma->vm_flags & VM_WRITE)) {
316                 int fault;
317                 fault = handle_mm_fault(mm, vma, address, 1);
318                 if (unlikely((fault & VM_FAULT_ERROR))) {
319 #if 0
320                         /* XXX: let's do this when we verify it is OK */
321                         if (ret & VM_FAULT_OOM)
322                                 ret = -ENOMEM;
323 #endif
324                 } else {
325                         ret = 0;
326                         if (fault & VM_FAULT_MAJOR)
327                                 current->maj_flt++;
328                         else
329                                 current->min_flt++;
330                 }
331         }
332         up_read(&mm->mmap_sem);
333         return ret;
334 }
335
336 /*
337  * PI code:
338  */
339 static int refill_pi_state_cache(void)
340 {
341         struct futex_pi_state *pi_state;
342
343         if (likely(current->pi_state_cache))
344                 return 0;
345
346         pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
347
348         if (!pi_state)
349                 return -ENOMEM;
350
351         INIT_LIST_HEAD(&pi_state->list);
352         /* pi_mutex gets initialized later */
353         pi_state->owner = NULL;
354         atomic_set(&pi_state->refcount, 1);
355         pi_state->key = FUTEX_KEY_INIT;
356
357         current->pi_state_cache = pi_state;
358
359         return 0;
360 }
361
362 static struct futex_pi_state * alloc_pi_state(void)
363 {
364         struct futex_pi_state *pi_state = current->pi_state_cache;
365
366         WARN_ON(!pi_state);
367         current->pi_state_cache = NULL;
368
369         return pi_state;
370 }
371
372 static void free_pi_state(struct futex_pi_state *pi_state)
373 {
374         if (!atomic_dec_and_test(&pi_state->refcount))
375                 return;
376
377         /*
378          * If pi_state->owner is NULL, the owner is most probably dying
379          * and has cleaned up the pi_state already
380          */
381         if (pi_state->owner) {
382                 spin_lock_irq(&pi_state->owner->pi_lock);
383                 list_del_init(&pi_state->list);
384                 spin_unlock_irq(&pi_state->owner->pi_lock);
385
386                 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
387         }
388
389         if (current->pi_state_cache)
390                 kfree(pi_state);
391         else {
392                 /*
393                  * pi_state->list is already empty.
394                  * clear pi_state->owner.
395                  * refcount is at 0 - put it back to 1.
396                  */
397                 pi_state->owner = NULL;
398                 atomic_set(&pi_state->refcount, 1);
399                 current->pi_state_cache = pi_state;
400         }
401 }
402
403 /*
404  * Look up the task based on what TID userspace gave us.
405  * We dont trust it.
406  */
407 static struct task_struct * futex_find_get_task(pid_t pid)
408 {
409         struct task_struct *p;
410
411         rcu_read_lock();
412         p = find_task_by_vpid(pid);
413         if (!p || ((current->euid != p->euid) && (current->euid != p->uid)))
414                 p = ERR_PTR(-ESRCH);
415         else
416                 get_task_struct(p);
417
418         rcu_read_unlock();
419
420         return p;
421 }
422
423 /*
424  * This task is holding PI mutexes at exit time => bad.
425  * Kernel cleans up PI-state, but userspace is likely hosed.
426  * (Robust-futex cleanup is separate and might save the day for userspace.)
427  */
428 void exit_pi_state_list(struct task_struct *curr)
429 {
430         struct list_head *next, *head = &curr->pi_state_list;
431         struct futex_pi_state *pi_state;
432         struct futex_hash_bucket *hb;
433         union futex_key key = FUTEX_KEY_INIT;
434
435         if (!futex_cmpxchg_enabled)
436                 return;
437         /*
438          * We are a ZOMBIE and nobody can enqueue itself on
439          * pi_state_list anymore, but we have to be careful
440          * versus waiters unqueueing themselves:
441          */
442         spin_lock_irq(&curr->pi_lock);
443         while (!list_empty(head)) {
444
445                 next = head->next;
446                 pi_state = list_entry(next, struct futex_pi_state, list);
447                 key = pi_state->key;
448                 hb = hash_futex(&key);
449                 spin_unlock_irq(&curr->pi_lock);
450
451                 spin_lock(&hb->lock);
452
453                 spin_lock_irq(&curr->pi_lock);
454                 /*
455                  * We dropped the pi-lock, so re-check whether this
456                  * task still owns the PI-state:
457                  */
458                 if (head->next != next) {
459                         spin_unlock(&hb->lock);
460                         continue;
461                 }
462
463                 WARN_ON(pi_state->owner != curr);
464                 WARN_ON(list_empty(&pi_state->list));
465                 list_del_init(&pi_state->list);
466                 pi_state->owner = NULL;
467                 spin_unlock_irq(&curr->pi_lock);
468
469                 rt_mutex_unlock(&pi_state->pi_mutex);
470
471                 spin_unlock(&hb->lock);
472
473                 spin_lock_irq(&curr->pi_lock);
474         }
475         spin_unlock_irq(&curr->pi_lock);
476 }
477
478 static int
479 lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
480                 union futex_key *key, struct futex_pi_state **ps)
481 {
482         struct futex_pi_state *pi_state = NULL;
483         struct futex_q *this, *next;
484         struct plist_head *head;
485         struct task_struct *p;
486         pid_t pid = uval & FUTEX_TID_MASK;
487
488         head = &hb->chain;
489
490         plist_for_each_entry_safe(this, next, head, list) {
491                 if (match_futex(&this->key, key)) {
492                         /*
493                          * Another waiter already exists - bump up
494                          * the refcount and return its pi_state:
495                          */
496                         pi_state = this->pi_state;
497                         /*
498                          * Userspace might have messed up non PI and PI futexes
499                          */
500                         if (unlikely(!pi_state))
501                                 return -EINVAL;
502
503                         WARN_ON(!atomic_read(&pi_state->refcount));
504                         WARN_ON(pid && pi_state->owner &&
505                                 pi_state->owner->pid != pid);
506
507                         atomic_inc(&pi_state->refcount);
508                         *ps = pi_state;
509
510                         return 0;
511                 }
512         }
513
514         /*
515          * We are the first waiter - try to look up the real owner and attach
516          * the new pi_state to it, but bail out when TID = 0
517          */
518         if (!pid)
519                 return -ESRCH;
520         p = futex_find_get_task(pid);
521         if (IS_ERR(p))
522                 return PTR_ERR(p);
523
524         /*
525          * We need to look at the task state flags to figure out,
526          * whether the task is exiting. To protect against the do_exit
527          * change of the task flags, we do this protected by
528          * p->pi_lock:
529          */
530         spin_lock_irq(&p->pi_lock);
531         if (unlikely(p->flags & PF_EXITING)) {
532                 /*
533                  * The task is on the way out. When PF_EXITPIDONE is
534                  * set, we know that the task has finished the
535                  * cleanup:
536                  */
537                 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
538
539                 spin_unlock_irq(&p->pi_lock);
540                 put_task_struct(p);
541                 return ret;
542         }
543
544         pi_state = alloc_pi_state();
545
546         /*
547          * Initialize the pi_mutex in locked state and make 'p'
548          * the owner of it:
549          */
550         rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
551
552         /* Store the key for possible exit cleanups: */
553         pi_state->key = *key;
554
555         WARN_ON(!list_empty(&pi_state->list));
556         list_add(&pi_state->list, &p->pi_state_list);
557         pi_state->owner = p;
558         spin_unlock_irq(&p->pi_lock);
559
560         put_task_struct(p);
561
562         *ps = pi_state;
563
564         return 0;
565 }
566
567 /*
568  * The hash bucket lock must be held when this is called.
