Merge branch 'linus' into perfcounters/core-v2
[safe/jmp/linux-2.6] / kernel / exit.c
1 /*
2  *  linux/kernel/exit.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/mnt_namespace.h>
16 #include <linux/iocontext.h>
17 #include <linux/key.h>
18 #include <linux/security.h>
19 #include <linux/cpu.h>
20 #include <linux/acct.h>
21 #include <linux/tsacct_kern.h>
22 #include <linux/file.h>
23 #include <linux/fdtable.h>
24 #include <linux/binfmts.h>
25 #include <linux/nsproxy.h>
26 #include <linux/pid_namespace.h>
27 #include <linux/ptrace.h>
28 #include <linux/profile.h>
29 #include <linux/mount.h>
30 #include <linux/proc_fs.h>
31 #include <linux/kthread.h>
32 #include <linux/mempolicy.h>
33 #include <linux/taskstats_kern.h>
34 #include <linux/delayacct.h>
35 #include <linux/freezer.h>
36 #include <linux/cgroup.h>
37 #include <linux/syscalls.h>
38 #include <linux/signal.h>
39 #include <linux/posix-timers.h>
40 #include <linux/cn_proc.h>
41 #include <linux/mutex.h>
42 #include <linux/futex.h>
43 #include <linux/pipe_fs_i.h>
44 #include <linux/audit.h> /* for audit_free() */
45 #include <linux/resource.h>
46 #include <linux/blkdev.h>
47 #include <linux/task_io_accounting_ops.h>
48 #include <linux/tracehook.h>
49 #include <linux/fs_struct.h>
50 #include <linux/init_task.h>
51 #include <trace/sched.h>
52
53 #include <asm/uaccess.h>
54 #include <asm/unistd.h>
55 #include <asm/pgtable.h>
56 #include <asm/mmu_context.h>
57 #include "cred-internals.h"
58
59 DEFINE_TRACE(sched_process_free);
60 DEFINE_TRACE(sched_process_exit);
61 DEFINE_TRACE(sched_process_wait);
62
63 static void exit_mm(struct task_struct * tsk);
64
65 static void __unhash_process(struct task_struct *p)
66 {
67         nr_threads--;
68         detach_pid(p, PIDTYPE_PID);
69         if (thread_group_leader(p)) {
70                 detach_pid(p, PIDTYPE_PGID);
71                 detach_pid(p, PIDTYPE_SID);
72
73                 list_del_rcu(&p->tasks);
74                 __get_cpu_var(process_counts)--;
75         }
76         list_del_rcu(&p->thread_group);
77         list_del_init(&p->sibling);
78 }
79
80 /*
81  * This function expects the tasklist_lock write-locked.
82  */
83 static void __exit_signal(struct task_struct *tsk)
84 {
85         struct signal_struct *sig = tsk->signal;
86         struct sighand_struct *sighand;
87
88         BUG_ON(!sig);
89         BUG_ON(!atomic_read(&sig->count));
90
91         sighand = rcu_dereference(tsk->sighand);
92         spin_lock(&sighand->siglock);
93
94         posix_cpu_timers_exit(tsk);
95         if (atomic_dec_and_test(&sig->count))
96                 posix_cpu_timers_exit_group(tsk);
97         else {
98                 /*
99                  * If there is any task waiting for the group exit
100                  * then notify it:
101                  */
102                 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count)
103                         wake_up_process(sig->group_exit_task);
104
105                 if (tsk == sig->curr_target)
106                         sig->curr_target = next_thread(tsk);
107                 /*
108                  * Accumulate here the counters for all threads but the
109                  * group leader as they die, so they can be added into
110                  * the process-wide totals when those are taken.
111                  * The group leader stays around as a zombie as long
112                  * as there are other threads.  When it gets reaped,
113                  * the exit.c code will add its counts into these totals.
114                  * We won't ever get here for the group leader, since it
115                  * will have been the last reference on the signal_struct.
116                  */
117                 sig->utime = cputime_add(sig->utime, task_utime(tsk));
118                 sig->stime = cputime_add(sig->stime, task_stime(tsk));
119                 sig->gtime = cputime_add(sig->gtime, task_gtime(tsk));
120                 sig->min_flt += tsk->min_flt;
121                 sig->maj_flt += tsk->maj_flt;
122                 sig->nvcsw += tsk->nvcsw;
123                 sig->nivcsw += tsk->nivcsw;
124                 sig->inblock += task_io_get_inblock(tsk);
125                 sig->oublock += task_io_get_oublock(tsk);
126                 task_io_accounting_add(&sig->ioac, &tsk->ioac);
127                 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
128                 sig = NULL; /* Marker for below. */
129         }
130
131         __unhash_process(tsk);
132
133         /*
134          * Do this under ->siglock, we can race with another thread
135          * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
136          */
137         flush_sigqueue(&tsk->pending);
138
139         tsk->signal = NULL;
140         tsk->sighand = NULL;
141         spin_unlock(&sighand->siglock);
142
143         __cleanup_sighand(sighand);
144         clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
145         if (sig) {
146                 flush_sigqueue(&sig->shared_pending);
147                 taskstats_tgid_free(sig);
148                 /*
149                  * Make sure ->signal can't go away under rq->lock,
150                  * see account_group_exec_runtime().
151                  */
152                 task_rq_unlock_wait(tsk);
153                 __cleanup_signal(sig);
154         }
155 }
156
157 static void delayed_put_task_struct(struct rcu_head *rhp)
158 {
159         struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
160
161 #ifdef CONFIG_PERF_COUNTERS
162         WARN_ON_ONCE(!list_empty(&tsk->perf_counter_ctx.counter_list));
163 #endif
164         trace_sched_process_free(tsk);
165         put_task_struct(tsk);
166 }
167
168
169 void release_task(struct task_struct * p)
170 {
171         struct task_struct *leader;
172         int zap_leader;
173 repeat:
174         tracehook_prepare_release_task(p);
175         /* don't need to get the RCU readlock here - the process is dead and
176          * can't be modifying its own credentials */
177         atomic_dec(&__task_cred(p)->user->processes);
178
179         proc_flush_task(p);
180         write_lock_irq(&tasklist_lock);
181         tracehook_finish_release_task(p);
182         __exit_signal(p);
183
184         /*
185          * If we are the last non-leader member of the thread
186          * group, and the leader is zombie, then notify the
187          * group leader's parent process. (if it wants notification.)
188          */
189         zap_leader = 0;
190         leader = p->group_leader;
191         if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
192                 BUG_ON(task_detached(leader));
193                 do_notify_parent(leader, leader->exit_signal);
194                 /*
195                  * If we were the last child thread and the leader has
196                  * exited already, and the leader's parent ignores SIGCHLD,
197                  * then we are the one who should release the leader.
198                  *
199                  * do_notify_parent() will have marked it self-reaping in
200                  * that case.
201                  */
202                 zap_leader = task_detached(leader);
203
204                 /*
205                  * This maintains the invariant that release_task()
206                  * only runs on a task in EXIT_DEAD, just for sanity.
