sched, cputime: Introduce thread_group_times()
[safe/jmp/linux-2.6] / kernel / fork.c
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/nsproxy.h>
32 #include <linux/capability.h>
33 #include <linux/cpu.h>
34 #include <linux/cgroup.h>
35 #include <linux/security.h>
36 #include <linux/hugetlb.h>
37 #include <linux/swap.h>
38 #include <linux/syscalls.h>
39 #include <linux/jiffies.h>
40 #include <linux/tracehook.h>
41 #include <linux/futex.h>
42 #include <linux/compat.h>
43 #include <linux/task_io_accounting_ops.h>
44 #include <linux/rcupdate.h>
45 #include <linux/ptrace.h>
46 #include <linux/mount.h>
47 #include <linux/audit.h>
48 #include <linux/memcontrol.h>
49 #include <linux/ftrace.h>
50 #include <linux/profile.h>
51 #include <linux/rmap.h>
52 #include <linux/ksm.h>
53 #include <linux/acct.h>
54 #include <linux/tsacct_kern.h>
55 #include <linux/cn_proc.h>
56 #include <linux/freezer.h>
57 #include <linux/delayacct.h>
58 #include <linux/taskstats_kern.h>
59 #include <linux/random.h>
60 #include <linux/tty.h>
61 #include <linux/proc_fs.h>
62 #include <linux/blkdev.h>
63 #include <linux/fs_struct.h>
64 #include <linux/magic.h>
65 #include <linux/perf_event.h>
66 #include <linux/posix-timers.h>
67
68 #include <asm/pgtable.h>
69 #include <asm/pgalloc.h>
70 #include <asm/uaccess.h>
71 #include <asm/mmu_context.h>
72 #include <asm/cacheflush.h>
73 #include <asm/tlbflush.h>
74
75 #include <trace/events/sched.h>
76
77 /*
78  * Protected counters by write_lock_irq(&tasklist_lock)
79  */
80 unsigned long total_forks;      /* Handle normal Linux uptimes. */
81 int nr_threads;                 /* The idle threads do not count.. */
82
83 int max_threads;                /* tunable limit on nr_threads */
84
85 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
86
87 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
88
89 int nr_processes(void)
90 {
91         int cpu;
92         int total = 0;
93
94         for_each_possible_cpu(cpu)
95                 total += per_cpu(process_counts, cpu);
96
97         return total;
98 }
99
100 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
101 # define alloc_task_struct()    kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
102 # define free_task_struct(tsk)  kmem_cache_free(task_struct_cachep, (tsk))
103 static struct kmem_cache *task_struct_cachep;
104 #endif
105
106 #ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR
107 static inline struct thread_info *alloc_thread_info(struct task_struct *tsk)
108 {
109 #ifdef CONFIG_DEBUG_STACK_USAGE
110         gfp_t mask = GFP_KERNEL | __GFP_ZERO;
111 #else
112         gfp_t mask = GFP_KERNEL;
113 #endif
114         return (struct thread_info *)__get_free_pages(mask, THREAD_SIZE_ORDER);
115 }
116
117 static inline void free_thread_info(struct thread_info *ti)
118 {
119         free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
120 }
121 #endif
122
123 /* SLAB cache for signal_struct structures (tsk->signal) */
124 static struct kmem_cache *signal_cachep;
125
126 /* SLAB cache for sighand_struct structures (tsk->sighand) */
127 struct kmem_cache *sighand_cachep;
128
129 /* SLAB cache for files_struct structures (tsk->files) */
130 struct kmem_cache *files_cachep;
131
132 /* SLAB cache for fs_struct structures (tsk->fs) */
133 struct kmem_cache *fs_cachep;
134
135 /* SLAB cache for vm_area_struct structures */
136 struct kmem_cache *vm_area_cachep;
137
138 /* SLAB cache for mm_struct structures (tsk->mm) */
139 static struct kmem_cache *mm_cachep;
140
141 static void account_kernel_stack(struct thread_info *ti, int account)
142 {
143         struct zone *zone = page_zone(virt_to_page(ti));
144
145         mod_zone_page_state(zone, NR_KERNEL_STACK, account);
146 }
147
148 void free_task(struct task_struct *tsk)
149 {
150         prop_local_destroy_single(&tsk->dirties);
151         account_kernel_stack(tsk->stack, -1);
152         free_thread_info(tsk->stack);
153         rt_mutex_debug_task_free(tsk);
154         ftrace_graph_exit_task(tsk);
155         free_task_struct(tsk);
156 }
157 EXPORT_SYMBOL(free_task);
158
159 void __put_task_struct(struct task_struct *tsk)
160 {
161         WARN_ON(!tsk->exit_state);
162         WARN_ON(atomic_read(&tsk->usage));
163         WARN_ON(tsk == current);
164
165         exit_creds(tsk);
166         delayacct_tsk_free(tsk);
167
168         if (!profile_handoff_task(tsk))
169                 free_task(tsk);
170 }
171
172 /*
173  * macro override instead of weak attribute alias, to workaround
174  * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
175  */
176 #ifndef arch_task_cache_init
177 #define arch_task_cache_init()
178 #endif
179
180 void __init fork_init(unsigned long mempages)
181 {
182 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
183 #ifndef ARCH_MIN_TASKALIGN
184 #define ARCH_MIN_TASKALIGN      L1_CACHE_BYTES
185 #endif
186         /* create a slab on which task_structs can be allocated */
187         task_struct_cachep =
188                 kmem_cache_create("task_struct", sizeof(struct task_struct),
189                         ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
190 #endif
191
192         /* do the arch specific task caches init */
193         arch_task_cache_init();
194
195         /*
196          * The default maximum number of threads is set to a safe
197          * value: the thread structures can take up at most half
198          * of memory.
