[PATCH] fs/smbfs/request.c: turn NULL dereference into BUG()
[safe/jmp/linux-2.6] / kernel / fork.c
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13
14 #include <linux/config.h>
15 #include <linux/slab.h>
16 #include <linux/init.h>
17 #include <linux/unistd.h>
18 #include <linux/smp_lock.h>
19 #include <linux/module.h>
20 #include <linux/vmalloc.h>
21 #include <linux/completion.h>
22 #include <linux/namespace.h>
23 #include <linux/personality.h>
24 #include <linux/mempolicy.h>
25 #include <linux/sem.h>
26 #include <linux/file.h>
27 #include <linux/key.h>
28 #include <linux/binfmts.h>
29 #include <linux/mman.h>
30 #include <linux/fs.h>
31 #include <linux/cpu.h>
32 #include <linux/cpuset.h>
33 #include <linux/security.h>
34 #include <linux/swap.h>
35 #include <linux/syscalls.h>
36 #include <linux/jiffies.h>
37 #include <linux/futex.h>
38 #include <linux/rcupdate.h>
39 #include <linux/ptrace.h>
40 #include <linux/mount.h>
41 #include <linux/audit.h>
42 #include <linux/profile.h>
43 #include <linux/rmap.h>
44 #include <linux/acct.h>
45 #include <linux/cn_proc.h>
46
47 #include <asm/pgtable.h>
48 #include <asm/pgalloc.h>
49 #include <asm/uaccess.h>
50 #include <asm/mmu_context.h>
51 #include <asm/cacheflush.h>
52 #include <asm/tlbflush.h>
53
54 /*
55  * Protected counters by write_lock_irq(&tasklist_lock)
56  */
57 unsigned long total_forks;      /* Handle normal Linux uptimes. */
58 int nr_threads;                 /* The idle threads do not count.. */
59
60 int max_threads;                /* tunable limit on nr_threads */
61
62 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
63
64  __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
65
66 EXPORT_SYMBOL(tasklist_lock);
67
68 int nr_processes(void)
69 {
70         int cpu;
71         int total = 0;
72
73         for_each_online_cpu(cpu)
74                 total += per_cpu(process_counts, cpu);
75
76         return total;
77 }
78
79 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
80 # define alloc_task_struct()    kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
81 # define free_task_struct(tsk)  kmem_cache_free(task_struct_cachep, (tsk))
82 static kmem_cache_t *task_struct_cachep;
83 #endif
84
85 /* SLAB cache for signal_struct structures (tsk->signal) */
86 kmem_cache_t *signal_cachep;
87
88 /* SLAB cache for sighand_struct structures (tsk->sighand) */
89 kmem_cache_t *sighand_cachep;
90
91 /* SLAB cache for files_struct structures (tsk->files) */
92 kmem_cache_t *files_cachep;
93
94 /* SLAB cache for fs_struct structures (tsk->fs) */
95 kmem_cache_t *fs_cachep;
96
97 /* SLAB cache for vm_area_struct structures */
98 kmem_cache_t *vm_area_cachep;
99
100 /* SLAB cache for mm_struct structures (tsk->mm) */
101 static kmem_cache_t *mm_cachep;
102
103 void free_task(struct task_struct *tsk)
104 {
105         free_thread_info(tsk->thread_info);
106         free_task_struct(tsk);
107 }
108 EXPORT_SYMBOL(free_task);
109
110 void __put_task_struct(struct task_struct *tsk)
111 {
112         WARN_ON(!(tsk->exit_state & (EXIT_DEAD | EXIT_ZOMBIE)));
113         WARN_ON(atomic_read(&tsk->usage));
114         WARN_ON(tsk == current);
115
116         if (unlikely(tsk->audit_context))
117                 audit_free(tsk);
118         security_task_free(tsk);
119         free_uid(tsk->user);
120         put_group_info(tsk->group_info);
121
122         if (!profile_handoff_task(tsk))
123                 free_task(tsk);
124 }
125
126 void __init fork_init(unsigned long mempages)
127 {
128 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
129 #ifndef ARCH_MIN_TASKALIGN
130 #define ARCH_MIN_TASKALIGN      L1_CACHE_BYTES
131 #endif
132         /* create a slab on which task_structs can be allocated */
133         task_struct_cachep =
134                 kmem_cache_create("task_struct", sizeof(struct task_struct),
135                         ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL, NULL);
136 #endif
137
138         /*
139          * The default maximum number of threads is set to a safe
140          * value: the thread structures can take up at most half
141          * of memory.
