futex: make futex_(get|put)_key() calls symmetric
[safe/jmp/linux-2.6] / kernel / futex.c
1 /*
2  *  Fast Userspace Mutexes (which I call "Futexes!").
3  *  (C) Rusty Russell, IBM 2002
4  *
5  *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6  *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7  *
8  *  Removed page pinning, fix privately mapped COW pages and other cleanups
9  *  (C) Copyright 2003, 2004 Jamie Lokier
10  *
11  *  Robust futex support started by Ingo Molnar
12  *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13  *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14  *
15  *  PI-futex support started by Ingo Molnar and Thomas Gleixner
16  *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17  *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18  *
19  *  PRIVATE futexes by Eric Dumazet
20  *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21  *
22  *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
23  *  enough at me, Linus for the original (flawed) idea, Matthew
24  *  Kirkwood for proof-of-concept implementation.
25  *
26  *  "The futexes are also cursed."
27  *  "But they come in a choice of three flavours!"
28  *
29  *  This program is free software; you can redistribute it and/or modify
30  *  it under the terms of the GNU General Public License as published by
31  *  the Free Software Foundation; either version 2 of the License, or
32  *  (at your option) any later version.
33  *
34  *  This program is distributed in the hope that it will be useful,
35  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
36  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
37  *  GNU General Public License for more details.
38  *
39  *  You should have received a copy of the GNU General Public License
40  *  along with this program; if not, write to the Free Software
41  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
42  */
43 #include <linux/slab.h>
44 #include <linux/poll.h>
45 #include <linux/fs.h>
46 #include <linux/file.h>
47 #include <linux/jhash.h>
48 #include <linux/init.h>
49 #include <linux/futex.h>
50 #include <linux/mount.h>
51 #include <linux/pagemap.h>
52 #include <linux/syscalls.h>
53 #include <linux/signal.h>
54 #include <linux/module.h>
55 #include <linux/magic.h>
56 #include <linux/pid.h>
57 #include <linux/nsproxy.h>
58
59 #include <asm/futex.h>
60
61 #include "rtmutex_common.h"
62
63 int __read_mostly futex_cmpxchg_enabled;
64
65 #define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
66
67 /*
68  * Priority Inheritance state:
69  */
70 struct futex_pi_state {
71         /*
72          * list of 'owned' pi_state instances - these have to be
73          * cleaned up in do_exit() if the task exits prematurely:
74          */
75         struct list_head list;
76
77         /*
78          * The PI object:
79          */
80         struct rt_mutex pi_mutex;
81
82         struct task_struct *owner;
83         atomic_t refcount;
84
85         union futex_key key;
86 };
87
88 /*
89  * We use this hashed waitqueue instead of a normal wait_queue_t, so
90  * we can wake only the relevant ones (hashed queues may be shared).
91  *
92  * A futex_q has a woken state, just like tasks have TASK_RUNNING.
93  * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
94  * The order of wakup is always to make the first condition true, then
95  * wake up q->waiter, then make the second condition true.
96  */
97 struct futex_q {
98         struct plist_node list;
99         /* There can only be a single waiter */
100         wait_queue_head_t waiter;
101
102         /* Which hash list lock to use: */
103         spinlock_t *lock_ptr;
104
105         /* Key which the futex is hashed on: */
106         union futex_key key;
107
108         /* Optional priority inheritance state: */
109         struct futex_pi_state *pi_state;
110         struct task_struct *task;
111
112         /* Bitset for the optional bitmasked wakeup */
113         u32 bitset;
114 };
115
116 /*
117  * Split the global futex_lock into every hash list lock.
118  */
119 struct futex_hash_bucket {
120         spinlock_t lock;
121         struct plist_head chain;
122 };
123
124 static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
125
126 /*
127  * We hash on the keys returned from get_futex_key (see below).
128  */
129 static struct futex_hash_bucket *hash_futex(union futex_key *key)
130 {
131         u32 hash = jhash2((u32*)&key->both.word,
132                           (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
133                           key->both.offset);
134         return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
135 }
136
137 /*
138  * Return 1 if two futex_keys are equal, 0 otherwise.
139  */
140 static inline int match_futex(union futex_key *key1, union futex_key *key2)
141 {
142         return (key1->both.word == key2->both.word
143                 && key1->both.ptr == key2->both.ptr
144                 && key1->both.offset == key2->both.offset);
145 }
146
147 /*
148  * Take a reference to the resource addressed by a key.
149  * Can be called while holding spinlocks.
150  *
151  */
152 static void get_futex_key_refs(union futex_key *key)
153 {
154         if (!key->both.ptr)
155                 return;
156
157         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
158         case FUT_OFF_INODE:
159                 atomic_inc(&key->shared.inode->i_count);
160                 break;
161         case FUT_OFF_MMSHARED:
162                 atomic_inc(&key->private.mm->mm_count);
163                 break;
164         }
165 }
166
167 /*
168  * Drop a reference to the resource addressed by a key.
169  * The hash bucket spinlock must not be held.
170  */
171 static void drop_futex_key_refs(union futex_key *key)
172 {
173         if (!key->both.ptr)
174                 return;
175
176         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
177         case FUT_OFF_INODE:
178                 iput(key->shared.inode);
179                 break;
180         case FUT_OFF_MMSHARED:
181                 mmdrop(key->private.mm);
182                 break;
183         }
184 }
185
186 /**
187  * get_futex_key - Get parameters which are the keys for a futex.
188  * @uaddr: virtual address of the futex
189  * @shared: NULL for a PROCESS_PRIVATE futex,
190  *      &current->mm->mmap_sem for a PROCESS_SHARED futex
191  * @key: address where result is stored.
192  *
193  * Returns a negative error code or 0
194  * The key words are stored in *key on success.
195  *
196  * For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode,
197  * offset_within_page).  For private mappings, it's (uaddr, current->mm).
198  * We can usually work out the index without swapping in the page.
199  *
200  * fshared is NULL for PROCESS_PRIVATE futexes
201  * For other futexes, it points to &current->mm->mmap_sem and
202  * caller must have taken the reader lock. but NOT any spinlocks.
203  */
204 static int get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key)
205 {
206         unsigned long address = (unsigned long)uaddr;
207         struct mm_struct *mm = current->mm;
208         struct page *page;
209         int err;
210
211         /*
212          * The futex address must be "naturally" aligned.
213          */
214         key->both.offset = address % PAGE_SIZE;
215         if (unlikely((address % sizeof(u32)) != 0))
216                 return -EINVAL;
217         address -= key->both.offset;
218
219         /*
220          * PROCESS_PRIVATE futexes are fast.
221          * As the mm cannot disappear under us and the 'key' only needs
222          * virtual address, we dont even have to find the underlying vma.
223          * Note : We do have to check 'uaddr' is a valid user address,
224          *        but access_ok() should be faster than find_vma()
225          */
226         if (!fshared) {
227                 if (unlikely(!access_ok(VERIFY_WRITE, uaddr, sizeof(u32))))
228                         return -EFAULT;
229                 key->private.mm = mm;
230                 key->private.address = address;
231                 get_futex_key_refs(key);
232                 return 0;
233         }
234
235 again:
236         err = get_user_pages_fast(address, 1, 0, &page);
237         if (err < 0)
238                 return err;
239
240         lock_page(page);
241         if (!page->mapping) {
242                 unlock_page(page);
243                 put_page(page);
244                 goto again;
245         }
246
247         /*
248          * Private mappings are handled in a simple way.
249          *
250          * NOTE: When userspace waits on a MAP_SHARED mapping, even if
251          * it's a read-only handle, it's expected that futexes attach to
252          * the object not the particular process.
253          */
254         if (PageAnon(page)) {
255                 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
256                 key->private.mm = mm;
257                 key->private.address = address;
258         } else {
259                 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
260                 key->shared.inode = page->mapping->host;
261                 key->shared.pgoff = page->index;
262         }
263
264         get_futex_key_refs(key);
265
266         unlock_page(page);
267         put_page(page);
268         return 0;
269 }
270
271 static inline
272 void put_futex_key(int fshared, union futex_key *key)
273 {
274         drop_futex_key_refs(key);
275 }
276
277 static u32 cmpxchg_futex_value_locked(u32 __user *uaddr, u32 uval, u32 newval)
278 {
279         u32 curval;
280
281         pagefault_disable();
282         curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval);
283         pagefault_enable();
284
285         return curval;
286 }
287
288 static int get_futex_value_locked(u32 *dest, u32 __user *from)
289 {
290         int ret;
291
292         pagefault_disable();
293         ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
294         pagefault_enable();
295
296         return ret ? -EFAULT : 0;
297 }
298
299 /*
300  * Fault handling.