569  * Afterwards, the futex_q must not be accessed.
570  */
571 static void wake_futex(struct futex_q *q)
572 {
573         plist_del(&q->list, &q->list.plist);
574         /*
575          * The lock in wake_up_all() is a crucial memory barrier after the
576          * plist_del() and also before assigning to q->lock_ptr.
577          */
578         wake_up_all(&q->waiters);
579         /*
580          * The waiting task can free the futex_q as soon as this is written,
581          * without taking any locks.  This must come last.
582          *
583          * A memory barrier is required here to prevent the following store
584          * to lock_ptr from getting ahead of the wakeup. Clearing the lock
585          * at the end of wake_up_all() does not prevent this store from
586          * moving.
587          */
588         smp_wmb();
589         q->lock_ptr = NULL;
590 }
591
592 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
593 {
594         struct task_struct *new_owner;
595         struct futex_pi_state *pi_state = this->pi_state;
596         u32 curval, newval;
597
598         if (!pi_state)
599                 return -EINVAL;
600
601         spin_lock(&pi_state->pi_mutex.wait_lock);
602         new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
603
604         /*
605          * This happens when we have stolen the lock and the original
606          * pending owner did not enqueue itself back on the rt_mutex.
607          * Thats not a tragedy. We know that way, that a lock waiter
608          * is on the fly. We make the futex_q waiter the pending owner.
609          */
610         if (!new_owner)
611                 new_owner = this->task;
612
613         /*
614          * We pass it to the next owner. (The WAITERS bit is always
615          * kept enabled while there is PI state around. We must also
616          * preserve the owner died bit.)
617          */
618         if (!(uval & FUTEX_OWNER_DIED)) {
619                 int ret = 0;
620
621                 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
622
623                 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
624
625                 if (curval == -EFAULT)
626                         ret = -EFAULT;
627                 else if (curval != uval)
628                         ret = -EINVAL;
629                 if (ret) {
630                         spin_unlock(&pi_state->pi_mutex.wait_lock);
631                         return ret;
632                 }
633         }
634
635         spin_lock_irq(&pi_state->owner->pi_lock);
636         WARN_ON(list_empty(&pi_state->list));
637         list_del_init(&pi_state->list);
638         spin_unlock_irq(&pi_state->owner->pi_lock);
639
640         spin_lock_irq(&new_owner->pi_lock);
641         WARN_ON(!list_empty(&pi_state->list));
642         list_add(&pi_state->list, &new_owner->pi_state_list);
643         pi_state->owner = new_owner;
644         spin_unlock_irq(&new_owner->pi_lock);
645
646         spin_unlock(&pi_state->pi_mutex.wait_lock);
647         rt_mutex_unlock(&pi_state->pi_mutex);
648
649         return 0;
650 }
651
652 static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
653 {
654         u32 oldval;
655
656         /*
657          * There is no waiter, so we unlock the futex. The owner died
658          * bit has not to be preserved here. We are the owner:
659          */
660         oldval = cmpxchg_futex_value_locked(uaddr, uval, 0);
661
662         if (oldval == -EFAULT)
663                 return oldval;
664         if (oldval != uval)
665                 return -EAGAIN;
666
667         return 0;
668 }
669
670 /*
671  * Express the locking dependencies for lockdep:
672  */
673 static inline void
674 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
675 {
676         if (hb1 <= hb2) {
677                 spin_lock(&hb1->lock);
678                 if (hb1 < hb2)
679                         spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
680         } else { /* hb1 > hb2 */
681                 spin_lock(&hb2->lock);
682                 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
683         }
684 }
685
686 /*
687  * Wake up all waiters hashed on the physical page that is mapped
688  * to this virtual address:
689  */
690 static int futex_wake(u32 __user *uaddr, struct rw_semaphore *fshared,
691                       int nr_wake, u32 bitset)
692 {
693         struct futex_hash_bucket *hb;
694         struct futex_q *this, *next;
695         struct plist_head *head;
696         union futex_key key = FUTEX_KEY_INIT;
697         int ret;
698
699         if (!bitset)
700                 return -EINVAL;
701
702         ret = get_futex_key(uaddr, fshared, &key);
703         if (unlikely(ret != 0))
704                 goto out;
705
706         hb = hash_futex(&key);
707         spin_lock(&hb->lock);
708         head = &hb->chain;
709
710         plist_for_each_entry_safe(this, next, head, list) {
711                 if (match_futex (&this->key, &key)) {
712                         if (this->pi_state) {
713                                 ret = -EINVAL;
714                                 break;
715                         }
716
717                         /* Check if one of the bits is set in both bitsets */
718                         if (!(this->bitset & bitset))
719                                 continue;
720
721                         wake_futex(this);
722                         if (++ret >= nr_wake)
723                                 break;
724                 }
725         }
726
727         spin_unlock(&hb->lock);
728 out:
729         put_futex_key(fshared, &key);
730         return ret;
731 }
732
733 /*
734  * Wake up all waiters hashed on the physical page that is mapped
735  * to this virtual address:
736  */
737 static int
738 futex_wake_op(u32 __user *uaddr1, struct rw_semaphore *fshared,
739               u32 __user *uaddr2,
740               int nr_wake, int nr_wake2, int op)
741 {
742         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
743         struct futex_hash_bucket *hb1, *hb2;
744         struct plist_head *head;
745         struct futex_q *this, *next;
746         int ret, op_ret, attempt = 0;
747
748 retryfull:
749         ret = get_futex_key(uaddr1, fshared, &key1);
750         if (unlikely(ret != 0))
751                 goto out;
752         ret = get_futex_key(uaddr2, fshared, &key2);
753         if (unlikely(ret != 0))
754                 goto out;
755
756         hb1 = hash_futex(&key1);
757         hb2 = hash_futex(&key2);
758
759 retry:
760         double_lock_hb(hb1, hb2);
761
762         op_ret = futex_atomic_op_inuser(op, uaddr2);
763         if (unlikely(op_ret < 0)) {
764                 u32 dummy;
765
766                 spin_unlock(&hb1->lock);
767                 if (hb1 != hb2)
768                         spin_unlock(&hb2->lock);
769
770 #ifndef CONFIG_MMU
771                 /*
772                  * we don't get EFAULT from MMU faults if we don't have an MMU,
773                  * but we might get them from range checking
774                  */
775                 ret = op_ret;
776                 goto out;
777 #endif
778
779                 if (unlikely(op_ret != -EFAULT)) {
780                         ret = op_ret;
781                         goto out;
782                 }
783
784                 /*
785                  * futex_atomic_op_inuser needs to both read and write
786                  * *(int __user *)uaddr2, but we can't modify it
787                  * non-atomically.  Therefore, if get_user below is not
788                  * enough, we need to handle the fault ourselves, while
789                  * still holding the mmap_sem.