207                  */
208                 if (zap_leader)
209                         leader->exit_state = EXIT_DEAD;
210         }
211
212         write_unlock_irq(&tasklist_lock);
213         release_thread(p);
214         call_rcu(&p->rcu, delayed_put_task_struct);
215
216         p = leader;
217         if (unlikely(zap_leader))
218                 goto repeat;
219 }
220
221 /*
222  * This checks not only the pgrp, but falls back on the pid if no
223  * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
224  * without this...
225  *
226  * The caller must hold rcu lock or the tasklist lock.
227  */
228 struct pid *session_of_pgrp(struct pid *pgrp)
229 {
230         struct task_struct *p;
231         struct pid *sid = NULL;
232
233         p = pid_task(pgrp, PIDTYPE_PGID);
234         if (p == NULL)
235                 p = pid_task(pgrp, PIDTYPE_PID);
236         if (p != NULL)
237                 sid = task_session(p);
238
239         return sid;
240 }
241
242 /*
243  * Determine if a process group is "orphaned", according to the POSIX
244  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
245  * by terminal-generated stop signals.  Newly orphaned process groups are
246  * to receive a SIGHUP and a SIGCONT.
247  *
248  * "I ask you, have you ever known what it is to be an orphan?"
249  */
250 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
251 {
252         struct task_struct *p;
253
254         do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
255                 if ((p == ignored_task) ||
256                     (p->exit_state && thread_group_empty(p)) ||
257                     is_global_init(p->real_parent))
258                         continue;
259
260                 if (task_pgrp(p->real_parent) != pgrp &&
261                     task_session(p->real_parent) == task_session(p))
262                         return 0;
263         } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
264
265         return 1;
266 }
267
268 int is_current_pgrp_orphaned(void)
269 {
270         int retval;
271
272         read_lock(&tasklist_lock);
273         retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
274         read_unlock(&tasklist_lock);
275
276         return retval;
277 }
278
279 static int has_stopped_jobs(struct pid *pgrp)
280 {
281         int retval = 0;
282         struct task_struct *p;
283
284         do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
285                 if (!task_is_stopped(p))
286                         continue;
287                 retval = 1;
288                 break;
289         } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
290         return retval;
291 }
292
293 /*
294  * Check to see if any process groups have become orphaned as
295  * a result of our exiting, and if they have any stopped jobs,
296  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
297  */
298 static void
299 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
300 {
301         struct pid *pgrp = task_pgrp(tsk);
302         struct task_struct *ignored_task = tsk;
303
304         if (!parent)
305                  /* exit: our father is in a different pgrp than
306                   * we are and we were the only connection outside.
307                   */
308                 parent = tsk->real_parent;
309         else
310                 /* reparent: our child is in a different pgrp than
311                  * we are, and it was the only connection outside.
312                  */
313                 ignored_task = NULL;
314
315         if (task_pgrp(parent) != pgrp &&
316             task_session(parent) == task_session(tsk) &&
317             will_become_orphaned_pgrp(pgrp, ignored_task) &&
318             has_stopped_jobs(pgrp)) {
319                 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
320                 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
321         }
322 }
323
324 /**
325  * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
326  *
327  * If a kernel thread is launched as a result of a system call, or if
328  * it ever exits, it should generally reparent itself to kthreadd so it
329  * isn't in the way of other processes and is correctly cleaned up on exit.
330  *
331  * The various task state such as scheduling policy and priority may have
332  * been inherited from a user process, so we reset them to sane values here.
333  *
334  * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
335  */
336 static void reparent_to_kthreadd(void)
337 {
338         write_lock_irq(&tasklist_lock);
339
340         ptrace_unlink(current);
341         /* Reparent to init */
342         current->real_parent = current->parent = kthreadd_task;
343         list_move_tail(&current->sibling, &current->real_parent->children);
344
345         /* Set the exit signal to SIGCHLD so we signal init on exit */
346         current->exit_signal = SIGCHLD;
347
348         if (task_nice(current) < 0)
349                 set_user_nice(current, 0);
350         /* cpus_allowed? */
351         /* rt_priority? */
352         /* signals? */
353         memcpy(current->signal->rlim, init_task.signal->rlim,
354                sizeof(current->signal->rlim));
355
356         atomic_inc(&init_cred.usage);
357         commit_creds(&init_cred);
358         write_unlock_irq(&tasklist_lock);
359 }
360
361 void __set_special_pids(struct pid *pid)
362 {
363         struct task_struct *curr = current->group_leader;
364
365         if (task_session(curr) != pid)
366                 change_pid(curr, PIDTYPE_SID, pid);
367
368         if (task_pgrp(curr) != pid)
369                 change_pid(curr, PIDTYPE_PGID, pid);
370 }
371
372 static void set_special_pids(struct pid *pid)
373 {
374         write_lock_irq(&tasklist_lock);
375         __set_special_pids(pid);
376         write_unlock_irq(&tasklist_lock);
377 }
378
379 /*
380  * Let kernel threads use this to say that they
381  * allow a certain signal (since daemonize() will
382  * have disabled all of them by default).
383  */
384 int allow_signal(int sig)
385 {
386         if (!valid_signal(sig) || sig < 1)
387                 return -EINVAL;
388
389         spin_lock_irq(&current->sighand->siglock);
390         sigdelset(&current->blocked, sig);
391         if (!current->mm) {
392                 /* Kernel threads handle their own signals.
393                    Let the signal code know it'll be handled, so
394                    that they don't get converted to SIGKILL or
395                    just silently dropped */
396                 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
397         }
398         recalc_sigpending();
399         spin_unlock_irq(&current->sighand->siglock);
400         return 0;
401 }
402
403 EXPORT_SYMBOL(allow_signal);
404
405 int disallow_signal(int sig)
406 {
407         if (!valid_signal(sig) || sig < 1)
408                 return -EINVAL;
409
410         spin_lock_irq(&current->sighand->siglock);
411         current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
412         recalc_sigpending();
413         spin_unlock_irq(&current->sighand->siglock);
414         return 0;
415 }
416
417 EXPORT_SYMBOL(disallow_signal);
418
419 /*
420  *      Put all the gunge required to become a kernel thread without
421  *      attached user resources in one place where it belongs.
422  */
423
424 void daemonize(const char *name, ...)
425 {
426         va_list args;
427         sigset_t blocked;
428
429         va_start(args, name);
430         vsnprintf(current->comm, sizeof(current->comm), name, args);
431         va_end(args);
432
433         /*
434          * If we were started as result of loading a module, close all of the
435          * user space pages.  We don't need them, and if we didn't close them
436          * they would be locked into memory.
437          */
438         exit_mm(current);
439         /*
440          * We don't want to have TIF_FREEZE set if the system-wide hibernation
441          * or suspend transition begins right now.