199          */
200         max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
201
202         /*
203          * we need to allow at least 20 threads to boot a system
204          */
205         if(max_threads < 20)
206                 max_threads = 20;
207
208         init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
209         init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
210         init_task.signal->rlim[RLIMIT_SIGPENDING] =
211                 init_task.signal->rlim[RLIMIT_NPROC];
212 }
213
214 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
215                                                struct task_struct *src)
216 {
217         *dst = *src;
218         return 0;
219 }
220
221 static struct task_struct *dup_task_struct(struct task_struct *orig)
222 {
223         struct task_struct *tsk;
224         struct thread_info *ti;
225         unsigned long *stackend;
226
227         int err;
228
229         prepare_to_copy(orig);
230
231         tsk = alloc_task_struct();
232         if (!tsk)
233                 return NULL;
234
235         ti = alloc_thread_info(tsk);
236         if (!ti) {
237                 free_task_struct(tsk);
238                 return NULL;
239         }
240
241         err = arch_dup_task_struct(tsk, orig);
242         if (err)
243                 goto out;
244
245         tsk->stack = ti;
246
247         err = prop_local_init_single(&tsk->dirties);
248         if (err)
249                 goto out;
250
251         setup_thread_stack(tsk, orig);
252         stackend = end_of_stack(tsk);
253         *stackend = STACK_END_MAGIC;    /* for overflow detection */
254
255 #ifdef CONFIG_CC_STACKPROTECTOR
256         tsk->stack_canary = get_random_int();
257 #endif
258
259         /* One for us, one for whoever does the "release_task()" (usually parent) */
260         atomic_set(&tsk->usage,2);
261         atomic_set(&tsk->fs_excl, 0);
262 #ifdef CONFIG_BLK_DEV_IO_TRACE
263         tsk->btrace_seq = 0;
264 #endif
265         tsk->splice_pipe = NULL;
266
267         account_kernel_stack(ti, 1);
268
269         return tsk;
270
271 out:
272         free_thread_info(ti);
273         free_task_struct(tsk);
274         return NULL;
275 }
276
277 #ifdef CONFIG_MMU
278 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
279 {
280         struct vm_area_struct *mpnt, *tmp, **pprev;
281         struct rb_node **rb_link, *rb_parent;
282         int retval;
283         unsigned long charge;
284         struct mempolicy *pol;
285
286         down_write(&oldmm->mmap_sem);
287         flush_cache_dup_mm(oldmm);
288         /*
289          * Not linked in yet - no deadlock potential:
290          */
291         down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
292
293         mm->locked_vm = 0;
294         mm->mmap = NULL;
295         mm->mmap_cache = NULL;
296         mm->free_area_cache = oldmm->mmap_base;
297         mm->cached_hole_size = ~0UL;
298         mm->map_count = 0;
299         cpumask_clear(mm_cpumask(mm));
300         mm->mm_rb = RB_ROOT;
301         rb_link = &mm->mm_rb.rb_node;
302         rb_parent = NULL;
303         pprev = &mm->mmap;
304         retval = ksm_fork(mm, oldmm);
305         if (retval)
306                 goto out;
307
308         for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
309                 struct file *file;
310
311                 if (mpnt->vm_flags & VM_DONTCOPY) {
312                         long pages = vma_pages(mpnt);
313                         mm->total_vm -= pages;
314                         vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
315                                                                 -pages);
316                         continue;
317                 }
318                 charge = 0;
319                 if (mpnt->vm_flags & VM_ACCOUNT) {
320                         unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
321                         if (security_vm_enough_memory(len))
322                                 goto fail_nomem;
323                         charge = len;
324                 }
325                 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
326                 if (!tmp)
327                         goto fail_nomem;
328                 *tmp = *mpnt;
329                 pol = mpol_dup(vma_policy(mpnt));
330                 retval = PTR_ERR(pol);
331                 if (IS_ERR(pol))
332                         goto fail_nomem_policy;
333                 vma_set_policy(tmp, pol);
334                 tmp->vm_flags &= ~VM_LOCKED;
335                 tmp->vm_mm = mm;
336                 tmp->vm_next = NULL;
337                 anon_vma_link(tmp);
338                 file = tmp->vm_file;
339                 if (file) {
340                         struct inode *inode = file->f_path.dentry->d_inode;
341                         struct address_space *mapping = file->f_mapping;
342
343                         get_file(file);
344                         if (tmp->vm_flags & VM_DENYWRITE)
345                                 atomic_dec(&inode->i_writecount);
346                         spin_lock(&mapping->i_mmap_lock);
347                         if (tmp->vm_flags & VM_SHARED)
348                                 mapping->i_mmap_writable++;
349                         tmp->vm_truncate_count = mpnt->vm_truncate_count;
350                         flush_dcache_mmap_lock(mapping);
351                         /* insert tmp into the share list, just after mpnt */
352                         vma_prio_tree_add(tmp, mpnt);
353                         flush_dcache_mmap_unlock(mapping);
354                         spin_unlock(&mapping->i_mmap_lock);
355                 }
356
357                 /*
358                  * Clear hugetlb-related page reserves for children. This only
359                  * affects MAP_PRIVATE mappings. Faults generated by the child
360                  * are not guaranteed to succeed, even if read-only
361                  */
362                 if (is_vm_hugetlb_page(tmp))
363                         reset_vma_resv_huge_pages(tmp);
364
365                 /*
366                  * Link in the new vma and copy the page table entries.
367                  */
368                 *pprev = tmp;
369                 pprev = &tmp->vm_next;
370
371                 __vma_link_rb(mm, tmp, rb_link, rb_parent);
372                 rb_link = &tmp->vm_rb.rb_right;
373                 rb_parent = &tmp->vm_rb;
374
375                 mm->map_count++;
376                 retval = copy_page_range(mm, oldmm, mpnt);
377
378                 if (tmp->vm_ops && tmp->vm_ops->open)
379                         tmp->vm_ops->open(tmp);
380
381                 if (retval)
382                         goto out;
383         }
384         /* a new mm has just been created */
385         arch_dup_mmap(oldmm, mm);
386         retval = 0;
387 out:
388         up_write(&mm->mmap_sem);
389         flush_tlb_mm(oldmm);
390         up_write(&oldmm->mmap_sem);
391         return retval;
392 fail_nomem_policy:
393         kmem_cache_free(vm_area_cachep, tmp);
394 fail_nomem:
395         retval = -ENOMEM;
396         vm_unacct_memory(charge);
397         goto out;
398 }
399
400 static inline int mm_alloc_pgd(struct mm_struct * mm)
401 {
402         mm->pgd = pgd_alloc(mm);
403         if (unlikely(!mm->pgd))
404                 return -ENOMEM;
405         return 0;
406 }
407
408 static inline void mm_free_pgd(struct mm_struct * mm)
409 {
410         pgd_free(mm, mm->pgd);
411 }
412 #else
413 #define dup_mmap(mm, oldmm)     (0)
414 #define mm_alloc_pgd(mm)        (0)
415 #define mm_free_pgd(mm)
416 #endif /* CONFIG_MMU */
417
418 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
419
420 #define allocate_mm()   (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
421 #define free_mm(mm)     (kmem_cache_free(mm_cachep, (mm)))
422
423 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
424
425 static int __init coredump_filter_setup(char *s)
426 {
427         default_dump_filter =
428                 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
429                 MMF_DUMP_FILTER_MASK;
430         return 1;
431 }
432
433 __setup("coredump_filter=", coredump_filter_setup);
434
435 #include <linux/init_task.h>
436
437 static void mm_init_aio(struct mm_struct *mm)
438 {
439 #ifdef CONFIG_AIO
440         spin_lock_init(&mm->ioctx_lock);
441         INIT_HLIST_HEAD(&mm->ioctx_list);
442 #endif
443 }
444
445 static struct mm_struct * mm_init(struct mm_struct * mm, struct task_struct *p)
446 {
447         atomic_set(&mm->mm_users, 1);
448         atomic_set(&mm->mm_count, 1);
449         init_rwsem(&mm->mmap_sem);
450         INIT_LIST_HEAD(&mm->mmlist);
451         mm->flags = (current->mm) ?
452                 (current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
453         mm->core_state = NULL;
454         mm->nr_ptes = 0;
455         set_mm_counter(mm, file_rss, 0);
456         set_mm_counter(mm, anon_rss, 0);
457         spin_lock_init(&mm->page_table_lock);
458         mm->free_area_cache = TASK_UNMAPPED_BASE;
459         mm->cached_hole_size = ~0UL;
460         mm_init_aio(mm);
461         mm_init_owner(mm, p);
462
463         if (likely(!mm_alloc_pgd(mm))) {
464                 mm->def_flags = 0;
465                 mmu_notifier_mm_init(mm);
466                 return mm;
467         }
468
469         free_mm(mm);
470         return NULL;
471 }
472
473 /*
474  * Allocate and initialize an mm_struct.
