ptrace: introduce task_detached() helper
[safe/jmp/linux-2.6] / kernel / exit.c
1 /*
2  *  linux/kernel/exit.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/mnt_namespace.h>
16 #include <linux/key.h>
17 #include <linux/security.h>
18 #include <linux/cpu.h>
19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h>
22 #include <linux/binfmts.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pid_namespace.h>
25 #include <linux/ptrace.h>
26 #include <linux/profile.h>
27 #include <linux/mount.h>
28 #include <linux/proc_fs.h>
29 #include <linux/kthread.h>
30 #include <linux/mempolicy.h>
31 #include <linux/taskstats_kern.h>
32 #include <linux/delayacct.h>
33 #include <linux/freezer.h>
34 #include <linux/cgroup.h>
35 #include <linux/syscalls.h>
36 #include <linux/signal.h>
37 #include <linux/posix-timers.h>
38 #include <linux/cn_proc.h>
39 #include <linux/mutex.h>
40 #include <linux/futex.h>
41 #include <linux/compat.h>
42 #include <linux/pipe_fs_i.h>
43 #include <linux/audit.h> /* for audit_free() */
44 #include <linux/resource.h>
45 #include <linux/blkdev.h>
46 #include <linux/task_io_accounting_ops.h>
47
48 #include <asm/uaccess.h>
49 #include <asm/unistd.h>
50 #include <asm/pgtable.h>
51 #include <asm/mmu_context.h>
52
53 static void exit_mm(struct task_struct * tsk);
54
55 static inline int task_detached(struct task_struct *p)
56 {
57         return p->exit_signal == -1;
58 }
59
60 static void __unhash_process(struct task_struct *p)
61 {
62         nr_threads--;
63         detach_pid(p, PIDTYPE_PID);
64         if (thread_group_leader(p)) {
65                 detach_pid(p, PIDTYPE_PGID);
66                 detach_pid(p, PIDTYPE_SID);
67
68                 list_del_rcu(&p->tasks);
69                 __get_cpu_var(process_counts)--;
70         }
71         list_del_rcu(&p->thread_group);
72         remove_parent(p);
73 }
74
75 /*
76  * This function expects the tasklist_lock write-locked.
77  */
78 static void __exit_signal(struct task_struct *tsk)
79 {
80         struct signal_struct *sig = tsk->signal;
81         struct sighand_struct *sighand;
82
83         BUG_ON(!sig);
84         BUG_ON(!atomic_read(&sig->count));
85
86         rcu_read_lock();
87         sighand = rcu_dereference(tsk->sighand);
88         spin_lock(&sighand->siglock);
89
90         posix_cpu_timers_exit(tsk);
91         if (atomic_dec_and_test(&sig->count))
92                 posix_cpu_timers_exit_group(tsk);
93         else {
94                 /*
95                  * If there is any task waiting for the group exit
96                  * then notify it:
97                  */
98                 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count)
99                         wake_up_process(sig->group_exit_task);
100
101                 if (tsk == sig->curr_target)
102                         sig->curr_target = next_thread(tsk);
103                 /*
104                  * Accumulate here the counters for all threads but the
105                  * group leader as they die, so they can be added into
106                  * the process-wide totals when those are taken.
107                  * The group leader stays around as a zombie as long
108                  * as there are other threads.  When it gets reaped,
109                  * the exit.c code will add its counts into these totals.
110                  * We won't ever get here for the group leader, since it
111                  * will have been the last reference on the signal_struct.
112                  */
113                 sig->utime = cputime_add(sig->utime, tsk->utime);
114                 sig->stime = cputime_add(sig->stime, tsk->stime);
115                 sig->gtime = cputime_add(sig->gtime, tsk->gtime);
116                 sig->min_flt += tsk->min_flt;
117                 sig->maj_flt += tsk->maj_flt;
118                 sig->nvcsw += tsk->nvcsw;
119                 sig->nivcsw += tsk->nivcsw;
120                 sig->inblock += task_io_get_inblock(tsk);
121                 sig->oublock += task_io_get_oublock(tsk);
122                 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
123                 sig = NULL; /* Marker for below. */
124         }
125
126         __unhash_process(tsk);
127
128         tsk->signal = NULL;
129         tsk->sighand = NULL;
130         spin_unlock(&sighand->siglock);
131         rcu_read_unlock();
132
133         __cleanup_sighand(sighand);
134         clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
135         flush_sigqueue(&tsk->pending);
136         if (sig) {
137                 flush_sigqueue(&sig->shared_pending);
138                 taskstats_tgid_free(sig);
139                 __cleanup_signal(sig);
140         }
141 }
142
143 static void delayed_put_task_struct(struct rcu_head *rhp)
144 {
145         put_task_struct(container_of(rhp, struct task_struct, rcu));
146 }
147
148 void release_task(struct task_struct * p)
149 {
150         struct task_struct *leader;
151         int zap_leader;
152 repeat:
153         atomic_dec(&p->user->processes);
154         proc_flush_task(p);
155         write_lock_irq(&tasklist_lock);
156         ptrace_unlink(p);
157         BUG_ON(!list_empty(&p->ptrace_list) || !list_empty(&p->ptrace_children));
158         __exit_signal(p);
159
160         /*
161          * If we are the last non-leader member of the thread
162          * group, and the leader is zombie, then notify the
163          * group leader's parent process. (if it wants notification.)
164          */
165         zap_leader = 0;
166         leader = p->group_leader;
167         if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
168                 BUG_ON(task_detached(leader));
169                 do_notify_parent(leader, leader->exit_signal);
170                 /*
171                  * If we were the last child thread and the leader has
172                  * exited already, and the leader's parent ignores SIGCHLD,
173                  * then we are the one who should release the leader.
174                  *
175                  * do_notify_parent() will have marked it self-reaping in
176                  * that case.
177                  */
178                 zap_leader = task_detached(leader);
179         }
180
181         write_unlock_irq(&tasklist_lock);
182         release_thread(p);
183         call_rcu(&p->rcu, delayed_put_task_struct);
184
185         p = leader;
186         if (unlikely(zap_leader))
187                 goto repeat;
188 }
189
190 /*
191  * This checks not only the pgrp, but falls back on the pid if no
192  * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
193  * without this...
194  *
195  * The caller must hold rcu lock or the tasklist lock.
196  */
197 struct pid *session_of_pgrp(struct pid *pgrp)
198 {
199         struct task_struct *p;
200         struct pid *sid = NULL;
201
202         p = pid_task(pgrp, PIDTYPE_PGID);
203         if (p == NULL)
204                 p = pid_task(pgrp, PIDTYPE_PID);
205         if (p != NULL)
206                 sid = task_session(p);
207
208         return sid;
209 }
210
211 /*
212  * Determine if a process group is "orphaned", according to the POSIX
213  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
214  * by terminal-generated stop signals.  Newly orphaned process groups are
215  * to receive a SIGHUP and a SIGCONT.
216  *
217  * "I ask you, have you ever known what it is to be an orphan?"