442          */
443         current->flags |= (PF_NOFREEZE | PF_KTHREAD);
444
445         if (current->nsproxy != &init_nsproxy) {
446                 get_nsproxy(&init_nsproxy);
447                 switch_task_namespaces(current, &init_nsproxy);
448         }
449         set_special_pids(&init_struct_pid);
450         proc_clear_tty(current);
451
452         /* Block and flush all signals */
453         sigfillset(&blocked);
454         sigprocmask(SIG_BLOCK, &blocked, NULL);
455         flush_signals(current);
456
457         /* Become as one with the init task */
458
459         daemonize_fs_struct();
460         exit_files(current);
461         current->files = init_task.files;
462         atomic_inc(&current->files->count);
463
464         reparent_to_kthreadd();
465 }
466
467 EXPORT_SYMBOL(daemonize);
468
469 static void close_files(struct files_struct * files)
470 {
471         int i, j;
472         struct fdtable *fdt;
473
474         j = 0;
475
476         /*
477          * It is safe to dereference the fd table without RCU or
478          * ->file_lock because this is the last reference to the
479          * files structure.
480          */
481         fdt = files_fdtable(files);
482         for (;;) {
483                 unsigned long set;
484                 i = j * __NFDBITS;
485                 if (i >= fdt->max_fds)
486                         break;
487                 set = fdt->open_fds->fds_bits[j++];
488                 while (set) {
489                         if (set & 1) {
490                                 struct file * file = xchg(&fdt->fd[i], NULL);
491                                 if (file) {
492                                         filp_close(file, files);
493                                         cond_resched();
494                                 }
495                         }
496                         i++;
497                         set >>= 1;
498                 }
499         }
500 }
501
502 struct files_struct *get_files_struct(struct task_struct *task)
503 {
504         struct files_struct *files;
505
506         task_lock(task);
507         files = task->files;
508         if (files)
509                 atomic_inc(&files->count);
510         task_unlock(task);
511
512         return files;
513 }
514
515 void put_files_struct(struct files_struct *files)
516 {
517         struct fdtable *fdt;
518
519         if (atomic_dec_and_test(&files->count)) {
520                 close_files(files);
521                 /*
522                  * Free the fd and fdset arrays if we expanded them.
523                  * If the fdtable was embedded, pass files for freeing
524                  * at the end of the RCU grace period. Otherwise,
525                  * you can free files immediately.
526                  */
527                 fdt = files_fdtable(files);
528                 if (fdt != &files->fdtab)
529                         kmem_cache_free(files_cachep, files);
530                 free_fdtable(fdt);
531         }
532 }
533
534 void reset_files_struct(struct files_struct *files)
535 {
536         struct task_struct *tsk = current;
537         struct files_struct *old;
538
539         old = tsk->files;
540         task_lock(tsk);
541         tsk->files = files;
542         task_unlock(tsk);
543         put_files_struct(old);
544 }
545
546 void exit_files(struct task_struct *tsk)
547 {
548         struct files_struct * files = tsk->files;
549
550         if (files) {
551                 task_lock(tsk);
552                 tsk->files = NULL;
553                 task_unlock(tsk);
554                 put_files_struct(files);
555         }
556 }
557
558 #ifdef CONFIG_MM_OWNER
559 /*
560  * Task p is exiting and it owned mm, lets find a new owner for it
561  */
562 static inline int
563 mm_need_new_owner(struct mm_struct *mm, struct task_struct *p)
564 {
565         /*
566          * If there are other users of the mm and the owner (us) is exiting
567          * we need to find a new owner to take on the responsibility.
568          */
569         if (atomic_read(&mm->mm_users) <= 1)
570                 return 0;
571         if (mm->owner != p)
572                 return 0;
573         return 1;
574 }
575
576 void mm_update_next_owner(struct mm_struct *mm)
577 {
578         struct task_struct *c, *g, *p = current;
579
580 retry:
581         if (!mm_need_new_owner(mm, p))
582                 return;
583
584         read_lock(&tasklist_lock);
585         /*
586          * Search in the children
587          */
588         list_for_each_entry(c, &p->children, sibling) {
589                 if (c->mm == mm)
590                         goto assign_new_owner;
591         }
592
593         /*
594          * Search in the siblings
595          */
596         list_for_each_entry(c, &p->parent->children, sibling) {
597                 if (c->mm == mm)
598                         goto assign_new_owner;
599         }
600
601         /*
602          * Search through everything else. We should not get
603          * here often
604          */
605         do_each_thread(g, c) {
606                 if (c->mm == mm)
607                         goto assign_new_owner;
608         } while_each_thread(g, c);
609
610         read_unlock(&tasklist_lock);
611         /*
612          * We found no owner yet mm_users > 1: this implies that we are
613          * most likely racing with swapoff (try_to_unuse()) or /proc or
614          * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
615          */
616         mm->owner = NULL;
617         return;
618
619 assign_new_owner:
620         BUG_ON(c == p);
621         get_task_struct(c);
622         /*
623          * The task_lock protects c->mm from changing.
624          * We always want mm->owner->mm == mm
625          */
626         task_lock(c);
627         /*
628          * Delay read_unlock() till we have the task_lock()
629          * to ensure that c does not slip away underneath us
630          */
631         read_unlock(&tasklist_lock);
632         if (c->mm != mm) {
633                 task_unlock(c);
634                 put_task_struct(c);
635                 goto retry;
636         }
637         mm->owner = c;
638         task_unlock(c);
639         put_task_struct(c);
640 }
641 #endif /* CONFIG_MM_OWNER */
642
643 /*
644  * Turn us into a lazy TLB process if we
645  * aren't already..
646  */
647 static void exit_mm(struct task_struct * tsk)
648 {
649         struct mm_struct *mm = tsk->mm;
650         struct core_state *core_state;
651
652         mm_release(tsk, mm);
653         if (!mm)
654                 return;
655         /*
656          * Serialize with any possible pending coredump.
657          * We must hold mmap_sem around checking core_state
658          * and clearing tsk->mm.  The core-inducing thread
659          * will increment ->nr_threads for each thread in the
660          * group with ->mm != NULL.
661          */
662         down_read(&mm->mmap_sem);
663         core_state = mm->core_state;
664         if (core_state) {
665                 struct core_thread self;
666                 up_read(&mm->mmap_sem);
667
668                 self.task = tsk;
669                 self.next = xchg(&core_state->dumper.next, &self);
670                 /*
671                  * Implies mb(), the result of xchg() must be visible
672                  * to core_state->dumper.
673                  */
674                 if (atomic_dec_and_test(&core_state->nr_threads))
675                         complete(&core_state->startup);
676
677                 for (;;) {
678                         set_task_state(tsk, TASK_UNINTERRUPTIBLE);
679                         if (!self.task) /* see coredump_finish() */
680                                 break;
681                         schedule();
682                 }
683                 __set_task_state(tsk, TASK_RUNNING);
684                 down_read(&mm->mmap_sem);
685         }
686         atomic_inc(&mm->mm_count);
687         BUG_ON(mm != tsk->active_mm);
688         /* more a memory barrier than a real lock */
689         task_lock(tsk);
690         tsk->mm = NULL;
691         up_read(&mm->mmap_sem);
692         enter_lazy_tlb(mm, current);
693         /* We don't want this task to be frozen prematurely */
694         clear_freeze_flag(tsk);
695         task_unlock(tsk);
696         mm_update_next_owner(mm);
697         mmput(mm);
698 }
699
700 /*
701  * When we die, we re-parent all our children.