475  */
476 struct mm_struct * mm_alloc(void)
477 {
478         struct mm_struct * mm;
479
480         mm = allocate_mm();
481         if (mm) {
482                 memset(mm, 0, sizeof(*mm));
483                 mm = mm_init(mm, current);
484         }
485         return mm;
486 }
487
488 /*
489  * Called when the last reference to the mm
490  * is dropped: either by a lazy thread or by
491  * mmput. Free the page directory and the mm.
492  */
493 void __mmdrop(struct mm_struct *mm)
494 {
495         BUG_ON(mm == &init_mm);
496         mm_free_pgd(mm);
497         destroy_context(mm);
498         mmu_notifier_mm_destroy(mm);
499         free_mm(mm);
500 }
501 EXPORT_SYMBOL_GPL(__mmdrop);
502
503 /*
504  * Decrement the use count and release all resources for an mm.
505  */
506 void mmput(struct mm_struct *mm)
507 {
508         might_sleep();
509
510         if (atomic_dec_and_test(&mm->mm_users)) {
511                 exit_aio(mm);
512                 ksm_exit(mm);
513                 exit_mmap(mm);
514                 set_mm_exe_file(mm, NULL);
515                 if (!list_empty(&mm->mmlist)) {
516                         spin_lock(&mmlist_lock);
517                         list_del(&mm->mmlist);
518                         spin_unlock(&mmlist_lock);
519                 }
520                 put_swap_token(mm);
521                 if (mm->binfmt)
522                         module_put(mm->binfmt->module);
523                 mmdrop(mm);
524         }
525 }
526 EXPORT_SYMBOL_GPL(mmput);
527
528 /**
529  * get_task_mm - acquire a reference to the task's mm
530  *
531  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
532  * this kernel workthread has transiently adopted a user mm with use_mm,
533  * to do its AIO) is not set and if so returns a reference to it, after
534  * bumping up the use count.  User must release the mm via mmput()
535  * after use.  Typically used by /proc and ptrace.
536  */
537 struct mm_struct *get_task_mm(struct task_struct *task)
538 {
539         struct mm_struct *mm;
540
541         task_lock(task);
542         mm = task->mm;
543         if (mm) {
544                 if (task->flags & PF_KTHREAD)
545                         mm = NULL;
546                 else
547                         atomic_inc(&mm->mm_users);
548         }
549         task_unlock(task);
550         return mm;
551 }
552 EXPORT_SYMBOL_GPL(get_task_mm);
553
554 /* Please note the differences between mmput and mm_release.
555  * mmput is called whenever we stop holding onto a mm_struct,
556  * error success whatever.
557  *
558  * mm_release is called after a mm_struct has been removed
559  * from the current process.
560  *
561  * This difference is important for error handling, when we
562  * only half set up a mm_struct for a new process and need to restore
563  * the old one.  Because we mmput the new mm_struct before
564  * restoring the old one. . .
565  * Eric Biederman 10 January 1998
566  */
567 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
568 {
569         struct completion *vfork_done = tsk->vfork_done;
570
571         /* Get rid of any futexes when releasing the mm */
572 #ifdef CONFIG_FUTEX
573         if (unlikely(tsk->robust_list)) {
574                 exit_robust_list(tsk);
575                 tsk->robust_list = NULL;
576         }
577 #ifdef CONFIG_COMPAT
578         if (unlikely(tsk->compat_robust_list)) {
579                 compat_exit_robust_list(tsk);
580                 tsk->compat_robust_list = NULL;
581         }
582 #endif
583         if (unlikely(!list_empty(&tsk->pi_state_list)))
584                 exit_pi_state_list(tsk);
585 #endif
586
587         /* Get rid of any cached register state */
588         deactivate_mm(tsk, mm);
589
590         /* notify parent sleeping on vfork() */
591         if (vfork_done) {
592                 tsk->vfork_done = NULL;
593                 complete(vfork_done);
594         }
595
596         /*
597          * If we're exiting normally, clear a user-space tid field if
598          * requested.  We leave this alone when dying by signal, to leave
599          * the value intact in a core dump, and to save the unnecessary
600          * trouble otherwise.  Userland only wants this done for a sys_exit.
601          */
602         if (tsk->clear_child_tid) {
603                 if (!(tsk->flags & PF_SIGNALED) &&
604                     atomic_read(&mm->mm_users) > 1) {
605                         /*
606                          * We don't check the error code - if userspace has
607                          * not set up a proper pointer then tough luck.
608                          */
609                         put_user(0, tsk->clear_child_tid);
610                         sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
611                                         1, NULL, NULL, 0);
612                 }
613                 tsk->clear_child_tid = NULL;
614         }
615 }
616
617 /*
618  * Allocate a new mm structure and copy contents from the
619  * mm structure of the passed in task structure.
620  */
621 struct mm_struct *dup_mm(struct task_struct *tsk)
622 {
623         struct mm_struct *mm, *oldmm = current->mm;
624         int err;
625
626         if (!oldmm)
627                 return NULL;
628
629         mm = allocate_mm();
630         if (!mm)
631                 goto fail_nomem;
632
633         memcpy(mm, oldmm, sizeof(*mm));
634
635         /* Initializing for Swap token stuff */
636         mm->token_priority = 0;
637         mm->last_interval = 0;
638
639         if (!mm_init(mm, tsk))
640                 goto fail_nomem;
641
642         if (init_new_context(tsk, mm))
643                 goto fail_nocontext;
644
645         dup_mm_exe_file(oldmm, mm);
646
647         err = dup_mmap(mm, oldmm);
648         if (err)
649                 goto free_pt;
650
651         mm->hiwater_rss = get_mm_rss(mm);
652         mm->hiwater_vm = mm->total_vm;
653
654         if (mm->binfmt && !try_module_get(mm->binfmt->module))
655                 goto free_pt;
656
657         return mm;
658
659 free_pt:
660         /* don't put binfmt in mmput, we haven't got module yet */
661         mm->binfmt = NULL;
662         mmput(mm);
663
664 fail_nomem:
665         return NULL;
666
667 fail_nocontext:
668         /*
669          * If init_new_context() failed, we cannot use mmput() to free the mm
670          * because it calls destroy_context()
671          */
672         mm_free_pgd(mm);
673         free_mm(mm);
674         return NULL;
675 }
676
677 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
678 {
679         struct mm_struct * mm, *oldmm;
680         int retval;
681
682         tsk->min_flt = tsk->maj_flt = 0;
683         tsk->nvcsw = tsk->nivcsw = 0;
684 #ifdef CONFIG_DETECT_HUNG_TASK
685         tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
686 #endif
687
688         tsk->mm = NULL;
689         tsk->active_mm = NULL;
690
691         /*
692          * Are we cloning a kernel thread?
693          *
694          * We need to steal a active VM for that..
