perf_counter: Fix counter inheritance
[safe/jmp/linux-2.6] / kernel / exit.c
1 /*
2  *  linux/kernel/exit.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/mnt_namespace.h>
16 #include <linux/iocontext.h>
17 #include <linux/key.h>
18 #include <linux/security.h>
19 #include <linux/cpu.h>
20 #include <linux/acct.h>
21 #include <linux/tsacct_kern.h>
22 #include <linux/file.h>
23 #include <linux/fdtable.h>
24 #include <linux/binfmts.h>
25 #include <linux/nsproxy.h>
26 #include <linux/pid_namespace.h>
27 #include <linux/ptrace.h>
28 #include <linux/profile.h>
29 #include <linux/mount.h>
30 #include <linux/proc_fs.h>
31 #include <linux/kthread.h>
32 #include <linux/mempolicy.h>
33 #include <linux/taskstats_kern.h>
34 #include <linux/delayacct.h>
35 #include <linux/freezer.h>
36 #include <linux/cgroup.h>
37 #include <linux/syscalls.h>
38 #include <linux/signal.h>
39 #include <linux/posix-timers.h>
40 #include <linux/cn_proc.h>
41 #include <linux/mutex.h>
42 #include <linux/futex.h>
43 #include <linux/pipe_fs_i.h>
44 #include <linux/audit.h> /* for audit_free() */
45 #include <linux/resource.h>
46 #include <linux/blkdev.h>
47 #include <linux/task_io_accounting_ops.h>
48 #include <linux/tracehook.h>
49 #include <linux/fs_struct.h>
50 #include <linux/init_task.h>
51 #include <trace/sched.h>
52
53 #include <asm/uaccess.h>
54 #include <asm/unistd.h>
55 #include <asm/pgtable.h>
56 #include <asm/mmu_context.h>
57 #include "cred-internals.h"
58
59 DEFINE_TRACE(sched_process_free);
60 DEFINE_TRACE(sched_process_exit);
61 DEFINE_TRACE(sched_process_wait);
62
63 static void exit_mm(struct task_struct * tsk);
64
65 static void __unhash_process(struct task_struct *p)
66 {
67         nr_threads--;
68         detach_pid(p, PIDTYPE_PID);
69         if (thread_group_leader(p)) {
70                 detach_pid(p, PIDTYPE_PGID);
71                 detach_pid(p, PIDTYPE_SID);
72
73                 list_del_rcu(&p->tasks);
74                 __get_cpu_var(process_counts)--;
75         }
76         list_del_rcu(&p->thread_group);
77         list_del_init(&p->sibling);
78 }
79
80 /*
81  * This function expects the tasklist_lock write-locked.
82  */
83 static void __exit_signal(struct task_struct *tsk)
84 {
85         struct signal_struct *sig = tsk->signal;
86         struct sighand_struct *sighand;
87
88         BUG_ON(!sig);
89         BUG_ON(!atomic_read(&sig->count));
90
91         sighand = rcu_dereference(tsk->sighand);
92         spin_lock(&sighand->siglock);
93
94         posix_cpu_timers_exit(tsk);
95         if (atomic_dec_and_test(&sig->count))
96                 posix_cpu_timers_exit_group(tsk);
97         else {
98                 /*
99                  * If there is any task waiting for the group exit
100                  * then notify it:
101                  */
102                 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count)
103                         wake_up_process(sig->group_exit_task);
104
105                 if (tsk == sig->curr_target)
106                         sig->curr_target = next_thread(tsk);
107                 /*
108                  * Accumulate here the counters for all threads but the
109                  * group leader as they die, so they can be added into
110                  * the process-wide totals when those are taken.
111                  * The group leader stays around as a zombie as long
112                  * as there are other threads.  When it gets reaped,
113                  * the exit.c code will add its counts into these totals.
114                  * We won't ever get here for the group leader, since it
115                  * will have been the last reference on the signal_struct.
116                  */
117                 sig->utime = cputime_add(sig->utime, task_utime(tsk));
118                 sig->stime = cputime_add(sig->stime, task_stime(tsk));
119                 sig->gtime = cputime_add(sig->gtime, task_gtime(tsk));
120                 sig->min_flt += tsk->min_flt;
121                 sig->maj_flt += tsk->maj_flt;
122                 sig->nvcsw += tsk->nvcsw;
123                 sig->nivcsw += tsk->nivcsw;
124                 sig->inblock += task_io_get_inblock(tsk);
125                 sig->oublock += task_io_get_oublock(tsk);
126                 task_io_accounting_add(&sig->ioac, &tsk->ioac);
127                 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
128                 sig = NULL; /* Marker for below. */
129         }
130
131         /*
132          * Flush inherited counters to the parent - before the parent
133          * gets woken up by child-exit notifications.
134          */
135         perf_counter_exit_task(tsk);
136
137         __unhash_process(tsk);
138
139         /*
140          * Do this under ->siglock, we can race with another thread
141          * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
142          */
143         flush_sigqueue(&tsk->pending);
144
145         tsk->signal = NULL;
146         tsk->sighand = NULL;
147         spin_unlock(&sighand->siglock);
148
149         __cleanup_sighand(sighand);
150         clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
151         if (sig) {
152                 flush_sigqueue(&sig->shared_pending);
153                 taskstats_tgid_free(sig);
154                 /*
155                  * Make sure ->signal can't go away under rq->lock,
156                  * see account_group_exec_runtime().
157                  */
158                 task_rq_unlock_wait(tsk);
159                 __cleanup_signal(sig);
160         }
161 }
162
163 static void delayed_put_task_struct(struct rcu_head *rhp)
164 {
165         struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
166
167 #ifdef CONFIG_PERF_COUNTERS
168         WARN_ON_ONCE(!list_empty(&tsk->perf_counter_ctx.counter_list));
169 #endif
170         trace_sched_process_free(tsk);
171         put_task_struct(tsk);
172 }
173
174
175 void release_task(struct task_struct * p)
176 {
177         struct task_struct *leader;
178         int zap_leader;
179 repeat:
180         tracehook_prepare_release_task(p);
181         /* don't need to get the RCU readlock here - the process is dead and
182          * can't be modifying its own credentials */
183         atomic_dec(&__task_cred(p)->user->processes);
184
185         proc_flush_task(p);
186         write_lock_irq(&tasklist_lock);
187         tracehook_finish_release_task(p);
188         __exit_signal(p);
189
190         /*
191          * If we are the last non-leader member of the thread
192          * group, and the leader is zombie, then notify the
193          * group leader's parent process. (if it wants notification.)
194          */
195         zap_leader = 0;
196         leader = p->group_leader;
197         if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
198                 BUG_ON(task_detached(leader));
199                 do_notify_parent(leader, leader->exit_signal);
200                 /*
201                  * If we were the last child thread and the leader has
202                  * exited already, and the leader's parent ignores SIGCHLD,
203                  * then we are the one who should release the leader.
204                  *
205                  * do_notify_parent() will have marked it self-reaping in
206                  * that case.
