Merge branch 'tracing-v28-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[safe/jmp/linux-2.6] / kernel / fork.c
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/mnt_namespace.h>
21 #include <linux/personality.h>
22 #include <linux/mempolicy.h>
23 #include <linux/sem.h>
24 #include <linux/file.h>
25 #include <linux/fdtable.h>
26 #include <linux/iocontext.h>
27 #include <linux/key.h>
28 #include <linux/binfmts.h>
29 #include <linux/mman.h>
30 #include <linux/mmu_notifier.h>
31 #include <linux/fs.h>
32 #include <linux/nsproxy.h>
33 #include <linux/capability.h>
34 #include <linux/cpu.h>
35 #include <linux/cgroup.h>
36 #include <linux/security.h>
37 #include <linux/hugetlb.h>
38 #include <linux/swap.h>
39 #include <linux/syscalls.h>
40 #include <linux/jiffies.h>
41 #include <linux/tracehook.h>
42 #include <linux/futex.h>
43 #include <linux/task_io_accounting_ops.h>
44 #include <linux/rcupdate.h>
45 #include <linux/ptrace.h>
46 #include <linux/mount.h>
47 #include <linux/audit.h>
48 #include <linux/memcontrol.h>
49 #include <linux/profile.h>
50 #include <linux/rmap.h>
51 #include <linux/acct.h>
52 #include <linux/tsacct_kern.h>
53 #include <linux/cn_proc.h>
54 #include <linux/freezer.h>
55 #include <linux/delayacct.h>
56 #include <linux/taskstats_kern.h>
57 #include <linux/random.h>
58 #include <linux/tty.h>
59 #include <linux/proc_fs.h>
60 #include <linux/blkdev.h>
61 #include <trace/sched.h>
62
63 #include <asm/pgtable.h>
64 #include <asm/pgalloc.h>
65 #include <asm/uaccess.h>
66 #include <asm/mmu_context.h>
67 #include <asm/cacheflush.h>
68 #include <asm/tlbflush.h>
69
70 /*
71  * Protected counters by write_lock_irq(&tasklist_lock)
72  */
73 unsigned long total_forks;      /* Handle normal Linux uptimes. */
74 int nr_threads;                 /* The idle threads do not count.. */
75
76 int max_threads;                /* tunable limit on nr_threads */
77
78 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
79
80 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
81
82 int nr_processes(void)
83 {
84         int cpu;
85         int total = 0;
86
87         for_each_online_cpu(cpu)
88                 total += per_cpu(process_counts, cpu);
89
90         return total;
91 }
92
93 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
94 # define alloc_task_struct()    kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
95 # define free_task_struct(tsk)  kmem_cache_free(task_struct_cachep, (tsk))
96 static struct kmem_cache *task_struct_cachep;
97 #endif
98
99 #ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR
100 static inline struct thread_info *alloc_thread_info(struct task_struct *tsk)
101 {
102 #ifdef CONFIG_DEBUG_STACK_USAGE
103         gfp_t mask = GFP_KERNEL | __GFP_ZERO;
104 #else
105         gfp_t mask = GFP_KERNEL;
106 #endif
107         return (struct thread_info *)__get_free_pages(mask, THREAD_SIZE_ORDER);
108 }
109
110 static inline void free_thread_info(struct thread_info *ti)
111 {
112         free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
113 }
114 #endif
115
116 /* SLAB cache for signal_struct structures (tsk->signal) */
117 static struct kmem_cache *signal_cachep;
118
119 /* SLAB cache for sighand_struct structures (tsk->sighand) */
120 struct kmem_cache *sighand_cachep;
121
122 /* SLAB cache for files_struct structures (tsk->files) */
123 struct kmem_cache *files_cachep;
124
125 /* SLAB cache for fs_struct structures (tsk->fs) */
126 struct kmem_cache *fs_cachep;
127
128 /* SLAB cache for vm_area_struct structures */
129 struct kmem_cache *vm_area_cachep;
130
131 /* SLAB cache for mm_struct structures (tsk->mm) */
132 static struct kmem_cache *mm_cachep;
133
134 void free_task(struct task_struct *tsk)
135 {
136         prop_local_destroy_single(&tsk->dirties);
137         free_thread_info(tsk->stack);
138         rt_mutex_debug_task_free(tsk);
139         free_task_struct(tsk);
140 }
141 EXPORT_SYMBOL(free_task);
142
143 void __put_task_struct(struct task_struct *tsk)
144 {
145         WARN_ON(!tsk->exit_state);
146         WARN_ON(atomic_read(&tsk->usage));
147         WARN_ON(tsk == current);
148
149         security_task_free(tsk);
150         free_uid(tsk->user);
151         put_group_info(tsk->group_info);
152         delayacct_tsk_free(tsk);
153
154         if (!profile_handoff_task(tsk))
155                 free_task(tsk);
156 }
157
158 /*
159  * macro override instead of weak attribute alias, to workaround
160  * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
161  */
162 #ifndef arch_task_cache_init
163 #define arch_task_cache_init()
164 #endif
165
166 void __init fork_init(unsigned long mempages)
167 {
168 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
169 #ifndef ARCH_MIN_TASKALIGN
170 #define ARCH_MIN_TASKALIGN      L1_CACHE_BYTES
171 #endif
172         /* create a slab on which task_structs can be allocated */
173         task_struct_cachep =
174                 kmem_cache_create("task_struct", sizeof(struct task_struct),
175                         ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL);
176 #endif
177
178         /* do the arch specific task caches init */
179         arch_task_cache_init();
180
181         /*
182          * The default maximum number of threads is set to a safe
183          * value: the thread structures can take up at most half
184          * of memory.