702  * Try to give them to another thread in our thread
703  * group, and if no such member exists, give it to
704  * the child reaper process (ie "init") in our pid
705  * space.
706  */
707 static struct task_struct *find_new_reaper(struct task_struct *father)
708 {
709         struct pid_namespace *pid_ns = task_active_pid_ns(father);
710         struct task_struct *thread;
711
712         thread = father;
713         while_each_thread(father, thread) {
714                 if (thread->flags & PF_EXITING)
715                         continue;
716                 if (unlikely(pid_ns->child_reaper == father))
717                         pid_ns->child_reaper = thread;
718                 return thread;
719         }
720
721         if (unlikely(pid_ns->child_reaper == father)) {
722                 write_unlock_irq(&tasklist_lock);
723                 if (unlikely(pid_ns == &init_pid_ns))
724                         panic("Attempted to kill init!");
725
726                 zap_pid_ns_processes(pid_ns);
727                 write_lock_irq(&tasklist_lock);
728                 /*
729                  * We can not clear ->child_reaper or leave it alone.
730                  * There may by stealth EXIT_DEAD tasks on ->children,
731                  * forget_original_parent() must move them somewhere.
732                  */
733                 pid_ns->child_reaper = init_pid_ns.child_reaper;
734         }
735
736         return pid_ns->child_reaper;
737 }
738
739 /*
740 * Any that need to be release_task'd are put on the @dead list.
741  */
742 static void reparent_thread(struct task_struct *father, struct task_struct *p,
743                                 struct list_head *dead)
744 {
745         if (p->pdeath_signal)
746                 group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p);
747
748         list_move_tail(&p->sibling, &p->real_parent->children);
749
750         if (task_detached(p))
751                 return;
752         /*
753          * If this is a threaded reparent there is no need to
754          * notify anyone anything has happened.
755          */
756         if (same_thread_group(p->real_parent, father))
757                 return;
758
759         /* We don't want people slaying init.  */
760         p->exit_signal = SIGCHLD;
761
762         /* If it has exited notify the new parent about this child's death. */
763         if (!p->ptrace &&
764             p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
765                 do_notify_parent(p, p->exit_signal);
766                 if (task_detached(p)) {
767                         p->exit_state = EXIT_DEAD;
768                         list_move_tail(&p->sibling, dead);
769                 }
770         }
771
772         kill_orphaned_pgrp(p, father);
773 }
774
775 static void forget_original_parent(struct task_struct *father)
776 {
777         struct task_struct *p, *n, *reaper;
778         LIST_HEAD(dead_children);
779
780         exit_ptrace(father);
781
782         write_lock_irq(&tasklist_lock);
783         reaper = find_new_reaper(father);
784
785         list_for_each_entry_safe(p, n, &father->children, sibling) {
786                 p->real_parent = reaper;
787                 if (p->parent == father) {
788                         BUG_ON(p->ptrace);
789                         p->parent = p->real_parent;
790                 }
791                 reparent_thread(father, p, &dead_children);
792         }
793         write_unlock_irq(&tasklist_lock);
794
795         BUG_ON(!list_empty(&father->children));
796
797         list_for_each_entry_safe(p, n, &dead_children, sibling) {
798                 list_del_init(&p->sibling);
799                 release_task(p);
800         }
801 }
802
803 /*
804  * Send signals to all our closest relatives so that they know
805  * to properly mourn us..
806  */
807 static void exit_notify(struct task_struct *tsk, int group_dead)
808 {
809         int signal;
810         void *cookie;
811
812         /*
813          * This does two things:
814          *
815          * A.  Make init inherit all the child processes
816          * B.  Check to see if any process groups have become orphaned
817          *      as a result of our exiting, and if they have any stopped
818          *      jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
819          */
820         forget_original_parent(tsk);
821         exit_task_namespaces(tsk);
822
823         write_lock_irq(&tasklist_lock);
824         if (group_dead)
825                 kill_orphaned_pgrp(tsk->group_leader, NULL);
826
827         /* Let father know we died
828          *
829          * Thread signals are configurable, but you aren't going to use
830          * that to send signals to arbitary processes.
831          * That stops right now.
832          *
833          * If the parent exec id doesn't match the exec id we saved
834          * when we started then we know the parent has changed security
835          * domain.
836          *
837          * If our self_exec id doesn't match our parent_exec_id then
838          * we have changed execution domain as these two values started
839          * the same after a fork.
840          */
841         if (tsk->exit_signal != SIGCHLD && !task_detached(tsk) &&
842             (tsk->parent_exec_id != tsk->real_parent->self_exec_id ||
843              tsk->self_exec_id != tsk->parent_exec_id) &&
844             !capable(CAP_KILL))
845                 tsk->exit_signal = SIGCHLD;
846
847         signal = tracehook_notify_death(tsk, &cookie, group_dead);
848         if (signal >= 0)
849                 signal = do_notify_parent(tsk, signal);
850
851         tsk->exit_state = signal == DEATH_REAP ? EXIT_DEAD : EXIT_ZOMBIE;
852
853         /* mt-exec, de_thread() is waiting for us */
854         if (thread_group_leader(tsk) &&
855             tsk->signal->group_exit_task &&
856             tsk->signal->notify_count < 0)
857                 wake_up_process(tsk->signal->group_exit_task);
858
859         write_unlock_irq(&tasklist_lock);
860
861         tracehook_report_death(tsk, signal, cookie, group_dead);
862
863         /* If the process is dead, release it - nobody will wait for it */
864         if (signal == DEATH_REAP)
865                 release_task(tsk);
866 }
867
868 #ifdef CONFIG_DEBUG_STACK_USAGE
869 static void check_stack_usage(void)
870 {
871         static DEFINE_SPINLOCK(low_water_lock);
872         static int lowest_to_date = THREAD_SIZE;
873         unsigned long free;
874
875         free = stack_not_used(current);
876
877         if (free >= lowest_to_date)
878                 return;
879
880         spin_lock(&low_water_lock);
881         if (free < lowest_to_date) {
882                 printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
883                                 "left\n",
884                                 current->comm, free);
885                 lowest_to_date = free;
886         }
887         spin_unlock(&low_water_lock);
888 }
889 #else
890 static inline void check_stack_usage(void) {}
891 #endif
892
893 NORET_TYPE void do_exit(long code)
894 {
895         struct task_struct *tsk = current;
896         int group_dead;
897
898         profile_task_exit(tsk);
899
900         WARN_ON(atomic_read(&tsk->fs_excl));
901
902         if (unlikely(in_interrupt()))
903                 panic("Aiee, killing interrupt handler!");
904         if (unlikely(!tsk->pid))
905                 panic("Attempted to kill the idle task!");
906
907         tracehook_report_exit(&code);
908
909         /*
910          * We're taking recursive faults here in do_exit. Safest is to just
911          * leave this task alone and wait for reboot.