301  */
302 static int futex_handle_fault(unsigned long address, int attempt)
303 {
304         struct vm_area_struct * vma;
305         struct mm_struct *mm = current->mm;
306         int ret = -EFAULT;
307
308         if (attempt > 2)
309                 return ret;
310
311         down_read(&mm->mmap_sem);
312         vma = find_vma(mm, address);
313         if (vma && address >= vma->vm_start &&
314             (vma->vm_flags & VM_WRITE)) {
315                 int fault;
316                 fault = handle_mm_fault(mm, vma, address, 1);
317                 if (unlikely((fault & VM_FAULT_ERROR))) {
318 #if 0
319                         /* XXX: let's do this when we verify it is OK */
320                         if (ret & VM_FAULT_OOM)
321                                 ret = -ENOMEM;
322 #endif
323                 } else {
324                         ret = 0;
325                         if (fault & VM_FAULT_MAJOR)
326                                 current->maj_flt++;
327                         else
328                                 current->min_flt++;
329                 }
330         }
331         up_read(&mm->mmap_sem);
332         return ret;
333 }
334
335 /*
336  * PI code:
337  */
338 static int refill_pi_state_cache(void)
339 {
340         struct futex_pi_state *pi_state;
341
342         if (likely(current->pi_state_cache))
343                 return 0;
344
345         pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
346
347         if (!pi_state)
348                 return -ENOMEM;
349
350         INIT_LIST_HEAD(&pi_state->list);
351         /* pi_mutex gets initialized later */
352         pi_state->owner = NULL;
353         atomic_set(&pi_state->refcount, 1);
354         pi_state->key = FUTEX_KEY_INIT;
355
356         current->pi_state_cache = pi_state;
357
358         return 0;
359 }
360
361 static struct futex_pi_state * alloc_pi_state(void)
362 {
363         struct futex_pi_state *pi_state = current->pi_state_cache;
364
365         WARN_ON(!pi_state);
366         current->pi_state_cache = NULL;
367
368         return pi_state;
369 }
370
371 static void free_pi_state(struct futex_pi_state *pi_state)
372 {
373         if (!atomic_dec_and_test(&pi_state->refcount))
374                 return;
375
376         /*
377          * If pi_state->owner is NULL, the owner is most probably dying
378          * and has cleaned up the pi_state already
379          */
380         if (pi_state->owner) {
381                 spin_lock_irq(&pi_state->owner->pi_lock);
382                 list_del_init(&pi_state->list);
383                 spin_unlock_irq(&pi_state->owner->pi_lock);
384
385                 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
386         }
387
388         if (current->pi_state_cache)
389                 kfree(pi_state);
390         else {
391                 /*
392                  * pi_state->list is already empty.
393                  * clear pi_state->owner.
394                  * refcount is at 0 - put it back to 1.
395                  */
396                 pi_state->owner = NULL;
397                 atomic_set(&pi_state->refcount, 1);
398                 current->pi_state_cache = pi_state;
399         }
400 }
401
402 /*
403  * Look up the task based on what TID userspace gave us.
404  * We dont trust it.
405  */
406 static struct task_struct * futex_find_get_task(pid_t pid)
407 {
408         struct task_struct *p;
409
410         rcu_read_lock();
411         p = find_task_by_vpid(pid);
412         if (!p || ((current->euid != p->euid) && (current->euid != p->uid)))
413                 p = ERR_PTR(-ESRCH);
414         else
415                 get_task_struct(p);
416
417         rcu_read_unlock();
418
419         return p;
420 }
421
422 /*
423  * This task is holding PI mutexes at exit time => bad.
424  * Kernel cleans up PI-state, but userspace is likely hosed.
425  * (Robust-futex cleanup is separate and might save the day for userspace.)
426  */
427 void exit_pi_state_list(struct task_struct *curr)
428 {
429         struct list_head *next, *head = &curr->pi_state_list;
430         struct futex_pi_state *pi_state;
431         struct futex_hash_bucket *hb;
432         union futex_key key = FUTEX_KEY_INIT;
433
434         if (!futex_cmpxchg_enabled)
435                 return;
436         /*
437          * We are a ZOMBIE and nobody can enqueue itself on
438          * pi_state_list anymore, but we have to be careful
439          * versus waiters unqueueing themselves:
440          */
441         spin_lock_irq(&curr->pi_lock);
442         while (!list_empty(head)) {
443
444                 next = head->next;
445                 pi_state = list_entry(next, struct futex_pi_state, list);
446                 key = pi_state->key;
447                 hb = hash_futex(&key);
448                 spin_unlock_irq(&curr->pi_lock);
449
450                 spin_lock(&hb->lock);
451
452                 spin_lock_irq(&curr->pi_lock);
453                 /*
454                  * We dropped the pi-lock, so re-check whether this
455                  * task still owns the PI-state:
456                  */
457                 if (head->next != next) {
458                         spin_unlock(&hb->lock);
459                         continue;
460                 }
461
462                 WARN_ON(pi_state->owner != curr);
463                 WARN_ON(list_empty(&pi_state->list));
464                 list_del_init(&pi_state->list);
465                 pi_state->owner = NULL;
466                 spin_unlock_irq(&curr->pi_lock);
467
468                 rt_mutex_unlock(&pi_state->pi_mutex);
469
470                 spin_unlock(&hb->lock);
471
472                 spin_lock_irq(&curr->pi_lock);
473         }
474         spin_unlock_irq(&curr->pi_lock);
475 }
476
477 static int
478 lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
479                 union futex_key *key, struct futex_pi_state **ps)
480 {
481         struct futex_pi_state *pi_state = NULL;
482         struct futex_q *this, *next;
483         struct plist_head *head;
484         struct task_struct *p;
485         pid_t pid = uval & FUTEX_TID_MASK;
486
487         head = &hb->chain;
488
489         plist_for_each_entry_safe(this, next, head, list) {
490                 if (match_futex(&this->key, key)) {
491                         /*
492                          * Another waiter already exists - bump up
493                          * the refcount and return its pi_state:
494                          */
495                         pi_state = this->pi_state;
496                         /*
497                          * Userspace might have messed up non PI and PI futexes
498                          */
499                         if (unlikely(!pi_state))
500                                 return -EINVAL;
501
502                         WARN_ON(!atomic_read(&pi_state->refcount));
503                         WARN_ON(pid && pi_state->owner &&
504                                 pi_state->owner->pid != pid);
505
506                         atomic_inc(&pi_state->refcount);
507                         *ps = pi_state;
508
509                         return 0;
510                 }
511         }
512
513         /*
514          * We are the first waiter - try to look up the real owner and attach
515          * the new pi_state to it, but bail out when TID = 0
516          */
517         if (!pid)
518                 return -ESRCH;
519         p = futex_find_get_task(pid);
520         if (IS_ERR(p))
521                 return PTR_ERR(p);
522
523         /*
524          * We need to look at the task state flags to figure out,
525          * whether the task is exiting. To protect against the do_exit
526          * change of the task flags, we do this protected by
527          * p->pi_lock:
528          */
529         spin_lock_irq(&p->pi_lock);
530         if (unlikely(p->flags & PF_EXITING)) {
531                 /*
532                  * The task is on the way out. When PF_EXITPIDONE is
533                  * set, we know that the task has finished the
534                  * cleanup:
535                  */
536                 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
537
538                 spin_unlock_irq(&p->pi_lock);
539                 put_task_struct(p);
540                 return ret;
541         }
542
543         pi_state = alloc_pi_state();
544
545         /*
546          * Initialize the pi_mutex in locked state and make 'p'
547          * the owner of it:
548          */
549         rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
550
551         /* Store the key for possible exit cleanups: */
552         pi_state->key = *key;
553
554         WARN_ON(!list_empty(&pi_state->list));
555         list_add(&pi_state->list, &p->pi_state_list);
556         pi_state->owner = p;
557         spin_unlock_irq(&p->pi_lock);
558
559         put_task_struct(p);
560
561         *ps = pi_state;
562
563         return 0;
564 }
565
566 /*
567  * The hash bucket lock must be held when this is called.
