futex: add requeue_pi functionality
[safe/jmp/linux-2.6] / kernel / futex.c
1 /*
2  *  Fast Userspace Mutexes (which I call "Futexes!").
3  *  (C) Rusty Russell, IBM 2002
4  *
5  *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6  *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7  *
8  *  Removed page pinning, fix privately mapped COW pages and other cleanups
9  *  (C) Copyright 2003, 2004 Jamie Lokier
10  *
11  *  Robust futex support started by Ingo Molnar
12  *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13  *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14  *
15  *  PI-futex support started by Ingo Molnar and Thomas Gleixner
16  *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17  *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18  *
19  *  PRIVATE futexes by Eric Dumazet
20  *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21  *
22  *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23  *  Copyright (C) IBM Corporation, 2009
24  *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
25  *
26  *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27  *  enough at me, Linus for the original (flawed) idea, Matthew
28  *  Kirkwood for proof-of-concept implementation.
29  *
30  *  "The futexes are also cursed."
31  *  "But they come in a choice of three flavours!"
32  *
33  *  This program is free software; you can redistribute it and/or modify
34  *  it under the terms of the GNU General Public License as published by
35  *  the Free Software Foundation; either version 2 of the License, or
36  *  (at your option) any later version.
37  *
38  *  This program is distributed in the hope that it will be useful,
39  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
40  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
41  *  GNU General Public License for more details.
42  *
43  *  You should have received a copy of the GNU General Public License
44  *  along with this program; if not, write to the Free Software
45  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
46  */
47 #include <linux/slab.h>
48 #include <linux/poll.h>
49 #include <linux/fs.h>
50 #include <linux/file.h>
51 #include <linux/jhash.h>
52 #include <linux/init.h>
53 #include <linux/futex.h>
54 #include <linux/mount.h>
55 #include <linux/pagemap.h>
56 #include <linux/syscalls.h>
57 #include <linux/signal.h>
58 #include <linux/module.h>
59 #include <linux/magic.h>
60 #include <linux/pid.h>
61 #include <linux/nsproxy.h>
62
63 #include <asm/futex.h>
64
65 #include "rtmutex_common.h"
66
67 int __read_mostly futex_cmpxchg_enabled;
68
69 #define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
70
71 /*
72  * Priority Inheritance state:
73  */
74 struct futex_pi_state {
75         /*
76          * list of 'owned' pi_state instances - these have to be
77          * cleaned up in do_exit() if the task exits prematurely:
78          */
79         struct list_head list;
80
81         /*
82          * The PI object:
83          */
84         struct rt_mutex pi_mutex;
85
86         struct task_struct *owner;
87         atomic_t refcount;
88
89         union futex_key key;
90 };
91
92 /*
93  * We use this hashed waitqueue instead of a normal wait_queue_t, so
94  * we can wake only the relevant ones (hashed queues may be shared).
95  *
96  * A futex_q has a woken state, just like tasks have TASK_RUNNING.
97  * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
98  * The order of wakup is always to make the first condition true, then
99  * wake up q->waiter, then make the second condition true.
100  */
101 struct futex_q {
102         struct plist_node list;
103         /* There can only be a single waiter */
104         wait_queue_head_t waiter;
105
106         /* Which hash list lock to use: */
107         spinlock_t *lock_ptr;
108
109         /* Key which the futex is hashed on: */
110         union futex_key key;
111
112         /* Optional priority inheritance state: */
113         struct futex_pi_state *pi_state;
114         struct task_struct *task;
115
116         /* rt_waiter storage for requeue_pi: */
117         struct rt_mutex_waiter *rt_waiter;
118
119         /* Bitset for the optional bitmasked wakeup */
120         u32 bitset;
121 };
122
123 /*
124  * Hash buckets are shared by all the futex_keys that hash to the same
125  * location.  Each key may have multiple futex_q structures, one for each task
126  * waiting on a futex.
127  */
128 struct futex_hash_bucket {
129         spinlock_t lock;
130         struct plist_head chain;
131 };
132
133 static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
134
135 /*
136  * We hash on the keys returned from get_futex_key (see below).
137  */
138 static struct futex_hash_bucket *hash_futex(union futex_key *key)
139 {
140         u32 hash = jhash2((u32*)&key->both.word,
141                           (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
142                           key->both.offset);
143         return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
144 }
145
146 /*
147  * Return 1 if two futex_keys are equal, 0 otherwise.
148  */
149 static inline int match_futex(union futex_key *key1, union futex_key *key2)
150 {
151         return (key1->both.word == key2->both.word
152                 && key1->both.ptr == key2->both.ptr
153                 && key1->both.offset == key2->both.offset);
154 }
155
156 /*
157  * Take a reference to the resource addressed by a key.
158  * Can be called while holding spinlocks.
159  *
160  */
161 static void get_futex_key_refs(union futex_key *key)
162 {
163         if (!key->both.ptr)
164                 return;
165
166         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
167         case FUT_OFF_INODE:
168                 atomic_inc(&key->shared.inode->i_count);
169                 break;
170         case FUT_OFF_MMSHARED:
171                 atomic_inc(&key->private.mm->mm_count);
172                 break;
173         }
174 }
175
176 /*
177  * Drop a reference to the resource addressed by a key.
178  * The hash bucket spinlock must not be held.
179  */
180 static void drop_futex_key_refs(union futex_key *key)
181 {
182         if (!key->both.ptr) {
183                 /* If we're here then we tried to put a key we failed to get */
184                 WARN_ON_ONCE(1);
185                 return;
186         }
187
188         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
189         case FUT_OFF_INODE:
190                 iput(key->shared.inode);
191                 break;
192         case FUT_OFF_MMSHARED:
193                 mmdrop(key->private.mm);
194                 break;
195         }
196 }
197
198 /**
199  * get_futex_key - Get parameters which are the keys for a futex.
200  * @uaddr: virtual address of the futex
201  * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
202  * @key: address where result is stored.
203  *
204  * Returns a negative error code or 0
205  * The key words are stored in *key on success.
206  *
207  * For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode,
208  * offset_within_page).  For private mappings, it's (uaddr, current->mm).
209  * We can usually work out the index without swapping in the page.
210  *
211  * lock_page() might sleep, the caller should not hold a spinlock.
212  */
213 static int get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key)
214 {
215         unsigned long address = (unsigned long)uaddr;
216         struct mm_struct *mm = current->mm;
217         struct page *page;
218         int err;
219
220         /*
221          * The futex address must be "naturally" aligned.
222          */
223         key->both.offset = address % PAGE_SIZE;
224         if (unlikely((address % sizeof(u32)) != 0))
225                 return -EINVAL;
226         address -= key->both.offset;
227
228         /*
229          * PROCESS_PRIVATE futexes are fast.
230          * As the mm cannot disappear under us and the 'key' only needs
231          * virtual address, we dont even have to find the underlying vma.
232          * Note : We do have to check 'uaddr' is a valid user address,
233          *        but access_ok() should be faster than find_vma()
234          */
235         if (!fshared) {
236                 if (unlikely(!access_ok(VERIFY_WRITE, uaddr, sizeof(u32))))
237                         return -EFAULT;
238                 key->private.mm = mm;
239                 key->private.address = address;
240                 get_futex_key_refs(key);
241                 return 0;
242         }
243
244 again:
245         err = get_user_pages_fast(address, 1, 0, &page);
246         if (err < 0)
247                 return err;
248
249         lock_page(page);
250         if (!page->mapping) {
251                 unlock_page(page);
252                 put_page(page);
253                 goto again;
254         }
255
256         /*
257          * Private mappings are handled in a simple way.
258          *
259          * NOTE: When userspace waits on a MAP_SHARED mapping, even if
260          * it's a read-only handle, it's expected that futexes attach to
261          * the object not the particular process.
262          */
263         if (PageAnon(page)) {
264                 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
265                 key->private.mm = mm;
266                 key->private.address = address;
267         } else {
268                 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
269                 key->shared.inode = page->mapping->host;
270                 key->shared.pgoff = page->index;
271         }
272
273         get_futex_key_refs(key);
274
275         unlock_page(page);
276         put_page(page);
277         return 0;
278 }
279
280 static inline
281 void put_futex_key(int fshared, union futex_key *key)
282 {
283         drop_futex_key_refs(key);
284 }
285
286 /**
287  * futex_top_waiter() - Return the highest priority waiter on a futex
288  * @hb:     the hash bucket the futex_q's reside in
289  * @key:    the futex key (to distinguish it from other futex futex_q's)
290  *
291  * Must be called with the hb lock held.
292  */
293 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
294                                         union futex_key *key)
295 {
296         struct futex_q *this;
297
298         plist_for_each_entry(this, &hb->chain, list) {
299                 if (match_futex(&this->key, key))
300                         return this;
301         }
302         return NULL;
303 }
304
305 static u32 cmpxchg_futex_value_locked(u32 __user *uaddr, u32 uval, u32 newval)
306 {
307         u32 curval;
308
309         pagefault_disable();
310         curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval);
311         pagefault_enable();
312
313         return curval;
314 }
315
316 static int get_futex_value_locked(u32 *dest, u32 __user *from)
317 {
318         int ret;
319
320         pagefault_disable();
321         ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
322         pagefault_enable();
323
324         return ret ? -EFAULT : 0;
325 }
326
327
328 /*
329  * PI code:
330  */
331 static int refill_pi_state_cache(void)
332 {
333         struct futex_pi_state *pi_state;
334
335         if (likely(current->pi_state_cache))
336                 return 0;
337
338         pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
339
340         if (!pi_state)
341                 return -ENOMEM;
342
343         INIT_LIST_HEAD(&pi_state->list);
344         /* pi_mutex gets initialized later */
345         pi_state->owner = NULL;
346         atomic_set(&pi_state->refcount, 1);
347         pi_state->key = FUTEX_KEY_INIT;
348
349         current->pi_state_cache = pi_state;
350
351         return 0;
352 }
353
354 static struct futex_pi_state * alloc_pi_state(void)
355 {
356         struct futex_pi_state *pi_state = current->pi_state_cache;
357
358         WARN_ON(!pi_state);
359         current->pi_state_cache = NULL;
360
361         return pi_state;
362 }
363
364 static void free_pi_state(struct futex_pi_state *pi_state)
365 {
366         if (!atomic_dec_and_test(&pi_state->refcount))
367                 return;
368
369         /*
370          * If pi_state->owner is NULL, the owner is most probably dying
371          * and has cleaned up the pi_state already
372          */
373         if (pi_state->owner) {
374                 spin_lock_irq(&pi_state->owner->pi_lock);
375                 list_del_init(&pi_state->list);
376                 spin_unlock_irq(&pi_state->owner->pi_lock);
377
378                 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
379         }
380
381         if (current->pi_state_cache)
382                 kfree(pi_state);
383         else {
384                 /*
385                  * pi_state->list is already empty.
