ptrace: simplify ptrace_exit()->ignoring_children() path
[safe/jmp/linux-2.6] / kernel / exit.c
1 /*
2  *  linux/kernel/exit.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/mnt_namespace.h>
16 #include <linux/iocontext.h>
17 #include <linux/key.h>
18 #include <linux/security.h>
19 #include <linux/cpu.h>
20 #include <linux/acct.h>
21 #include <linux/tsacct_kern.h>
22 #include <linux/file.h>
23 #include <linux/fdtable.h>
24 #include <linux/binfmts.h>
25 #include <linux/nsproxy.h>
26 #include <linux/pid_namespace.h>
27 #include <linux/ptrace.h>
28 #include <linux/profile.h>
29 #include <linux/mount.h>
30 #include <linux/proc_fs.h>
31 #include <linux/kthread.h>
32 #include <linux/mempolicy.h>
33 #include <linux/taskstats_kern.h>
34 #include <linux/delayacct.h>
35 #include <linux/freezer.h>
36 #include <linux/cgroup.h>
37 #include <linux/syscalls.h>
38 #include <linux/signal.h>
39 #include <linux/posix-timers.h>
40 #include <linux/cn_proc.h>
41 #include <linux/mutex.h>
42 #include <linux/futex.h>
43 #include <linux/pipe_fs_i.h>
44 #include <linux/audit.h> /* for audit_free() */
45 #include <linux/resource.h>
46 #include <linux/blkdev.h>
47 #include <linux/task_io_accounting_ops.h>
48 #include <linux/tracehook.h>
49 #include <linux/init_task.h>
50 #include <trace/sched.h>
51
52 #include <asm/uaccess.h>
53 #include <asm/unistd.h>
54 #include <asm/pgtable.h>
55 #include <asm/mmu_context.h>
56 #include "cred-internals.h"
57
58 DEFINE_TRACE(sched_process_free);
59 DEFINE_TRACE(sched_process_exit);
60 DEFINE_TRACE(sched_process_wait);
61
62 static void exit_mm(struct task_struct * tsk);
63
64 static inline int task_detached(struct task_struct *p)
65 {
66         return p->exit_signal == -1;
67 }
68
69 static void __unhash_process(struct task_struct *p)
70 {
71         nr_threads--;
72         detach_pid(p, PIDTYPE_PID);
73         if (thread_group_leader(p)) {
74                 detach_pid(p, PIDTYPE_PGID);
75                 detach_pid(p, PIDTYPE_SID);
76
77                 list_del_rcu(&p->tasks);
78                 __get_cpu_var(process_counts)--;
79         }
80         list_del_rcu(&p->thread_group);
81         list_del_init(&p->sibling);
82 }
83
84 /*
85  * This function expects the tasklist_lock write-locked.
86  */
87 static void __exit_signal(struct task_struct *tsk)
88 {
89         struct signal_struct *sig = tsk->signal;
90         struct sighand_struct *sighand;
91
92         BUG_ON(!sig);
93         BUG_ON(!atomic_read(&sig->count));
94
95         sighand = rcu_dereference(tsk->sighand);
96         spin_lock(&sighand->siglock);
97
98         posix_cpu_timers_exit(tsk);
99         if (atomic_dec_and_test(&sig->count))
100                 posix_cpu_timers_exit_group(tsk);
101         else {
102                 /*
103                  * If there is any task waiting for the group exit
104                  * then notify it:
105                  */
106                 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count)
107                         wake_up_process(sig->group_exit_task);
108
109                 if (tsk == sig->curr_target)
110                         sig->curr_target = next_thread(tsk);
111                 /*
112                  * Accumulate here the counters for all threads but the
113                  * group leader as they die, so they can be added into
114                  * the process-wide totals when those are taken.
115                  * The group leader stays around as a zombie as long
116                  * as there are other threads.  When it gets reaped,
117                  * the exit.c code will add its counts into these totals.
118                  * We won't ever get here for the group leader, since it
119                  * will have been the last reference on the signal_struct.
120                  */
121                 sig->utime = cputime_add(sig->utime, task_utime(tsk));
122                 sig->stime = cputime_add(sig->stime, task_stime(tsk));
123                 sig->gtime = cputime_add(sig->gtime, task_gtime(tsk));
124                 sig->min_flt += tsk->min_flt;
125                 sig->maj_flt += tsk->maj_flt;
126                 sig->nvcsw += tsk->nvcsw;
127                 sig->nivcsw += tsk->nivcsw;
128                 sig->inblock += task_io_get_inblock(tsk);
129                 sig->oublock += task_io_get_oublock(tsk);
130                 task_io_accounting_add(&sig->ioac, &tsk->ioac);
131                 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
132                 sig = NULL; /* Marker for below. */
133         }
134
135         __unhash_process(tsk);
136
137         /*
138          * Do this under ->siglock, we can race with another thread
139          * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
140          */
141         flush_sigqueue(&tsk->pending);
142
143         tsk->signal = NULL;
144         tsk->sighand = NULL;
145         spin_unlock(&sighand->siglock);
146
147         __cleanup_sighand(sighand);
148         clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
149         if (sig) {
150                 flush_sigqueue(&sig->shared_pending);
151                 taskstats_tgid_free(sig);
152                 /*
153                  * Make sure ->signal can't go away under rq->lock,
154                  * see account_group_exec_runtime().
155                  */
156                 task_rq_unlock_wait(tsk);
157                 __cleanup_signal(sig);
158         }
159 }
160
161 static void delayed_put_task_struct(struct rcu_head *rhp)
162 {
163         struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
164
165         trace_sched_process_free(tsk);
166         put_task_struct(tsk);
167 }
168
169
170 void release_task(struct task_struct * p)
171 {
172         struct task_struct *leader;
173         int zap_leader;
174 repeat:
175         tracehook_prepare_release_task(p);
176         /* don't need to get the RCU readlock here - the process is dead and
177          * can't be modifying its own credentials */
178         atomic_dec(&__task_cred(p)->user->processes);
179
180         proc_flush_task(p);
181         write_lock_irq(&tasklist_lock);
182         tracehook_finish_release_task(p);
183         __exit_signal(p);
184
185         /*
186          * If we are the last non-leader member of the thread
187          * group, and the leader is zombie, then notify the
188          * group leader's parent process. (if it wants notification.)
