timers: fix itimer/many thread hang
[safe/jmp/linux-2.6] / kernel / exit.c
1 /*
2  *  linux/kernel/exit.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/mnt_namespace.h>
16 #include <linux/iocontext.h>
17 #include <linux/key.h>
18 #include <linux/security.h>
19 #include <linux/cpu.h>
20 #include <linux/acct.h>
21 #include <linux/tsacct_kern.h>
22 #include <linux/file.h>
23 #include <linux/fdtable.h>
24 #include <linux/binfmts.h>
25 #include <linux/nsproxy.h>
26 #include <linux/pid_namespace.h>
27 #include <linux/ptrace.h>
28 #include <linux/profile.h>
29 #include <linux/mount.h>
30 #include <linux/proc_fs.h>
31 #include <linux/kthread.h>
32 #include <linux/mempolicy.h>
33 #include <linux/taskstats_kern.h>
34 #include <linux/delayacct.h>
35 #include <linux/freezer.h>
36 #include <linux/cgroup.h>
37 #include <linux/syscalls.h>
38 #include <linux/signal.h>
39 #include <linux/posix-timers.h>
40 #include <linux/cn_proc.h>
41 #include <linux/mutex.h>
42 #include <linux/futex.h>
43 #include <linux/compat.h>
44 #include <linux/pipe_fs_i.h>
45 #include <linux/audit.h> /* for audit_free() */
46 #include <linux/resource.h>
47 #include <linux/blkdev.h>
48 #include <linux/task_io_accounting_ops.h>
49 #include <linux/tracehook.h>
50
51 #include <asm/uaccess.h>
52 #include <asm/unistd.h>
53 #include <asm/pgtable.h>
54 #include <asm/mmu_context.h>
55
56 static void exit_mm(struct task_struct * tsk);
57
58 static inline int task_detached(struct task_struct *p)
59 {
60         return p->exit_signal == -1;
61 }
62
63 static void __unhash_process(struct task_struct *p)
64 {
65         nr_threads--;
66         detach_pid(p, PIDTYPE_PID);
67         if (thread_group_leader(p)) {
68                 detach_pid(p, PIDTYPE_PGID);
69                 detach_pid(p, PIDTYPE_SID);
70
71                 list_del_rcu(&p->tasks);
72                 __get_cpu_var(process_counts)--;
73         }
74         list_del_rcu(&p->thread_group);
75         list_del_init(&p->sibling);
76 }
77
78 /*
79  * This function expects the tasklist_lock write-locked.
80  */
81 static void __exit_signal(struct task_struct *tsk)
82 {
83         struct signal_struct *sig = tsk->signal;
84         struct sighand_struct *sighand;
85
86         BUG_ON(!sig);
87         BUG_ON(!atomic_read(&sig->count));
88
89         sighand = rcu_dereference(tsk->sighand);
90         spin_lock(&sighand->siglock);
91
92         posix_cpu_timers_exit(tsk);
93         if (atomic_dec_and_test(&sig->count))
94                 posix_cpu_timers_exit_group(tsk);
95         else {
96                 /*
97                  * If there is any task waiting for the group exit
98                  * then notify it:
99                  */
100                 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count)
101                         wake_up_process(sig->group_exit_task);
102
103                 if (tsk == sig->curr_target)
104                         sig->curr_target = next_thread(tsk);
105                 /*
106                  * Accumulate here the counters for all threads but the
107                  * group leader as they die, so they can be added into
108                  * the process-wide totals when those are taken.
109                  * The group leader stays around as a zombie as long
110                  * as there are other threads.  When it gets reaped,
111                  * the exit.c code will add its counts into these totals.
112                  * We won't ever get here for the group leader, since it
113                  * will have been the last reference on the signal_struct.
114                  */
115                 sig->gtime = cputime_add(sig->gtime, task_gtime(tsk));
116                 sig->min_flt += tsk->min_flt;
117                 sig->maj_flt += tsk->maj_flt;
118                 sig->nvcsw += tsk->nvcsw;
119                 sig->nivcsw += tsk->nivcsw;
120                 sig->inblock += task_io_get_inblock(tsk);
121                 sig->oublock += task_io_get_oublock(tsk);
122                 task_io_accounting_add(&sig->ioac, &tsk->ioac);
123                 sig = NULL; /* Marker for below. */
124         }
125
126         __unhash_process(tsk);
127
128         /*
129          * Do this under ->siglock, we can race with another thread
130          * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
131          */
132         flush_sigqueue(&tsk->pending);
133
134         tsk->signal = NULL;
135         tsk->sighand = NULL;
136         spin_unlock(&sighand->siglock);
137
138         __cleanup_sighand(sighand);
139         clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
140         if (sig) {
141                 flush_sigqueue(&sig->shared_pending);
142                 taskstats_tgid_free(sig);
143                 __cleanup_signal(sig);
144         }
145 }
146
147 static void delayed_put_task_struct(struct rcu_head *rhp)
148 {
149         put_task_struct(container_of(rhp, struct task_struct, rcu));
150 }
151
152
153 void release_task(struct task_struct * p)
154 {
155         struct task_struct *leader;
156         int zap_leader;
157 repeat:
158         tracehook_prepare_release_task(p);
159         atomic_dec(&p->user->processes);
160         proc_flush_task(p);
161         write_lock_irq(&tasklist_lock);
162         tracehook_finish_release_task(p);
163         __exit_signal(p);
164
165         /*
166          * If we are the last non-leader member of the thread
167          * group, and the leader is zombie, then notify the
168          * group leader's parent process. (if it wants notification.)
169          */
170         zap_leader = 0;
171         leader = p->group_leader;
172         if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
173                 BUG_ON(task_detached(leader));
174                 do_notify_parent(leader, leader->exit_signal);
175                 /*
176                  * If we were the last child thread and the leader has
177                  * exited already, and the leader's parent ignores SIGCHLD,
178                  * then we are the one who should release the leader.
179                  *
180                  * do_notify_parent() will have marked it self-reaping in
181                  * that case.
182                  */
183                 zap_leader = task_detached(leader);
184
185                 /*
186                  * This maintains the invariant that release_task()
187                  * only runs on a task in EXIT_DEAD, just for sanity.
188                  */
189                 if (zap_leader)
190                         leader->exit_state = EXIT_DEAD;
191         }
192
193         write_unlock_irq(&tasklist_lock);
194         release_thread(p);
195         call_rcu(&p->rcu, delayed_put_task_struct);
196
197         p = leader;
198         if (unlikely(zap_leader))
199                 goto repeat;
200 }
201
202 /*
203  * This checks not only the pgrp, but falls back on the pid if no
204  * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
205  * without this...
206  *
207  * The caller must hold rcu lock or the tasklist lock.
208  */
209 struct pid *session_of_pgrp(struct pid *pgrp)
210 {
211         struct task_struct *p;
212         struct pid *sid = NULL;
213
214         p = pid_task(pgrp, PIDTYPE_PGID);
215         if (p == NULL)
216                 p = pid_task(pgrp, PIDTYPE_PID);
217         if (p != NULL)
218                 sid = task_session(p);
219
220         return sid;
221 }
222
223 /*
224  * Determine if a process group is "orphaned", according to the POSIX
225  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
226  * by terminal-generated stop signals.  Newly orphaned process groups are
227  * to receive a SIGHUP and a SIGCONT.
228  *
229  * "I ask you, have you ever known what it is to be an orphan?"