790                  */
791                 if (attempt++) {
792                         ret = futex_handle_fault((unsigned long)uaddr2,
793                                                  fshared, attempt);
794                         if (ret)
795                                 goto out;
796                         goto retry;
797                 }
798
799                 ret = get_user(dummy, uaddr2);
800                 if (ret)
801                         return ret;
802
803                 goto retryfull;
804         }
805
806         head = &hb1->chain;
807
808         plist_for_each_entry_safe(this, next, head, list) {
809                 if (match_futex (&this->key, &key1)) {
810                         wake_futex(this);
811                         if (++ret >= nr_wake)
812                                 break;
813                 }
814         }
815
816         if (op_ret > 0) {
817                 head = &hb2->chain;
818
819                 op_ret = 0;
820                 plist_for_each_entry_safe(this, next, head, list) {
821                         if (match_futex (&this->key, &key2)) {
822                                 wake_futex(this);
823                                 if (++op_ret >= nr_wake2)
824                                         break;
825                         }
826                 }
827                 ret += op_ret;
828         }
829
830         spin_unlock(&hb1->lock);
831         if (hb1 != hb2)
832                 spin_unlock(&hb2->lock);
833 out:
834         put_futex_key(fshared, &key2);
835         put_futex_key(fshared, &key1);
836
837         return ret;
838 }
839
840 /*
841  * Requeue all waiters hashed on one physical page to another
842  * physical page.
843  */
844 static int futex_requeue(u32 __user *uaddr1, struct rw_semaphore *fshared,
845                          u32 __user *uaddr2,
846                          int nr_wake, int nr_requeue, u32 *cmpval)
847 {
848         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
849         struct futex_hash_bucket *hb1, *hb2;
850         struct plist_head *head1;
851         struct futex_q *this, *next;
852         int ret, drop_count = 0;
853
854  retry:
855         ret = get_futex_key(uaddr1, fshared, &key1);
856         if (unlikely(ret != 0))
857                 goto out;
858         ret = get_futex_key(uaddr2, fshared, &key2);
859         if (unlikely(ret != 0))
860                 goto out;
861
862         hb1 = hash_futex(&key1);
863         hb2 = hash_futex(&key2);
864
865         double_lock_hb(hb1, hb2);
866
867         if (likely(cmpval != NULL)) {
868                 u32 curval;
869
870                 ret = get_futex_value_locked(&curval, uaddr1);
871
872                 if (unlikely(ret)) {
873                         spin_unlock(&hb1->lock);
874                         if (hb1 != hb2)
875                                 spin_unlock(&hb2->lock);
876
877                         ret = get_user(curval, uaddr1);
878
879                         if (!ret)
880                                 goto retry;
881
882                         return ret;
883                 }
884                 if (curval != *cmpval) {
885                         ret = -EAGAIN;
886                         goto out_unlock;
887                 }
888         }
889
890         head1 = &hb1->chain;
891         plist_for_each_entry_safe(this, next, head1, list) {
892                 if (!match_futex (&this->key, &key1))
893                         continue;
894                 if (++ret <= nr_wake) {
895                         wake_futex(this);
896                 } else {
897                         /*
898                          * If key1 and key2 hash to the same bucket, no need to
899                          * requeue.
900                          */
901                         if (likely(head1 != &hb2->chain)) {
902                                 plist_del(&this->list, &hb1->chain);
903                                 plist_add(&this->list, &hb2->chain);
904                                 this->lock_ptr = &hb2->lock;
905 #ifdef CONFIG_DEBUG_PI_LIST
906                                 this->list.plist.lock = &hb2->lock;
907 #endif
908                         }
909                         this->key = key2;
910                         get_futex_key_refs(&key2);
911                         drop_count++;
912
913                         if (ret - nr_wake >= nr_requeue)
914                                 break;
915                 }
916         }
917
918 out_unlock:
919         spin_unlock(&hb1->lock);
920         if (hb1 != hb2)
921                 spin_unlock(&hb2->lock);
922
923         /* drop_futex_key_refs() must be called outside the spinlocks. */
924         while (--drop_count >= 0)
925                 drop_futex_key_refs(&key1);
926
927 out:
928         put_futex_key(fshared, &key2);
929         put_futex_key(fshared, &key1);
930         return ret;
931 }
932
933 /* The key must be already stored in q->key. */
934 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
935 {
936         struct futex_hash_bucket *hb;
937
938         init_waitqueue_head(&q->waiters);
939
940         get_futex_key_refs(&q->key);
941         hb = hash_futex(&q->key);
942         q->lock_ptr = &hb->lock;
943
944         spin_lock(&hb->lock);
945         return hb;
946 }
947
948 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
949 {
950         int prio;
951
952         /*
953          * The priority used to register this element is
954          * - either the real thread-priority for the real-time threads
955          * (i.e. threads with a priority lower than MAX_RT_PRIO)
956          * - or MAX_RT_PRIO for non-RT threads.
957          * Thus, all RT-threads are woken first in priority order, and
958          * the others are woken last, in FIFO order.
959          */
960         prio = min(current->normal_prio, MAX_RT_PRIO);
961
962         plist_node_init(&q->list, prio);
963 #ifdef CONFIG_DEBUG_PI_LIST
964         q->list.plist.lock = &hb->lock;
965 #endif
966         plist_add(&q->list, &hb->chain);
967         q->task = current;
968         spin_unlock(&hb->lock);
969 }
970
971 static inline void
972 queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
973 {
974         spin_unlock(&hb->lock);
975         drop_futex_key_refs(&q->key);
976 }
977
978 /*
979  * queue_me and unqueue_me must be called as a pair, each
980  * exactly once.  They are called with the hashed spinlock held.
981  */
982
983 /* Return 1 if we were still queued (ie. 0 means we were woken) */
984 static int unqueue_me(struct futex_q *q)
985 {
986         spinlock_t *lock_ptr;
987         int ret = 0;
988
989         /* In the common case we don't take the spinlock, which is nice. */
990  retry:
991         lock_ptr = q->lock_ptr;
992         barrier();
993         if (lock_ptr != NULL) {
994                 spin_lock(lock_ptr);
995                 /*
996                  * q->lock_ptr can change between reading it and
997                  * spin_lock(), causing us to take the wrong lock.  This
998                  * corrects the race condition.
999                  *
1000                  * Reasoning goes like this: if we have the wrong lock,
1001                  * q->lock_ptr must have changed (maybe several times)
1002                  * between reading it and the spin_lock().  It can
1003                  * change again after the spin_lock() but only if it was
1004                  * already changed before the spin_lock().  It cannot,
1005                  * however, change back to the original value.  Therefore
1006                  * we can detect whether we acquired the correct lock.