185          */
186         max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
187
188         /*
189          * we need to allow at least 20 threads to boot a system
190          */
191         if(max_threads < 20)
192                 max_threads = 20;
193
194         init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
195         init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
196         init_task.signal->rlim[RLIMIT_SIGPENDING] =
197                 init_task.signal->rlim[RLIMIT_NPROC];
198 }
199
200 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
201                                                struct task_struct *src)
202 {
203         *dst = *src;
204         return 0;
205 }
206
207 static struct task_struct *dup_task_struct(struct task_struct *orig)
208 {
209         struct task_struct *tsk;
210         struct thread_info *ti;
211         int err;
212
213         prepare_to_copy(orig);
214
215         tsk = alloc_task_struct();
216         if (!tsk)
217                 return NULL;
218
219         ti = alloc_thread_info(tsk);
220         if (!ti) {
221                 free_task_struct(tsk);
222                 return NULL;
223         }
224
225         err = arch_dup_task_struct(tsk, orig);
226         if (err)
227                 goto out;
228
229         tsk->stack = ti;
230
231         err = prop_local_init_single(&tsk->dirties);
232         if (err)
233                 goto out;
234
235         setup_thread_stack(tsk, orig);
236
237 #ifdef CONFIG_CC_STACKPROTECTOR
238         tsk->stack_canary = get_random_int();
239 #endif
240
241         /* One for us, one for whoever does the "release_task()" (usually parent) */
242         atomic_set(&tsk->usage,2);
243         atomic_set(&tsk->fs_excl, 0);
244 #ifdef CONFIG_BLK_DEV_IO_TRACE
245         tsk->btrace_seq = 0;
246 #endif
247         tsk->splice_pipe = NULL;
248         return tsk;
249
250 out:
251         free_thread_info(ti);
252         free_task_struct(tsk);
253         return NULL;
254 }
255
256 #ifdef CONFIG_MMU
257 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
258 {
259         struct vm_area_struct *mpnt, *tmp, **pprev;
260         struct rb_node **rb_link, *rb_parent;
261         int retval;
262         unsigned long charge;
263         struct mempolicy *pol;
264
265         down_write(&oldmm->mmap_sem);
266         flush_cache_dup_mm(oldmm);
267         /*
268          * Not linked in yet - no deadlock potential:
269          */
270         down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
271
272         mm->locked_vm = 0;
273         mm->mmap = NULL;
274         mm->mmap_cache = NULL;
275         mm->free_area_cache = oldmm->mmap_base;
276         mm->cached_hole_size = ~0UL;
277         mm->map_count = 0;
278         cpus_clear(mm->cpu_vm_mask);
279         mm->mm_rb = RB_ROOT;
280         rb_link = &mm->mm_rb.rb_node;
281         rb_parent = NULL;
282         pprev = &mm->mmap;
283
284         for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
285                 struct file *file;
286
287                 if (mpnt->vm_flags & VM_DONTCOPY) {
288                         long pages = vma_pages(mpnt);
289                         mm->total_vm -= pages;
290                         vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
291                                                                 -pages);
292                         continue;
293                 }
294                 charge = 0;
295                 if (mpnt->vm_flags & VM_ACCOUNT) {
296                         unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
297                         if (security_vm_enough_memory(len))
298                                 goto fail_nomem;
299                         charge = len;
300                 }
301                 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
302                 if (!tmp)
303                         goto fail_nomem;
304                 *tmp = *mpnt;
305                 pol = mpol_dup(vma_policy(mpnt));
306                 retval = PTR_ERR(pol);
307                 if (IS_ERR(pol))
308                         goto fail_nomem_policy;
309                 vma_set_policy(tmp, pol);
310                 tmp->vm_flags &= ~VM_LOCKED;
311                 tmp->vm_mm = mm;
312                 tmp->vm_next = NULL;
313                 anon_vma_link(tmp);
314                 file = tmp->vm_file;
315                 if (file) {
316                         struct inode *inode = file->f_path.dentry->d_inode;
317                         get_file(file);
318                         if (tmp->vm_flags & VM_DENYWRITE)
319                                 atomic_dec(&inode->i_writecount);
320
321                         /* insert tmp into the share list, just after mpnt */
322                         spin_lock(&file->f_mapping->i_mmap_lock);
323                         tmp->vm_truncate_count = mpnt->vm_truncate_count;
324                         flush_dcache_mmap_lock(file->f_mapping);
325                         vma_prio_tree_add(tmp, mpnt);
326                         flush_dcache_mmap_unlock(file->f_mapping);
327                         spin_unlock(&file->f_mapping->i_mmap_lock);
328                 }
329
330                 /*
331                  * Clear hugetlb-related page reserves for children. This only
332                  * affects MAP_PRIVATE mappings. Faults generated by the child
333                  * are not guaranteed to succeed, even if read-only
334                  */
335                 if (is_vm_hugetlb_page(tmp))
336                         reset_vma_resv_huge_pages(tmp);
337
338                 /*
339                  * Link in the new vma and copy the page table entries.
340                  */
341                 *pprev = tmp;
342                 pprev = &tmp->vm_next;
343
344                 __vma_link_rb(mm, tmp, rb_link, rb_parent);
345                 rb_link = &tmp->vm_rb.rb_right;
346                 rb_parent = &tmp->vm_rb;
347
348                 mm->map_count++;
349                 retval = copy_page_range(mm, oldmm, mpnt);
350
351                 if (tmp->vm_ops && tmp->vm_ops->open)
352                         tmp->vm_ops->open(tmp);
353
354                 if (retval)
355                         goto out;
356         }
357         /* a new mm has just been created */
358         arch_dup_mmap(oldmm, mm);
359         retval = 0;
360 out:
361         up_write(&mm->mmap_sem);
362         flush_tlb_mm(oldmm);
363         up_write(&oldmm->mmap_sem);
364         return retval;
365 fail_nomem_policy:
366         kmem_cache_free(vm_area_cachep, tmp);
367 fail_nomem:
368         retval = -ENOMEM;
369         vm_unacct_memory(charge);
370         goto out;
371 }
372
373 static inline int mm_alloc_pgd(struct mm_struct * mm)
374 {
375         mm->pgd = pgd_alloc(mm);
376         if (unlikely(!mm->pgd))
377                 return -ENOMEM;
378         return 0;
379 }
380
381 static inline void mm_free_pgd(struct mm_struct * mm)
382 {
383         pgd_free(mm, mm->pgd);
384 }
385 #else
386 #define dup_mmap(mm, oldmm)     (0)
387 #define mm_alloc_pgd(mm)        (0)
388 #define mm_free_pgd(mm)
389 #endif /* CONFIG_MMU */
390
391 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
392
393 #define allocate_mm()   (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
394 #define free_mm(mm)     (kmem_cache_free(mm_cachep, (mm)))
395
396 #include <linux/init_task.h>
397
398 static struct mm_struct * mm_init(struct mm_struct * mm, struct task_struct *p)
399 {
400         atomic_set(&mm->mm_users, 1);
401         atomic_set(&mm->mm_count, 1);
402         init_rwsem(&mm->mmap_sem);
403         INIT_LIST_HEAD(&mm->mmlist);
404         mm->flags = (current->mm) ? current->mm->flags
405                                   : MMF_DUMP_FILTER_DEFAULT;
406         mm->core_state = NULL;
407         mm->nr_ptes = 0;
408         set_mm_counter(mm, file_rss, 0);
409         set_mm_counter(mm, anon_rss, 0);
410         spin_lock_init(&mm->page_table_lock);
411         rwlock_init(&mm->ioctx_list_lock);
412         mm->ioctx_list = NULL;
413         mm->free_area_cache = TASK_UNMAPPED_BASE;
414         mm->cached_hole_size = ~0UL;
415         mm_init_owner(mm, p);
416
417         if (likely(!mm_alloc_pgd(mm))) {
418                 mm->def_flags = 0;
419                 mmu_notifier_mm_init(mm);
420                 return mm;
421         }
422
423         free_mm(mm);
424         return NULL;
425 }
426
427 /*
428  * Allocate and initialize an mm_struct.
429  */
430 struct mm_struct * mm_alloc(void)
431 {
432         struct mm_struct * mm;
433
434         mm = allocate_mm();
435         if (mm) {
436                 memset(mm, 0, sizeof(*mm));
437                 mm = mm_init(mm, current);
438         }
439         return mm;
440 }
441
442 /*
443  * Called when the last reference to the mm
444  * is dropped: either by a lazy thread or by
445  * mmput. Free the page directory and the mm.
