Merge branch 'linus' into perfcounters/core
[safe/jmp/linux-2.6] / kernel / exit.c
1 /*
2  *  linux/kernel/exit.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/mnt_namespace.h>
16 #include <linux/iocontext.h>
17 #include <linux/key.h>
18 #include <linux/security.h>
19 #include <linux/cpu.h>
20 #include <linux/acct.h>
21 #include <linux/tsacct_kern.h>
22 #include <linux/file.h>
23 #include <linux/fdtable.h>
24 #include <linux/binfmts.h>
25 #include <linux/nsproxy.h>
26 #include <linux/pid_namespace.h>
27 #include <linux/ptrace.h>
28 #include <linux/profile.h>
29 #include <linux/mount.h>
30 #include <linux/proc_fs.h>
31 #include <linux/kthread.h>
32 #include <linux/mempolicy.h>
33 #include <linux/taskstats_kern.h>
34 #include <linux/delayacct.h>
35 #include <linux/freezer.h>
36 #include <linux/cgroup.h>
37 #include <linux/syscalls.h>
38 #include <linux/signal.h>
39 #include <linux/posix-timers.h>
40 #include <linux/cn_proc.h>
41 #include <linux/mutex.h>
42 #include <linux/futex.h>
43 #include <linux/pipe_fs_i.h>
44 #include <linux/audit.h> /* for audit_free() */
45 #include <linux/resource.h>
46 #include <linux/blkdev.h>
47 #include <linux/task_io_accounting_ops.h>
48 #include <linux/tracehook.h>
49 #include <linux/init_task.h>
50 #include <trace/sched.h>
51
52 #include <asm/uaccess.h>
53 #include <asm/unistd.h>
54 #include <asm/pgtable.h>
55 #include <asm/mmu_context.h>
56 #include "cred-internals.h"
57
58 DEFINE_TRACE(sched_process_free);
59 DEFINE_TRACE(sched_process_exit);
60 DEFINE_TRACE(sched_process_wait);
61
62 static void exit_mm(struct task_struct * tsk);
63
64 static inline int task_detached(struct task_struct *p)
65 {
66         return p->exit_signal == -1;
67 }
68
69 static void __unhash_process(struct task_struct *p)
70 {
71         nr_threads--;
72         detach_pid(p, PIDTYPE_PID);
73         if (thread_group_leader(p)) {
74                 detach_pid(p, PIDTYPE_PGID);
75                 detach_pid(p, PIDTYPE_SID);
76
77                 list_del_rcu(&p->tasks);
78                 __get_cpu_var(process_counts)--;
79         }
80         list_del_rcu(&p->thread_group);
81         list_del_init(&p->sibling);
82 }
83
84 /*
85  * This function expects the tasklist_lock write-locked.
86  */
87 static void __exit_signal(struct task_struct *tsk)
88 {
89         struct signal_struct *sig = tsk->signal;
90         struct sighand_struct *sighand;
91
92         BUG_ON(!sig);
93         BUG_ON(!atomic_read(&sig->count));
94
95         sighand = rcu_dereference(tsk->sighand);
96         spin_lock(&sighand->siglock);
97
98         posix_cpu_timers_exit(tsk);
99         if (atomic_dec_and_test(&sig->count))
100                 posix_cpu_timers_exit_group(tsk);
101         else {
102                 /*
103                  * If there is any task waiting for the group exit
104                  * then notify it:
105                  */
106                 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count)
107                         wake_up_process(sig->group_exit_task);
108
109                 if (tsk == sig->curr_target)
110                         sig->curr_target = next_thread(tsk);
111                 /*
112                  * Accumulate here the counters for all threads but the
113                  * group leader as they die, so they can be added into
114                  * the process-wide totals when those are taken.
115                  * The group leader stays around as a zombie as long
116                  * as there are other threads.  When it gets reaped,
117                  * the exit.c code will add its counts into these totals.
118                  * We won't ever get here for the group leader, since it
119                  * will have been the last reference on the signal_struct.
120                  */
121                 sig->gtime = cputime_add(sig->gtime, task_gtime(tsk));
122                 sig->min_flt += tsk->min_flt;
123                 sig->maj_flt += tsk->maj_flt;
124                 sig->nvcsw += tsk->nvcsw;
125                 sig->nivcsw += tsk->nivcsw;
126                 sig->inblock += task_io_get_inblock(tsk);
127                 sig->oublock += task_io_get_oublock(tsk);
128                 task_io_accounting_add(&sig->ioac, &tsk->ioac);
129                 sig = NULL; /* Marker for below. */
130         }
131
132         __unhash_process(tsk);
133
134         /*
135          * Do this under ->siglock, we can race with another thread
136          * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
137          */
138         flush_sigqueue(&tsk->pending);
139
140         tsk->signal = NULL;
141         tsk->sighand = NULL;
142         spin_unlock(&sighand->siglock);
143
144         __cleanup_sighand(sighand);
145         clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
146         if (sig) {
147                 flush_sigqueue(&sig->shared_pending);
148                 taskstats_tgid_free(sig);
149                 /*
150                  * Make sure ->signal can't go away under rq->lock,
151                  * see account_group_exec_runtime().
152                  */
153                 task_rq_unlock_wait(tsk);
154                 __cleanup_signal(sig);
155         }
156 }
157
158 static void delayed_put_task_struct(struct rcu_head *rhp)
159 {
160         struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
161
162 #ifdef CONFIG_PERF_COUNTERS
163         WARN_ON_ONCE(!list_empty(&tsk->perf_counter_ctx.counter_list));
164 #endif
165         trace_sched_process_free(tsk);
166         put_task_struct(tsk);
167 }
168
169
170 void release_task(struct task_struct * p)
171 {
172         struct task_struct *leader;
173         int zap_leader;
174 repeat:
175         tracehook_prepare_release_task(p);
176         /* don't need to get the RCU readlock here - the process is dead and
177          * can't be modifying its own credentials */
178         atomic_dec(&__task_cred(p)->user->processes);
179
180         proc_flush_task(p);
181         write_lock_irq(&tasklist_lock);
182         tracehook_finish_release_task(p);
183         __exit_signal(p);
184
185         /*
186          * If we are the last non-leader member of the thread
187          * group, and the leader is zombie, then notify the
188          * group leader's parent process. (if it wants notification.)
189          */
190         zap_leader = 0;
191         leader = p->group_leader;
192         if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
193                 BUG_ON(task_detached(leader));
194                 do_notify_parent(leader, leader->exit_signal);
195                 /*
196                  * If we were the last child thread and the leader has
197                  * exited already, and the leader's parent ignores SIGCHLD,
198                  * then we are the one who should release the leader.
199                  *
200                  * do_notify_parent() will have marked it self-reaping in
201                  * that case.
202                  */
203                 zap_leader = task_detached(leader);
204
205                 /*
206                  * This maintains the invariant that release_task()
207                  * only runs on a task in EXIT_DEAD, just for sanity.
208                  */
209                 if (zap_leader)
210                         leader->exit_state = EXIT_DEAD;
211         }
212
213         write_unlock_irq(&tasklist_lock);
214         release_thread(p);
215         call_rcu(&p->rcu, delayed_put_task_struct);
216
217         p = leader;
218         if (unlikely(zap_leader))
219                 goto repeat;
220 }
221
222 /*
223  * This checks not only the pgrp, but falls back on the pid if no
224  * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
225  * without this...
226  *
227  * The caller must hold rcu lock or the tasklist lock.