189          */
190         zap_leader = 0;
191         leader = p->group_leader;
192         if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
193                 BUG_ON(task_detached(leader));
194                 do_notify_parent(leader, leader->exit_signal);
195                 /*
196                  * If we were the last child thread and the leader has
197                  * exited already, and the leader's parent ignores SIGCHLD,
198                  * then we are the one who should release the leader.
199                  *
200                  * do_notify_parent() will have marked it self-reaping in
201                  * that case.
202                  */
203                 zap_leader = task_detached(leader);
204
205                 /*
206                  * This maintains the invariant that release_task()
207                  * only runs on a task in EXIT_DEAD, just for sanity.
208                  */
209                 if (zap_leader)
210                         leader->exit_state = EXIT_DEAD;
211         }
212
213         write_unlock_irq(&tasklist_lock);
214         release_thread(p);
215         call_rcu(&p->rcu, delayed_put_task_struct);
216
217         p = leader;
218         if (unlikely(zap_leader))
219                 goto repeat;
220 }
221
222 /*
223  * This checks not only the pgrp, but falls back on the pid if no
224  * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
225  * without this...
226  *
227  * The caller must hold rcu lock or the tasklist lock.
228  */
229 struct pid *session_of_pgrp(struct pid *pgrp)
230 {
231         struct task_struct *p;
232         struct pid *sid = NULL;
233
234         p = pid_task(pgrp, PIDTYPE_PGID);
235         if (p == NULL)
236                 p = pid_task(pgrp, PIDTYPE_PID);
237         if (p != NULL)
238                 sid = task_session(p);
239
240         return sid;
241 }
242
243 /*
244  * Determine if a process group is "orphaned", according to the POSIX
245  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
246  * by terminal-generated stop signals.  Newly orphaned process groups are
247  * to receive a SIGHUP and a SIGCONT.
248  *
249  * "I ask you, have you ever known what it is to be an orphan?"
250  */
251 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
252 {
253         struct task_struct *p;
254
255         do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
256                 if ((p == ignored_task) ||
257                     (p->exit_state && thread_group_empty(p)) ||
258                     is_global_init(p->real_parent))
259                         continue;
260
261                 if (task_pgrp(p->real_parent) != pgrp &&
262                     task_session(p->real_parent) == task_session(p))
263                         return 0;
264         } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
265
266         return 1;
267 }
268
269 int is_current_pgrp_orphaned(void)
270 {
271         int retval;
272
273         read_lock(&tasklist_lock);
274         retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
275         read_unlock(&tasklist_lock);
276
277         return retval;
278 }
279
280 static int has_stopped_jobs(struct pid *pgrp)
281 {
282         int retval = 0;
283         struct task_struct *p;
284
285         do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
286                 if (!task_is_stopped(p))
287                         continue;
288                 retval = 1;
289                 break;
290         } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
291         return retval;
292 }
293
294 /*
295  * Check to see if any process groups have become orphaned as
296  * a result of our exiting, and if they have any stopped jobs,
297  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
298  */
299 static void
300 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
301 {
302         struct pid *pgrp = task_pgrp(tsk);
303         struct task_struct *ignored_task = tsk;
304
305         if (!parent)
306                  /* exit: our father is in a different pgrp than
307                   * we are and we were the only connection outside.
308                   */
309                 parent = tsk->real_parent;
310         else
311                 /* reparent: our child is in a different pgrp than
312                  * we are, and it was the only connection outside.
313                  */
314                 ignored_task = NULL;
315
316         if (task_pgrp(parent) != pgrp &&
317             task_session(parent) == task_session(tsk) &&
318             will_become_orphaned_pgrp(pgrp, ignored_task) &&
319             has_stopped_jobs(pgrp)) {
320                 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
321                 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
322         }
323 }
324
325 /**
326  * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
327  *
328  * If a kernel thread is launched as a result of a system call, or if
329  * it ever exits, it should generally reparent itself to kthreadd so it
330  * isn't in the way of other processes and is correctly cleaned up on exit.
331  *
332  * The various task state such as scheduling policy and priority may have
333  * been inherited from a user process, so we reset them to sane values here.
334  *
335  * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
336  */
337 static void reparent_to_kthreadd(void)
338 {
339         write_lock_irq(&tasklist_lock);
340
341         ptrace_unlink(current);
342         /* Reparent to init */
343         current->real_parent = current->parent = kthreadd_task;
344         list_move_tail(&current->sibling, &current->real_parent->children);
345
346         /* Set the exit signal to SIGCHLD so we signal init on exit */
347         current->exit_signal = SIGCHLD;
348
349         if (task_nice(current) < 0)
350                 set_user_nice(current, 0);
351         /* cpus_allowed? */
352         /* rt_priority? */
353         /* signals? */
354         memcpy(current->signal->rlim, init_task.signal->rlim,
355                sizeof(current->signal->rlim));
356
357         atomic_inc(&init_cred.usage);
358         commit_creds(&init_cred);
359         write_unlock_irq(&tasklist_lock);
360 }
361
362 void __set_special_pids(struct pid *pid)
363 {
364         struct task_struct *curr = current->group_leader;
365         pid_t nr = pid_nr(pid);
366
367         if (task_session(curr) != pid) {
368                 change_pid(curr, PIDTYPE_SID, pid);
369                 set_task_session(curr, nr);
370         }
371         if (task_pgrp(curr) != pid) {
372                 change_pid(curr, PIDTYPE_PGID, pid);
373                 set_task_pgrp(curr, nr);
374         }
375 }
376
377 static void set_special_pids(struct pid *pid)
378 {
379         write_lock_irq(&tasklist_lock);
380         __set_special_pids(pid);
381         write_unlock_irq(&tasklist_lock);
382 }
383
384 /*
385  * Let kernel threads use this to say that they
386  * allow a certain signal (since daemonize() will
387  * have disabled all of them by default).
388  */
389 int allow_signal(int sig)
390 {
391         if (!valid_signal(sig) || sig < 1)
392                 return -EINVAL;
393
394         spin_lock_irq(&current->sighand->siglock);
395         sigdelset(&current->blocked, sig);
396         if (!current->mm) {
397                 /* Kernel threads handle their own signals.