142          */
143         max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
144
145         /*
146          * we need to allow at least 20 threads to boot a system
147          */
148         if(max_threads < 20)
149                 max_threads = 20;
150
151         init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
152         init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
153         init_task.signal->rlim[RLIMIT_SIGPENDING] =
154                 init_task.signal->rlim[RLIMIT_NPROC];
155 }
156
157 static struct task_struct *dup_task_struct(struct task_struct *orig)
158 {
159         struct task_struct *tsk;
160         struct thread_info *ti;
161
162         prepare_to_copy(orig);
163
164         tsk = alloc_task_struct();
165         if (!tsk)
166                 return NULL;
167
168         ti = alloc_thread_info(tsk);
169         if (!ti) {
170                 free_task_struct(tsk);
171                 return NULL;
172         }
173
174         *ti = *orig->thread_info;
175         *tsk = *orig;
176         tsk->thread_info = ti;
177         ti->task = tsk;
178
179         /* One for us, one for whoever does the "release_task()" (usually parent) */
180         atomic_set(&tsk->usage,2);
181         atomic_set(&tsk->fs_excl, 0);
182         return tsk;
183 }
184
185 #ifdef CONFIG_MMU
186 static inline int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
187 {
188         struct vm_area_struct *mpnt, *tmp, **pprev;
189         struct rb_node **rb_link, *rb_parent;
190         int retval;
191         unsigned long charge;
192         struct mempolicy *pol;
193
194         down_write(&oldmm->mmap_sem);
195         flush_cache_mm(oldmm);
196         down_write(&mm->mmap_sem);
197
198         mm->locked_vm = 0;
199         mm->mmap = NULL;
200         mm->mmap_cache = NULL;
201         mm->free_area_cache = oldmm->mmap_base;
202         mm->cached_hole_size = ~0UL;
203         mm->map_count = 0;
204         cpus_clear(mm->cpu_vm_mask);
205         mm->mm_rb = RB_ROOT;
206         rb_link = &mm->mm_rb.rb_node;
207         rb_parent = NULL;
208         pprev = &mm->mmap;
209
210         for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
211                 struct file *file;
212
213                 if (mpnt->vm_flags & VM_DONTCOPY) {
214                         long pages = vma_pages(mpnt);
215                         mm->total_vm -= pages;
216                         vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
217                                                                 -pages);
218                         continue;
219                 }
220                 charge = 0;
221                 if (mpnt->vm_flags & VM_ACCOUNT) {
222                         unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
223                         if (security_vm_enough_memory(len))
224                                 goto fail_nomem;
225                         charge = len;
226                 }
227                 tmp = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
228                 if (!tmp)
229                         goto fail_nomem;
230                 *tmp = *mpnt;
231                 pol = mpol_copy(vma_policy(mpnt));
232                 retval = PTR_ERR(pol);
233                 if (IS_ERR(pol))
234                         goto fail_nomem_policy;
235                 vma_set_policy(tmp, pol);
236                 tmp->vm_flags &= ~VM_LOCKED;
237                 tmp->vm_mm = mm;
238                 tmp->vm_next = NULL;
239                 anon_vma_link(tmp);
240                 file = tmp->vm_file;
241                 if (file) {
242                         struct inode *inode = file->f_dentry->d_inode;
243                         get_file(file);
244                         if (tmp->vm_flags & VM_DENYWRITE)
245                                 atomic_dec(&inode->i_writecount);
246       
247                         /* insert tmp into the share list, just after mpnt */
248                         spin_lock(&file->f_mapping->i_mmap_lock);
249                         tmp->vm_truncate_count = mpnt->vm_truncate_count;
250                         flush_dcache_mmap_lock(file->f_mapping);
251                         vma_prio_tree_add(tmp, mpnt);
252                         flush_dcache_mmap_unlock(file->f_mapping);
253                         spin_unlock(&file->f_mapping->i_mmap_lock);
254                 }
255
256                 /*
257                  * Link in the new vma and copy the page table entries.
258                  */
259                 *pprev = tmp;
260                 pprev = &tmp->vm_next;
261
262                 __vma_link_rb(mm, tmp, rb_link, rb_parent);
263                 rb_link = &tmp->vm_rb.rb_right;
264                 rb_parent = &tmp->vm_rb;
265
266                 mm->map_count++;
267                 retval = copy_page_range(mm, oldmm, tmp);
268
269                 if (tmp->vm_ops && tmp->vm_ops->open)
270                         tmp->vm_ops->open(tmp);
271
272                 if (retval)
273                         goto out;
274         }
275         retval = 0;
276 out:
277         up_write(&mm->mmap_sem);
278         flush_tlb_mm(oldmm);
279         up_write(&oldmm->mmap_sem);
280         return retval;
281 fail_nomem_policy:
282         kmem_cache_free(vm_area_cachep, tmp);
283 fail_nomem:
284         retval = -ENOMEM;
285         vm_unacct_memory(charge);
286         goto out;
287 }
288
289 static inline int mm_alloc_pgd(struct mm_struct * mm)
290 {
291         mm->pgd = pgd_alloc(mm);
292         if (unlikely(!mm->pgd))
293                 return -ENOMEM;
294         return 0;
295 }
296
297 static inline void mm_free_pgd(struct mm_struct * mm)
298 {
299         pgd_free(mm->pgd);
300 }
301 #else
302 #define dup_mmap(mm, oldmm)     (0)
303 #define mm_alloc_pgd(mm)        (0)
304 #define mm_free_pgd(mm)
305 #endif /* CONFIG_MMU */
306
307  __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
308
309 #define allocate_mm()   (kmem_cache_alloc(mm_cachep, SLAB_KERNEL))
310 #define free_mm(mm)     (kmem_cache_free(mm_cachep, (mm)))
311
312 #include <linux/init_task.h>
313
314 static struct mm_struct * mm_init(struct mm_struct * mm)
315 {
316         atomic_set(&mm->mm_users, 1);
317         atomic_set(&mm->mm_count, 1);
318         init_rwsem(&mm->mmap_sem);
319         INIT_LIST_HEAD(&mm->mmlist);
320         mm->core_waiters = 0;
321         mm->nr_ptes = 0;
322         set_mm_counter(mm, file_rss, 0);
323         set_mm_counter(mm, anon_rss, 0);
324         spin_lock_init(&mm->page_table_lock);
325         rwlock_init(&mm->ioctx_list_lock);
326         mm->ioctx_list = NULL;
327         mm->default_kioctx = (struct kioctx)INIT_KIOCTX(mm->default_kioctx, *mm);
328         mm->free_area_cache = TASK_UNMAPPED_BASE;
329         mm->cached_hole_size = ~0UL;
330
331         if (likely(!mm_alloc_pgd(mm))) {
332                 mm->def_flags = 0;
333                 return mm;
334         }
335         free_mm(mm);
336         return NULL;
337 }
338
339 /*
340  * Allocate and initialize an mm_struct.