1007                  */
1008                 if (unlikely(lock_ptr != q->lock_ptr)) {
1009                         spin_unlock(lock_ptr);
1010                         goto retry;
1011                 }
1012                 WARN_ON(plist_node_empty(&q->list));
1013                 plist_del(&q->list, &q->list.plist);
1014
1015                 BUG_ON(q->pi_state);
1016
1017                 spin_unlock(lock_ptr);
1018                 ret = 1;
1019         }
1020
1021         drop_futex_key_refs(&q->key);
1022         return ret;
1023 }
1024
1025 /*
1026  * PI futexes can not be requeued and must remove themself from the
1027  * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1028  * and dropped here.
1029  */
1030 static void unqueue_me_pi(struct futex_q *q)
1031 {
1032         WARN_ON(plist_node_empty(&q->list));
1033         plist_del(&q->list, &q->list.plist);
1034
1035         BUG_ON(!q->pi_state);
1036         free_pi_state(q->pi_state);
1037         q->pi_state = NULL;
1038
1039         spin_unlock(q->lock_ptr);
1040
1041         drop_futex_key_refs(&q->key);
1042 }
1043
1044 /*
1045  * Fixup the pi_state owner with the new owner.
1046  *
1047  * Must be called with hash bucket lock held and mm->sem held for non
1048  * private futexes.
1049  */
1050 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
1051                                 struct task_struct *newowner,
1052                                 struct rw_semaphore *fshared)
1053 {
1054         u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
1055         struct futex_pi_state *pi_state = q->pi_state;
1056         struct task_struct *oldowner = pi_state->owner;
1057         u32 uval, curval, newval;
1058         int ret, attempt = 0;
1059
1060         /* Owner died? */
1061         if (!pi_state->owner)
1062                 newtid |= FUTEX_OWNER_DIED;
1063
1064         /*
1065          * We are here either because we stole the rtmutex from the
1066          * pending owner or we are the pending owner which failed to
1067          * get the rtmutex. We have to replace the pending owner TID
1068          * in the user space variable. This must be atomic as we have
1069          * to preserve the owner died bit here.
1070          *
1071          * Note: We write the user space value _before_ changing the
1072          * pi_state because we can fault here. Imagine swapped out
1073          * pages or a fork, which was running right before we acquired
1074          * mmap_sem, that marked all the anonymous memory readonly for
1075          * cow.
1076          *
1077          * Modifying pi_state _before_ the user space value would
1078          * leave the pi_state in an inconsistent state when we fault
1079          * here, because we need to drop the hash bucket lock to
1080          * handle the fault. This might be observed in the PID check
1081          * in lookup_pi_state.
1082          */
1083 retry:
1084         if (get_futex_value_locked(&uval, uaddr))
1085                 goto handle_fault;
1086
1087         while (1) {
1088                 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1089
1090                 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
1091
1092                 if (curval == -EFAULT)
1093                         goto handle_fault;
1094                 if (curval == uval)
1095                         break;
1096                 uval = curval;
1097         }
1098
1099         /*
1100          * We fixed up user space. Now we need to fix the pi_state
1101          * itself.
1102          */
1103         if (pi_state->owner != NULL) {
1104                 spin_lock_irq(&pi_state->owner->pi_lock);
1105                 WARN_ON(list_empty(&pi_state->list));
1106                 list_del_init(&pi_state->list);
1107                 spin_unlock_irq(&pi_state->owner->pi_lock);
1108         }
1109
1110         pi_state->owner = newowner;
1111
1112         spin_lock_irq(&newowner->pi_lock);
1113         WARN_ON(!list_empty(&pi_state->list));
1114         list_add(&pi_state->list, &newowner->pi_state_list);
1115         spin_unlock_irq(&newowner->pi_lock);
1116         return 0;
1117
1118         /*
1119          * To handle the page fault we need to drop the hash bucket
1120          * lock here. That gives the other task (either the pending
1121          * owner itself or the task which stole the rtmutex) the
1122          * chance to try the fixup of the pi_state. So once we are
1123          * back from handling the fault we need to check the pi_state
1124          * after reacquiring the hash bucket lock and before trying to
1125          * do another fixup. When the fixup has been done already we
1126          * simply return.
1127          */
1128 handle_fault:
1129         spin_unlock(q->lock_ptr);
1130
1131         ret = futex_handle_fault((unsigned long)uaddr, fshared, attempt++);
1132
1133         spin_lock(q->lock_ptr);
1134
1135         /*
1136          * Check if someone else fixed it for us:
1137          */
1138         if (pi_state->owner != oldowner)
1139                 return 0;
1140
1141         if (ret)
1142                 return ret;
1143
1144         goto retry;
1145 }
1146
1147 /*
1148  * In case we must use restart_block to restart a futex_wait,
1149  * we encode in the 'flags' shared capability
1150  */
1151 #define FLAGS_SHARED  1
1152
1153 static long futex_wait_restart(struct restart_block *restart);
1154
1155 static int futex_wait(u32 __user *uaddr, struct rw_semaphore *fshared,
1156                       u32 val, ktime_t *abs_time, u32 bitset)
1157 {
1158         struct task_struct *curr = current;
1159         DECLARE_WAITQUEUE(wait, curr);
1160         struct futex_hash_bucket *hb;
1161         struct futex_q q;
1162         u32 uval;
1163         int ret;
1164         struct hrtimer_sleeper t;
1165         int rem = 0;
1166
1167         if (!bitset)
1168                 return -EINVAL;
1169
1170         q.pi_state = NULL;
1171         q.bitset = bitset;
1172  retry:
1173         q.key = FUTEX_KEY_INIT;
1174         ret = get_futex_key(uaddr, fshared, &q.key);
1175         if (unlikely(ret != 0))
1176                 goto out_release_sem;
1177
1178         hb = queue_lock(&q);
1179
1180         /*
1181          * Access the page AFTER the futex is queued.
1182          * Order is important:
1183          *
1184          *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1185          *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
1186          *
1187          * The basic logical guarantee of a futex is that it blocks ONLY
1188          * if cond(var) is known to be true at the time of blocking, for
1189          * any cond.  If we queued after testing *uaddr, that would open
1190          * a race condition where we could block indefinitely with
1191          * cond(var) false, which would violate the guarantee.
1192          *
1193          * A consequence is that futex_wait() can return zero and absorb
1194          * a wakeup when *uaddr != val on entry to the syscall.  This is
1195          * rare, but normal.
1196          *
1197          * for shared futexes, we hold the mmap semaphore, so the mapping
1198          * cannot have changed since we looked it up in get_futex_key.