398                    Let the signal code know it'll be handled, so
399                    that they don't get converted to SIGKILL or
400                    just silently dropped */
401                 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
402         }
403         recalc_sigpending();
404         spin_unlock_irq(&current->sighand->siglock);
405         return 0;
406 }
407
408 EXPORT_SYMBOL(allow_signal);
409
410 int disallow_signal(int sig)
411 {
412         if (!valid_signal(sig) || sig < 1)
413                 return -EINVAL;
414
415         spin_lock_irq(&current->sighand->siglock);
416         current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
417         recalc_sigpending();
418         spin_unlock_irq(&current->sighand->siglock);
419         return 0;
420 }
421
422 EXPORT_SYMBOL(disallow_signal);
423
424 /*
425  *      Put all the gunge required to become a kernel thread without
426  *      attached user resources in one place where it belongs.
427  */
428
429 void daemonize(const char *name, ...)
430 {
431         va_list args;
432         struct fs_struct *fs;
433         sigset_t blocked;
434
435         va_start(args, name);
436         vsnprintf(current->comm, sizeof(current->comm), name, args);
437         va_end(args);
438
439         /*
440          * If we were started as result of loading a module, close all of the
441          * user space pages.  We don't need them, and if we didn't close them
442          * they would be locked into memory.
443          */
444         exit_mm(current);
445         /*
446          * We don't want to have TIF_FREEZE set if the system-wide hibernation
447          * or suspend transition begins right now.
448          */
449         current->flags |= (PF_NOFREEZE | PF_KTHREAD);
450
451         if (current->nsproxy != &init_nsproxy) {
452                 get_nsproxy(&init_nsproxy);
453                 switch_task_namespaces(current, &init_nsproxy);
454         }
455         set_special_pids(&init_struct_pid);
456         proc_clear_tty(current);
457
458         /* Block and flush all signals */
459         sigfillset(&blocked);
460         sigprocmask(SIG_BLOCK, &blocked, NULL);
461         flush_signals(current);
462
463         /* Become as one with the init task */
464
465         exit_fs(current);       /* current->fs->count--; */
466         fs = init_task.fs;
467         current->fs = fs;
468         atomic_inc(&fs->count);
469
470         exit_files(current);
471         current->files = init_task.files;
472         atomic_inc(&current->files->count);
473
474         reparent_to_kthreadd();
475 }
476
477 EXPORT_SYMBOL(daemonize);
478
479 static void close_files(struct files_struct * files)
480 {
481         int i, j;
482         struct fdtable *fdt;
483
484         j = 0;
485
486         /*
487          * It is safe to dereference the fd table without RCU or
488          * ->file_lock because this is the last reference to the
489          * files structure.
490          */
491         fdt = files_fdtable(files);
492         for (;;) {
493                 unsigned long set;
494                 i = j * __NFDBITS;
495                 if (i >= fdt->max_fds)
496                         break;
497                 set = fdt->open_fds->fds_bits[j++];
498                 while (set) {
499                         if (set & 1) {
500                                 struct file * file = xchg(&fdt->fd[i], NULL);
501                                 if (file) {
502                                         filp_close(file, files);
503                                         cond_resched();
504                                 }
505                         }
506                         i++;
507                         set >>= 1;
508                 }
509         }
510 }
511
512 struct files_struct *get_files_struct(struct task_struct *task)
513 {
514         struct files_struct *files;
515
516         task_lock(task);
517         files = task->files;
518         if (files)
519                 atomic_inc(&files->count);
520         task_unlock(task);
521
522         return files;
523 }
524
525 void put_files_struct(struct files_struct *files)
526 {
527         struct fdtable *fdt;
528
529         if (atomic_dec_and_test(&files->count)) {
530                 close_files(files);
531                 /*
532                  * Free the fd and fdset arrays if we expanded them.
533                  * If the fdtable was embedded, pass files for freeing
534                  * at the end of the RCU grace period. Otherwise,
535                  * you can free files immediately.
536                  */
537                 fdt = files_fdtable(files);
538                 if (fdt != &files->fdtab)
539                         kmem_cache_free(files_cachep, files);
540                 free_fdtable(fdt);
541         }
542 }
543
544 void reset_files_struct(struct files_struct *files)
545 {
546         struct task_struct *tsk = current;
547         struct files_struct *old;
548
549         old = tsk->files;
550         task_lock(tsk);
551         tsk->files = files;
552         task_unlock(tsk);
553         put_files_struct(old);
554 }
555
556 void exit_files(struct task_struct *tsk)
557 {
558         struct files_struct * files = tsk->files;
559
560         if (files) {
561                 task_lock(tsk);
562                 tsk->files = NULL;
563                 task_unlock(tsk);
564                 put_files_struct(files);
565         }
566 }
567
568 void put_fs_struct(struct fs_struct *fs)
569 {
570         /* No need to hold fs->lock if we are killing it */
571         if (atomic_dec_and_test(&fs->count)) {
572                 path_put(&fs->root);
573                 path_put(&fs->pwd);
574                 kmem_cache_free(fs_cachep, fs);
575         }
576 }
577
578 void exit_fs(struct task_struct *tsk)
579 {
580         struct fs_struct * fs = tsk->fs;
581
582         if (fs) {
583                 task_lock(tsk);
584                 tsk->fs = NULL;
585                 task_unlock(tsk);
586                 put_fs_struct(fs);
587         }
588 }
589
590 EXPORT_SYMBOL_GPL(exit_fs);
591
592 #ifdef CONFIG_MM_OWNER
593 /*
594  * Task p is exiting and it owned mm, lets find a new owner for it
595  */
596 static inline int
597 mm_need_new_owner(struct mm_struct *mm, struct task_struct *p)
598 {
599         /*
600          * If there are other users of the mm and the owner (us) is exiting
601          * we need to find a new owner to take on the responsibility.
602          */
603         if (atomic_read(&mm->mm_users) <= 1)
604                 return 0;
605         if (mm->owner != p)
606                 return 0;
607         return 1;
608 }
609
610 void mm_update_next_owner(struct mm_struct *mm)
611 {
612         struct task_struct *c, *g, *p = current;
613
614 retry:
615         if (!mm_need_new_owner(mm, p))
616                 return;
617
618         read_lock(&tasklist_lock);
619         /*
620          * Search in the children
621          */
622         list_for_each_entry(c, &p->children, sibling) {
623                 if (c->mm == mm)
624                         goto assign_new_owner;
625         }
626
627         /*
628          * Search in the siblings
629          */
630         list_for_each_entry(c, &p->parent->children, sibling) {
631                 if (c->mm == mm)
632                         goto assign_new_owner;
633         }
634
635         /*
636          * Search through everything else. We should not get
637          * here often
638          */
639         do_each_thread(g, c) {
640                 if (c->mm == mm)
641                         goto assign_new_owner;
642         } while_each_thread(g, c);
643
644         read_unlock(&tasklist_lock);
645         /*
646          * We found no owner yet mm_users > 1: this implies that we are
647          * most likely racing with swapoff (try_to_unuse()) or /proc or
648          * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
649          */
650         mm->owner = NULL;
651         return;
652
653 assign_new_owner:
654         BUG_ON(c == p);
655         get_task_struct(c);
656         /*
657          * The task_lock protects c->mm from changing.