218  */
219 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
220 {
221         struct task_struct *p;
222
223         do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
224                 if ((p == ignored_task) ||
225                     (p->exit_state && thread_group_empty(p)) ||
226                     is_global_init(p->real_parent))
227                         continue;
228
229                 if (task_pgrp(p->real_parent) != pgrp &&
230                     task_session(p->real_parent) == task_session(p))
231                         return 0;
232         } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
233
234         return 1;
235 }
236
237 int is_current_pgrp_orphaned(void)
238 {
239         int retval;
240
241         read_lock(&tasklist_lock);
242         retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
243         read_unlock(&tasklist_lock);
244
245         return retval;
246 }
247
248 static int has_stopped_jobs(struct pid *pgrp)
249 {
250         int retval = 0;
251         struct task_struct *p;
252
253         do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
254                 if (!task_is_stopped(p))
255                         continue;
256                 retval = 1;
257                 break;
258         } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
259         return retval;
260 }
261
262 /*
263  * Check to see if any process groups have become orphaned as
264  * a result of our exiting, and if they have any stopped jobs,
265  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
266  */
267 static void
268 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
269 {
270         struct pid *pgrp = task_pgrp(tsk);
271         struct task_struct *ignored_task = tsk;
272
273         if (!parent)
274                  /* exit: our father is in a different pgrp than
275                   * we are and we were the only connection outside.
276                   */
277                 parent = tsk->real_parent;
278         else
279                 /* reparent: our child is in a different pgrp than
280                  * we are, and it was the only connection outside.
281                  */
282                 ignored_task = NULL;
283
284         if (task_pgrp(parent) != pgrp &&
285             task_session(parent) == task_session(tsk) &&
286             will_become_orphaned_pgrp(pgrp, ignored_task) &&
287             has_stopped_jobs(pgrp)) {
288                 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
289                 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
290         }
291 }
292
293 /**
294  * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
295  *
296  * If a kernel thread is launched as a result of a system call, or if
297  * it ever exits, it should generally reparent itself to kthreadd so it
298  * isn't in the way of other processes and is correctly cleaned up on exit.
299  *
300  * The various task state such as scheduling policy and priority may have
301  * been inherited from a user process, so we reset them to sane values here.
302  *
303  * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
304  */
305 static void reparent_to_kthreadd(void)
306 {
307         write_lock_irq(&tasklist_lock);
308
309         ptrace_unlink(current);
310         /* Reparent to init */
311         remove_parent(current);
312         current->real_parent = current->parent = kthreadd_task;
313         add_parent(current);
314
315         /* Set the exit signal to SIGCHLD so we signal init on exit */
316         current->exit_signal = SIGCHLD;
317
318         if (task_nice(current) < 0)
319                 set_user_nice(current, 0);
320         /* cpus_allowed? */
321         /* rt_priority? */
322         /* signals? */
323         security_task_reparent_to_init(current);
324         memcpy(current->signal->rlim, init_task.signal->rlim,
325                sizeof(current->signal->rlim));
326         atomic_inc(&(INIT_USER->__count));
327         write_unlock_irq(&tasklist_lock);
328         switch_uid(INIT_USER);
329 }
330
331 void __set_special_pids(struct pid *pid)
332 {
333         struct task_struct *curr = current->group_leader;
334         pid_t nr = pid_nr(pid);
335
336         if (task_session(curr) != pid) {
337                 detach_pid(curr, PIDTYPE_SID);
338                 attach_pid(curr, PIDTYPE_SID, pid);
339                 set_task_session(curr, nr);
340         }
341         if (task_pgrp(curr) != pid) {
342                 detach_pid(curr, PIDTYPE_PGID);
343                 attach_pid(curr, PIDTYPE_PGID, pid);
344                 set_task_pgrp(curr, nr);
345         }
346 }
347
348 static void set_special_pids(struct pid *pid)
349 {
350         write_lock_irq(&tasklist_lock);
351         __set_special_pids(pid);
352         write_unlock_irq(&tasklist_lock);
353 }
354
355 /*
356  * Let kernel threads use this to say that they
357  * allow a certain signal (since daemonize() will
358  * have disabled all of them by default).
359  */
360 int allow_signal(int sig)
361 {
362         if (!valid_signal(sig) || sig < 1)
363                 return -EINVAL;
364
365         spin_lock_irq(&current->sighand->siglock);
366         sigdelset(&current->blocked, sig);
367         if (!current->mm) {
368                 /* Kernel threads handle their own signals.
369                    Let the signal code know it'll be handled, so
370                    that they don't get converted to SIGKILL or
371                    just silently dropped */
372                 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
373         }
374         recalc_sigpending();
375         spin_unlock_irq(&current->sighand->siglock);
376         return 0;
377 }
378
379 EXPORT_SYMBOL(allow_signal);
380
381 int disallow_signal(int sig)
382 {
383         if (!valid_signal(sig) || sig < 1)
384                 return -EINVAL;
385
386         spin_lock_irq(&current->sighand->siglock);
387         current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
388         recalc_sigpending();
389         spin_unlock_irq(&current->sighand->siglock);
390         return 0;
391 }
392
393 EXPORT_SYMBOL(disallow_signal);
394
395 /*
396  *      Put all the gunge required to become a kernel thread without
397  *      attached user resources in one place where it belongs.
398  */
399
400 void daemonize(const char *name, ...)
401 {
402         va_list args;
403         struct fs_struct *fs;
404         sigset_t blocked;
405
406         va_start(args, name);
407         vsnprintf(current->comm, sizeof(current->comm), name, args);
408         va_end(args);
409
410         /*
411          * If we were started as result of loading a module, close all of the
412          * user space pages.  We don't need them, and if we didn't close them
413          * they would be locked into memory.
414          */
415         exit_mm(current);
416         /*
417          * We don't want to have TIF_FREEZE set if the system-wide hibernation
418          * or suspend transition begins right now.
419          */
420         current->flags |= PF_NOFREEZE;
421
422         if (current->nsproxy != &init_nsproxy) {
423                 get_nsproxy(&init_nsproxy);
424                 switch_task_namespaces(current, &init_nsproxy);
425         }
426         set_special_pids(&init_struct_pid);
427         proc_clear_tty(current);
428
429         /* Block and flush all signals */
430         sigfillset(&blocked);
431         sigprocmask(SIG_BLOCK, &blocked, NULL);
432         flush_signals(current);
433
434         /* Become as one with the init task */
435
436         exit_fs(current);       /* current->fs->count--; */
437         fs = init_task.fs;
438         current->fs = fs;
439         atomic_inc(&fs->count);
440
441         exit_files(current);
442         current->files = init_task.files;
443         atomic_inc(&current->files->count);
444
445         reparent_to_kthreadd();
446 }
447
448 EXPORT_SYMBOL(daemonize);
449
450 static void close_files(struct files_struct * files)
451 {
452         int i, j;
453         struct fdtable *fdt;
454
455         j = 0;
456
457         /*
458          * It is safe to dereference the fd table without RCU or
459          * ->file_lock because this is the last reference to the
460          * files structure.