1199          */
1200         ret = get_futex_value_locked(&uval, uaddr);
1201
1202         if (unlikely(ret)) {
1203                 queue_unlock(&q, hb);
1204
1205                 ret = get_user(uval, uaddr);
1206
1207                 if (!ret)
1208                         goto retry;
1209                 return ret;
1210         }
1211         ret = -EWOULDBLOCK;
1212         if (uval != val)
1213                 goto out_unlock_release_sem;
1214
1215         /* Only actually queue if *uaddr contained val.  */
1216         queue_me(&q, hb);
1217
1218         /*
1219          * There might have been scheduling since the queue_me(), as we
1220          * cannot hold a spinlock across the get_user() in case it
1221          * faults, and we cannot just set TASK_INTERRUPTIBLE state when
1222          * queueing ourselves into the futex hash.  This code thus has to
1223          * rely on the futex_wake() code removing us from hash when it
1224          * wakes us up.
1225          */
1226
1227         /* add_wait_queue is the barrier after __set_current_state. */
1228         __set_current_state(TASK_INTERRUPTIBLE);
1229         add_wait_queue(&q.waiters, &wait);
1230         /*
1231          * !plist_node_empty() is safe here without any lock.
1232          * q.lock_ptr != 0 is not safe, because of ordering against wakeup.
1233          */
1234         if (likely(!plist_node_empty(&q.list))) {
1235                 if (!abs_time)
1236                         schedule();
1237                 else {
1238                         hrtimer_init_on_stack(&t.timer, CLOCK_MONOTONIC,
1239                                                 HRTIMER_MODE_ABS);
1240                         hrtimer_init_sleeper(&t, current);
1241                         t.timer.expires = *abs_time;
1242
1243                         hrtimer_start(&t.timer, t.timer.expires,
1244                                                 HRTIMER_MODE_ABS);
1245                         if (!hrtimer_active(&t.timer))
1246                                 t.task = NULL;
1247
1248                         /*
1249                          * the timer could have already expired, in which
1250                          * case current would be flagged for rescheduling.
1251                          * Don't bother calling schedule.
1252                          */
1253                         if (likely(t.task))
1254                                 schedule();
1255
1256                         hrtimer_cancel(&t.timer);
1257
1258                         /* Flag if a timeout occured */
1259                         rem = (t.task == NULL);
1260
1261                         destroy_hrtimer_on_stack(&t.timer);
1262                 }
1263         }
1264         __set_current_state(TASK_RUNNING);
1265
1266         /*
1267          * NOTE: we don't remove ourselves from the waitqueue because
1268          * we are the only user of it.
1269          */
1270
1271         /* If we were woken (and unqueued), we succeeded, whatever. */
1272         if (!unqueue_me(&q))
1273                 return 0;
1274         if (rem)
1275                 return -ETIMEDOUT;
1276
1277         /*
1278          * We expect signal_pending(current), but another thread may
1279          * have handled it for us already.
1280          */
1281         if (!abs_time)
1282                 return -ERESTARTSYS;
1283         else {
1284                 struct restart_block *restart;
1285                 restart = &current_thread_info()->restart_block;
1286                 restart->fn = futex_wait_restart;
1287                 restart->futex.uaddr = (u32 *)uaddr;
1288                 restart->futex.val = val;
1289                 restart->futex.time = abs_time->tv64;
1290                 restart->futex.bitset = bitset;
1291                 restart->futex.flags = 0;
1292
1293                 if (fshared)
1294                         restart->futex.flags |= FLAGS_SHARED;
1295                 return -ERESTART_RESTARTBLOCK;
1296         }
1297
1298  out_unlock_release_sem:
1299         queue_unlock(&q, hb);
1300
1301  out_release_sem:
1302         put_futex_key(fshared, &q.key);
1303         return ret;
1304 }
1305
1306
1307 static long futex_wait_restart(struct restart_block *restart)
1308 {
1309         u32 __user *uaddr = (u32 __user *)restart->futex.uaddr;
1310         struct rw_semaphore *fshared = NULL;
1311         ktime_t t;
1312
1313         t.tv64 = restart->futex.time;
1314         restart->fn = do_no_restart_syscall;
1315         if (restart->futex.flags & FLAGS_SHARED)
1316                 fshared = &current->mm->mmap_sem;
1317         return (long)futex_wait(uaddr, fshared, restart->futex.val, &t,
1318                                 restart->futex.bitset);
1319 }
1320
1321
1322 /*
1323  * Userspace tried a 0 -> TID atomic transition of the futex value
1324  * and failed. The kernel side here does the whole locking operation:
1325  * if there are waiters then it will block, it does PI, etc. (Due to
1326  * races the kernel might see a 0 value of the futex too.)
1327  */
1328 static int futex_lock_pi(u32 __user *uaddr, struct rw_semaphore *fshared,
1329                          int detect, ktime_t *time, int trylock)
1330 {
1331         struct hrtimer_sleeper timeout, *to = NULL;
1332         struct task_struct *curr = current;
1333         struct futex_hash_bucket *hb;
1334         u32 uval, newval, curval;
1335         struct futex_q q;
1336         int ret, lock_taken, ownerdied = 0, attempt = 0;
1337
1338         if (refill_pi_state_cache())
1339                 return -ENOMEM;
1340
1341         if (time) {
1342                 to = &timeout;
1343                 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
1344                                       HRTIMER_MODE_ABS);
1345                 hrtimer_init_sleeper(to, current);
1346                 to->timer.expires = *time;
1347         }
1348
1349         q.pi_state = NULL;
1350  retry:
1351         q.key = FUTEX_KEY_INIT;
1352         ret = get_futex_key(uaddr, fshared, &q.key);
1353         if (unlikely(ret != 0))
1354                 goto out_release_sem;
1355
1356  retry_unlocked:
1357         hb = queue_lock(&q);
1358
1359  retry_locked:
1360         ret = lock_taken = 0;
1361
1362         /*
1363          * To avoid races, we attempt to take the lock here again
1364          * (by doing a 0 -> TID atomic cmpxchg), while holding all
1365          * the locks. It will most likely not succeed.
1366          */
1367         newval = task_pid_vnr(current);
1368
1369         curval = cmpxchg_futex_value_locked(uaddr, 0, newval);
1370
1371         if (unlikely(curval == -EFAULT))
1372                 goto uaddr_faulted;
1373
1374         /*
1375          * Detect deadlocks. In case of REQUEUE_PI this is a valid
1376          * situation and we return success to user space.
1377          */
1378         if (unlikely((curval & FUTEX_TID_MASK) == task_pid_vnr(current))) {
1379                 ret = -EDEADLK;
1380                 goto out_unlock_release_sem;
1381         }
1382
1383         /*
1384          * Surprise - we got the lock. Just return to userspace:
1385          */
1386         if (unlikely(!curval))
1387                 goto out_unlock_release_sem;
1388
1389         uval = curval;
1390
1391         /*
1392          * Set the WAITERS flag, so the owner will know it has someone
1393          * to wake at next unlock
1394          */
1395         newval = curval | FUTEX_WAITERS;
1396
1397         /*
1398          * There are two cases, where a futex might have no owner (the
1399          * owner TID is 0): OWNER_DIED. We take over the futex in this
1400          * case. We also do an unconditional take over, when the owner
1401          * of the futex died.