230  */
231 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
232 {
233         struct task_struct *p;
234
235         do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
236                 if ((p == ignored_task) ||
237                     (p->exit_state && thread_group_empty(p)) ||
238                     is_global_init(p->real_parent))
239                         continue;
240
241                 if (task_pgrp(p->real_parent) != pgrp &&
242                     task_session(p->real_parent) == task_session(p))
243                         return 0;
244         } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
245
246         return 1;
247 }
248
249 int is_current_pgrp_orphaned(void)
250 {
251         int retval;
252
253         read_lock(&tasklist_lock);
254         retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
255         read_unlock(&tasklist_lock);
256
257         return retval;
258 }
259
260 static int has_stopped_jobs(struct pid *pgrp)
261 {
262         int retval = 0;
263         struct task_struct *p;
264
265         do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
266                 if (!task_is_stopped(p))
267                         continue;
268                 retval = 1;
269                 break;
270         } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
271         return retval;
272 }
273
274 /*
275  * Check to see if any process groups have become orphaned as
276  * a result of our exiting, and if they have any stopped jobs,
277  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
278  */
279 static void
280 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
281 {
282         struct pid *pgrp = task_pgrp(tsk);
283         struct task_struct *ignored_task = tsk;
284
285         if (!parent)
286                  /* exit: our father is in a different pgrp than
287                   * we are and we were the only connection outside.
288                   */
289                 parent = tsk->real_parent;
290         else
291                 /* reparent: our child is in a different pgrp than
292                  * we are, and it was the only connection outside.
293                  */
294                 ignored_task = NULL;
295
296         if (task_pgrp(parent) != pgrp &&
297             task_session(parent) == task_session(tsk) &&
298             will_become_orphaned_pgrp(pgrp, ignored_task) &&
299             has_stopped_jobs(pgrp)) {
300                 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
301                 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
302         }
303 }
304
305 /**
306  * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
307  *
308  * If a kernel thread is launched as a result of a system call, or if
309  * it ever exits, it should generally reparent itself to kthreadd so it
310  * isn't in the way of other processes and is correctly cleaned up on exit.
311  *
312  * The various task state such as scheduling policy and priority may have
313  * been inherited from a user process, so we reset them to sane values here.
314  *
315  * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
316  */
317 static void reparent_to_kthreadd(void)
318 {
319         write_lock_irq(&tasklist_lock);
320
321         ptrace_unlink(current);
322         /* Reparent to init */
323         current->real_parent = current->parent = kthreadd_task;
324         list_move_tail(&current->sibling, &current->real_parent->children);
325
326         /* Set the exit signal to SIGCHLD so we signal init on exit */
327         current->exit_signal = SIGCHLD;
328
329         if (task_nice(current) < 0)
330                 set_user_nice(current, 0);
331         /* cpus_allowed? */
332         /* rt_priority? */
333         /* signals? */
334         security_task_reparent_to_init(current);
335         memcpy(current->signal->rlim, init_task.signal->rlim,
336                sizeof(current->signal->rlim));
337         atomic_inc(&(INIT_USER->__count));
338         write_unlock_irq(&tasklist_lock);
339         switch_uid(INIT_USER);
340 }
341
342 void __set_special_pids(struct pid *pid)
343 {
344         struct task_struct *curr = current->group_leader;
345         pid_t nr = pid_nr(pid);
346
347         if (task_session(curr) != pid) {
348                 change_pid(curr, PIDTYPE_SID, pid);
349                 set_task_session(curr, nr);
350         }
351         if (task_pgrp(curr) != pid) {
352                 change_pid(curr, PIDTYPE_PGID, pid);
353                 set_task_pgrp(curr, nr);
354         }
355 }
356
357 static void set_special_pids(struct pid *pid)
358 {
359         write_lock_irq(&tasklist_lock);
360         __set_special_pids(pid);
361         write_unlock_irq(&tasklist_lock);
362 }
363
364 /*
365  * Let kernel threads use this to say that they
366  * allow a certain signal (since daemonize() will
367  * have disabled all of them by default).
368  */
369 int allow_signal(int sig)
370 {
371         if (!valid_signal(sig) || sig < 1)
372                 return -EINVAL;
373
374         spin_lock_irq(&current->sighand->siglock);
375         sigdelset(&current->blocked, sig);
376         if (!current->mm) {
377                 /* Kernel threads handle their own signals.
378                    Let the signal code know it'll be handled, so
379                    that they don't get converted to SIGKILL or
380                    just silently dropped */
381                 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
382         }
383         recalc_sigpending();
384         spin_unlock_irq(&current->sighand->siglock);
385         return 0;
386 }
387
388 EXPORT_SYMBOL(allow_signal);
389
390 int disallow_signal(int sig)
391 {
392         if (!valid_signal(sig) || sig < 1)
393                 return -EINVAL;
394
395         spin_lock_irq(&current->sighand->siglock);
396         current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
397         recalc_sigpending();
398         spin_unlock_irq(&current->sighand->siglock);
399         return 0;
400 }
401
402 EXPORT_SYMBOL(disallow_signal);
403
404 /*
405  *      Put all the gunge required to become a kernel thread without
406  *      attached user resources in one place where it belongs.
407  */
408
409 void daemonize(const char *name, ...)
410 {
411         va_list args;
412         struct fs_struct *fs;
413         sigset_t blocked;
414
415         va_start(args, name);
416         vsnprintf(current->comm, sizeof(current->comm), name, args);
417         va_end(args);
418
419         /*
420          * If we were started as result of loading a module, close all of the
421          * user space pages.  We don't need them, and if we didn't close them
422          * they would be locked into memory.
423          */
424         exit_mm(current);
425         /*
426          * We don't want to have TIF_FREEZE set if the system-wide hibernation
427          * or suspend transition begins right now.
428          */
429         current->flags |= (PF_NOFREEZE | PF_KTHREAD);
430
431         if (current->nsproxy != &init_nsproxy) {
432                 get_nsproxy(&init_nsproxy);
433                 switch_task_namespaces(current, &init_nsproxy);
434         }
435         set_special_pids(&init_struct_pid);
436         proc_clear_tty(current);
437
438         /* Block and flush all signals */
439         sigfillset(&blocked);
440         sigprocmask(SIG_BLOCK, &blocked, NULL);
441         flush_signals(current);
442
443         /* Become as one with the init task */
444
445         exit_fs(current);       /* current->fs->count--; */
446         fs = init_task.fs;
447         current->fs = fs;
448         atomic_inc(&fs->count);
449
450         exit_files(current);
451         current->files = init_task.files;
452         atomic_inc(&current->files->count);
453
454         reparent_to_kthreadd();
455 }
456
457 EXPORT_SYMBOL(daemonize);
458
459 static void close_files(struct files_struct * files)
460 {
461         int i, j;
462         struct fdtable *fdt;
463
464         j = 0;
465
466         /*
467          * It is safe to dereference the fd table without RCU or
468          * ->file_lock because this is the last reference to the
469          * files structure.
470          */
471         fdt = files_fdtable(files);
472         for (;;) {
473                 unsigned long set;
474                 i = j * __NFDBITS;
475                 if (i >= fdt->max_fds)
476                         break;
477                 set = fdt->open_fds->fds_bits[j++];
478                 while (set) {
479                         if (set & 1) {
480                                 struct file * file = xchg(&fdt->fd[i], NULL);
481                                 if (file) {
482                                         filp_close(file, files);
483                                         cond_resched();
484                                 }
485                         }
486                         i++;
487                         set >>= 1;
488                 }
489         }
490 }
491
492 struct files_struct *get_files_struct(struct task_struct *task)
493 {
494         struct files_struct *files;
495
496         task_lock(task);
497         files = task->files;
498         if (files)
499                 atomic_inc(&files->count);
500         task_unlock(task);
501
502         return files;
503 }
504
505 void put_files_struct(struct files_struct *files)
506 {
507         struct fdtable *fdt;
508
509         if (atomic_dec_and_test(&files->count)) {
510                 close_files(files);
511                 /*
512                  * Free the fd and fdset arrays if we expanded them.