568  * Afterwards, the futex_q must not be accessed.
569  */
570 static void wake_futex(struct futex_q *q)
571 {
572         plist_del(&q->list, &q->list.plist);
573         /*
574          * The lock in wake_up_all() is a crucial memory barrier after the
575          * plist_del() and also before assigning to q->lock_ptr.
576          */
577         wake_up(&q->waiter);
578         /*
579          * The waiting task can free the futex_q as soon as this is written,
580          * without taking any locks.  This must come last.
581          *
582          * A memory barrier is required here to prevent the following store
583          * to lock_ptr from getting ahead of the wakeup. Clearing the lock
584          * at the end of wake_up_all() does not prevent this store from
585          * moving.
586          */
587         smp_wmb();
588         q->lock_ptr = NULL;
589 }
590
591 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
592 {
593         struct task_struct *new_owner;
594         struct futex_pi_state *pi_state = this->pi_state;
595         u32 curval, newval;
596
597         if (!pi_state)
598                 return -EINVAL;
599
600         spin_lock(&pi_state->pi_mutex.wait_lock);
601         new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
602
603         /*
604          * This happens when we have stolen the lock and the original
605          * pending owner did not enqueue itself back on the rt_mutex.
606          * Thats not a tragedy. We know that way, that a lock waiter
607          * is on the fly. We make the futex_q waiter the pending owner.
608          */
609         if (!new_owner)
610                 new_owner = this->task;
611
612         /*
613          * We pass it to the next owner. (The WAITERS bit is always
614          * kept enabled while there is PI state around. We must also
615          * preserve the owner died bit.)
616          */
617         if (!(uval & FUTEX_OWNER_DIED)) {
618                 int ret = 0;
619
620                 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
621
622                 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
623
624                 if (curval == -EFAULT)
625                         ret = -EFAULT;
626                 else if (curval != uval)
627                         ret = -EINVAL;
628                 if (ret) {
629                         spin_unlock(&pi_state->pi_mutex.wait_lock);
630                         return ret;
631                 }
632         }
633
634         spin_lock_irq(&pi_state->owner->pi_lock);
635         WARN_ON(list_empty(&pi_state->list));
636         list_del_init(&pi_state->list);
637         spin_unlock_irq(&pi_state->owner->pi_lock);
638
639         spin_lock_irq(&new_owner->pi_lock);
640         WARN_ON(!list_empty(&pi_state->list));
641         list_add(&pi_state->list, &new_owner->pi_state_list);
642         pi_state->owner = new_owner;
643         spin_unlock_irq(&new_owner->pi_lock);
644
645         spin_unlock(&pi_state->pi_mutex.wait_lock);
646         rt_mutex_unlock(&pi_state->pi_mutex);
647
648         return 0;
649 }
650
651 static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
652 {
653         u32 oldval;
654
655         /*
656          * There is no waiter, so we unlock the futex. The owner died
657          * bit has not to be preserved here. We are the owner:
658          */
659         oldval = cmpxchg_futex_value_locked(uaddr, uval, 0);
660
661         if (oldval == -EFAULT)
662                 return oldval;
663         if (oldval != uval)
664                 return -EAGAIN;
665
666         return 0;
667 }
668
669 /*
670  * Express the locking dependencies for lockdep:
671  */
672 static inline void
673 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
674 {
675         if (hb1 <= hb2) {
676                 spin_lock(&hb1->lock);
677                 if (hb1 < hb2)
678                         spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
679         } else { /* hb1 > hb2 */
680                 spin_lock(&hb2->lock);
681                 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
682         }
683 }
684
685 /*
686  * Wake up all waiters hashed on the physical page that is mapped
687  * to this virtual address:
688  */
689 static int futex_wake(u32 __user *uaddr, int fshared, int nr_wake, u32 bitset)
690 {
691         struct futex_hash_bucket *hb;
692         struct futex_q *this, *next;
693         struct plist_head *head;
694         union futex_key key = FUTEX_KEY_INIT;
695         int ret;
696
697         if (!bitset)
698                 return -EINVAL;
699
700         ret = get_futex_key(uaddr, fshared, &key);
701         if (unlikely(ret != 0))
702                 goto out;
703
704         hb = hash_futex(&key);
705         spin_lock(&hb->lock);
706         head = &hb->chain;
707
708         plist_for_each_entry_safe(this, next, head, list) {
709                 if (match_futex (&this->key, &key)) {
710                         if (this->pi_state) {
711                                 ret = -EINVAL;
712                                 break;
713                         }
714
715                         /* Check if one of the bits is set in both bitsets */
716                         if (!(this->bitset & bitset))
717                                 continue;
718
719                         wake_futex(this);
720                         if (++ret >= nr_wake)
721                                 break;
722                 }
723         }
724
725         spin_unlock(&hb->lock);
726         put_futex_key(fshared, &key);
727 out:
728         return ret;
729 }
730
731 /*
732  * Wake up all waiters hashed on the physical page that is mapped
733  * to this virtual address:
734  */
735 static int
736 futex_wake_op(u32 __user *uaddr1, int fshared, u32 __user *uaddr2,
737               int nr_wake, int nr_wake2, int op)
738 {
739         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
740         struct futex_hash_bucket *hb1, *hb2;
741         struct plist_head *head;
742         struct futex_q *this, *next;
743         int ret, op_ret, attempt = 0;
744
745 retryfull:
746         ret = get_futex_key(uaddr1, fshared, &key1);
747         if (unlikely(ret != 0))
748                 goto out;
749         ret = get_futex_key(uaddr2, fshared, &key2);
750         if (unlikely(ret != 0))
751                 goto out_put_key1;
752
753         hb1 = hash_futex(&key1);
754         hb2 = hash_futex(&key2);
755
756 retry:
757         double_lock_hb(hb1, hb2);
758
759         op_ret = futex_atomic_op_inuser(op, uaddr2);
760         if (unlikely(op_ret < 0)) {
761                 u32 dummy;
762
763                 spin_unlock(&hb1->lock);
764                 if (hb1 != hb2)
765                         spin_unlock(&hb2->lock);
766
767 #ifndef CONFIG_MMU
768                 /*
769                  * we don't get EFAULT from MMU faults if we don't have an MMU,
770                  * but we might get them from range checking
771                  */
772                 ret = op_ret;
773                 goto out_put_keys;
774 #endif
775
776                 if (unlikely(op_ret != -EFAULT)) {
777                         ret = op_ret;
778                         goto out_put_keys;
779                 }
780
781                 /*
782                  * futex_atomic_op_inuser needs to both read and write
783                  * *(int __user *)uaddr2, but we can't modify it
784                  * non-atomically.  Therefore, if get_user below is not
785                  * enough, we need to handle the fault ourselves, while
786                  * still holding the mmap_sem.
787                  */
788                 if (attempt++) {
789                         ret = futex_handle_fault((unsigned long)uaddr2,
790                                                  attempt);
791                         if (ret)
792                                 goto out_put_keys;
793                         goto retry;
794                 }
795
796                 ret = get_user(dummy, uaddr2);
797                 if (ret)
798                         return ret;
799
800                 goto retryfull;
801         }
802
803         head = &hb1->chain;
804
805         plist_for_each_entry_safe(this, next, head, list) {
806                 if (match_futex (&this->key, &key1)) {
807                         wake_futex(this);
808                         if (++ret >= nr_wake)
809                                 break;
810                 }
811         }
812
813         if (op_ret > 0) {
814                 head = &hb2->chain;
815
816                 op_ret = 0;
817                 plist_for_each_entry_safe(this, next, head, list) {
818                         if (match_futex (&this->key, &key2)) {
819                                 wake_futex(this);
820                                 if (++op_ret >= nr_wake2)
821                                         break;
822                         }
823                 }
824                 ret += op_ret;
825         }
826
827         spin_unlock(&hb1->lock);
828         if (hb1 != hb2)
829                 spin_unlock(&hb2->lock);
830 out_put_keys:
831         put_futex_key(fshared, &key2);
832 out_put_key1:
833         put_futex_key(fshared, &key1);
834 out:
835         return ret;
836 }
837
838 /*
839  * Requeue all waiters hashed on one physical page to another
840  * physical page.