1402          *
1403          * This is safe as we are protected by the hash bucket lock !
1404          */
1405         if (unlikely(ownerdied || !(curval & FUTEX_TID_MASK))) {
1406                 /* Keep the OWNER_DIED bit */
1407                 newval = (curval & ~FUTEX_TID_MASK) | task_pid_vnr(current);
1408                 ownerdied = 0;
1409                 lock_taken = 1;
1410         }
1411
1412         curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
1413
1414         if (unlikely(curval == -EFAULT))
1415                 goto uaddr_faulted;
1416         if (unlikely(curval != uval))
1417                 goto retry_locked;
1418
1419         /*
1420          * We took the lock due to owner died take over.
1421          */
1422         if (unlikely(lock_taken))
1423                 goto out_unlock_release_sem;
1424
1425         /*
1426          * We dont have the lock. Look up the PI state (or create it if
1427          * we are the first waiter):
1428          */
1429         ret = lookup_pi_state(uval, hb, &q.key, &q.pi_state);
1430
1431         if (unlikely(ret)) {
1432                 switch (ret) {
1433
1434                 case -EAGAIN:
1435                         /*
1436                          * Task is exiting and we just wait for the
1437                          * exit to complete.
1438                          */
1439                         queue_unlock(&q, hb);
1440                         cond_resched();
1441                         goto retry;
1442
1443                 case -ESRCH:
1444                         /*
1445                          * No owner found for this futex. Check if the
1446                          * OWNER_DIED bit is set to figure out whether
1447                          * this is a robust futex or not.
1448                          */
1449                         if (get_futex_value_locked(&curval, uaddr))
1450                                 goto uaddr_faulted;
1451
1452                         /*
1453                          * We simply start over in case of a robust
1454                          * futex. The code above will take the futex
1455                          * and return happy.
1456                          */
1457                         if (curval & FUTEX_OWNER_DIED) {
1458                                 ownerdied = 1;
1459                                 goto retry_locked;
1460                         }
1461                 default:
1462                         goto out_unlock_release_sem;
1463                 }
1464         }
1465
1466         /*
1467          * Only actually queue now that the atomic ops are done:
1468          */
1469         queue_me(&q, hb);
1470
1471         WARN_ON(!q.pi_state);
1472         /*
1473          * Block on the PI mutex:
1474          */
1475         if (!trylock)
1476                 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
1477         else {
1478                 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
1479                 /* Fixup the trylock return value: */
1480                 ret = ret ? 0 : -EWOULDBLOCK;
1481         }
1482
1483         spin_lock(q.lock_ptr);
1484
1485         if (!ret) {
1486                 /*
1487                  * Got the lock. We might not be the anticipated owner
1488                  * if we did a lock-steal - fix up the PI-state in
1489                  * that case:
1490                  */
1491                 if (q.pi_state->owner != curr)
1492                         ret = fixup_pi_state_owner(uaddr, &q, curr, fshared);
1493         } else {
1494                 /*
1495                  * Catch the rare case, where the lock was released
1496                  * when we were on the way back before we locked the
1497                  * hash bucket.
1498                  */
1499                 if (q.pi_state->owner == curr) {
1500                         /*
1501                          * Try to get the rt_mutex now. This might
1502                          * fail as some other task acquired the
1503                          * rt_mutex after we removed ourself from the
1504                          * rt_mutex waiters list.
1505                          */
1506                         if (rt_mutex_trylock(&q.pi_state->pi_mutex))
1507                                 ret = 0;
1508                         else {
1509                                 /*
1510                                  * pi_state is incorrect, some other
1511                                  * task did a lock steal and we
1512                                  * returned due to timeout or signal
1513                                  * without taking the rt_mutex. Too
1514                                  * late. We can access the
1515                                  * rt_mutex_owner without locking, as
1516                                  * the other task is now blocked on
1517                                  * the hash bucket lock. Fix the state
1518                                  * up.
1519                                  */
1520                                 struct task_struct *owner;
1521                                 int res;
1522
1523                                 owner = rt_mutex_owner(&q.pi_state->pi_mutex);
1524                                 res = fixup_pi_state_owner(uaddr, &q, owner,
1525                                                            fshared);
1526
1527                                 /* propagate -EFAULT, if the fixup failed */
1528                                 if (res)
1529                                         ret = res;
1530                         }
1531                 } else {
1532                         /*
1533                          * Paranoia check. If we did not take the lock
1534                          * in the trylock above, then we should not be
1535                          * the owner of the rtmutex, neither the real
1536                          * nor the pending one:
1537                          */
1538                         if (rt_mutex_owner(&q.pi_state->pi_mutex) == curr)
1539                                 printk(KERN_ERR "futex_lock_pi: ret = %d "
1540                                        "pi-mutex: %p pi-state %p\n", ret,
1541                                        q.pi_state->pi_mutex.owner,
1542                                        q.pi_state->owner);
1543                 }
1544         }
1545
1546         /* Unqueue and drop the lock */
1547         unqueue_me_pi(&q);
1548
1549         if (to)
1550                 destroy_hrtimer_on_stack(&to->timer);
1551         return ret != -EINTR ? ret : -ERESTARTNOINTR;
1552
1553  out_unlock_release_sem:
1554         queue_unlock(&q, hb);
1555
1556  out_release_sem:
1557         put_futex_key(fshared, &q.key);
1558         if (to)
1559                 destroy_hrtimer_on_stack(&to->timer);
1560         return ret;
1561
1562  uaddr_faulted:
1563         /*
1564          * We have to r/w  *(int __user *)uaddr, but we can't modify it
1565          * non-atomically.  Therefore, if get_user below is not
1566          * enough, we need to handle the fault ourselves, while
1567          * still holding the mmap_sem.
1568          *
1569          * ... and hb->lock. :-) --ANK
1570          */
1571         queue_unlock(&q, hb);
1572
1573         if (attempt++) {
1574                 ret = futex_handle_fault((unsigned long)uaddr, fshared,
1575                                          attempt);
1576                 if (ret)
1577                         goto out_release_sem;
1578                 goto retry_unlocked;
1579         }
1580
1581         ret = get_user(uval, uaddr);
1582         if (!ret && (uval != -EFAULT))
1583                 goto retry;
1584
1585         if (to)
1586                 destroy_hrtimer_on_stack(&to->timer);
1587         return ret;
1588 }
1589
1590 /*
1591  * Userspace attempted a TID -> 0 atomic transition, and failed.
1592  * This is the in-kernel slowpath: we look up the PI state (if any),
1593  * and do the rt-mutex unlock.