228  */
229 struct pid *session_of_pgrp(struct pid *pgrp)
230 {
231         struct task_struct *p;
232         struct pid *sid = NULL;
233
234         p = pid_task(pgrp, PIDTYPE_PGID);
235         if (p == NULL)
236                 p = pid_task(pgrp, PIDTYPE_PID);
237         if (p != NULL)
238                 sid = task_session(p);
239
240         return sid;
241 }
242
243 /*
244  * Determine if a process group is "orphaned", according to the POSIX
245  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
246  * by terminal-generated stop signals.  Newly orphaned process groups are
247  * to receive a SIGHUP and a SIGCONT.
248  *
249  * "I ask you, have you ever known what it is to be an orphan?"
250  */
251 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
252 {
253         struct task_struct *p;
254
255         do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
256                 if ((p == ignored_task) ||
257                     (p->exit_state && thread_group_empty(p)) ||
258                     is_global_init(p->real_parent))
259                         continue;
260
261                 if (task_pgrp(p->real_parent) != pgrp &&
262                     task_session(p->real_parent) == task_session(p))
263                         return 0;
264         } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
265
266         return 1;
267 }
268
269 int is_current_pgrp_orphaned(void)
270 {
271         int retval;
272
273         read_lock(&tasklist_lock);
274         retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
275         read_unlock(&tasklist_lock);
276
277         return retval;
278 }
279
280 static int has_stopped_jobs(struct pid *pgrp)
281 {
282         int retval = 0;
283         struct task_struct *p;
284
285         do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
286                 if (!task_is_stopped(p))
287                         continue;
288                 retval = 1;
289                 break;
290         } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
291         return retval;
292 }
293
294 /*
295  * Check to see if any process groups have become orphaned as
296  * a result of our exiting, and if they have any stopped jobs,
297  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
298  */
299 static void
300 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
301 {
302         struct pid *pgrp = task_pgrp(tsk);
303         struct task_struct *ignored_task = tsk;
304
305         if (!parent)
306                  /* exit: our father is in a different pgrp than
307                   * we are and we were the only connection outside.
308                   */
309                 parent = tsk->real_parent;
310         else
311                 /* reparent: our child is in a different pgrp than
312                  * we are, and it was the only connection outside.
313                  */
314                 ignored_task = NULL;
315
316         if (task_pgrp(parent) != pgrp &&
317             task_session(parent) == task_session(tsk) &&
318             will_become_orphaned_pgrp(pgrp, ignored_task) &&
319             has_stopped_jobs(pgrp)) {
320                 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
321                 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
322         }
323 }
324
325 /**
326  * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
327  *
328  * If a kernel thread is launched as a result of a system call, or if
329  * it ever exits, it should generally reparent itself to kthreadd so it
330  * isn't in the way of other processes and is correctly cleaned up on exit.
331  *
332  * The various task state such as scheduling policy and priority may have
333  * been inherited from a user process, so we reset them to sane values here.
334  *
335  * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
336  */
337 static void reparent_to_kthreadd(void)
338 {
339         write_lock_irq(&tasklist_lock);
340
341         ptrace_unlink(current);
342         /* Reparent to init */
343         current->real_parent = current->parent = kthreadd_task;
344         list_move_tail(&current->sibling, &current->real_parent->children);
345
346         /* Set the exit signal to SIGCHLD so we signal init on exit */
347         current->exit_signal = SIGCHLD;
348
349         if (task_nice(current) < 0)
350                 set_user_nice(current, 0);
351         /* cpus_allowed? */
352         /* rt_priority? */
353         /* signals? */
354         memcpy(current->signal->rlim, init_task.signal->rlim,
355                sizeof(current->signal->rlim));
356
357         atomic_inc(&init_cred.usage);
358         commit_creds(&init_cred);
359         write_unlock_irq(&tasklist_lock);
360 }
361
362 void __set_special_pids(struct pid *pid)
363 {
364         struct task_struct *curr = current->group_leader;
365         pid_t nr = pid_nr(pid);
366
367         if (task_session(curr) != pid) {
368                 change_pid(curr, PIDTYPE_SID, pid);
369                 set_task_session(curr, nr);
370         }
371         if (task_pgrp(curr) != pid) {
372                 change_pid(curr, PIDTYPE_PGID, pid);
373                 set_task_pgrp(curr, nr);
374         }
375 }
376
377 static void set_special_pids(struct pid *pid)
378 {
379         write_lock_irq(&tasklist_lock);
380         __set_special_pids(pid);
381         write_unlock_irq(&tasklist_lock);
382 }
383
384 /*
385  * Let kernel threads use this to say that they
386  * allow a certain signal (since daemonize() will
387  * have disabled all of them by default).
388  */
389 int allow_signal(int sig)
390 {
391         if (!valid_signal(sig) || sig < 1)
392                 return -EINVAL;
393
394         spin_lock_irq(&current->sighand->siglock);
395         sigdelset(&current->blocked, sig);
396         if (!current->mm) {
397                 /* Kernel threads handle their own signals.
398                    Let the signal code know it'll be handled, so
399                    that they don't get converted to SIGKILL or
400                    just silently dropped */
401                 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
402         }
403         recalc_sigpending();
404         spin_unlock_irq(&current->sighand->siglock);
405         return 0;
406 }
407
408 EXPORT_SYMBOL(allow_signal);
409
410 int disallow_signal(int sig)
411 {
412         if (!valid_signal(sig) || sig < 1)
413                 return -EINVAL;
414
415         spin_lock_irq(&current->sighand->siglock);
416         current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
417         recalc_sigpending();
418         spin_unlock_irq(&current->sighand->siglock);
419         return 0;
420 }
421
422 EXPORT_SYMBOL(disallow_signal);
423
424 /*
425  *      Put all the gunge required to become a kernel thread without
426  *      attached user resources in one place where it belongs.
427  */
428
429 void daemonize(const char *name, ...)
430 {
431         va_list args;
432         struct fs_struct *fs;
433         sigset_t blocked;
434
435         va_start(args, name);
436         vsnprintf(current->comm, sizeof(current->comm), name, args);
437         va_end(args);
438
439         /*
440          * If we were started as result of loading a module, close all of the
441          * user space pages.  We don't need them, and if we didn't close them
442          * they would be locked into memory.
443          */
444         exit_mm(current);
445         /*
446          * We don't want to have TIF_FREEZE set if the system-wide hibernation
447          * or suspend transition begins right now.
448          */
449         current->flags |= (PF_NOFREEZE | PF_KTHREAD);
450
451         if (current->nsproxy != &init_nsproxy) {
452                 get_nsproxy(&init_nsproxy);
453                 switch_task_namespaces(current, &init_nsproxy);
454         }
455         set_special_pids(&init_struct_pid);
456         proc_clear_tty(current);
457
458         /* Block and flush all signals */
459         sigfillset(&blocked);
460         sigprocmask(SIG_BLOCK, &blocked, NULL);
461         flush_signals(current);
462
463         /* Become as one with the init task */
464
465         exit_fs(current);       /* current->fs->count--; */
466         fs = init_task.fs;
467         current->fs = fs;
468         atomic_inc(&fs->count);
469
470         exit_files(current);
471         current->files = init_task.files;
472         atomic_inc(&current->files->count);
473
474         reparent_to_kthreadd();
475 }
476
477 EXPORT_SYMBOL(daemonize);
478
479 static void close_files(struct files_struct * files)
480 {
481         int i, j;
482         struct fdtable *fdt;
483
484         j = 0;
485
486         /*
487          * It is safe to dereference the fd table without RCU or
488          * ->file_lock because this is the last reference to the
489          * files structure.