841  */
842 static int futex_requeue(u32 __user *uaddr1, int fshared, u32 __user *uaddr2,
843                          int nr_wake, int nr_requeue, u32 *cmpval)
844 {
845         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
846         struct futex_hash_bucket *hb1, *hb2;
847         struct plist_head *head1;
848         struct futex_q *this, *next;
849         int ret, drop_count = 0;
850
851 retry:
852         ret = get_futex_key(uaddr1, fshared, &key1);
853         if (unlikely(ret != 0))
854                 goto out;
855         ret = get_futex_key(uaddr2, fshared, &key2);
856         if (unlikely(ret != 0))
857                 goto out_put_key1;
858
859         hb1 = hash_futex(&key1);
860         hb2 = hash_futex(&key2);
861
862         double_lock_hb(hb1, hb2);
863
864         if (likely(cmpval != NULL)) {
865                 u32 curval;
866
867                 ret = get_futex_value_locked(&curval, uaddr1);
868
869                 if (unlikely(ret)) {
870                         spin_unlock(&hb1->lock);
871                         if (hb1 != hb2)
872                                 spin_unlock(&hb2->lock);
873
874                         ret = get_user(curval, uaddr1);
875
876                         if (!ret)
877                                 goto retry;
878
879                         goto out_put_keys;
880                 }
881                 if (curval != *cmpval) {
882                         ret = -EAGAIN;
883                         goto out_unlock;
884                 }
885         }
886
887         head1 = &hb1->chain;
888         plist_for_each_entry_safe(this, next, head1, list) {
889                 if (!match_futex (&this->key, &key1))
890                         continue;
891                 if (++ret <= nr_wake) {
892                         wake_futex(this);
893                 } else {
894                         /*
895                          * If key1 and key2 hash to the same bucket, no need to
896                          * requeue.
897                          */
898                         if (likely(head1 != &hb2->chain)) {
899                                 plist_del(&this->list, &hb1->chain);
900                                 plist_add(&this->list, &hb2->chain);
901                                 this->lock_ptr = &hb2->lock;
902 #ifdef CONFIG_DEBUG_PI_LIST
903                                 this->list.plist.lock = &hb2->lock;
904 #endif
905                         }
906                         this->key = key2;
907                         get_futex_key_refs(&key2);
908                         drop_count++;
909
910                         if (ret - nr_wake >= nr_requeue)
911                                 break;
912                 }
913         }
914
915 out_unlock:
916         spin_unlock(&hb1->lock);
917         if (hb1 != hb2)
918                 spin_unlock(&hb2->lock);
919
920         /* drop_futex_key_refs() must be called outside the spinlocks. */
921         while (--drop_count >= 0)
922                 drop_futex_key_refs(&key1);
923
924 out_put_keys:
925         put_futex_key(fshared, &key2);
926 out_put_key1:
927         put_futex_key(fshared, &key1);
928 out:
929         return ret;
930 }
931
932 /* The key must be already stored in q->key. */
933 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
934 {
935         struct futex_hash_bucket *hb;
936
937         init_waitqueue_head(&q->waiter);
938
939         get_futex_key_refs(&q->key);
940         hb = hash_futex(&q->key);
941         q->lock_ptr = &hb->lock;
942
943         spin_lock(&hb->lock);
944         return hb;
945 }
946
947 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
948 {
949         int prio;
950
951         /*
952          * The priority used to register this element is
953          * - either the real thread-priority for the real-time threads
954          * (i.e. threads with a priority lower than MAX_RT_PRIO)
955          * - or MAX_RT_PRIO for non-RT threads.
956          * Thus, all RT-threads are woken first in priority order, and
957          * the others are woken last, in FIFO order.
958          */
959         prio = min(current->normal_prio, MAX_RT_PRIO);
960
961         plist_node_init(&q->list, prio);
962 #ifdef CONFIG_DEBUG_PI_LIST
963         q->list.plist.lock = &hb->lock;
964 #endif
965         plist_add(&q->list, &hb->chain);
966         q->task = current;
967         spin_unlock(&hb->lock);
968 }
969
970 static inline void
971 queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
972 {
973         spin_unlock(&hb->lock);
974         drop_futex_key_refs(&q->key);
975 }
976
977 /*
978  * queue_me and unqueue_me must be called as a pair, each
979  * exactly once.  They are called with the hashed spinlock held.
980  */
981
982 /* Return 1 if we were still queued (ie. 0 means we were woken) */
983 static int unqueue_me(struct futex_q *q)
984 {
985         spinlock_t *lock_ptr;
986         int ret = 0;
987
988         /* In the common case we don't take the spinlock, which is nice. */
989 retry:
990         lock_ptr = q->lock_ptr;
991         barrier();
992         if (lock_ptr != NULL) {
993                 spin_lock(lock_ptr);
994                 /*
995                  * q->lock_ptr can change between reading it and
996                  * spin_lock(), causing us to take the wrong lock.  This
997                  * corrects the race condition.
998                  *
999                  * Reasoning goes like this: if we have the wrong lock,
1000                  * q->lock_ptr must have changed (maybe several times)
1001                  * between reading it and the spin_lock().  It can
1002                  * change again after the spin_lock() but only if it was
1003                  * already changed before the spin_lock().  It cannot,
1004                  * however, change back to the original value.  Therefore
1005                  * we can detect whether we acquired the correct lock.
1006                  */
1007                 if (unlikely(lock_ptr != q->lock_ptr)) {
1008                         spin_unlock(lock_ptr);
1009                         goto retry;
1010                 }
1011                 WARN_ON(plist_node_empty(&q->list));
1012                 plist_del(&q->list, &q->list.plist);
1013
1014                 BUG_ON(q->pi_state);
1015
1016                 spin_unlock(lock_ptr);
1017                 ret = 1;
1018         }
1019
1020         drop_futex_key_refs(&q->key);
1021         return ret;
1022 }
1023
1024 /*
1025  * PI futexes can not be requeued and must remove themself from the
1026  * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1027  * and dropped here.
1028  */
1029 static void unqueue_me_pi(struct futex_q *q)
1030 {
1031         WARN_ON(plist_node_empty(&q->list));
1032         plist_del(&q->list, &q->list.plist);
1033
1034         BUG_ON(!q->pi_state);
1035         free_pi_state(q->pi_state);
1036         q->pi_state = NULL;
1037
1038         spin_unlock(q->lock_ptr);
1039
1040         drop_futex_key_refs(&q->key);
1041 }
1042
1043 /*
1044  * Fixup the pi_state owner with the new owner.
1045  *
1046  * Must be called with hash bucket lock held and mm->sem held for non
1047  * private futexes.
1048  */
1049 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
1050                                 struct task_struct *newowner, int fshared)
1051 {
1052         u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
1053         struct futex_pi_state *pi_state = q->pi_state;
1054         struct task_struct *oldowner = pi_state->owner;
1055         u32 uval, curval, newval;
1056         int ret, attempt = 0;
1057
1058         /* Owner died? */
1059         if (!pi_state->owner)
1060                 newtid |= FUTEX_OWNER_DIED;
1061
1062         /*
1063          * We are here either because we stole the rtmutex from the
1064          * pending owner or we are the pending owner which failed to
1065          * get the rtmutex. We have to replace the pending owner TID
1066          * in the user space variable. This must be atomic as we have
1067          * to preserve the owner died bit here.
1068          *
1069          * Note: We write the user space value _before_ changing the
1070          * pi_state because we can fault here. Imagine swapped out
1071          * pages or a fork, which was running right before we acquired
1072          * mmap_sem, that marked all the anonymous memory readonly for
1073          * cow.
1074          *
1075          * Modifying pi_state _before_ the user space value would
1076          * leave the pi_state in an inconsistent state when we fault
1077          * here, because we need to drop the hash bucket lock to
1078          * handle the fault. This might be observed in the PID check
1079          * in lookup_pi_state.