1594  */
1595 static int futex_unlock_pi(u32 __user *uaddr, struct rw_semaphore *fshared)
1596 {
1597         struct futex_hash_bucket *hb;
1598         struct futex_q *this, *next;
1599         u32 uval;
1600         struct plist_head *head;
1601         union futex_key key = FUTEX_KEY_INIT;
1602         int ret, attempt = 0;
1603
1604 retry:
1605         if (get_user(uval, uaddr))
1606                 return -EFAULT;
1607         /*
1608          * We release only a lock we actually own:
1609          */
1610         if ((uval & FUTEX_TID_MASK) != task_pid_vnr(current))
1611                 return -EPERM;
1612
1613         ret = get_futex_key(uaddr, fshared, &key);
1614         if (unlikely(ret != 0))
1615                 goto out;
1616
1617         hb = hash_futex(&key);
1618 retry_unlocked:
1619         spin_lock(&hb->lock);
1620
1621         /*
1622          * To avoid races, try to do the TID -> 0 atomic transition
1623          * again. If it succeeds then we can return without waking
1624          * anyone else up:
1625          */
1626         if (!(uval & FUTEX_OWNER_DIED))
1627                 uval = cmpxchg_futex_value_locked(uaddr, task_pid_vnr(current), 0);
1628
1629
1630         if (unlikely(uval == -EFAULT))
1631                 goto pi_faulted;
1632         /*
1633          * Rare case: we managed to release the lock atomically,
1634          * no need to wake anyone else up:
1635          */
1636         if (unlikely(uval == task_pid_vnr(current)))
1637                 goto out_unlock;
1638
1639         /*
1640          * Ok, other tasks may need to be woken up - check waiters
1641          * and do the wakeup if necessary:
1642          */
1643         head = &hb->chain;
1644
1645         plist_for_each_entry_safe(this, next, head, list) {
1646                 if (!match_futex (&this->key, &key))
1647                         continue;
1648                 ret = wake_futex_pi(uaddr, uval, this);
1649                 /*
1650                  * The atomic access to the futex value
1651                  * generated a pagefault, so retry the
1652                  * user-access and the wakeup:
1653                  */
1654                 if (ret == -EFAULT)
1655                         goto pi_faulted;
1656                 goto out_unlock;
1657         }
1658         /*
1659          * No waiters - kernel unlocks the futex:
1660          */
1661         if (!(uval & FUTEX_OWNER_DIED)) {
1662                 ret = unlock_futex_pi(uaddr, uval);
1663                 if (ret == -EFAULT)
1664                         goto pi_faulted;
1665         }
1666
1667 out_unlock:
1668         spin_unlock(&hb->lock);
1669 out:
1670         put_futex_key(fshared, &key);
1671
1672         return ret;
1673
1674 pi_faulted:
1675         /*
1676          * We have to r/w  *(int __user *)uaddr, but we can't modify it
1677          * non-atomically.  Therefore, if get_user below is not
1678          * enough, we need to handle the fault ourselves, while
1679          * still holding the mmap_sem.
1680          *
1681          * ... and hb->lock. --ANK
1682          */
1683         spin_unlock(&hb->lock);
1684
1685         if (attempt++) {
1686                 ret = futex_handle_fault((unsigned long)uaddr, fshared,
1687                                          attempt);
1688                 if (ret)
1689                         goto out;
1690                 uval = 0;
1691                 goto retry_unlocked;
1692         }
1693
1694         ret = get_user(uval, uaddr);
1695         if (!ret && (uval != -EFAULT))
1696                 goto retry;
1697
1698         return ret;
1699 }
1700
1701 /*
1702  * Support for robust futexes: the kernel cleans up held futexes at
1703  * thread exit time.
1704  *
1705  * Implementation: user-space maintains a per-thread list of locks it
1706  * is holding. Upon do_exit(), the kernel carefully walks this list,
1707  * and marks all locks that are owned by this thread with the
1708  * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
1709  * always manipulated with the lock held, so the list is private and
1710  * per-thread. Userspace also maintains a per-thread 'list_op_pending'
1711  * field, to allow the kernel to clean up if the thread dies after
1712  * acquiring the lock, but just before it could have added itself to
1713  * the list. There can only be one such pending lock.
1714  */
1715
1716 /**
1717  * sys_set_robust_list - set the robust-futex list head of a task
1718  * @head: pointer to the list-head
1719  * @len: length of the list-head, as userspace expects
1720  */
1721 asmlinkage long
1722 sys_set_robust_list(struct robust_list_head __user *head,
1723                     size_t len)
1724 {
1725         if (!futex_cmpxchg_enabled)
1726                 return -ENOSYS;
1727         /*
1728          * The kernel knows only one size for now:
1729          */
1730         if (unlikely(len != sizeof(*head)))
1731                 return -EINVAL;
1732
1733         current->robust_list = head;
1734
1735         return 0;
1736 }
1737
1738 /**
1739  * sys_get_robust_list - get the robust-futex list head of a task
1740  * @pid: pid of the process [zero for current task]
1741  * @head_ptr: pointer to a list-head pointer, the kernel fills it in
1742  * @len_ptr: pointer to a length field, the kernel fills in the header size
1743  */
1744 asmlinkage long
1745 sys_get_robust_list(int pid, struct robust_list_head __user * __user *head_ptr,
1746                     size_t __user *len_ptr)
1747 {
1748         struct robust_list_head __user *head;
1749         unsigned long ret;
1750
1751         if (!futex_cmpxchg_enabled)
1752                 return -ENOSYS;
1753
1754         if (!pid)
1755                 head = current->robust_list;
1756         else {
1757                 struct task_struct *p;
1758
1759                 ret = -ESRCH;
1760                 rcu_read_lock();
1761                 p = find_task_by_vpid(pid);
1762                 if (!p)
1763                         goto err_unlock;
1764                 ret = -EPERM;
1765                 if ((current->euid != p->euid) && (current->euid != p->uid) &&
1766                                 !capable(CAP_SYS_PTRACE))
1767                         goto err_unlock;
1768                 head = p->robust_list;
1769                 rcu_read_unlock();
1770         }
1771
1772         if (put_user(sizeof(*head), len_ptr))
1773                 return -EFAULT;
1774         return put_user(head, head_ptr);
1775
1776 err_unlock:
1777         rcu_read_unlock();
1778
1779         return ret;
1780 }
1781
1782 /*
1783  * Process a futex-list entry, check whether it's owned by the
1784  * dying task, and do notification if so:
1785  */
1786 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
1787 {
1788         u32 uval, nval, mval;
1789
1790 retry:
1791         if (get_user(uval, uaddr))
1792                 return -1;
1793
1794         if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
1795                 /*
1796                  * Ok, this dying thread is truly holding a futex
1797                  * of interest. Set the OWNER_DIED bit atomically
1798                  * via cmpxchg, and if the value had FUTEX_WAITERS
1799                  * set, wake up a waiter (if any). (We have to do a
1800                  * futex_wake() even if OWNER_DIED is already set -
1801                  * to handle the rare but possible case of recursive
1802                  * thread-death.) The rest of the cleanup is done in
1803                  * userspace.