658          * We always want mm->owner->mm == mm
659          */
660         task_lock(c);
661         /*
662          * Delay read_unlock() till we have the task_lock()
663          * to ensure that c does not slip away underneath us
664          */
665         read_unlock(&tasklist_lock);
666         if (c->mm != mm) {
667                 task_unlock(c);
668                 put_task_struct(c);
669                 goto retry;
670         }
671         mm->owner = c;
672         task_unlock(c);
673         put_task_struct(c);
674 }
675 #endif /* CONFIG_MM_OWNER */
676
677 /*
678  * Turn us into a lazy TLB process if we
679  * aren't already..
680  */
681 static void exit_mm(struct task_struct * tsk)
682 {
683         struct mm_struct *mm = tsk->mm;
684         struct core_state *core_state;
685
686         mm_release(tsk, mm);
687         if (!mm)
688                 return;
689         /*
690          * Serialize with any possible pending coredump.
691          * We must hold mmap_sem around checking core_state
692          * and clearing tsk->mm.  The core-inducing thread
693          * will increment ->nr_threads for each thread in the
694          * group with ->mm != NULL.
695          */
696         down_read(&mm->mmap_sem);
697         core_state = mm->core_state;
698         if (core_state) {
699                 struct core_thread self;
700                 up_read(&mm->mmap_sem);
701
702                 self.task = tsk;
703                 self.next = xchg(&core_state->dumper.next, &self);
704                 /*
705                  * Implies mb(), the result of xchg() must be visible
706                  * to core_state->dumper.
707                  */
708                 if (atomic_dec_and_test(&core_state->nr_threads))
709                         complete(&core_state->startup);
710
711                 for (;;) {
712                         set_task_state(tsk, TASK_UNINTERRUPTIBLE);
713                         if (!self.task) /* see coredump_finish() */
714                                 break;
715                         schedule();
716                 }
717                 __set_task_state(tsk, TASK_RUNNING);
718                 down_read(&mm->mmap_sem);
719         }
720         atomic_inc(&mm->mm_count);
721         BUG_ON(mm != tsk->active_mm);
722         /* more a memory barrier than a real lock */
723         task_lock(tsk);
724         tsk->mm = NULL;
725         up_read(&mm->mmap_sem);
726         enter_lazy_tlb(mm, current);
727         /* We don't want this task to be frozen prematurely */
728         clear_freeze_flag(tsk);
729         task_unlock(tsk);
730         mm_update_next_owner(mm);
731         mmput(mm);
732 }
733
734 /*
735  * Called with irqs disabled, returns true if childs should reap themselves.
736  */
737 static int ignoring_children(struct sighand_struct *sigh)
738 {
739         int ret;
740         spin_lock(&sigh->siglock);
741         ret = (sigh->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) ||
742               (sigh->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT);
743         spin_unlock(&sigh->siglock);
744         return ret;
745 }
746
747 /*
748  * Detach all tasks we were using ptrace on.
749  * Any that need to be release_task'd are put on the @dead list.
750  *
751  * Called with write_lock(&tasklist_lock) held.
752  */
753 static void ptrace_exit(struct task_struct *parent, struct list_head *dead)
754 {
755         struct task_struct *p, *n;
756
757         list_for_each_entry_safe(p, n, &parent->ptraced, ptrace_entry) {
758                 __ptrace_unlink(p);
759
760                 if (p->exit_state != EXIT_ZOMBIE)
761                         continue;
762
763                 /*
764                  * If it's a zombie, our attachedness prevented normal
765                  * parent notification or self-reaping.  Do notification
766                  * now if it would have happened earlier.  If it should
767                  * reap itself, add it to the @dead list.  We can't call
768                  * release_task() here because we already hold tasklist_lock.
769                  *
770                  * If it's our own child, there is no notification to do.
771                  * But if our normal children self-reap, then this child
772                  * was prevented by ptrace and we must reap it now.
773                  */
774                 if (!task_detached(p) && thread_group_empty(p)) {
775                         if (!same_thread_group(p->real_parent, parent))
776                                 do_notify_parent(p, p->exit_signal);
777                         else if (ignoring_children(parent->sighand))
778                                 p->exit_signal = -1;
779                 }
780
781                 if (task_detached(p)) {
782                         /*
783                          * Mark it as in the process of being reaped.
784                          */
785                         p->exit_state = EXIT_DEAD;
786                         list_add(&p->ptrace_entry, dead);
787                 }
788         }
789 }
790
791 /*
792  * Finish up exit-time ptrace cleanup.
793  *
794  * Called without locks.
795  */
796 static void ptrace_exit_finish(struct task_struct *parent,
797                                struct list_head *dead)
798 {
799         struct task_struct *p, *n;
800
801         BUG_ON(!list_empty(&parent->ptraced));
802
803         list_for_each_entry_safe(p, n, dead, ptrace_entry) {
804                 list_del_init(&p->ptrace_entry);
805                 release_task(p);
806         }
807 }
808
809 static void reparent_thread(struct task_struct *p, struct task_struct *father)
810 {
811         if (p->pdeath_signal)
812                 /* We already hold the tasklist_lock here.  */
813                 group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p);
814
815         list_move_tail(&p->sibling, &p->real_parent->children);
816
817         /* If this is a threaded reparent there is no need to
818          * notify anyone anything has happened.
819          */
820         if (same_thread_group(p->real_parent, father))
821                 return;
822
823         /* We don't want people slaying init.  */
824         if (!task_detached(p))
825                 p->exit_signal = SIGCHLD;
826
827         /* If we'd notified the old parent about this child's death,
828          * also notify the new parent.
829          */
830         if (!ptrace_reparented(p) &&
831             p->exit_state == EXIT_ZOMBIE &&
832             !task_detached(p) && thread_group_empty(p))
833                 do_notify_parent(p, p->exit_signal);
834
835         kill_orphaned_pgrp(p, father);
836 }
837
838 /*
839  * When we die, we re-parent all our children.