1080          */
1081 retry:
1082         if (get_futex_value_locked(&uval, uaddr))
1083                 goto handle_fault;
1084
1085         while (1) {
1086                 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1087
1088                 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
1089
1090                 if (curval == -EFAULT)
1091                         goto handle_fault;
1092                 if (curval == uval)
1093                         break;
1094                 uval = curval;
1095         }
1096
1097         /*
1098          * We fixed up user space. Now we need to fix the pi_state
1099          * itself.
1100          */
1101         if (pi_state->owner != NULL) {
1102                 spin_lock_irq(&pi_state->owner->pi_lock);
1103                 WARN_ON(list_empty(&pi_state->list));
1104                 list_del_init(&pi_state->list);
1105                 spin_unlock_irq(&pi_state->owner->pi_lock);
1106         }
1107
1108         pi_state->owner = newowner;
1109
1110         spin_lock_irq(&newowner->pi_lock);
1111         WARN_ON(!list_empty(&pi_state->list));
1112         list_add(&pi_state->list, &newowner->pi_state_list);
1113         spin_unlock_irq(&newowner->pi_lock);
1114         return 0;
1115
1116         /*
1117          * To handle the page fault we need to drop the hash bucket
1118          * lock here. That gives the other task (either the pending
1119          * owner itself or the task which stole the rtmutex) the
1120          * chance to try the fixup of the pi_state. So once we are
1121          * back from handling the fault we need to check the pi_state
1122          * after reacquiring the hash bucket lock and before trying to
1123          * do another fixup. When the fixup has been done already we
1124          * simply return.
1125          */
1126 handle_fault:
1127         spin_unlock(q->lock_ptr);
1128
1129         ret = futex_handle_fault((unsigned long)uaddr, attempt++);
1130
1131         spin_lock(q->lock_ptr);
1132
1133         /*
1134          * Check if someone else fixed it for us:
1135          */
1136         if (pi_state->owner != oldowner)
1137                 return 0;
1138
1139         if (ret)
1140                 return ret;
1141
1142         goto retry;
1143 }
1144
1145 /*
1146  * In case we must use restart_block to restart a futex_wait,
1147  * we encode in the 'flags' shared capability
1148  */
1149 #define FLAGS_SHARED            0x01
1150 #define FLAGS_CLOCKRT           0x02
1151
1152 static long futex_wait_restart(struct restart_block *restart);
1153
1154 static int futex_wait(u32 __user *uaddr, int fshared,
1155                       u32 val, ktime_t *abs_time, u32 bitset, int clockrt)
1156 {
1157         struct task_struct *curr = current;
1158         DECLARE_WAITQUEUE(wait, curr);
1159         struct futex_hash_bucket *hb;
1160         struct futex_q q;
1161         u32 uval;
1162         int ret;
1163         struct hrtimer_sleeper t;
1164         int rem = 0;
1165
1166         if (!bitset)
1167                 return -EINVAL;
1168
1169         q.pi_state = NULL;
1170         q.bitset = bitset;
1171 retry:
1172         q.key = FUTEX_KEY_INIT;
1173         ret = get_futex_key(uaddr, fshared, &q.key);
1174         if (unlikely(ret != 0))
1175                 goto out;
1176
1177         hb = queue_lock(&q);
1178
1179         /*
1180          * Access the page AFTER the futex is queued.
1181          * Order is important:
1182          *
1183          *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1184          *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
1185          *
1186          * The basic logical guarantee of a futex is that it blocks ONLY
1187          * if cond(var) is known to be true at the time of blocking, for
1188          * any cond.  If we queued after testing *uaddr, that would open
1189          * a race condition where we could block indefinitely with
1190          * cond(var) false, which would violate the guarantee.
1191          *
1192          * A consequence is that futex_wait() can return zero and absorb
1193          * a wakeup when *uaddr != val on entry to the syscall.  This is
1194          * rare, but normal.
1195          *
1196          * for shared futexes, we hold the mmap semaphore, so the mapping
1197          * cannot have changed since we looked it up in get_futex_key.
1198          */
1199         ret = get_futex_value_locked(&uval, uaddr);
1200
1201         if (unlikely(ret)) {
1202                 queue_unlock(&q, hb);
1203                 put_futex_key(fshared, &q.key);
1204
1205                 ret = get_user(uval, uaddr);
1206
1207                 if (!ret)
1208                         goto retry;
1209                 return ret;
1210         }
1211         ret = -EWOULDBLOCK;
1212         if (uval != val)
1213                 goto out_unlock_put_key;
1214
1215         /* Only actually queue if *uaddr contained val.  */
1216         queue_me(&q, hb);
1217
1218         /*
1219          * There might have been scheduling since the queue_me(), as we
1220          * cannot hold a spinlock across the get_user() in case it
1221          * faults, and we cannot just set TASK_INTERRUPTIBLE state when
1222          * queueing ourselves into the futex hash.  This code thus has to
1223          * rely on the futex_wake() code removing us from hash when it
1224          * wakes us up.
1225          */
1226
1227         /* add_wait_queue is the barrier after __set_current_state. */
1228         __set_current_state(TASK_INTERRUPTIBLE);
1229         add_wait_queue(&q.waiter, &wait);
1230         /*
1231          * !plist_node_empty() is safe here without any lock.
1232          * q.lock_ptr != 0 is not safe, because of ordering against wakeup.
1233          */
1234         if (likely(!plist_node_empty(&q.list))) {
1235                 if (!abs_time)
1236                         schedule();
1237                 else {
1238                         unsigned long slack;
1239                         slack = current->timer_slack_ns;
1240                         if (rt_task(current))
1241                                 slack = 0;
1242                         hrtimer_init_on_stack(&t.timer,
1243                                               clockrt ? CLOCK_REALTIME :
1244                                               CLOCK_MONOTONIC,
1245                                               HRTIMER_MODE_ABS);
1246                         hrtimer_init_sleeper(&t, current);
1247                         hrtimer_set_expires_range_ns(&t.timer, *abs_time, slack);
1248
1249                         hrtimer_start_expires(&t.timer, HRTIMER_MODE_ABS);
1250                         if (!hrtimer_active(&t.timer))
1251                                 t.task = NULL;
1252
1253                         /*
1254                          * the timer could have already expired, in which
1255                          * case current would be flagged for rescheduling.
1256                          * Don't bother calling schedule.
1257                          */
1258                         if (likely(t.task))
1259                                 schedule();
1260
1261                         hrtimer_cancel(&t.timer);
1262
1263                         /* Flag if a timeout occured */
1264                         rem = (t.task == NULL);
1265
1266                         destroy_hrtimer_on_stack(&t.timer);
1267                 }
1268         }
1269         __set_current_state(TASK_RUNNING);
1270
1271         /*
1272          * NOTE: we don't remove ourselves from the waitqueue because
1273          * we are the only user of it.
1274          */
1275
1276         /* If we were woken (and unqueued), we succeeded, whatever. */
1277         if (!unqueue_me(&q))
1278                 return 0;
1279         if (rem)
1280                 return -ETIMEDOUT;
1281
1282         /*
1283          * We expect signal_pending(current), but another thread may
1284          * have handled it for us already.
1285          */
1286         if (!abs_time)
1287                 return -ERESTARTSYS;
1288         else {
1289                 struct restart_block *restart;
1290                 restart = &current_thread_info()->restart_block;
1291                 restart->fn = futex_wait_restart;
1292                 restart->futex.uaddr = (u32 *)uaddr;
1293                 restart->futex.val = val;
1294                 restart->futex.time = abs_time->tv64;
1295                 restart->futex.bitset = bitset;
1296                 restart->futex.flags = 0;
1297
1298                 if (fshared)
1299                         restart->futex.flags |= FLAGS_SHARED;
1300                 if (clockrt)
1301                         restart->futex.flags |= FLAGS_CLOCKRT;
1302                 return -ERESTART_RESTARTBLOCK;
1303         }
1304
1305 out_unlock_put_key:
1306         queue_unlock(&q, hb);
1307         put_futex_key(fshared, &q.key);
1308
1309 out:
1310         return ret;
1311 }
1312
1313
1314 static long futex_wait_restart(struct restart_block *restart)
1315 {
1316         u32 __user *uaddr = (u32 __user *)restart->futex.uaddr;
1317         int fshared = 0;
1318         ktime_t t;
1319
1320         t.tv64 = restart->futex.time;
1321         restart->fn = do_no_restart_syscall;
1322         if (restart->futex.flags & FLAGS_SHARED)
1323                 fshared = 1;
1324         return (long)futex_wait(uaddr, fshared, restart->futex.val, &t,
1325                                 restart->futex.bitset,
1326                                 restart->futex.flags & FLAGS_CLOCKRT);
1327 }
1328
1329
1330 /*
1331  * Userspace tried a 0 -> TID atomic transition of the futex value
1332  * and failed. The kernel side here does the whole locking operation:
1333  * if there are waiters then it will block, it does PI, etc. (Due to
1334  * races the kernel might see a 0 value of the futex too.)