386                  * clear pi_state->owner.
387                  * refcount is at 0 - put it back to 1.
388                  */
389                 pi_state->owner = NULL;
390                 atomic_set(&pi_state->refcount, 1);
391                 current->pi_state_cache = pi_state;
392         }
393 }
394
395 /*
396  * Look up the task based on what TID userspace gave us.
397  * We dont trust it.
398  */
399 static struct task_struct * futex_find_get_task(pid_t pid)
400 {
401         struct task_struct *p;
402         const struct cred *cred = current_cred(), *pcred;
403
404         rcu_read_lock();
405         p = find_task_by_vpid(pid);
406         if (!p) {
407                 p = ERR_PTR(-ESRCH);
408         } else {
409                 pcred = __task_cred(p);
410                 if (cred->euid != pcred->euid &&
411                     cred->euid != pcred->uid)
412                         p = ERR_PTR(-ESRCH);
413                 else
414                         get_task_struct(p);
415         }
416
417         rcu_read_unlock();
418
419         return p;
420 }
421
422 /*
423  * This task is holding PI mutexes at exit time => bad.
424  * Kernel cleans up PI-state, but userspace is likely hosed.
425  * (Robust-futex cleanup is separate and might save the day for userspace.)
426  */
427 void exit_pi_state_list(struct task_struct *curr)
428 {
429         struct list_head *next, *head = &curr->pi_state_list;
430         struct futex_pi_state *pi_state;
431         struct futex_hash_bucket *hb;
432         union futex_key key = FUTEX_KEY_INIT;
433
434         if (!futex_cmpxchg_enabled)
435                 return;
436         /*
437          * We are a ZOMBIE and nobody can enqueue itself on
438          * pi_state_list anymore, but we have to be careful
439          * versus waiters unqueueing themselves:
440          */
441         spin_lock_irq(&curr->pi_lock);
442         while (!list_empty(head)) {
443
444                 next = head->next;
445                 pi_state = list_entry(next, struct futex_pi_state, list);
446                 key = pi_state->key;
447                 hb = hash_futex(&key);
448                 spin_unlock_irq(&curr->pi_lock);
449
450                 spin_lock(&hb->lock);
451
452                 spin_lock_irq(&curr->pi_lock);
453                 /*
454                  * We dropped the pi-lock, so re-check whether this
455                  * task still owns the PI-state:
456                  */
457                 if (head->next != next) {
458                         spin_unlock(&hb->lock);
459                         continue;
460                 }
461
462                 WARN_ON(pi_state->owner != curr);
463                 WARN_ON(list_empty(&pi_state->list));
464                 list_del_init(&pi_state->list);
465                 pi_state->owner = NULL;
466                 spin_unlock_irq(&curr->pi_lock);
467
468                 rt_mutex_unlock(&pi_state->pi_mutex);
469
470                 spin_unlock(&hb->lock);
471
472                 spin_lock_irq(&curr->pi_lock);
473         }
474         spin_unlock_irq(&curr->pi_lock);
475 }
476
477 static int
478 lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
479                 union futex_key *key, struct futex_pi_state **ps)
480 {
481         struct futex_pi_state *pi_state = NULL;
482         struct futex_q *this, *next;
483         struct plist_head *head;
484         struct task_struct *p;
485         pid_t pid = uval & FUTEX_TID_MASK;
486
487         head = &hb->chain;
488
489         plist_for_each_entry_safe(this, next, head, list) {
490                 if (match_futex(&this->key, key)) {
491                         /*
492                          * Another waiter already exists - bump up
493                          * the refcount and return its pi_state:
494                          */
495                         pi_state = this->pi_state;
496                         /*
497                          * Userspace might have messed up non PI and PI futexes
498                          */
499                         if (unlikely(!pi_state))
500                                 return -EINVAL;
501
502                         WARN_ON(!atomic_read(&pi_state->refcount));
503                         WARN_ON(pid && pi_state->owner &&
504                                 pi_state->owner->pid != pid);
505
506                         atomic_inc(&pi_state->refcount);
507                         *ps = pi_state;
508
509                         return 0;
510                 }
511         }
512
513         /*
514          * We are the first waiter - try to look up the real owner and attach
515          * the new pi_state to it, but bail out when TID = 0
516          */
517         if (!pid)
518                 return -ESRCH;
519         p = futex_find_get_task(pid);
520         if (IS_ERR(p))
521                 return PTR_ERR(p);
522
523         /*
524          * We need to look at the task state flags to figure out,
525          * whether the task is exiting. To protect against the do_exit
526          * change of the task flags, we do this protected by
527          * p->pi_lock:
528          */
529         spin_lock_irq(&p->pi_lock);
530         if (unlikely(p->flags & PF_EXITING)) {
531                 /*
532                  * The task is on the way out. When PF_EXITPIDONE is
533                  * set, we know that the task has finished the
534                  * cleanup:
535                  */
536                 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
537
538                 spin_unlock_irq(&p->pi_lock);
539                 put_task_struct(p);
540                 return ret;
541         }
542
543         pi_state = alloc_pi_state();
544
545         /*
546          * Initialize the pi_mutex in locked state and make 'p'
547          * the owner of it:
548          */
549         rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
550
551         /* Store the key for possible exit cleanups: */
552         pi_state->key = *key;
553
554         WARN_ON(!list_empty(&pi_state->list));
555         list_add(&pi_state->list, &p->pi_state_list);
556         pi_state->owner = p;
557         spin_unlock_irq(&p->pi_lock);
558
559         put_task_struct(p);
560
561         *ps = pi_state;
562
563         return 0;
564 }
565
566 /**
567  * futex_lock_pi_atomic() - atomic work required to acquire a pi aware futex
568  * @uaddr:      the pi futex user address
569  * @hb:         the pi futex hash bucket
570  * @key:        the futex key associated with uaddr and hb
571  * @ps:         the pi_state pointer where we store the result of the lookup
572  * @task:       the task to perform the atomic lock work for.  This will be
573  *              "current" except in the case of requeue pi.
574  *
575  * Returns:
576  *  0 - ready to wait
577  *  1 - acquired the lock
578  * <0 - error
579  *
580  * The hb->lock and futex_key refs shall be held by the caller.
581  */
582 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
583                                 union futex_key *key,
584                                 struct futex_pi_state **ps,
585                                 struct task_struct *task)
586 {
587         int lock_taken, ret, ownerdied = 0;
588         u32 uval, newval, curval;
589
590 retry:
591         ret = lock_taken = 0;
592
593         /*
594          * To avoid races, we attempt to take the lock here again
595          * (by doing a 0 -> TID atomic cmpxchg), while holding all
596          * the locks. It will most likely not succeed.
597          */
598         newval = task_pid_vnr(task);
599
600         curval = cmpxchg_futex_value_locked(uaddr, 0, newval);
601
602         if (unlikely(curval == -EFAULT))
603                 return -EFAULT;
604
605         /*
606          * Detect deadlocks.
607          */
608         if ((unlikely((curval & FUTEX_TID_MASK) == task_pid_vnr(task))))
609                 return -EDEADLK;
610
611         /*
612          * Surprise - we got the lock. Just return to userspace:
613          */
614         if (unlikely(!curval))
615                 return 1;
616
617         uval = curval;
618
619         /*
620          * Set the FUTEX_WAITERS flag, so the owner will know it has someone
621          * to wake at the next unlock.
622          */
623         newval = curval | FUTEX_WAITERS;
624
625         /*
626          * There are two cases, where a futex might have no owner (the
627          * owner TID is 0): OWNER_DIED. We take over the futex in this
628          * case. We also do an unconditional take over, when the owner
629          * of the futex died.
630          *
631          * This is safe as we are protected by the hash bucket lock !
632          */
633         if (unlikely(ownerdied || !(curval & FUTEX_TID_MASK))) {
634                 /* Keep the OWNER_DIED bit */
635                 newval = (curval & ~FUTEX_TID_MASK) | task_pid_vnr(task);
636                 ownerdied = 0;
637                 lock_taken = 1;
638         }
639
640         curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
641
642         if (unlikely(curval == -EFAULT))
643                 return -EFAULT;
644         if (unlikely(curval != uval))
645                 goto retry;
646
647         /*
648          * We took the lock due to owner died take over.
649          */
650         if (unlikely(lock_taken))
651                 return 1;
652
653         /*
654          * We dont have the lock. Look up the PI state (or create it if
655          * we are the first waiter):
656          */
657         ret = lookup_pi_state(uval, hb, key, ps);
658
659         if (unlikely(ret)) {
660                 switch (ret) {
661                 case -ESRCH:
662                         /*
663                          * No owner found for this futex. Check if the
664                          * OWNER_DIED bit is set to figure out whether
665                          * this is a robust futex or not.
666                          */
667                         if (get_futex_value_locked(&curval, uaddr))
668                                 return -EFAULT;
669
670                         /*
671                          * We simply start over in case of a robust
672                          * futex. The code above will take the futex
673                          * and return happy.
674                          */
675                         if (curval & FUTEX_OWNER_DIED) {
676                                 ownerdied = 1;
677                                 goto retry;
678                         }
679                 default:
680                         break;
681                 }
682         }
683
684         return ret;
685 }
686
687 /*
688  * The hash bucket lock must be held when this is called.
689  * Afterwards, the futex_q must not be accessed.
690  */
691 static void wake_futex(struct futex_q *q)
692 {
693         plist_del(&q->list, &q->list.plist);
694         /*
695          * The lock in wake_up_all() is a crucial memory barrier after the
696          * plist_del() and also before assigning to q->lock_ptr.
697          */
698         wake_up(&q->waiter);
699         /*
700          * The waiting task can free the futex_q as soon as this is written,
701          * without taking any locks.  This must come last.
702          *
703          * A memory barrier is required here to prevent the following store to
704          * lock_ptr from getting ahead of the wakeup. Clearing the lock at the
705          * end of wake_up() does not prevent this store from moving.
706          */
707         smp_wmb();
708         q->lock_ptr = NULL;
709 }
710
711 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
712 {
713         struct task_struct *new_owner;
714         struct futex_pi_state *pi_state = this->pi_state;
715         u32 curval, newval;
716
717         if (!pi_state)
718                 return -EINVAL;
719
720         spin_lock(&pi_state->pi_mutex.wait_lock);
721         new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
722
723         /*
724          * This happens when we have stolen the lock and the original
725          * pending owner did not enqueue itself back on the rt_mutex.
726          * Thats not a tragedy. We know that way, that a lock waiter
727          * is on the fly. We make the futex_q waiter the pending owner.
728          */
729         if (!new_owner)
730                 new_owner = this->task;
731
732         /*
733          * We pass it to the next owner. (The WAITERS bit is always
734          * kept enabled while there is PI state around. We must also
735          * preserve the owner died bit.)