840  * Try to give them to another thread in our thread
841  * group, and if no such member exists, give it to
842  * the child reaper process (ie "init") in our pid
843  * space.
844  */
845 static struct task_struct *find_new_reaper(struct task_struct *father)
846 {
847         struct pid_namespace *pid_ns = task_active_pid_ns(father);
848         struct task_struct *thread;
849
850         thread = father;
851         while_each_thread(father, thread) {
852                 if (thread->flags & PF_EXITING)
853                         continue;
854                 if (unlikely(pid_ns->child_reaper == father))
855                         pid_ns->child_reaper = thread;
856                 return thread;
857         }
858
859         if (unlikely(pid_ns->child_reaper == father)) {
860                 write_unlock_irq(&tasklist_lock);
861                 if (unlikely(pid_ns == &init_pid_ns))
862                         panic("Attempted to kill init!");
863
864                 zap_pid_ns_processes(pid_ns);
865                 write_lock_irq(&tasklist_lock);
866                 /*
867                  * We can not clear ->child_reaper or leave it alone.
868                  * There may by stealth EXIT_DEAD tasks on ->children,
869                  * forget_original_parent() must move them somewhere.
870                  */
871                 pid_ns->child_reaper = init_pid_ns.child_reaper;
872         }
873
874         return pid_ns->child_reaper;
875 }
876
877 static void forget_original_parent(struct task_struct *father)
878 {
879         struct task_struct *p, *n, *reaper;
880         LIST_HEAD(ptrace_dead);
881
882         write_lock_irq(&tasklist_lock);
883         reaper = find_new_reaper(father);
884         /*
885          * First clean up ptrace if we were using it.
886          */
887         ptrace_exit(father, &ptrace_dead);
888
889         list_for_each_entry_safe(p, n, &father->children, sibling) {
890                 p->real_parent = reaper;
891                 if (p->parent == father) {
892                         BUG_ON(p->ptrace);
893                         p->parent = p->real_parent;
894                 }
895                 reparent_thread(p, father);
896         }
897
898         write_unlock_irq(&tasklist_lock);
899         BUG_ON(!list_empty(&father->children));
900
901         ptrace_exit_finish(father, &ptrace_dead);
902 }
903
904 /*
905  * Send signals to all our closest relatives so that they know
906  * to properly mourn us..
907  */
908 static void exit_notify(struct task_struct *tsk, int group_dead)
909 {
910         int signal;
911         void *cookie;
912
913         /*
914          * This does two things:
915          *
916          * A.  Make init inherit all the child processes
917          * B.  Check to see if any process groups have become orphaned
918          *      as a result of our exiting, and if they have any stopped
919          *      jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
920          */
921         forget_original_parent(tsk);
922         exit_task_namespaces(tsk);
923
924         write_lock_irq(&tasklist_lock);
925         if (group_dead)
926                 kill_orphaned_pgrp(tsk->group_leader, NULL);
927
928         /* Let father know we died
929          *
930          * Thread signals are configurable, but you aren't going to use
931          * that to send signals to arbitary processes.
932          * That stops right now.
933          *
934          * If the parent exec id doesn't match the exec id we saved
935          * when we started then we know the parent has changed security
936          * domain.
937          *
938          * If our self_exec id doesn't match our parent_exec_id then
939          * we have changed execution domain as these two values started
940          * the same after a fork.
941          */
942         if (tsk->exit_signal != SIGCHLD && !task_detached(tsk) &&
943             (tsk->parent_exec_id != tsk->real_parent->self_exec_id ||
944              tsk->self_exec_id != tsk->parent_exec_id) &&
945             !capable(CAP_KILL))
946                 tsk->exit_signal = SIGCHLD;
947
948         signal = tracehook_notify_death(tsk, &cookie, group_dead);
949         if (signal >= 0)
950                 signal = do_notify_parent(tsk, signal);
951
952         tsk->exit_state = signal == DEATH_REAP ? EXIT_DEAD : EXIT_ZOMBIE;
953
954         /* mt-exec, de_thread() is waiting for us */
955         if (thread_group_leader(tsk) &&
956             tsk->signal->group_exit_task &&
957             tsk->signal->notify_count < 0)
958                 wake_up_process(tsk->signal->group_exit_task);
959
960         write_unlock_irq(&tasklist_lock);
961
962         tracehook_report_death(tsk, signal, cookie, group_dead);
963
964         /* If the process is dead, release it - nobody will wait for it */
965         if (signal == DEATH_REAP)
966                 release_task(tsk);
967 }
968
969 #ifdef CONFIG_DEBUG_STACK_USAGE
970 static void check_stack_usage(void)
971 {
972         static DEFINE_SPINLOCK(low_water_lock);
973         static int lowest_to_date = THREAD_SIZE;
974         unsigned long free;
975
976         free = stack_not_used(current);
977
978         if (free >= lowest_to_date)
979                 return;
980
981         spin_lock(&low_water_lock);
982         if (free < lowest_to_date) {
983                 printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
984                                 "left\n",
985                                 current->comm, free);
986                 lowest_to_date = free;
987         }
988         spin_unlock(&low_water_lock);
989 }
990 #else
991 static inline void check_stack_usage(void) {}
992 #endif
993
994 NORET_TYPE void do_exit(long code)
995 {
996         struct task_struct *tsk = current;
997         int group_dead;
998
999         profile_task_exit(tsk);
1000
1001         WARN_ON(atomic_read(&tsk->fs_excl));
1002
1003         if (unlikely(in_interrupt()))
1004                 panic("Aiee, killing interrupt handler!");
1005         if (unlikely(!tsk->pid))
1006                 panic("Attempted to kill the idle task!");
1007
1008         tracehook_report_exit(&code);
1009
1010         /*
1011          * We're taking recursive faults here in do_exit. Safest is to just
1012          * leave this task alone and wait for reboot.
1013          */
1014         if (unlikely(tsk->flags & PF_EXITING)) {
1015                 printk(KERN_ALERT
1016                         "Fixing recursive fault but reboot is needed!\n");
1017                 /*
1018                  * We can do this unlocked here. The futex code uses
1019                  * this flag just to verify whether the pi state
1020                  * cleanup has been done or not. In the worst case it
1021                  * loops once more. We pretend that the cleanup was
1022                  * done as there is no way to return. Either the
1023                  * OWNER_DIED bit is set by now or we push the blocked
1024                  * task into the wait for ever nirwana as well.