490          */
491         fdt = files_fdtable(files);
492         for (;;) {
493                 unsigned long set;
494                 i = j * __NFDBITS;
495                 if (i >= fdt->max_fds)
496                         break;
497                 set = fdt->open_fds->fds_bits[j++];
498                 while (set) {
499                         if (set & 1) {
500                                 struct file * file = xchg(&fdt->fd[i], NULL);
501                                 if (file) {
502                                         filp_close(file, files);
503                                         cond_resched();
504                                 }
505                         }
506                         i++;
507                         set >>= 1;
508                 }
509         }
510 }
511
512 struct files_struct *get_files_struct(struct task_struct *task)
513 {
514         struct files_struct *files;
515
516         task_lock(task);
517         files = task->files;
518         if (files)
519                 atomic_inc(&files->count);
520         task_unlock(task);
521
522         return files;
523 }
524
525 void put_files_struct(struct files_struct *files)
526 {
527         struct fdtable *fdt;
528
529         if (atomic_dec_and_test(&files->count)) {
530                 close_files(files);
531                 /*
532                  * Free the fd and fdset arrays if we expanded them.
533                  * If the fdtable was embedded, pass files for freeing
534                  * at the end of the RCU grace period. Otherwise,
535                  * you can free files immediately.
536                  */
537                 fdt = files_fdtable(files);
538                 if (fdt != &files->fdtab)
539                         kmem_cache_free(files_cachep, files);
540                 free_fdtable(fdt);
541         }
542 }
543
544 void reset_files_struct(struct files_struct *files)
545 {
546         struct task_struct *tsk = current;
547         struct files_struct *old;
548
549         old = tsk->files;
550         task_lock(tsk);
551         tsk->files = files;
552         task_unlock(tsk);
553         put_files_struct(old);
554 }
555
556 void exit_files(struct task_struct *tsk)
557 {
558         struct files_struct * files = tsk->files;
559
560         if (files) {
561                 task_lock(tsk);
562                 tsk->files = NULL;
563                 task_unlock(tsk);
564                 put_files_struct(files);
565         }
566 }
567
568 void put_fs_struct(struct fs_struct *fs)
569 {
570         /* No need to hold fs->lock if we are killing it */
571         if (atomic_dec_and_test(&fs->count)) {
572                 path_put(&fs->root);
573                 path_put(&fs->pwd);
574                 kmem_cache_free(fs_cachep, fs);
575         }
576 }
577
578 void exit_fs(struct task_struct *tsk)
579 {
580         struct fs_struct * fs = tsk->fs;
581
582         if (fs) {
583                 task_lock(tsk);
584                 tsk->fs = NULL;
585                 task_unlock(tsk);
586                 put_fs_struct(fs);
587         }
588 }
589
590 EXPORT_SYMBOL_GPL(exit_fs);
591
592 #ifdef CONFIG_MM_OWNER
593 /*
594  * Task p is exiting and it owned mm, lets find a new owner for it
595  */
596 static inline int
597 mm_need_new_owner(struct mm_struct *mm, struct task_struct *p)
598 {
599         /*
600          * If there are other users of the mm and the owner (us) is exiting
601          * we need to find a new owner to take on the responsibility.
602          */
603         if (atomic_read(&mm->mm_users) <= 1)
604                 return 0;
605         if (mm->owner != p)
606                 return 0;
607         return 1;
608 }
609
610 void mm_update_next_owner(struct mm_struct *mm)
611 {
612         struct task_struct *c, *g, *p = current;
613
614 retry:
615         if (!mm_need_new_owner(mm, p))
616                 return;
617
618         read_lock(&tasklist_lock);
619         /*
620          * Search in the children
621          */
622         list_for_each_entry(c, &p->children, sibling) {
623                 if (c->mm == mm)
624                         goto assign_new_owner;
625         }
626
627         /*
628          * Search in the siblings
629          */
630         list_for_each_entry(c, &p->parent->children, sibling) {
631                 if (c->mm == mm)
632                         goto assign_new_owner;
633         }
634
635         /*
636          * Search through everything else. We should not get
637          * here often
638          */
639         do_each_thread(g, c) {
640                 if (c->mm == mm)
641                         goto assign_new_owner;
642         } while_each_thread(g, c);
643
644         read_unlock(&tasklist_lock);
645         /*
646          * We found no owner yet mm_users > 1: this implies that we are
647          * most likely racing with swapoff (try_to_unuse()) or /proc or
648          * ptrace or page migration (get_task_mm()).  Mark owner as NULL,
649          * so that subsystems can understand the callback and take action.
650          */
651         down_write(&mm->mmap_sem);
652         cgroup_mm_owner_callbacks(mm->owner, NULL);
653         mm->owner = NULL;
654         up_write(&mm->mmap_sem);
655         return;
656
657 assign_new_owner:
658         BUG_ON(c == p);
659         get_task_struct(c);
660         read_unlock(&tasklist_lock);
661         down_write(&mm->mmap_sem);
662         /*
663          * The task_lock protects c->mm from changing.
664          * We always want mm->owner->mm == mm
665          */
666         task_lock(c);
667         if (c->mm != mm) {
668                 task_unlock(c);
669                 up_write(&mm->mmap_sem);
670                 put_task_struct(c);
671                 goto retry;
672         }
673         cgroup_mm_owner_callbacks(mm->owner, c);
674         mm->owner = c;
675         task_unlock(c);
676         up_write(&mm->mmap_sem);
677         put_task_struct(c);
678 }
679 #endif /* CONFIG_MM_OWNER */
680
681 /*
682  * Turn us into a lazy TLB process if we
683  * aren't already..
684  */
685 static void exit_mm(struct task_struct * tsk)
686 {
687         struct mm_struct *mm = tsk->mm;
688         struct core_state *core_state;
689
690         mm_release(tsk, mm);
691         if (!mm)
692                 return;
693         /*
694          * Serialize with any possible pending coredump.
695          * We must hold mmap_sem around checking core_state
696          * and clearing tsk->mm.  The core-inducing thread
697          * will increment ->nr_threads for each thread in the
698          * group with ->mm != NULL.
699          */
700         down_read(&mm->mmap_sem);
701         core_state = mm->core_state;
702         if (core_state) {
703                 struct core_thread self;
704                 up_read(&mm->mmap_sem);
705
706                 self.task = tsk;
707                 self.next = xchg(&core_state->dumper.next, &self);
708                 /*
709                  * Implies mb(), the result of xchg() must be visible
710                  * to core_state->dumper.
711                  */
712                 if (atomic_dec_and_test(&core_state->nr_threads))
713                         complete(&core_state->startup);
714
715                 for (;;) {
716                         set_task_state(tsk, TASK_UNINTERRUPTIBLE);
717                         if (!self.task) /* see coredump_finish() */
718                                 break;
719                         schedule();
720                 }
721                 __set_task_state(tsk, TASK_RUNNING);
722                 down_read(&mm->mmap_sem);
723         }
724         atomic_inc(&mm->mm_count);
725         BUG_ON(mm != tsk->active_mm);
726         /* more a memory barrier than a real lock */
727         task_lock(tsk);
728         tsk->mm = NULL;
729         up_read(&mm->mmap_sem);
730         enter_lazy_tlb(mm, current);
731         /* We don't want this task to be frozen prematurely */
732         clear_freeze_flag(tsk);
733         task_unlock(tsk);
734         mm_update_next_owner(mm);
735         mmput(mm);
736 }
737
738 /*
739  * Return nonzero if @parent's children should reap themselves.
740  *
741  * Called with write_lock_irq(&tasklist_lock) held.
742  */
743 static int ignoring_children(struct task_struct *parent)
744 {
745         int ret;
746         struct sighand_struct *psig = parent->sighand;
747         unsigned long flags;
748         spin_lock_irqsave(&psig->siglock, flags);
749         ret = (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
750                (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT));
751         spin_unlock_irqrestore(&psig->siglock, flags);
752         return ret;
753 }
754
755 /*
756  * Detach all tasks we were using ptrace on.