461          */
462         fdt = files_fdtable(files);
463         for (;;) {
464                 unsigned long set;
465                 i = j * __NFDBITS;
466                 if (i >= fdt->max_fds)
467                         break;
468                 set = fdt->open_fds->fds_bits[j++];
469                 while (set) {
470                         if (set & 1) {
471                                 struct file * file = xchg(&fdt->fd[i], NULL);
472                                 if (file) {
473                                         filp_close(file, files);
474                                         cond_resched();
475                                 }
476                         }
477                         i++;
478                         set >>= 1;
479                 }
480         }
481 }
482
483 struct files_struct *get_files_struct(struct task_struct *task)
484 {
485         struct files_struct *files;
486
487         task_lock(task);
488         files = task->files;
489         if (files)
490                 atomic_inc(&files->count);
491         task_unlock(task);
492
493         return files;
494 }
495
496 void put_files_struct(struct files_struct *files)
497 {
498         struct fdtable *fdt;
499
500         if (atomic_dec_and_test(&files->count)) {
501                 close_files(files);
502                 /*
503                  * Free the fd and fdset arrays if we expanded them.
504                  * If the fdtable was embedded, pass files for freeing
505                  * at the end of the RCU grace period. Otherwise,
506                  * you can free files immediately.
507                  */
508                 fdt = files_fdtable(files);
509                 if (fdt != &files->fdtab)
510                         kmem_cache_free(files_cachep, files);
511                 free_fdtable(fdt);
512         }
513 }
514
515 void reset_files_struct(struct files_struct *files)
516 {
517         struct task_struct *tsk = current;
518         struct files_struct *old;
519
520         old = tsk->files;
521         task_lock(tsk);
522         tsk->files = files;
523         task_unlock(tsk);
524         put_files_struct(old);
525 }
526
527 void exit_files(struct task_struct *tsk)
528 {
529         struct files_struct * files = tsk->files;
530
531         if (files) {
532                 task_lock(tsk);
533                 tsk->files = NULL;
534                 task_unlock(tsk);
535                 put_files_struct(files);
536         }
537 }
538
539 void put_fs_struct(struct fs_struct *fs)
540 {
541         /* No need to hold fs->lock if we are killing it */
542         if (atomic_dec_and_test(&fs->count)) {
543                 path_put(&fs->root);
544                 path_put(&fs->pwd);
545                 if (fs->altroot.dentry)
546                         path_put(&fs->altroot);
547                 kmem_cache_free(fs_cachep, fs);
548         }
549 }
550
551 void exit_fs(struct task_struct *tsk)
552 {
553         struct fs_struct * fs = tsk->fs;
554
555         if (fs) {
556                 task_lock(tsk);
557                 tsk->fs = NULL;
558                 task_unlock(tsk);
559                 put_fs_struct(fs);
560         }
561 }
562
563 EXPORT_SYMBOL_GPL(exit_fs);
564
565 #ifdef CONFIG_MM_OWNER
566 /*
567  * Task p is exiting and it owned mm, lets find a new owner for it
568  */
569 static inline int
570 mm_need_new_owner(struct mm_struct *mm, struct task_struct *p)
571 {
572         /*
573          * If there are other users of the mm and the owner (us) is exiting
574          * we need to find a new owner to take on the responsibility.
575          */
576         if (!mm)
577                 return 0;
578         if (atomic_read(&mm->mm_users) <= 1)
579                 return 0;
580         if (mm->owner != p)
581                 return 0;
582         return 1;
583 }
584
585 void mm_update_next_owner(struct mm_struct *mm)
586 {
587         struct task_struct *c, *g, *p = current;
588
589 retry:
590         if (!mm_need_new_owner(mm, p))
591                 return;
592
593         read_lock(&tasklist_lock);
594         /*
595          * Search in the children
596          */
597         list_for_each_entry(c, &p->children, sibling) {
598                 if (c->mm == mm)
599                         goto assign_new_owner;
600         }
601
602         /*
603          * Search in the siblings
604          */
605         list_for_each_entry(c, &p->parent->children, sibling) {
606                 if (c->mm == mm)
607                         goto assign_new_owner;
608         }
609
610         /*
611          * Search through everything else. We should not get
612          * here often
613          */
614         do_each_thread(g, c) {
615                 if (c->mm == mm)
616                         goto assign_new_owner;
617         } while_each_thread(g, c);
618
619         read_unlock(&tasklist_lock);
620         return;
621
622 assign_new_owner:
623         BUG_ON(c == p);
624         get_task_struct(c);
625         /*
626          * The task_lock protects c->mm from changing.
627          * We always want mm->owner->mm == mm
628          */
629         task_lock(c);
630         /*
631          * Delay read_unlock() till we have the task_lock()
632          * to ensure that c does not slip away underneath us
633          */
634         read_unlock(&tasklist_lock);
635         if (c->mm != mm) {
636                 task_unlock(c);
637                 put_task_struct(c);
638                 goto retry;
639         }
640         cgroup_mm_owner_callbacks(mm->owner, c);
641         mm->owner = c;
642         task_unlock(c);
643         put_task_struct(c);
644 }
645 #endif /* CONFIG_MM_OWNER */
646
647 /*
648  * Turn us into a lazy TLB process if we
649  * aren't already..
650  */
651 static void exit_mm(struct task_struct * tsk)
652 {
653         struct mm_struct *mm = tsk->mm;
654
655         mm_release(tsk, mm);
656         if (!mm)
657                 return;
658         /*
659          * Serialize with any possible pending coredump.
660          * We must hold mmap_sem around checking core_waiters
661          * and clearing tsk->mm.  The core-inducing thread
662          * will increment core_waiters for each thread in the
663          * group with ->mm != NULL.
664          */
665         down_read(&mm->mmap_sem);
666         if (mm->core_waiters) {
667                 up_read(&mm->mmap_sem);
668                 down_write(&mm->mmap_sem);
669                 if (!--mm->core_waiters)
670                         complete(mm->core_startup_done);
671                 up_write(&mm->mmap_sem);
672
673                 wait_for_completion(&mm->core_done);
674                 down_read(&mm->mmap_sem);
675         }
676         atomic_inc(&mm->mm_count);
677         BUG_ON(mm != tsk->active_mm);
678         /* more a memory barrier than a real lock */
679         task_lock(tsk);
680         tsk->mm = NULL;
681         up_read(&mm->mmap_sem);
682         enter_lazy_tlb(mm, current);
683         /* We don't want this task to be frozen prematurely */
684         clear_freeze_flag(tsk);
685         task_unlock(tsk);
686         mm_update_next_owner(mm);
687         mmput(mm);
688 }
689
690 static void
691 reparent_thread(struct task_struct *p, struct task_struct *father, int traced)
692 {
693         if (p->pdeath_signal)
694                 /* We already hold the tasklist_lock here.  */
695                 group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p);
696
697         /* Move the child from its dying parent to the new one.  */
698         if (unlikely(traced)) {
699                 /* Preserve ptrace links if someone else is tracing this child.  */
700                 list_del_init(&p->ptrace_list);
701                 if (p->parent != p->real_parent)
702                         list_add(&p->ptrace_list, &p->real_parent->ptrace_children);
703         } else {
704                 /* If this child is being traced, then we're the one tracing it
705                  * anyway, so let go of it.