1025                  */
1026                 tsk->flags |= PF_EXITPIDONE;
1027                 set_current_state(TASK_UNINTERRUPTIBLE);
1028                 schedule();
1029         }
1030
1031         exit_signals(tsk);  /* sets PF_EXITING */
1032         /*
1033          * tsk->flags are checked in the futex code to protect against
1034          * an exiting task cleaning up the robust pi futexes.
1035          */
1036         smp_mb();
1037         spin_unlock_wait(&tsk->pi_lock);
1038
1039         if (unlikely(in_atomic()))
1040                 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
1041                                 current->comm, task_pid_nr(current),
1042                                 preempt_count());
1043
1044         acct_update_integrals(tsk);
1045
1046         group_dead = atomic_dec_and_test(&tsk->signal->live);
1047         if (group_dead) {
1048                 hrtimer_cancel(&tsk->signal->real_timer);
1049                 exit_itimers(tsk->signal);
1050         }
1051         acct_collect(code, group_dead);
1052         if (group_dead)
1053                 tty_audit_exit();
1054         if (unlikely(tsk->audit_context))
1055                 audit_free(tsk);
1056
1057         tsk->exit_code = code;
1058         taskstats_exit(tsk, group_dead);
1059
1060         exit_mm(tsk);
1061
1062         if (group_dead)
1063                 acct_process();
1064         trace_sched_process_exit(tsk);
1065
1066         exit_sem(tsk);
1067         exit_files(tsk);
1068         exit_fs(tsk);
1069         check_stack_usage();
1070         exit_thread();
1071         cgroup_exit(tsk, 1);
1072
1073         if (group_dead && tsk->signal->leader)
1074                 disassociate_ctty(1);
1075
1076         module_put(task_thread_info(tsk)->exec_domain->module);
1077         if (tsk->binfmt)
1078                 module_put(tsk->binfmt->module);
1079
1080         proc_exit_connector(tsk);
1081         exit_notify(tsk, group_dead);
1082 #ifdef CONFIG_NUMA
1083         mpol_put(tsk->mempolicy);
1084         tsk->mempolicy = NULL;
1085 #endif
1086 #ifdef CONFIG_FUTEX
1087         /*
1088          * This must happen late, after the PID is not
1089          * hashed anymore:
1090          */
1091         if (unlikely(!list_empty(&tsk->pi_state_list)))
1092                 exit_pi_state_list(tsk);
1093         if (unlikely(current->pi_state_cache))
1094                 kfree(current->pi_state_cache);
1095 #endif
1096         /*
1097          * Make sure we are holding no locks:
1098          */
1099         debug_check_no_locks_held(tsk);
1100         /*
1101          * We can do this unlocked here. The futex code uses this flag
1102          * just to verify whether the pi state cleanup has been done
1103          * or not. In the worst case it loops once more.
1104          */
1105         tsk->flags |= PF_EXITPIDONE;
1106
1107         if (tsk->io_context)
1108                 exit_io_context();
1109
1110         if (tsk->splice_pipe)
1111                 __free_pipe_info(tsk->splice_pipe);
1112
1113         preempt_disable();
1114         /* causes final put_task_struct in finish_task_switch(). */
1115         tsk->state = TASK_DEAD;
1116         schedule();
1117         BUG();
1118         /* Avoid "noreturn function does return".  */
1119         for (;;)
1120                 cpu_relax();    /* For when BUG is null */
1121 }
1122
1123 EXPORT_SYMBOL_GPL(do_exit);
1124
1125 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
1126 {
1127         if (comp)
1128                 complete(comp);
1129
1130         do_exit(code);
1131 }
1132
1133 EXPORT_SYMBOL(complete_and_exit);
1134
1135 SYSCALL_DEFINE1(exit, int, error_code)
1136 {
1137         do_exit((error_code&0xff)<<8);
1138 }
1139
1140 /*
1141  * Take down every thread in the group.  This is called by fatal signals
1142  * as well as by sys_exit_group (below).
1143  */
1144 NORET_TYPE void
1145 do_group_exit(int exit_code)
1146 {
1147         struct signal_struct *sig = current->signal;
1148
1149         BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1150
1151         if (signal_group_exit(sig))
1152                 exit_code = sig->group_exit_code;
1153         else if (!thread_group_empty(current)) {
1154                 struct sighand_struct *const sighand = current->sighand;
1155                 spin_lock_irq(&sighand->siglock);
1156                 if (signal_group_exit(sig))
1157                         /* Another thread got here before we took the lock.  */
1158                         exit_code = sig->group_exit_code;
1159                 else {
1160                         sig->group_exit_code = exit_code;
1161                         sig->flags = SIGNAL_GROUP_EXIT;
1162                         zap_other_threads(current);
1163                 }
1164                 spin_unlock_irq(&sighand->siglock);
1165         }
1166
1167         do_exit(exit_code);
1168         /* NOTREACHED */
1169 }
1170
1171 /*
1172  * this kills every thread in the thread group. Note that any externally
1173  * wait4()-ing process will get the correct exit code - even if this
1174  * thread is not the thread group leader.
1175  */
1176 SYSCALL_DEFINE1(exit_group, int, error_code)
1177 {
1178         do_group_exit((error_code & 0xff) << 8);
1179         /* NOTREACHED */
1180         return 0;
1181 }
1182
1183 static struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1184 {
1185         struct pid *pid = NULL;
1186         if (type == PIDTYPE_PID)
1187                 pid = task->pids[type].pid;
1188         else if (type < PIDTYPE_MAX)
1189                 pid = task->group_leader->pids[type].pid;
1190         return pid;
1191 }
1192
1193 static int eligible_child(enum pid_type type, struct pid *pid, int options,
1194                           struct task_struct *p)
1195 {
1196         int err;
1197
1198         if (type < PIDTYPE_MAX) {
1199                 if (task_pid_type(p, type) != pid)
1200                         return 0;
1201         }
1202
1203         /* Wait for all children (clone and not) if __WALL is set;
1204          * otherwise, wait for clone children *only* if __WCLONE is
1205          * set; otherwise, wait for non-clone children *only*.  (Note:
1206          * A "clone" child here is one that reports to its parent
1207          * using a signal other than SIGCHLD.) */
1208         if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0))
1209             && !(options & __WALL))
1210                 return 0;
1211
1212         err = security_task_wait(p);
1213         if (err)
1214                 return err;
1215
1216         return 1;
1217 }
1218
1219 static int wait_noreap_copyout(struct task_struct *p, pid_t pid, uid_t uid,
1220                                int why, int status,
1221                                struct siginfo __user *infop,
1222                                struct rusage __user *rusagep)
1223 {
1224         int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0;
1225
1226         put_task_struct(p);
1227         if (!retval)
1228                 retval = put_user(SIGCHLD, &infop->si_signo);
1229         if (!retval)
1230                 retval = put_user(0, &infop->si_errno);
1231         if (!retval)
1232                 retval = put_user((short)why, &infop->si_code);
1233         if (!retval)
1234                 retval = put_user(pid, &infop->si_pid);
1235         if (!retval)
1236                 retval = put_user(uid, &infop->si_uid);
1237         if (!retval)
1238                 retval = put_user(status, &infop->si_status);
1239         if (!retval)
1240                 retval = pid;
1241         return retval;
1242 }
1243
1244 /*
1245  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1246  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1247  * the lock and this task is uninteresting.  If we return nonzero, we have
1248  * released the lock and the system call should return.