207                  */
208                 zap_leader = task_detached(leader);
209
210                 /*
211                  * This maintains the invariant that release_task()
212                  * only runs on a task in EXIT_DEAD, just for sanity.
213                  */
214                 if (zap_leader)
215                         leader->exit_state = EXIT_DEAD;
216         }
217
218         write_unlock_irq(&tasklist_lock);
219         release_thread(p);
220         call_rcu(&p->rcu, delayed_put_task_struct);
221
222         p = leader;
223         if (unlikely(zap_leader))
224                 goto repeat;
225 }
226
227 /*
228  * This checks not only the pgrp, but falls back on the pid if no
229  * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
230  * without this...
231  *
232  * The caller must hold rcu lock or the tasklist lock.
233  */
234 struct pid *session_of_pgrp(struct pid *pgrp)
235 {
236         struct task_struct *p;
237         struct pid *sid = NULL;
238
239         p = pid_task(pgrp, PIDTYPE_PGID);
240         if (p == NULL)
241                 p = pid_task(pgrp, PIDTYPE_PID);
242         if (p != NULL)
243                 sid = task_session(p);
244
245         return sid;
246 }
247
248 /*
249  * Determine if a process group is "orphaned", according to the POSIX
250  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
251  * by terminal-generated stop signals.  Newly orphaned process groups are
252  * to receive a SIGHUP and a SIGCONT.
253  *
254  * "I ask you, have you ever known what it is to be an orphan?"
255  */
256 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
257 {
258         struct task_struct *p;
259
260         do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
261                 if ((p == ignored_task) ||
262                     (p->exit_state && thread_group_empty(p)) ||
263                     is_global_init(p->real_parent))
264                         continue;
265
266                 if (task_pgrp(p->real_parent) != pgrp &&
267                     task_session(p->real_parent) == task_session(p))
268                         return 0;
269         } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
270
271         return 1;
272 }
273
274 int is_current_pgrp_orphaned(void)
275 {
276         int retval;
277
278         read_lock(&tasklist_lock);
279         retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
280         read_unlock(&tasklist_lock);
281
282         return retval;
283 }
284
285 static int has_stopped_jobs(struct pid *pgrp)
286 {
287         int retval = 0;
288         struct task_struct *p;
289
290         do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
291                 if (!task_is_stopped(p))
292                         continue;
293                 retval = 1;
294                 break;
295         } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
296         return retval;
297 }
298
299 /*
300  * Check to see if any process groups have become orphaned as
301  * a result of our exiting, and if they have any stopped jobs,
302  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
303  */
304 static void
305 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
306 {
307         struct pid *pgrp = task_pgrp(tsk);
308         struct task_struct *ignored_task = tsk;
309
310         if (!parent)
311                  /* exit: our father is in a different pgrp than
312                   * we are and we were the only connection outside.
313                   */
314                 parent = tsk->real_parent;
315         else
316                 /* reparent: our child is in a different pgrp than
317                  * we are, and it was the only connection outside.
318                  */
319                 ignored_task = NULL;
320
321         if (task_pgrp(parent) != pgrp &&
322             task_session(parent) == task_session(tsk) &&
323             will_become_orphaned_pgrp(pgrp, ignored_task) &&
324             has_stopped_jobs(pgrp)) {
325                 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
326                 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
327         }
328 }
329
330 /**
331  * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
332  *
333  * If a kernel thread is launched as a result of a system call, or if
334  * it ever exits, it should generally reparent itself to kthreadd so it
335  * isn't in the way of other processes and is correctly cleaned up on exit.
336  *
337  * The various task state such as scheduling policy and priority may have
338  * been inherited from a user process, so we reset them to sane values here.
339  *
340  * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
341  */
342 static void reparent_to_kthreadd(void)
343 {
344         write_lock_irq(&tasklist_lock);
345
346         ptrace_unlink(current);
347         /* Reparent to init */
348         current->real_parent = current->parent = kthreadd_task;
349         list_move_tail(&current->sibling, &current->real_parent->children);
350
351         /* Set the exit signal to SIGCHLD so we signal init on exit */
352         current->exit_signal = SIGCHLD;
353
354         if (task_nice(current) < 0)
355                 set_user_nice(current, 0);
356         /* cpus_allowed? */
357         /* rt_priority? */
358         /* signals? */
359         memcpy(current->signal->rlim, init_task.signal->rlim,
360                sizeof(current->signal->rlim));
361
362         atomic_inc(&init_cred.usage);
363         commit_creds(&init_cred);
364         write_unlock_irq(&tasklist_lock);
365 }
366
367 void __set_special_pids(struct pid *pid)
368 {
369         struct task_struct *curr = current->group_leader;
370
371         if (task_session(curr) != pid)
372                 change_pid(curr, PIDTYPE_SID, pid);
373
374         if (task_pgrp(curr) != pid)
375                 change_pid(curr, PIDTYPE_PGID, pid);
376 }
377
378 static void set_special_pids(struct pid *pid)
379 {
380         write_lock_irq(&tasklist_lock);
381         __set_special_pids(pid);
382         write_unlock_irq(&tasklist_lock);
383 }
384
385 /*
386  * Let kernel threads use this to say that they
387  * allow a certain signal (since daemonize() will
388  * have disabled all of them by default).
389  */
390 int allow_signal(int sig)
391 {
392         if (!valid_signal(sig) || sig < 1)
393                 return -EINVAL;
394
395         spin_lock_irq(&current->sighand->siglock);
396         sigdelset(&current->blocked, sig);
397         if (!current->mm) {
398                 /* Kernel threads handle their own signals.
399                    Let the signal code know it'll be handled, so
400                    that they don't get converted to SIGKILL or
401                    just silently dropped */
402                 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
403         }
404         recalc_sigpending();
405         spin_unlock_irq(&current->sighand->siglock);
406         return 0;
407 }
408
409 EXPORT_SYMBOL(allow_signal);
410
411 int disallow_signal(int sig)
412 {
413         if (!valid_signal(sig) || sig < 1)
414                 return -EINVAL;
415
416         spin_lock_irq(&current->sighand->siglock);
417         current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
418         recalc_sigpending();
419         spin_unlock_irq(&current->sighand->siglock);
420         return 0;
421 }
422
423 EXPORT_SYMBOL(disallow_signal);
424
425 /*
426  *      Put all the gunge required to become a kernel thread without
427  *      attached user resources in one place where it belongs.
428  */
429
430 void daemonize(const char *name, ...)
431 {
432         va_list args;
433         sigset_t blocked;
434
435         va_start(args, name);
436         vsnprintf(current->comm, sizeof(current->comm), name, args);
437         va_end(args);
438
439         /*
440          * If we were started as result of loading a module, close all of the
441          * user space pages.  We don't need them, and if we didn't close them
442          * they would be locked into memory.
443          */
444         exit_mm(current);
445         /*
446          * We don't want to have TIF_FREEZE set if the system-wide hibernation
447          * or suspend transition begins right now.