706                  */
707                 p->ptrace = 0;
708                 remove_parent(p);
709                 p->parent = p->real_parent;
710                 add_parent(p);
711
712                 if (task_is_traced(p)) {
713                         /*
714                          * If it was at a trace stop, turn it into
715                          * a normal stop since it's no longer being
716                          * traced.
717                          */
718                         ptrace_untrace(p);
719                 }
720         }
721
722         /* If this is a threaded reparent there is no need to
723          * notify anyone anything has happened.
724          */
725         if (p->real_parent->group_leader == father->group_leader)
726                 return;
727
728         /* We don't want people slaying init.  */
729         if (!task_detached(p))
730                 p->exit_signal = SIGCHLD;
731
732         /* If we'd notified the old parent about this child's death,
733          * also notify the new parent.
734          */
735         if (!traced && p->exit_state == EXIT_ZOMBIE &&
736             !task_detached(p) && thread_group_empty(p))
737                 do_notify_parent(p, p->exit_signal);
738
739         kill_orphaned_pgrp(p, father);
740 }
741
742 /*
743  * When we die, we re-parent all our children.
744  * Try to give them to another thread in our thread
745  * group, and if no such member exists, give it to
746  * the child reaper process (ie "init") in our pid
747  * space.
748  */
749 static void forget_original_parent(struct task_struct *father)
750 {
751         struct task_struct *p, *n, *reaper = father;
752         struct list_head ptrace_dead;
753
754         INIT_LIST_HEAD(&ptrace_dead);
755
756         write_lock_irq(&tasklist_lock);
757
758         do {
759                 reaper = next_thread(reaper);
760                 if (reaper == father) {
761                         reaper = task_child_reaper(father);
762                         break;
763                 }
764         } while (reaper->flags & PF_EXITING);
765
766         /*
767          * There are only two places where our children can be:
768          *
769          * - in our child list
770          * - in our ptraced child list
771          *
772          * Search them and reparent children.
773          */
774         list_for_each_entry_safe(p, n, &father->children, sibling) {
775                 int ptrace;
776
777                 ptrace = p->ptrace;
778
779                 /* if father isn't the real parent, then ptrace must be enabled */
780                 BUG_ON(father != p->real_parent && !ptrace);
781
782                 if (father == p->real_parent) {
783                         /* reparent with a reaper, real father it's us */
784                         p->real_parent = reaper;
785                         reparent_thread(p, father, 0);
786                 } else {
787                         /* reparent ptraced task to its real parent */
788                         __ptrace_unlink (p);
789                         if (p->exit_state == EXIT_ZOMBIE && !task_detached(p) &&
790                             thread_group_empty(p))
791                                 do_notify_parent(p, p->exit_signal);
792                 }
793
794                 /*
795                  * if the ptraced child is a detached zombie we must collect
796                  * it before we exit, or it will remain zombie forever since
797                  * we prevented it from self-reap itself while it was being
798                  * traced by us, to be able to see it in wait4.
799                  */
800                 if (unlikely(ptrace && p->exit_state == EXIT_ZOMBIE && task_detached(p)))
801                         list_add(&p->ptrace_list, &ptrace_dead);
802         }
803
804         list_for_each_entry_safe(p, n, &father->ptrace_children, ptrace_list) {
805                 p->real_parent = reaper;
806                 reparent_thread(p, father, 1);
807         }
808
809         write_unlock_irq(&tasklist_lock);
810         BUG_ON(!list_empty(&father->children));
811         BUG_ON(!list_empty(&father->ptrace_children));
812
813         list_for_each_entry_safe(p, n, &ptrace_dead, ptrace_list) {
814                 list_del_init(&p->ptrace_list);
815                 release_task(p);
816         }
817
818 }
819
820 /*
821  * Send signals to all our closest relatives so that they know
822  * to properly mourn us..
823  */
824 static void exit_notify(struct task_struct *tsk, int group_dead)
825 {
826         int state;
827
828         /*
829          * This does two things:
830          *
831          * A.  Make init inherit all the child processes
832          * B.  Check to see if any process groups have become orphaned
833          *      as a result of our exiting, and if they have any stopped
834          *      jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
835          */
836         forget_original_parent(tsk);
837         exit_task_namespaces(tsk);
838
839         write_lock_irq(&tasklist_lock);
840         if (group_dead)
841                 kill_orphaned_pgrp(tsk->group_leader, NULL);
842
843         /* Let father know we died
844          *
845          * Thread signals are configurable, but you aren't going to use
846          * that to send signals to arbitary processes.
847          * That stops right now.
848          *
849          * If the parent exec id doesn't match the exec id we saved
850          * when we started then we know the parent has changed security
851          * domain.
852          *
853          * If our self_exec id doesn't match our parent_exec_id then
854          * we have changed execution domain as these two values started
855          * the same after a fork.
856          */
857         if (tsk->exit_signal != SIGCHLD && !task_detached(tsk) &&
858             (tsk->parent_exec_id != tsk->real_parent->self_exec_id ||
859              tsk->self_exec_id != tsk->parent_exec_id) &&
860             !capable(CAP_KILL))
861                 tsk->exit_signal = SIGCHLD;
862
863         /* If something other than our normal parent is ptracing us, then
864          * send it a SIGCHLD instead of honoring exit_signal.  exit_signal
865          * only has special meaning to our real parent.
866          */
867         if (!task_detached(tsk) && thread_group_empty(tsk)) {
868                 int signal = (tsk->parent == tsk->real_parent)
869                                 ? tsk->exit_signal : SIGCHLD;
870                 do_notify_parent(tsk, signal);
871         } else if (tsk->ptrace) {
872                 do_notify_parent(tsk, SIGCHLD);
873         }
874
875         state = EXIT_ZOMBIE;
876         if (task_detached(tsk) && likely(!tsk->ptrace))
877                 state = EXIT_DEAD;
878         tsk->exit_state = state;
879
880         if (thread_group_leader(tsk) &&
881             tsk->signal->notify_count < 0 &&
882             tsk->signal->group_exit_task)
883                 wake_up_process(tsk->signal->group_exit_task);
884
885         write_unlock_irq(&tasklist_lock);
886
887         /* If the process is dead, release it - nobody will wait for it */
888         if (state == EXIT_DEAD)
889                 release_task(tsk);
890 }
891
892 #ifdef CONFIG_DEBUG_STACK_USAGE
893 static void check_stack_usage(void)
894 {
895         static DEFINE_SPINLOCK(low_water_lock);
896         static int lowest_to_date = THREAD_SIZE;
897         unsigned long *n = end_of_stack(current);
898         unsigned long free;
899
900         while (*n == 0)
901                 n++;
902         free = (unsigned long)n - (unsigned long)end_of_stack(current);
903
904         if (free >= lowest_to_date)
905                 return;
906
907         spin_lock(&low_water_lock);
908         if (free < lowest_to_date) {
909                 printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
910                                 "left\n",
911                                 current->comm, free);
912                 lowest_to_date = free;
913         }
914         spin_unlock(&low_water_lock);
915 }
916 #else
917 static inline void check_stack_usage(void) {}
918 #endif
919
920 static inline void exit_child_reaper(struct task_struct *tsk)
921 {
922         if (likely(tsk->group_leader != task_child_reaper(tsk)))
923                 return;
924
925         if (tsk->nsproxy->pid_ns == &init_pid_ns)
926                 panic("Attempted to kill init!");
927
928         /*
929          * @tsk is the last thread in the 'cgroup-init' and is exiting.