1335  */
1336 static int futex_lock_pi(u32 __user *uaddr, int fshared,
1337                          int detect, ktime_t *time, int trylock)
1338 {
1339         struct hrtimer_sleeper timeout, *to = NULL;
1340         struct task_struct *curr = current;
1341         struct futex_hash_bucket *hb;
1342         u32 uval, newval, curval;
1343         struct futex_q q;
1344         int ret, lock_taken, ownerdied = 0, attempt = 0;
1345
1346         if (refill_pi_state_cache())
1347                 return -ENOMEM;
1348
1349         if (time) {
1350                 to = &timeout;
1351                 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
1352                                       HRTIMER_MODE_ABS);
1353                 hrtimer_init_sleeper(to, current);
1354                 hrtimer_set_expires(&to->timer, *time);
1355         }
1356
1357         q.pi_state = NULL;
1358 retry:
1359         q.key = FUTEX_KEY_INIT;
1360         ret = get_futex_key(uaddr, fshared, &q.key);
1361         if (unlikely(ret != 0))
1362                 goto out;
1363
1364 retry_unlocked:
1365         hb = queue_lock(&q);
1366
1367 retry_locked:
1368         ret = lock_taken = 0;
1369
1370         /*
1371          * To avoid races, we attempt to take the lock here again
1372          * (by doing a 0 -> TID atomic cmpxchg), while holding all
1373          * the locks. It will most likely not succeed.
1374          */
1375         newval = task_pid_vnr(current);
1376
1377         curval = cmpxchg_futex_value_locked(uaddr, 0, newval);
1378
1379         if (unlikely(curval == -EFAULT))
1380                 goto uaddr_faulted;
1381
1382         /*
1383          * Detect deadlocks. In case of REQUEUE_PI this is a valid
1384          * situation and we return success to user space.
1385          */
1386         if (unlikely((curval & FUTEX_TID_MASK) == task_pid_vnr(current))) {
1387                 ret = -EDEADLK;
1388                 goto out_unlock_put_key;
1389         }
1390
1391         /*
1392          * Surprise - we got the lock. Just return to userspace:
1393          */
1394         if (unlikely(!curval))
1395                 goto out_unlock_put_key;
1396
1397         uval = curval;
1398
1399         /*
1400          * Set the WAITERS flag, so the owner will know it has someone
1401          * to wake at next unlock
1402          */
1403         newval = curval | FUTEX_WAITERS;
1404
1405         /*
1406          * There are two cases, where a futex might have no owner (the
1407          * owner TID is 0): OWNER_DIED. We take over the futex in this
1408          * case. We also do an unconditional take over, when the owner
1409          * of the futex died.
1410          *
1411          * This is safe as we are protected by the hash bucket lock !
1412          */
1413         if (unlikely(ownerdied || !(curval & FUTEX_TID_MASK))) {
1414                 /* Keep the OWNER_DIED bit */
1415                 newval = (curval & ~FUTEX_TID_MASK) | task_pid_vnr(current);
1416                 ownerdied = 0;
1417                 lock_taken = 1;
1418         }
1419
1420         curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
1421
1422         if (unlikely(curval == -EFAULT))
1423                 goto uaddr_faulted;
1424         if (unlikely(curval != uval))
1425                 goto retry_locked;
1426
1427         /*
1428          * We took the lock due to owner died take over.
1429          */
1430         if (unlikely(lock_taken))
1431                 goto out_unlock_put_key;
1432
1433         /*
1434          * We dont have the lock. Look up the PI state (or create it if
1435          * we are the first waiter):
1436          */
1437         ret = lookup_pi_state(uval, hb, &q.key, &q.pi_state);
1438
1439         if (unlikely(ret)) {
1440                 switch (ret) {
1441
1442                 case -EAGAIN:
1443                         /*
1444                          * Task is exiting and we just wait for the
1445                          * exit to complete.
1446                          */
1447                         queue_unlock(&q, hb);
1448                         cond_resched();
1449                         goto retry;
1450
1451                 case -ESRCH:
1452                         /*
1453                          * No owner found for this futex. Check if the
1454                          * OWNER_DIED bit is set to figure out whether
1455                          * this is a robust futex or not.
1456                          */
1457                         if (get_futex_value_locked(&curval, uaddr))
1458                                 goto uaddr_faulted;
1459
1460                         /*
1461                          * We simply start over in case of a robust
1462                          * futex. The code above will take the futex
1463                          * and return happy.
1464                          */
1465                         if (curval & FUTEX_OWNER_DIED) {
1466                                 ownerdied = 1;
1467                                 goto retry_locked;
1468                         }
1469                 default:
1470                         goto out_unlock_put_key;
1471                 }
1472         }
1473
1474         /*
1475          * Only actually queue now that the atomic ops are done:
1476          */
1477         queue_me(&q, hb);
1478
1479         WARN_ON(!q.pi_state);
1480         /*
1481          * Block on the PI mutex:
1482          */
1483         if (!trylock)
1484                 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
1485         else {
1486                 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
1487                 /* Fixup the trylock return value: */
1488                 ret = ret ? 0 : -EWOULDBLOCK;
1489         }
1490
1491         spin_lock(q.lock_ptr);
1492
1493         if (!ret) {
1494                 /*
1495                  * Got the lock. We might not be the anticipated owner
1496                  * if we did a lock-steal - fix up the PI-state in
1497                  * that case:
1498                  */
1499                 if (q.pi_state->owner != curr)
1500                         ret = fixup_pi_state_owner(uaddr, &q, curr, fshared);
1501         } else {
1502                 /*
1503                  * Catch the rare case, where the lock was released
1504                  * when we were on the way back before we locked the
1505                  * hash bucket.
1506                  */
1507                 if (q.pi_state->owner == curr) {
1508                         /*
1509                          * Try to get the rt_mutex now. This might
1510                          * fail as some other task acquired the
1511                          * rt_mutex after we removed ourself from the
1512                          * rt_mutex waiters list.
1513                          */
1514                         if (rt_mutex_trylock(&q.pi_state->pi_mutex))
1515                                 ret = 0;
1516                         else {
1517                                 /*
1518                                  * pi_state is incorrect, some other
1519                                  * task did a lock steal and we
1520                                  * returned due to timeout or signal
1521                                  * without taking the rt_mutex. Too
1522                                  * late. We can access the
1523                                  * rt_mutex_owner without locking, as
1524                                  * the other task is now blocked on
1525                                  * the hash bucket lock. Fix the state
1526                                  * up.