448          */
449         current->flags |= (PF_NOFREEZE | PF_KTHREAD);
450
451         if (current->nsproxy != &init_nsproxy) {
452                 get_nsproxy(&init_nsproxy);
453                 switch_task_namespaces(current, &init_nsproxy);
454         }
455         set_special_pids(&init_struct_pid);
456         proc_clear_tty(current);
457
458         /* Block and flush all signals */
459         sigfillset(&blocked);
460         sigprocmask(SIG_BLOCK, &blocked, NULL);
461         flush_signals(current);
462
463         /* Become as one with the init task */
464
465         daemonize_fs_struct();
466         exit_files(current);
467         current->files = init_task.files;
468         atomic_inc(&current->files->count);
469
470         reparent_to_kthreadd();
471 }
472
473 EXPORT_SYMBOL(daemonize);
474
475 static void close_files(struct files_struct * files)
476 {
477         int i, j;
478         struct fdtable *fdt;
479
480         j = 0;
481
482         /*
483          * It is safe to dereference the fd table without RCU or
484          * ->file_lock because this is the last reference to the
485          * files structure.
486          */
487         fdt = files_fdtable(files);
488         for (;;) {
489                 unsigned long set;
490                 i = j * __NFDBITS;
491                 if (i >= fdt->max_fds)
492                         break;
493                 set = fdt->open_fds->fds_bits[j++];
494                 while (set) {
495                         if (set & 1) {
496                                 struct file * file = xchg(&fdt->fd[i], NULL);
497                                 if (file) {
498                                         filp_close(file, files);
499                                         cond_resched();
500                                 }
501                         }
502                         i++;
503                         set >>= 1;
504                 }
505         }
506 }
507
508 struct files_struct *get_files_struct(struct task_struct *task)
509 {
510         struct files_struct *files;
511
512         task_lock(task);
513         files = task->files;
514         if (files)
515                 atomic_inc(&files->count);
516         task_unlock(task);
517
518         return files;
519 }
520
521 void put_files_struct(struct files_struct *files)
522 {
523         struct fdtable *fdt;
524
525         if (atomic_dec_and_test(&files->count)) {
526                 close_files(files);
527                 /*
528                  * Free the fd and fdset arrays if we expanded them.
529                  * If the fdtable was embedded, pass files for freeing
530                  * at the end of the RCU grace period. Otherwise,
531                  * you can free files immediately.
532                  */
533                 fdt = files_fdtable(files);
534                 if (fdt != &files->fdtab)
535                         kmem_cache_free(files_cachep, files);
536                 free_fdtable(fdt);
537         }
538 }
539
540 void reset_files_struct(struct files_struct *files)
541 {
542         struct task_struct *tsk = current;
543         struct files_struct *old;
544
545         old = tsk->files;
546         task_lock(tsk);
547         tsk->files = files;
548         task_unlock(tsk);
549         put_files_struct(old);
550 }
551
552 void exit_files(struct task_struct *tsk)
553 {
554         struct files_struct * files = tsk->files;
555
556         if (files) {
557                 task_lock(tsk);
558                 tsk->files = NULL;
559                 task_unlock(tsk);
560                 put_files_struct(files);
561         }
562 }
563
564 #ifdef CONFIG_MM_OWNER
565 /*
566  * Task p is exiting and it owned mm, lets find a new owner for it
567  */
568 static inline int
569 mm_need_new_owner(struct mm_struct *mm, struct task_struct *p)
570 {
571         /*
572          * If there are other users of the mm and the owner (us) is exiting
573          * we need to find a new owner to take on the responsibility.
574          */
575         if (atomic_read(&mm->mm_users) <= 1)
576                 return 0;
577         if (mm->owner != p)
578                 return 0;
579         return 1;
580 }
581
582 void mm_update_next_owner(struct mm_struct *mm)
583 {
584         struct task_struct *c, *g, *p = current;
585
586 retry:
587         if (!mm_need_new_owner(mm, p))
588                 return;
589
590         read_lock(&tasklist_lock);
591         /*
592          * Search in the children
593          */
594         list_for_each_entry(c, &p->children, sibling) {
595                 if (c->mm == mm)
596                         goto assign_new_owner;
597         }
598
599         /*
600          * Search in the siblings
601          */
602         list_for_each_entry(c, &p->parent->children, sibling) {
603                 if (c->mm == mm)
604                         goto assign_new_owner;
605         }
606
607         /*
608          * Search through everything else. We should not get
609          * here often
610          */
611         do_each_thread(g, c) {
612                 if (c->mm == mm)
613                         goto assign_new_owner;
614         } while_each_thread(g, c);
615
616         read_unlock(&tasklist_lock);
617         /*
618          * We found no owner yet mm_users > 1: this implies that we are
619          * most likely racing with swapoff (try_to_unuse()) or /proc or
620          * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
621          */
622         mm->owner = NULL;
623         return;
624
625 assign_new_owner:
626         BUG_ON(c == p);
627         get_task_struct(c);
628         /*
629          * The task_lock protects c->mm from changing.
630          * We always want mm->owner->mm == mm
631          */
632         task_lock(c);
633         /*
634          * Delay read_unlock() till we have the task_lock()
635          * to ensure that c does not slip away underneath us
636          */
637         read_unlock(&tasklist_lock);
638         if (c->mm != mm) {
639                 task_unlock(c);
640                 put_task_struct(c);
641                 goto retry;
642         }
643         mm->owner = c;
644         task_unlock(c);
645         put_task_struct(c);
646 }
647 #endif /* CONFIG_MM_OWNER */
648
649 /*
650  * Turn us into a lazy TLB process if we
651  * aren't already..
652  */
653 static void exit_mm(struct task_struct * tsk)
654 {
655         struct mm_struct *mm = tsk->mm;
656         struct core_state *core_state;
657
658         mm_release(tsk, mm);
659         if (!mm)
660                 return;
661         /*
662          * Serialize with any possible pending coredump.
663          * We must hold mmap_sem around checking core_state
664          * and clearing tsk->mm.  The core-inducing thread
665          * will increment ->nr_threads for each thread in the
666          * group with ->mm != NULL.
667          */
668         down_read(&mm->mmap_sem);
669         core_state = mm->core_state;
670         if (core_state) {
671                 struct core_thread self;
672                 up_read(&mm->mmap_sem);
673
674                 self.task = tsk;
675                 self.next = xchg(&core_state->dumper.next, &self);
676                 /*
677                  * Implies mb(), the result of xchg() must be visible
678                  * to core_state->dumper.
679                  */
680                 if (atomic_dec_and_test(&core_state->nr_threads))
681                         complete(&core_state->startup);
682
683                 for (;;) {
684                         set_task_state(tsk, TASK_UNINTERRUPTIBLE);
685                         if (!self.task) /* see coredump_finish() */
686                                 break;
687                         schedule();
688                 }
689                 __set_task_state(tsk, TASK_RUNNING);
690                 down_read(&mm->mmap_sem);
691         }
692         atomic_inc(&mm->mm_count);
693         BUG_ON(mm != tsk->active_mm);
694         /* more a memory barrier than a real lock */
695         task_lock(tsk);
696         tsk->mm = NULL;
697         up_read(&mm->mmap_sem);
698         enter_lazy_tlb(mm, current);
699         /* We don't want this task to be frozen prematurely */
700         clear_freeze_flag(tsk);
701         task_unlock(tsk);
702         mm_update_next_owner(mm);
703         mmput(mm);
704 }
705
706 /*
707  * When we die, we re-parent all our children.