912          */
913         if (unlikely(tsk->flags & PF_EXITING)) {
914                 printk(KERN_ALERT
915                         "Fixing recursive fault but reboot is needed!\n");
916                 /*
917                  * We can do this unlocked here. The futex code uses
918                  * this flag just to verify whether the pi state
919                  * cleanup has been done or not. In the worst case it
920                  * loops once more. We pretend that the cleanup was
921                  * done as there is no way to return. Either the
922                  * OWNER_DIED bit is set by now or we push the blocked
923                  * task into the wait for ever nirwana as well.
924                  */
925                 tsk->flags |= PF_EXITPIDONE;
926                 set_current_state(TASK_UNINTERRUPTIBLE);
927                 schedule();
928         }
929
930         exit_signals(tsk);  /* sets PF_EXITING */
931         /*
932          * tsk->flags are checked in the futex code to protect against
933          * an exiting task cleaning up the robust pi futexes.
934          */
935         smp_mb();
936         spin_unlock_wait(&tsk->pi_lock);
937
938         if (unlikely(in_atomic()))
939                 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
940                                 current->comm, task_pid_nr(current),
941                                 preempt_count());
942
943         acct_update_integrals(tsk);
944
945         group_dead = atomic_dec_and_test(&tsk->signal->live);
946         if (group_dead) {
947                 hrtimer_cancel(&tsk->signal->real_timer);
948                 exit_itimers(tsk->signal);
949         }
950         acct_collect(code, group_dead);
951         if (group_dead)
952                 tty_audit_exit();
953         if (unlikely(tsk->audit_context))
954                 audit_free(tsk);
955
956         tsk->exit_code = code;
957         taskstats_exit(tsk, group_dead);
958
959         exit_mm(tsk);
960
961         if (group_dead)
962                 acct_process();
963         trace_sched_process_exit(tsk);
964
965         exit_sem(tsk);
966         exit_files(tsk);
967         exit_fs(tsk);
968         check_stack_usage();
969         exit_thread();
970         cgroup_exit(tsk, 1);
971
972         if (group_dead && tsk->signal->leader)
973                 disassociate_ctty(1);
974
975         module_put(task_thread_info(tsk)->exec_domain->module);
976         if (tsk->binfmt)
977                 module_put(tsk->binfmt->module);
978
979         proc_exit_connector(tsk);
980         exit_notify(tsk, group_dead);
981 #ifdef CONFIG_NUMA
982         mpol_put(tsk->mempolicy);
983         tsk->mempolicy = NULL;
984 #endif
985 #ifdef CONFIG_FUTEX
986         if (unlikely(!list_empty(&tsk->pi_state_list)))
987                 exit_pi_state_list(tsk);
988         if (unlikely(current->pi_state_cache))
989                 kfree(current->pi_state_cache);
990 #endif
991         /*
992          * Make sure we are holding no locks:
993          */
994         debug_check_no_locks_held(tsk);
995         /*
996          * We can do this unlocked here. The futex code uses this flag
997          * just to verify whether the pi state cleanup has been done
998          * or not. In the worst case it loops once more.
999          */
1000         tsk->flags |= PF_EXITPIDONE;
1001
1002         if (tsk->io_context)
1003                 exit_io_context();
1004
1005         if (tsk->splice_pipe)
1006                 __free_pipe_info(tsk->splice_pipe);
1007
1008         preempt_disable();
1009         /* causes final put_task_struct in finish_task_switch(). */
1010         tsk->state = TASK_DEAD;
1011         schedule();
1012         BUG();
1013         /* Avoid "noreturn function does return".  */
1014         for (;;)
1015                 cpu_relax();    /* For when BUG is null */
1016 }
1017
1018 EXPORT_SYMBOL_GPL(do_exit);
1019
1020 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
1021 {
1022         if (comp)
1023                 complete(comp);
1024
1025         do_exit(code);
1026 }
1027
1028 EXPORT_SYMBOL(complete_and_exit);
1029
1030 SYSCALL_DEFINE1(exit, int, error_code)
1031 {
1032         do_exit((error_code&0xff)<<8);
1033 }
1034
1035 /*
1036  * Take down every thread in the group.  This is called by fatal signals
1037  * as well as by sys_exit_group (below).
1038  */
1039 NORET_TYPE void
1040 do_group_exit(int exit_code)
1041 {
1042         struct signal_struct *sig = current->signal;
1043
1044         BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1045
1046         if (signal_group_exit(sig))
1047                 exit_code = sig->group_exit_code;
1048         else if (!thread_group_empty(current)) {
1049                 struct sighand_struct *const sighand = current->sighand;
1050                 spin_lock_irq(&sighand->siglock);
1051                 if (signal_group_exit(sig))
1052                         /* Another thread got here before we took the lock.  */
1053                         exit_code = sig->group_exit_code;
1054                 else {
1055                         sig->group_exit_code = exit_code;
1056                         sig->flags = SIGNAL_GROUP_EXIT;
1057                         zap_other_threads(current);
1058                 }
1059                 spin_unlock_irq(&sighand->siglock);
1060         }
1061
1062         do_exit(exit_code);
1063         /* NOTREACHED */
1064 }
1065
1066 /*
1067  * this kills every thread in the thread group. Note that any externally
1068  * wait4()-ing process will get the correct exit code - even if this
1069  * thread is not the thread group leader.
1070  */
1071 SYSCALL_DEFINE1(exit_group, int, error_code)
1072 {
1073         do_group_exit((error_code & 0xff) << 8);
1074         /* NOTREACHED */
1075         return 0;
1076 }
1077
1078 static struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1079 {
1080         struct pid *pid = NULL;
1081         if (type == PIDTYPE_PID)
1082                 pid = task->pids[type].pid;
1083         else if (type < PIDTYPE_MAX)
1084                 pid = task->group_leader->pids[type].pid;
1085         return pid;
1086 }
1087
1088 static int eligible_child(enum pid_type type, struct pid *pid, int options,
1089                           struct task_struct *p)
1090 {
1091         int err;
1092
1093         if (type < PIDTYPE_MAX) {
1094                 if (task_pid_type(p, type) != pid)
1095                         return 0;
1096         }
1097
1098         /* Wait for all children (clone and not) if __WALL is set;
1099          * otherwise, wait for clone children *only* if __WCLONE is
1100          * set; otherwise, wait for non-clone children *only*.  (Note:
1101          * A "clone" child here is one that reports to its parent
1102          * using a signal other than SIGCHLD.) */
1103         if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0))
1104             && !(options & __WALL))
1105                 return 0;
1106
1107         err = security_task_wait(p);
1108         if (err)
1109                 return err;
1110
1111         return 1;
1112 }
1113
1114 static int wait_noreap_copyout(struct task_struct *p, pid_t pid, uid_t uid,
1115                                int why, int status,
1116                                struct siginfo __user *infop,
1117                                struct rusage __user *rusagep)
1118 {
1119         int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0;
1120
1121         put_task_struct(p);
1122         if (!retval)
1123                 retval = put_user(SIGCHLD, &infop->si_signo);
1124         if (!retval)
1125                 retval = put_user(0, &infop->si_errno);
1126         if (!retval)
1127                 retval = put_user((short)why, &infop->si_code);
1128         if (!retval)
1129                 retval = put_user(pid, &infop->si_pid);
1130         if (!retval)
1131                 retval = put_user(uid, &infop->si_uid);
1132         if (!retval)
1133                 retval = put_user(status, &infop->si_status);
1134         if (!retval)
1135                 retval = pid;
1136         return retval;
1137 }
1138
1139 /*
1140  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1141  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1142  * the lock and this task is uninteresting.  If we return nonzero, we have
1143  * released the lock and the system call should return.