513                  * If the fdtable was embedded, pass files for freeing
514                  * at the end of the RCU grace period. Otherwise,
515                  * you can free files immediately.
516                  */
517                 fdt = files_fdtable(files);
518                 if (fdt != &files->fdtab)
519                         kmem_cache_free(files_cachep, files);
520                 free_fdtable(fdt);
521         }
522 }
523
524 void reset_files_struct(struct files_struct *files)
525 {
526         struct task_struct *tsk = current;
527         struct files_struct *old;
528
529         old = tsk->files;
530         task_lock(tsk);
531         tsk->files = files;
532         task_unlock(tsk);
533         put_files_struct(old);
534 }
535
536 void exit_files(struct task_struct *tsk)
537 {
538         struct files_struct * files = tsk->files;
539
540         if (files) {
541                 task_lock(tsk);
542                 tsk->files = NULL;
543                 task_unlock(tsk);
544                 put_files_struct(files);
545         }
546 }
547
548 void put_fs_struct(struct fs_struct *fs)
549 {
550         /* No need to hold fs->lock if we are killing it */
551         if (atomic_dec_and_test(&fs->count)) {
552                 path_put(&fs->root);
553                 path_put(&fs->pwd);
554                 kmem_cache_free(fs_cachep, fs);
555         }
556 }
557
558 void exit_fs(struct task_struct *tsk)
559 {
560         struct fs_struct * fs = tsk->fs;
561
562         if (fs) {
563                 task_lock(tsk);
564                 tsk->fs = NULL;
565                 task_unlock(tsk);
566                 put_fs_struct(fs);
567         }
568 }
569
570 EXPORT_SYMBOL_GPL(exit_fs);
571
572 #ifdef CONFIG_MM_OWNER
573 /*
574  * Task p is exiting and it owned mm, lets find a new owner for it
575  */
576 static inline int
577 mm_need_new_owner(struct mm_struct *mm, struct task_struct *p)
578 {
579         /*
580          * If there are other users of the mm and the owner (us) is exiting
581          * we need to find a new owner to take on the responsibility.
582          */
583         if (!mm)
584                 return 0;
585         if (atomic_read(&mm->mm_users) <= 1)
586                 return 0;
587         if (mm->owner != p)
588                 return 0;
589         return 1;
590 }
591
592 void mm_update_next_owner(struct mm_struct *mm)
593 {
594         struct task_struct *c, *g, *p = current;
595
596 retry:
597         if (!mm_need_new_owner(mm, p))
598                 return;
599
600         read_lock(&tasklist_lock);
601         /*
602          * Search in the children
603          */
604         list_for_each_entry(c, &p->children, sibling) {
605                 if (c->mm == mm)
606                         goto assign_new_owner;
607         }
608
609         /*
610          * Search in the siblings
611          */
612         list_for_each_entry(c, &p->parent->children, sibling) {
613                 if (c->mm == mm)
614                         goto assign_new_owner;
615         }
616
617         /*
618          * Search through everything else. We should not get
619          * here often
620          */
621         do_each_thread(g, c) {
622                 if (c->mm == mm)
623                         goto assign_new_owner;
624         } while_each_thread(g, c);
625
626         read_unlock(&tasklist_lock);
627         return;
628
629 assign_new_owner:
630         BUG_ON(c == p);
631         get_task_struct(c);
632         /*
633          * The task_lock protects c->mm from changing.
634          * We always want mm->owner->mm == mm
635          */
636         task_lock(c);
637         /*
638          * Delay read_unlock() till we have the task_lock()
639          * to ensure that c does not slip away underneath us
640          */
641         read_unlock(&tasklist_lock);
642         if (c->mm != mm) {
643                 task_unlock(c);
644                 put_task_struct(c);
645                 goto retry;
646         }
647         cgroup_mm_owner_callbacks(mm->owner, c);
648         mm->owner = c;
649         task_unlock(c);
650         put_task_struct(c);
651 }
652 #endif /* CONFIG_MM_OWNER */
653
654 /*
655  * Turn us into a lazy TLB process if we
656  * aren't already..
657  */
658 static void exit_mm(struct task_struct * tsk)
659 {
660         struct mm_struct *mm = tsk->mm;
661         struct core_state *core_state;
662
663         mm_release(tsk, mm);
664         if (!mm)
665                 return;
666         /*
667          * Serialize with any possible pending coredump.
668          * We must hold mmap_sem around checking core_state
669          * and clearing tsk->mm.  The core-inducing thread
670          * will increment ->nr_threads for each thread in the
671          * group with ->mm != NULL.
672          */
673         down_read(&mm->mmap_sem);
674         core_state = mm->core_state;
675         if (core_state) {
676                 struct core_thread self;
677                 up_read(&mm->mmap_sem);
678
679                 self.task = tsk;
680                 self.next = xchg(&core_state->dumper.next, &self);
681                 /*
682                  * Implies mb(), the result of xchg() must be visible
683                  * to core_state->dumper.
684                  */
685                 if (atomic_dec_and_test(&core_state->nr_threads))
686                         complete(&core_state->startup);
687
688                 for (;;) {
689                         set_task_state(tsk, TASK_UNINTERRUPTIBLE);
690                         if (!self.task) /* see coredump_finish() */
691                                 break;
692                         schedule();
693                 }
694                 __set_task_state(tsk, TASK_RUNNING);
695                 down_read(&mm->mmap_sem);
696         }
697         atomic_inc(&mm->mm_count);
698         BUG_ON(mm != tsk->active_mm);
699         /* more a memory barrier than a real lock */
700         task_lock(tsk);
701         tsk->mm = NULL;
702         up_read(&mm->mmap_sem);
703         enter_lazy_tlb(mm, current);
704         /* We don't want this task to be frozen prematurely */
705         clear_freeze_flag(tsk);
706         task_unlock(tsk);
707         mm_update_next_owner(mm);
708         mmput(mm);
709 }
710
711 /*
712  * Return nonzero if @parent's children should reap themselves.
713  *
714  * Called with write_lock_irq(&tasklist_lock) held.
715  */
716 static int ignoring_children(struct task_struct *parent)
717 {
718         int ret;
719         struct sighand_struct *psig = parent->sighand;
720         unsigned long flags;
721         spin_lock_irqsave(&psig->siglock, flags);
722         ret = (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
723                (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT));
724         spin_unlock_irqrestore(&psig->siglock, flags);
725         return ret;
726 }
727
728 /*
729  * Detach all tasks we were using ptrace on.
730  * Any that need to be release_task'd are put on the @dead list.
731  *
732  * Called with write_lock(&tasklist_lock) held.
733  */
734 static void ptrace_exit(struct task_struct *parent, struct list_head *dead)
735 {
736         struct task_struct *p, *n;
737         int ign = -1;
738
739         list_for_each_entry_safe(p, n, &parent->ptraced, ptrace_entry) {
740                 __ptrace_unlink(p);
741
742                 if (p->exit_state != EXIT_ZOMBIE)
743                         continue;
744
745                 /*
746                  * If it's a zombie, our attachedness prevented normal
747                  * parent notification or self-reaping.  Do notification
748                  * now if it would have happened earlier.  If it should
749                  * reap itself, add it to the @dead list.  We can't call
750                  * release_task() here because we already hold tasklist_lock.