708  * Try to give them to another thread in our thread
709  * group, and if no such member exists, give it to
710  * the child reaper process (ie "init") in our pid
711  * space.
712  */
713 static struct task_struct *find_new_reaper(struct task_struct *father)
714 {
715         struct pid_namespace *pid_ns = task_active_pid_ns(father);
716         struct task_struct *thread;
717
718         thread = father;
719         while_each_thread(father, thread) {
720                 if (thread->flags & PF_EXITING)
721                         continue;
722                 if (unlikely(pid_ns->child_reaper == father))
723                         pid_ns->child_reaper = thread;
724                 return thread;
725         }
726
727         if (unlikely(pid_ns->child_reaper == father)) {
728                 write_unlock_irq(&tasklist_lock);
729                 if (unlikely(pid_ns == &init_pid_ns))
730                         panic("Attempted to kill init!");
731
732                 zap_pid_ns_processes(pid_ns);
733                 write_lock_irq(&tasklist_lock);
734                 /*
735                  * We can not clear ->child_reaper or leave it alone.
736                  * There may by stealth EXIT_DEAD tasks on ->children,
737                  * forget_original_parent() must move them somewhere.
738                  */
739                 pid_ns->child_reaper = init_pid_ns.child_reaper;
740         }
741
742         return pid_ns->child_reaper;
743 }
744
745 /*
746 * Any that need to be release_task'd are put on the @dead list.
747  */
748 static void reparent_thread(struct task_struct *father, struct task_struct *p,
749                                 struct list_head *dead)
750 {
751         if (p->pdeath_signal)
752                 group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p);
753
754         list_move_tail(&p->sibling, &p->real_parent->children);
755
756         if (task_detached(p))
757                 return;
758         /*
759          * If this is a threaded reparent there is no need to
760          * notify anyone anything has happened.
761          */
762         if (same_thread_group(p->real_parent, father))
763                 return;
764
765         /* We don't want people slaying init.  */
766         p->exit_signal = SIGCHLD;
767
768         /* If it has exited notify the new parent about this child's death. */
769         if (!p->ptrace &&
770             p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
771                 do_notify_parent(p, p->exit_signal);
772                 if (task_detached(p)) {
773                         p->exit_state = EXIT_DEAD;
774                         list_move_tail(&p->sibling, dead);
775                 }
776         }
777
778         kill_orphaned_pgrp(p, father);
779 }
780
781 static void forget_original_parent(struct task_struct *father)
782 {
783         struct task_struct *p, *n, *reaper;
784         LIST_HEAD(dead_children);
785
786         exit_ptrace(father);
787
788         write_lock_irq(&tasklist_lock);
789         reaper = find_new_reaper(father);
790
791         list_for_each_entry_safe(p, n, &father->children, sibling) {
792                 p->real_parent = reaper;
793                 if (p->parent == father) {
794                         BUG_ON(p->ptrace);
795                         p->parent = p->real_parent;
796                 }
797                 reparent_thread(father, p, &dead_children);
798         }
799         write_unlock_irq(&tasklist_lock);
800
801         BUG_ON(!list_empty(&father->children));
802
803         list_for_each_entry_safe(p, n, &dead_children, sibling) {
804                 list_del_init(&p->sibling);
805                 release_task(p);
806         }
807 }
808
809 /*
810  * Send signals to all our closest relatives so that they know
811  * to properly mourn us..
812  */
813 static void exit_notify(struct task_struct *tsk, int group_dead)
814 {
815         int signal;
816         void *cookie;
817
818         /*
819          * This does two things:
820          *
821          * A.  Make init inherit all the child processes
822          * B.  Check to see if any process groups have become orphaned
823          *      as a result of our exiting, and if they have any stopped
824          *      jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
825          */
826         forget_original_parent(tsk);
827         exit_task_namespaces(tsk);
828
829         write_lock_irq(&tasklist_lock);
830         if (group_dead)
831                 kill_orphaned_pgrp(tsk->group_leader, NULL);
832
833         /* Let father know we died
834          *
835          * Thread signals are configurable, but you aren't going to use
836          * that to send signals to arbitary processes.
837          * That stops right now.
838          *
839          * If the parent exec id doesn't match the exec id we saved
840          * when we started then we know the parent has changed security
841          * domain.
842          *
843          * If our self_exec id doesn't match our parent_exec_id then
844          * we have changed execution domain as these two values started
845          * the same after a fork.
846          */
847         if (tsk->exit_signal != SIGCHLD && !task_detached(tsk) &&
848             (tsk->parent_exec_id != tsk->real_parent->self_exec_id ||
849              tsk->self_exec_id != tsk->parent_exec_id))
850                 tsk->exit_signal = SIGCHLD;
851
852         signal = tracehook_notify_death(tsk, &cookie, group_dead);
853         if (signal >= 0)
854                 signal = do_notify_parent(tsk, signal);
855
856         tsk->exit_state = signal == DEATH_REAP ? EXIT_DEAD : EXIT_ZOMBIE;
857
858         /* mt-exec, de_thread() is waiting for us */
859         if (thread_group_leader(tsk) &&
860             tsk->signal->group_exit_task &&
861             tsk->signal->notify_count < 0)
862                 wake_up_process(tsk->signal->group_exit_task);
863
864         write_unlock_irq(&tasklist_lock);
865
866         tracehook_report_death(tsk, signal, cookie, group_dead);
867
868         /* If the process is dead, release it - nobody will wait for it */
869         if (signal == DEATH_REAP)
870                 release_task(tsk);
871 }
872
873 #ifdef CONFIG_DEBUG_STACK_USAGE
874 static void check_stack_usage(void)
875 {
876         static DEFINE_SPINLOCK(low_water_lock);
877         static int lowest_to_date = THREAD_SIZE;
878         unsigned long free;
879
880         free = stack_not_used(current);
881
882         if (free >= lowest_to_date)
883                 return;
884
885         spin_lock(&low_water_lock);
886         if (free < lowest_to_date) {
887                 printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
888                                 "left\n",
889                                 current->comm, free);
890                 lowest_to_date = free;
891         }
892         spin_unlock(&low_water_lock);
893 }
894 #else
895 static inline void check_stack_usage(void) {}
896 #endif
897
898 NORET_TYPE void do_exit(long code)
899 {
900         struct task_struct *tsk = current;
901         int group_dead;
902
903         profile_task_exit(tsk);
904
905         WARN_ON(atomic_read(&tsk->fs_excl));
906
907         if (unlikely(in_interrupt()))
908                 panic("Aiee, killing interrupt handler!");
909         if (unlikely(!tsk->pid))
910                 panic("Attempted to kill the idle task!");
911
912         tracehook_report_exit(&code);
913
914         /*
915          * We're taking recursive faults here in do_exit. Safest is to just
916          * leave this task alone and wait for reboot.