1144  */
1145 static int wait_task_zombie(struct task_struct *p, int options,
1146                             struct siginfo __user *infop,
1147                             int __user *stat_addr, struct rusage __user *ru)
1148 {
1149         unsigned long state;
1150         int retval, status, traced;
1151         pid_t pid = task_pid_vnr(p);
1152         uid_t uid = __task_cred(p)->uid;
1153
1154         if (!likely(options & WEXITED))
1155                 return 0;
1156
1157         if (unlikely(options & WNOWAIT)) {
1158                 int exit_code = p->exit_code;
1159                 int why, status;
1160
1161                 get_task_struct(p);
1162                 read_unlock(&tasklist_lock);
1163                 if ((exit_code & 0x7f) == 0) {
1164                         why = CLD_EXITED;
1165                         status = exit_code >> 8;
1166                 } else {
1167                         why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1168                         status = exit_code & 0x7f;
1169                 }
1170                 return wait_noreap_copyout(p, pid, uid, why,
1171                                            status, infop, ru);
1172         }
1173
1174         /*
1175          * Try to move the task's state to DEAD
1176          * only one thread is allowed to do this:
1177          */
1178         state = xchg(&p->exit_state, EXIT_DEAD);
1179         if (state != EXIT_ZOMBIE) {
1180                 BUG_ON(state != EXIT_DEAD);
1181                 return 0;
1182         }
1183
1184         traced = ptrace_reparented(p);
1185
1186         if (likely(!traced)) {
1187                 struct signal_struct *psig;
1188                 struct signal_struct *sig;
1189                 struct task_cputime cputime;
1190
1191                 /*
1192                  * The resource counters for the group leader are in its
1193                  * own task_struct.  Those for dead threads in the group
1194                  * are in its signal_struct, as are those for the child
1195                  * processes it has previously reaped.  All these
1196                  * accumulate in the parent's signal_struct c* fields.
1197                  *
1198                  * We don't bother to take a lock here to protect these
1199                  * p->signal fields, because they are only touched by
1200                  * __exit_signal, which runs with tasklist_lock
1201                  * write-locked anyway, and so is excluded here.  We do
1202                  * need to protect the access to p->parent->signal fields,
1203                  * as other threads in the parent group can be right
1204                  * here reaping other children at the same time.
1205                  *
1206                  * We use thread_group_cputime() to get times for the thread
1207                  * group, which consolidates times for all threads in the
1208                  * group including the group leader.
1209                  */
1210                 thread_group_cputime(p, &cputime);
1211                 spin_lock_irq(&p->parent->sighand->siglock);
1212                 psig = p->parent->signal;
1213                 sig = p->signal;
1214                 psig->cutime =
1215                         cputime_add(psig->cutime,
1216                         cputime_add(cputime.utime,
1217                                     sig->cutime));
1218                 psig->cstime =
1219                         cputime_add(psig->cstime,
1220                         cputime_add(cputime.stime,
1221                                     sig->cstime));
1222                 psig->cgtime =
1223                         cputime_add(psig->cgtime,
1224                         cputime_add(p->gtime,
1225                         cputime_add(sig->gtime,
1226                                     sig->cgtime)));
1227                 psig->cmin_flt +=
1228                         p->min_flt + sig->min_flt + sig->cmin_flt;
1229                 psig->cmaj_flt +=
1230                         p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1231                 psig->cnvcsw +=
1232                         p->nvcsw + sig->nvcsw + sig->cnvcsw;
1233                 psig->cnivcsw +=
1234                         p->nivcsw + sig->nivcsw + sig->cnivcsw;
1235                 psig->cinblock +=
1236                         task_io_get_inblock(p) +
1237                         sig->inblock + sig->cinblock;
1238                 psig->coublock +=
1239                         task_io_get_oublock(p) +
1240                         sig->oublock + sig->coublock;
1241                 task_io_accounting_add(&psig->ioac, &p->ioac);
1242                 task_io_accounting_add(&psig->ioac, &sig->ioac);
1243                 spin_unlock_irq(&p->parent->sighand->siglock);
1244         }
1245
1246         /*
1247          * Now we are sure this task is interesting, and no other
1248          * thread can reap it because we set its state to EXIT_DEAD.
1249          */
1250         read_unlock(&tasklist_lock);
1251
1252         /*
1253          * Flush inherited counters to the parent - before the parent
1254          * gets woken up by child-exit notifications.
1255          */
1256         perf_counter_exit_task(p);
1257
1258         retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1259         status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1260                 ? p->signal->group_exit_code : p->exit_code;
1261         if (!retval && stat_addr)
1262                 retval = put_user(status, stat_addr);
1263         if (!retval && infop)
1264                 retval = put_user(SIGCHLD, &infop->si_signo);
1265         if (!retval && infop)
1266                 retval = put_user(0, &infop->si_errno);
1267         if (!retval && infop) {
1268                 int why;
1269
1270                 if ((status & 0x7f) == 0) {
1271                         why = CLD_EXITED;
1272                         status >>= 8;
1273                 } else {
1274                         why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1275                         status &= 0x7f;
1276                 }
1277                 retval = put_user((short)why, &infop->si_code);
1278                 if (!retval)
1279                         retval = put_user(status, &infop->si_status);
1280         }
1281         if (!retval && infop)
1282                 retval = put_user(pid, &infop->si_pid);
1283         if (!retval && infop)
1284                 retval = put_user(uid, &infop->si_uid);
1285         if (!retval)
1286                 retval = pid;
1287
1288         if (traced) {
1289                 write_lock_irq(&tasklist_lock);
1290                 /* We dropped tasklist, ptracer could die and untrace */
1291                 ptrace_unlink(p);
1292                 /*
1293                  * If this is not a detached task, notify the parent.
1294                  * If it's still not detached after that, don't release
1295                  * it now.
1296                  */
1297                 if (!task_detached(p)) {
1298                         do_notify_parent(p, p->exit_signal);
1299                         if (!task_detached(p)) {
1300                                 p->exit_state = EXIT_ZOMBIE;
1301                                 p = NULL;
1302                         }
1303                 }
1304                 write_unlock_irq(&tasklist_lock);
1305         }
1306         if (p != NULL)
1307                 release_task(p);
1308
1309         return retval;
1310 }
1311
1312 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1313 {
1314         if (ptrace) {
1315                 if (task_is_stopped_or_traced(p))
1316                         return &p->exit_code;
1317         } else {
1318                 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1319                         return &p->signal->group_exit_code;
1320         }
1321         return NULL;
1322 }
1323
1324 /*
1325  * Handle sys_wait4 work for one task in state TASK_STOPPED.  We hold
1326  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1327  * the lock and this task is uninteresting.  If we return nonzero, we have
1328  * released the lock and the system call should return.