751                  *
752                  * If it's our own child, there is no notification to do.
753                  * But if our normal children self-reap, then this child
754                  * was prevented by ptrace and we must reap it now.
755                  */
756                 if (!task_detached(p) && thread_group_empty(p)) {
757                         if (!same_thread_group(p->real_parent, parent))
758                                 do_notify_parent(p, p->exit_signal);
759                         else {
760                                 if (ign < 0)
761                                         ign = ignoring_children(parent);
762                                 if (ign)
763                                         p->exit_signal = -1;
764                         }
765                 }
766
767                 if (task_detached(p)) {
768                         /*
769                          * Mark it as in the process of being reaped.
770                          */
771                         p->exit_state = EXIT_DEAD;
772                         list_add(&p->ptrace_entry, dead);
773                 }
774         }
775 }
776
777 /*
778  * Finish up exit-time ptrace cleanup.
779  *
780  * Called without locks.
781  */
782 static void ptrace_exit_finish(struct task_struct *parent,
783                                struct list_head *dead)
784 {
785         struct task_struct *p, *n;
786
787         BUG_ON(!list_empty(&parent->ptraced));
788
789         list_for_each_entry_safe(p, n, dead, ptrace_entry) {
790                 list_del_init(&p->ptrace_entry);
791                 release_task(p);
792         }
793 }
794
795 static void reparent_thread(struct task_struct *p, struct task_struct *father)
796 {
797         if (p->pdeath_signal)
798                 /* We already hold the tasklist_lock here.  */
799                 group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p);
800
801         list_move_tail(&p->sibling, &p->real_parent->children);
802
803         /* If this is a threaded reparent there is no need to
804          * notify anyone anything has happened.
805          */
806         if (same_thread_group(p->real_parent, father))
807                 return;
808
809         /* We don't want people slaying init.  */
810         if (!task_detached(p))
811                 p->exit_signal = SIGCHLD;
812
813         /* If we'd notified the old parent about this child's death,
814          * also notify the new parent.
815          */
816         if (!ptrace_reparented(p) &&
817             p->exit_state == EXIT_ZOMBIE &&
818             !task_detached(p) && thread_group_empty(p))
819                 do_notify_parent(p, p->exit_signal);
820
821         kill_orphaned_pgrp(p, father);
822 }
823
824 /*
825  * When we die, we re-parent all our children.
826  * Try to give them to another thread in our thread
827  * group, and if no such member exists, give it to
828  * the child reaper process (ie "init") in our pid
829  * space.
830  */
831 static struct task_struct *find_new_reaper(struct task_struct *father)
832 {
833         struct pid_namespace *pid_ns = task_active_pid_ns(father);
834         struct task_struct *thread;
835
836         thread = father;
837         while_each_thread(father, thread) {
838                 if (thread->flags & PF_EXITING)
839                         continue;
840                 if (unlikely(pid_ns->child_reaper == father))
841                         pid_ns->child_reaper = thread;
842                 return thread;
843         }
844
845         if (unlikely(pid_ns->child_reaper == father)) {
846                 write_unlock_irq(&tasklist_lock);
847                 if (unlikely(pid_ns == &init_pid_ns))
848                         panic("Attempted to kill init!");
849
850                 zap_pid_ns_processes(pid_ns);
851                 write_lock_irq(&tasklist_lock);
852                 /*
853                  * We can not clear ->child_reaper or leave it alone.
854                  * There may by stealth EXIT_DEAD tasks on ->children,
855                  * forget_original_parent() must move them somewhere.
856                  */
857                 pid_ns->child_reaper = init_pid_ns.child_reaper;
858         }
859
860         return pid_ns->child_reaper;
861 }
862
863 static void forget_original_parent(struct task_struct *father)
864 {
865         struct task_struct *p, *n, *reaper;
866         LIST_HEAD(ptrace_dead);
867
868         write_lock_irq(&tasklist_lock);
869         reaper = find_new_reaper(father);
870         /*
871          * First clean up ptrace if we were using it.
872          */
873         ptrace_exit(father, &ptrace_dead);
874
875         list_for_each_entry_safe(p, n, &father->children, sibling) {
876                 p->real_parent = reaper;
877                 if (p->parent == father) {
878                         BUG_ON(p->ptrace);
879                         p->parent = p->real_parent;
880                 }
881                 reparent_thread(p, father);
882         }
883
884         write_unlock_irq(&tasklist_lock);
885         BUG_ON(!list_empty(&father->children));
886
887         ptrace_exit_finish(father, &ptrace_dead);
888 }
889
890 /*
891  * Send signals to all our closest relatives so that they know
892  * to properly mourn us..
893  */
894 static void exit_notify(struct task_struct *tsk, int group_dead)
895 {
896         int signal;
897         void *cookie;
898
899         /*
900          * This does two things:
901          *
902          * A.  Make init inherit all the child processes
903          * B.  Check to see if any process groups have become orphaned
904          *      as a result of our exiting, and if they have any stopped
905          *      jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
906          */
907         forget_original_parent(tsk);
908         exit_task_namespaces(tsk);
909
910         write_lock_irq(&tasklist_lock);
911         if (group_dead)
912                 kill_orphaned_pgrp(tsk->group_leader, NULL);
913
914         /* Let father know we died
915          *
916          * Thread signals are configurable, but you aren't going to use
917          * that to send signals to arbitary processes.
918          * That stops right now.
919          *
920          * If the parent exec id doesn't match the exec id we saved
921          * when we started then we know the parent has changed security
922          * domain.
923          *
924          * If our self_exec id doesn't match our parent_exec_id then
925          * we have changed execution domain as these two values started
926          * the same after a fork.
927          */
928         if (tsk->exit_signal != SIGCHLD && !task_detached(tsk) &&
929             (tsk->parent_exec_id != tsk->real_parent->self_exec_id ||
930              tsk->self_exec_id != tsk->parent_exec_id) &&
931             !capable(CAP_KILL))
932                 tsk->exit_signal = SIGCHLD;
933
934         signal = tracehook_notify_death(tsk, &cookie, group_dead);
935         if (signal >= 0)
936                 signal = do_notify_parent(tsk, signal);
937
938         tsk->exit_state = signal == DEATH_REAP ? EXIT_DEAD : EXIT_ZOMBIE;
939
940         /* mt-exec, de_thread() is waiting for us */
941         if (thread_group_leader(tsk) &&
942             tsk->signal->group_exit_task &&
943             tsk->signal->notify_count < 0)
944                 wake_up_process(tsk->signal->group_exit_task);
945
946         write_unlock_irq(&tasklist_lock);
947
948         tracehook_report_death(tsk, signal, cookie, group_dead);
949
950         /* If the process is dead, release it - nobody will wait for it */
951         if (signal == DEATH_REAP)
952                 release_task(tsk);
953 }
954
955 #ifdef CONFIG_DEBUG_STACK_USAGE
956 static void check_stack_usage(void)
957 {
958         static DEFINE_SPINLOCK(low_water_lock);
959         static int lowest_to_date = THREAD_SIZE;
960         unsigned long *n = end_of_stack(current);
961         unsigned long free;
962
963         while (*n == 0)
964                 n++;
965         free = (unsigned long)n - (unsigned long)end_of_stack(current);
966
967         if (free >= lowest_to_date)
968                 return;
969
970         spin_lock(&low_water_lock);
971         if (free < lowest_to_date) {
972                 printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
973                                 "left\n",
974                                 current->comm, free);
975                 lowest_to_date = free;
976         }
977         spin_unlock(&low_water_lock);
978 }
979 #else
980 static inline void check_stack_usage(void) {}
981 #endif
982
983 NORET_TYPE void do_exit(long code)
984 {
985         struct task_struct *tsk = current;
986         int group_dead;
987
988         profile_task_exit(tsk);
989
990         WARN_ON(atomic_read(&tsk->fs_excl));
991
992         if (unlikely(in_interrupt()))
993                 panic("Aiee, killing interrupt handler!");
994         if (unlikely(!tsk->pid))
995                 panic("Attempted to kill the idle task!");
996
997         tracehook_report_exit(&code);
998
999         /*
1000          * We're taking recursive faults here in do_exit. Safest is to just
1001          * leave this task alone and wait for reboot.