917          */
918         if (unlikely(tsk->flags & PF_EXITING)) {
919                 printk(KERN_ALERT
920                         "Fixing recursive fault but reboot is needed!\n");
921                 /*
922                  * We can do this unlocked here. The futex code uses
923                  * this flag just to verify whether the pi state
924                  * cleanup has been done or not. In the worst case it
925                  * loops once more. We pretend that the cleanup was
926                  * done as there is no way to return. Either the
927                  * OWNER_DIED bit is set by now or we push the blocked
928                  * task into the wait for ever nirwana as well.
929                  */
930                 tsk->flags |= PF_EXITPIDONE;
931                 set_current_state(TASK_UNINTERRUPTIBLE);
932                 schedule();
933         }
934
935         exit_irq_thread();
936
937         exit_signals(tsk);  /* sets PF_EXITING */
938         /*
939          * tsk->flags are checked in the futex code to protect against
940          * an exiting task cleaning up the robust pi futexes.
941          */
942         smp_mb();
943         spin_unlock_wait(&tsk->pi_lock);
944
945         if (unlikely(in_atomic()))
946                 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
947                                 current->comm, task_pid_nr(current),
948                                 preempt_count());
949
950         acct_update_integrals(tsk);
951
952         group_dead = atomic_dec_and_test(&tsk->signal->live);
953         if (group_dead) {
954                 hrtimer_cancel(&tsk->signal->real_timer);
955                 exit_itimers(tsk->signal);
956         }
957         acct_collect(code, group_dead);
958         if (group_dead)
959                 tty_audit_exit();
960         if (unlikely(tsk->audit_context))
961                 audit_free(tsk);
962
963         tsk->exit_code = code;
964         taskstats_exit(tsk, group_dead);
965
966         exit_mm(tsk);
967
968         if (group_dead)
969                 acct_process();
970         trace_sched_process_exit(tsk);
971
972         exit_sem(tsk);
973         exit_files(tsk);
974         exit_fs(tsk);
975         check_stack_usage();
976         exit_thread();
977         cgroup_exit(tsk, 1);
978
979         if (group_dead && tsk->signal->leader)
980                 disassociate_ctty(1);
981
982         module_put(task_thread_info(tsk)->exec_domain->module);
983         if (tsk->binfmt)
984                 module_put(tsk->binfmt->module);
985
986         proc_exit_connector(tsk);
987         exit_notify(tsk, group_dead);
988 #ifdef CONFIG_NUMA
989         mpol_put(tsk->mempolicy);
990         tsk->mempolicy = NULL;
991 #endif
992 #ifdef CONFIG_FUTEX
993         if (unlikely(!list_empty(&tsk->pi_state_list)))
994                 exit_pi_state_list(tsk);
995         if (unlikely(current->pi_state_cache))
996                 kfree(current->pi_state_cache);
997 #endif
998         /*
999          * Make sure we are holding no locks:
1000          */
1001         debug_check_no_locks_held(tsk);
1002         /*
1003          * We can do this unlocked here. The futex code uses this flag
1004          * just to verify whether the pi state cleanup has been done
1005          * or not. In the worst case it loops once more.
1006          */
1007         tsk->flags |= PF_EXITPIDONE;
1008
1009         if (tsk->io_context)
1010                 exit_io_context();
1011
1012         if (tsk->splice_pipe)
1013                 __free_pipe_info(tsk->splice_pipe);
1014
1015         preempt_disable();
1016         /* causes final put_task_struct in finish_task_switch(). */
1017         tsk->state = TASK_DEAD;
1018         schedule();
1019         BUG();
1020         /* Avoid "noreturn function does return".  */
1021         for (;;)
1022                 cpu_relax();    /* For when BUG is null */
1023 }
1024
1025 EXPORT_SYMBOL_GPL(do_exit);
1026
1027 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
1028 {
1029         if (comp)
1030                 complete(comp);
1031
1032         do_exit(code);
1033 }
1034
1035 EXPORT_SYMBOL(complete_and_exit);
1036
1037 SYSCALL_DEFINE1(exit, int, error_code)
1038 {
1039         do_exit((error_code&0xff)<<8);
1040 }
1041
1042 /*
1043  * Take down every thread in the group.  This is called by fatal signals
1044  * as well as by sys_exit_group (below).
1045  */
1046 NORET_TYPE void
1047 do_group_exit(int exit_code)
1048 {
1049         struct signal_struct *sig = current->signal;
1050
1051         BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1052
1053         if (signal_group_exit(sig))
1054                 exit_code = sig->group_exit_code;
1055         else if (!thread_group_empty(current)) {
1056                 struct sighand_struct *const sighand = current->sighand;
1057                 spin_lock_irq(&sighand->siglock);
1058                 if (signal_group_exit(sig))
1059                         /* Another thread got here before we took the lock.  */
1060                         exit_code = sig->group_exit_code;
1061                 else {
1062                         sig->group_exit_code = exit_code;
1063                         sig->flags = SIGNAL_GROUP_EXIT;
1064                         zap_other_threads(current);
1065                 }
1066                 spin_unlock_irq(&sighand->siglock);
1067         }
1068
1069         do_exit(exit_code);
1070         /* NOTREACHED */
1071 }
1072
1073 /*
1074  * this kills every thread in the thread group. Note that any externally
1075  * wait4()-ing process will get the correct exit code - even if this
1076  * thread is not the thread group leader.
1077  */
1078 SYSCALL_DEFINE1(exit_group, int, error_code)
1079 {
1080         do_group_exit((error_code & 0xff) << 8);
1081         /* NOTREACHED */
1082         return 0;
1083 }
1084
1085 static struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1086 {
1087         struct pid *pid = NULL;
1088         if (type == PIDTYPE_PID)
1089                 pid = task->pids[type].pid;
1090         else if (type < PIDTYPE_MAX)
1091                 pid = task->group_leader->pids[type].pid;
1092         return pid;
1093 }
1094
1095 static int eligible_child(enum pid_type type, struct pid *pid, int options,
1096                           struct task_struct *p)
1097 {
1098         int err;
1099
1100         if (type < PIDTYPE_MAX) {
1101                 if (task_pid_type(p, type) != pid)
1102                         return 0;
1103         }
1104
1105         /* Wait for all children (clone and not) if __WALL is set;
1106          * otherwise, wait for clone children *only* if __WCLONE is
1107          * set; otherwise, wait for non-clone children *only*.  (Note:
1108          * A "clone" child here is one that reports to its parent
1109          * using a signal other than SIGCHLD.) */
1110         if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0))
1111             && !(options & __WALL))
1112                 return 0;
1113
1114         err = security_task_wait(p);
1115         if (err)
1116                 return err;
1117
1118         return 1;
1119 }
1120
1121 static int wait_noreap_copyout(struct task_struct *p, pid_t pid, uid_t uid,
1122                                int why, int status,
1123                                struct siginfo __user *infop,
1124                                struct rusage __user *rusagep)
1125 {
1126         int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0;
1127
1128         put_task_struct(p);
1129         if (!retval)
1130                 retval = put_user(SIGCHLD, &infop->si_signo);
1131         if (!retval)
1132                 retval = put_user(0, &infop->si_errno);
1133         if (!retval)
1134                 retval = put_user((short)why, &infop->si_code);
1135         if (!retval)
1136                 retval = put_user(pid, &infop->si_pid);
1137         if (!retval)
1138                 retval = put_user(uid, &infop->si_uid);
1139         if (!retval)
1140                 retval = put_user(status, &infop->si_status);
1141         if (!retval)
1142                 retval = pid;
1143         return retval;
1144 }
1145
1146 /*
1147  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1148  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1149  * the lock and this task is uninteresting.  If we return nonzero, we have
1150  * released the lock and the system call should return.