736          */
737         if (!(uval & FUTEX_OWNER_DIED)) {
738                 int ret = 0;
739
740                 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
741
742                 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
743
744                 if (curval == -EFAULT)
745                         ret = -EFAULT;
746                 else if (curval != uval)
747                         ret = -EINVAL;
748                 if (ret) {
749                         spin_unlock(&pi_state->pi_mutex.wait_lock);
750                         return ret;
751                 }
752         }
753
754         spin_lock_irq(&pi_state->owner->pi_lock);
755         WARN_ON(list_empty(&pi_state->list));
756         list_del_init(&pi_state->list);
757         spin_unlock_irq(&pi_state->owner->pi_lock);
758
759         spin_lock_irq(&new_owner->pi_lock);
760         WARN_ON(!list_empty(&pi_state->list));
761         list_add(&pi_state->list, &new_owner->pi_state_list);
762         pi_state->owner = new_owner;
763         spin_unlock_irq(&new_owner->pi_lock);
764
765         spin_unlock(&pi_state->pi_mutex.wait_lock);
766         rt_mutex_unlock(&pi_state->pi_mutex);
767
768         return 0;
769 }
770
771 static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
772 {
773         u32 oldval;
774
775         /*
776          * There is no waiter, so we unlock the futex. The owner died
777          * bit has not to be preserved here. We are the owner:
778          */
779         oldval = cmpxchg_futex_value_locked(uaddr, uval, 0);
780
781         if (oldval == -EFAULT)
782                 return oldval;
783         if (oldval != uval)
784                 return -EAGAIN;
785
786         return 0;
787 }
788
789 /*
790  * Express the locking dependencies for lockdep:
791  */
792 static inline void
793 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
794 {
795         if (hb1 <= hb2) {
796                 spin_lock(&hb1->lock);
797                 if (hb1 < hb2)
798                         spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
799         } else { /* hb1 > hb2 */
800                 spin_lock(&hb2->lock);
801                 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
802         }
803 }
804
805 static inline void
806 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
807 {
808         spin_unlock(&hb1->lock);
809         if (hb1 != hb2)
810                 spin_unlock(&hb2->lock);
811 }
812
813 /*
814  * Wake up waiters matching bitset queued on this futex (uaddr).
815  */
816 static int futex_wake(u32 __user *uaddr, int fshared, int nr_wake, u32 bitset)
817 {
818         struct futex_hash_bucket *hb;
819         struct futex_q *this, *next;
820         struct plist_head *head;
821         union futex_key key = FUTEX_KEY_INIT;
822         int ret;
823
824         if (!bitset)
825                 return -EINVAL;
826
827         ret = get_futex_key(uaddr, fshared, &key);
828         if (unlikely(ret != 0))
829                 goto out;
830
831         hb = hash_futex(&key);
832         spin_lock(&hb->lock);
833         head = &hb->chain;
834
835         plist_for_each_entry_safe(this, next, head, list) {
836                 if (match_futex (&this->key, &key)) {
837                         if (this->pi_state || this->rt_waiter) {
838                                 ret = -EINVAL;
839                                 break;
840                         }
841
842                         /* Check if one of the bits is set in both bitsets */
843                         if (!(this->bitset & bitset))
844                                 continue;
845
846                         wake_futex(this);
847                         if (++ret >= nr_wake)
848                                 break;
849                 }
850         }
851
852         spin_unlock(&hb->lock);
853         put_futex_key(fshared, &key);
854 out:
855         return ret;
856 }
857
858 /*
859  * Wake up all waiters hashed on the physical page that is mapped
860  * to this virtual address:
861  */
862 static int
863 futex_wake_op(u32 __user *uaddr1, int fshared, u32 __user *uaddr2,
864               int nr_wake, int nr_wake2, int op)
865 {
866         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
867         struct futex_hash_bucket *hb1, *hb2;
868         struct plist_head *head;
869         struct futex_q *this, *next;
870         int ret, op_ret;
871
872 retry:
873         ret = get_futex_key(uaddr1, fshared, &key1);
874         if (unlikely(ret != 0))
875                 goto out;
876         ret = get_futex_key(uaddr2, fshared, &key2);
877         if (unlikely(ret != 0))
878                 goto out_put_key1;
879
880         hb1 = hash_futex(&key1);
881         hb2 = hash_futex(&key2);
882
883         double_lock_hb(hb1, hb2);
884 retry_private:
885         op_ret = futex_atomic_op_inuser(op, uaddr2);
886         if (unlikely(op_ret < 0)) {
887                 u32 dummy;
888
889                 double_unlock_hb(hb1, hb2);
890
891 #ifndef CONFIG_MMU
892                 /*
893                  * we don't get EFAULT from MMU faults if we don't have an MMU,
894                  * but we might get them from range checking
895                  */
896                 ret = op_ret;
897                 goto out_put_keys;
898 #endif
899
900                 if (unlikely(op_ret != -EFAULT)) {
901                         ret = op_ret;
902                         goto out_put_keys;
903                 }
904
905                 ret = get_user(dummy, uaddr2);
906                 if (ret)
907                         goto out_put_keys;
908
909                 if (!fshared)
910                         goto retry_private;
911
912                 put_futex_key(fshared, &key2);
913                 put_futex_key(fshared, &key1);
914                 goto retry;
915         }
916
917         head = &hb1->chain;
918
919         plist_for_each_entry_safe(this, next, head, list) {
920                 if (match_futex (&this->key, &key1)) {
921                         wake_futex(this);
922                         if (++ret >= nr_wake)
923                                 break;
924                 }
925         }
926
927         if (op_ret > 0) {
928                 head = &hb2->chain;
929
930                 op_ret = 0;
931                 plist_for_each_entry_safe(this, next, head, list) {
932                         if (match_futex (&this->key, &key2)) {
933                                 wake_futex(this);
934                                 if (++op_ret >= nr_wake2)
935                                         break;
936                         }
937                 }
938                 ret += op_ret;
939         }
940
941         double_unlock_hb(hb1, hb2);
942 out_put_keys:
943         put_futex_key(fshared, &key2);
944 out_put_key1:
945         put_futex_key(fshared, &key1);
946 out:
947         return ret;
948 }
949
950 /**
951  * requeue_futex() - Requeue a futex_q from one hb to another
952  * @q:          the futex_q to requeue
953  * @hb1:        the source hash_bucket
954  * @hb2:        the target hash_bucket
955  * @key2:       the new key for the requeued futex_q
956  */
957 static inline
958 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
959                    struct futex_hash_bucket *hb2, union futex_key *key2)
960 {
961
962         /*
963          * If key1 and key2 hash to the same bucket, no need to
964          * requeue.
965          */
966         if (likely(&hb1->chain != &hb2->chain)) {
967                 plist_del(&q->list, &hb1->chain);
968                 plist_add(&q->list, &hb2->chain);
969                 q->lock_ptr = &hb2->lock;
970 #ifdef CONFIG_DEBUG_PI_LIST
971                 q->list.plist.lock = &hb2->lock;
972 #endif
973         }
974         get_futex_key_refs(key2);
975         q->key = *key2;
976 }
977
978 /**
979  * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
980  * q:   the futex_q
981  * key: the key of the requeue target futex
982  *
983  * During futex_requeue, with requeue_pi=1, it is possible to acquire the
984  * target futex if it is uncontended or via a lock steal.  Set the futex_q key
985  * to the requeue target futex so the waiter can detect the wakeup on the right
986  * futex, but remove it from the hb and NULL the rt_waiter so it can detect
987  * atomic lock acquisition.  Must be called with the q->lock_ptr held.
988  */
989 static inline
990 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key)
991 {
992         drop_futex_key_refs(&q->key);
993         get_futex_key_refs(key);
994         q->key = *key;
995
996         WARN_ON(plist_node_empty(&q->list));
997         plist_del(&q->list, &q->list.plist);
998
999         WARN_ON(!q->rt_waiter);
1000         q->rt_waiter = NULL;
1001
1002         wake_up(&q->waiter);
1003 }
1004
1005 /**
1006  * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1007  * @pifutex:    the user address of the to futex
1008  * @hb1:        the from futex hash bucket, must be locked by the caller
1009  * @hb2:        the to futex hash bucket, must be locked by the caller
1010  * @key1:       the from futex key
1011  * @key2:       the to futex key
1012  *
1013  * Try and get the lock on behalf of the top waiter if we can do it atomically.
1014  * Wake the top waiter if we succeed.  hb1 and hb2 must be held by the caller.
1015  *
1016  * Returns:
1017  *  0 - failed to acquire the lock atomicly
1018  *  1 - acquired the lock
1019  * <0 - error
1020  */
1021 static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1022                                  struct futex_hash_bucket *hb1,
1023                                  struct futex_hash_bucket *hb2,
1024                                  union futex_key *key1, union futex_key *key2,
1025                                  struct futex_pi_state **ps)
1026 {
1027         struct futex_q *top_waiter;
1028         u32 curval;
1029         int ret;
1030
1031         if (get_futex_value_locked(&curval, pifutex))
1032                 return -EFAULT;
1033
1034         top_waiter = futex_top_waiter(hb1, key1);
1035
1036         /* There are no waiters, nothing for us to do. */
1037         if (!top_waiter)
1038                 return 0;
1039
1040         /*
1041          * Either take the lock for top_waiter or set the FUTEX_WAITERS bit.
1042          * The pi_state is returned in ps in contended cases.
1043          */
1044         ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task);
1045         if (ret == 1)
1046                 requeue_pi_wake_futex(top_waiter, key2);
1047
1048         return ret;
1049 }
1050
1051 /**
1052  * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1053  * uaddr1:      source futex user address
1054  * uaddr2:      target futex user address
1055  * nr_wake:     number of waiters to wake (must be 1 for requeue_pi)
1056  * nr_requeue:  number of waiters to requeue (0-INT_MAX)
1057  * requeue_pi:  if we are attempting to requeue from a non-pi futex to a
1058  *              pi futex (pi to pi requeue is not supported)
1059  *
1060  * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1061  * uaddr2 atomically on behalf of the top waiter.
1062  *
1063  * Returns:
1064  * >=0 - on success, the number of tasks requeued or woken
1065  *  <0 - on error
1066  */
1067 static int futex_requeue(u32 __user *uaddr1, int fshared, u32 __user *uaddr2,
1068                          int nr_wake, int nr_requeue, u32 *cmpval,
1069                          int requeue_pi)
1070 {
1071         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1072         int drop_count = 0, task_count = 0, ret;
1073         struct futex_pi_state *pi_state = NULL;
1074         struct futex_hash_bucket *hb1, *hb2;
1075         struct plist_head *head1;
1076         struct futex_q *this, *next;
1077         u32 curval2;
1078
1079         if (requeue_pi) {
1080                 /*
1081                  * requeue_pi requires a pi_state, try to allocate it now
1082                  * without any locks in case it fails.