1002          */
1003         if (unlikely(tsk->flags & PF_EXITING)) {
1004                 printk(KERN_ALERT
1005                         "Fixing recursive fault but reboot is needed!\n");
1006                 /*
1007                  * We can do this unlocked here. The futex code uses
1008                  * this flag just to verify whether the pi state
1009                  * cleanup has been done or not. In the worst case it
1010                  * loops once more. We pretend that the cleanup was
1011                  * done as there is no way to return. Either the
1012                  * OWNER_DIED bit is set by now or we push the blocked
1013                  * task into the wait for ever nirwana as well.
1014                  */
1015                 tsk->flags |= PF_EXITPIDONE;
1016                 if (tsk->io_context)
1017                         exit_io_context();
1018                 set_current_state(TASK_UNINTERRUPTIBLE);
1019                 schedule();
1020         }
1021
1022         exit_signals(tsk);  /* sets PF_EXITING */
1023         /*
1024          * tsk->flags are checked in the futex code to protect against
1025          * an exiting task cleaning up the robust pi futexes.
1026          */
1027         smp_mb();
1028         spin_unlock_wait(&tsk->pi_lock);
1029
1030         if (unlikely(in_atomic()))
1031                 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
1032                                 current->comm, task_pid_nr(current),
1033                                 preempt_count());
1034
1035         acct_update_integrals(tsk);
1036         if (tsk->mm) {
1037                 update_hiwater_rss(tsk->mm);
1038                 update_hiwater_vm(tsk->mm);
1039         }
1040         group_dead = atomic_dec_and_test(&tsk->signal->live);
1041         if (group_dead) {
1042                 hrtimer_cancel(&tsk->signal->real_timer);
1043                 exit_itimers(tsk->signal);
1044         }
1045         acct_collect(code, group_dead);
1046 #ifdef CONFIG_FUTEX
1047         if (unlikely(tsk->robust_list))
1048                 exit_robust_list(tsk);
1049 #ifdef CONFIG_COMPAT
1050         if (unlikely(tsk->compat_robust_list))
1051                 compat_exit_robust_list(tsk);
1052 #endif
1053 #endif
1054         if (group_dead)
1055                 tty_audit_exit();
1056         if (unlikely(tsk->audit_context))
1057                 audit_free(tsk);
1058
1059         tsk->exit_code = code;
1060         taskstats_exit(tsk, group_dead);
1061
1062         exit_mm(tsk);
1063
1064         if (group_dead)
1065                 acct_process();
1066         exit_sem(tsk);
1067         exit_files(tsk);
1068         exit_fs(tsk);
1069         check_stack_usage();
1070         exit_thread();
1071         cgroup_exit(tsk, 1);
1072         exit_keys(tsk);
1073
1074         if (group_dead && tsk->signal->leader)
1075                 disassociate_ctty(1);
1076
1077         module_put(task_thread_info(tsk)->exec_domain->module);
1078         if (tsk->binfmt)
1079                 module_put(tsk->binfmt->module);
1080
1081         proc_exit_connector(tsk);
1082         exit_notify(tsk, group_dead);
1083 #ifdef CONFIG_NUMA
1084         mpol_put(tsk->mempolicy);
1085         tsk->mempolicy = NULL;
1086 #endif
1087 #ifdef CONFIG_FUTEX
1088         /*
1089          * This must happen late, after the PID is not
1090          * hashed anymore:
1091          */
1092         if (unlikely(!list_empty(&tsk->pi_state_list)))
1093                 exit_pi_state_list(tsk);
1094         if (unlikely(current->pi_state_cache))
1095                 kfree(current->pi_state_cache);
1096 #endif
1097         /*
1098          * Make sure we are holding no locks:
1099          */
1100         debug_check_no_locks_held(tsk);
1101         /*
1102          * We can do this unlocked here. The futex code uses this flag
1103          * just to verify whether the pi state cleanup has been done
1104          * or not. In the worst case it loops once more.
1105          */
1106         tsk->flags |= PF_EXITPIDONE;
1107
1108         if (tsk->io_context)
1109                 exit_io_context();
1110
1111         if (tsk->splice_pipe)
1112                 __free_pipe_info(tsk->splice_pipe);
1113
1114         preempt_disable();
1115         /* causes final put_task_struct in finish_task_switch(). */
1116         tsk->state = TASK_DEAD;
1117
1118         schedule();
1119         BUG();
1120         /* Avoid "noreturn function does return".  */
1121         for (;;)
1122                 cpu_relax();    /* For when BUG is null */
1123 }
1124
1125 EXPORT_SYMBOL_GPL(do_exit);
1126
1127 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
1128 {
1129         if (comp)
1130                 complete(comp);
1131
1132         do_exit(code);
1133 }
1134
1135 EXPORT_SYMBOL(complete_and_exit);
1136
1137 asmlinkage long sys_exit(int error_code)
1138 {
1139         do_exit((error_code&0xff)<<8);
1140 }
1141
1142 /*
1143  * Take down every thread in the group.  This is called by fatal signals
1144  * as well as by sys_exit_group (below).
1145  */
1146 NORET_TYPE void
1147 do_group_exit(int exit_code)
1148 {
1149         struct signal_struct *sig = current->signal;
1150
1151         BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1152
1153         if (signal_group_exit(sig))
1154                 exit_code = sig->group_exit_code;
1155         else if (!thread_group_empty(current)) {
1156                 struct sighand_struct *const sighand = current->sighand;
1157                 spin_lock_irq(&sighand->siglock);
1158                 if (signal_group_exit(sig))
1159                         /* Another thread got here before we took the lock.  */
1160                         exit_code = sig->group_exit_code;
1161                 else {
1162                         sig->group_exit_code = exit_code;
1163                         sig->flags = SIGNAL_GROUP_EXIT;
1164                         zap_other_threads(current);
1165                 }
1166                 spin_unlock_irq(&sighand->siglock);
1167         }
1168
1169         do_exit(exit_code);
1170         /* NOTREACHED */
1171 }
1172
1173 /*
1174  * this kills every thread in the thread group. Note that any externally
1175  * wait4()-ing process will get the correct exit code - even if this
1176  * thread is not the thread group leader.