1151  */
1152 static int wait_task_zombie(struct task_struct *p, int options,
1153                             struct siginfo __user *infop,
1154                             int __user *stat_addr, struct rusage __user *ru)
1155 {
1156         unsigned long state;
1157         int retval, status, traced;
1158         pid_t pid = task_pid_vnr(p);
1159         uid_t uid = __task_cred(p)->uid;
1160
1161         if (!likely(options & WEXITED))
1162                 return 0;
1163
1164         if (unlikely(options & WNOWAIT)) {
1165                 int exit_code = p->exit_code;
1166                 int why, status;
1167
1168                 get_task_struct(p);
1169                 read_unlock(&tasklist_lock);
1170                 if ((exit_code & 0x7f) == 0) {
1171                         why = CLD_EXITED;
1172                         status = exit_code >> 8;
1173                 } else {
1174                         why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1175                         status = exit_code & 0x7f;
1176                 }
1177                 return wait_noreap_copyout(p, pid, uid, why,
1178                                            status, infop, ru);
1179         }
1180
1181         /*
1182          * Try to move the task's state to DEAD
1183          * only one thread is allowed to do this:
1184          */
1185         state = xchg(&p->exit_state, EXIT_DEAD);
1186         if (state != EXIT_ZOMBIE) {
1187                 BUG_ON(state != EXIT_DEAD);
1188                 return 0;
1189         }
1190
1191         traced = ptrace_reparented(p);
1192
1193         if (likely(!traced)) {
1194                 struct signal_struct *psig;
1195                 struct signal_struct *sig;
1196                 struct task_cputime cputime;
1197
1198                 /*
1199                  * The resource counters for the group leader are in its
1200                  * own task_struct.  Those for dead threads in the group
1201                  * are in its signal_struct, as are those for the child
1202                  * processes it has previously reaped.  All these
1203                  * accumulate in the parent's signal_struct c* fields.
1204                  *
1205                  * We don't bother to take a lock here to protect these
1206                  * p->signal fields, because they are only touched by
1207                  * __exit_signal, which runs with tasklist_lock
1208                  * write-locked anyway, and so is excluded here.  We do
1209                  * need to protect the access to p->parent->signal fields,
1210                  * as other threads in the parent group can be right
1211                  * here reaping other children at the same time.
1212                  *
1213                  * We use thread_group_cputime() to get times for the thread
1214                  * group, which consolidates times for all threads in the
1215                  * group including the group leader.
1216                  */
1217                 thread_group_cputime(p, &cputime);
1218                 spin_lock_irq(&p->parent->sighand->siglock);
1219                 psig = p->parent->signal;
1220                 sig = p->signal;
1221                 psig->cutime =
1222                         cputime_add(psig->cutime,
1223                         cputime_add(cputime.utime,
1224                                     sig->cutime));
1225                 psig->cstime =
1226                         cputime_add(psig->cstime,
1227                         cputime_add(cputime.stime,
1228                                     sig->cstime));
1229                 psig->cgtime =
1230                         cputime_add(psig->cgtime,
1231                         cputime_add(p->gtime,
1232                         cputime_add(sig->gtime,
1233                                     sig->cgtime)));
1234                 psig->cmin_flt +=
1235                         p->min_flt + sig->min_flt + sig->cmin_flt;
1236                 psig->cmaj_flt +=
1237                         p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1238                 psig->cnvcsw +=
1239                         p->nvcsw + sig->nvcsw + sig->cnvcsw;
1240                 psig->cnivcsw +=
1241                         p->nivcsw + sig->nivcsw + sig->cnivcsw;
1242                 psig->cinblock +=
1243                         task_io_get_inblock(p) +
1244                         sig->inblock + sig->cinblock;
1245                 psig->coublock +=
1246                         task_io_get_oublock(p) +
1247                         sig->oublock + sig->coublock;
1248                 task_io_accounting_add(&psig->ioac, &p->ioac);
1249                 task_io_accounting_add(&psig->ioac, &sig->ioac);
1250                 spin_unlock_irq(&p->parent->sighand->siglock);
1251         }
1252
1253         /*
1254          * Now we are sure this task is interesting, and no other
1255          * thread can reap it because we set its state to EXIT_DEAD.
1256          */
1257         read_unlock(&tasklist_lock);
1258
1259         /*
1260          * Flush inherited counters to the parent - before the parent
1261          * gets woken up by child-exit notifications.
1262          */
1263         perf_counter_exit_task(p);
1264
1265         retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1266         status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1267                 ? p->signal->group_exit_code : p->exit_code;
1268         if (!retval && stat_addr)
1269                 retval = put_user(status, stat_addr);
1270         if (!retval && infop)
1271                 retval = put_user(SIGCHLD, &infop->si_signo);
1272         if (!retval && infop)
1273                 retval = put_user(0, &infop->si_errno);
1274         if (!retval && infop) {
1275                 int why;
1276
1277                 if ((status & 0x7f) == 0) {
1278                         why = CLD_EXITED;
1279                         status >>= 8;
1280                 } else {
1281                         why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1282                         status &= 0x7f;
1283                 }
1284                 retval = put_user((short)why, &infop->si_code);
1285                 if (!retval)
1286                         retval = put_user(status, &infop->si_status);
1287         }
1288         if (!retval && infop)
1289                 retval = put_user(pid, &infop->si_pid);
1290         if (!retval && infop)
1291                 retval = put_user(uid, &infop->si_uid);
1292         if (!retval)
1293                 retval = pid;
1294
1295         if (traced) {
1296                 write_lock_irq(&tasklist_lock);
1297                 /* We dropped tasklist, ptracer could die and untrace */
1298                 ptrace_unlink(p);
1299                 /*
1300                  * If this is not a detached task, notify the parent.
1301                  * If it's still not detached after that, don't release
1302                  * it now.
1303                  */
1304                 if (!task_detached(p)) {
1305                         do_notify_parent(p, p->exit_signal);
1306                         if (!task_detached(p)) {
1307                                 p->exit_state = EXIT_ZOMBIE;
1308                                 p = NULL;
1309                         }
1310                 }
1311                 write_unlock_irq(&tasklist_lock);
1312         }
1313         if (p != NULL)
1314                 release_task(p);
1315
1316         return retval;
1317 }
1318
1319 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1320 {
1321         if (ptrace) {
1322                 if (task_is_stopped_or_traced(p))
1323                         return &p->exit_code;
1324         } else {
1325                 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1326                         return &p->signal->group_exit_code;
1327         }
1328         return NULL;
1329 }
1330
1331 /*
1332  * Handle sys_wait4 work for one task in state TASK_STOPPED.  We hold
1333  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1334  * the lock and this task is uninteresting.  If we return nonzero, we have
1335  * released the lock and the system call should return.