1329  */
1330 static int wait_task_stopped(int ptrace, struct task_struct *p,
1331                              int options, struct siginfo __user *infop,
1332                              int __user *stat_addr, struct rusage __user *ru)
1333 {
1334         int retval, exit_code, *p_code, why;
1335         uid_t uid = 0; /* unneeded, required by compiler */
1336         pid_t pid;
1337
1338         if (!(options & WUNTRACED))
1339                 return 0;
1340
1341         exit_code = 0;
1342         spin_lock_irq(&p->sighand->siglock);
1343
1344         p_code = task_stopped_code(p, ptrace);
1345         if (unlikely(!p_code))
1346                 goto unlock_sig;
1347
1348         exit_code = *p_code;
1349         if (!exit_code)
1350                 goto unlock_sig;
1351
1352         if (!unlikely(options & WNOWAIT))
1353                 *p_code = 0;
1354
1355         /* don't need the RCU readlock here as we're holding a spinlock */
1356         uid = __task_cred(p)->uid;
1357 unlock_sig:
1358         spin_unlock_irq(&p->sighand->siglock);
1359         if (!exit_code)
1360                 return 0;
1361
1362         /*
1363          * Now we are pretty sure this task is interesting.
1364          * Make sure it doesn't get reaped out from under us while we
1365          * give up the lock and then examine it below.  We don't want to
1366          * keep holding onto the tasklist_lock while we call getrusage and
1367          * possibly take page faults for user memory.
1368          */
1369         get_task_struct(p);
1370         pid = task_pid_vnr(p);
1371         why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1372         read_unlock(&tasklist_lock);
1373
1374         if (unlikely(options & WNOWAIT))
1375                 return wait_noreap_copyout(p, pid, uid,
1376                                            why, exit_code,
1377                                            infop, ru);
1378
1379         retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1380         if (!retval && stat_addr)
1381                 retval = put_user((exit_code << 8) | 0x7f, stat_addr);
1382         if (!retval && infop)
1383                 retval = put_user(SIGCHLD, &infop->si_signo);
1384         if (!retval && infop)
1385                 retval = put_user(0, &infop->si_errno);
1386         if (!retval && infop)
1387                 retval = put_user((short)why, &infop->si_code);
1388         if (!retval && infop)
1389                 retval = put_user(exit_code, &infop->si_status);
1390         if (!retval && infop)
1391                 retval = put_user(pid, &infop->si_pid);
1392         if (!retval && infop)
1393                 retval = put_user(uid, &infop->si_uid);
1394         if (!retval)
1395                 retval = pid;
1396         put_task_struct(p);
1397
1398         BUG_ON(!retval);
1399         return retval;
1400 }
1401
1402 /*
1403  * Handle do_wait work for one task in a live, non-stopped state.
1404  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1405  * the lock and this task is uninteresting.  If we return nonzero, we have
1406  * released the lock and the system call should return.
1407  */
1408 static int wait_task_continued(struct task_struct *p, int options,
1409                                struct siginfo __user *infop,
1410                                int __user *stat_addr, struct rusage __user *ru)
1411 {
1412         int retval;
1413         pid_t pid;
1414         uid_t uid;
1415
1416         if (!unlikely(options & WCONTINUED))
1417                 return 0;
1418
1419         if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1420                 return 0;
1421
1422         spin_lock_irq(&p->sighand->siglock);
1423         /* Re-check with the lock held.  */
1424         if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1425                 spin_unlock_irq(&p->sighand->siglock);
1426                 return 0;
1427         }
1428         if (!unlikely(options & WNOWAIT))
1429                 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1430         uid = __task_cred(p)->uid;
1431         spin_unlock_irq(&p->sighand->siglock);
1432
1433         pid = task_pid_vnr(p);
1434         get_task_struct(p);
1435         read_unlock(&tasklist_lock);
1436
1437         if (!infop) {
1438                 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1439                 put_task_struct(p);
1440                 if (!retval && stat_addr)
1441                         retval = put_user(0xffff, stat_addr);
1442                 if (!retval)
1443                         retval = pid;
1444         } else {
1445                 retval = wait_noreap_copyout(p, pid, uid,
1446                                              CLD_CONTINUED, SIGCONT,
1447                                              infop, ru);
1448                 BUG_ON(retval == 0);
1449         }
1450
1451         return retval;
1452 }
1453
1454 /*
1455  * Consider @p for a wait by @parent.
1456  *
1457  * -ECHILD should be in *@notask_error before the first call.
1458  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1459  * Returns zero if the search for a child should continue;
1460  * then *@notask_error is 0 if @p is an eligible child,
1461  * or another error from security_task_wait(), or still -ECHILD.
1462  */
1463 static int wait_consider_task(struct task_struct *parent, int ptrace,
1464                               struct task_struct *p, int *notask_error,
1465                               enum pid_type type, struct pid *pid, int options,
1466                               struct siginfo __user *infop,
1467                               int __user *stat_addr, struct rusage __user *ru)
1468 {
1469         int ret = eligible_child(type, pid, options, p);
1470         if (!ret)
1471                 return ret;
1472
1473         if (unlikely(ret < 0)) {
1474                 /*
1475                  * If we have not yet seen any eligible child,
1476                  * then let this error code replace -ECHILD.
1477                  * A permission error will give the user a clue
1478                  * to look for security policy problems, rather
1479                  * than for mysterious wait bugs.
1480                  */
1481                 if (*notask_error)
1482                         *notask_error = ret;
1483         }
1484
1485         if (likely(!ptrace) && unlikely(p->ptrace)) {
1486                 /*
1487                  * This child is hidden by ptrace.
1488                  * We aren't allowed to see it now, but eventually we will.
1489                  */
1490                 *notask_error = 0;
1491                 return 0;
1492         }
1493
1494         if (p->exit_state == EXIT_DEAD)
1495                 return 0;
1496
1497         /*
1498          * We don't reap group leaders with subthreads.
1499          */
1500         if (p->exit_state == EXIT_ZOMBIE && !delay_group_leader(p))
1501                 return wait_task_zombie(p, options, infop, stat_addr, ru);
1502
1503         /*
1504          * It's stopped or running now, so it might
1505          * later continue, exit, or stop again.
1506          */
1507         *notask_error = 0;
1508
1509         if (task_stopped_code(p, ptrace))
1510                 return wait_task_stopped(ptrace, p, options,
1511                                          infop, stat_addr, ru);
1512
1513         return wait_task_continued(p, options, infop, stat_addr, ru);
1514 }
1515
1516 /*
1517  * Do the work of do_wait() for one thread in the group, @tsk.
1518  *
1519  * -ECHILD should be in *@notask_error before the first call.
1520  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1521  * Returns zero if the search for a child should continue; then
1522  * *@notask_error is 0 if there were any eligible children,
1523  * or another error from security_task_wait(), or still -ECHILD.