1177  */
1178 asmlinkage void sys_exit_group(int error_code)
1179 {
1180         do_group_exit((error_code & 0xff) << 8);
1181 }
1182
1183 static struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1184 {
1185         struct pid *pid = NULL;
1186         if (type == PIDTYPE_PID)
1187                 pid = task->pids[type].pid;
1188         else if (type < PIDTYPE_MAX)
1189                 pid = task->group_leader->pids[type].pid;
1190         return pid;
1191 }
1192
1193 static int eligible_child(enum pid_type type, struct pid *pid, int options,
1194                           struct task_struct *p)
1195 {
1196         int err;
1197
1198         if (type < PIDTYPE_MAX) {
1199                 if (task_pid_type(p, type) != pid)
1200                         return 0;
1201         }
1202
1203         /* Wait for all children (clone and not) if __WALL is set;
1204          * otherwise, wait for clone children *only* if __WCLONE is
1205          * set; otherwise, wait for non-clone children *only*.  (Note:
1206          * A "clone" child here is one that reports to its parent
1207          * using a signal other than SIGCHLD.) */
1208         if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0))
1209             && !(options & __WALL))
1210                 return 0;
1211
1212         err = security_task_wait(p);
1213         if (err)
1214                 return err;
1215
1216         return 1;
1217 }
1218
1219 static int wait_noreap_copyout(struct task_struct *p, pid_t pid, uid_t uid,
1220                                int why, int status,
1221                                struct siginfo __user *infop,
1222                                struct rusage __user *rusagep)
1223 {
1224         int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0;
1225
1226         put_task_struct(p);
1227         if (!retval)
1228                 retval = put_user(SIGCHLD, &infop->si_signo);
1229         if (!retval)
1230                 retval = put_user(0, &infop->si_errno);
1231         if (!retval)
1232                 retval = put_user((short)why, &infop->si_code);
1233         if (!retval)
1234                 retval = put_user(pid, &infop->si_pid);
1235         if (!retval)
1236                 retval = put_user(uid, &infop->si_uid);
1237         if (!retval)
1238                 retval = put_user(status, &infop->si_status);
1239         if (!retval)
1240                 retval = pid;
1241         return retval;
1242 }
1243
1244 /*
1245  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1246  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1247  * the lock and this task is uninteresting.  If we return nonzero, we have
1248  * released the lock and the system call should return.
1249  */
1250 static int wait_task_zombie(struct task_struct *p, int options,
1251                             struct siginfo __user *infop,
1252                             int __user *stat_addr, struct rusage __user *ru)
1253 {
1254         unsigned long state;
1255         int retval, status, traced;
1256         pid_t pid = task_pid_vnr(p);
1257
1258         if (!likely(options & WEXITED))
1259                 return 0;
1260
1261         if (unlikely(options & WNOWAIT)) {
1262                 uid_t uid = p->uid;
1263                 int exit_code = p->exit_code;
1264                 int why, status;
1265
1266                 get_task_struct(p);
1267                 read_unlock(&tasklist_lock);
1268                 if ((exit_code & 0x7f) == 0) {
1269                         why = CLD_EXITED;
1270                         status = exit_code >> 8;
1271                 } else {
1272                         why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1273                         status = exit_code & 0x7f;
1274                 }
1275                 return wait_noreap_copyout(p, pid, uid, why,
1276                                            status, infop, ru);
1277         }
1278
1279         /*
1280          * Try to move the task's state to DEAD
1281          * only one thread is allowed to do this:
1282          */
1283         state = xchg(&p->exit_state, EXIT_DEAD);
1284         if (state != EXIT_ZOMBIE) {
1285                 BUG_ON(state != EXIT_DEAD);
1286                 return 0;
1287         }
1288
1289         traced = ptrace_reparented(p);
1290
1291         if (likely(!traced)) {
1292                 struct signal_struct *psig;
1293                 struct signal_struct *sig;
1294                 struct task_cputime cputime;
1295
1296                 /*
1297                  * The resource counters for the group leader are in its
1298                  * own task_struct.  Those for dead threads in the group
1299                  * are in its signal_struct, as are those for the child
1300                  * processes it has previously reaped.  All these
1301                  * accumulate in the parent's signal_struct c* fields.
1302                  *
1303                  * We don't bother to take a lock here to protect these
1304                  * p->signal fields, because they are only touched by
1305                  * __exit_signal, which runs with tasklist_lock
1306                  * write-locked anyway, and so is excluded here.  We do
1307                  * need to protect the access to p->parent->signal fields,
1308                  * as other threads in the parent group can be right
1309                  * here reaping other children at the same time.
1310                  *
1311                  * We use thread_group_cputime() to get times for the thread
1312                  * group, which consolidates times for all threads in the
1313                  * group including the group leader.
1314                  */
1315                 spin_lock_irq(&p->parent->sighand->siglock);
1316                 psig = p->parent->signal;
1317                 sig = p->signal;
1318                 thread_group_cputime(p, &cputime);
1319                 psig->cutime =
1320                         cputime_add(psig->cutime,
1321                         cputime_add(cputime.utime,
1322                                     sig->cutime));
1323                 psig->cstime =
1324                         cputime_add(psig->cstime,
1325                         cputime_add(cputime.stime,
1326                                     sig->cstime));
1327                 psig->cgtime =
1328                         cputime_add(psig->cgtime,
1329                         cputime_add(p->gtime,
1330                         cputime_add(sig->gtime,
1331                                     sig->cgtime)));
1332                 psig->cmin_flt +=
1333                         p->min_flt + sig->min_flt + sig->cmin_flt;
1334                 psig->cmaj_flt +=
1335                         p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1336                 psig->cnvcsw +=
1337                         p->nvcsw + sig->nvcsw + sig->cnvcsw;
1338                 psig->cnivcsw +=
1339                         p->nivcsw + sig->nivcsw + sig->cnivcsw;
1340                 psig->cinblock +=
1341                         task_io_get_inblock(p) +
1342                         sig->inblock + sig->cinblock;
1343                 psig->coublock +=
1344                         task_io_get_oublock(p) +
1345                         sig->oublock + sig->coublock;
1346                 task_io_accounting_add(&psig->ioac, &p->ioac);
1347                 task_io_accounting_add(&psig->ioac, &sig->ioac);
1348                 spin_unlock_irq(&p->parent->sighand->siglock);
1349         }
1350
1351         /*
1352          * Now we are sure this task is interesting, and no other
1353          * thread can reap it because we set its state to EXIT_DEAD.
1354          */
1355         read_unlock(&tasklist_lock);
1356
1357         retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1358         status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1359                 ? p->signal->group_exit_code : p->exit_code;
1360         if (!retval && stat_addr)
1361                 retval = put_user(status, stat_addr);
1362         if (!retval && infop)
1363                 retval = put_user(SIGCHLD, &infop->si_signo);
1364         if (!retval && infop)
1365                 retval = put_user(0, &infop->si_errno);
1366         if (!retval && infop) {
1367                 int why;
1368
1369                 if ((status & 0x7f) == 0) {
1370                         why = CLD_EXITED;
1371                         status >>= 8;
1372                 } else {
1373                         why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1374                         status &= 0x7f;
1375                 }
1376                 retval = put_user((short)why, &infop->si_code);
1377                 if (!retval)
1378                         retval = put_user(status, &infop->si_status);
1379         }
1380         if (!retval && infop)
1381                 retval = put_user(pid, &infop->si_pid);
1382         if (!retval && infop)
1383                 retval = put_user(p->uid, &infop->si_uid);
1384         if (!retval)
1385                 retval = pid;
1386
1387         if (traced) {
1388                 write_lock_irq(&tasklist_lock);
1389                 /* We dropped tasklist, ptracer could die and untrace */
1390                 ptrace_unlink(p);
1391                 /*
1392                  * If this is not a detached task, notify the parent.