930          * Terminate all remaining processes in the namespace and reap them
931          * before exiting @tsk.
932          *
933          * Note that @tsk (last thread of cgroup-init) may not necessarily
934          * be the child-reaper (i.e main thread of cgroup-init) of the
935          * namespace i.e the child_reaper may have already exited.
936          *
937          * Even after a child_reaper exits, we let it inherit orphaned children,
938          * because, pid_ns->child_reaper remains valid as long as there is
939          * at least one living sub-thread in the cgroup init.
940
941          * This living sub-thread of the cgroup-init will be notified when
942          * a child inherited by the 'child-reaper' exits (do_notify_parent()
943          * uses __group_send_sig_info()). Further, when reaping child processes,
944          * do_wait() iterates over children of all living sub threads.
945
946          * i.e even though 'child_reaper' thread is listed as the parent of the
947          * orphaned children, any living sub-thread in the cgroup-init can
948          * perform the role of the child_reaper.
949          */
950         zap_pid_ns_processes(tsk->nsproxy->pid_ns);
951 }
952
953 NORET_TYPE void do_exit(long code)
954 {
955         struct task_struct *tsk = current;
956         int group_dead;
957
958         profile_task_exit(tsk);
959
960         WARN_ON(atomic_read(&tsk->fs_excl));
961
962         if (unlikely(in_interrupt()))
963                 panic("Aiee, killing interrupt handler!");
964         if (unlikely(!tsk->pid))
965                 panic("Attempted to kill the idle task!");
966
967         if (unlikely(current->ptrace & PT_TRACE_EXIT)) {
968                 current->ptrace_message = code;
969                 ptrace_notify((PTRACE_EVENT_EXIT << 8) | SIGTRAP);
970         }
971
972         /*
973          * We're taking recursive faults here in do_exit. Safest is to just
974          * leave this task alone and wait for reboot.
975          */
976         if (unlikely(tsk->flags & PF_EXITING)) {
977                 printk(KERN_ALERT
978                         "Fixing recursive fault but reboot is needed!\n");
979                 /*
980                  * We can do this unlocked here. The futex code uses
981                  * this flag just to verify whether the pi state
982                  * cleanup has been done or not. In the worst case it
983                  * loops once more. We pretend that the cleanup was
984                  * done as there is no way to return. Either the
985                  * OWNER_DIED bit is set by now or we push the blocked
986                  * task into the wait for ever nirwana as well.
987                  */
988                 tsk->flags |= PF_EXITPIDONE;
989                 if (tsk->io_context)
990                         exit_io_context();
991                 set_current_state(TASK_UNINTERRUPTIBLE);
992                 schedule();
993         }
994
995         exit_signals(tsk);  /* sets PF_EXITING */
996         /*
997          * tsk->flags are checked in the futex code to protect against
998          * an exiting task cleaning up the robust pi futexes.
999          */
1000         smp_mb();
1001         spin_unlock_wait(&tsk->pi_lock);
1002
1003         if (unlikely(in_atomic()))
1004                 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
1005                                 current->comm, task_pid_nr(current),
1006                                 preempt_count());
1007
1008         acct_update_integrals(tsk);
1009         if (tsk->mm) {
1010                 update_hiwater_rss(tsk->mm);
1011                 update_hiwater_vm(tsk->mm);
1012         }
1013         group_dead = atomic_dec_and_test(&tsk->signal->live);
1014         if (group_dead) {
1015                 exit_child_reaper(tsk);
1016                 hrtimer_cancel(&tsk->signal->real_timer);
1017                 exit_itimers(tsk->signal);
1018         }
1019         acct_collect(code, group_dead);
1020 #ifdef CONFIG_FUTEX
1021         if (unlikely(tsk->robust_list))
1022                 exit_robust_list(tsk);
1023 #ifdef CONFIG_COMPAT
1024         if (unlikely(tsk->compat_robust_list))
1025                 compat_exit_robust_list(tsk);
1026 #endif
1027 #endif
1028         if (group_dead)
1029                 tty_audit_exit();
1030         if (unlikely(tsk->audit_context))
1031                 audit_free(tsk);
1032
1033         tsk->exit_code = code;
1034         taskstats_exit(tsk, group_dead);
1035
1036         exit_mm(tsk);
1037
1038         if (group_dead)
1039                 acct_process();
1040         exit_sem(tsk);
1041         exit_files(tsk);
1042         exit_fs(tsk);
1043         check_stack_usage();
1044         exit_thread();
1045         cgroup_exit(tsk, 1);
1046         exit_keys(tsk);
1047
1048         if (group_dead && tsk->signal->leader)
1049                 disassociate_ctty(1);
1050
1051         module_put(task_thread_info(tsk)->exec_domain->module);
1052         if (tsk->binfmt)
1053                 module_put(tsk->binfmt->module);
1054
1055         proc_exit_connector(tsk);
1056         exit_notify(tsk, group_dead);
1057 #ifdef CONFIG_NUMA
1058         mpol_put(tsk->mempolicy);
1059         tsk->mempolicy = NULL;
1060 #endif
1061 #ifdef CONFIG_FUTEX
1062         /*
1063          * This must happen late, after the PID is not
1064          * hashed anymore:
1065          */
1066         if (unlikely(!list_empty(&tsk->pi_state_list)))
1067                 exit_pi_state_list(tsk);
1068         if (unlikely(current->pi_state_cache))
1069                 kfree(current->pi_state_cache);
1070 #endif
1071         /*
1072          * Make sure we are holding no locks:
1073          */
1074         debug_check_no_locks_held(tsk);
1075         /*
1076          * We can do this unlocked here. The futex code uses this flag
1077          * just to verify whether the pi state cleanup has been done
1078          * or not. In the worst case it loops once more.
1079          */
1080         tsk->flags |= PF_EXITPIDONE;
1081
1082         if (tsk->io_context)
1083                 exit_io_context();
1084
1085         if (tsk->splice_pipe)
1086                 __free_pipe_info(tsk->splice_pipe);
1087
1088         preempt_disable();
1089         /* causes final put_task_struct in finish_task_switch(). */
1090         tsk->state = TASK_DEAD;
1091
1092         schedule();
1093         BUG();
1094         /* Avoid "noreturn function does return".  */
1095         for (;;)
1096                 cpu_relax();    /* For when BUG is null */
1097 }
1098
1099 EXPORT_SYMBOL_GPL(do_exit);
1100
1101 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
1102 {
1103         if (comp)
1104                 complete(comp);
1105
1106         do_exit(code);
1107 }
1108
1109 EXPORT_SYMBOL(complete_and_exit);
1110
1111 asmlinkage long sys_exit(int error_code)
1112 {
1113         do_exit((error_code&0xff)<<8);
1114 }
1115
1116 /*
1117  * Take down every thread in the group.  This is called by fatal signals
1118  * as well as by sys_exit_group (below).