695          */
696         oldmm = current->mm;
697         if (!oldmm)
698                 return 0;
699
700         if (clone_flags & CLONE_VM) {
701                 atomic_inc(&oldmm->mm_users);
702                 mm = oldmm;
703                 goto good_mm;
704         }
705
706         retval = -ENOMEM;
707         mm = dup_mm(tsk);
708         if (!mm)
709                 goto fail_nomem;
710
711 good_mm:
712         /* Initializing for Swap token stuff */
713         mm->token_priority = 0;
714         mm->last_interval = 0;
715
716         tsk->mm = mm;
717         tsk->active_mm = mm;
718         return 0;
719
720 fail_nomem:
721         return retval;
722 }
723
724 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
725 {
726         struct fs_struct *fs = current->fs;
727         if (clone_flags & CLONE_FS) {
728                 /* tsk->fs is already what we want */
729                 write_lock(&fs->lock);
730                 if (fs->in_exec) {
731                         write_unlock(&fs->lock);
732                         return -EAGAIN;
733                 }
734                 fs->users++;
735                 write_unlock(&fs->lock);
736                 return 0;
737         }
738         tsk->fs = copy_fs_struct(fs);
739         if (!tsk->fs)
740                 return -ENOMEM;
741         return 0;
742 }
743
744 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
745 {
746         struct files_struct *oldf, *newf;
747         int error = 0;
748
749         /*
750          * A background process may not have any files ...
751          */
752         oldf = current->files;
753         if (!oldf)
754                 goto out;
755
756         if (clone_flags & CLONE_FILES) {
757                 atomic_inc(&oldf->count);
758                 goto out;
759         }
760
761         newf = dup_fd(oldf, &error);
762         if (!newf)
763                 goto out;
764
765         tsk->files = newf;
766         error = 0;
767 out:
768         return error;
769 }
770
771 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
772 {
773 #ifdef CONFIG_BLOCK
774         struct io_context *ioc = current->io_context;
775
776         if (!ioc)
777                 return 0;
778         /*
779          * Share io context with parent, if CLONE_IO is set
780          */
781         if (clone_flags & CLONE_IO) {
782                 tsk->io_context = ioc_task_link(ioc);
783                 if (unlikely(!tsk->io_context))
784                         return -ENOMEM;
785         } else if (ioprio_valid(ioc->ioprio)) {
786                 tsk->io_context = alloc_io_context(GFP_KERNEL, -1);
787                 if (unlikely(!tsk->io_context))
788                         return -ENOMEM;
789
790                 tsk->io_context->ioprio = ioc->ioprio;
791         }
792 #endif
793         return 0;
794 }
795
796 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
797 {
798         struct sighand_struct *sig;
799
800         if (clone_flags & CLONE_SIGHAND) {
801                 atomic_inc(&current->sighand->count);
802                 return 0;
803         }
804         sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
805         rcu_assign_pointer(tsk->sighand, sig);
806         if (!sig)
807                 return -ENOMEM;
808         atomic_set(&sig->count, 1);
809         memcpy(sig->action, current->sighand->action, sizeof(sig->action));
810         return 0;
811 }
812
813 void __cleanup_sighand(struct sighand_struct *sighand)
814 {
815         if (atomic_dec_and_test(&sighand->count))
816                 kmem_cache_free(sighand_cachep, sighand);
817 }
818
819
820 /*
821  * Initialize POSIX timer handling for a thread group.
822  */
823 static void posix_cpu_timers_init_group(struct signal_struct *sig)
824 {
825         /* Thread group counters. */
826         thread_group_cputime_init(sig);
827
828         /* Expiration times and increments. */
829         sig->it[CPUCLOCK_PROF].expires = cputime_zero;
830         sig->it[CPUCLOCK_PROF].incr = cputime_zero;
831         sig->it[CPUCLOCK_VIRT].expires = cputime_zero;
832         sig->it[CPUCLOCK_VIRT].incr = cputime_zero;
833
834         /* Cached expiration times. */
835         sig->cputime_expires.prof_exp = cputime_zero;
836         sig->cputime_expires.virt_exp = cputime_zero;
837         sig->cputime_expires.sched_exp = 0;
838
839         if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
840                 sig->cputime_expires.prof_exp =
841                         secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
842                 sig->cputimer.running = 1;
843         }
844
845         /* The timer lists. */
846         INIT_LIST_HEAD(&sig->cpu_timers[0]);
847         INIT_LIST_HEAD(&sig->cpu_timers[1]);
848         INIT_LIST_HEAD(&sig->cpu_timers[2]);
849 }
850
851 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
852 {
853         struct signal_struct *sig;
854
855         if (clone_flags & CLONE_THREAD)
856                 return 0;
857
858         sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
859         tsk->signal = sig;
860         if (!sig)
861                 return -ENOMEM;
862
863         atomic_set(&sig->count, 1);
864         atomic_set(&sig->live, 1);
865         init_waitqueue_head(&sig->wait_chldexit);
866         sig->flags = 0;
867         if (clone_flags & CLONE_NEWPID)
868                 sig->flags |= SIGNAL_UNKILLABLE;
869         sig->group_exit_code = 0;
870         sig->group_exit_task = NULL;
871         sig->group_stop_count = 0;
872         sig->curr_target = tsk;
873         init_sigpending(&sig->shared_pending);
874         INIT_LIST_HEAD(&sig->posix_timers);
875
876         hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
877         sig->it_real_incr.tv64 = 0;
878         sig->real_timer.function = it_real_fn;
879
880         sig->leader = 0;        /* session leadership doesn't inherit */
881         sig->tty_old_pgrp = NULL;
882         sig->tty = NULL;
883
884         sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
885         sig->gtime = cputime_zero;
886         sig->cgtime = cputime_zero;
887 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
888         sig->prev_utime = sig->prev_stime = cputime_zero;
889 #endif
890         sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
891         sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
892         sig->inblock = sig->oublock = sig->cinblock = sig->coublock = 0;
893         sig->maxrss = sig->cmaxrss = 0;
894         task_io_accounting_init(&sig->ioac);
895         sig->sum_sched_runtime = 0;
896         taskstats_tgid_init(sig);
897
898         task_lock(current->group_leader);
899         memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
900         task_unlock(current->group_leader);
901
902         posix_cpu_timers_init_group(sig);
903
904         acct_init_pacct(&sig->pacct);
905
906         tty_audit_fork(sig);
907
908         sig->oom_adj = current->signal->oom_adj;
909
910         return 0;
911 }
912
913 void __cleanup_signal(struct signal_struct *sig)
914 {
915         thread_group_cputime_free(sig);
916         tty_kref_put(sig->tty);
917         kmem_cache_free(signal_cachep, sig);
918 }
919
920 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
921 {
922         unsigned long new_flags = p->flags;
923
924         new_flags &= ~PF_SUPERPRIV;
925         new_flags |= PF_FORKNOEXEC;
926         new_flags |= PF_STARTING;
927         p->flags = new_flags;
928         clear_freeze_flag(p);
929 }
930
931 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
932 {
933         current->clear_child_tid = tidptr;
934
935         return task_pid_vnr(current);
936 }
937
938 static void rt_mutex_init_task(struct task_struct *p)
939 {
940         spin_lock_init(&p->pi_lock);
941 #ifdef CONFIG_RT_MUTEXES
942         plist_head_init(&p->pi_waiters, &p->pi_lock);
943         p->pi_blocked_on = NULL;
944 #endif
945 }
946
947 #ifdef CONFIG_MM_OWNER
948 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
949 {
950         mm->owner = p;
951 }
952 #endif /* CONFIG_MM_OWNER */
953
954 /*
955  * Initialize POSIX timer handling for a single task.