757  * Any that need to be release_task'd are put on the @dead list.
758  *
759  * Called with write_lock(&tasklist_lock) held.
760  */
761 static void ptrace_exit(struct task_struct *parent, struct list_head *dead)
762 {
763         struct task_struct *p, *n;
764         int ign = -1;
765
766         list_for_each_entry_safe(p, n, &parent->ptraced, ptrace_entry) {
767                 __ptrace_unlink(p);
768
769                 if (p->exit_state != EXIT_ZOMBIE)
770                         continue;
771
772                 /*
773                  * If it's a zombie, our attachedness prevented normal
774                  * parent notification or self-reaping.  Do notification
775                  * now if it would have happened earlier.  If it should
776                  * reap itself, add it to the @dead list.  We can't call
777                  * release_task() here because we already hold tasklist_lock.
778                  *
779                  * If it's our own child, there is no notification to do.
780                  * But if our normal children self-reap, then this child
781                  * was prevented by ptrace and we must reap it now.
782                  */
783                 if (!task_detached(p) && thread_group_empty(p)) {
784                         if (!same_thread_group(p->real_parent, parent))
785                                 do_notify_parent(p, p->exit_signal);
786                         else {
787                                 if (ign < 0)
788                                         ign = ignoring_children(parent);
789                                 if (ign)
790                                         p->exit_signal = -1;
791                         }
792                 }
793
794                 if (task_detached(p)) {
795                         /*
796                          * Mark it as in the process of being reaped.
797                          */
798                         p->exit_state = EXIT_DEAD;
799                         list_add(&p->ptrace_entry, dead);
800                 }
801         }
802 }
803
804 /*
805  * Finish up exit-time ptrace cleanup.
806  *
807  * Called without locks.
808  */
809 static void ptrace_exit_finish(struct task_struct *parent,
810                                struct list_head *dead)
811 {
812         struct task_struct *p, *n;
813
814         BUG_ON(!list_empty(&parent->ptraced));
815
816         list_for_each_entry_safe(p, n, dead, ptrace_entry) {
817                 list_del_init(&p->ptrace_entry);
818                 release_task(p);
819         }
820 }
821
822 static void reparent_thread(struct task_struct *p, struct task_struct *father)
823 {
824         if (p->pdeath_signal)
825                 /* We already hold the tasklist_lock here.  */
826                 group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p);
827
828         list_move_tail(&p->sibling, &p->real_parent->children);
829
830         /* If this is a threaded reparent there is no need to
831          * notify anyone anything has happened.
832          */
833         if (same_thread_group(p->real_parent, father))
834                 return;
835
836         /* We don't want people slaying init.  */
837         if (!task_detached(p))
838                 p->exit_signal = SIGCHLD;
839
840         /* If we'd notified the old parent about this child's death,
841          * also notify the new parent.
842          */
843         if (!ptrace_reparented(p) &&
844             p->exit_state == EXIT_ZOMBIE &&
845             !task_detached(p) && thread_group_empty(p))
846                 do_notify_parent(p, p->exit_signal);
847
848         kill_orphaned_pgrp(p, father);
849 }
850
851 /*
852  * When we die, we re-parent all our children.
853  * Try to give them to another thread in our thread
854  * group, and if no such member exists, give it to
855  * the child reaper process (ie "init") in our pid
856  * space.
857  */
858 static struct task_struct *find_new_reaper(struct task_struct *father)
859 {
860         struct pid_namespace *pid_ns = task_active_pid_ns(father);
861         struct task_struct *thread;
862
863         thread = father;
864         while_each_thread(father, thread) {
865                 if (thread->flags & PF_EXITING)
866                         continue;
867                 if (unlikely(pid_ns->child_reaper == father))
868                         pid_ns->child_reaper = thread;
869                 return thread;
870         }
871
872         if (unlikely(pid_ns->child_reaper == father)) {
873                 write_unlock_irq(&tasklist_lock);
874                 if (unlikely(pid_ns == &init_pid_ns))
875                         panic("Attempted to kill init!");
876
877                 zap_pid_ns_processes(pid_ns);
878                 write_lock_irq(&tasklist_lock);
879                 /*
880                  * We can not clear ->child_reaper or leave it alone.
881                  * There may by stealth EXIT_DEAD tasks on ->children,
882                  * forget_original_parent() must move them somewhere.
883                  */
884                 pid_ns->child_reaper = init_pid_ns.child_reaper;
885         }
886
887         return pid_ns->child_reaper;
888 }
889
890 static void forget_original_parent(struct task_struct *father)
891 {
892         struct task_struct *p, *n, *reaper;
893         LIST_HEAD(ptrace_dead);
894
895         write_lock_irq(&tasklist_lock);
896         reaper = find_new_reaper(father);
897         /*
898          * First clean up ptrace if we were using it.
899          */
900         ptrace_exit(father, &ptrace_dead);
901
902         list_for_each_entry_safe(p, n, &father->children, sibling) {
903                 p->real_parent = reaper;
904                 if (p->parent == father) {
905                         BUG_ON(p->ptrace);
906                         p->parent = p->real_parent;
907                 }
908                 reparent_thread(p, father);
909         }
910
911         write_unlock_irq(&tasklist_lock);
912         BUG_ON(!list_empty(&father->children));
913
914         ptrace_exit_finish(father, &ptrace_dead);
915 }
916
917 /*
918  * Send signals to all our closest relatives so that they know
919  * to properly mourn us..
920  */
921 static void exit_notify(struct task_struct *tsk, int group_dead)
922 {
923         int signal;
924         void *cookie;
925
926         /*
927          * This does two things:
928          *
929          * A.  Make init inherit all the child processes
930          * B.  Check to see if any process groups have become orphaned
931          *      as a result of our exiting, and if they have any stopped
932          *      jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
933          */
934         forget_original_parent(tsk);
935         exit_task_namespaces(tsk);
936
937         write_lock_irq(&tasklist_lock);
938         if (group_dead)
939                 kill_orphaned_pgrp(tsk->group_leader, NULL);
940
941         /* Let father know we died
942          *
943          * Thread signals are configurable, but you aren't going to use
944          * that to send signals to arbitary processes.
945          * That stops right now.
946          *
947          * If the parent exec id doesn't match the exec id we saved
948          * when we started then we know the parent has changed security
949          * domain.
950          *
951          * If our self_exec id doesn't match our parent_exec_id then
952          * we have changed execution domain as these two values started
953          * the same after a fork.