1083                  */
1084                 if (refill_pi_state_cache())
1085                         return -ENOMEM;
1086                 /*
1087                  * requeue_pi must wake as many tasks as it can, up to nr_wake
1088                  * + nr_requeue, since it acquires the rt_mutex prior to
1089                  * returning to userspace, so as to not leave the rt_mutex with
1090                  * waiters and no owner.  However, second and third wake-ups
1091                  * cannot be predicted as they involve race conditions with the
1092                  * first wake and a fault while looking up the pi_state.  Both
1093                  * pthread_cond_signal() and pthread_cond_broadcast() should
1094                  * use nr_wake=1.
1095                  */
1096                 if (nr_wake != 1)
1097                         return -EINVAL;
1098         }
1099
1100 retry:
1101         if (pi_state != NULL) {
1102                 /*
1103                  * We will have to lookup the pi_state again, so free this one
1104                  * to keep the accounting correct.
1105                  */
1106                 free_pi_state(pi_state);
1107                 pi_state = NULL;
1108         }
1109
1110         ret = get_futex_key(uaddr1, fshared, &key1);
1111         if (unlikely(ret != 0))
1112                 goto out;
1113         ret = get_futex_key(uaddr2, fshared, &key2);
1114         if (unlikely(ret != 0))
1115                 goto out_put_key1;
1116
1117         hb1 = hash_futex(&key1);
1118         hb2 = hash_futex(&key2);
1119
1120 retry_private:
1121         double_lock_hb(hb1, hb2);
1122
1123         if (likely(cmpval != NULL)) {
1124                 u32 curval;
1125
1126                 ret = get_futex_value_locked(&curval, uaddr1);
1127
1128                 if (unlikely(ret)) {
1129                         double_unlock_hb(hb1, hb2);
1130
1131                         ret = get_user(curval, uaddr1);
1132                         if (ret)
1133                                 goto out_put_keys;
1134
1135                         if (!fshared)
1136                                 goto retry_private;
1137
1138                         put_futex_key(fshared, &key2);
1139                         put_futex_key(fshared, &key1);
1140                         goto retry;
1141                 }
1142                 if (curval != *cmpval) {
1143                         ret = -EAGAIN;
1144                         goto out_unlock;
1145                 }
1146         }
1147
1148         if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1149                 /* Attempt to acquire uaddr2 and wake the top_waiter. */
1150                 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1151                                                  &key2, &pi_state);
1152
1153                 /*
1154                  * At this point the top_waiter has either taken uaddr2 or is
1155                  * waiting on it.  If the former, then the pi_state will not
1156                  * exist yet, look it up one more time to ensure we have a
1157                  * reference to it.
1158                  */
1159                 if (ret == 1) {
1160                         WARN_ON(pi_state);
1161                         task_count++;
1162                         ret = get_futex_value_locked(&curval2, uaddr2);
1163                         if (!ret)
1164                                 ret = lookup_pi_state(curval2, hb2, &key2,
1165                                                       &pi_state);
1166                 }
1167
1168                 switch (ret) {
1169                 case 0:
1170                         break;
1171                 case -EFAULT:
1172                         double_unlock_hb(hb1, hb2);
1173                         put_futex_key(fshared, &key2);
1174                         put_futex_key(fshared, &key1);
1175                         ret = get_user(curval2, uaddr2);
1176                         if (!ret)
1177                                 goto retry;
1178                         goto out;
1179                 case -EAGAIN:
1180                         /* The owner was exiting, try again. */
1181                         double_unlock_hb(hb1, hb2);
1182                         put_futex_key(fshared, &key2);
1183                         put_futex_key(fshared, &key1);
1184                         cond_resched();
1185                         goto retry;
1186                 default:
1187                         goto out_unlock;
1188                 }
1189         }
1190
1191         head1 = &hb1->chain;
1192         plist_for_each_entry_safe(this, next, head1, list) {
1193                 if (task_count - nr_wake >= nr_requeue)
1194                         break;
1195
1196                 if (!match_futex(&this->key, &key1))
1197                         continue;
1198
1199                 WARN_ON(!requeue_pi && this->rt_waiter);
1200                 WARN_ON(requeue_pi && !this->rt_waiter);
1201
1202                 /*
1203                  * Wake nr_wake waiters.  For requeue_pi, if we acquired the
1204                  * lock, we already woke the top_waiter.  If not, it will be
1205                  * woken by futex_unlock_pi().
1206                  */
1207                 if (++task_count <= nr_wake && !requeue_pi) {
1208                         wake_futex(this);
1209                         continue;
1210                 }
1211
1212                 /*
1213                  * Requeue nr_requeue waiters and possibly one more in the case
1214                  * of requeue_pi if we couldn't acquire the lock atomically.
1215                  */
1216                 if (requeue_pi) {
1217                         /* Prepare the waiter to take the rt_mutex. */
1218                         atomic_inc(&pi_state->refcount);
1219                         this->pi_state = pi_state;
1220                         ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1221                                                         this->rt_waiter,
1222                                                         this->task, 1);
1223                         if (ret == 1) {
1224                                 /* We got the lock. */
1225                                 requeue_pi_wake_futex(this, &key2);
1226                                 continue;
1227                         } else if (ret) {
1228                                 /* -EDEADLK */
1229                                 this->pi_state = NULL;
1230                                 free_pi_state(pi_state);
1231                                 goto out_unlock;
1232                         }
1233                 }
1234                 requeue_futex(this, hb1, hb2, &key2);
1235                 drop_count++;
1236         }
1237
1238 out_unlock:
1239         double_unlock_hb(hb1, hb2);
1240
1241         /* drop_futex_key_refs() must be called outside the spinlocks. */
1242         while (--drop_count >= 0)
1243                 drop_futex_key_refs(&key1);
1244
1245 out_put_keys:
1246         put_futex_key(fshared, &key2);
1247 out_put_key1:
1248         put_futex_key(fshared, &key1);
1249 out:
1250         if (pi_state != NULL)
1251                 free_pi_state(pi_state);
1252         return ret ? ret : task_count;
1253 }
1254
1255 /* The key must be already stored in q->key. */
1256 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1257 {
1258         struct futex_hash_bucket *hb;
1259
1260         init_waitqueue_head(&q->waiter);
1261
1262         get_futex_key_refs(&q->key);
1263         hb = hash_futex(&q->key);
1264         q->lock_ptr = &hb->lock;
1265
1266         spin_lock(&hb->lock);
1267         return hb;
1268 }
1269
1270 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1271 {
1272         int prio;
1273
1274         /*
1275          * The priority used to register this element is
1276          * - either the real thread-priority for the real-time threads
1277          * (i.e. threads with a priority lower than MAX_RT_PRIO)
1278          * - or MAX_RT_PRIO for non-RT threads.
1279          * Thus, all RT-threads are woken first in priority order, and
1280          * the others are woken last, in FIFO order.
1281          */
1282         prio = min(current->normal_prio, MAX_RT_PRIO);
1283
1284         plist_node_init(&q->list, prio);
1285 #ifdef CONFIG_DEBUG_PI_LIST
1286         q->list.plist.lock = &hb->lock;
1287 #endif
1288         plist_add(&q->list, &hb->chain);
1289         q->task = current;
1290         spin_unlock(&hb->lock);
1291 }
1292
1293 static inline void
1294 queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
1295 {
1296         spin_unlock(&hb->lock);
1297         drop_futex_key_refs(&q->key);
1298 }
1299
1300 /*
1301  * queue_me and unqueue_me must be called as a pair, each
1302  * exactly once.  They are called with the hashed spinlock held.
1303  */
1304
1305 /* Return 1 if we were still queued (ie. 0 means we were woken) */
1306 static int unqueue_me(struct futex_q *q)
1307 {
1308         spinlock_t *lock_ptr;
1309         int ret = 0;
1310
1311         /* In the common case we don't take the spinlock, which is nice. */
1312 retry:
1313         lock_ptr = q->lock_ptr;
1314         barrier();
1315         if (lock_ptr != NULL) {
1316                 spin_lock(lock_ptr);
1317                 /*
1318                  * q->lock_ptr can change between reading it and
1319                  * spin_lock(), causing us to take the wrong lock.  This
1320                  * corrects the race condition.
1321                  *
1322                  * Reasoning goes like this: if we have the wrong lock,
1323                  * q->lock_ptr must have changed (maybe several times)
1324                  * between reading it and the spin_lock().  It can
1325                  * change again after the spin_lock() but only if it was
1326                  * already changed before the spin_lock().  It cannot,
1327                  * however, change back to the original value.  Therefore
1328                  * we can detect whether we acquired the correct lock.
1329                  */
1330                 if (unlikely(lock_ptr != q->lock_ptr)) {
1331                         spin_unlock(lock_ptr);
1332                         goto retry;
1333                 }
1334                 WARN_ON(plist_node_empty(&q->list));
1335                 plist_del(&q->list, &q->list.plist);
1336
1337                 BUG_ON(q->pi_state);
1338
1339                 spin_unlock(lock_ptr);
1340                 ret = 1;
1341         }
1342
1343         drop_futex_key_refs(&q->key);
1344         return ret;
1345 }
1346
1347 /*
1348  * PI futexes can not be requeued and must remove themself from the
1349  * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1350  * and dropped here.
1351  */
1352 static void unqueue_me_pi(struct futex_q *q)
1353 {
1354         WARN_ON(plist_node_empty(&q->list));
1355         plist_del(&q->list, &q->list.plist);
1356
1357         BUG_ON(!q->pi_state);
1358         free_pi_state(q->pi_state);
1359         q->pi_state = NULL;
1360
1361         spin_unlock(q->lock_ptr);
1362
1363         drop_futex_key_refs(&q->key);
1364 }
1365
1366 /*
1367  * Fixup the pi_state owner with the new owner.
1368  *
1369  * Must be called with hash bucket lock held and mm->sem held for non
1370  * private futexes.
1371  */
1372 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
1373                                 struct task_struct *newowner, int fshared)
1374 {
1375         u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
1376         struct futex_pi_state *pi_state = q->pi_state;
1377         struct task_struct *oldowner = pi_state->owner;
1378         u32 uval, curval, newval;
1379         int ret;
1380
1381         /* Owner died? */
1382         if (!pi_state->owner)
1383                 newtid |= FUTEX_OWNER_DIED;
1384
1385         /*
1386          * We are here either because we stole the rtmutex from the
1387          * pending owner or we are the pending owner which failed to
1388          * get the rtmutex. We have to replace the pending owner TID
1389          * in the user space variable. This must be atomic as we have
1390          * to preserve the owner died bit here.