446  */
447 void __mmdrop(struct mm_struct *mm)
448 {
449         BUG_ON(mm == &init_mm);
450         mm_free_pgd(mm);
451         destroy_context(mm);
452         mmu_notifier_mm_destroy(mm);
453         free_mm(mm);
454 }
455 EXPORT_SYMBOL_GPL(__mmdrop);
456
457 /*
458  * Decrement the use count and release all resources for an mm.
459  */
460 void mmput(struct mm_struct *mm)
461 {
462         might_sleep();
463
464         if (atomic_dec_and_test(&mm->mm_users)) {
465                 exit_aio(mm);
466                 exit_mmap(mm);
467                 set_mm_exe_file(mm, NULL);
468                 if (!list_empty(&mm->mmlist)) {
469                         spin_lock(&mmlist_lock);
470                         list_del(&mm->mmlist);
471                         spin_unlock(&mmlist_lock);
472                 }
473                 put_swap_token(mm);
474                 mmdrop(mm);
475         }
476 }
477 EXPORT_SYMBOL_GPL(mmput);
478
479 /**
480  * get_task_mm - acquire a reference to the task's mm
481  *
482  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
483  * this kernel workthread has transiently adopted a user mm with use_mm,
484  * to do its AIO) is not set and if so returns a reference to it, after
485  * bumping up the use count.  User must release the mm via mmput()
486  * after use.  Typically used by /proc and ptrace.
487  */
488 struct mm_struct *get_task_mm(struct task_struct *task)
489 {
490         struct mm_struct *mm;
491
492         task_lock(task);
493         mm = task->mm;
494         if (mm) {
495                 if (task->flags & PF_KTHREAD)
496                         mm = NULL;
497                 else
498                         atomic_inc(&mm->mm_users);
499         }
500         task_unlock(task);
501         return mm;
502 }
503 EXPORT_SYMBOL_GPL(get_task_mm);
504
505 /* Please note the differences between mmput and mm_release.
506  * mmput is called whenever we stop holding onto a mm_struct,
507  * error success whatever.
508  *
509  * mm_release is called after a mm_struct has been removed
510  * from the current process.
511  *
512  * This difference is important for error handling, when we
513  * only half set up a mm_struct for a new process and need to restore
514  * the old one.  Because we mmput the new mm_struct before
515  * restoring the old one. . .
516  * Eric Biederman 10 January 1998
517  */
518 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
519 {
520         struct completion *vfork_done = tsk->vfork_done;
521
522         /* Get rid of any cached register state */
523         deactivate_mm(tsk, mm);
524
525         /* notify parent sleeping on vfork() */
526         if (vfork_done) {
527                 tsk->vfork_done = NULL;
528                 complete(vfork_done);
529         }
530
531         /*
532          * If we're exiting normally, clear a user-space tid field if
533          * requested.  We leave this alone when dying by signal, to leave
534          * the value intact in a core dump, and to save the unnecessary
535          * trouble otherwise.  Userland only wants this done for a sys_exit.
536          */
537         if (tsk->clear_child_tid
538             && !(tsk->flags & PF_SIGNALED)
539             && atomic_read(&mm->mm_users) > 1) {
540                 u32 __user * tidptr = tsk->clear_child_tid;
541                 tsk->clear_child_tid = NULL;
542
543                 /*
544                  * We don't check the error code - if userspace has
545                  * not set up a proper pointer then tough luck.
546                  */
547                 put_user(0, tidptr);
548                 sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
549         }
550 }
551
552 /*
553  * Allocate a new mm structure and copy contents from the
554  * mm structure of the passed in task structure.
555  */
556 struct mm_struct *dup_mm(struct task_struct *tsk)
557 {
558         struct mm_struct *mm, *oldmm = current->mm;
559         int err;
560
561         if (!oldmm)
562                 return NULL;
563
564         mm = allocate_mm();
565         if (!mm)
566                 goto fail_nomem;
567
568         memcpy(mm, oldmm, sizeof(*mm));
569
570         /* Initializing for Swap token stuff */
571         mm->token_priority = 0;
572         mm->last_interval = 0;
573
574         if (!mm_init(mm, tsk))
575                 goto fail_nomem;
576
577         if (init_new_context(tsk, mm))
578                 goto fail_nocontext;
579
580         dup_mm_exe_file(oldmm, mm);
581
582         err = dup_mmap(mm, oldmm);
583         if (err)
584                 goto free_pt;
585
586         mm->hiwater_rss = get_mm_rss(mm);
587         mm->hiwater_vm = mm->total_vm;
588
589         return mm;
590
591 free_pt:
592         mmput(mm);
593
594 fail_nomem:
595         return NULL;
596
597 fail_nocontext:
598         /*
599          * If init_new_context() failed, we cannot use mmput() to free the mm
600          * because it calls destroy_context()
601          */
602         mm_free_pgd(mm);
603         free_mm(mm);
604         return NULL;
605 }
606
607 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
608 {
609         struct mm_struct * mm, *oldmm;
610         int retval;
611
612         tsk->min_flt = tsk->maj_flt = 0;
613         tsk->nvcsw = tsk->nivcsw = 0;
614
615         tsk->mm = NULL;
616         tsk->active_mm = NULL;
617
618         /*
619          * Are we cloning a kernel thread?
620          *
621          * We need to steal a active VM for that..
622          */
623         oldmm = current->mm;
624         if (!oldmm)
625                 return 0;
626
627         if (clone_flags & CLONE_VM) {
628                 atomic_inc(&oldmm->mm_users);
629                 mm = oldmm;
630                 goto good_mm;
631         }
632
633         retval = -ENOMEM;
634         mm = dup_mm(tsk);
635         if (!mm)
636                 goto fail_nomem;
637
638 good_mm:
639         /* Initializing for Swap token stuff */
640         mm->token_priority = 0;
641         mm->last_interval = 0;
642
643         tsk->mm = mm;
644         tsk->active_mm = mm;
645         return 0;
646
647 fail_nomem:
648         return retval;
649 }
650
651 static struct fs_struct *__copy_fs_struct(struct fs_struct *old)
652 {
653         struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
654         /* We don't need to lock fs - think why ;-) */
655         if (fs) {
656                 atomic_set(&fs->count, 1);
657                 rwlock_init(&fs->lock);
658                 fs->umask = old->umask;
659                 read_lock(&old->lock);
660                 fs->root = old->root;
661                 path_get(&old->root);
662                 fs->pwd = old->pwd;
663                 path_get(&old->pwd);
664                 read_unlock(&old->lock);
665         }
666         return fs;
667 }
668
669 struct fs_struct *copy_fs_struct(struct fs_struct *old)
670 {
671         return __copy_fs_struct(old);
672 }
673
674 EXPORT_SYMBOL_GPL(copy_fs_struct);
675
676 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
677 {
678         if (clone_flags & CLONE_FS) {
679                 atomic_inc(&current->fs->count);
680                 return 0;
681         }
682         tsk->fs = __copy_fs_struct(current->fs);
683         if (!tsk->fs)
684                 return -ENOMEM;
685         return 0;
686 }
687
688 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
689 {
690         struct files_struct *oldf, *newf;
691         int error = 0;
692
693         /*
694          * A background process may not have any files ...