1527                                  */
1528                                 struct task_struct *owner;
1529                                 int res;
1530
1531                                 owner = rt_mutex_owner(&q.pi_state->pi_mutex);
1532                                 res = fixup_pi_state_owner(uaddr, &q, owner,
1533                                                            fshared);
1534
1535                                 /* propagate -EFAULT, if the fixup failed */
1536                                 if (res)
1537                                         ret = res;
1538                         }
1539                 } else {
1540                         /*
1541                          * Paranoia check. If we did not take the lock
1542                          * in the trylock above, then we should not be
1543                          * the owner of the rtmutex, neither the real
1544                          * nor the pending one:
1545                          */
1546                         if (rt_mutex_owner(&q.pi_state->pi_mutex) == curr)
1547                                 printk(KERN_ERR "futex_lock_pi: ret = %d "
1548                                        "pi-mutex: %p pi-state %p\n", ret,
1549                                        q.pi_state->pi_mutex.owner,
1550                                        q.pi_state->owner);
1551                 }
1552         }
1553
1554         /* Unqueue and drop the lock */
1555         unqueue_me_pi(&q);
1556
1557         if (to)
1558                 destroy_hrtimer_on_stack(&to->timer);
1559         return ret != -EINTR ? ret : -ERESTARTNOINTR;
1560
1561 out_unlock_put_key:
1562         queue_unlock(&q, hb);
1563
1564 out_put_key:
1565         put_futex_key(fshared, &q.key);
1566 out:
1567         if (to)
1568                 destroy_hrtimer_on_stack(&to->timer);
1569         return ret;
1570
1571 uaddr_faulted:
1572         /*
1573          * We have to r/w  *(int __user *)uaddr, and we have to modify it
1574          * atomically.  Therefore, if we continue to fault after get_user()
1575          * below, we need to handle the fault ourselves, while still holding
1576          * the mmap_sem.  This can occur if the uaddr is under contention as
1577          * we have to drop the mmap_sem in order to call get_user().
1578          */
1579         queue_unlock(&q, hb);
1580
1581         if (attempt++) {
1582                 ret = futex_handle_fault((unsigned long)uaddr, attempt);
1583                 if (ret)
1584                         goto out_put_key;
1585                 goto retry_unlocked;
1586         }
1587
1588         ret = get_user(uval, uaddr);
1589         if (!ret)
1590                 goto retry;
1591
1592         if (to)
1593                 destroy_hrtimer_on_stack(&to->timer);
1594         return ret;
1595 }
1596
1597 /*
1598  * Userspace attempted a TID -> 0 atomic transition, and failed.
1599  * This is the in-kernel slowpath: we look up the PI state (if any),
1600  * and do the rt-mutex unlock.
1601  */
1602 static int futex_unlock_pi(u32 __user *uaddr, int fshared)
1603 {
1604         struct futex_hash_bucket *hb;
1605         struct futex_q *this, *next;
1606         u32 uval;
1607         struct plist_head *head;
1608         union futex_key key = FUTEX_KEY_INIT;
1609         int ret, attempt = 0;
1610
1611 retry:
1612         if (get_user(uval, uaddr))
1613                 return -EFAULT;
1614         /*
1615          * We release only a lock we actually own:
1616          */
1617         if ((uval & FUTEX_TID_MASK) != task_pid_vnr(current))
1618                 return -EPERM;
1619
1620         ret = get_futex_key(uaddr, fshared, &key);
1621         if (unlikely(ret != 0))
1622                 goto out;
1623
1624         hb = hash_futex(&key);
1625 retry_unlocked:
1626         spin_lock(&hb->lock);
1627
1628         /*
1629          * To avoid races, try to do the TID -> 0 atomic transition
1630          * again. If it succeeds then we can return without waking
1631          * anyone else up:
1632          */
1633         if (!(uval & FUTEX_OWNER_DIED))
1634                 uval = cmpxchg_futex_value_locked(uaddr, task_pid_vnr(current), 0);
1635
1636
1637         if (unlikely(uval == -EFAULT))
1638                 goto pi_faulted;
1639         /*
1640          * Rare case: we managed to release the lock atomically,
1641          * no need to wake anyone else up:
1642          */
1643         if (unlikely(uval == task_pid_vnr(current)))
1644                 goto out_unlock;
1645
1646         /*
1647          * Ok, other tasks may need to be woken up - check waiters
1648          * and do the wakeup if necessary:
1649          */
1650         head = &hb->chain;
1651
1652         plist_for_each_entry_safe(this, next, head, list) {
1653                 if (!match_futex (&this->key, &key))
1654                         continue;
1655                 ret = wake_futex_pi(uaddr, uval, this);
1656                 /*
1657                  * The atomic access to the futex value
1658                  * generated a pagefault, so retry the
1659                  * user-access and the wakeup:
1660                  */
1661                 if (ret == -EFAULT)
1662                         goto pi_faulted;
1663                 goto out_unlock;
1664         }
1665         /*
1666          * No waiters - kernel unlocks the futex:
1667          */
1668         if (!(uval & FUTEX_OWNER_DIED)) {
1669                 ret = unlock_futex_pi(uaddr, uval);
1670                 if (ret == -EFAULT)
1671                         goto pi_faulted;
1672         }
1673
1674 out_unlock:
1675         spin_unlock(&hb->lock);
1676         put_futex_key(fshared, &key);
1677
1678 out:
1679         return ret;
1680
1681 pi_faulted:
1682         /*
1683          * We have to r/w  *(int __user *)uaddr, and we have to modify it
1684          * atomically.  Therefore, if we continue to fault after get_user()
1685          * below, we need to handle the fault ourselves, while still holding
1686          * the mmap_sem.  This can occur if the uaddr is under contention as
1687          * we have to drop the mmap_sem in order to call get_user().
1688          */
1689         spin_unlock(&hb->lock);
1690
1691         if (attempt++) {
1692                 ret = futex_handle_fault((unsigned long)uaddr, attempt);
1693                 if (ret)
1694                         goto out;
1695                 uval = 0;
1696                 goto retry_unlocked;
1697         }
1698
1699         ret = get_user(uval, uaddr);
1700         if (!ret)
1701                 goto retry;
1702
1703         return ret;
1704 }
1705
1706 /*
1707  * Support for robust futexes: the kernel cleans up held futexes at
1708  * thread exit time.
1709  *
1710  * Implementation: user-space maintains a per-thread list of locks it
1711  * is holding. Upon do_exit(), the kernel carefully walks this list,
1712  * and marks all locks that are owned by this thread with the
1713  * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
1714  * always manipulated with the lock held, so the list is private and
1715  * per-thread. Userspace also maintains a per-thread 'list_op_pending'
1716  * field, to allow the kernel to clean up if the thread dies after
1717  * acquiring the lock, but just before it could have added itself to
1718  * the list. There can only be one such pending lock.
1719  */
1720
1721 /**
1722  * sys_set_robust_list - set the robust-futex list head of a task
1723  * @head: pointer to the list-head
1724  * @len: length of the list-head, as userspace expects
1725  */
1726 asmlinkage long
1727 sys_set_robust_list(struct robust_list_head __user *head,
1728                     size_t len)
1729 {
1730         if (!futex_cmpxchg_enabled)
1731                 return -ENOSYS;
1732         /*
1733          * The kernel knows only one size for now:
1734          */
1735         if (unlikely(len != sizeof(*head)))
1736                 return -EINVAL;
1737
1738         current->robust_list = head;
1739
1740         return 0;
1741 }
1742
1743 /**
1744  * sys_get_robust_list - get the robust-futex list head of a task
1745  * @pid: pid of the process [zero for current task]
1746  * @head_ptr: pointer to a list-head pointer, the kernel fills it in
1747  * @len_ptr: pointer to a length field, the kernel fills in the header size
1748  */
1749 asmlinkage long
1750 sys_get_robust_list(int pid, struct robust_list_head __user * __user *head_ptr,
1751                     size_t __user *len_ptr)
1752 {
1753         struct robust_list_head __user *head;
1754         unsigned long ret;
1755
1756         if (!futex_cmpxchg_enabled)
1757                 return -ENOSYS;
1758
1759         if (!pid)
1760                 head = current->robust_list;
1761         else {
1762                 struct task_struct *p;
1763
1764                 ret = -ESRCH;
1765                 rcu_read_lock();
1766                 p = find_task_by_vpid(pid);
1767                 if (!p)
1768                         goto err_unlock;
1769                 ret = -EPERM;
1770                 if ((current->euid != p->euid) && (current->euid != p->uid) &&
1771                                 !capable(CAP_SYS_PTRACE))
1772                         goto err_unlock;
1773                 head = p->robust_list;
1774                 rcu_read_unlock();
1775         }
1776
1777         if (put_user(sizeof(*head), len_ptr))
1778                 return -EFAULT;
1779         return put_user(head, head_ptr);
1780
1781 err_unlock:
1782         rcu_read_unlock();
1783
1784         return ret;
1785 }
1786
1787 /*
1788  * Process a futex-list entry, check whether it's owned by the
1789  * dying task, and do notification if so:
1790  */
1791 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
1792 {
1793         u32 uval, nval, mval;
1794
1795 retry:
1796         if (get_user(uval, uaddr))
1797                 return -1;
1798
1799         if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
1800                 /*
1801                  * Ok, this dying thread is truly holding a futex
1802                  * of interest. Set the OWNER_DIED bit atomically
1803                  * via cmpxchg, and if the value had FUTEX_WAITERS
1804                  * set, wake up a waiter (if any). (We have to do a
1805                  * futex_wake() even if OWNER_DIED is already set -
1806                  * to handle the rare but possible case of recursive
1807                  * thread-death.) The rest of the cleanup is done in
1808                  * userspace.