1391          *
1392          * Note: We write the user space value _before_ changing the pi_state
1393          * because we can fault here. Imagine swapped out pages or a fork
1394          * that marked all the anonymous memory readonly for cow.
1395          *
1396          * Modifying pi_state _before_ the user space value would
1397          * leave the pi_state in an inconsistent state when we fault
1398          * here, because we need to drop the hash bucket lock to
1399          * handle the fault. This might be observed in the PID check
1400          * in lookup_pi_state.
1401          */
1402 retry:
1403         if (get_futex_value_locked(&uval, uaddr))
1404                 goto handle_fault;
1405
1406         while (1) {
1407                 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1408
1409                 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
1410
1411                 if (curval == -EFAULT)
1412                         goto handle_fault;
1413                 if (curval == uval)
1414                         break;
1415                 uval = curval;
1416         }
1417
1418         /*
1419          * We fixed up user space. Now we need to fix the pi_state
1420          * itself.
1421          */
1422         if (pi_state->owner != NULL) {
1423                 spin_lock_irq(&pi_state->owner->pi_lock);
1424                 WARN_ON(list_empty(&pi_state->list));
1425                 list_del_init(&pi_state->list);
1426                 spin_unlock_irq(&pi_state->owner->pi_lock);
1427         }
1428
1429         pi_state->owner = newowner;
1430
1431         spin_lock_irq(&newowner->pi_lock);
1432         WARN_ON(!list_empty(&pi_state->list));
1433         list_add(&pi_state->list, &newowner->pi_state_list);
1434         spin_unlock_irq(&newowner->pi_lock);
1435         return 0;
1436
1437         /*
1438          * To handle the page fault we need to drop the hash bucket
1439          * lock here. That gives the other task (either the pending
1440          * owner itself or the task which stole the rtmutex) the
1441          * chance to try the fixup of the pi_state. So once we are
1442          * back from handling the fault we need to check the pi_state
1443          * after reacquiring the hash bucket lock and before trying to
1444          * do another fixup. When the fixup has been done already we
1445          * simply return.
1446          */
1447 handle_fault:
1448         spin_unlock(q->lock_ptr);
1449
1450         ret = get_user(uval, uaddr);
1451
1452         spin_lock(q->lock_ptr);
1453
1454         /*
1455          * Check if someone else fixed it for us:
1456          */
1457         if (pi_state->owner != oldowner)
1458                 return 0;
1459
1460         if (ret)
1461                 return ret;
1462
1463         goto retry;
1464 }
1465
1466 /*
1467  * In case we must use restart_block to restart a futex_wait,
1468  * we encode in the 'flags' shared capability
1469  */
1470 #define FLAGS_SHARED            0x01
1471 #define FLAGS_CLOCKRT           0x02
1472 #define FLAGS_HAS_TIMEOUT       0x04
1473
1474 static long futex_wait_restart(struct restart_block *restart);
1475 static long futex_lock_pi_restart(struct restart_block *restart);
1476
1477 /**
1478  * fixup_owner() - Post lock pi_state and corner case management
1479  * @uaddr:      user address of the futex
1480  * @fshared:    whether the futex is shared (1) or not (0)
1481  * @q:          futex_q (contains pi_state and access to the rt_mutex)
1482  * @locked:     if the attempt to take the rt_mutex succeeded (1) or not (0)
1483  *
1484  * After attempting to lock an rt_mutex, this function is called to cleanup
1485  * the pi_state owner as well as handle race conditions that may allow us to
1486  * acquire the lock. Must be called with the hb lock held.
1487  *
1488  * Returns:
1489  *  1 - success, lock taken
1490  *  0 - success, lock not taken
1491  * <0 - on error (-EFAULT)
1492  */
1493 static int fixup_owner(u32 __user *uaddr, int fshared, struct futex_q *q,
1494                        int locked)
1495 {
1496         struct task_struct *owner;
1497         int ret = 0;
1498
1499         if (locked) {
1500                 /*
1501                  * Got the lock. We might not be the anticipated owner if we
1502                  * did a lock-steal - fix up the PI-state in that case:
1503                  */
1504                 if (q->pi_state->owner != current)
1505                         ret = fixup_pi_state_owner(uaddr, q, current, fshared);
1506                 goto out;
1507         }
1508
1509         /*
1510          * Catch the rare case, where the lock was released when we were on the
1511          * way back before we locked the hash bucket.
1512          */
1513         if (q->pi_state->owner == current) {
1514                 /*
1515                  * Try to get the rt_mutex now. This might fail as some other
1516                  * task acquired the rt_mutex after we removed ourself from the
1517                  * rt_mutex waiters list.
1518                  */
1519                 if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
1520                         locked = 1;
1521                         goto out;
1522                 }
1523
1524                 /*
1525                  * pi_state is incorrect, some other task did a lock steal and
1526                  * we returned due to timeout or signal without taking the
1527                  * rt_mutex. Too late. We can access the rt_mutex_owner without
1528                  * locking, as the other task is now blocked on the hash bucket
1529                  * lock. Fix the state up.
1530                  */
1531                 owner = rt_mutex_owner(&q->pi_state->pi_mutex);
1532                 ret = fixup_pi_state_owner(uaddr, q, owner, fshared);
1533                 goto out;
1534         }
1535
1536         /*
1537          * Paranoia check. If we did not take the lock, then we should not be
1538          * the owner, nor the pending owner, of the rt_mutex.
1539          */
1540         if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
1541                 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
1542                                 "pi-state %p\n", ret,
1543                                 q->pi_state->pi_mutex.owner,
1544                                 q->pi_state->owner);
1545
1546 out:
1547         return ret ? ret : locked;
1548 }
1549
1550 /**
1551  * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
1552  * @hb:         the futex hash bucket, must be locked by the caller
1553  * @q:          the futex_q to queue up on
1554  * @timeout:    the prepared hrtimer_sleeper, or null for no timeout
1555  * @wait:       the wait_queue to add to the futex_q after queueing in the hb
1556  */
1557 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
1558                                 struct hrtimer_sleeper *timeout,
1559                                 wait_queue_t *wait)
1560 {
1561         queue_me(q, hb);
1562
1563         /*
1564          * There might have been scheduling since the queue_me(), as we
1565          * cannot hold a spinlock across the get_user() in case it
1566          * faults, and we cannot just set TASK_INTERRUPTIBLE state when
1567          * queueing ourselves into the futex hash.  This code thus has to
1568          * rely on the futex_wake() code removing us from hash when it
1569          * wakes us up.
1570          */
1571
1572         /* add_wait_queue is the barrier after __set_current_state. */
1573         __set_current_state(TASK_INTERRUPTIBLE);
1574
1575         /*
1576          * Add current as the futex_q waiter.  We don't remove ourselves from
1577          * the wait_queue because we are the only user of it.
1578          */
1579         add_wait_queue(&q->waiter, wait);
1580
1581         /* Arm the timer */
1582         if (timeout) {
1583                 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1584                 if (!hrtimer_active(&timeout->timer))
1585                         timeout->task = NULL;
1586         }
1587
1588         /*
1589          * !plist_node_empty() is safe here without any lock.
1590          * q.lock_ptr != 0 is not safe, because of ordering against wakeup.
1591          */
1592         if (likely(!plist_node_empty(&q->list))) {
1593                 /*
1594                  * If the timer has already expired, current will already be
1595                  * flagged for rescheduling. Only call schedule if there
1596                  * is no timeout, or if it has yet to expire.
1597                  */
1598                 if (!timeout || timeout->task)
1599                         schedule();
1600         }
1601         __set_current_state(TASK_RUNNING);
1602 }
1603
1604 /**
1605  * futex_wait_setup() - Prepare to wait on a futex
1606  * @uaddr:      the futex userspace address
1607  * @val:        the expected value
1608  * @fshared:    whether the futex is shared (1) or not (0)
1609  * @q:          the associated futex_q
1610  * @hb:         storage for hash_bucket pointer to be returned to caller
1611  *
1612  * Setup the futex_q and locate the hash_bucket.  Get the futex value and
1613  * compare it with the expected value.  Handle atomic faults internally.
1614  * Return with the hb lock held and a q.key reference on success, and unlocked
1615  * with no q.key reference on failure.
1616  *
1617  * Returns:
1618  *  0 - uaddr contains val and hb has been locked
1619  * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlcoked
1620  */
1621 static int futex_wait_setup(u32 __user *uaddr, u32 val, int fshared,
1622                            struct futex_q *q, struct futex_hash_bucket **hb)
1623 {
1624         u32 uval;
1625         int ret;
1626
1627         /*
1628          * Access the page AFTER the hash-bucket is locked.
1629          * Order is important:
1630          *
1631          *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1632          *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
1633          *
1634          * The basic logical guarantee of a futex is that it blocks ONLY
1635          * if cond(var) is known to be true at the time of blocking, for
1636          * any cond.  If we queued after testing *uaddr, that would open
1637          * a race condition where we could block indefinitely with
1638          * cond(var) false, which would violate the guarantee.
1639          *
1640          * A consequence is that futex_wait() can return zero and absorb
1641          * a wakeup when *uaddr != val on entry to the syscall.  This is
1642          * rare, but normal.
1643          */
1644 retry:
1645         q->key = FUTEX_KEY_INIT;
1646         ret = get_futex_key(uaddr, fshared, &q->key);
1647         if (unlikely(ret != 0))
1648                 goto out;
1649
1650 retry_private:
1651         *hb = queue_lock(q);
1652
1653         ret = get_futex_value_locked(&uval, uaddr);
1654
1655         if (ret) {
1656                 queue_unlock(q, *hb);
1657
1658                 ret = get_user(uval, uaddr);
1659                 if (ret)
1660                         goto out;
1661
1662                 if (!fshared)
1663                         goto retry_private;
1664
1665                 put_futex_key(fshared, &q->key);
1666                 goto retry;
1667         }
1668
1669         if (uval != val) {
1670                 queue_unlock(q, *hb);
1671                 ret = -EWOULDBLOCK;
1672         }
1673
1674 out:
1675         if (ret)
1676                 put_futex_key(fshared, &q->key);
1677         return ret;
1678 }
1679
1680 static int futex_wait(u32 __user *uaddr, int fshared,
1681                       u32 val, ktime_t *abs_time, u32 bitset, int clockrt)
1682 {
1683         struct hrtimer_sleeper timeout, *to = NULL;
1684         DECLARE_WAITQUEUE(wait, current);
1685         struct restart_block *restart;
1686         struct futex_hash_bucket *hb;
1687         struct futex_q q;
1688         int ret;
1689
1690         if (!bitset)
1691                 return -EINVAL;
1692
1693         q.pi_state = NULL;
1694         q.bitset = bitset;
1695         q.rt_waiter = NULL;
1696
1697         if (abs_time) {
1698                 to = &timeout;
1699
1700                 hrtimer_init_on_stack(&to->timer, clockrt ? CLOCK_REALTIME :
1701                                       CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1702                 hrtimer_init_sleeper(to, current);
1703                 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
1704                                              current->timer_slack_ns);
1705         }
1706
1707         /* Prepare to wait on uaddr. */
1708         ret = futex_wait_setup(uaddr, val, fshared, &q, &hb);
1709         if (ret)
1710                 goto out;
1711
1712         /* queue_me and wait for wakeup, timeout, or a signal. */
1713         futex_wait_queue_me(hb, &q, to, &wait);
1714
1715         /* If we were woken (and unqueued), we succeeded, whatever. */
1716         ret = 0;
1717         if (!unqueue_me(&q))
1718                 goto out_put_key;
1719         ret = -ETIMEDOUT;
1720         if (to && !to->task)
1721                 goto out_put_key;
1722
1723         /*
1724          * We expect signal_pending(current), but another thread may
1725          * have handled it for us already.