1336  */
1337 static int wait_task_stopped(int ptrace, struct task_struct *p,
1338                              int options, struct siginfo __user *infop,
1339                              int __user *stat_addr, struct rusage __user *ru)
1340 {
1341         int retval, exit_code, *p_code, why;
1342         uid_t uid = 0; /* unneeded, required by compiler */
1343         pid_t pid;
1344
1345         if (!(options & WUNTRACED))
1346                 return 0;
1347
1348         exit_code = 0;
1349         spin_lock_irq(&p->sighand->siglock);
1350
1351         p_code = task_stopped_code(p, ptrace);
1352         if (unlikely(!p_code))
1353                 goto unlock_sig;
1354
1355         exit_code = *p_code;
1356         if (!exit_code)
1357                 goto unlock_sig;
1358
1359         if (!unlikely(options & WNOWAIT))
1360                 *p_code = 0;
1361
1362         /* don't need the RCU readlock here as we're holding a spinlock */
1363         uid = __task_cred(p)->uid;
1364 unlock_sig:
1365         spin_unlock_irq(&p->sighand->siglock);
1366         if (!exit_code)
1367                 return 0;
1368
1369         /*
1370          * Now we are pretty sure this task is interesting.
1371          * Make sure it doesn't get reaped out from under us while we
1372          * give up the lock and then examine it below.  We don't want to
1373          * keep holding onto the tasklist_lock while we call getrusage and
1374          * possibly take page faults for user memory.
1375          */
1376         get_task_struct(p);
1377         pid = task_pid_vnr(p);
1378         why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1379         read_unlock(&tasklist_lock);
1380
1381         if (unlikely(options & WNOWAIT))
1382                 return wait_noreap_copyout(p, pid, uid,
1383                                            why, exit_code,
1384                                            infop, ru);
1385
1386         retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1387         if (!retval && stat_addr)
1388                 retval = put_user((exit_code << 8) | 0x7f, stat_addr);
1389         if (!retval && infop)
1390                 retval = put_user(SIGCHLD, &infop->si_signo);
1391         if (!retval && infop)
1392                 retval = put_user(0, &infop->si_errno);
1393         if (!retval && infop)
1394                 retval = put_user((short)why, &infop->si_code);
1395         if (!retval && infop)
1396                 retval = put_user(exit_code, &infop->si_status);
1397         if (!retval && infop)
1398                 retval = put_user(pid, &infop->si_pid);
1399         if (!retval && infop)
1400                 retval = put_user(uid, &infop->si_uid);
1401         if (!retval)
1402                 retval = pid;
1403         put_task_struct(p);
1404
1405         BUG_ON(!retval);
1406         return retval;
1407 }
1408
1409 /*
1410  * Handle do_wait work for one task in a live, non-stopped state.
1411  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1412  * the lock and this task is uninteresting.  If we return nonzero, we have
1413  * released the lock and the system call should return.
1414  */
1415 static int wait_task_continued(struct task_struct *p, int options,
1416                                struct siginfo __user *infop,
1417                                int __user *stat_addr, struct rusage __user *ru)
1418 {
1419         int retval;
1420         pid_t pid;
1421         uid_t uid;
1422
1423         if (!unlikely(options & WCONTINUED))
1424                 return 0;
1425
1426         if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1427                 return 0;
1428
1429         spin_lock_irq(&p->sighand->siglock);
1430         /* Re-check with the lock held.  */
1431         if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1432                 spin_unlock_irq(&p->sighand->siglock);
1433                 return 0;
1434         }
1435         if (!unlikely(options & WNOWAIT))
1436                 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1437         uid = __task_cred(p)->uid;
1438         spin_unlock_irq(&p->sighand->siglock);
1439
1440         pid = task_pid_vnr(p);
1441         get_task_struct(p);
1442         read_unlock(&tasklist_lock);
1443
1444         if (!infop) {
1445                 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1446                 put_task_struct(p);
1447                 if (!retval && stat_addr)
1448                         retval = put_user(0xffff, stat_addr);
1449                 if (!retval)
1450                         retval = pid;
1451         } else {
1452                 retval = wait_noreap_copyout(p, pid, uid,
1453                                              CLD_CONTINUED, SIGCONT,
1454                                              infop, ru);
1455                 BUG_ON(retval == 0);
1456         }
1457
1458         return retval;
1459 }
1460
1461 /*
1462  * Consider @p for a wait by @parent.
1463  *
1464  * -ECHILD should be in *@notask_error before the first call.
1465  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1466  * Returns zero if the search for a child should continue;
1467  * then *@notask_error is 0 if @p is an eligible child,
1468  * or another error from security_task_wait(), or still -ECHILD.
1469  */
1470 static int wait_consider_task(struct task_struct *parent, int ptrace,
1471                               struct task_struct *p, int *notask_error,
1472                               enum pid_type type, struct pid *pid, int options,
1473                               struct siginfo __user *infop,
1474                               int __user *stat_addr, struct rusage __user *ru)
1475 {
1476         int ret = eligible_child(type, pid, options, p);
1477         if (!ret)
1478                 return ret;
1479
1480         if (unlikely(ret < 0)) {
1481                 /*
1482                  * If we have not yet seen any eligible child,
1483                  * then let this error code replace -ECHILD.
1484                  * A permission error will give the user a clue
1485                  * to look for security policy problems, rather
1486                  * than for mysterious wait bugs.
1487                  */
1488                 if (*notask_error)
1489                         *notask_error = ret;
1490         }
1491
1492         if (likely(!ptrace) && unlikely(p->ptrace)) {
1493                 /*
1494                  * This child is hidden by ptrace.
1495                  * We aren't allowed to see it now, but eventually we will.
1496                  */
1497                 *notask_error = 0;
1498                 return 0;
1499         }
1500
1501         if (p->exit_state == EXIT_DEAD)
1502                 return 0;
1503
1504         /*
1505          * We don't reap group leaders with subthreads.
1506          */
1507         if (p->exit_state == EXIT_ZOMBIE && !delay_group_leader(p))
1508                 return wait_task_zombie(p, options, infop, stat_addr, ru);
1509
1510         /*
1511          * It's stopped or running now, so it might
1512          * later continue, exit, or stop again.
1513          */
1514         *notask_error = 0;
1515
1516         if (task_stopped_code(p, ptrace))
1517                 return wait_task_stopped(ptrace, p, options,
1518                                          infop, stat_addr, ru);
1519
1520         return wait_task_continued(p, options, infop, stat_addr, ru);
1521 }
1522
1523 /*
1524  * Do the work of do_wait() for one thread in the group, @tsk.
1525  *
1526  * -ECHILD should be in *@notask_error before the first call.
1527  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1528  * Returns zero if the search for a child should continue; then
1529  * *@notask_error is 0 if there were any eligible children,
1530  * or another error from security_task_wait(), or still -ECHILD.