956  */
957 static void posix_cpu_timers_init(struct task_struct *tsk)
958 {
959         tsk->cputime_expires.prof_exp = cputime_zero;
960         tsk->cputime_expires.virt_exp = cputime_zero;
961         tsk->cputime_expires.sched_exp = 0;
962         INIT_LIST_HEAD(&tsk->cpu_timers[0]);
963         INIT_LIST_HEAD(&tsk->cpu_timers[1]);
964         INIT_LIST_HEAD(&tsk->cpu_timers[2]);
965 }
966
967 /*
968  * This creates a new process as a copy of the old one,
969  * but does not actually start it yet.
970  *
971  * It copies the registers, and all the appropriate
972  * parts of the process environment (as per the clone
973  * flags). The actual kick-off is left to the caller.
974  */
975 static struct task_struct *copy_process(unsigned long clone_flags,
976                                         unsigned long stack_start,
977                                         struct pt_regs *regs,
978                                         unsigned long stack_size,
979                                         int __user *child_tidptr,
980                                         struct pid *pid,
981                                         int trace)
982 {
983         int retval;
984         struct task_struct *p;
985         int cgroup_callbacks_done = 0;
986
987         if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
988                 return ERR_PTR(-EINVAL);
989
990         /*
991          * Thread groups must share signals as well, and detached threads
992          * can only be started up within the thread group.
993          */
994         if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
995                 return ERR_PTR(-EINVAL);
996
997         /*
998          * Shared signal handlers imply shared VM. By way of the above,
999          * thread groups also imply shared VM. Blocking this case allows
1000          * for various simplifications in other code.
1001          */
1002         if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1003                 return ERR_PTR(-EINVAL);
1004
1005         /*
1006          * Siblings of global init remain as zombies on exit since they are
1007          * not reaped by their parent (swapper). To solve this and to avoid
1008          * multi-rooted process trees, prevent global and container-inits
1009          * from creating siblings.
1010          */
1011         if ((clone_flags & CLONE_PARENT) &&
1012                                 current->signal->flags & SIGNAL_UNKILLABLE)
1013                 return ERR_PTR(-EINVAL);
1014
1015         retval = security_task_create(clone_flags);
1016         if (retval)
1017                 goto fork_out;
1018
1019         retval = -ENOMEM;
1020         p = dup_task_struct(current);
1021         if (!p)
1022                 goto fork_out;
1023
1024         ftrace_graph_init_task(p);
1025
1026         rt_mutex_init_task(p);
1027
1028 #ifdef CONFIG_PROVE_LOCKING
1029         DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1030         DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1031 #endif
1032         retval = -EAGAIN;
1033         if (atomic_read(&p->real_cred->user->processes) >=
1034                         p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
1035                 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1036                     p->real_cred->user != INIT_USER)
1037                         goto bad_fork_free;
1038         }
1039
1040         retval = copy_creds(p, clone_flags);
1041         if (retval < 0)
1042                 goto bad_fork_free;
1043
1044         /*
1045          * If multiple threads are within copy_process(), then this check
1046          * triggers too late. This doesn't hurt, the check is only there
1047          * to stop root fork bombs.
1048          */
1049         retval = -EAGAIN;
1050         if (nr_threads >= max_threads)
1051                 goto bad_fork_cleanup_count;
1052
1053         if (!try_module_get(task_thread_info(p)->exec_domain->module))
1054                 goto bad_fork_cleanup_count;
1055
1056         p->did_exec = 0;
1057         delayacct_tsk_init(p);  /* Must remain after dup_task_struct() */
1058         copy_flags(clone_flags, p);
1059         INIT_LIST_HEAD(&p->children);
1060         INIT_LIST_HEAD(&p->sibling);
1061         rcu_copy_process(p);
1062         p->vfork_done = NULL;
1063         spin_lock_init(&p->alloc_lock);
1064
1065         init_sigpending(&p->pending);
1066
1067         p->utime = cputime_zero;
1068         p->stime = cputime_zero;
1069         p->gtime = cputime_zero;
1070         p->utimescaled = cputime_zero;
1071         p->stimescaled = cputime_zero;
1072 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1073         p->prev_utime = cputime_zero;
1074         p->prev_stime = cputime_zero;
1075 #endif
1076
1077         p->default_timer_slack_ns = current->timer_slack_ns;
1078
1079         task_io_accounting_init(&p->ioac);
1080         acct_clear_integrals(p);
1081
1082         posix_cpu_timers_init(p);
1083
1084         p->lock_depth = -1;             /* -1 = no lock */
1085         do_posix_clock_monotonic_gettime(&p->start_time);
1086         p->real_start_time = p->start_time;
1087         monotonic_to_bootbased(&p->real_start_time);
1088         p->io_context = NULL;
1089         p->audit_context = NULL;
1090         cgroup_fork(p);
1091 #ifdef CONFIG_NUMA
1092         p->mempolicy = mpol_dup(p->mempolicy);
1093         if (IS_ERR(p->mempolicy)) {
1094                 retval = PTR_ERR(p->mempolicy);
1095                 p->mempolicy = NULL;
1096                 goto bad_fork_cleanup_cgroup;
1097         }
1098         mpol_fix_fork_child_flag(p);
1099 #endif
1100 #ifdef CONFIG_TRACE_IRQFLAGS
1101         p->irq_events = 0;
1102 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1103         p->hardirqs_enabled = 1;
1104 #else
1105         p->hardirqs_enabled = 0;
1106 #endif
1107         p->hardirq_enable_ip = 0;
1108         p->hardirq_enable_event = 0;
1109         p->hardirq_disable_ip = _THIS_IP_;
1110         p->hardirq_disable_event = 0;
1111         p->softirqs_enabled = 1;
1112         p->softirq_enable_ip = _THIS_IP_;
1113         p->softirq_enable_event = 0;
1114         p->softirq_disable_ip = 0;
1115         p->softirq_disable_event = 0;
1116         p->hardirq_context = 0;
1117         p->softirq_context = 0;
1118 #endif
1119 #ifdef CONFIG_LOCKDEP
1120         p->lockdep_depth = 0; /* no locks held yet */
1121         p->curr_chain_key = 0;
1122         p->lockdep_recursion = 0;
1123 #endif
1124
1125 #ifdef CONFIG_DEBUG_MUTEXES
1126         p->blocked_on = NULL; /* not blocked yet */
1127 #endif
1128
1129         p->bts = NULL;
1130
1131         p->stack_start = stack_start;
1132
1133         /* Perform scheduler related setup. Assign this task to a CPU. */
1134         sched_fork(p, clone_flags);
1135
1136         retval = perf_event_init_task(p);
1137         if (retval)
1138                 goto bad_fork_cleanup_policy;
1139
1140         if ((retval = audit_alloc(p)))
1141                 goto bad_fork_cleanup_policy;
1142         /* copy all the process information */
1143         if ((retval = copy_semundo(clone_flags, p)))
1144                 goto bad_fork_cleanup_audit;
1145         if ((retval = copy_files(clone_flags, p)))
1146                 goto bad_fork_cleanup_semundo;
1147         if ((retval = copy_fs(clone_flags, p)))
1148                 goto bad_fork_cleanup_files;
1149         if ((retval = copy_sighand(clone_flags, p)))
1150                 goto bad_fork_cleanup_fs;
1151         if ((retval = copy_signal(clone_flags, p)))
1152                 goto bad_fork_cleanup_sighand;
1153         if ((retval = copy_mm(clone_flags, p)))
1154                 goto bad_fork_cleanup_signal;
1155         if ((retval = copy_namespaces(clone_flags, p)))
1156                 goto bad_fork_cleanup_mm;
1157         if ((retval = copy_io(clone_flags, p)))
1158                 goto bad_fork_cleanup_namespaces;
1159         retval = copy_thread(clone_flags, stack_start, stack_size, p, regs);
1160         if (retval)
1161                 goto bad_fork_cleanup_io;
1162
1163         if (pid != &init_struct_pid) {
1164                 retval = -ENOMEM;
1165                 pid = alloc_pid(p->nsproxy->pid_ns);
1166                 if (!pid)
1167                         goto bad_fork_cleanup_io;
1168
1169                 if (clone_flags & CLONE_NEWPID) {
1170                         retval = pid_ns_prepare_proc(p->nsproxy->pid_ns);
1171                         if (retval < 0)
1172                                 goto bad_fork_free_pid;
1173                 }
1174         }
1175
1176         p->pid = pid_nr(pid);
1177         p->tgid = p->pid;
1178         if (clone_flags & CLONE_THREAD)
1179                 p->tgid = current->tgid;
1180
1181         if (current->nsproxy != p->nsproxy) {
1182                 retval = ns_cgroup_clone(p, pid);
1183                 if (retval)
1184                         goto bad_fork_free_pid;
1185         }
1186
1187         p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1188         /*
1189          * Clear TID on mm_release()?