954          */
955         if (tsk->exit_signal != SIGCHLD && !task_detached(tsk) &&
956             (tsk->parent_exec_id != tsk->real_parent->self_exec_id ||
957              tsk->self_exec_id != tsk->parent_exec_id) &&
958             !capable(CAP_KILL))
959                 tsk->exit_signal = SIGCHLD;
960
961         signal = tracehook_notify_death(tsk, &cookie, group_dead);
962         if (signal >= 0)
963                 signal = do_notify_parent(tsk, signal);
964
965         tsk->exit_state = signal == DEATH_REAP ? EXIT_DEAD : EXIT_ZOMBIE;
966
967         /* mt-exec, de_thread() is waiting for us */
968         if (thread_group_leader(tsk) &&
969             tsk->signal->group_exit_task &&
970             tsk->signal->notify_count < 0)
971                 wake_up_process(tsk->signal->group_exit_task);
972
973         write_unlock_irq(&tasklist_lock);
974
975         tracehook_report_death(tsk, signal, cookie, group_dead);
976
977         /* If the process is dead, release it - nobody will wait for it */
978         if (signal == DEATH_REAP)
979                 release_task(tsk);
980 }
981
982 #ifdef CONFIG_DEBUG_STACK_USAGE
983 static void check_stack_usage(void)
984 {
985         static DEFINE_SPINLOCK(low_water_lock);
986         static int lowest_to_date = THREAD_SIZE;
987         unsigned long *n = end_of_stack(current);
988         unsigned long free;
989
990         while (*n == 0)
991                 n++;
992         free = (unsigned long)n - (unsigned long)end_of_stack(current);
993
994         if (free >= lowest_to_date)
995                 return;
996
997         spin_lock(&low_water_lock);
998         if (free < lowest_to_date) {
999                 printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
1000                                 "left\n",
1001                                 current->comm, free);
1002                 lowest_to_date = free;
1003         }
1004         spin_unlock(&low_water_lock);
1005 }
1006 #else
1007 static inline void check_stack_usage(void) {}
1008 #endif
1009
1010 NORET_TYPE void do_exit(long code)
1011 {
1012         struct task_struct *tsk = current;
1013         int group_dead;
1014
1015         profile_task_exit(tsk);
1016
1017         WARN_ON(atomic_read(&tsk->fs_excl));
1018
1019         if (unlikely(in_interrupt()))
1020                 panic("Aiee, killing interrupt handler!");
1021         if (unlikely(!tsk->pid))
1022                 panic("Attempted to kill the idle task!");
1023
1024         tracehook_report_exit(&code);
1025
1026         /*
1027          * We're taking recursive faults here in do_exit. Safest is to just
1028          * leave this task alone and wait for reboot.
1029          */
1030         if (unlikely(tsk->flags & PF_EXITING)) {
1031                 printk(KERN_ALERT
1032                         "Fixing recursive fault but reboot is needed!\n");
1033                 /*
1034                  * We can do this unlocked here. The futex code uses
1035                  * this flag just to verify whether the pi state
1036                  * cleanup has been done or not. In the worst case it
1037                  * loops once more. We pretend that the cleanup was
1038                  * done as there is no way to return. Either the
1039                  * OWNER_DIED bit is set by now or we push the blocked
1040                  * task into the wait for ever nirwana as well.
1041                  */
1042                 tsk->flags |= PF_EXITPIDONE;
1043                 if (tsk->io_context)
1044                         exit_io_context();
1045                 set_current_state(TASK_UNINTERRUPTIBLE);
1046                 schedule();
1047         }
1048
1049         exit_signals(tsk);  /* sets PF_EXITING */
1050         /*
1051          * tsk->flags are checked in the futex code to protect against
1052          * an exiting task cleaning up the robust pi futexes.
1053          */
1054         smp_mb();
1055         spin_unlock_wait(&tsk->pi_lock);
1056
1057         if (unlikely(in_atomic()))
1058                 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
1059                                 current->comm, task_pid_nr(current),
1060                                 preempt_count());
1061
1062         acct_update_integrals(tsk);
1063         if (tsk->mm) {
1064                 update_hiwater_rss(tsk->mm);
1065                 update_hiwater_vm(tsk->mm);
1066         }
1067         group_dead = atomic_dec_and_test(&tsk->signal->live);
1068         if (group_dead) {
1069                 hrtimer_cancel(&tsk->signal->real_timer);
1070                 exit_itimers(tsk->signal);
1071         }
1072         acct_collect(code, group_dead);
1073         if (group_dead)
1074                 tty_audit_exit();
1075         if (unlikely(tsk->audit_context))
1076                 audit_free(tsk);
1077
1078         tsk->exit_code = code;
1079         taskstats_exit(tsk, group_dead);
1080
1081         exit_mm(tsk);
1082
1083         if (group_dead)
1084                 acct_process();
1085         trace_sched_process_exit(tsk);
1086
1087         exit_sem(tsk);
1088         exit_files(tsk);
1089         exit_fs(tsk);
1090         check_stack_usage();
1091         exit_thread();
1092         cgroup_exit(tsk, 1);
1093
1094         if (group_dead && tsk->signal->leader)
1095                 disassociate_ctty(1);
1096
1097         module_put(task_thread_info(tsk)->exec_domain->module);
1098         if (tsk->binfmt)
1099                 module_put(tsk->binfmt->module);
1100
1101         proc_exit_connector(tsk);
1102         exit_notify(tsk, group_dead);
1103 #ifdef CONFIG_NUMA
1104         mpol_put(tsk->mempolicy);
1105         tsk->mempolicy = NULL;
1106 #endif
1107 #ifdef CONFIG_FUTEX
1108         if (unlikely(!list_empty(&tsk->pi_state_list)))
1109                 exit_pi_state_list(tsk);
1110         if (unlikely(current->pi_state_cache))
1111                 kfree(current->pi_state_cache);
1112 #endif
1113         /*
1114          * Make sure we are holding no locks:
1115          */
1116         debug_check_no_locks_held(tsk);
1117         /*
1118          * We can do this unlocked here. The futex code uses this flag
1119          * just to verify whether the pi state cleanup has been done
1120          * or not. In the worst case it loops once more.
1121          */
1122         tsk->flags |= PF_EXITPIDONE;
1123
1124         if (tsk->io_context)
1125                 exit_io_context();
1126
1127         if (tsk->splice_pipe)
1128                 __free_pipe_info(tsk->splice_pipe);
1129
1130         preempt_disable();
1131         /* causes final put_task_struct in finish_task_switch(). */
1132         tsk->state = TASK_DEAD;
1133         schedule();
1134         BUG();
1135         /* Avoid "noreturn function does return".  */
1136         for (;;)
1137                 cpu_relax();    /* For when BUG is null */
1138 }
1139
1140 EXPORT_SYMBOL_GPL(do_exit);
1141
1142 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
1143 {
1144         if (comp)
1145                 complete(comp);
1146
1147         do_exit(code);
1148 }
1149
1150 EXPORT_SYMBOL(complete_and_exit);
1151
1152 asmlinkage long sys_exit(int error_code)
1153 {
1154         do_exit((error_code&0xff)<<8);
1155 }
1156
1157 /*
1158  * Take down every thread in the group.  This is called by fatal signals
1159  * as well as by sys_exit_group (below).
1160  */
1161 NORET_TYPE void
1162 do_group_exit(int exit_code)
1163 {
1164         struct signal_struct *sig = current->signal;
1165
1166         BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1167
1168         if (signal_group_exit(sig))
1169                 exit_code = sig->group_exit_code;
1170         else if (!thread_group_empty(current)) {
1171                 struct sighand_struct *const sighand = current->sighand;
1172                 spin_lock_irq(&sighand->siglock);
1173                 if (signal_group_exit(sig))
1174                         /* Another thread got here before we took the lock.  */
1175                         exit_code = sig->group_exit_code;
1176                 else {
1177                         sig->group_exit_code = exit_code;
1178                         sig->flags = SIGNAL_GROUP_EXIT;
1179                         zap_other_threads(current);
1180                 }
1181                 spin_unlock_irq(&sighand->siglock);
1182         }
1183
1184         do_exit(exit_code);
1185         /* NOTREACHED */
1186 }
1187
1188 /*
1189  * this kills every thread in the thread group. Note that any externally
1190  * wait4()-ing process will get the correct exit code - even if this
1191  * thread is not the thread group leader.