1249  */
1250 static int wait_task_zombie(struct task_struct *p, int options,
1251                             struct siginfo __user *infop,
1252                             int __user *stat_addr, struct rusage __user *ru)
1253 {
1254         unsigned long state;
1255         int retval, status, traced;
1256         pid_t pid = task_pid_vnr(p);
1257         uid_t uid = __task_cred(p)->uid;
1258
1259         if (!likely(options & WEXITED))
1260                 return 0;
1261
1262         if (unlikely(options & WNOWAIT)) {
1263                 int exit_code = p->exit_code;
1264                 int why, status;
1265
1266                 get_task_struct(p);
1267                 read_unlock(&tasklist_lock);
1268                 if ((exit_code & 0x7f) == 0) {
1269                         why = CLD_EXITED;
1270                         status = exit_code >> 8;
1271                 } else {
1272                         why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1273                         status = exit_code & 0x7f;
1274                 }
1275                 return wait_noreap_copyout(p, pid, uid, why,
1276                                            status, infop, ru);
1277         }
1278
1279         /*
1280          * Try to move the task's state to DEAD
1281          * only one thread is allowed to do this:
1282          */
1283         state = xchg(&p->exit_state, EXIT_DEAD);
1284         if (state != EXIT_ZOMBIE) {
1285                 BUG_ON(state != EXIT_DEAD);
1286                 return 0;
1287         }
1288
1289         traced = ptrace_reparented(p);
1290
1291         if (likely(!traced)) {
1292                 struct signal_struct *psig;
1293                 struct signal_struct *sig;
1294                 struct task_cputime cputime;
1295
1296                 /*
1297                  * The resource counters for the group leader are in its
1298                  * own task_struct.  Those for dead threads in the group
1299                  * are in its signal_struct, as are those for the child
1300                  * processes it has previously reaped.  All these
1301                  * accumulate in the parent's signal_struct c* fields.
1302                  *
1303                  * We don't bother to take a lock here to protect these
1304                  * p->signal fields, because they are only touched by
1305                  * __exit_signal, which runs with tasklist_lock
1306                  * write-locked anyway, and so is excluded here.  We do
1307                  * need to protect the access to p->parent->signal fields,
1308                  * as other threads in the parent group can be right
1309                  * here reaping other children at the same time.
1310                  *
1311                  * We use thread_group_cputime() to get times for the thread
1312                  * group, which consolidates times for all threads in the
1313                  * group including the group leader.
1314                  */
1315                 thread_group_cputime(p, &cputime);
1316                 spin_lock_irq(&p->parent->sighand->siglock);
1317                 psig = p->parent->signal;
1318                 sig = p->signal;
1319                 psig->cutime =
1320                         cputime_add(psig->cutime,
1321                         cputime_add(cputime.utime,
1322                                     sig->cutime));
1323                 psig->cstime =
1324                         cputime_add(psig->cstime,
1325                         cputime_add(cputime.stime,
1326                                     sig->cstime));
1327                 psig->cgtime =
1328                         cputime_add(psig->cgtime,
1329                         cputime_add(p->gtime,
1330                         cputime_add(sig->gtime,
1331                                     sig->cgtime)));
1332                 psig->cmin_flt +=
1333                         p->min_flt + sig->min_flt + sig->cmin_flt;
1334                 psig->cmaj_flt +=
1335                         p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1336                 psig->cnvcsw +=
1337                         p->nvcsw + sig->nvcsw + sig->cnvcsw;
1338                 psig->cnivcsw +=
1339                         p->nivcsw + sig->nivcsw + sig->cnivcsw;
1340                 psig->cinblock +=
1341                         task_io_get_inblock(p) +
1342                         sig->inblock + sig->cinblock;
1343                 psig->coublock +=
1344                         task_io_get_oublock(p) +
1345                         sig->oublock + sig->coublock;
1346                 task_io_accounting_add(&psig->ioac, &p->ioac);
1347                 task_io_accounting_add(&psig->ioac, &sig->ioac);
1348                 spin_unlock_irq(&p->parent->sighand->siglock);
1349         }
1350
1351         /*
1352          * Now we are sure this task is interesting, and no other
1353          * thread can reap it because we set its state to EXIT_DEAD.
1354          */
1355         read_unlock(&tasklist_lock);
1356
1357         retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1358         status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1359                 ? p->signal->group_exit_code : p->exit_code;
1360         if (!retval && stat_addr)
1361                 retval = put_user(status, stat_addr);
1362         if (!retval && infop)
1363                 retval = put_user(SIGCHLD, &infop->si_signo);
1364         if (!retval && infop)
1365                 retval = put_user(0, &infop->si_errno);
1366         if (!retval && infop) {
1367                 int why;
1368
1369                 if ((status & 0x7f) == 0) {
1370                         why = CLD_EXITED;
1371                         status >>= 8;
1372                 } else {
1373                         why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1374                         status &= 0x7f;
1375                 }
1376                 retval = put_user((short)why, &infop->si_code);
1377                 if (!retval)
1378                         retval = put_user(status, &infop->si_status);
1379         }
1380         if (!retval && infop)
1381                 retval = put_user(pid, &infop->si_pid);
1382         if (!retval && infop)
1383                 retval = put_user(uid, &infop->si_uid);
1384         if (!retval)
1385                 retval = pid;
1386
1387         if (traced) {
1388                 write_lock_irq(&tasklist_lock);
1389                 /* We dropped tasklist, ptracer could die and untrace */
1390                 ptrace_unlink(p);
1391                 /*
1392                  * If this is not a detached task, notify the parent.