341  */
342 struct mm_struct * mm_alloc(void)
343 {
344         struct mm_struct * mm;
345
346         mm = allocate_mm();
347         if (mm) {
348                 memset(mm, 0, sizeof(*mm));
349                 mm = mm_init(mm);
350         }
351         return mm;
352 }
353
354 /*
355  * Called when the last reference to the mm
356  * is dropped: either by a lazy thread or by
357  * mmput. Free the page directory and the mm.
358  */
359 void fastcall __mmdrop(struct mm_struct *mm)
360 {
361         BUG_ON(mm == &init_mm);
362         mm_free_pgd(mm);
363         destroy_context(mm);
364         free_mm(mm);
365 }
366
367 /*
368  * Decrement the use count and release all resources for an mm.
369  */
370 void mmput(struct mm_struct *mm)
371 {
372         if (atomic_dec_and_test(&mm->mm_users)) {
373                 exit_aio(mm);
374                 exit_mmap(mm);
375                 if (!list_empty(&mm->mmlist)) {
376                         spin_lock(&mmlist_lock);
377                         list_del(&mm->mmlist);
378                         spin_unlock(&mmlist_lock);
379                 }
380                 put_swap_token(mm);
381                 mmdrop(mm);
382         }
383 }
384 EXPORT_SYMBOL_GPL(mmput);
385
386 /**
387  * get_task_mm - acquire a reference to the task's mm
388  *
389  * Returns %NULL if the task has no mm.  Checks PF_BORROWED_MM (meaning
390  * this kernel workthread has transiently adopted a user mm with use_mm,
391  * to do its AIO) is not set and if so returns a reference to it, after
392  * bumping up the use count.  User must release the mm via mmput()
393  * after use.  Typically used by /proc and ptrace.
394  */
395 struct mm_struct *get_task_mm(struct task_struct *task)
396 {
397         struct mm_struct *mm;
398
399         task_lock(task);
400         mm = task->mm;
401         if (mm) {
402                 if (task->flags & PF_BORROWED_MM)
403                         mm = NULL;
404                 else
405                         atomic_inc(&mm->mm_users);
406         }
407         task_unlock(task);
408         return mm;
409 }
410 EXPORT_SYMBOL_GPL(get_task_mm);
411
412 /* Please note the differences between mmput and mm_release.
413  * mmput is called whenever we stop holding onto a mm_struct,
414  * error success whatever.
415  *
416  * mm_release is called after a mm_struct has been removed
417  * from the current process.
418  *
419  * This difference is important for error handling, when we
420  * only half set up a mm_struct for a new process and need to restore
421  * the old one.  Because we mmput the new mm_struct before
422  * restoring the old one. . .
423  * Eric Biederman 10 January 1998
424  */
425 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
426 {
427         struct completion *vfork_done = tsk->vfork_done;
428
429         /* Get rid of any cached register state */
430         deactivate_mm(tsk, mm);
431
432         /* notify parent sleeping on vfork() */
433         if (vfork_done) {
434                 tsk->vfork_done = NULL;
435                 complete(vfork_done);
436         }
437         if (tsk->clear_child_tid && atomic_read(&mm->mm_users) > 1) {
438                 u32 __user * tidptr = tsk->clear_child_tid;
439                 tsk->clear_child_tid = NULL;
440
441                 /*
442                  * We don't check the error code - if userspace has
443                  * not set up a proper pointer then tough luck.
444                  */
445                 put_user(0, tidptr);
446                 sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
447         }
448 }
449
450 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
451 {
452         struct mm_struct * mm, *oldmm;
453         int retval;
454
455         tsk->min_flt = tsk->maj_flt = 0;
456         tsk->nvcsw = tsk->nivcsw = 0;
457
458         tsk->mm = NULL;
459         tsk->active_mm = NULL;
460
461         /*
462          * Are we cloning a kernel thread?
463          *
464          * We need to steal a active VM for that..
465          */
466         oldmm = current->mm;
467         if (!oldmm)
468                 return 0;
469
470         if (clone_flags & CLONE_VM) {
471                 atomic_inc(&oldmm->mm_users);
472                 mm = oldmm;
473                 /*
474                  * There are cases where the PTL is held to ensure no
475                  * new threads start up in user mode using an mm, which
476                  * allows optimizing out ipis; the tlb_gather_mmu code
477                  * is an example.