1804                  */
1805                 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
1806                 nval = futex_atomic_cmpxchg_inatomic(uaddr, uval, mval);
1807
1808                 if (nval == -EFAULT)
1809                         return -1;
1810
1811                 if (nval != uval)
1812                         goto retry;
1813
1814                 /*
1815                  * Wake robust non-PI futexes here. The wakeup of
1816                  * PI futexes happens in exit_pi_state():
1817                  */
1818                 if (!pi && (uval & FUTEX_WAITERS))
1819                         futex_wake(uaddr, &curr->mm->mmap_sem, 1,
1820                                    FUTEX_BITSET_MATCH_ANY);
1821         }
1822         return 0;
1823 }
1824
1825 /*
1826  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
1827  */
1828 static inline int fetch_robust_entry(struct robust_list __user **entry,
1829                                      struct robust_list __user * __user *head,
1830                                      int *pi)
1831 {
1832         unsigned long uentry;
1833
1834         if (get_user(uentry, (unsigned long __user *)head))
1835                 return -EFAULT;
1836
1837         *entry = (void __user *)(uentry & ~1UL);
1838         *pi = uentry & 1;
1839
1840         return 0;
1841 }
1842
1843 /*
1844  * Walk curr->robust_list (very carefully, it's a userspace list!)
1845  * and mark any locks found there dead, and notify any waiters.
1846  *
1847  * We silently return on any sign of list-walking problem.
1848  */
1849 void exit_robust_list(struct task_struct *curr)
1850 {
1851         struct robust_list_head __user *head = curr->robust_list;
1852         struct robust_list __user *entry, *next_entry, *pending;
1853         unsigned int limit = ROBUST_LIST_LIMIT, pi, next_pi, pip;
1854         unsigned long futex_offset;
1855         int rc;
1856
1857         if (!futex_cmpxchg_enabled)
1858                 return;
1859
1860         /*
1861          * Fetch the list head (which was registered earlier, via
1862          * sys_set_robust_list()):
1863          */
1864         if (fetch_robust_entry(&entry, &head->list.next, &pi))
1865                 return;
1866         /*
1867          * Fetch the relative futex offset:
1868          */
1869         if (get_user(futex_offset, &head->futex_offset))
1870                 return;
1871         /*
1872          * Fetch any possibly pending lock-add first, and handle it
1873          * if it exists:
1874          */
1875         if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
1876                 return;
1877
1878         next_entry = NULL;      /* avoid warning with gcc */
1879         while (entry != &head->list) {
1880                 /*
1881                  * Fetch the next entry in the list before calling
1882                  * handle_futex_death:
1883                  */
1884                 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
1885                 /*
1886                  * A pending lock might already be on the list, so
1887                  * don't process it twice:
1888                  */
1889                 if (entry != pending)
1890                         if (handle_futex_death((void __user *)entry + futex_offset,
1891                                                 curr, pi))
1892                                 return;
1893                 if (rc)
1894                         return;
1895                 entry = next_entry;
1896                 pi = next_pi;
1897                 /*
1898                  * Avoid excessively long or circular lists:
1899                  */
1900                 if (!--limit)
1901                         break;
1902
1903                 cond_resched();
1904         }
1905
1906         if (pending)
1907                 handle_futex_death((void __user *)pending + futex_offset,
1908                                    curr, pip);
1909 }
1910
1911 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
1912                 u32 __user *uaddr2, u32 val2, u32 val3)
1913 {
1914         int ret = -ENOSYS;
1915         int cmd = op & FUTEX_CMD_MASK;
1916         struct rw_semaphore *fshared = NULL;
1917
1918         if (!(op & FUTEX_PRIVATE_FLAG))
1919                 fshared = &current->mm->mmap_sem;
1920
1921         switch (cmd) {
1922         case FUTEX_WAIT:
1923                 val3 = FUTEX_BITSET_MATCH_ANY;
1924         case FUTEX_WAIT_BITSET:
1925                 ret = futex_wait(uaddr, fshared, val, timeout, val3);
1926                 break;
1927         case FUTEX_WAKE:
1928                 val3 = FUTEX_BITSET_MATCH_ANY;
1929         case FUTEX_WAKE_BITSET:
1930                 ret = futex_wake(uaddr, fshared, val, val3);
1931                 break;
1932         case FUTEX_REQUEUE:
1933                 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, NULL);
1934                 break;
1935         case FUTEX_CMP_REQUEUE:
1936                 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, &val3);
1937                 break;
1938         case FUTEX_WAKE_OP:
1939                 ret = futex_wake_op(uaddr, fshared, uaddr2, val, val2, val3);
1940                 break;
1941         case FUTEX_LOCK_PI:
1942                 if (futex_cmpxchg_enabled)
1943                         ret = futex_lock_pi(uaddr, fshared, val, timeout, 0);
1944                 break;
1945         case FUTEX_UNLOCK_PI:
1946                 if (futex_cmpxchg_enabled)
1947                         ret = futex_unlock_pi(uaddr, fshared);
1948                 break;
1949         case FUTEX_TRYLOCK_PI:
1950                 if (futex_cmpxchg_enabled)
1951                         ret = futex_lock_pi(uaddr, fshared, 0, timeout, 1);
1952                 break;
1953         default:
1954                 ret = -ENOSYS;
1955         }
1956         return ret;
1957 }
1958
1959
1960 asmlinkage long sys_futex(u32 __user *uaddr, int op, u32 val,
1961                           struct timespec __user *utime, u32 __user *uaddr2,
1962                           u32 val3)
1963 {
1964         struct timespec ts;
1965         ktime_t t, *tp = NULL;
1966         u32 val2 = 0;
1967         int cmd = op & FUTEX_CMD_MASK;
1968
1969         if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
1970                       cmd == FUTEX_WAIT_BITSET)) {
1971                 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
1972                         return -EFAULT;
1973                 if (!timespec_valid(&ts))
1974                         return -EINVAL;
1975
1976                 t = timespec_to_ktime(ts);
1977                 if (cmd == FUTEX_WAIT)
1978                         t = ktime_add_safe(ktime_get(), t);
1979                 tp = &t;
1980         }
1981         /*
1982          * requeue parameter in 'utime' if cmd == FUTEX_REQUEUE.
1983          * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
1984          */
1985         if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
1986             cmd == FUTEX_WAKE_OP)
1987                 val2 = (u32) (unsigned long) utime;
1988
1989         return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
1990 }
1991
1992 static int __init futex_init(void)
1993 {
1994         u32 curval;
1995         int i;
1996
1997         /*
1998          * This will fail and we want it. Some arch implementations do
1999          * runtime detection of the futex_atomic_cmpxchg_inatomic()
2000          * functionality. We want to know that before we call in any
2001          * of the complex code paths. Also we want to prevent
2002          * registration of robust lists in that case. NULL is
2003          * guaranteed to fault and we get -EFAULT on functional
2004          * implementation, the non functional ones will return
2005          * -ENOSYS.
2006          */
2007         curval = cmpxchg_futex_value_locked(NULL, 0, 0);
2008         if (curval == -EFAULT)
2009                 futex_cmpxchg_enabled = 1;
2010
2011         for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
2012                 plist_head_init(&futex_queues[i].chain, &futex_queues[i].lock);
2013                 spin_lock_init(&futex_queues[i].lock);
2014         }
2015
2016         return 0;
2017 }
2018 __initcall(futex_init);