1531  */
1532 static int do_wait_thread(struct task_struct *tsk, int *notask_error,
1533                           enum pid_type type, struct pid *pid, int options,
1534                           struct siginfo __user *infop, int __user *stat_addr,
1535                           struct rusage __user *ru)
1536 {
1537         struct task_struct *p;
1538
1539         list_for_each_entry(p, &tsk->children, sibling) {
1540                 /*
1541                  * Do not consider detached threads.
1542                  */
1543                 if (!task_detached(p)) {
1544                         int ret = wait_consider_task(tsk, 0, p, notask_error,
1545                                                      type, pid, options,
1546                                                      infop, stat_addr, ru);
1547                         if (ret)
1548                                 return ret;
1549                 }
1550         }
1551
1552         return 0;
1553 }
1554
1555 static int ptrace_do_wait(struct task_struct *tsk, int *notask_error,
1556                           enum pid_type type, struct pid *pid, int options,
1557                           struct siginfo __user *infop, int __user *stat_addr,
1558                           struct rusage __user *ru)
1559 {
1560         struct task_struct *p;
1561
1562         /*
1563          * Traditionally we see ptrace'd stopped tasks regardless of options.
1564          */
1565         options |= WUNTRACED;
1566
1567         list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1568                 int ret = wait_consider_task(tsk, 1, p, notask_error,
1569                                              type, pid, options,
1570                                              infop, stat_addr, ru);
1571                 if (ret)
1572                         return ret;
1573         }
1574
1575         return 0;
1576 }
1577
1578 static long do_wait(enum pid_type type, struct pid *pid, int options,
1579                     struct siginfo __user *infop, int __user *stat_addr,
1580                     struct rusage __user *ru)
1581 {
1582         DECLARE_WAITQUEUE(wait, current);
1583         struct task_struct *tsk;
1584         int retval;
1585
1586         trace_sched_process_wait(pid);
1587
1588         add_wait_queue(&current->signal->wait_chldexit,&wait);
1589 repeat:
1590         /*
1591          * If there is nothing that can match our critiera just get out.
1592          * We will clear @retval to zero if we see any child that might later
1593          * match our criteria, even if we are not able to reap it yet.
1594          */
1595         retval = -ECHILD;
1596         if ((type < PIDTYPE_MAX) && (!pid || hlist_empty(&pid->tasks[type])))
1597                 goto end;
1598
1599         current->state = TASK_INTERRUPTIBLE;
1600         read_lock(&tasklist_lock);
1601         tsk = current;
1602         do {
1603                 int tsk_result = do_wait_thread(tsk, &retval,
1604                                                 type, pid, options,
1605                                                 infop, stat_addr, ru);
1606                 if (!tsk_result)
1607                         tsk_result = ptrace_do_wait(tsk, &retval,
1608                                                     type, pid, options,
1609                                                     infop, stat_addr, ru);
1610                 if (tsk_result) {
1611                         /*
1612                          * tasklist_lock is unlocked and we have a final result.
1613                          */
1614                         retval = tsk_result;
1615                         goto end;
1616                 }
1617
1618                 if (options & __WNOTHREAD)
1619                         break;
1620                 tsk = next_thread(tsk);
1621                 BUG_ON(tsk->signal != current->signal);
1622         } while (tsk != current);
1623         read_unlock(&tasklist_lock);
1624
1625         if (!retval && !(options & WNOHANG)) {
1626                 retval = -ERESTARTSYS;
1627                 if (!signal_pending(current)) {
1628                         schedule();
1629                         goto repeat;
1630                 }
1631         }
1632
1633 end:
1634         current->state = TASK_RUNNING;
1635         remove_wait_queue(&current->signal->wait_chldexit,&wait);
1636         if (infop) {
1637                 if (retval > 0)
1638                         retval = 0;
1639                 else {
1640                         /*
1641                          * For a WNOHANG return, clear out all the fields
1642                          * we would set so the user can easily tell the
1643                          * difference.
1644                          */
1645                         if (!retval)
1646                                 retval = put_user(0, &infop->si_signo);
1647                         if (!retval)
1648                                 retval = put_user(0, &infop->si_errno);
1649                         if (!retval)
1650                                 retval = put_user(0, &infop->si_code);
1651                         if (!retval)
1652                                 retval = put_user(0, &infop->si_pid);
1653                         if (!retval)
1654                                 retval = put_user(0, &infop->si_uid);
1655                         if (!retval)
1656                                 retval = put_user(0, &infop->si_status);
1657                 }
1658         }
1659         return retval;
1660 }
1661
1662 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1663                 infop, int, options, struct rusage __user *, ru)
1664 {
1665         struct pid *pid = NULL;
1666         enum pid_type type;
1667         long ret;
1668
1669         if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1670                 return -EINVAL;
1671         if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1672                 return -EINVAL;
1673
1674         switch (which) {
1675         case P_ALL:
1676                 type = PIDTYPE_MAX;
1677                 break;
1678         case P_PID:
1679                 type = PIDTYPE_PID;
1680                 if (upid <= 0)
1681                         return -EINVAL;
1682                 break;
1683         case P_PGID:
1684                 type = PIDTYPE_PGID;
1685                 if (upid <= 0)
1686                         return -EINVAL;
1687                 break;
1688         default:
1689                 return -EINVAL;
1690         }
1691
1692         if (type < PIDTYPE_MAX)
1693                 pid = find_get_pid(upid);
1694         ret = do_wait(type, pid, options, infop, NULL, ru);
1695         put_pid(pid);
1696
1697         /* avoid REGPARM breakage on x86: */
1698         asmlinkage_protect(5, ret, which, upid, infop, options, ru);
1699         return ret;
1700 }
1701
1702 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1703                 int, options, struct rusage __user *, ru)
1704 {
1705         struct pid *pid = NULL;
1706         enum pid_type type;
1707         long ret;
1708
1709         if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1710                         __WNOTHREAD|__WCLONE|__WALL))
1711                 return -EINVAL;
1712
1713         if (upid == -1)
1714                 type = PIDTYPE_MAX;
1715         else if (upid < 0) {
1716                 type = PIDTYPE_PGID;
1717                 pid = find_get_pid(-upid);
1718         } else if (upid == 0) {
1719                 type = PIDTYPE_PGID;
1720                 pid = get_task_pid(current, PIDTYPE_PGID);
1721         } else /* upid > 0 */ {
1722                 type = PIDTYPE_PID;
1723                 pid = find_get_pid(upid);
1724         }
1725
1726         ret = do_wait(type, pid, options | WEXITED, NULL, stat_addr, ru);
1727         put_pid(pid);
1728
1729         /* avoid REGPARM breakage on x86: */
1730         asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
1731         return ret;
1732 }
1733
1734 #ifdef __ARCH_WANT_SYS_WAITPID
1735
1736 /*
1737  * sys_waitpid() remains for compatibility. waitpid() should be
1738  * implemented by calling sys_wait4() from libc.a.
1739  */
1740 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1741 {
1742         return sys_wait4(pid, stat_addr, options, NULL);
1743 }
1744
1745 #endif