1192  */
1193 asmlinkage void sys_exit_group(int error_code)
1194 {
1195         do_group_exit((error_code & 0xff) << 8);
1196 }
1197
1198 static struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1199 {
1200         struct pid *pid = NULL;
1201         if (type == PIDTYPE_PID)
1202                 pid = task->pids[type].pid;
1203         else if (type < PIDTYPE_MAX)
1204                 pid = task->group_leader->pids[type].pid;
1205         return pid;
1206 }
1207
1208 static int eligible_child(enum pid_type type, struct pid *pid, int options,
1209                           struct task_struct *p)
1210 {
1211         int err;
1212
1213         if (type < PIDTYPE_MAX) {
1214                 if (task_pid_type(p, type) != pid)
1215                         return 0;
1216         }
1217
1218         /* Wait for all children (clone and not) if __WALL is set;
1219          * otherwise, wait for clone children *only* if __WCLONE is
1220          * set; otherwise, wait for non-clone children *only*.  (Note:
1221          * A "clone" child here is one that reports to its parent
1222          * using a signal other than SIGCHLD.) */
1223         if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0))
1224             && !(options & __WALL))
1225                 return 0;
1226
1227         err = security_task_wait(p);
1228         if (err)
1229                 return err;
1230
1231         return 1;
1232 }
1233
1234 static int wait_noreap_copyout(struct task_struct *p, pid_t pid, uid_t uid,
1235                                int why, int status,
1236                                struct siginfo __user *infop,
1237                                struct rusage __user *rusagep)
1238 {
1239         int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0;
1240
1241         put_task_struct(p);
1242         if (!retval)
1243                 retval = put_user(SIGCHLD, &infop->si_signo);
1244         if (!retval)
1245                 retval = put_user(0, &infop->si_errno);
1246         if (!retval)
1247                 retval = put_user((short)why, &infop->si_code);
1248         if (!retval)
1249                 retval = put_user(pid, &infop->si_pid);
1250         if (!retval)
1251                 retval = put_user(uid, &infop->si_uid);
1252         if (!retval)
1253                 retval = put_user(status, &infop->si_status);
1254         if (!retval)
1255                 retval = pid;
1256         return retval;
1257 }
1258
1259 /*
1260  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1261  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1262  * the lock and this task is uninteresting.  If we return nonzero, we have
1263  * released the lock and the system call should return.
1264  */
1265 static int wait_task_zombie(struct task_struct *p, int options,
1266                             struct siginfo __user *infop,
1267                             int __user *stat_addr, struct rusage __user *ru)
1268 {
1269         unsigned long state;
1270         int retval, status, traced;
1271         pid_t pid = task_pid_vnr(p);
1272         uid_t uid = __task_cred(p)->uid;
1273
1274         if (!likely(options & WEXITED))
1275                 return 0;
1276
1277         if (unlikely(options & WNOWAIT)) {
1278                 int exit_code = p->exit_code;
1279                 int why, status;
1280
1281                 get_task_struct(p);
1282                 read_unlock(&tasklist_lock);
1283                 if ((exit_code & 0x7f) == 0) {
1284                         why = CLD_EXITED;
1285                         status = exit_code >> 8;
1286                 } else {
1287                         why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1288                         status = exit_code & 0x7f;
1289                 }
1290                 return wait_noreap_copyout(p, pid, uid, why,
1291                                            status, infop, ru);
1292         }
1293
1294         /*
1295          * Try to move the task's state to DEAD
1296          * only one thread is allowed to do this:
1297          */
1298         state = xchg(&p->exit_state, EXIT_DEAD);
1299         if (state != EXIT_ZOMBIE) {
1300                 BUG_ON(state != EXIT_DEAD);
1301                 return 0;
1302         }
1303
1304         traced = ptrace_reparented(p);
1305
1306         if (likely(!traced)) {
1307                 struct signal_struct *psig;
1308                 struct signal_struct *sig;
1309                 struct task_cputime cputime;
1310
1311                 /*
1312                  * The resource counters for the group leader are in its
1313                  * own task_struct.  Those for dead threads in the group
1314                  * are in its signal_struct, as are those for the child
1315                  * processes it has previously reaped.  All these
1316                  * accumulate in the parent's signal_struct c* fields.
1317                  *
1318                  * We don't bother to take a lock here to protect these
1319                  * p->signal fields, because they are only touched by
1320                  * __exit_signal, which runs with tasklist_lock
1321                  * write-locked anyway, and so is excluded here.  We do
1322                  * need to protect the access to p->parent->signal fields,
1323                  * as other threads in the parent group can be right
1324                  * here reaping other children at the same time.
1325                  *
1326                  * We use thread_group_cputime() to get times for the thread
1327                  * group, which consolidates times for all threads in the
1328                  * group including the group leader.
1329                  */
1330                 spin_lock_irq(&p->parent->sighand->siglock);
1331                 psig = p->parent->signal;
1332                 sig = p->signal;
1333                 thread_group_cputime(p, &cputime);
1334                 psig->cutime =
1335                         cputime_add(psig->cutime,
1336                         cputime_add(cputime.utime,
1337                                     sig->cutime));
1338                 psig->cstime =
1339                         cputime_add(psig->cstime,
1340                         cputime_add(cputime.stime,
1341                                     sig->cstime));
1342                 psig->cgtime =
1343                         cputime_add(psig->cgtime,
1344                         cputime_add(p->gtime,
1345                         cputime_add(sig->gtime,
1346                                     sig->cgtime)));
1347                 psig->cmin_flt +=
1348                         p->min_flt + sig->min_flt + sig->cmin_flt;
1349                 psig->cmaj_flt +=
1350                         p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1351                 psig->cnvcsw +=
1352                         p->nvcsw + sig->nvcsw + sig->cnvcsw;
1353                 psig->cnivcsw +=
1354                         p->nivcsw + sig->nivcsw + sig->cnivcsw;
1355                 psig->cinblock +=
1356                         task_io_get_inblock(p) +
1357                         sig->inblock + sig->cinblock;
1358                 psig->coublock +=
1359                         task_io_get_oublock(p) +
1360                         sig->oublock + sig->coublock;
1361                 task_io_accounting_add(&psig->ioac, &p->ioac);
1362                 task_io_accounting_add(&psig->ioac, &sig->ioac);
1363                 spin_unlock_irq(&p->parent->sighand->siglock);
1364         }
1365
1366         /*
1367          * Now we are sure this task is interesting, and no other
1368          * thread can reap it because we set its state to EXIT_DEAD.
1369          */
1370         read_unlock(&tasklist_lock);
1371
1372         /*
1373          * Flush inherited counters to the parent - before the parent
1374          * gets woken up by child-exit notifications.
1375          */
1376         perf_counter_exit_task(p);
1377
1378         retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1379         status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1380                 ? p->signal->group_exit_code : p->exit_code;
1381         if (!retval && stat_addr)
1382                 retval = put_user(status, stat_addr);
1383         if (!retval && infop)
1384                 retval = put_user(SIGCHLD, &infop->si_signo);
1385         if (!retval && infop)
1386                 retval = put_user(0, &infop->si_errno);
1387         if (!retval && infop) {
1388                 int why;
1389
1390                 if ((status & 0x7f) == 0) {
1391                         why = CLD_EXITED;
1392                         status >>= 8;
1393                 } else {
1394                         why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1395                         status &= 0x7f;
1396                 }
1397                 retval = put_user((short)why, &infop->si_code);
1398                 if (!retval)
1399                         retval = put_user(status, &infop->si_status);
1400         }
1401         if (!retval && infop)
1402                 retval = put_user(pid, &infop->si_pid);
1403         if (!retval && infop)
1404                 retval = put_user(uid, &infop->si_uid);
1405         if (!retval)
1406                 retval = pid;
1407
1408         if (traced) {
1409                 write_lock_irq(&tasklist_lock);
1410                 /* We dropped tasklist, ptracer could die and untrace */
1411                 ptrace_unlink(p);
1412                 /*
1413                  * If this is not a detached task, notify the parent.