695          */
696         oldf = current->files;
697         if (!oldf)
698                 goto out;
699
700         if (clone_flags & CLONE_FILES) {
701                 atomic_inc(&oldf->count);
702                 goto out;
703         }
704
705         newf = dup_fd(oldf, &error);
706         if (!newf)
707                 goto out;
708
709         tsk->files = newf;
710         error = 0;
711 out:
712         return error;
713 }
714
715 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
716 {
717 #ifdef CONFIG_BLOCK
718         struct io_context *ioc = current->io_context;
719
720         if (!ioc)
721                 return 0;
722         /*
723          * Share io context with parent, if CLONE_IO is set
724          */
725         if (clone_flags & CLONE_IO) {
726                 tsk->io_context = ioc_task_link(ioc);
727                 if (unlikely(!tsk->io_context))
728                         return -ENOMEM;
729         } else if (ioprio_valid(ioc->ioprio)) {
730                 tsk->io_context = alloc_io_context(GFP_KERNEL, -1);
731                 if (unlikely(!tsk->io_context))
732                         return -ENOMEM;
733
734                 tsk->io_context->ioprio = ioc->ioprio;
735         }
736 #endif
737         return 0;
738 }
739
740 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
741 {
742         struct sighand_struct *sig;
743
744         if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) {
745                 atomic_inc(&current->sighand->count);
746                 return 0;
747         }
748         sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
749         rcu_assign_pointer(tsk->sighand, sig);
750         if (!sig)
751                 return -ENOMEM;
752         atomic_set(&sig->count, 1);
753         memcpy(sig->action, current->sighand->action, sizeof(sig->action));
754         return 0;
755 }
756
757 void __cleanup_sighand(struct sighand_struct *sighand)
758 {
759         if (atomic_dec_and_test(&sighand->count))
760                 kmem_cache_free(sighand_cachep, sighand);
761 }
762
763
764 /*
765  * Initialize POSIX timer handling for a thread group.
766  */
767 static void posix_cpu_timers_init_group(struct signal_struct *sig)
768 {
769         /* Thread group counters. */
770         thread_group_cputime_init(sig);
771
772         /* Expiration times and increments. */
773         sig->it_virt_expires = cputime_zero;
774         sig->it_virt_incr = cputime_zero;
775         sig->it_prof_expires = cputime_zero;
776         sig->it_prof_incr = cputime_zero;
777
778         /* Cached expiration times. */
779         sig->cputime_expires.prof_exp = cputime_zero;
780         sig->cputime_expires.virt_exp = cputime_zero;
781         sig->cputime_expires.sched_exp = 0;
782
783         /* The timer lists. */
784         INIT_LIST_HEAD(&sig->cpu_timers[0]);
785         INIT_LIST_HEAD(&sig->cpu_timers[1]);
786         INIT_LIST_HEAD(&sig->cpu_timers[2]);
787 }
788
789 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
790 {
791         struct signal_struct *sig;
792         int ret;
793
794         if (clone_flags & CLONE_THREAD) {
795                 ret = thread_group_cputime_clone_thread(current);
796                 if (likely(!ret)) {
797                         atomic_inc(&current->signal->count);
798                         atomic_inc(&current->signal->live);
799                 }
800                 return ret;
801         }
802         sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
803         tsk->signal = sig;
804         if (!sig)
805                 return -ENOMEM;
806
807         ret = copy_thread_group_keys(tsk);
808         if (ret < 0) {
809                 kmem_cache_free(signal_cachep, sig);
810                 return ret;
811         }
812
813         atomic_set(&sig->count, 1);
814         atomic_set(&sig->live, 1);
815         init_waitqueue_head(&sig->wait_chldexit);
816         sig->flags = 0;
817         sig->group_exit_code = 0;
818         sig->group_exit_task = NULL;
819         sig->group_stop_count = 0;
820         sig->curr_target = tsk;
821         init_sigpending(&sig->shared_pending);
822         INIT_LIST_HEAD(&sig->posix_timers);
823
824         hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
825         sig->it_real_incr.tv64 = 0;
826         sig->real_timer.function = it_real_fn;
827
828         sig->leader = 0;        /* session leadership doesn't inherit */
829         sig->tty_old_pgrp = NULL;
830         sig->tty = NULL;
831
832         sig->cutime = sig->cstime = cputime_zero;
833         sig->gtime = cputime_zero;
834         sig->cgtime = cputime_zero;
835         sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
836         sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
837         sig->inblock = sig->oublock = sig->cinblock = sig->coublock = 0;
838         task_io_accounting_init(&sig->ioac);
839         taskstats_tgid_init(sig);
840
841         task_lock(current->group_leader);
842         memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
843         task_unlock(current->group_leader);
844
845         posix_cpu_timers_init_group(sig);
846
847         acct_init_pacct(&sig->pacct);
848
849         tty_audit_fork(sig);
850
851         return 0;
852 }
853
854 void __cleanup_signal(struct signal_struct *sig)
855 {
856         thread_group_cputime_free(sig);
857         exit_thread_group_keys(sig);
858         tty_kref_put(sig->tty);
859         kmem_cache_free(signal_cachep, sig);
860 }
861
862 static void cleanup_signal(struct task_struct *tsk)
863 {
864         struct signal_struct *sig = tsk->signal;
865
866         atomic_dec(&sig->live);
867
868         if (atomic_dec_and_test(&sig->count))
869                 __cleanup_signal(sig);
870 }
871
872 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
873 {
874         unsigned long new_flags = p->flags;
875
876         new_flags &= ~PF_SUPERPRIV;
877         new_flags |= PF_FORKNOEXEC;
878         new_flags |= PF_STARTING;
879         p->flags = new_flags;
880         clear_freeze_flag(p);
881 }
882
883 asmlinkage long sys_set_tid_address(int __user *tidptr)
884 {
885         current->clear_child_tid = tidptr;
886
887         return task_pid_vnr(current);
888 }
889
890 static void rt_mutex_init_task(struct task_struct *p)
891 {
892         spin_lock_init(&p->pi_lock);
893 #ifdef CONFIG_RT_MUTEXES
894         plist_head_init(&p->pi_waiters, &p->pi_lock);
895         p->pi_blocked_on = NULL;
896 #endif
897 }
898
899 #ifdef CONFIG_MM_OWNER
900 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
901 {
902         mm->owner = p;
903 }
904 #endif /* CONFIG_MM_OWNER */
905
906 /*
907  * Initialize POSIX timer handling for a single task.