478                  */
479                 spin_unlock_wait(&oldmm->page_table_lock);
480                 goto good_mm;
481         }
482
483         retval = -ENOMEM;
484         mm = allocate_mm();
485         if (!mm)
486                 goto fail_nomem;
487
488         /* Copy the current MM stuff.. */
489         memcpy(mm, oldmm, sizeof(*mm));
490         if (!mm_init(mm))
491                 goto fail_nomem;
492
493         if (init_new_context(tsk,mm))
494                 goto fail_nocontext;
495
496         retval = dup_mmap(mm, oldmm);
497         if (retval)
498                 goto free_pt;
499
500         mm->hiwater_rss = get_mm_rss(mm);
501         mm->hiwater_vm = mm->total_vm;
502
503 good_mm:
504         tsk->mm = mm;
505         tsk->active_mm = mm;
506         return 0;
507
508 free_pt:
509         mmput(mm);
510 fail_nomem:
511         return retval;
512
513 fail_nocontext:
514         /*
515          * If init_new_context() failed, we cannot use mmput() to free the mm
516          * because it calls destroy_context()
517          */
518         mm_free_pgd(mm);
519         free_mm(mm);
520         return retval;
521 }
522
523 static inline struct fs_struct *__copy_fs_struct(struct fs_struct *old)
524 {
525         struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
526         /* We don't need to lock fs - think why ;-) */
527         if (fs) {
528                 atomic_set(&fs->count, 1);
529                 rwlock_init(&fs->lock);
530                 fs->umask = old->umask;
531                 read_lock(&old->lock);
532                 fs->rootmnt = mntget(old->rootmnt);
533                 fs->root = dget(old->root);
534                 fs->pwdmnt = mntget(old->pwdmnt);
535                 fs->pwd = dget(old->pwd);
536                 if (old->altroot) {
537                         fs->altrootmnt = mntget(old->altrootmnt);
538                         fs->altroot = dget(old->altroot);
539                 } else {
540                         fs->altrootmnt = NULL;
541                         fs->altroot = NULL;
542                 }
543                 read_unlock(&old->lock);
544         }
545         return fs;
546 }
547
548 struct fs_struct *copy_fs_struct(struct fs_struct *old)
549 {
550         return __copy_fs_struct(old);
551 }
552
553 EXPORT_SYMBOL_GPL(copy_fs_struct);
554
555 static inline int copy_fs(unsigned long clone_flags, struct task_struct * tsk)
556 {
557         if (clone_flags & CLONE_FS) {
558                 atomic_inc(&current->fs->count);
559                 return 0;
560         }
561         tsk->fs = __copy_fs_struct(current->fs);
562         if (!tsk->fs)
563                 return -ENOMEM;
564         return 0;
565 }
566
567 static int count_open_files(struct fdtable *fdt)
568 {
569         int size = fdt->max_fdset;
570         int i;
571
572         /* Find the last open fd */
573         for (i = size/(8*sizeof(long)); i > 0; ) {
574                 if (fdt->open_fds->fds_bits[--i])
575                         break;
576         }
577         i = (i+1) * 8 * sizeof(long);
578         return i;
579 }
580
581 static struct files_struct *alloc_files(void)
582 {
583         struct files_struct *newf;
584         struct fdtable *fdt;
585
586         newf = kmem_cache_alloc(files_cachep, SLAB_KERNEL);
587         if (!newf)
588                 goto out;
589
590         atomic_set(&newf->count, 1);
591
592         spin_lock_init(&newf->file_lock);
593         fdt = &newf->fdtab;
594         fdt->next_fd = 0;
595         fdt->max_fds = NR_OPEN_DEFAULT;
596         fdt->max_fdset = __FD_SETSIZE;
597         fdt->close_on_exec = &newf->close_on_exec_init;
598         fdt->open_fds = &newf->open_fds_init;
599         fdt->fd = &newf->fd_array[0];
600         INIT_RCU_HEAD(&fdt->rcu);
601         fdt->free_files = NULL;
602         fdt->next = NULL;
603         rcu_assign_pointer(newf->fdt, fdt);
604 out:
605         return newf;
606 }
607
608 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
609 {
610         struct files_struct *oldf, *newf;
611         struct file **old_fds, **new_fds;
612         int open_files, size, i, error = 0, expand;
613         struct fdtable *old_fdt, *new_fdt;
614
615         /*
616          * A background process may not have any files ...
617          */
618         oldf = current->files;
619         if (!oldf)
620                 goto out;
621
622         if (clone_flags & CLONE_FILES) {
623                 atomic_inc(&oldf->count);
624                 goto out;
625         }
626
627         /*
628          * Note: we may be using current for both targets (See exec.c)
629          * This works because we cache current->files (old) as oldf. Don't
630          * break this.
631          */
632         tsk->files = NULL;
633         error = -ENOMEM;
634         newf = alloc_files();
635         if (!newf)
636                 goto out;
637
638         spin_lock(&oldf->file_lock);
639         old_fdt = files_fdtable(oldf);
640         new_fdt = files_fdtable(newf);
641         size = old_fdt->max_fdset;
642         open_files = count_open_files(old_fdt);
643         expand = 0;
644
645         /*
646          * Check whether we need to allocate a larger fd array or fd set.
647          * Note: we're not a clone task, so the open count won't  change.
648          */
649         if (open_files > new_fdt->max_fdset) {
650                 new_fdt->max_fdset = 0;
651                 expand = 1;
652         }
653         if (open_files > new_fdt->max_fds) {
654                 new_fdt->max_fds = 0;
655                 expand = 1;
656         }
657
658         /* if the old fdset gets grown now, we'll only copy up to "size" fds */
659         if (expand) {
660                 spin_unlock(&oldf->file_lock);
661                 spin_lock(&newf->file_lock);
662                 error = expand_files(newf, open_files-1);
663                 spin_unlock(&newf->file_lock);
664                 if (error < 0)
665                         goto out_release;
666                 new_fdt = files_fdtable(newf);
667                 /*
668                  * Reacquire the oldf lock and a pointer to its fd table
669                  * who knows it may have a new bigger fd table. We need
670                  * the latest pointer.
671                  */
672                 spin_lock(&oldf->file_lock);
673                 old_fdt = files_fdtable(oldf);
674         }
675
676         old_fds = old_fdt->fd;
677         new_fds = new_fdt->fd;
678
679         memcpy(new_fdt->open_fds->fds_bits, old_fdt->open_fds->fds_bits, open_files/8);
680         memcpy(new_fdt->close_on_exec->fds_bits, old_fdt->close_on_exec->fds_bits, open_files/8);
681
682         for (i = open_files; i != 0; i--) {
683                 struct file *f = *old_fds++;
684                 if (f) {
685                         get_file(f);
686                 } else {
687                         /*
688                          * The fd may be claimed in the fd bitmap but not yet
689                          * instantiated in the files array if a sibling thread
690                          * is partway through open().  So make sure that this
691                          * fd is available to the new process.