1524  */
1525 static int do_wait_thread(struct task_struct *tsk, int *notask_error,
1526                           enum pid_type type, struct pid *pid, int options,
1527                           struct siginfo __user *infop, int __user *stat_addr,
1528                           struct rusage __user *ru)
1529 {
1530         struct task_struct *p;
1531
1532         list_for_each_entry(p, &tsk->children, sibling) {
1533                 /*
1534                  * Do not consider detached threads.
1535                  */
1536                 if (!task_detached(p)) {
1537                         int ret = wait_consider_task(tsk, 0, p, notask_error,
1538                                                      type, pid, options,
1539                                                      infop, stat_addr, ru);
1540                         if (ret)
1541                                 return ret;
1542                 }
1543         }
1544
1545         return 0;
1546 }
1547
1548 static int ptrace_do_wait(struct task_struct *tsk, int *notask_error,
1549                           enum pid_type type, struct pid *pid, int options,
1550                           struct siginfo __user *infop, int __user *stat_addr,
1551                           struct rusage __user *ru)
1552 {
1553         struct task_struct *p;
1554
1555         /*
1556          * Traditionally we see ptrace'd stopped tasks regardless of options.
1557          */
1558         options |= WUNTRACED;
1559
1560         list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1561                 int ret = wait_consider_task(tsk, 1, p, notask_error,
1562                                              type, pid, options,
1563                                              infop, stat_addr, ru);
1564                 if (ret)
1565                         return ret;
1566         }
1567
1568         return 0;
1569 }
1570
1571 static long do_wait(enum pid_type type, struct pid *pid, int options,
1572                     struct siginfo __user *infop, int __user *stat_addr,
1573                     struct rusage __user *ru)
1574 {
1575         DECLARE_WAITQUEUE(wait, current);
1576         struct task_struct *tsk;
1577         int retval;
1578
1579         trace_sched_process_wait(pid);
1580
1581         add_wait_queue(&current->signal->wait_chldexit,&wait);
1582 repeat:
1583         /*
1584          * If there is nothing that can match our critiera just get out.
1585          * We will clear @retval to zero if we see any child that might later
1586          * match our criteria, even if we are not able to reap it yet.
1587          */
1588         retval = -ECHILD;
1589         if ((type < PIDTYPE_MAX) && (!pid || hlist_empty(&pid->tasks[type])))
1590                 goto end;
1591
1592         current->state = TASK_INTERRUPTIBLE;
1593         read_lock(&tasklist_lock);
1594         tsk = current;
1595         do {
1596                 int tsk_result = do_wait_thread(tsk, &retval,
1597                                                 type, pid, options,
1598                                                 infop, stat_addr, ru);
1599                 if (!tsk_result)
1600                         tsk_result = ptrace_do_wait(tsk, &retval,
1601                                                     type, pid, options,
1602                                                     infop, stat_addr, ru);
1603                 if (tsk_result) {
1604                         /*
1605                          * tasklist_lock is unlocked and we have a final result.
1606                          */
1607                         retval = tsk_result;
1608                         goto end;
1609                 }
1610
1611                 if (options & __WNOTHREAD)
1612                         break;
1613                 tsk = next_thread(tsk);
1614                 BUG_ON(tsk->signal != current->signal);
1615         } while (tsk != current);
1616         read_unlock(&tasklist_lock);
1617
1618         if (!retval && !(options & WNOHANG)) {
1619                 retval = -ERESTARTSYS;
1620                 if (!signal_pending(current)) {
1621                         schedule();
1622                         goto repeat;
1623                 }
1624         }
1625
1626 end:
1627         current->state = TASK_RUNNING;
1628         remove_wait_queue(&current->signal->wait_chldexit,&wait);
1629         if (infop) {
1630                 if (retval > 0)
1631                         retval = 0;
1632                 else {
1633                         /*
1634                          * For a WNOHANG return, clear out all the fields
1635                          * we would set so the user can easily tell the
1636                          * difference.
1637                          */
1638                         if (!retval)
1639                                 retval = put_user(0, &infop->si_signo);
1640                         if (!retval)
1641                                 retval = put_user(0, &infop->si_errno);
1642                         if (!retval)
1643                                 retval = put_user(0, &infop->si_code);
1644                         if (!retval)
1645                                 retval = put_user(0, &infop->si_pid);
1646                         if (!retval)
1647                                 retval = put_user(0, &infop->si_uid);
1648                         if (!retval)
1649                                 retval = put_user(0, &infop->si_status);
1650                 }
1651         }
1652         return retval;
1653 }
1654
1655 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1656                 infop, int, options, struct rusage __user *, ru)
1657 {
1658         struct pid *pid = NULL;
1659         enum pid_type type;
1660         long ret;
1661
1662         if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1663                 return -EINVAL;
1664         if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1665                 return -EINVAL;
1666
1667         switch (which) {
1668         case P_ALL:
1669                 type = PIDTYPE_MAX;
1670                 break;
1671         case P_PID:
1672                 type = PIDTYPE_PID;
1673                 if (upid <= 0)
1674                         return -EINVAL;
1675                 break;
1676         case P_PGID:
1677                 type = PIDTYPE_PGID;
1678                 if (upid <= 0)
1679                         return -EINVAL;
1680                 break;
1681         default:
1682                 return -EINVAL;
1683         }
1684
1685         if (type < PIDTYPE_MAX)
1686                 pid = find_get_pid(upid);
1687         ret = do_wait(type, pid, options, infop, NULL, ru);
1688         put_pid(pid);
1689
1690         /* avoid REGPARM breakage on x86: */
1691         asmlinkage_protect(5, ret, which, upid, infop, options, ru);
1692         return ret;
1693 }
1694
1695 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1696                 int, options, struct rusage __user *, ru)
1697 {
1698         struct pid *pid = NULL;
1699         enum pid_type type;
1700         long ret;
1701
1702         if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1703                         __WNOTHREAD|__WCLONE|__WALL))
1704                 return -EINVAL;
1705
1706         if (upid == -1)
1707                 type = PIDTYPE_MAX;
1708         else if (upid < 0) {
1709                 type = PIDTYPE_PGID;
1710                 pid = find_get_pid(-upid);
1711         } else if (upid == 0) {
1712                 type = PIDTYPE_PGID;
1713                 pid = get_task_pid(current, PIDTYPE_PGID);
1714         } else /* upid > 0 */ {
1715                 type = PIDTYPE_PID;
1716                 pid = find_get_pid(upid);
1717         }
1718
1719         ret = do_wait(type, pid, options | WEXITED, NULL, stat_addr, ru);
1720         put_pid(pid);
1721
1722         /* avoid REGPARM breakage on x86: */
1723         asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
1724         return ret;
1725 }
1726
1727 #ifdef __ARCH_WANT_SYS_WAITPID
1728
1729 /*
1730  * sys_waitpid() remains for compatibility. waitpid() should be
1731  * implemented by calling sys_wait4() from libc.a.
1732  */
1733 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1734 {
1735         return sys_wait4(pid, stat_addr, options, NULL);
1736 }
1737
1738 #endif