1393                  * If it's still not detached after that, don't release
1394                  * it now.
1395                  */
1396                 if (!task_detached(p)) {
1397                         do_notify_parent(p, p->exit_signal);
1398                         if (!task_detached(p)) {
1399                                 p->exit_state = EXIT_ZOMBIE;
1400                                 p = NULL;
1401                         }
1402                 }
1403                 write_unlock_irq(&tasklist_lock);
1404         }
1405         if (p != NULL)
1406                 release_task(p);
1407
1408         return retval;
1409 }
1410
1411 /*
1412  * Handle sys_wait4 work for one task in state TASK_STOPPED.  We hold
1413  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1414  * the lock and this task is uninteresting.  If we return nonzero, we have
1415  * released the lock and the system call should return.
1416  */
1417 static int wait_task_stopped(int ptrace, struct task_struct *p,
1418                              int options, struct siginfo __user *infop,
1419                              int __user *stat_addr, struct rusage __user *ru)
1420 {
1421         int retval, exit_code, why;
1422         uid_t uid = 0; /* unneeded, required by compiler */
1423         pid_t pid;
1424
1425         if (!(options & WUNTRACED))
1426                 return 0;
1427
1428         exit_code = 0;
1429         spin_lock_irq(&p->sighand->siglock);
1430
1431         if (unlikely(!task_is_stopped_or_traced(p)))
1432                 goto unlock_sig;
1433
1434         if (!ptrace && p->signal->group_stop_count > 0)
1435                 /*
1436                  * A group stop is in progress and this is the group leader.
1437                  * We won't report until all threads have stopped.
1438                  */
1439                 goto unlock_sig;
1440
1441         exit_code = p->exit_code;
1442         if (!exit_code)
1443                 goto unlock_sig;
1444
1445         if (!unlikely(options & WNOWAIT))
1446                 p->exit_code = 0;
1447
1448         uid = p->uid;
1449 unlock_sig:
1450         spin_unlock_irq(&p->sighand->siglock);
1451         if (!exit_code)
1452                 return 0;
1453
1454         /*
1455          * Now we are pretty sure this task is interesting.
1456          * Make sure it doesn't get reaped out from under us while we
1457          * give up the lock and then examine it below.  We don't want to
1458          * keep holding onto the tasklist_lock while we call getrusage and
1459          * possibly take page faults for user memory.
1460          */
1461         get_task_struct(p);
1462         pid = task_pid_vnr(p);
1463         why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1464         read_unlock(&tasklist_lock);
1465
1466         if (unlikely(options & WNOWAIT))
1467                 return wait_noreap_copyout(p, pid, uid,
1468                                            why, exit_code,
1469                                            infop, ru);
1470
1471         retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1472         if (!retval && stat_addr)
1473                 retval = put_user((exit_code << 8) | 0x7f, stat_addr);
1474         if (!retval && infop)
1475                 retval = put_user(SIGCHLD, &infop->si_signo);
1476         if (!retval && infop)
1477                 retval = put_user(0, &infop->si_errno);
1478         if (!retval && infop)
1479                 retval = put_user((short)why, &infop->si_code);
1480         if (!retval && infop)
1481                 retval = put_user(exit_code, &infop->si_status);
1482         if (!retval && infop)
1483                 retval = put_user(pid, &infop->si_pid);
1484         if (!retval && infop)
1485                 retval = put_user(uid, &infop->si_uid);
1486         if (!retval)
1487                 retval = pid;
1488         put_task_struct(p);
1489
1490         BUG_ON(!retval);
1491         return retval;
1492 }
1493
1494 /*
1495  * Handle do_wait work for one task in a live, non-stopped state.
1496  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1497  * the lock and this task is uninteresting.  If we return nonzero, we have
1498  * released the lock and the system call should return.
1499  */
1500 static int wait_task_continued(struct task_struct *p, int options,
1501                                struct siginfo __user *infop,
1502                                int __user *stat_addr, struct rusage __user *ru)
1503 {
1504         int retval;
1505         pid_t pid;
1506         uid_t uid;
1507
1508         if (!unlikely(options & WCONTINUED))
1509                 return 0;
1510
1511         if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1512                 return 0;
1513
1514         spin_lock_irq(&p->sighand->siglock);
1515         /* Re-check with the lock held.  */
1516         if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1517                 spin_unlock_irq(&p->sighand->siglock);
1518                 return 0;
1519         }
1520         if (!unlikely(options & WNOWAIT))
1521                 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1522         spin_unlock_irq(&p->sighand->siglock);
1523
1524         pid = task_pid_vnr(p);
1525         uid = p->uid;
1526         get_task_struct(p);
1527         read_unlock(&tasklist_lock);
1528
1529         if (!infop) {
1530                 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1531                 put_task_struct(p);
1532                 if (!retval && stat_addr)
1533                         retval = put_user(0xffff, stat_addr);
1534                 if (!retval)
1535                         retval = pid;
1536         } else {
1537                 retval = wait_noreap_copyout(p, pid, uid,
1538                                              CLD_CONTINUED, SIGCONT,
1539                                              infop, ru);
1540                 BUG_ON(retval == 0);
1541         }
1542
1543         return retval;
1544 }
1545
1546 /*
1547  * Consider @p for a wait by @parent.
1548  *
1549  * -ECHILD should be in *@notask_error before the first call.
1550  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1551  * Returns zero if the search for a child should continue;
1552  * then *@notask_error is 0 if @p is an eligible child,
1553  * or another error from security_task_wait(), or still -ECHILD.
1554  */
1555 static int wait_consider_task(struct task_struct *parent, int ptrace,
1556                               struct task_struct *p, int *notask_error,
1557                               enum pid_type type, struct pid *pid, int options,
1558                               struct siginfo __user *infop,
1559                               int __user *stat_addr, struct rusage __user *ru)
1560 {
1561         int ret = eligible_child(type, pid, options, p);
1562         if (!ret)
1563                 return ret;
1564
1565         if (unlikely(ret < 0)) {
1566                 /*
1567                  * If we have not yet seen any eligible child,
1568                  * then let this error code replace -ECHILD.
1569                  * A permission error will give the user a clue
1570                  * to look for security policy problems, rather
1571                  * than for mysterious wait bugs.
1572                  */
1573                 if (*notask_error)
1574                         *notask_error = ret;
1575         }
1576
1577         if (likely(!ptrace) && unlikely(p->ptrace)) {
1578                 /*
1579                  * This child is hidden by ptrace.
1580                  * We aren't allowed to see it now, but eventually we will.
1581                  */
1582                 *notask_error = 0;
1583                 return 0;
1584         }
1585
1586         if (p->exit_state == EXIT_DEAD)
1587                 return 0;
1588
1589         /*
1590          * We don't reap group leaders with subthreads.
1591          */
1592         if (p->exit_state == EXIT_ZOMBIE && !delay_group_leader(p))
1593                 return wait_task_zombie(p, options, infop, stat_addr, ru);
1594
1595         /*
1596          * It's stopped or running now, so it might
1597          * later continue, exit, or stop again.
1598          */
1599         *notask_error = 0;
1600
1601         if (task_is_stopped_or_traced(p))
1602                 return wait_task_stopped(ptrace, p, options,
1603                                          infop, stat_addr, ru);
1604
1605         return wait_task_continued(p, options, infop, stat_addr, ru);
1606 }
1607
1608 /*
1609  * Do the work of do_wait() for one thread in the group, @tsk.