1726          */
1727         ret = -ERESTARTSYS;
1728         if (!abs_time)
1729                 goto out_put_key;
1730
1731         restart = &current_thread_info()->restart_block;
1732         restart->fn = futex_wait_restart;
1733         restart->futex.uaddr = (u32 *)uaddr;
1734         restart->futex.val = val;
1735         restart->futex.time = abs_time->tv64;
1736         restart->futex.bitset = bitset;
1737         restart->futex.flags = FLAGS_HAS_TIMEOUT;
1738
1739         if (fshared)
1740                 restart->futex.flags |= FLAGS_SHARED;
1741         if (clockrt)
1742                 restart->futex.flags |= FLAGS_CLOCKRT;
1743
1744         ret = -ERESTART_RESTARTBLOCK;
1745
1746 out_put_key:
1747         put_futex_key(fshared, &q.key);
1748 out:
1749         if (to) {
1750                 hrtimer_cancel(&to->timer);
1751                 destroy_hrtimer_on_stack(&to->timer);
1752         }
1753         return ret;
1754 }
1755
1756
1757 static long futex_wait_restart(struct restart_block *restart)
1758 {
1759         u32 __user *uaddr = (u32 __user *)restart->futex.uaddr;
1760         int fshared = 0;
1761         ktime_t t, *tp = NULL;
1762
1763         if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
1764                 t.tv64 = restart->futex.time;
1765                 tp = &t;
1766         }
1767         restart->fn = do_no_restart_syscall;
1768         if (restart->futex.flags & FLAGS_SHARED)
1769                 fshared = 1;
1770         return (long)futex_wait(uaddr, fshared, restart->futex.val, tp,
1771                                 restart->futex.bitset,
1772                                 restart->futex.flags & FLAGS_CLOCKRT);
1773 }
1774
1775
1776 /*
1777  * Userspace tried a 0 -> TID atomic transition of the futex value
1778  * and failed. The kernel side here does the whole locking operation:
1779  * if there are waiters then it will block, it does PI, etc. (Due to
1780  * races the kernel might see a 0 value of the futex too.)
1781  */
1782 static int futex_lock_pi(u32 __user *uaddr, int fshared,
1783                          int detect, ktime_t *time, int trylock)
1784 {
1785         struct hrtimer_sleeper timeout, *to = NULL;
1786         struct futex_hash_bucket *hb;
1787         u32 uval;
1788         struct futex_q q;
1789         int res, ret;
1790
1791         if (refill_pi_state_cache())
1792                 return -ENOMEM;
1793
1794         if (time) {
1795                 to = &timeout;
1796                 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
1797                                       HRTIMER_MODE_ABS);
1798                 hrtimer_init_sleeper(to, current);
1799                 hrtimer_set_expires(&to->timer, *time);
1800         }
1801
1802         q.pi_state = NULL;
1803         q.rt_waiter = NULL;
1804 retry:
1805         q.key = FUTEX_KEY_INIT;
1806         ret = get_futex_key(uaddr, fshared, &q.key);
1807         if (unlikely(ret != 0))
1808                 goto out;
1809
1810 retry_private:
1811         hb = queue_lock(&q);
1812
1813         ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current);
1814         if (unlikely(ret)) {
1815                 switch (ret) {
1816                 case 1:
1817                         /* We got the lock. */
1818                         ret = 0;
1819                         goto out_unlock_put_key;
1820                 case -EFAULT:
1821                         goto uaddr_faulted;
1822                 case -EAGAIN:
1823                         /*
1824                          * Task is exiting and we just wait for the
1825                          * exit to complete.
1826                          */
1827                         queue_unlock(&q, hb);
1828                         put_futex_key(fshared, &q.key);
1829                         cond_resched();
1830                         goto retry;
1831                 default:
1832                         goto out_unlock_put_key;
1833                 }
1834         }
1835
1836         /*
1837          * Only actually queue now that the atomic ops are done:
1838          */
1839         queue_me(&q, hb);
1840
1841         WARN_ON(!q.pi_state);
1842         /*
1843          * Block on the PI mutex:
1844          */
1845         if (!trylock)
1846                 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
1847         else {
1848                 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
1849                 /* Fixup the trylock return value: */
1850                 ret = ret ? 0 : -EWOULDBLOCK;
1851         }
1852
1853         spin_lock(q.lock_ptr);
1854         /*
1855          * Fixup the pi_state owner and possibly acquire the lock if we
1856          * haven't already.
1857          */
1858         res = fixup_owner(uaddr, fshared, &q, !ret);
1859         /*
1860          * If fixup_owner() returned an error, proprogate that.  If it acquired
1861          * the lock, clear our -ETIMEDOUT or -EINTR.
1862          */
1863         if (res)
1864                 ret = (res < 0) ? res : 0;
1865
1866         /*
1867          * If fixup_owner() faulted and was unable to handle the fault, unlock
1868          * it and return the fault to userspace.
1869          */
1870         if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
1871                 rt_mutex_unlock(&q.pi_state->pi_mutex);
1872
1873         /* Unqueue and drop the lock */
1874         unqueue_me_pi(&q);
1875
1876         goto out;
1877
1878 out_unlock_put_key:
1879         queue_unlock(&q, hb);
1880
1881 out_put_key:
1882         put_futex_key(fshared, &q.key);
1883 out:
1884         if (to)
1885                 destroy_hrtimer_on_stack(&to->timer);
1886         return ret != -EINTR ? ret : -ERESTARTNOINTR;
1887
1888 uaddr_faulted:
1889         /*
1890          * We have to r/w  *(int __user *)uaddr, and we have to modify it
1891          * atomically.  Therefore, if we continue to fault after get_user()
1892          * below, we need to handle the fault ourselves, while still holding
1893          * the mmap_sem.  This can occur if the uaddr is under contention as
1894          * we have to drop the mmap_sem in order to call get_user().
1895          */
1896         queue_unlock(&q, hb);
1897
1898         ret = get_user(uval, uaddr);
1899         if (ret)
1900                 goto out_put_key;
1901
1902         if (!fshared)
1903                 goto retry_private;
1904
1905         put_futex_key(fshared, &q.key);
1906         goto retry;
1907 }
1908
1909 static long futex_lock_pi_restart(struct restart_block *restart)
1910 {
1911         u32 __user *uaddr = (u32 __user *)restart->futex.uaddr;
1912         ktime_t t, *tp = NULL;
1913         int fshared = restart->futex.flags & FLAGS_SHARED;
1914
1915         if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
1916                 t.tv64 = restart->futex.time;
1917                 tp = &t;
1918         }
1919         restart->fn = do_no_restart_syscall;
1920
1921         return (long)futex_lock_pi(uaddr, fshared, restart->futex.val, tp, 0);
1922 }
1923
1924 /*
1925  * Userspace attempted a TID -> 0 atomic transition, and failed.
1926  * This is the in-kernel slowpath: we look up the PI state (if any),
1927  * and do the rt-mutex unlock.
1928  */
1929 static int futex_unlock_pi(u32 __user *uaddr, int fshared)
1930 {
1931         struct futex_hash_bucket *hb;
1932         struct futex_q *this, *next;
1933         u32 uval;
1934         struct plist_head *head;
1935         union futex_key key = FUTEX_KEY_INIT;
1936         int ret;
1937
1938 retry:
1939         if (get_user(uval, uaddr))
1940                 return -EFAULT;
1941         /*
1942          * We release only a lock we actually own:
1943          */
1944         if ((uval & FUTEX_TID_MASK) != task_pid_vnr(current))
1945                 return -EPERM;
1946
1947         ret = get_futex_key(uaddr, fshared, &key);
1948         if (unlikely(ret != 0))
1949                 goto out;
1950
1951         hb = hash_futex(&key);
1952         spin_lock(&hb->lock);
1953
1954         /*
1955          * To avoid races, try to do the TID -> 0 atomic transition
1956          * again. If it succeeds then we can return without waking
1957          * anyone else up:
1958          */
1959         if (!(uval & FUTEX_OWNER_DIED))
1960                 uval = cmpxchg_futex_value_locked(uaddr, task_pid_vnr(current), 0);
1961
1962
1963         if (unlikely(uval == -EFAULT))
1964                 goto pi_faulted;
1965         /*
1966          * Rare case: we managed to release the lock atomically,
1967          * no need to wake anyone else up:
1968          */
1969         if (unlikely(uval == task_pid_vnr(current)))
1970                 goto out_unlock;
1971
1972         /*
1973          * Ok, other tasks may need to be woken up - check waiters
1974          * and do the wakeup if necessary:
1975          */
1976         head = &hb->chain;
1977
1978         plist_for_each_entry_safe(this, next, head, list) {
1979                 if (!match_futex (&this->key, &key))
1980                         continue;
1981                 ret = wake_futex_pi(uaddr, uval, this);
1982                 /*
1983                  * The atomic access to the futex value
1984                  * generated a pagefault, so retry the
1985                  * user-access and the wakeup:
1986                  */
1987                 if (ret == -EFAULT)
1988                         goto pi_faulted;
1989                 goto out_unlock;
1990         }
1991         /*
1992          * No waiters - kernel unlocks the futex:
1993          */
1994         if (!(uval & FUTEX_OWNER_DIED)) {
1995                 ret = unlock_futex_pi(uaddr, uval);
1996                 if (ret == -EFAULT)
1997                         goto pi_faulted;
1998         }
1999
2000 out_unlock:
2001         spin_unlock(&hb->lock);
2002         put_futex_key(fshared, &key);
2003
2004 out:
2005         return ret;
2006
2007 pi_faulted:
2008         /*
2009          * We have to r/w  *(int __user *)uaddr, and we have to modify it
2010          * atomically.  Therefore, if we continue to fault after get_user()
2011          * below, we need to handle the fault ourselves, while still holding
2012          * the mmap_sem.  This can occur if the uaddr is under contention as
2013          * we have to drop the mmap_sem in order to call get_user().