692                          */
693                         FD_CLR(open_files - i, new_fdt->open_fds);
694                 }
695                 rcu_assign_pointer(*new_fds++, f);
696         }
697         spin_unlock(&oldf->file_lock);
698
699         /* compute the remainder to be cleared */
700         size = (new_fdt->max_fds - open_files) * sizeof(struct file *);
701
702         /* This is long word aligned thus could use a optimized version */ 
703         memset(new_fds, 0, size); 
704
705         if (new_fdt->max_fdset > open_files) {
706                 int left = (new_fdt->max_fdset-open_files)/8;
707                 int start = open_files / (8 * sizeof(unsigned long));
708
709                 memset(&new_fdt->open_fds->fds_bits[start], 0, left);
710                 memset(&new_fdt->close_on_exec->fds_bits[start], 0, left);
711         }
712
713         tsk->files = newf;
714         error = 0;
715 out:
716         return error;
717
718 out_release:
719         free_fdset (new_fdt->close_on_exec, new_fdt->max_fdset);
720         free_fdset (new_fdt->open_fds, new_fdt->max_fdset);
721         free_fd_array(new_fdt->fd, new_fdt->max_fds);
722         kmem_cache_free(files_cachep, newf);
723         goto out;
724 }
725
726 /*
727  *      Helper to unshare the files of the current task.
728  *      We don't want to expose copy_files internals to
729  *      the exec layer of the kernel.
730  */
731
732 int unshare_files(void)
733 {
734         struct files_struct *files  = current->files;
735         int rc;
736
737         if(!files)
738                 BUG();
739
740         /* This can race but the race causes us to copy when we don't
741            need to and drop the copy */
742         if(atomic_read(&files->count) == 1)
743         {
744                 atomic_inc(&files->count);
745                 return 0;
746         }
747         rc = copy_files(0, current);
748         if(rc)
749                 current->files = files;
750         return rc;
751 }
752
753 EXPORT_SYMBOL(unshare_files);
754
755 static inline int copy_sighand(unsigned long clone_flags, struct task_struct * tsk)
756 {
757         struct sighand_struct *sig;
758
759         if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) {
760                 atomic_inc(&current->sighand->count);
761                 return 0;
762         }
763         sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
764         tsk->sighand = sig;
765         if (!sig)
766                 return -ENOMEM;
767         spin_lock_init(&sig->siglock);
768         atomic_set(&sig->count, 1);
769         memcpy(sig->action, current->sighand->action, sizeof(sig->action));
770         return 0;
771 }
772
773 static inline int copy_signal(unsigned long clone_flags, struct task_struct * tsk)
774 {
775         struct signal_struct *sig;
776         int ret;
777
778         if (clone_flags & CLONE_THREAD) {
779                 atomic_inc(&current->signal->count);
780                 atomic_inc(&current->signal->live);
781                 return 0;
782         }
783         sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
784         tsk->signal = sig;
785         if (!sig)
786                 return -ENOMEM;
787
788         ret = copy_thread_group_keys(tsk);
789         if (ret < 0) {
790                 kmem_cache_free(signal_cachep, sig);
791                 return ret;
792         }
793
794         atomic_set(&sig->count, 1);
795         atomic_set(&sig->live, 1);
796         init_waitqueue_head(&sig->wait_chldexit);
797         sig->flags = 0;
798         sig->group_exit_code = 0;
799         sig->group_exit_task = NULL;
800         sig->group_stop_count = 0;
801         sig->curr_target = NULL;
802         init_sigpending(&sig->shared_pending);
803         INIT_LIST_HEAD(&sig->posix_timers);
804
805         sig->it_real_value = sig->it_real_incr = 0;
806         sig->real_timer.function = it_real_fn;
807         sig->real_timer.data = (unsigned long) tsk;
808         init_timer(&sig->real_timer);
809
810         sig->it_virt_expires = cputime_zero;
811         sig->it_virt_incr = cputime_zero;
812         sig->it_prof_expires = cputime_zero;
813         sig->it_prof_incr = cputime_zero;
814
815         sig->tty = current->signal->tty;
816         sig->pgrp = process_group(current);
817         sig->session = current->signal->session;
818         sig->leader = 0;        /* session leadership doesn't inherit */
819         sig->tty_old_pgrp = 0;
820
821         sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
822         sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
823         sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
824         sig->sched_time = 0;
825         INIT_LIST_HEAD(&sig->cpu_timers[0]);
826         INIT_LIST_HEAD(&sig->cpu_timers[1]);
827         INIT_LIST_HEAD(&sig->cpu_timers[2]);
828
829         task_lock(current->group_leader);
830         memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
831         task_unlock(current->group_leader);
832
833         if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
834                 /*
835                  * New sole thread in the process gets an expiry time
836                  * of the whole CPU time limit.
837                  */
838                 tsk->it_prof_expires =
839                         secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
840         }
841
842         return 0;
843 }
844
845 static inline void copy_flags(unsigned long clone_flags, struct task_struct *p)
846 {
847         unsigned long new_flags = p->flags;
848
849         new_flags &= ~(PF_SUPERPRIV | PF_NOFREEZE);
850         new_flags |= PF_FORKNOEXEC;
851         if (!(clone_flags & CLONE_PTRACE))
852                 p->ptrace = 0;
853         p->flags = new_flags;
854 }
855
856 asmlinkage long sys_set_tid_address(int __user *tidptr)
857 {
858         current->clear_child_tid = tidptr;
859
860         return current->pid;
861 }
862
863 /*
864  * This creates a new process as a copy of the old one,
865  * but does not actually start it yet.