1190          */
1191         p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1192 #ifdef CONFIG_FUTEX
1193         p->robust_list = NULL;
1194 #ifdef CONFIG_COMPAT
1195         p->compat_robust_list = NULL;
1196 #endif
1197         INIT_LIST_HEAD(&p->pi_state_list);
1198         p->pi_state_cache = NULL;
1199 #endif
1200         /*
1201          * sigaltstack should be cleared when sharing the same VM
1202          */
1203         if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1204                 p->sas_ss_sp = p->sas_ss_size = 0;
1205
1206         /*
1207          * Syscall tracing should be turned off in the child regardless
1208          * of CLONE_PTRACE.
1209          */
1210         clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1211 #ifdef TIF_SYSCALL_EMU
1212         clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1213 #endif
1214         clear_all_latency_tracing(p);
1215
1216         /* ok, now we should be set up.. */
1217         p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1218         p->pdeath_signal = 0;
1219         p->exit_state = 0;
1220
1221         /*
1222          * Ok, make it visible to the rest of the system.
1223          * We dont wake it up yet.
1224          */
1225         p->group_leader = p;
1226         INIT_LIST_HEAD(&p->thread_group);
1227
1228         /* Now that the task is set up, run cgroup callbacks if
1229          * necessary. We need to run them before the task is visible
1230          * on the tasklist. */
1231         cgroup_fork_callbacks(p);
1232         cgroup_callbacks_done = 1;
1233
1234         /* Need tasklist lock for parent etc handling! */
1235         write_lock_irq(&tasklist_lock);
1236
1237         /*
1238          * The task hasn't been attached yet, so its cpus_allowed mask will
1239          * not be changed, nor will its assigned CPU.
1240          *
1241          * The cpus_allowed mask of the parent may have changed after it was
1242          * copied first time - so re-copy it here, then check the child's CPU
1243          * to ensure it is on a valid CPU (and if not, just force it back to
1244          * parent's CPU). This avoids alot of nasty races.
1245          */
1246         p->cpus_allowed = current->cpus_allowed;
1247         p->rt.nr_cpus_allowed = current->rt.nr_cpus_allowed;
1248         if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
1249                         !cpu_online(task_cpu(p))))
1250                 set_task_cpu(p, smp_processor_id());
1251
1252         /* CLONE_PARENT re-uses the old parent */
1253         if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1254                 p->real_parent = current->real_parent;
1255                 p->parent_exec_id = current->parent_exec_id;
1256         } else {
1257                 p->real_parent = current;
1258                 p->parent_exec_id = current->self_exec_id;
1259         }
1260
1261         spin_lock(&current->sighand->siglock);
1262
1263         /*
1264          * Process group and session signals need to be delivered to just the
1265          * parent before the fork or both the parent and the child after the
1266          * fork. Restart if a signal comes in before we add the new process to
1267          * it's process group.
1268          * A fatal signal pending means that current will exit, so the new
1269          * thread can't slip out of an OOM kill (or normal SIGKILL).
1270          */
1271         recalc_sigpending();
1272         if (signal_pending(current)) {
1273                 spin_unlock(&current->sighand->siglock);
1274                 write_unlock_irq(&tasklist_lock);
1275                 retval = -ERESTARTNOINTR;
1276                 goto bad_fork_free_pid;
1277         }
1278
1279         if (clone_flags & CLONE_THREAD) {
1280                 atomic_inc(&current->signal->count);
1281                 atomic_inc(&current->signal->live);
1282                 p->group_leader = current->group_leader;
1283                 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1284         }
1285
1286         if (likely(p->pid)) {
1287                 list_add_tail(&p->sibling, &p->real_parent->children);
1288                 tracehook_finish_clone(p, clone_flags, trace);
1289
1290                 if (thread_group_leader(p)) {
1291                         if (clone_flags & CLONE_NEWPID)
1292                                 p->nsproxy->pid_ns->child_reaper = p;
1293
1294                         p->signal->leader_pid = pid;
1295                         tty_kref_put(p->signal->tty);
1296                         p->signal->tty = tty_kref_get(current->signal->tty);
1297                         attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1298                         attach_pid(p, PIDTYPE_SID, task_session(current));
1299                         list_add_tail_rcu(&p->tasks, &init_task.tasks);
1300                         __get_cpu_var(process_counts)++;
1301                 }
1302                 attach_pid(p, PIDTYPE_PID, pid);
1303                 nr_threads++;
1304         }
1305
1306         total_forks++;
1307         spin_unlock(&current->sighand->siglock);
1308         write_unlock_irq(&tasklist_lock);
1309         proc_fork_connector(p);
1310         cgroup_post_fork(p);
1311         perf_event_fork(p);
1312         return p;
1313
1314 bad_fork_free_pid:
1315         if (pid != &init_struct_pid)
1316                 free_pid(pid);
1317 bad_fork_cleanup_io:
1318         put_io_context(p->io_context);
1319 bad_fork_cleanup_namespaces:
1320         exit_task_namespaces(p);
1321 bad_fork_cleanup_mm:
1322         if (p->mm)
1323                 mmput(p->mm);
1324 bad_fork_cleanup_signal:
1325         if (!(clone_flags & CLONE_THREAD))
1326                 __cleanup_signal(p->signal);
1327 bad_fork_cleanup_sighand:
1328         __cleanup_sighand(p->sighand);
1329 bad_fork_cleanup_fs:
1330         exit_fs(p); /* blocking */
1331 bad_fork_cleanup_files:
1332         exit_files(p); /* blocking */
1333 bad_fork_cleanup_semundo:
1334         exit_sem(p);
1335 bad_fork_cleanup_audit:
1336         audit_free(p);
1337 bad_fork_cleanup_policy:
1338         perf_event_free_task(p);
1339 #ifdef CONFIG_NUMA
1340         mpol_put(p->mempolicy);
1341 bad_fork_cleanup_cgroup:
1342 #endif
1343         cgroup_exit(p, cgroup_callbacks_done);
1344         delayacct_tsk_free(p);
1345         module_put(task_thread_info(p)->exec_domain->module);
1346 bad_fork_cleanup_count:
1347         atomic_dec(&p->cred->user->processes);
1348         exit_creds(p);
1349 bad_fork_free:
1350         free_task(p);
1351 fork_out:
1352         return ERR_PTR(retval);
1353 }
1354
1355 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1356 {
1357         memset(regs, 0, sizeof(struct pt_regs));
1358         return regs;
1359 }
1360
1361 struct task_struct * __cpuinit fork_idle(int cpu)
1362 {
1363         struct task_struct *task;
1364         struct pt_regs regs;
1365
1366         task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1367                             &init_struct_pid, 0);
1368         if (!IS_ERR(task))
1369                 init_idle(task, cpu);
1370
1371         return task;
1372 }
1373
1374 /*
1375  *  Ok, this is the main fork-routine.