1119  */
1120 NORET_TYPE void
1121 do_group_exit(int exit_code)
1122 {
1123         struct signal_struct *sig = current->signal;
1124
1125         BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1126
1127         if (signal_group_exit(sig))
1128                 exit_code = sig->group_exit_code;
1129         else if (!thread_group_empty(current)) {
1130                 struct sighand_struct *const sighand = current->sighand;
1131                 spin_lock_irq(&sighand->siglock);
1132                 if (signal_group_exit(sig))
1133                         /* Another thread got here before we took the lock.  */
1134                         exit_code = sig->group_exit_code;
1135                 else {
1136                         sig->group_exit_code = exit_code;
1137                         sig->flags = SIGNAL_GROUP_EXIT;
1138                         zap_other_threads(current);
1139                 }
1140                 spin_unlock_irq(&sighand->siglock);
1141         }
1142
1143         do_exit(exit_code);
1144         /* NOTREACHED */
1145 }
1146
1147 /*
1148  * this kills every thread in the thread group. Note that any externally
1149  * wait4()-ing process will get the correct exit code - even if this
1150  * thread is not the thread group leader.
1151  */
1152 asmlinkage void sys_exit_group(int error_code)
1153 {
1154         do_group_exit((error_code & 0xff) << 8);
1155 }
1156
1157 static struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1158 {
1159         struct pid *pid = NULL;
1160         if (type == PIDTYPE_PID)
1161                 pid = task->pids[type].pid;
1162         else if (type < PIDTYPE_MAX)
1163                 pid = task->group_leader->pids[type].pid;
1164         return pid;
1165 }
1166
1167 static int eligible_child(enum pid_type type, struct pid *pid, int options,
1168                           struct task_struct *p)
1169 {
1170         int err;
1171
1172         if (type < PIDTYPE_MAX) {
1173                 if (task_pid_type(p, type) != pid)
1174                         return 0;
1175         }
1176
1177         /*
1178          * Do not consider detached threads that are
1179          * not ptraced:
1180          */
1181         if (task_detached(p) && !p->ptrace)
1182                 return 0;
1183
1184         /* Wait for all children (clone and not) if __WALL is set;
1185          * otherwise, wait for clone children *only* if __WCLONE is
1186          * set; otherwise, wait for non-clone children *only*.  (Note:
1187          * A "clone" child here is one that reports to its parent
1188          * using a signal other than SIGCHLD.) */
1189         if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0))
1190             && !(options & __WALL))
1191                 return 0;
1192
1193         err = security_task_wait(p);
1194         if (likely(!err))
1195                 return 1;
1196
1197         if (type != PIDTYPE_PID)
1198                 return 0;
1199         /* This child was explicitly requested, abort */
1200         read_unlock(&tasklist_lock);
1201         return err;
1202 }
1203
1204 static int wait_noreap_copyout(struct task_struct *p, pid_t pid, uid_t uid,
1205                                int why, int status,
1206                                struct siginfo __user *infop,
1207                                struct rusage __user *rusagep)
1208 {
1209         int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0;
1210
1211         put_task_struct(p);
1212         if (!retval)
1213                 retval = put_user(SIGCHLD, &infop->si_signo);
1214         if (!retval)
1215                 retval = put_user(0, &infop->si_errno);
1216         if (!retval)
1217                 retval = put_user((short)why, &infop->si_code);
1218         if (!retval)
1219                 retval = put_user(pid, &infop->si_pid);
1220         if (!retval)
1221                 retval = put_user(uid, &infop->si_uid);
1222         if (!retval)
1223                 retval = put_user(status, &infop->si_status);
1224         if (!retval)
1225                 retval = pid;
1226         return retval;
1227 }
1228
1229 /*
1230  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1231  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1232  * the lock and this task is uninteresting.  If we return nonzero, we have
1233  * released the lock and the system call should return.
1234  */
1235 static int wait_task_zombie(struct task_struct *p, int noreap,
1236                             struct siginfo __user *infop,
1237                             int __user *stat_addr, struct rusage __user *ru)
1238 {
1239         unsigned long state;
1240         int retval, status, traced;
1241         pid_t pid = task_pid_vnr(p);
1242
1243         if (unlikely(noreap)) {
1244                 uid_t uid = p->uid;
1245                 int exit_code = p->exit_code;
1246                 int why, status;
1247
1248                 get_task_struct(p);
1249                 read_unlock(&tasklist_lock);
1250                 if ((exit_code & 0x7f) == 0) {
1251                         why = CLD_EXITED;
1252                         status = exit_code >> 8;
1253                 } else {
1254                         why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1255                         status = exit_code & 0x7f;
1256                 }
1257                 return wait_noreap_copyout(p, pid, uid, why,
1258                                            status, infop, ru);
1259         }
1260
1261         /*
1262          * Try to move the task's state to DEAD
1263          * only one thread is allowed to do this:
1264          */
1265         state = xchg(&p->exit_state, EXIT_DEAD);
1266         if (state != EXIT_ZOMBIE) {
1267                 BUG_ON(state != EXIT_DEAD);
1268                 return 0;
1269         }
1270
1271         /* traced means p->ptrace, but not vice versa */
1272         traced = (p->real_parent != p->parent);
1273
1274         if (likely(!traced)) {
1275                 struct signal_struct *psig;
1276                 struct signal_struct *sig;
1277
1278                 /*
1279                  * The resource counters for the group leader are in its
1280                  * own task_struct.  Those for dead threads in the group
1281                  * are in its signal_struct, as are those for the child
1282                  * processes it has previously reaped.  All these
1283                  * accumulate in the parent's signal_struct c* fields.
1284                  *
1285                  * We don't bother to take a lock here to protect these
1286                  * p->signal fields, because they are only touched by
1287                  * __exit_signal, which runs with tasklist_lock
1288                  * write-locked anyway, and so is excluded here.  We do
1289                  * need to protect the access to p->parent->signal fields,
1290                  * as other threads in the parent group can be right
1291                  * here reaping other children at the same time.
1292                  */
1293                 spin_lock_irq(&p->parent->sighand->siglock);
1294                 psig = p->parent->signal;
1295                 sig = p->signal;
1296                 psig->cutime =
1297                         cputime_add(psig->cutime,
1298                         cputime_add(p->utime,
1299                         cputime_add(sig->utime,
1300                                     sig->cutime)));
1301                 psig->cstime =
1302                         cputime_add(psig->cstime,
1303                         cputime_add(p->stime,
1304                         cputime_add(sig->stime,
1305                                     sig->cstime)));
1306                 psig->cgtime =
1307                         cputime_add(psig->cgtime,
1308                         cputime_add(p->gtime,
1309                         cputime_add(sig->gtime,
1310                                     sig->cgtime)));
1311                 psig->cmin_flt +=
1312                         p->min_flt + sig->min_flt + sig->cmin_flt;
1313                 psig->cmaj_flt +=
1314                         p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1315                 psig->cnvcsw +=
1316                         p->nvcsw + sig->nvcsw + sig->cnvcsw;
1317                 psig->cnivcsw +=
1318                         p->nivcsw + sig->nivcsw + sig->cnivcsw;
1319                 psig->cinblock +=
1320                         task_io_get_inblock(p) +
1321                         sig->inblock + sig->cinblock;
1322                 psig->coublock +=
1323                         task_io_get_oublock(p) +
1324                         sig->oublock + sig->coublock;
1325                 spin_unlock_irq(&p->parent->sighand->siglock);
1326         }
1327
1328         /*
1329          * Now we are sure this task is interesting, and no other
1330          * thread can reap it because we set its state to EXIT_DEAD.