908  */
909 static void posix_cpu_timers_init(struct task_struct *tsk)
910 {
911         tsk->cputime_expires.prof_exp = cputime_zero;
912         tsk->cputime_expires.virt_exp = cputime_zero;
913         tsk->cputime_expires.sched_exp = 0;
914         INIT_LIST_HEAD(&tsk->cpu_timers[0]);
915         INIT_LIST_HEAD(&tsk->cpu_timers[1]);
916         INIT_LIST_HEAD(&tsk->cpu_timers[2]);
917 }
918
919 /*
920  * This creates a new process as a copy of the old one,
921  * but does not actually start it yet.
922  *
923  * It copies the registers, and all the appropriate
924  * parts of the process environment (as per the clone
925  * flags). The actual kick-off is left to the caller.
926  */
927 static struct task_struct *copy_process(unsigned long clone_flags,
928                                         unsigned long stack_start,
929                                         struct pt_regs *regs,
930                                         unsigned long stack_size,
931                                         int __user *child_tidptr,
932                                         struct pid *pid,
933                                         int trace)
934 {
935         int retval;
936         struct task_struct *p;
937         int cgroup_callbacks_done = 0;
938
939         if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
940                 return ERR_PTR(-EINVAL);
941
942         /*
943          * Thread groups must share signals as well, and detached threads
944          * can only be started up within the thread group.
945          */
946         if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
947                 return ERR_PTR(-EINVAL);
948
949         /*
950          * Shared signal handlers imply shared VM. By way of the above,
951          * thread groups also imply shared VM. Blocking this case allows
952          * for various simplifications in other code.
953          */
954         if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
955                 return ERR_PTR(-EINVAL);
956
957         retval = security_task_create(clone_flags);
958         if (retval)
959                 goto fork_out;
960
961         retval = -ENOMEM;
962         p = dup_task_struct(current);
963         if (!p)
964                 goto fork_out;
965
966         rt_mutex_init_task(p);
967
968 #ifdef CONFIG_PROVE_LOCKING
969         DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
970         DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
971 #endif
972         retval = -EAGAIN;
973         if (atomic_read(&p->user->processes) >=
974                         p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
975                 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
976                     p->user != current->nsproxy->user_ns->root_user)
977                         goto bad_fork_free;
978         }
979
980         atomic_inc(&p->user->__count);
981         atomic_inc(&p->user->processes);
982         get_group_info(p->group_info);
983
984         /*
985          * If multiple threads are within copy_process(), then this check
986          * triggers too late. This doesn't hurt, the check is only there
987          * to stop root fork bombs.
988          */
989         if (nr_threads >= max_threads)
990                 goto bad_fork_cleanup_count;
991
992         if (!try_module_get(task_thread_info(p)->exec_domain->module))
993                 goto bad_fork_cleanup_count;
994
995         if (p->binfmt && !try_module_get(p->binfmt->module))
996                 goto bad_fork_cleanup_put_domain;
997
998         p->did_exec = 0;
999         delayacct_tsk_init(p);  /* Must remain after dup_task_struct() */
1000         copy_flags(clone_flags, p);
1001         INIT_LIST_HEAD(&p->children);
1002         INIT_LIST_HEAD(&p->sibling);
1003 #ifdef CONFIG_PREEMPT_RCU
1004         p->rcu_read_lock_nesting = 0;
1005         p->rcu_flipctr_idx = 0;
1006 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1007         p->vfork_done = NULL;
1008         spin_lock_init(&p->alloc_lock);
1009
1010         clear_tsk_thread_flag(p, TIF_SIGPENDING);
1011         init_sigpending(&p->pending);
1012
1013         p->utime = cputime_zero;
1014         p->stime = cputime_zero;
1015         p->gtime = cputime_zero;
1016         p->utimescaled = cputime_zero;
1017         p->stimescaled = cputime_zero;
1018         p->prev_utime = cputime_zero;
1019         p->prev_stime = cputime_zero;
1020
1021 #ifdef CONFIG_DETECT_SOFTLOCKUP
1022         p->last_switch_count = 0;
1023         p->last_switch_timestamp = 0;
1024 #endif
1025
1026         task_io_accounting_init(&p->ioac);
1027         acct_clear_integrals(p);
1028
1029         posix_cpu_timers_init(p);
1030
1031         p->lock_depth = -1;             /* -1 = no lock */
1032         do_posix_clock_monotonic_gettime(&p->start_time);
1033         p->real_start_time = p->start_time;
1034         monotonic_to_bootbased(&p->real_start_time);
1035 #ifdef CONFIG_SECURITY
1036         p->security = NULL;
1037 #endif
1038         p->cap_bset = current->cap_bset;
1039         p->io_context = NULL;
1040         p->audit_context = NULL;
1041         cgroup_fork(p);
1042 #ifdef CONFIG_NUMA
1043         p->mempolicy = mpol_dup(p->mempolicy);
1044         if (IS_ERR(p->mempolicy)) {
1045                 retval = PTR_ERR(p->mempolicy);
1046                 p->mempolicy = NULL;
1047                 goto bad_fork_cleanup_cgroup;
1048         }
1049         mpol_fix_fork_child_flag(p);
1050 #endif
1051 #ifdef CONFIG_TRACE_IRQFLAGS
1052         p->irq_events = 0;
1053 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1054         p->hardirqs_enabled = 1;
1055 #else
1056         p->hardirqs_enabled = 0;
1057 #endif
1058         p->hardirq_enable_ip = 0;
1059         p->hardirq_enable_event = 0;
1060         p->hardirq_disable_ip = _THIS_IP_;
1061         p->hardirq_disable_event = 0;
1062         p->softirqs_enabled = 1;
1063         p->softirq_enable_ip = _THIS_IP_;
1064         p->softirq_enable_event = 0;
1065         p->softirq_disable_ip = 0;
1066         p->softirq_disable_event = 0;
1067         p->hardirq_context = 0;
1068         p->softirq_context = 0;
1069 #endif
1070 #ifdef CONFIG_LOCKDEP
1071         p->lockdep_depth = 0; /* no locks held yet */
1072         p->curr_chain_key = 0;
1073         p->lockdep_recursion = 0;
1074 #endif
1075
1076 #ifdef CONFIG_DEBUG_MUTEXES
1077         p->blocked_on = NULL; /* not blocked yet */
1078 #endif
1079
1080         /* Perform scheduler related setup. Assign this task to a CPU. */
1081         sched_fork(p, clone_flags);
1082
1083         if ((retval = security_task_alloc(p)))
1084                 goto bad_fork_cleanup_policy;
1085         if ((retval = audit_alloc(p)))
1086                 goto bad_fork_cleanup_security;
1087         /* copy all the process information */
1088         if ((retval = copy_semundo(clone_flags, p)))
1089                 goto bad_fork_cleanup_audit;
1090         if ((retval = copy_files(clone_flags, p)))
1091                 goto bad_fork_cleanup_semundo;
1092         if ((retval = copy_fs(clone_flags, p)))
1093                 goto bad_fork_cleanup_files;
1094         if ((retval = copy_sighand(clone_flags, p)))
1095                 goto bad_fork_cleanup_fs;
1096         if ((retval = copy_signal(clone_flags, p)))
1097                 goto bad_fork_cleanup_sighand;
1098         if ((retval = copy_mm(clone_flags, p)))
1099                 goto bad_fork_cleanup_signal;
1100         if ((retval = copy_keys(clone_flags, p)))
1101                 goto bad_fork_cleanup_mm;
1102         if ((retval = copy_namespaces(clone_flags, p)))
1103                 goto bad_fork_cleanup_keys;
1104         if ((retval = copy_io(clone_flags, p)))
1105                 goto bad_fork_cleanup_namespaces;
1106         retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
1107         if (retval)
1108                 goto bad_fork_cleanup_io;
1109
1110         if (pid != &init_struct_pid) {
1111                 retval = -ENOMEM;
1112                 pid = alloc_pid(task_active_pid_ns(p));
1113                 if (!pid)
1114                         goto bad_fork_cleanup_io;
1115
1116                 if (clone_flags & CLONE_NEWPID) {
1117                         retval = pid_ns_prepare_proc(task_active_pid_ns(p));
1118                         if (retval < 0)
1119                                 goto bad_fork_free_pid;
1120                 }
1121         }
1122
1123         p->pid = pid_nr(pid);
1124         p->tgid = p->pid;
1125         if (clone_flags & CLONE_THREAD)
1126                 p->tgid = current->tgid;
1127
1128         if (current->nsproxy != p->nsproxy) {
1129                 retval = ns_cgroup_clone(p, pid);
1130                 if (retval)
1131                         goto bad_fork_free_pid;
1132         }
1133
1134         p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1135         /*
1136          * Clear TID on mm_release()?