2014          */
2015         spin_unlock(&hb->lock);
2016         put_futex_key(fshared, &key);
2017
2018         ret = get_user(uval, uaddr);
2019         if (!ret)
2020                 goto retry;
2021
2022         return ret;
2023 }
2024
2025 /**
2026  * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2027  * @hb:         the hash_bucket futex_q was original enqueued on
2028  * @q:          the futex_q woken while waiting to be requeued
2029  * @key2:       the futex_key of the requeue target futex
2030  * @timeout:    the timeout associated with the wait (NULL if none)
2031  *
2032  * Detect if the task was woken on the initial futex as opposed to the requeue
2033  * target futex.  If so, determine if it was a timeout or a signal that caused
2034  * the wakeup and return the appropriate error code to the caller.  Must be
2035  * called with the hb lock held.
2036  *
2037  * Returns
2038  *  0 - no early wakeup detected
2039  * <0 - -ETIMEDOUT or -ERESTARTSYS (FIXME: or ERESTARTNOINTR?)
2040  */
2041 static inline
2042 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2043                                    struct futex_q *q, union futex_key *key2,
2044                                    struct hrtimer_sleeper *timeout)
2045 {
2046         int ret = 0;
2047
2048         /*
2049          * With the hb lock held, we avoid races while we process the wakeup.
2050          * We only need to hold hb (and not hb2) to ensure atomicity as the
2051          * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2052          * It can't be requeued from uaddr2 to something else since we don't
2053          * support a PI aware source futex for requeue.
2054          */
2055         if (!match_futex(&q->key, key2)) {
2056                 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2057                 /*
2058                  * We were woken prior to requeue by a timeout or a signal.
2059                  * Unqueue the futex_q and determine which it was.
2060                  */
2061                 plist_del(&q->list, &q->list.plist);
2062                 drop_futex_key_refs(&q->key);
2063
2064                 if (timeout && !timeout->task)
2065                         ret = -ETIMEDOUT;
2066                 else {
2067                         /*
2068                          * We expect signal_pending(current), but another
2069                          * thread may have handled it for us already.
2070                          */
2071                         /* FIXME: ERESTARTSYS or ERESTARTNOINTR?  Do we care if
2072                          * the user specified SA_RESTART or not? */
2073                         ret = -ERESTARTSYS;
2074                 }
2075         }
2076         return ret;
2077 }
2078
2079 /**
2080  * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2081  * @uaddr:      the futex we initialyl wait on (non-pi)
2082  * @fshared:    whether the futexes are shared (1) or not (0).  They must be
2083  *              the same type, no requeueing from private to shared, etc.
2084  * @val:        the expected value of uaddr
2085  * @abs_time:   absolute timeout
2086  * @bitset:     32 bit wakeup bitset set by userspace, defaults to all.
2087  * @clockrt:    whether to use CLOCK_REALTIME (1) or CLOCK_MONOTONIC (0)
2088  * @uaddr2:     the pi futex we will take prior to returning to user-space
2089  *
2090  * The caller will wait on uaddr and will be requeued by futex_requeue() to
2091  * uaddr2 which must be PI aware.  Normal wakeup will wake on uaddr2 and
2092  * complete the acquisition of the rt_mutex prior to returning to userspace.
2093  * This ensures the rt_mutex maintains an owner when it has waiters; without
2094  * one, the pi logic wouldn't know which task to boost/deboost, if there was a
2095  * need to.
2096  *
2097  * We call schedule in futex_wait_queue_me() when we enqueue and return there
2098  * via the following:
2099  * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2100  * 2) wakeup on uaddr2 after a requeue and subsequent unlock
2101  * 3) signal (before or after requeue)
2102  * 4) timeout (before or after requeue)
2103  *
2104  * If 3, we setup a restart_block with futex_wait_requeue_pi() as the function.
2105  *
2106  * If 2, we may then block on trying to take the rt_mutex and return via:
2107  * 5) successful lock
2108  * 6) signal
2109  * 7) timeout
2110  * 8) other lock acquisition failure
2111  *
2112  * If 6, we setup a restart_block with futex_lock_pi() as the function.
2113  *
2114  * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2115  *
2116  * Returns:
2117  *  0 - On success
2118  * <0 - On error
2119  */
2120 static int futex_wait_requeue_pi(u32 __user *uaddr, int fshared,
2121                                  u32 val, ktime_t *abs_time, u32 bitset,
2122                                  int clockrt, u32 __user *uaddr2)
2123 {
2124         struct hrtimer_sleeper timeout, *to = NULL;
2125         struct rt_mutex_waiter rt_waiter;
2126         struct rt_mutex *pi_mutex = NULL;
2127         DECLARE_WAITQUEUE(wait, current);
2128         struct restart_block *restart;
2129         struct futex_hash_bucket *hb;
2130         union futex_key key2;
2131         struct futex_q q;
2132         int res, ret;
2133         u32 uval;
2134
2135         if (!bitset)
2136                 return -EINVAL;
2137
2138         if (abs_time) {
2139                 to = &timeout;
2140                 hrtimer_init_on_stack(&to->timer, clockrt ? CLOCK_REALTIME :
2141                                       CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
2142                 hrtimer_init_sleeper(to, current);
2143                 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2144                                              current->timer_slack_ns);
2145         }
2146
2147         /*
2148          * The waiter is allocated on our stack, manipulated by the requeue
2149          * code while we sleep on uaddr.
2150          */
2151         debug_rt_mutex_init_waiter(&rt_waiter);
2152         rt_waiter.task = NULL;
2153
2154         q.pi_state = NULL;
2155         q.bitset = bitset;
2156         q.rt_waiter = &rt_waiter;
2157
2158         key2 = FUTEX_KEY_INIT;
2159         ret = get_futex_key(uaddr2, fshared, &key2);
2160         if (unlikely(ret != 0))
2161                 goto out;
2162
2163         /* Prepare to wait on uaddr. */
2164         ret = futex_wait_setup(uaddr, val, fshared, &q, &hb);
2165         if (ret) {
2166                 put_futex_key(fshared, &key2);
2167                 goto out;
2168         }
2169
2170         /* Queue the futex_q, drop the hb lock, wait for wakeup. */
2171         futex_wait_queue_me(hb, &q, to, &wait);
2172
2173         spin_lock(&hb->lock);
2174         ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2175         spin_unlock(&hb->lock);
2176         if (ret)
2177                 goto out_put_keys;
2178
2179         /*
2180          * In order for us to be here, we know our q.key == key2, and since
2181          * we took the hb->lock above, we also know that futex_requeue() has
2182          * completed and we no longer have to concern ourselves with a wakeup
2183          * race with the atomic proxy lock acquition by the requeue code.
2184          */
2185
2186         /* Check if the requeue code acquired the second futex for us. */
2187         if (!q.rt_waiter) {
2188                 /*
2189                  * Got the lock. We might not be the anticipated owner if we
2190                  * did a lock-steal - fix up the PI-state in that case.
2191                  */
2192                 if (q.pi_state && (q.pi_state->owner != current)) {
2193                         spin_lock(q.lock_ptr);
2194                         ret = fixup_pi_state_owner(uaddr2, &q, current,
2195                                                    fshared);
2196                         spin_unlock(q.lock_ptr);
2197                 }
2198         } else {
2199                 /*
2200                  * We have been woken up by futex_unlock_pi(), a timeout, or a
2201                  * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
2202                  * the pi_state.
2203                  */
2204                 WARN_ON(!&q.pi_state);
2205                 pi_mutex = &q.pi_state->pi_mutex;
2206                 ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1);
2207                 debug_rt_mutex_free_waiter(&rt_waiter);
2208
2209                 spin_lock(q.lock_ptr);
2210                 /*
2211                  * Fixup the pi_state owner and possibly acquire the lock if we
2212                  * haven't already.
2213                  */
2214                 res = fixup_owner(uaddr2, fshared, &q, !ret);
2215                 /*
2216                  * If fixup_owner() returned an error, proprogate that.  If it
2217                  * acquired the lock, clear our -ETIMEDOUT or -EINTR.
2218                  */
2219                 if (res)
2220                         ret = (res < 0) ? res : 0;
2221
2222                 /* Unqueue and drop the lock. */
2223                 unqueue_me_pi(&q);
2224         }
2225
2226         /*
2227          * If fixup_pi_state_owner() faulted and was unable to handle the
2228          * fault, unlock the rt_mutex and return the fault to userspace.
2229          */
2230         if (ret == -EFAULT) {
2231                 if (rt_mutex_owner(pi_mutex) == current)
2232                         rt_mutex_unlock(pi_mutex);
2233         } else if (ret == -EINTR) {
2234                 ret = -EFAULT;
2235                 if (get_user(uval, uaddr2))
2236                         goto out_put_keys;
2237
2238                 /*
2239                  * We've already been requeued, so restart by calling
2240                  * futex_lock_pi() directly, rather then returning to this
2241                  * function.
2242                  */
2243                 ret = -ERESTART_RESTARTBLOCK;
2244                 restart = &current_thread_info()->restart_block;
2245                 restart->fn = futex_lock_pi_restart;
2246                 restart->futex.uaddr = (u32 *)uaddr2;
2247                 restart->futex.val = uval;
2248                 restart->futex.flags = 0;
2249                 if (abs_time) {
2250                         restart->futex.flags |= FLAGS_HAS_TIMEOUT;
2251                         restart->futex.time = abs_time->tv64;
2252                 }
2253
2254                 if (fshared)
2255                         restart->futex.flags |= FLAGS_SHARED;
2256                 if (clockrt)
2257                         restart->futex.flags |= FLAGS_CLOCKRT;
2258         }
2259
2260 out_put_keys:
2261         put_futex_key(fshared, &q.key);
2262         put_futex_key(fshared, &key2);
2263
2264 out:
2265         if (to) {
2266                 hrtimer_cancel(&to->timer);
2267                 destroy_hrtimer_on_stack(&to->timer);
2268         }
2269         return ret;
2270 }
2271
2272 /*
2273  * Support for robust futexes: the kernel cleans up held futexes at
2274  * thread exit time.
2275  *
2276  * Implementation: user-space maintains a per-thread list of locks it
2277  * is holding. Upon do_exit(), the kernel carefully walks this list,
2278  * and marks all locks that are owned by this thread with the
2279  * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
2280  * always manipulated with the lock held, so the list is private and
2281  * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2282  * field, to allow the kernel to clean up if the thread dies after
2283  * acquiring the lock, but just before it could have added itself to
2284  * the list. There can only be one such pending lock.