866  *
867  * It copies the registers, and all the appropriate
868  * parts of the process environment (as per the clone
869  * flags). The actual kick-off is left to the caller.
870  */
871 static task_t *copy_process(unsigned long clone_flags,
872                                  unsigned long stack_start,
873                                  struct pt_regs *regs,
874                                  unsigned long stack_size,
875                                  int __user *parent_tidptr,
876                                  int __user *child_tidptr,
877                                  int pid)
878 {
879         int retval;
880         struct task_struct *p = NULL;
881
882         if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
883                 return ERR_PTR(-EINVAL);
884
885         /*
886          * Thread groups must share signals as well, and detached threads
887          * can only be started up within the thread group.
888          */
889         if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
890                 return ERR_PTR(-EINVAL);
891
892         /*
893          * Shared signal handlers imply shared VM. By way of the above,
894          * thread groups also imply shared VM. Blocking this case allows
895          * for various simplifications in other code.
896          */
897         if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
898                 return ERR_PTR(-EINVAL);
899
900         retval = security_task_create(clone_flags);
901         if (retval)
902                 goto fork_out;
903
904         retval = -ENOMEM;
905         p = dup_task_struct(current);
906         if (!p)
907                 goto fork_out;
908
909         retval = -EAGAIN;
910         if (atomic_read(&p->user->processes) >=
911                         p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
912                 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
913                                 p->user != &root_user)
914                         goto bad_fork_free;
915         }
916
917         atomic_inc(&p->user->__count);
918         atomic_inc(&p->user->processes);
919         get_group_info(p->group_info);
920
921         /*
922          * If multiple threads are within copy_process(), then this check
923          * triggers too late. This doesn't hurt, the check is only there
924          * to stop root fork bombs.
925          */
926         if (nr_threads >= max_threads)
927                 goto bad_fork_cleanup_count;
928
929         if (!try_module_get(p->thread_info->exec_domain->module))
930                 goto bad_fork_cleanup_count;
931
932         if (p->binfmt && !try_module_get(p->binfmt->module))
933                 goto bad_fork_cleanup_put_domain;
934
935         p->did_exec = 0;
936         copy_flags(clone_flags, p);
937         p->pid = pid;
938         retval = -EFAULT;
939         if (clone_flags & CLONE_PARENT_SETTID)
940                 if (put_user(p->pid, parent_tidptr))
941                         goto bad_fork_cleanup;
942
943         p->proc_dentry = NULL;
944
945         INIT_LIST_HEAD(&p->children);
946         INIT_LIST_HEAD(&p->sibling);
947         p->vfork_done = NULL;
948         spin_lock_init(&p->alloc_lock);
949         spin_lock_init(&p->proc_lock);
950
951         clear_tsk_thread_flag(p, TIF_SIGPENDING);
952         init_sigpending(&p->pending);
953
954         p->utime = cputime_zero;
955         p->stime = cputime_zero;
956         p->sched_time = 0;
957         p->rchar = 0;           /* I/O counter: bytes read */
958         p->wchar = 0;           /* I/O counter: bytes written */
959         p->syscr = 0;           /* I/O counter: read syscalls */
960         p->syscw = 0;           /* I/O counter: write syscalls */
961         acct_clear_integrals(p);
962
963         p->it_virt_expires = cputime_zero;
964         p->it_prof_expires = cputime_zero;
965         p->it_sched_expires = 0;
966         INIT_LIST_HEAD(&p->cpu_timers[0]);
967         INIT_LIST_HEAD(&p->cpu_timers[1]);
968         INIT_LIST_HEAD(&p->cpu_timers[2]);
969
970         p->lock_depth = -1;             /* -1 = no lock */
971         do_posix_clock_monotonic_gettime(&p->start_time);
972         p->security = NULL;
973         p->io_context = NULL;
974         p->io_wait = NULL;
975         p->audit_context = NULL;
976 #ifdef CONFIG_NUMA
977         p->mempolicy = mpol_copy(p->mempolicy);
978         if (IS_ERR(p->mempolicy)) {
979                 retval = PTR_ERR(p->mempolicy);
980                 p->mempolicy = NULL;
981                 goto bad_fork_cleanup;
982         }
983 #endif
984
985         p->tgid = p->pid;
986         if (clone_flags & CLONE_THREAD)
987                 p->tgid = current->tgid;
988
989         if ((retval = security_task_alloc(p)))
990                 goto bad_fork_cleanup_policy;
991         if ((retval = audit_alloc(p)))
992                 goto bad_fork_cleanup_security;
993         /* copy all the process information */
994         if ((retval = copy_semundo(clone_flags, p)))
995                 goto bad_fork_cleanup_audit;
996         if ((retval = copy_files(clone_flags, p)))
997                 goto bad_fork_cleanup_semundo;
998         if ((retval = copy_fs(clone_flags, p)))
999                 goto bad_fork_cleanup_files;
1000         if ((retval = copy_sighand(clone_flags, p)))
1001                 goto bad_fork_cleanup_fs;
1002         if ((retval = copy_signal(clone_flags, p)))
1003                 goto bad_fork_cleanup_sighand;
1004         if ((retval = copy_mm(clone_flags, p)))
1005                 goto bad_fork_cleanup_signal;
1006         if ((retval = copy_keys(clone_flags, p)))
1007                 goto bad_fork_cleanup_mm;
1008         if ((retval = copy_namespace(clone_flags, p)))
1009                 goto bad_fork_cleanup_keys;
1010         retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
1011         if (retval)
1012                 goto bad_fork_cleanup_namespace;
1013
1014         p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1015         /*
1016          * Clear TID on mm_release()?
1017          */
1018         p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1019
1020         /*
1021          * Syscall tracing should be turned off in the child regardless
1022          * of CLONE_PTRACE.