1137          */
1138         p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1139 #ifdef CONFIG_FUTEX
1140         p->robust_list = NULL;
1141 #ifdef CONFIG_COMPAT
1142         p->compat_robust_list = NULL;
1143 #endif
1144         INIT_LIST_HEAD(&p->pi_state_list);
1145         p->pi_state_cache = NULL;
1146 #endif
1147         /*
1148          * sigaltstack should be cleared when sharing the same VM
1149          */
1150         if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1151                 p->sas_ss_sp = p->sas_ss_size = 0;
1152
1153         /*
1154          * Syscall tracing should be turned off in the child regardless
1155          * of CLONE_PTRACE.
1156          */
1157         clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1158 #ifdef TIF_SYSCALL_EMU
1159         clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1160 #endif
1161         clear_all_latency_tracing(p);
1162
1163         /* Our parent execution domain becomes current domain
1164            These must match for thread signalling to apply */
1165         p->parent_exec_id = p->self_exec_id;
1166
1167         /* ok, now we should be set up.. */
1168         p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1169         p->pdeath_signal = 0;
1170         p->exit_state = 0;
1171
1172         /*
1173          * Ok, make it visible to the rest of the system.
1174          * We dont wake it up yet.
1175          */
1176         p->group_leader = p;
1177         INIT_LIST_HEAD(&p->thread_group);
1178
1179         /* Now that the task is set up, run cgroup callbacks if
1180          * necessary. We need to run them before the task is visible
1181          * on the tasklist. */
1182         cgroup_fork_callbacks(p);
1183         cgroup_callbacks_done = 1;
1184
1185         /* Need tasklist lock for parent etc handling! */
1186         write_lock_irq(&tasklist_lock);
1187
1188         /*
1189          * The task hasn't been attached yet, so its cpus_allowed mask will
1190          * not be changed, nor will its assigned CPU.
1191          *
1192          * The cpus_allowed mask of the parent may have changed after it was
1193          * copied first time - so re-copy it here, then check the child's CPU
1194          * to ensure it is on a valid CPU (and if not, just force it back to
1195          * parent's CPU). This avoids alot of nasty races.
1196          */
1197         p->cpus_allowed = current->cpus_allowed;
1198         p->rt.nr_cpus_allowed = current->rt.nr_cpus_allowed;
1199         if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
1200                         !cpu_online(task_cpu(p))))
1201                 set_task_cpu(p, smp_processor_id());
1202
1203         /* CLONE_PARENT re-uses the old parent */
1204         if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
1205                 p->real_parent = current->real_parent;
1206         else
1207                 p->real_parent = current;
1208
1209         spin_lock(&current->sighand->siglock);
1210
1211         /*
1212          * Process group and session signals need to be delivered to just the
1213          * parent before the fork or both the parent and the child after the
1214          * fork. Restart if a signal comes in before we add the new process to
1215          * it's process group.
1216          * A fatal signal pending means that current will exit, so the new
1217          * thread can't slip out of an OOM kill (or normal SIGKILL).
1218          */
1219         recalc_sigpending();
1220         if (signal_pending(current)) {
1221                 spin_unlock(&current->sighand->siglock);
1222                 write_unlock_irq(&tasklist_lock);
1223                 retval = -ERESTARTNOINTR;
1224                 goto bad_fork_free_pid;
1225         }
1226
1227         if (clone_flags & CLONE_THREAD) {
1228                 p->group_leader = current->group_leader;
1229                 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1230         }
1231
1232         if (likely(p->pid)) {
1233                 list_add_tail(&p->sibling, &p->real_parent->children);
1234                 tracehook_finish_clone(p, clone_flags, trace);
1235
1236                 if (thread_group_leader(p)) {
1237                         if (clone_flags & CLONE_NEWPID)
1238                                 p->nsproxy->pid_ns->child_reaper = p;
1239
1240                         p->signal->leader_pid = pid;
1241                         tty_kref_put(p->signal->tty);
1242                         p->signal->tty = tty_kref_get(current->signal->tty);
1243                         set_task_pgrp(p, task_pgrp_nr(current));
1244                         set_task_session(p, task_session_nr(current));
1245                         attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1246                         attach_pid(p, PIDTYPE_SID, task_session(current));
1247                         list_add_tail_rcu(&p->tasks, &init_task.tasks);
1248                         __get_cpu_var(process_counts)++;
1249                 }
1250                 attach_pid(p, PIDTYPE_PID, pid);
1251                 nr_threads++;
1252         }
1253
1254         total_forks++;
1255         spin_unlock(&current->sighand->siglock);
1256         write_unlock_irq(&tasklist_lock);
1257         proc_fork_connector(p);
1258         cgroup_post_fork(p);
1259         return p;
1260
1261 bad_fork_free_pid:
1262         if (pid != &init_struct_pid)
1263                 free_pid(pid);
1264 bad_fork_cleanup_io:
1265         put_io_context(p->io_context);
1266 bad_fork_cleanup_namespaces:
1267         exit_task_namespaces(p);
1268 bad_fork_cleanup_keys:
1269         exit_keys(p);
1270 bad_fork_cleanup_mm:
1271         if (p->mm)
1272                 mmput(p->mm);
1273 bad_fork_cleanup_signal:
1274         cleanup_signal(p);
1275 bad_fork_cleanup_sighand:
1276         __cleanup_sighand(p->sighand);
1277 bad_fork_cleanup_fs:
1278         exit_fs(p); /* blocking */
1279 bad_fork_cleanup_files:
1280         exit_files(p); /* blocking */
1281 bad_fork_cleanup_semundo:
1282         exit_sem(p);
1283 bad_fork_cleanup_audit:
1284         audit_free(p);
1285 bad_fork_cleanup_security:
1286         security_task_free(p);
1287 bad_fork_cleanup_policy:
1288 #ifdef CONFIG_NUMA
1289         mpol_put(p->mempolicy);
1290 bad_fork_cleanup_cgroup:
1291 #endif
1292         cgroup_exit(p, cgroup_callbacks_done);
1293         delayacct_tsk_free(p);
1294         if (p->binfmt)
1295                 module_put(p->binfmt->module);
1296 bad_fork_cleanup_put_domain:
1297         module_put(task_thread_info(p)->exec_domain->module);
1298 bad_fork_cleanup_count:
1299         put_group_info(p->group_info);
1300         atomic_dec(&p->user->processes);
1301         free_uid(p->user);
1302 bad_fork_free:
1303         free_task(p);
1304 fork_out:
1305         return ERR_PTR(retval);
1306 }
1307
1308 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1309 {
1310         memset(regs, 0, sizeof(struct pt_regs));
1311         return regs;
1312 }
1313
1314 struct task_struct * __cpuinit fork_idle(int cpu)
1315 {
1316         struct task_struct *task;
1317         struct pt_regs regs;
1318
1319         task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1320                             &init_struct_pid, 0);
1321         if (!IS_ERR(task))
1322                 init_idle(task, cpu);
1323
1324         return task;
1325 }
1326
1327 /*
1328  *  Ok, this is the main fork-routine.