2285  */
2286
2287 /**
2288  * sys_set_robust_list - set the robust-futex list head of a task
2289  * @head: pointer to the list-head
2290  * @len: length of the list-head, as userspace expects
2291  */
2292 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2293                 size_t, len)
2294 {
2295         if (!futex_cmpxchg_enabled)
2296                 return -ENOSYS;
2297         /*
2298          * The kernel knows only one size for now:
2299          */
2300         if (unlikely(len != sizeof(*head)))
2301                 return -EINVAL;
2302
2303         current->robust_list = head;
2304
2305         return 0;
2306 }
2307
2308 /**
2309  * sys_get_robust_list - get the robust-futex list head of a task
2310  * @pid: pid of the process [zero for current task]
2311  * @head_ptr: pointer to a list-head pointer, the kernel fills it in
2312  * @len_ptr: pointer to a length field, the kernel fills in the header size
2313  */
2314 SYSCALL_DEFINE3(get_robust_list, int, pid,
2315                 struct robust_list_head __user * __user *, head_ptr,
2316                 size_t __user *, len_ptr)
2317 {
2318         struct robust_list_head __user *head;
2319         unsigned long ret;
2320         const struct cred *cred = current_cred(), *pcred;
2321
2322         if (!futex_cmpxchg_enabled)
2323                 return -ENOSYS;
2324
2325         if (!pid)
2326                 head = current->robust_list;
2327         else {
2328                 struct task_struct *p;
2329
2330                 ret = -ESRCH;
2331                 rcu_read_lock();
2332                 p = find_task_by_vpid(pid);
2333                 if (!p)
2334                         goto err_unlock;
2335                 ret = -EPERM;
2336                 pcred = __task_cred(p);
2337                 if (cred->euid != pcred->euid &&
2338                     cred->euid != pcred->uid &&
2339                     !capable(CAP_SYS_PTRACE))
2340                         goto err_unlock;
2341                 head = p->robust_list;
2342                 rcu_read_unlock();
2343         }
2344
2345         if (put_user(sizeof(*head), len_ptr))
2346                 return -EFAULT;
2347         return put_user(head, head_ptr);
2348
2349 err_unlock:
2350         rcu_read_unlock();
2351
2352         return ret;
2353 }
2354
2355 /*
2356  * Process a futex-list entry, check whether it's owned by the
2357  * dying task, and do notification if so:
2358  */
2359 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
2360 {
2361         u32 uval, nval, mval;
2362
2363 retry:
2364         if (get_user(uval, uaddr))
2365                 return -1;
2366
2367         if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
2368                 /*
2369                  * Ok, this dying thread is truly holding a futex
2370                  * of interest. Set the OWNER_DIED bit atomically
2371                  * via cmpxchg, and if the value had FUTEX_WAITERS
2372                  * set, wake up a waiter (if any). (We have to do a
2373                  * futex_wake() even if OWNER_DIED is already set -
2374                  * to handle the rare but possible case of recursive
2375                  * thread-death.) The rest of the cleanup is done in
2376                  * userspace.
2377                  */
2378                 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
2379                 nval = futex_atomic_cmpxchg_inatomic(uaddr, uval, mval);
2380
2381                 if (nval == -EFAULT)
2382                         return -1;
2383
2384                 if (nval != uval)
2385                         goto retry;
2386
2387                 /*
2388                  * Wake robust non-PI futexes here. The wakeup of
2389                  * PI futexes happens in exit_pi_state():
2390                  */
2391                 if (!pi && (uval & FUTEX_WAITERS))
2392                         futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
2393         }
2394         return 0;
2395 }
2396
2397 /*
2398  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
2399  */
2400 static inline int fetch_robust_entry(struct robust_list __user **entry,
2401                                      struct robust_list __user * __user *head,
2402                                      int *pi)
2403 {
2404         unsigned long uentry;
2405
2406         if (get_user(uentry, (unsigned long __user *)head))
2407                 return -EFAULT;
2408
2409         *entry = (void __user *)(uentry & ~1UL);
2410         *pi = uentry & 1;
2411
2412         return 0;
2413 }
2414
2415 /*
2416  * Walk curr->robust_list (very carefully, it's a userspace list!)
2417  * and mark any locks found there dead, and notify any waiters.
2418  *
2419  * We silently return on any sign of list-walking problem.
2420  */
2421 void exit_robust_list(struct task_struct *curr)
2422 {
2423         struct robust_list_head __user *head = curr->robust_list;
2424         struct robust_list __user *entry, *next_entry, *pending;
2425         unsigned int limit = ROBUST_LIST_LIMIT, pi, next_pi, pip;
2426         unsigned long futex_offset;
2427         int rc;
2428
2429         if (!futex_cmpxchg_enabled)
2430                 return;
2431
2432         /*
2433          * Fetch the list head (which was registered earlier, via
2434          * sys_set_robust_list()):
2435          */
2436         if (fetch_robust_entry(&entry, &head->list.next, &pi))
2437                 return;
2438         /*
2439          * Fetch the relative futex offset:
2440          */
2441         if (get_user(futex_offset, &head->futex_offset))
2442                 return;
2443         /*
2444          * Fetch any possibly pending lock-add first, and handle it
2445          * if it exists:
2446          */
2447         if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
2448                 return;
2449
2450         next_entry = NULL;      /* avoid warning with gcc */
2451         while (entry != &head->list) {
2452                 /*
2453                  * Fetch the next entry in the list before calling
2454                  * handle_futex_death:
2455                  */
2456                 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
2457                 /*
2458                  * A pending lock might already be on the list, so
2459                  * don't process it twice:
2460                  */
2461                 if (entry != pending)
2462                         if (handle_futex_death((void __user *)entry + futex_offset,
2463                                                 curr, pi))
2464                                 return;
2465                 if (rc)
2466                         return;
2467                 entry = next_entry;
2468                 pi = next_pi;
2469                 /*
2470                  * Avoid excessively long or circular lists:
2471                  */
2472                 if (!--limit)
2473                         break;
2474
2475                 cond_resched();
2476         }
2477
2478         if (pending)
2479                 handle_futex_death((void __user *)pending + futex_offset,
2480                                    curr, pip);
2481 }
2482
2483 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
2484                 u32 __user *uaddr2, u32 val2, u32 val3)
2485 {
2486         int clockrt, ret = -ENOSYS;
2487         int cmd = op & FUTEX_CMD_MASK;
2488         int fshared = 0;
2489
2490         if (!(op & FUTEX_PRIVATE_FLAG))
2491                 fshared = 1;
2492
2493         clockrt = op & FUTEX_CLOCK_REALTIME;
2494         if (clockrt && cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
2495                 return -ENOSYS;
2496
2497         switch (cmd) {
2498         case FUTEX_WAIT:
2499                 val3 = FUTEX_BITSET_MATCH_ANY;
2500         case FUTEX_WAIT_BITSET:
2501                 ret = futex_wait(uaddr, fshared, val, timeout, val3, clockrt);
2502                 break;
2503         case FUTEX_WAKE:
2504                 val3 = FUTEX_BITSET_MATCH_ANY;
2505         case FUTEX_WAKE_BITSET:
2506                 ret = futex_wake(uaddr, fshared, val, val3);
2507                 break;
2508         case FUTEX_REQUEUE:
2509                 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, NULL, 0);
2510                 break;
2511         case FUTEX_CMP_REQUEUE:
2512                 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, &val3,
2513                                     0);
2514                 break;
2515         case FUTEX_WAKE_OP:
2516                 ret = futex_wake_op(uaddr, fshared, uaddr2, val, val2, val3);
2517                 break;
2518         case FUTEX_LOCK_PI:
2519                 if (futex_cmpxchg_enabled)
2520                         ret = futex_lock_pi(uaddr, fshared, val, timeout, 0);
2521                 break;
2522         case FUTEX_UNLOCK_PI:
2523                 if (futex_cmpxchg_enabled)
2524                         ret = futex_unlock_pi(uaddr, fshared);
2525                 break;
2526         case FUTEX_TRYLOCK_PI:
2527                 if (futex_cmpxchg_enabled)
2528                         ret = futex_lock_pi(uaddr, fshared, 0, timeout, 1);
2529                 break;
2530         case FUTEX_WAIT_REQUEUE_PI:
2531                 val3 = FUTEX_BITSET_MATCH_ANY;
2532                 ret = futex_wait_requeue_pi(uaddr, fshared, val, timeout, val3,
2533                                             clockrt, uaddr2);
2534                 break;
2535         case FUTEX_REQUEUE_PI:
2536                 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, NULL, 1);
2537                 break;
2538         case FUTEX_CMP_REQUEUE_PI:
2539                 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, &val3,
2540                                     1);
2541                 break;
2542         default:
2543                 ret = -ENOSYS;
2544         }
2545         return ret;
2546 }
2547
2548
2549 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
2550                 struct timespec __user *, utime, u32 __user *, uaddr2,
2551                 u32, val3)
2552 {
2553         struct timespec ts;
2554         ktime_t t, *tp = NULL;
2555         u32 val2 = 0;
2556         int cmd = op & FUTEX_CMD_MASK;
2557
2558         if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
2559                       cmd == FUTEX_WAIT_BITSET ||
2560                       cmd == FUTEX_WAIT_REQUEUE_PI)) {
2561                 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
2562                         return -EFAULT;
2563                 if (!timespec_valid(&ts))
2564                         return -EINVAL;
2565
2566                 t = timespec_to_ktime(ts);
2567                 if (cmd == FUTEX_WAIT)
2568                         t = ktime_add_safe(ktime_get(), t);
2569                 tp = &t;
2570         }
2571         /*
2572          * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
2573          * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
2574          */
2575         if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
2576             cmd == FUTEX_REQUEUE_PI || cmd == FUTEX_CMP_REQUEUE_PI ||
2577             cmd == FUTEX_WAKE_OP)
2578                 val2 = (u32) (unsigned long) utime;
2579
2580         return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
2581 }
2582
2583 static int __init futex_init(void)
2584 {
2585         u32 curval;
2586         int i;
2587
2588         /*
2589          * This will fail and we want it. Some arch implementations do
2590          * runtime detection of the futex_atomic_cmpxchg_inatomic()
2591          * functionality. We want to know that before we call in any
2592          * of the complex code paths. Also we want to prevent
2593          * registration of robust lists in that case. NULL is
2594          * guaranteed to fault and we get -EFAULT on functional
2595          * implementation, the non functional ones will return
2596          * -ENOSYS.
2597          */
2598         curval = cmpxchg_futex_value_locked(NULL, 0, 0);
2599         if (curval == -EFAULT)
2600                 futex_cmpxchg_enabled = 1;
2601
2602         for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
2603                 plist_head_init(&futex_queues[i].chain, &futex_queues[i].lock);
2604                 spin_lock_init(&futex_queues[i].lock);
2605         }
2606
2607         return 0;
2608 }
2609 __initcall(futex_init);