1331          */
1332         read_unlock(&tasklist_lock);
1333
1334         retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1335         status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1336                 ? p->signal->group_exit_code : p->exit_code;
1337         if (!retval && stat_addr)
1338                 retval = put_user(status, stat_addr);
1339         if (!retval && infop)
1340                 retval = put_user(SIGCHLD, &infop->si_signo);
1341         if (!retval && infop)
1342                 retval = put_user(0, &infop->si_errno);
1343         if (!retval && infop) {
1344                 int why;
1345
1346                 if ((status & 0x7f) == 0) {
1347                         why = CLD_EXITED;
1348                         status >>= 8;
1349                 } else {
1350                         why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1351                         status &= 0x7f;
1352                 }
1353                 retval = put_user((short)why, &infop->si_code);
1354                 if (!retval)
1355                         retval = put_user(status, &infop->si_status);
1356         }
1357         if (!retval && infop)
1358                 retval = put_user(pid, &infop->si_pid);
1359         if (!retval && infop)
1360                 retval = put_user(p->uid, &infop->si_uid);
1361         if (!retval)
1362                 retval = pid;
1363
1364         if (traced) {
1365                 write_lock_irq(&tasklist_lock);
1366                 /* We dropped tasklist, ptracer could die and untrace */
1367                 ptrace_unlink(p);
1368                 /*
1369                  * If this is not a detached task, notify the parent.
1370                  * If it's still not detached after that, don't release
1371                  * it now.
1372                  */
1373                 if (!task_detached(p)) {
1374                         do_notify_parent(p, p->exit_signal);
1375                         if (!task_detached(p)) {
1376                                 p->exit_state = EXIT_ZOMBIE;
1377                                 p = NULL;
1378                         }
1379                 }
1380                 write_unlock_irq(&tasklist_lock);
1381         }
1382         if (p != NULL)
1383                 release_task(p);
1384
1385         return retval;
1386 }
1387
1388 /*
1389  * Handle sys_wait4 work for one task in state TASK_STOPPED.  We hold
1390  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1391  * the lock and this task is uninteresting.  If we return nonzero, we have
1392  * released the lock and the system call should return.
1393  */
1394 static int wait_task_stopped(struct task_struct *p,
1395                              int noreap, struct siginfo __user *infop,
1396                              int __user *stat_addr, struct rusage __user *ru)
1397 {
1398         int retval, exit_code, why;
1399         uid_t uid = 0; /* unneeded, required by compiler */
1400         pid_t pid;
1401
1402         exit_code = 0;
1403         spin_lock_irq(&p->sighand->siglock);
1404
1405         if (unlikely(!task_is_stopped_or_traced(p)))
1406                 goto unlock_sig;
1407
1408         if (!(p->ptrace & PT_PTRACED) && p->signal->group_stop_count > 0)
1409                 /*
1410                  * A group stop is in progress and this is the group leader.
1411                  * We won't report until all threads have stopped.
1412                  */
1413                 goto unlock_sig;
1414
1415         exit_code = p->exit_code;
1416         if (!exit_code)
1417                 goto unlock_sig;
1418
1419         if (!noreap)
1420                 p->exit_code = 0;
1421
1422         uid = p->uid;
1423 unlock_sig:
1424         spin_unlock_irq(&p->sighand->siglock);
1425         if (!exit_code)
1426                 return 0;
1427
1428         /*
1429          * Now we are pretty sure this task is interesting.
1430          * Make sure it doesn't get reaped out from under us while we
1431          * give up the lock and then examine it below.  We don't want to
1432          * keep holding onto the tasklist_lock while we call getrusage and
1433          * possibly take page faults for user memory.
1434          */
1435         get_task_struct(p);
1436         pid = task_pid_vnr(p);
1437         why = (p->ptrace & PT_PTRACED) ? CLD_TRAPPED : CLD_STOPPED;
1438         read_unlock(&tasklist_lock);
1439
1440         if (unlikely(noreap))
1441                 return wait_noreap_copyout(p, pid, uid,
1442                                            why, exit_code,
1443                                            infop, ru);
1444
1445         retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1446         if (!retval && stat_addr)
1447                 retval = put_user((exit_code << 8) | 0x7f, stat_addr);
1448         if (!retval && infop)
1449                 retval = put_user(SIGCHLD, &infop->si_signo);
1450         if (!retval && infop)
1451                 retval = put_user(0, &infop->si_errno);
1452         if (!retval && infop)
1453                 retval = put_user((short)why, &infop->si_code);
1454         if (!retval && infop)
1455                 retval = put_user(exit_code, &infop->si_status);
1456         if (!retval && infop)
1457                 retval = put_user(pid, &infop->si_pid);
1458         if (!retval && infop)
1459                 retval = put_user(uid, &infop->si_uid);
1460         if (!retval)
1461                 retval = pid;
1462         put_task_struct(p);
1463
1464         BUG_ON(!retval);
1465         return retval;
1466 }
1467
1468 /*
1469  * Handle do_wait work for one task in a live, non-stopped state.
1470  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1471  * the lock and this task is uninteresting.  If we return nonzero, we have
1472  * released the lock and the system call should return.
1473  */
1474 static int wait_task_continued(struct task_struct *p, int noreap,
1475                                struct siginfo __user *infop,
1476                                int __user *stat_addr, struct rusage __user *ru)
1477 {
1478         int retval;
1479         pid_t pid;
1480         uid_t uid;
1481
1482         if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1483                 return 0;
1484
1485         spin_lock_irq(&p->sighand->siglock);
1486         /* Re-check with the lock held.  */
1487         if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1488                 spin_unlock_irq(&p->sighand->siglock);
1489                 return 0;
1490         }
1491         if (!noreap)
1492                 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1493         spin_unlock_irq(&p->sighand->siglock);
1494
1495         pid = task_pid_vnr(p);
1496         uid = p->uid;
1497         get_task_struct(p);
1498         read_unlock(&tasklist_lock);
1499
1500         if (!infop) {
1501                 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1502                 put_task_struct(p);
1503                 if (!retval && stat_addr)
1504                         retval = put_user(0xffff, stat_addr);
1505                 if (!retval)
1506                         retval = pid;
1507         } else {
1508                 retval = wait_noreap_copyout(p, pid, uid,
1509                                              CLD_CONTINUED, SIGCONT,
1510                                              infop, ru);
1511                 BUG_ON(retval == 0);
1512         }
1513
1514         return retval;
1515 }
1516
1517 static long do_wait(enum pid_type type, struct pid *pid, int options,
1518                     struct siginfo __user *infop, int __user *stat_addr,
1519                     struct rusage __user *ru)
1520 {
1521         DECLARE_WAITQUEUE(wait, current);
1522         struct task_struct *tsk;
1523         int flag, retval;
1524
1525         add_wait_queue(&current->signal->wait_chldexit,&wait);
1526 repeat:
1527         /* If there is nothing that can match our critier just get out */
1528         retval = -ECHILD;
1529         if ((type < PIDTYPE_MAX) && (!pid || hlist_empty(&pid->tasks[type])))
1530                 goto end;
1531
1532         /*
1533          * We will set this flag if we see any child that might later
1534          * match our criteria, even if we are not able to reap it yet.