1329  *
1330  * It copies the process, and if successful kick-starts
1331  * it and waits for it to finish using the VM if required.
1332  */
1333 long do_fork(unsigned long clone_flags,
1334               unsigned long stack_start,
1335               struct pt_regs *regs,
1336               unsigned long stack_size,
1337               int __user *parent_tidptr,
1338               int __user *child_tidptr)
1339 {
1340         struct task_struct *p;
1341         int trace = 0;
1342         long nr;
1343
1344         /*
1345          * We hope to recycle these flags after 2.6.26
1346          */
1347         if (unlikely(clone_flags & CLONE_STOPPED)) {
1348                 static int __read_mostly count = 100;
1349
1350                 if (count > 0 && printk_ratelimit()) {
1351                         char comm[TASK_COMM_LEN];
1352
1353                         count--;
1354                         printk(KERN_INFO "fork(): process `%s' used deprecated "
1355                                         "clone flags 0x%lx\n",
1356                                 get_task_comm(comm, current),
1357                                 clone_flags & CLONE_STOPPED);
1358                 }
1359         }
1360
1361         /*
1362          * When called from kernel_thread, don't do user tracing stuff.
1363          */
1364         if (likely(user_mode(regs)))
1365                 trace = tracehook_prepare_clone(clone_flags);
1366
1367         p = copy_process(clone_flags, stack_start, regs, stack_size,
1368                          child_tidptr, NULL, trace);
1369         /*
1370          * Do this prior waking up the new thread - the thread pointer
1371          * might get invalid after that point, if the thread exits quickly.
1372          */
1373         if (!IS_ERR(p)) {
1374                 struct completion vfork;
1375
1376                 trace_sched_process_fork(current, p);
1377
1378                 nr = task_pid_vnr(p);
1379
1380                 if (clone_flags & CLONE_PARENT_SETTID)
1381                         put_user(nr, parent_tidptr);
1382
1383                 if (clone_flags & CLONE_VFORK) {
1384                         p->vfork_done = &vfork;
1385                         init_completion(&vfork);
1386                 }
1387
1388                 tracehook_report_clone(trace, regs, clone_flags, nr, p);
1389
1390                 /*
1391                  * We set PF_STARTING at creation in case tracing wants to
1392                  * use this to distinguish a fully live task from one that
1393                  * hasn't gotten to tracehook_report_clone() yet.  Now we
1394                  * clear it and set the child going.
1395                  */
1396                 p->flags &= ~PF_STARTING;
1397
1398                 if (unlikely(clone_flags & CLONE_STOPPED)) {
1399                         /*
1400                          * We'll start up with an immediate SIGSTOP.
1401                          */
1402                         sigaddset(&p->pending.signal, SIGSTOP);
1403                         set_tsk_thread_flag(p, TIF_SIGPENDING);
1404                         __set_task_state(p, TASK_STOPPED);
1405                 } else {
1406                         wake_up_new_task(p, clone_flags);
1407                 }
1408
1409                 tracehook_report_clone_complete(trace, regs,
1410                                                 clone_flags, nr, p);
1411
1412                 if (clone_flags & CLONE_VFORK) {
1413                         freezer_do_not_count();
1414                         wait_for_completion(&vfork);
1415                         freezer_count();
1416                         tracehook_report_vfork_done(p, nr);
1417                 }
1418         } else {
1419                 nr = PTR_ERR(p);
1420         }
1421         return nr;
1422 }
1423
1424 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1425 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1426 #endif
1427
1428 static void sighand_ctor(void *data)
1429 {
1430         struct sighand_struct *sighand = data;
1431
1432         spin_lock_init(&sighand->siglock);
1433         init_waitqueue_head(&sighand->signalfd_wqh);
1434 }
1435
1436 void __init proc_caches_init(void)
1437 {
1438         sighand_cachep = kmem_cache_create("sighand_cache",
1439                         sizeof(struct sighand_struct), 0,
1440                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU,
1441                         sighand_ctor);
1442         signal_cachep = kmem_cache_create("signal_cache",
1443                         sizeof(struct signal_struct), 0,
1444                         SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1445         files_cachep = kmem_cache_create("files_cache",
1446                         sizeof(struct files_struct), 0,
1447                         SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1448         fs_cachep = kmem_cache_create("fs_cache",
1449                         sizeof(struct fs_struct), 0,
1450                         SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1451         vm_area_cachep = kmem_cache_create("vm_area_struct",
1452                         sizeof(struct vm_area_struct), 0,
1453                         SLAB_PANIC, NULL);
1454         mm_cachep = kmem_cache_create("mm_struct",
1455                         sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1456                         SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1457 }
1458
1459 /*
1460  * Check constraints on flags passed to the unshare system call and
1461  * force unsharing of additional process context as appropriate.
1462  */
1463 static void check_unshare_flags(unsigned long *flags_ptr)
1464 {
1465         /*
1466          * If unsharing a thread from a thread group, must also
1467          * unshare vm.
1468          */
1469         if (*flags_ptr & CLONE_THREAD)
1470                 *flags_ptr |= CLONE_VM;
1471
1472         /*
1473          * If unsharing vm, must also unshare signal handlers.
1474          */
1475         if (*flags_ptr & CLONE_VM)
1476                 *flags_ptr |= CLONE_SIGHAND;
1477
1478         /*
1479          * If unsharing signal handlers and the task was created
1480          * using CLONE_THREAD, then must unshare the thread
1481          */
1482         if ((*flags_ptr & CLONE_SIGHAND) &&
1483             (atomic_read(&current->signal->count) > 1))
1484                 *flags_ptr |= CLONE_THREAD;
1485
1486         /*
1487          * If unsharing namespace, must also unshare filesystem information.