1376  *
1377  * It copies the process, and if successful kick-starts
1378  * it and waits for it to finish using the VM if required.
1379  */
1380 long do_fork(unsigned long clone_flags,
1381               unsigned long stack_start,
1382               struct pt_regs *regs,
1383               unsigned long stack_size,
1384               int __user *parent_tidptr,
1385               int __user *child_tidptr)
1386 {
1387         struct task_struct *p;
1388         int trace = 0;
1389         long nr;
1390
1391         /*
1392          * Do some preliminary argument and permissions checking before we
1393          * actually start allocating stuff
1394          */
1395         if (clone_flags & CLONE_NEWUSER) {
1396                 if (clone_flags & CLONE_THREAD)
1397                         return -EINVAL;
1398                 /* hopefully this check will go away when userns support is
1399                  * complete
1400                  */
1401                 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) ||
1402                                 !capable(CAP_SETGID))
1403                         return -EPERM;
1404         }
1405
1406         /*
1407          * We hope to recycle these flags after 2.6.26
1408          */
1409         if (unlikely(clone_flags & CLONE_STOPPED)) {
1410                 static int __read_mostly count = 100;
1411
1412                 if (count > 0 && printk_ratelimit()) {
1413                         char comm[TASK_COMM_LEN];
1414
1415                         count--;
1416                         printk(KERN_INFO "fork(): process `%s' used deprecated "
1417                                         "clone flags 0x%lx\n",
1418                                 get_task_comm(comm, current),
1419                                 clone_flags & CLONE_STOPPED);
1420                 }
1421         }
1422
1423         /*
1424          * When called from kernel_thread, don't do user tracing stuff.
1425          */
1426         if (likely(user_mode(regs)))
1427                 trace = tracehook_prepare_clone(clone_flags);
1428
1429         p = copy_process(clone_flags, stack_start, regs, stack_size,
1430                          child_tidptr, NULL, trace);
1431         /*
1432          * Do this prior waking up the new thread - the thread pointer
1433          * might get invalid after that point, if the thread exits quickly.
1434          */
1435         if (!IS_ERR(p)) {
1436                 struct completion vfork;
1437
1438                 trace_sched_process_fork(current, p);
1439
1440                 nr = task_pid_vnr(p);
1441
1442                 if (clone_flags & CLONE_PARENT_SETTID)
1443                         put_user(nr, parent_tidptr);
1444
1445                 if (clone_flags & CLONE_VFORK) {
1446                         p->vfork_done = &vfork;
1447                         init_completion(&vfork);
1448                 }
1449
1450                 audit_finish_fork(p);
1451                 tracehook_report_clone(regs, clone_flags, nr, p);
1452
1453                 /*
1454                  * We set PF_STARTING at creation in case tracing wants to
1455                  * use this to distinguish a fully live task from one that
1456                  * hasn't gotten to tracehook_report_clone() yet.  Now we
1457                  * clear it and set the child going.
1458                  */
1459                 p->flags &= ~PF_STARTING;
1460
1461                 if (unlikely(clone_flags & CLONE_STOPPED)) {
1462                         /*
1463                          * We'll start up with an immediate SIGSTOP.
1464                          */
1465                         sigaddset(&p->pending.signal, SIGSTOP);
1466                         set_tsk_thread_flag(p, TIF_SIGPENDING);
1467                         __set_task_state(p, TASK_STOPPED);
1468                 } else {
1469                         wake_up_new_task(p, clone_flags);
1470                 }
1471
1472                 tracehook_report_clone_complete(trace, regs,
1473                                                 clone_flags, nr, p);
1474
1475                 if (clone_flags & CLONE_VFORK) {
1476                         freezer_do_not_count();
1477                         wait_for_completion(&vfork);
1478                         freezer_count();
1479                         tracehook_report_vfork_done(p, nr);
1480                 }
1481         } else {
1482                 nr = PTR_ERR(p);
1483         }
1484         return nr;
1485 }
1486
1487 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1488 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1489 #endif
1490
1491 static void sighand_ctor(void *data)
1492 {
1493         struct sighand_struct *sighand = data;
1494
1495         spin_lock_init(&sighand->siglock);
1496         init_waitqueue_head(&sighand->signalfd_wqh);
1497 }
1498
1499 void __init proc_caches_init(void)
1500 {
1501         sighand_cachep = kmem_cache_create("sighand_cache",
1502                         sizeof(struct sighand_struct), 0,
1503                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1504                         SLAB_NOTRACK, sighand_ctor);
1505         signal_cachep = kmem_cache_create("signal_cache",
1506                         sizeof(struct signal_struct), 0,
1507                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1508         files_cachep = kmem_cache_create("files_cache",
1509                         sizeof(struct files_struct), 0,
1510                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1511         fs_cachep = kmem_cache_create("fs_cache",
1512                         sizeof(struct fs_struct), 0,
1513                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1514         mm_cachep = kmem_cache_create("mm_struct",
1515                         sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1516                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1517         vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1518         mmap_init();
1519 }
1520
1521 /*
1522  * Check constraints on flags passed to the unshare system call and
1523  * force unsharing of additional process context as appropriate.
1524  */
1525 static void check_unshare_flags(unsigned long *flags_ptr)
1526 {
1527         /*
1528          * If unsharing a thread from a thread group, must also
1529          * unshare vm.
1530          */
1531         if (*flags_ptr & CLONE_THREAD)
1532                 *flags_ptr |= CLONE_VM;
1533
1534         /*
1535          * If unsharing vm, must also unshare signal handlers.