1414                  * If it's still not detached after that, don't release
1415                  * it now.
1416                  */
1417                 if (!task_detached(p)) {
1418                         do_notify_parent(p, p->exit_signal);
1419                         if (!task_detached(p)) {
1420                                 p->exit_state = EXIT_ZOMBIE;
1421                                 p = NULL;
1422                         }
1423                 }
1424                 write_unlock_irq(&tasklist_lock);
1425         }
1426         if (p != NULL)
1427                 release_task(p);
1428
1429         return retval;
1430 }
1431
1432 /*
1433  * Handle sys_wait4 work for one task in state TASK_STOPPED.  We hold
1434  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1435  * the lock and this task is uninteresting.  If we return nonzero, we have
1436  * released the lock and the system call should return.
1437  */
1438 static int wait_task_stopped(int ptrace, struct task_struct *p,
1439                              int options, struct siginfo __user *infop,
1440                              int __user *stat_addr, struct rusage __user *ru)
1441 {
1442         int retval, exit_code, why;
1443         uid_t uid = 0; /* unneeded, required by compiler */
1444         pid_t pid;
1445
1446         if (!(options & WUNTRACED))
1447                 return 0;
1448
1449         exit_code = 0;
1450         spin_lock_irq(&p->sighand->siglock);
1451
1452         if (unlikely(!task_is_stopped_or_traced(p)))
1453                 goto unlock_sig;
1454
1455         if (!ptrace && p->signal->group_stop_count > 0)
1456                 /*
1457                  * A group stop is in progress and this is the group leader.
1458                  * We won't report until all threads have stopped.
1459                  */
1460                 goto unlock_sig;
1461
1462         exit_code = p->exit_code;
1463         if (!exit_code)
1464                 goto unlock_sig;
1465
1466         if (!unlikely(options & WNOWAIT))
1467                 p->exit_code = 0;
1468
1469         /* don't need the RCU readlock here as we're holding a spinlock */
1470         uid = __task_cred(p)->uid;
1471 unlock_sig:
1472         spin_unlock_irq(&p->sighand->siglock);
1473         if (!exit_code)
1474                 return 0;
1475
1476         /*
1477          * Now we are pretty sure this task is interesting.
1478          * Make sure it doesn't get reaped out from under us while we
1479          * give up the lock and then examine it below.  We don't want to
1480          * keep holding onto the tasklist_lock while we call getrusage and
1481          * possibly take page faults for user memory.
1482          */
1483         get_task_struct(p);
1484         pid = task_pid_vnr(p);
1485         why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1486         read_unlock(&tasklist_lock);
1487
1488         if (unlikely(options & WNOWAIT))
1489                 return wait_noreap_copyout(p, pid, uid,
1490                                            why, exit_code,
1491                                            infop, ru);
1492
1493         retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1494         if (!retval && stat_addr)
1495                 retval = put_user((exit_code << 8) | 0x7f, stat_addr);
1496         if (!retval && infop)
1497                 retval = put_user(SIGCHLD, &infop->si_signo);
1498         if (!retval && infop)
1499                 retval = put_user(0, &infop->si_errno);
1500         if (!retval && infop)
1501                 retval = put_user((short)why, &infop->si_code);
1502         if (!retval && infop)
1503                 retval = put_user(exit_code, &infop->si_status);
1504         if (!retval && infop)
1505                 retval = put_user(pid, &infop->si_pid);
1506         if (!retval && infop)
1507                 retval = put_user(uid, &infop->si_uid);
1508         if (!retval)
1509                 retval = pid;
1510         put_task_struct(p);
1511
1512         BUG_ON(!retval);
1513         return retval;
1514 }
1515
1516 /*
1517  * Handle do_wait work for one task in a live, non-stopped state.
1518  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1519  * the lock and this task is uninteresting.  If we return nonzero, we have
1520  * released the lock and the system call should return.
1521  */
1522 static int wait_task_continued(struct task_struct *p, int options,
1523                                struct siginfo __user *infop,
1524                                int __user *stat_addr, struct rusage __user *ru)
1525 {
1526         int retval;
1527         pid_t pid;
1528         uid_t uid;
1529
1530         if (!unlikely(options & WCONTINUED))
1531                 return 0;
1532
1533         if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1534                 return 0;
1535
1536         spin_lock_irq(&p->sighand->siglock);
1537         /* Re-check with the lock held.  */
1538         if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1539                 spin_unlock_irq(&p->sighand->siglock);
1540                 return 0;
1541         }
1542         if (!unlikely(options & WNOWAIT))
1543                 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1544         uid = __task_cred(p)->uid;
1545         spin_unlock_irq(&p->sighand->siglock);
1546
1547         pid = task_pid_vnr(p);
1548         get_task_struct(p);
1549         read_unlock(&tasklist_lock);
1550
1551         if (!infop) {
1552                 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1553                 put_task_struct(p);
1554                 if (!retval && stat_addr)
1555                         retval = put_user(0xffff, stat_addr);
1556                 if (!retval)
1557                         retval = pid;
1558         } else {
1559                 retval = wait_noreap_copyout(p, pid, uid,
1560                                              CLD_CONTINUED, SIGCONT,
1561                                              infop, ru);
1562                 BUG_ON(retval == 0);
1563         }
1564
1565         return retval;
1566 }
1567
1568 /*
1569  * Consider @p for a wait by @parent.
1570  *
1571  * -ECHILD should be in *@notask_error before the first call.
1572  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1573  * Returns zero if the search for a child should continue;
1574  * then *@notask_error is 0 if @p is an eligible child,
1575  * or another error from security_task_wait(), or still -ECHILD.
1576  */
1577 static int wait_consider_task(struct task_struct *parent, int ptrace,
1578                               struct task_struct *p, int *notask_error,
1579                               enum pid_type type, struct pid *pid, int options,
1580                               struct siginfo __user *infop,
1581                               int __user *stat_addr, struct rusage __user *ru)
1582 {
1583         int ret = eligible_child(type, pid, options, p);
1584         if (!ret)
1585                 return ret;
1586
1587         if (unlikely(ret < 0)) {
1588                 /*
1589                  * If we have not yet seen any eligible child,
1590                  * then let this error code replace -ECHILD.
1591                  * A permission error will give the user a clue
1592                  * to look for security policy problems, rather
1593                  * than for mysterious wait bugs.
1594                  */
1595                 if (*notask_error)
1596                         *notask_error = ret;
1597         }
1598
1599         if (likely(!ptrace) && unlikely(p->ptrace)) {
1600                 /*
1601                  * This child is hidden by ptrace.
1602                  * We aren't allowed to see it now, but eventually we will.
1603                  */
1604                 *notask_error = 0;
1605                 return 0;
1606         }
1607
1608         if (p->exit_state == EXIT_DEAD)
1609                 return 0;
1610
1611         /*
1612          * We don't reap group leaders with subthreads.
1613          */
1614         if (p->exit_state == EXIT_ZOMBIE && !delay_group_leader(p))
1615                 return wait_task_zombie(p, options, infop, stat_addr, ru);
1616
1617         /*
1618          * It's stopped or running now, so it might
1619          * later continue, exit, or stop again.
1620          */
1621         *notask_error = 0;
1622
1623         if (task_is_stopped_or_traced(p))
1624                 return wait_task_stopped(ptrace, p, options,
1625                                          infop, stat_addr, ru);
1626
1627         return wait_task_continued(p, options, infop, stat_addr, ru);
1628 }
1629
1630 /*
1631  * Do the work of do_wait() for one thread in the group, @tsk.