1535          */
1536         flag = retval = 0;
1537         current->state = TASK_INTERRUPTIBLE;
1538         read_lock(&tasklist_lock);
1539         tsk = current;
1540         do {
1541                 struct task_struct *p;
1542
1543                 list_for_each_entry(p, &tsk->children, sibling) {
1544                         int ret = eligible_child(type, pid, options, p);
1545                         if (!ret)
1546                                 continue;
1547
1548                         if (unlikely(ret < 0)) {
1549                                 retval = ret;
1550                         } else if (task_is_stopped_or_traced(p)) {
1551                                 /*
1552                                  * It's stopped now, so it might later
1553                                  * continue, exit, or stop again.
1554                                  */
1555                                 flag = 1;
1556                                 if (!(p->ptrace & PT_PTRACED) &&
1557                                     !(options & WUNTRACED))
1558                                         continue;
1559
1560                                 retval = wait_task_stopped(p,
1561                                                 (options & WNOWAIT), infop,
1562                                                 stat_addr, ru);
1563                         } else if (p->exit_state == EXIT_ZOMBIE &&
1564                                         !delay_group_leader(p)) {
1565                                 /*
1566                                  * We don't reap group leaders with subthreads.
1567                                  */
1568                                 if (!likely(options & WEXITED))
1569                                         continue;
1570                                 retval = wait_task_zombie(p,
1571                                                 (options & WNOWAIT), infop,
1572                                                 stat_addr, ru);
1573                         } else if (p->exit_state != EXIT_DEAD) {
1574                                 /*
1575                                  * It's running now, so it might later
1576                                  * exit, stop, or stop and then continue.
1577                                  */
1578                                 flag = 1;
1579                                 if (!unlikely(options & WCONTINUED))
1580                                         continue;
1581                                 retval = wait_task_continued(p,
1582                                                 (options & WNOWAIT), infop,
1583                                                 stat_addr, ru);
1584                         }
1585                         if (retval != 0) /* tasklist_lock released */
1586                                 goto end;
1587                 }
1588                 if (!flag) {
1589                         list_for_each_entry(p, &tsk->ptrace_children,
1590                                                                 ptrace_list) {
1591                                 flag = eligible_child(type, pid, options, p);
1592                                 if (!flag)
1593                                         continue;
1594                                 if (likely(flag > 0))
1595                                         break;
1596                                 retval = flag;
1597                                 goto end;
1598                         }
1599                 }
1600                 if (options & __WNOTHREAD)
1601                         break;
1602                 tsk = next_thread(tsk);
1603                 BUG_ON(tsk->signal != current->signal);
1604         } while (tsk != current);
1605         read_unlock(&tasklist_lock);
1606
1607         if (flag) {
1608                 if (options & WNOHANG)
1609                         goto end;
1610                 retval = -ERESTARTSYS;
1611                 if (signal_pending(current))
1612                         goto end;
1613                 schedule();
1614                 goto repeat;
1615         }
1616         retval = -ECHILD;
1617 end:
1618         current->state = TASK_RUNNING;
1619         remove_wait_queue(&current->signal->wait_chldexit,&wait);
1620         if (infop) {
1621                 if (retval > 0)
1622                         retval = 0;
1623                 else {
1624                         /*
1625                          * For a WNOHANG return, clear out all the fields
1626                          * we would set so the user can easily tell the
1627                          * difference.
1628                          */
1629                         if (!retval)
1630                                 retval = put_user(0, &infop->si_signo);
1631                         if (!retval)
1632                                 retval = put_user(0, &infop->si_errno);
1633                         if (!retval)
1634                                 retval = put_user(0, &infop->si_code);
1635                         if (!retval)
1636                                 retval = put_user(0, &infop->si_pid);
1637                         if (!retval)
1638                                 retval = put_user(0, &infop->si_uid);
1639                         if (!retval)
1640                                 retval = put_user(0, &infop->si_status);
1641                 }
1642         }
1643         return retval;
1644 }
1645
1646 asmlinkage long sys_waitid(int which, pid_t upid,
1647                            struct siginfo __user *infop, int options,
1648                            struct rusage __user *ru)
1649 {
1650         struct pid *pid = NULL;
1651         enum pid_type type;
1652         long ret;
1653
1654         if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1655                 return -EINVAL;
1656         if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1657                 return -EINVAL;
1658
1659         switch (which) {
1660         case P_ALL:
1661                 type = PIDTYPE_MAX;
1662                 break;
1663         case P_PID:
1664                 type = PIDTYPE_PID;
1665                 if (upid <= 0)
1666                         return -EINVAL;
1667                 break;
1668         case P_PGID:
1669                 type = PIDTYPE_PGID;
1670                 if (upid <= 0)
1671                         return -EINVAL;
1672                 break;
1673         default:
1674                 return -EINVAL;
1675         }
1676
1677         if (type < PIDTYPE_MAX)
1678                 pid = find_get_pid(upid);
1679         ret = do_wait(type, pid, options, infop, NULL, ru);
1680         put_pid(pid);
1681
1682         /* avoid REGPARM breakage on x86: */
1683         asmlinkage_protect(5, ret, which, upid, infop, options, ru);
1684         return ret;
1685 }
1686
1687 asmlinkage long sys_wait4(pid_t upid, int __user *stat_addr,
1688                           int options, struct rusage __user *ru)
1689 {
1690         struct pid *pid = NULL;
1691         enum pid_type type;
1692         long ret;
1693
1694         if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1695                         __WNOTHREAD|__WCLONE|__WALL))
1696                 return -EINVAL;
1697
1698         if (upid == -1)
1699                 type = PIDTYPE_MAX;
1700         else if (upid < 0) {
1701                 type = PIDTYPE_PGID;
1702                 pid = find_get_pid(-upid);
1703         } else if (upid == 0) {
1704                 type = PIDTYPE_PGID;
1705                 pid = get_pid(task_pgrp(current));
1706         } else /* upid > 0 */ {
1707                 type = PIDTYPE_PID;
1708                 pid = find_get_pid(upid);
1709         }
1710
1711         ret = do_wait(type, pid, options | WEXITED, NULL, stat_addr, ru);
1712         put_pid(pid);
1713
1714         /* avoid REGPARM breakage on x86: */
1715         asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
1716         return ret;
1717 }
1718
1719 #ifdef __ARCH_WANT_SYS_WAITPID
1720
1721 /*
1722  * sys_waitpid() remains for compatibility. waitpid() should be
1723  * implemented by calling sys_wait4() from libc.a.
1724  */
1725 asmlinkage long sys_waitpid(pid_t pid, int __user *stat_addr, int options)
1726 {
1727         return sys_wait4(pid, stat_addr, options, NULL);
1728 }
1729
1730 #endif