1610  *
1611  * -ECHILD should be in *@notask_error before the first call.
1612  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1613  * Returns zero if the search for a child should continue; then
1614  * *@notask_error is 0 if there were any eligible children,
1615  * or another error from security_task_wait(), or still -ECHILD.
1616  */
1617 static int do_wait_thread(struct task_struct *tsk, int *notask_error,
1618                           enum pid_type type, struct pid *pid, int options,
1619                           struct siginfo __user *infop, int __user *stat_addr,
1620                           struct rusage __user *ru)
1621 {
1622         struct task_struct *p;
1623
1624         list_for_each_entry(p, &tsk->children, sibling) {
1625                 /*
1626                  * Do not consider detached threads.
1627                  */
1628                 if (!task_detached(p)) {
1629                         int ret = wait_consider_task(tsk, 0, p, notask_error,
1630                                                      type, pid, options,
1631                                                      infop, stat_addr, ru);
1632                         if (ret)
1633                                 return ret;
1634                 }
1635         }
1636
1637         return 0;
1638 }
1639
1640 static int ptrace_do_wait(struct task_struct *tsk, int *notask_error,
1641                           enum pid_type type, struct pid *pid, int options,
1642                           struct siginfo __user *infop, int __user *stat_addr,
1643                           struct rusage __user *ru)
1644 {
1645         struct task_struct *p;
1646
1647         /*
1648          * Traditionally we see ptrace'd stopped tasks regardless of options.
1649          */
1650         options |= WUNTRACED;
1651
1652         list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1653                 int ret = wait_consider_task(tsk, 1, p, notask_error,
1654                                              type, pid, options,
1655                                              infop, stat_addr, ru);
1656                 if (ret)
1657                         return ret;
1658         }
1659
1660         return 0;
1661 }
1662
1663 static long do_wait(enum pid_type type, struct pid *pid, int options,
1664                     struct siginfo __user *infop, int __user *stat_addr,
1665                     struct rusage __user *ru)
1666 {
1667         DECLARE_WAITQUEUE(wait, current);
1668         struct task_struct *tsk;
1669         int retval;
1670
1671         add_wait_queue(&current->signal->wait_chldexit,&wait);
1672 repeat:
1673         /*
1674          * If there is nothing that can match our critiera just get out.
1675          * We will clear @retval to zero if we see any child that might later
1676          * match our criteria, even if we are not able to reap it yet.
1677          */
1678         retval = -ECHILD;
1679         if ((type < PIDTYPE_MAX) && (!pid || hlist_empty(&pid->tasks[type])))
1680                 goto end;
1681
1682         current->state = TASK_INTERRUPTIBLE;
1683         read_lock(&tasklist_lock);
1684         tsk = current;
1685         do {
1686                 int tsk_result = do_wait_thread(tsk, &retval,
1687                                                 type, pid, options,
1688                                                 infop, stat_addr, ru);
1689                 if (!tsk_result)
1690                         tsk_result = ptrace_do_wait(tsk, &retval,
1691                                                     type, pid, options,
1692                                                     infop, stat_addr, ru);
1693                 if (tsk_result) {
1694                         /*
1695                          * tasklist_lock is unlocked and we have a final result.
1696                          */
1697                         retval = tsk_result;
1698                         goto end;
1699                 }
1700
1701                 if (options & __WNOTHREAD)
1702                         break;
1703                 tsk = next_thread(tsk);
1704                 BUG_ON(tsk->signal != current->signal);
1705         } while (tsk != current);
1706         read_unlock(&tasklist_lock);
1707
1708         if (!retval && !(options & WNOHANG)) {
1709                 retval = -ERESTARTSYS;
1710                 if (!signal_pending(current)) {
1711                         schedule();
1712                         goto repeat;
1713                 }
1714         }
1715
1716 end:
1717         current->state = TASK_RUNNING;
1718         remove_wait_queue(&current->signal->wait_chldexit,&wait);
1719         if (infop) {
1720                 if (retval > 0)
1721                         retval = 0;
1722                 else {
1723                         /*
1724                          * For a WNOHANG return, clear out all the fields
1725                          * we would set so the user can easily tell the
1726                          * difference.
1727                          */
1728                         if (!retval)
1729                                 retval = put_user(0, &infop->si_signo);
1730                         if (!retval)
1731                                 retval = put_user(0, &infop->si_errno);
1732                         if (!retval)
1733                                 retval = put_user(0, &infop->si_code);
1734                         if (!retval)
1735                                 retval = put_user(0, &infop->si_pid);
1736                         if (!retval)
1737                                 retval = put_user(0, &infop->si_uid);
1738                         if (!retval)
1739                                 retval = put_user(0, &infop->si_status);
1740                 }
1741         }
1742         return retval;
1743 }
1744
1745 asmlinkage long sys_waitid(int which, pid_t upid,
1746                            struct siginfo __user *infop, int options,
1747                            struct rusage __user *ru)
1748 {
1749         struct pid *pid = NULL;
1750         enum pid_type type;
1751         long ret;
1752
1753         if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1754                 return -EINVAL;
1755         if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1756                 return -EINVAL;
1757
1758         switch (which) {
1759         case P_ALL:
1760                 type = PIDTYPE_MAX;
1761                 break;
1762         case P_PID:
1763                 type = PIDTYPE_PID;
1764                 if (upid <= 0)
1765                         return -EINVAL;
1766                 break;
1767         case P_PGID:
1768                 type = PIDTYPE_PGID;
1769                 if (upid <= 0)
1770                         return -EINVAL;
1771                 break;
1772         default:
1773                 return -EINVAL;
1774         }
1775
1776         if (type < PIDTYPE_MAX)
1777                 pid = find_get_pid(upid);
1778         ret = do_wait(type, pid, options, infop, NULL, ru);
1779         put_pid(pid);
1780
1781         /* avoid REGPARM breakage on x86: */
1782         asmlinkage_protect(5, ret, which, upid, infop, options, ru);
1783         return ret;
1784 }
1785
1786 asmlinkage long sys_wait4(pid_t upid, int __user *stat_addr,
1787                           int options, struct rusage __user *ru)
1788 {
1789         struct pid *pid = NULL;
1790         enum pid_type type;
1791         long ret;
1792
1793         if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1794                         __WNOTHREAD|__WCLONE|__WALL))
1795                 return -EINVAL;
1796
1797         if (upid == -1)
1798                 type = PIDTYPE_MAX;
1799         else if (upid < 0) {
1800                 type = PIDTYPE_PGID;
1801                 pid = find_get_pid(-upid);
1802         } else if (upid == 0) {
1803                 type = PIDTYPE_PGID;
1804                 pid = get_pid(task_pgrp(current));
1805         } else /* upid > 0 */ {
1806                 type = PIDTYPE_PID;
1807                 pid = find_get_pid(upid);
1808         }
1809
1810         ret = do_wait(type, pid, options | WEXITED, NULL, stat_addr, ru);
1811         put_pid(pid);
1812
1813         /* avoid REGPARM breakage on x86: */
1814         asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
1815         return ret;
1816 }
1817
1818 #ifdef __ARCH_WANT_SYS_WAITPID
1819
1820 /*
1821  * sys_waitpid() remains for compatibility. waitpid() should be
1822  * implemented by calling sys_wait4() from libc.a.
1823  */
1824 asmlinkage long sys_waitpid(pid_t pid, int __user *stat_addr, int options)
1825 {
1826         return sys_wait4(pid, stat_addr, options, NULL);
1827 }
1828
1829 #endif