1536          */
1537         if (*flags_ptr & CLONE_VM)
1538                 *flags_ptr |= CLONE_SIGHAND;
1539
1540         /*
1541          * If unsharing signal handlers and the task was created
1542          * using CLONE_THREAD, then must unshare the thread
1543          */
1544         if ((*flags_ptr & CLONE_SIGHAND) &&
1545             (atomic_read(&current->signal->count) > 1))
1546                 *flags_ptr |= CLONE_THREAD;
1547
1548         /*
1549          * If unsharing namespace, must also unshare filesystem information.
1550          */
1551         if (*flags_ptr & CLONE_NEWNS)
1552                 *flags_ptr |= CLONE_FS;
1553 }
1554
1555 /*
1556  * Unsharing of tasks created with CLONE_THREAD is not supported yet
1557  */
1558 static int unshare_thread(unsigned long unshare_flags)
1559 {
1560         if (unshare_flags & CLONE_THREAD)
1561                 return -EINVAL;
1562
1563         return 0;
1564 }
1565
1566 /*
1567  * Unshare the filesystem structure if it is being shared
1568  */
1569 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1570 {
1571         struct fs_struct *fs = current->fs;
1572
1573         if (!(unshare_flags & CLONE_FS) || !fs)
1574                 return 0;
1575
1576         /* don't need lock here; in the worst case we'll do useless copy */
1577         if (fs->users == 1)
1578                 return 0;
1579
1580         *new_fsp = copy_fs_struct(fs);
1581         if (!*new_fsp)
1582                 return -ENOMEM;
1583
1584         return 0;
1585 }
1586
1587 /*
1588  * Unsharing of sighand is not supported yet
1589  */
1590 static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
1591 {
1592         struct sighand_struct *sigh = current->sighand;
1593
1594         if ((unshare_flags & CLONE_SIGHAND) && atomic_read(&sigh->count) > 1)
1595                 return -EINVAL;
1596         else
1597                 return 0;
1598 }
1599
1600 /*
1601  * Unshare vm if it is being shared
1602  */
1603 static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
1604 {
1605         struct mm_struct *mm = current->mm;
1606
1607         if ((unshare_flags & CLONE_VM) &&
1608             (mm && atomic_read(&mm->mm_users) > 1)) {
1609                 return -EINVAL;
1610         }
1611
1612         return 0;
1613 }
1614
1615 /*
1616  * Unshare file descriptor table if it is being shared
1617  */
1618 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1619 {
1620         struct files_struct *fd = current->files;
1621         int error = 0;
1622
1623         if ((unshare_flags & CLONE_FILES) &&
1624             (fd && atomic_read(&fd->count) > 1)) {
1625                 *new_fdp = dup_fd(fd, &error);
1626                 if (!*new_fdp)
1627                         return error;
1628         }
1629
1630         return 0;
1631 }
1632
1633 /*
1634  * unshare allows a process to 'unshare' part of the process
1635  * context which was originally shared using clone.  copy_*
1636  * functions used by do_fork() cannot be used here directly
1637  * because they modify an inactive task_struct that is being
1638  * constructed. Here we are modifying the current, active,
1639  * task_struct.
1640  */
1641 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1642 {
1643         int err = 0;
1644         struct fs_struct *fs, *new_fs = NULL;
1645         struct sighand_struct *new_sigh = NULL;
1646         struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
1647         struct files_struct *fd, *new_fd = NULL;
1648         struct nsproxy *new_nsproxy = NULL;
1649         int do_sysvsem = 0;
1650
1651         check_unshare_flags(&unshare_flags);
1652
1653         /* Return -EINVAL for all unsupported flags */
1654         err = -EINVAL;
1655         if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1656                                 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1657                                 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET))
1658                 goto bad_unshare_out;
1659
1660         /*
1661          * CLONE_NEWIPC must also detach from the undolist: after switching
1662          * to a new ipc namespace, the semaphore arrays from the old
1663          * namespace are unreachable.
1664          */
1665         if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1666                 do_sysvsem = 1;
1667         if ((err = unshare_thread(unshare_flags)))
1668                 goto bad_unshare_out;
1669         if ((err = unshare_fs(unshare_flags, &new_fs)))
1670                 goto bad_unshare_cleanup_thread;
1671         if ((err = unshare_sighand(unshare_flags, &new_sigh)))
1672                 goto bad_unshare_cleanup_fs;
1673         if ((err = unshare_vm(unshare_flags, &new_mm)))
1674                 goto bad_unshare_cleanup_sigh;
1675         if ((err = unshare_fd(unshare_flags, &new_fd)))
1676                 goto bad_unshare_cleanup_vm;
1677         if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1678                         new_fs)))
1679                 goto bad_unshare_cleanup_fd;
1680
1681         if (new_fs ||  new_mm || new_fd || do_sysvsem || new_nsproxy) {
1682                 if (do_sysvsem) {
1683                         /*
1684                          * CLONE_SYSVSEM is equivalent to sys_exit().
1685                          */
1686                         exit_sem(current);
1687                 }
1688
1689                 if (new_nsproxy) {
1690                         switch_task_namespaces(current, new_nsproxy);
1691                         new_nsproxy = NULL;
1692                 }
1693
1694                 task_lock(current);
1695
1696                 if (new_fs) {
1697                         fs = current->fs;
1698                         write_lock(&fs->lock);
1699                         current->fs = new_fs;
1700                         if (--fs->users)
1701                                 new_fs = NULL;
1702                         else
1703                                 new_fs = fs;
1704                         write_unlock(&fs->lock);
1705                 }
1706
1707                 if (new_mm) {
1708                         mm = current->mm;
1709                         active_mm = current->active_mm;
1710                         current->mm = new_mm;
1711                         current->active_mm = new_mm;
1712                         activate_mm(active_mm, new_mm);
1713                         new_mm = mm;
1714                 }
1715
1716                 if (new_fd) {
1717                         fd = current->files;
1718                         current->files = new_fd;
1719                         new_fd = fd;
1720                 }
1721
1722                 task_unlock(current);
1723         }
1724
1725         if (new_nsproxy)
1726                 put_nsproxy(new_nsproxy);
1727
1728 bad_unshare_cleanup_fd:
1729         if (new_fd)
1730                 put_files_struct(new_fd);
1731
1732 bad_unshare_cleanup_vm:
1733         if (new_mm)
1734                 mmput(new_mm);
1735
1736 bad_unshare_cleanup_sigh:
1737         if (new_sigh)
1738                 if (atomic_dec_and_test(&new_sigh->count))
1739                         kmem_cache_free(sighand_cachep, new_sigh);
1740
1741 bad_unshare_cleanup_fs:
1742         if (new_fs)
1743                 free_fs_struct(new_fs);
1744
1745 bad_unshare_cleanup_thread:
1746 bad_unshare_out:
1747         return err;
1748 }
1749
1750 /*
1751  *      Helper to unshare the files of the current task.
1752  *      We don't want to expose copy_files internals to
1753  *      the exec layer of the kernel.
1754  */
1755
1756 int unshare_files(struct files_struct **displaced)
1757 {
1758         struct task_struct *task = current;
1759         struct files_struct *copy = NULL;
1760         int error;
1761
1762         error = unshare_fd(CLONE_FILES, &copy);
1763         if (error || !copy) {
1764                 *displaced = NULL;
1765                 return error;
1766         }
1767         *displaced = task->files;
1768         task_lock(task);
1769         task->files = copy;
1770         task_unlock(task);
1771         return 0;
1772 }