1023          */
1024         clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1025 #ifdef TIF_SYSCALL_EMU
1026         clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1027 #endif
1028
1029         /* Our parent execution domain becomes current domain
1030            These must match for thread signalling to apply */
1031            
1032         p->parent_exec_id = p->self_exec_id;
1033
1034         /* ok, now we should be set up.. */
1035         p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1036         p->pdeath_signal = 0;
1037         p->exit_state = 0;
1038
1039         /*
1040          * Ok, make it visible to the rest of the system.
1041          * We dont wake it up yet.
1042          */
1043         p->group_leader = p;
1044         INIT_LIST_HEAD(&p->ptrace_children);
1045         INIT_LIST_HEAD(&p->ptrace_list);
1046
1047         /* Perform scheduler related setup. Assign this task to a CPU. */
1048         sched_fork(p, clone_flags);
1049
1050         /* Need tasklist lock for parent etc handling! */
1051         write_lock_irq(&tasklist_lock);
1052
1053         /*
1054          * The task hasn't been attached yet, so its cpus_allowed mask will
1055          * not be changed, nor will its assigned CPU.
1056          *
1057          * The cpus_allowed mask of the parent may have changed after it was
1058          * copied first time - so re-copy it here, then check the child's CPU
1059          * to ensure it is on a valid CPU (and if not, just force it back to
1060          * parent's CPU). This avoids alot of nasty races.
1061          */
1062         p->cpus_allowed = current->cpus_allowed;
1063         if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
1064                         !cpu_online(task_cpu(p))))
1065                 set_task_cpu(p, smp_processor_id());
1066
1067         /*
1068          * Check for pending SIGKILL! The new thread should not be allowed
1069          * to slip out of an OOM kill. (or normal SIGKILL.)
1070          */
1071         if (sigismember(&current->pending.signal, SIGKILL)) {
1072                 write_unlock_irq(&tasklist_lock);
1073                 retval = -EINTR;
1074                 goto bad_fork_cleanup_namespace;
1075         }
1076
1077         /* CLONE_PARENT re-uses the old parent */
1078         if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
1079                 p->real_parent = current->real_parent;
1080         else
1081                 p->real_parent = current;
1082         p->parent = p->real_parent;
1083
1084         if (clone_flags & CLONE_THREAD) {
1085                 spin_lock(&current->sighand->siglock);
1086                 /*
1087                  * Important: if an exit-all has been started then
1088                  * do not create this new thread - the whole thread
1089                  * group is supposed to exit anyway.
1090                  */
1091                 if (current->signal->flags & SIGNAL_GROUP_EXIT) {
1092                         spin_unlock(&current->sighand->siglock);
1093                         write_unlock_irq(&tasklist_lock);
1094                         retval = -EAGAIN;
1095                         goto bad_fork_cleanup_namespace;
1096                 }
1097                 p->group_leader = current->group_leader;
1098
1099                 if (current->signal->group_stop_count > 0) {
1100                         /*
1101                          * There is an all-stop in progress for the group.
1102                          * We ourselves will stop as soon as we check signals.
1103                          * Make the new thread part of that group stop too.
1104                          */
1105                         current->signal->group_stop_count++;
1106                         set_tsk_thread_flag(p, TIF_SIGPENDING);
1107                 }
1108
1109                 if (!cputime_eq(current->signal->it_virt_expires,
1110                                 cputime_zero) ||
1111                     !cputime_eq(current->signal->it_prof_expires,
1112                                 cputime_zero) ||
1113                     current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY ||
1114                     !list_empty(&current->signal->cpu_timers[0]) ||
1115                     !list_empty(&current->signal->cpu_timers[1]) ||
1116                     !list_empty(&current->signal->cpu_timers[2])) {
1117                         /*
1118                          * Have child wake up on its first tick to check
1119                          * for process CPU timers.
1120                          */
1121                         p->it_prof_expires = jiffies_to_cputime(1);
1122                 }
1123
1124                 spin_unlock(&current->sighand->siglock);
1125         }
1126
1127         /*
1128          * inherit ioprio
1129          */
1130         p->ioprio = current->ioprio;
1131
1132         SET_LINKS(p);
1133         if (unlikely(p->ptrace & PT_PTRACED))
1134                 __ptrace_link(p, current->parent);
1135
1136         cpuset_fork(p);
1137
1138         attach_pid(p, PIDTYPE_PID, p->pid);
1139         attach_pid(p, PIDTYPE_TGID, p->tgid);
1140         if (thread_group_leader(p)) {
1141                 attach_pid(p, PIDTYPE_PGID, process_group(p));
1142                 attach_pid(p, PIDTYPE_SID, p->signal->session);
1143                 if (p->pid)
1144                         __get_cpu_var(process_counts)++;
1145         }
1146
1147         proc_fork_connector(p);
1148         if (!current->signal->tty && p->signal->tty)
1149                 p->signal->tty = NULL;
1150
1151         nr_threads++;
1152         total_forks++;
1153         write_unlock_irq(&tasklist_lock);
1154         retval = 0;
1155
1156 fork_out:
1157         if (retval)
1158                 return ERR_PTR(retval);
1159         return p;
1160
1161 bad_fork_cleanup_namespace:
1162         exit_namespace(p);
1163 bad_fork_cleanup_keys:
1164         exit_keys(p);
1165 bad_fork_cleanup_mm:
1166         if (p->mm)
1167                 mmput(p->mm);
1168 bad_fork_cleanup_signal:
1169         exit_signal(p);
1170 bad_fork_cleanup_sighand:
1171         exit_sighand(p);
1172 bad_fork_cleanup_fs:
1173         exit_fs(p); /* blocking */
1174 bad_fork_cleanup_files:
1175         exit_files(p); /* blocking */
1176 bad_fork_cleanup_semundo:
1177         exit_sem(p);
1178 bad_fork_cleanup_audit:
1179         audit_free(p);
1180 bad_fork_cleanup_security:
1181         security_task_free(p);
1182 bad_fork_cleanup_policy:
1183 #ifdef CONFIG_NUMA
1184         mpol_free(p->mempolicy);
1185 #endif
1186 bad_fork_cleanup:
1187         if (p->binfmt)
1188                 module_put(p->binfmt->module);
1189 bad_fork_cleanup_put_domain:
1190         module_put(p->thread_info->exec_domain->module);
1191 bad_fork_cleanup_count:
1192         put_group_info(p->group_info);
1193         atomic_dec(&p->user->processes);
1194         free_uid(p->user);
1195 bad_fork_free:
1196         free_task(p);
1197         goto fork_out;
1198 }
1199
1200 struct pt_regs * __devinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1201 {
1202         memset(regs, 0, sizeof(struct pt_regs));
1203         return regs;
1204 }
1205
1206 task_t * __devinit fork_idle(int cpu)
1207 {
1208         task_t *task;
1209         struct pt_regs regs;
1210
1211         task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL, NULL, 0);
1212         if (!task)
1213                 return ERR_PTR(-ENOMEM);
1214         init_idle(task, cpu);
1215         unhash_process(task);
1216         return task;
1217 }
1218
1219 static inline int fork_traceflag (unsigned clone_flags)
1220 {
1221         if (clone_flags & CLONE_UNTRACED)
1222                 return 0;
1223         else if (clone_flags & CLONE_VFORK) {
1224                 if (current->ptrace & PT_TRACE_VFORK)
1225                         return PTRACE_EVENT_VFORK;
1226         } else if ((clone_flags & CSIGNAL) != SIGCHLD) {
1227                 if (current->ptrace & PT_TRACE_CLONE)
1228                         return PTRACE_EVENT_CLONE;
1229         } else if (current->ptrace & PT_TRACE_FORK)
1230                 return PTRACE_EVENT_FORK;
1231
1232         return 0;
1233 }
1234
1235 /*
1236  *  Ok, this is the main fork-routine.
1237  *
1238  * It copies the process, and if successful kick-starts
1239  * it and waits for it to finish using the VM if required.
1240  */
1241 long do_fork(unsigned long clone_flags,
1242               unsigned long stack_start,
1243               struct pt_regs *regs,
1244               unsigned long stack_size,
1245               int __user *parent_tidptr,
1246               int __user *child_tidptr)
1247 {
1248         struct task_struct *p;
1249         int trace = 0;
1250         long pid = alloc_pidmap();
1251
1252         if (pid < 0)
1253                 return -EAGAIN;
1254         if (unlikely(current->ptrace)) {
1255                 trace = fork_traceflag (clone_flags);
1256                 if (trace)
1257                         clone_flags |= CLONE_PTRACE;
1258         }
1259
1260         p = copy_process(clone_flags, stack_start, regs, stack_size, parent_tidptr, child_tidptr, pid);
1261         /*
1262          * Do this prior waking up the new thread - the thread pointer
1263          * might get invalid after that point, if the thread exits quickly.
1264          */
1265         if (!IS_ERR(p)) {
1266                 struct completion vfork;
1267
1268                 if (clone_flags & CLONE_VFORK) {
1269                         p->vfork_done = &vfork;
1270                         init_completion(&vfork);
1271                 }
1272
1273                 if ((p->ptrace & PT_PTRACED) || (clone_flags & CLONE_STOPPED)) {
1274                         /*
1275                          * We'll start up with an immediate SIGSTOP.
1276                          */
1277                         sigaddset(&p->pending.signal, SIGSTOP);
1278                         set_tsk_thread_flag(p, TIF_SIGPENDING);
1279                 }
1280
1281                 if (!(clone_flags & CLONE_STOPPED))
1282                         wake_up_new_task(p, clone_flags);
1283                 else
1284                         p->state = TASK_STOPPED;
1285
1286                 if (unlikely (trace)) {
1287                         current->ptrace_message = pid;
1288                         ptrace_notify ((trace << 8) | SIGTRAP);
1289                 }
1290
1291                 if (clone_flags & CLONE_VFORK) {
1292                         wait_for_completion(&vfork);
1293                         if (unlikely (current->ptrace & PT_TRACE_VFORK_DONE))
1294                                 ptrace_notify ((PTRACE_EVENT_VFORK_DONE << 8) | SIGTRAP);
1295                 }
1296         } else {
1297                 free_pidmap(pid);
1298                 pid = PTR_ERR(p);
1299         }
1300         return pid;
1301 }
1302
1303 void __init proc_caches_init(void)
1304 {
1305         sighand_cachep = kmem_cache_create("sighand_cache",
1306                         sizeof(struct sighand_struct), 0,
1307                         SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1308         signal_cachep = kmem_cache_create("signal_cache",
1309                         sizeof(struct signal_struct), 0,
1310                         SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1311         files_cachep = kmem_cache_create("files_cache", 
1312                         sizeof(struct files_struct), 0,
1313                         SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1314         fs_cachep = kmem_cache_create("fs_cache", 
1315                         sizeof(struct fs_struct), 0,
1316                         SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1317         vm_area_cachep = kmem_cache_create("vm_area_struct",
1318                         sizeof(struct vm_area_struct), 0,
1319                         SLAB_PANIC, NULL, NULL);
1320         mm_cachep = kmem_cache_create("mm_struct",
1321                         sizeof(struct mm_struct), 0,
1322                         SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1323 }