1632  *
1633  * -ECHILD should be in *@notask_error before the first call.
1634  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1635  * Returns zero if the search for a child should continue; then
1636  * *@notask_error is 0 if there were any eligible children,
1637  * or another error from security_task_wait(), or still -ECHILD.
1638  */
1639 static int do_wait_thread(struct task_struct *tsk, int *notask_error,
1640                           enum pid_type type, struct pid *pid, int options,
1641                           struct siginfo __user *infop, int __user *stat_addr,
1642                           struct rusage __user *ru)
1643 {
1644         struct task_struct *p;
1645
1646         list_for_each_entry(p, &tsk->children, sibling) {
1647                 /*
1648                  * Do not consider detached threads.
1649                  */
1650                 if (!task_detached(p)) {
1651                         int ret = wait_consider_task(tsk, 0, p, notask_error,
1652                                                      type, pid, options,
1653                                                      infop, stat_addr, ru);
1654                         if (ret)
1655                                 return ret;
1656                 }
1657         }
1658
1659         return 0;
1660 }
1661
1662 static int ptrace_do_wait(struct task_struct *tsk, int *notask_error,
1663                           enum pid_type type, struct pid *pid, int options,
1664                           struct siginfo __user *infop, int __user *stat_addr,
1665                           struct rusage __user *ru)
1666 {
1667         struct task_struct *p;
1668
1669         /*
1670          * Traditionally we see ptrace'd stopped tasks regardless of options.
1671          */
1672         options |= WUNTRACED;
1673
1674         list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1675                 int ret = wait_consider_task(tsk, 1, p, notask_error,
1676                                              type, pid, options,
1677                                              infop, stat_addr, ru);
1678                 if (ret)
1679                         return ret;
1680         }
1681
1682         return 0;
1683 }
1684
1685 static long do_wait(enum pid_type type, struct pid *pid, int options,
1686                     struct siginfo __user *infop, int __user *stat_addr,
1687                     struct rusage __user *ru)
1688 {
1689         DECLARE_WAITQUEUE(wait, current);
1690         struct task_struct *tsk;
1691         int retval;
1692
1693         trace_sched_process_wait(pid);
1694
1695         add_wait_queue(&current->signal->wait_chldexit,&wait);
1696 repeat:
1697         /*
1698          * If there is nothing that can match our critiera just get out.
1699          * We will clear @retval to zero if we see any child that might later
1700          * match our criteria, even if we are not able to reap it yet.
1701          */
1702         retval = -ECHILD;
1703         if ((type < PIDTYPE_MAX) && (!pid || hlist_empty(&pid->tasks[type])))
1704                 goto end;
1705
1706         current->state = TASK_INTERRUPTIBLE;
1707         read_lock(&tasklist_lock);
1708         tsk = current;
1709         do {
1710                 int tsk_result = do_wait_thread(tsk, &retval,
1711                                                 type, pid, options,
1712                                                 infop, stat_addr, ru);
1713                 if (!tsk_result)
1714                         tsk_result = ptrace_do_wait(tsk, &retval,
1715                                                     type, pid, options,
1716                                                     infop, stat_addr, ru);
1717                 if (tsk_result) {
1718                         /*
1719                          * tasklist_lock is unlocked and we have a final result.
1720                          */
1721                         retval = tsk_result;
1722                         goto end;
1723                 }
1724
1725                 if (options & __WNOTHREAD)
1726                         break;
1727                 tsk = next_thread(tsk);
1728                 BUG_ON(tsk->signal != current->signal);
1729         } while (tsk != current);
1730         read_unlock(&tasklist_lock);
1731
1732         if (!retval && !(options & WNOHANG)) {
1733                 retval = -ERESTARTSYS;
1734                 if (!signal_pending(current)) {
1735                         schedule();
1736                         goto repeat;
1737                 }
1738         }
1739
1740 end:
1741         current->state = TASK_RUNNING;
1742         remove_wait_queue(&current->signal->wait_chldexit,&wait);
1743         if (infop) {
1744                 if (retval > 0)
1745                         retval = 0;
1746                 else {
1747                         /*
1748                          * For a WNOHANG return, clear out all the fields
1749                          * we would set so the user can easily tell the
1750                          * difference.
1751                          */
1752                         if (!retval)
1753                                 retval = put_user(0, &infop->si_signo);
1754                         if (!retval)
1755                                 retval = put_user(0, &infop->si_errno);
1756                         if (!retval)
1757                                 retval = put_user(0, &infop->si_code);
1758                         if (!retval)
1759                                 retval = put_user(0, &infop->si_pid);
1760                         if (!retval)
1761                                 retval = put_user(0, &infop->si_uid);
1762                         if (!retval)
1763                                 retval = put_user(0, &infop->si_status);
1764                 }
1765         }
1766         return retval;
1767 }
1768
1769 asmlinkage long sys_waitid(int which, pid_t upid,
1770                            struct siginfo __user *infop, int options,
1771                            struct rusage __user *ru)
1772 {
1773         struct pid *pid = NULL;
1774         enum pid_type type;
1775         long ret;
1776
1777         if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1778                 return -EINVAL;
1779         if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1780                 return -EINVAL;
1781
1782         switch (which) {
1783         case P_ALL:
1784                 type = PIDTYPE_MAX;
1785                 break;
1786         case P_PID:
1787                 type = PIDTYPE_PID;
1788                 if (upid <= 0)
1789                         return -EINVAL;
1790                 break;
1791         case P_PGID:
1792                 type = PIDTYPE_PGID;
1793                 if (upid <= 0)
1794                         return -EINVAL;
1795                 break;
1796         default:
1797                 return -EINVAL;
1798         }
1799
1800         if (type < PIDTYPE_MAX)
1801                 pid = find_get_pid(upid);
1802         ret = do_wait(type, pid, options, infop, NULL, ru);
1803         put_pid(pid);
1804
1805         /* avoid REGPARM breakage on x86: */
1806         asmlinkage_protect(5, ret, which, upid, infop, options, ru);
1807         return ret;
1808 }
1809
1810 asmlinkage long sys_wait4(pid_t upid, int __user *stat_addr,
1811                           int options, struct rusage __user *ru)
1812 {
1813         struct pid *pid = NULL;
1814         enum pid_type type;
1815         long ret;
1816
1817         if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1818                         __WNOTHREAD|__WCLONE|__WALL))
1819                 return -EINVAL;
1820
1821         if (upid == -1)
1822                 type = PIDTYPE_MAX;
1823         else if (upid < 0) {
1824                 type = PIDTYPE_PGID;
1825                 pid = find_get_pid(-upid);
1826         } else if (upid == 0) {
1827                 type = PIDTYPE_PGID;
1828                 pid = get_pid(task_pgrp(current));
1829         } else /* upid > 0 */ {
1830                 type = PIDTYPE_PID;
1831                 pid = find_get_pid(upid);
1832         }
1833
1834         ret = do_wait(type, pid, options | WEXITED, NULL, stat_addr, ru);
1835         put_pid(pid);
1836
1837         /* avoid REGPARM breakage on x86: */
1838         asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
1839         return ret;
1840 }
1841
1842 #ifdef __ARCH_WANT_SYS_WAITPID
1843
1844 /*
1845  * sys_waitpid() remains for compatibility. waitpid() should be
1846  * implemented by calling sys_wait4() from libc.a.
1847  */
1848 asmlinkage long sys_waitpid(pid_t pid, int __user *stat_addr, int options)
1849 {
1850         return sys_wait4(pid, stat_addr, options, NULL);
1851 }
1852
1853 #endif