1488          */
1489         if (*flags_ptr & CLONE_NEWNS)
1490                 *flags_ptr |= CLONE_FS;
1491 }
1492
1493 /*
1494  * Unsharing of tasks created with CLONE_THREAD is not supported yet
1495  */
1496 static int unshare_thread(unsigned long unshare_flags)
1497 {
1498         if (unshare_flags & CLONE_THREAD)
1499                 return -EINVAL;
1500
1501         return 0;
1502 }
1503
1504 /*
1505  * Unshare the filesystem structure if it is being shared
1506  */
1507 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1508 {
1509         struct fs_struct *fs = current->fs;
1510
1511         if ((unshare_flags & CLONE_FS) &&
1512             (fs && atomic_read(&fs->count) > 1)) {
1513                 *new_fsp = __copy_fs_struct(current->fs);
1514                 if (!*new_fsp)
1515                         return -ENOMEM;
1516         }
1517
1518         return 0;
1519 }
1520
1521 /*
1522  * Unsharing of sighand is not supported yet
1523  */
1524 static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
1525 {
1526         struct sighand_struct *sigh = current->sighand;
1527
1528         if ((unshare_flags & CLONE_SIGHAND) && atomic_read(&sigh->count) > 1)
1529                 return -EINVAL;
1530         else
1531                 return 0;
1532 }
1533
1534 /*
1535  * Unshare vm if it is being shared
1536  */
1537 static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
1538 {
1539         struct mm_struct *mm = current->mm;
1540
1541         if ((unshare_flags & CLONE_VM) &&
1542             (mm && atomic_read(&mm->mm_users) > 1)) {
1543                 return -EINVAL;
1544         }
1545
1546         return 0;
1547 }
1548
1549 /*
1550  * Unshare file descriptor table if it is being shared
1551  */
1552 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1553 {
1554         struct files_struct *fd = current->files;
1555         int error = 0;
1556
1557         if ((unshare_flags & CLONE_FILES) &&
1558             (fd && atomic_read(&fd->count) > 1)) {
1559                 *new_fdp = dup_fd(fd, &error);
1560                 if (!*new_fdp)
1561                         return error;
1562         }
1563
1564         return 0;
1565 }
1566
1567 /*
1568  * unshare allows a process to 'unshare' part of the process
1569  * context which was originally shared using clone.  copy_*
1570  * functions used by do_fork() cannot be used here directly
1571  * because they modify an inactive task_struct that is being
1572  * constructed. Here we are modifying the current, active,
1573  * task_struct.
1574  */
1575 asmlinkage long sys_unshare(unsigned long unshare_flags)
1576 {
1577         int err = 0;
1578         struct fs_struct *fs, *new_fs = NULL;
1579         struct sighand_struct *new_sigh = NULL;
1580         struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
1581         struct files_struct *fd, *new_fd = NULL;
1582         struct nsproxy *new_nsproxy = NULL;
1583         int do_sysvsem = 0;
1584
1585         check_unshare_flags(&unshare_flags);
1586
1587         /* Return -EINVAL for all unsupported flags */
1588         err = -EINVAL;
1589         if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1590                                 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1591                                 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWUSER|
1592                                 CLONE_NEWNET))
1593                 goto bad_unshare_out;
1594
1595         /*
1596          * CLONE_NEWIPC must also detach from the undolist: after switching
1597          * to a new ipc namespace, the semaphore arrays from the old
1598          * namespace are unreachable.
1599          */
1600         if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1601                 do_sysvsem = 1;
1602         if ((err = unshare_thread(unshare_flags)))
1603                 goto bad_unshare_out;
1604         if ((err = unshare_fs(unshare_flags, &new_fs)))
1605                 goto bad_unshare_cleanup_thread;
1606         if ((err = unshare_sighand(unshare_flags, &new_sigh)))
1607                 goto bad_unshare_cleanup_fs;
1608         if ((err = unshare_vm(unshare_flags, &new_mm)))
1609                 goto bad_unshare_cleanup_sigh;
1610         if ((err = unshare_fd(unshare_flags, &new_fd)))
1611                 goto bad_unshare_cleanup_vm;
1612         if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1613                         new_fs)))
1614                 goto bad_unshare_cleanup_fd;
1615
1616         if (new_fs ||  new_mm || new_fd || do_sysvsem || new_nsproxy) {
1617                 if (do_sysvsem) {
1618                         /*
1619                          * CLONE_SYSVSEM is equivalent to sys_exit().
1620                          */
1621                         exit_sem(current);
1622                 }
1623
1624                 if (new_nsproxy) {
1625                         switch_task_namespaces(current, new_nsproxy);
1626                         new_nsproxy = NULL;
1627                 }
1628
1629                 task_lock(current);
1630
1631                 if (new_fs) {
1632                         fs = current->fs;
1633                         current->fs = new_fs;
1634                         new_fs = fs;
1635                 }
1636
1637                 if (new_mm) {
1638                         mm = current->mm;
1639                         active_mm = current->active_mm;
1640                         current->mm = new_mm;
1641                         current->active_mm = new_mm;
1642                         activate_mm(active_mm, new_mm);
1643                         new_mm = mm;
1644                 }
1645
1646                 if (new_fd) {
1647                         fd = current->files;
1648                         current->files = new_fd;
1649                         new_fd = fd;
1650                 }
1651
1652                 task_unlock(current);
1653         }
1654
1655         if (new_nsproxy)
1656                 put_nsproxy(new_nsproxy);
1657
1658 bad_unshare_cleanup_fd:
1659         if (new_fd)
1660                 put_files_struct(new_fd);
1661
1662 bad_unshare_cleanup_vm:
1663         if (new_mm)
1664                 mmput(new_mm);
1665
1666 bad_unshare_cleanup_sigh:
1667         if (new_sigh)
1668                 if (atomic_dec_and_test(&new_sigh->count))
1669                         kmem_cache_free(sighand_cachep, new_sigh);
1670
1671 bad_unshare_cleanup_fs:
1672         if (new_fs)
1673                 put_fs_struct(new_fs);
1674
1675 bad_unshare_cleanup_thread:
1676 bad_unshare_out:
1677         return err;
1678 }
1679
1680 /*
1681  *      Helper to unshare the files of the current task.
1682  *      We don't want to expose copy_files internals to
1683  *      the exec layer of the kernel.
1684  */
1685
1686 int unshare_files(struct files_struct **displaced)
1687 {
1688         struct task_struct *task = current;
1689         struct files_struct *copy = NULL;
1690         int error;
1691
1692         error = unshare_fd(CLONE_FILES, &copy);
1693         if (error || !copy) {
1694                 *displaced = NULL;
1695                 return error;
1696         }
1697         *displaced = task->files;
1698         task_lock(task);
1699         task->files = copy;
1700         task_unlock(task);
1701         return 0;
1702 }