1809                  */
1810                 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
1811                 nval = futex_atomic_cmpxchg_inatomic(uaddr, uval, mval);
1812
1813                 if (nval == -EFAULT)
1814                         return -1;
1815
1816                 if (nval != uval)
1817                         goto retry;
1818
1819                 /*
1820                  * Wake robust non-PI futexes here. The wakeup of
1821                  * PI futexes happens in exit_pi_state():
1822                  */
1823                 if (!pi && (uval & FUTEX_WAITERS))
1824                         futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
1825         }
1826         return 0;
1827 }
1828
1829 /*
1830  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
1831  */
1832 static inline int fetch_robust_entry(struct robust_list __user **entry,
1833                                      struct robust_list __user * __user *head,
1834                                      int *pi)
1835 {
1836         unsigned long uentry;
1837
1838         if (get_user(uentry, (unsigned long __user *)head))
1839                 return -EFAULT;
1840
1841         *entry = (void __user *)(uentry & ~1UL);
1842         *pi = uentry & 1;
1843
1844         return 0;
1845 }
1846
1847 /*
1848  * Walk curr->robust_list (very carefully, it's a userspace list!)
1849  * and mark any locks found there dead, and notify any waiters.
1850  *
1851  * We silently return on any sign of list-walking problem.
1852  */
1853 void exit_robust_list(struct task_struct *curr)
1854 {
1855         struct robust_list_head __user *head = curr->robust_list;
1856         struct robust_list __user *entry, *next_entry, *pending;
1857         unsigned int limit = ROBUST_LIST_LIMIT, pi, next_pi, pip;
1858         unsigned long futex_offset;
1859         int rc;
1860
1861         if (!futex_cmpxchg_enabled)
1862                 return;
1863
1864         /*
1865          * Fetch the list head (which was registered earlier, via
1866          * sys_set_robust_list()):
1867          */
1868         if (fetch_robust_entry(&entry, &head->list.next, &pi))
1869                 return;
1870         /*
1871          * Fetch the relative futex offset:
1872          */
1873         if (get_user(futex_offset, &head->futex_offset))
1874                 return;
1875         /*
1876          * Fetch any possibly pending lock-add first, and handle it
1877          * if it exists:
1878          */
1879         if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
1880                 return;
1881
1882         next_entry = NULL;      /* avoid warning with gcc */
1883         while (entry != &head->list) {
1884                 /*
1885                  * Fetch the next entry in the list before calling
1886                  * handle_futex_death:
1887                  */
1888                 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
1889                 /*
1890                  * A pending lock might already be on the list, so
1891                  * don't process it twice:
1892                  */
1893                 if (entry != pending)
1894                         if (handle_futex_death((void __user *)entry + futex_offset,
1895                                                 curr, pi))
1896                                 return;
1897                 if (rc)
1898                         return;
1899                 entry = next_entry;
1900                 pi = next_pi;
1901                 /*
1902                  * Avoid excessively long or circular lists:
1903                  */
1904                 if (!--limit)
1905                         break;
1906
1907                 cond_resched();
1908         }
1909
1910         if (pending)
1911                 handle_futex_death((void __user *)pending + futex_offset,
1912                                    curr, pip);
1913 }
1914
1915 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
1916                 u32 __user *uaddr2, u32 val2, u32 val3)
1917 {
1918         int clockrt, ret = -ENOSYS;
1919         int cmd = op & FUTEX_CMD_MASK;
1920         int fshared = 0;
1921
1922         if (!(op & FUTEX_PRIVATE_FLAG))
1923                 fshared = 1;
1924
1925         clockrt = op & FUTEX_CLOCK_REALTIME;
1926         if (clockrt && cmd != FUTEX_WAIT_BITSET)
1927                 return -ENOSYS;
1928
1929         switch (cmd) {
1930         case FUTEX_WAIT:
1931                 val3 = FUTEX_BITSET_MATCH_ANY;
1932         case FUTEX_WAIT_BITSET:
1933                 ret = futex_wait(uaddr, fshared, val, timeout, val3, clockrt);
1934                 break;
1935         case FUTEX_WAKE:
1936                 val3 = FUTEX_BITSET_MATCH_ANY;
1937         case FUTEX_WAKE_BITSET:
1938                 ret = futex_wake(uaddr, fshared, val, val3);
1939                 break;
1940         case FUTEX_REQUEUE:
1941                 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, NULL);
1942                 break;
1943         case FUTEX_CMP_REQUEUE:
1944                 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, &val3);
1945                 break;
1946         case FUTEX_WAKE_OP:
1947                 ret = futex_wake_op(uaddr, fshared, uaddr2, val, val2, val3);
1948                 break;
1949         case FUTEX_LOCK_PI:
1950                 if (futex_cmpxchg_enabled)
1951                         ret = futex_lock_pi(uaddr, fshared, val, timeout, 0);
1952                 break;
1953         case FUTEX_UNLOCK_PI:
1954                 if (futex_cmpxchg_enabled)
1955                         ret = futex_unlock_pi(uaddr, fshared);
1956                 break;
1957         case FUTEX_TRYLOCK_PI:
1958                 if (futex_cmpxchg_enabled)
1959                         ret = futex_lock_pi(uaddr, fshared, 0, timeout, 1);
1960                 break;
1961         default:
1962                 ret = -ENOSYS;
1963         }
1964         return ret;
1965 }
1966
1967
1968 asmlinkage long sys_futex(u32 __user *uaddr, int op, u32 val,
1969                           struct timespec __user *utime, u32 __user *uaddr2,
1970                           u32 val3)
1971 {
1972         struct timespec ts;
1973         ktime_t t, *tp = NULL;
1974         u32 val2 = 0;
1975         int cmd = op & FUTEX_CMD_MASK;
1976
1977         if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
1978                       cmd == FUTEX_WAIT_BITSET)) {
1979                 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
1980                         return -EFAULT;
1981                 if (!timespec_valid(&ts))
1982                         return -EINVAL;
1983
1984                 t = timespec_to_ktime(ts);
1985                 if (cmd == FUTEX_WAIT)
1986                         t = ktime_add_safe(ktime_get(), t);
1987                 tp = &t;
1988         }
1989         /*
1990          * requeue parameter in 'utime' if cmd == FUTEX_REQUEUE.
1991          * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
1992          */
1993         if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
1994             cmd == FUTEX_WAKE_OP)
1995                 val2 = (u32) (unsigned long) utime;
1996
1997         return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
1998 }
1999
2000 static int __init futex_init(void)
2001 {
2002         u32 curval;
2003         int i;
2004
2005         /*
2006          * This will fail and we want it. Some arch implementations do
2007          * runtime detection of the futex_atomic_cmpxchg_inatomic()
2008          * functionality. We want to know that before we call in any
2009          * of the complex code paths. Also we want to prevent
2010          * registration of robust lists in that case. NULL is
2011          * guaranteed to fault and we get -EFAULT on functional
2012          * implementation, the non functional ones will return
2013          * -ENOSYS.
2014          */
2015         curval = cmpxchg_futex_value_locked(NULL, 0, 0);
2016         if (curval == -EFAULT)
2017                 futex_cmpxchg_enabled = 1;
2018
2019         for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
2020                 plist_head_init(&futex_queues[i].chain, &futex_queues[i].lock);
2021                 spin_lock_init(&futex_queues[i].lock);
2022         }
2023
2024         return 0;
2025 }
2026 __initcall(futex_init);