1393                  * If it's still not detached after that, don't release
1394                  * it now.
1395                  */
1396                 if (!task_detached(p)) {
1397                         do_notify_parent(p, p->exit_signal);
1398                         if (!task_detached(p)) {
1399                                 p->exit_state = EXIT_ZOMBIE;
1400                                 p = NULL;
1401                         }
1402                 }
1403                 write_unlock_irq(&tasklist_lock);
1404         }
1405         if (p != NULL)
1406                 release_task(p);
1407
1408         return retval;
1409 }
1410
1411 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1412 {
1413         if (ptrace) {
1414                 if (task_is_stopped_or_traced(p))
1415                         return &p->exit_code;
1416         } else {
1417                 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1418                         return &p->signal->group_exit_code;
1419         }
1420         return NULL;
1421 }
1422
1423 /*
1424  * Handle sys_wait4 work for one task in state TASK_STOPPED.  We hold
1425  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1426  * the lock and this task is uninteresting.  If we return nonzero, we have
1427  * released the lock and the system call should return.
1428  */
1429 static int wait_task_stopped(int ptrace, struct task_struct *p,
1430                              int options, struct siginfo __user *infop,
1431                              int __user *stat_addr, struct rusage __user *ru)
1432 {
1433         int retval, exit_code, *p_code, why;
1434         uid_t uid = 0; /* unneeded, required by compiler */
1435         pid_t pid;
1436
1437         if (!(options & WUNTRACED))
1438                 return 0;
1439
1440         exit_code = 0;
1441         spin_lock_irq(&p->sighand->siglock);
1442
1443         p_code = task_stopped_code(p, ptrace);
1444         if (unlikely(!p_code))
1445                 goto unlock_sig;
1446
1447         exit_code = *p_code;
1448         if (!exit_code)
1449                 goto unlock_sig;
1450
1451         if (!unlikely(options & WNOWAIT))
1452                 *p_code = 0;
1453
1454         /* don't need the RCU readlock here as we're holding a spinlock */
1455         uid = __task_cred(p)->uid;
1456 unlock_sig:
1457         spin_unlock_irq(&p->sighand->siglock);
1458         if (!exit_code)
1459                 return 0;
1460
1461         /*
1462          * Now we are pretty sure this task is interesting.
1463          * Make sure it doesn't get reaped out from under us while we
1464          * give up the lock and then examine it below.  We don't want to
1465          * keep holding onto the tasklist_lock while we call getrusage and
1466          * possibly take page faults for user memory.
1467          */
1468         get_task_struct(p);
1469         pid = task_pid_vnr(p);
1470         why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1471         read_unlock(&tasklist_lock);
1472
1473         if (unlikely(options & WNOWAIT))
1474                 return wait_noreap_copyout(p, pid, uid,
1475                                            why, exit_code,
1476                                            infop, ru);
1477
1478         retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1479         if (!retval && stat_addr)
1480                 retval = put_user((exit_code << 8) | 0x7f, stat_addr);
1481         if (!retval && infop)
1482                 retval = put_user(SIGCHLD, &infop->si_signo);
1483         if (!retval && infop)
1484                 retval = put_user(0, &infop->si_errno);
1485         if (!retval && infop)
1486                 retval = put_user((short)why, &infop->si_code);
1487         if (!retval && infop)
1488                 retval = put_user(exit_code, &infop->si_status);
1489         if (!retval && infop)
1490                 retval = put_user(pid, &infop->si_pid);
1491         if (!retval && infop)
1492                 retval = put_user(uid, &infop->si_uid);
1493         if (!retval)
1494                 retval = pid;
1495         put_task_struct(p);
1496
1497         BUG_ON(!retval);
1498         return retval;
1499 }
1500
1501 /*
1502  * Handle do_wait work for one task in a live, non-stopped state.
1503  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1504  * the lock and this task is uninteresting.  If we return nonzero, we have
1505  * released the lock and the system call should return.
1506  */
1507 static int wait_task_continued(struct task_struct *p, int options,
1508                                struct siginfo __user *infop,
1509                                int __user *stat_addr, struct rusage __user *ru)
1510 {
1511         int retval;
1512         pid_t pid;
1513         uid_t uid;
1514
1515         if (!unlikely(options & WCONTINUED))
1516                 return 0;
1517
1518         if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1519                 return 0;
1520
1521         spin_lock_irq(&p->sighand->siglock);
1522         /* Re-check with the lock held.  */
1523         if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1524                 spin_unlock_irq(&p->sighand->siglock);
1525                 return 0;
1526         }
1527         if (!unlikely(options & WNOWAIT))
1528                 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1529         uid = __task_cred(p)->uid;
1530         spin_unlock_irq(&p->sighand->siglock);
1531
1532         pid = task_pid_vnr(p);
1533         get_task_struct(p);
1534         read_unlock(&tasklist_lock);
1535
1536         if (!infop) {
1537                 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1538                 put_task_struct(p);
1539                 if (!retval && stat_addr)
1540                         retval = put_user(0xffff, stat_addr);
1541                 if (!retval)
1542                         retval = pid;
1543         } else {
1544                 retval = wait_noreap_copyout(p, pid, uid,
1545                                              CLD_CONTINUED, SIGCONT,
1546                                              infop, ru);
1547                 BUG_ON(retval == 0);
1548         }
1549
1550         return retval;
1551 }
1552
1553 /*
1554  * Consider @p for a wait by @parent.
1555  *
1556  * -ECHILD should be in *@notask_error before the first call.
1557  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1558  * Returns zero if the search for a child should continue;
1559  * then *@notask_error is 0 if @p is an eligible child,
1560  * or another error from security_task_wait(), or still -ECHILD.
1561  */
1562 static int wait_consider_task(struct task_struct *parent, int ptrace,
1563                               struct task_struct *p, int *notask_error,
1564                               enum pid_type type, struct pid *pid, int options,
1565                               struct siginfo __user *infop,
1566                               int __user *stat_addr, struct rusage __user *ru)
1567 {
1568         int ret = eligible_child(type, pid, options, p);
1569         if (!ret)
1570                 return ret;
1571
1572         if (unlikely(ret < 0)) {
1573                 /*
1574                  * If we have not yet seen any eligible child,
1575                  * then let this error code replace -ECHILD.
1576                  * A permission error will give the user a clue
1577                  * to look for security policy problems, rather
1578                  * than for mysterious wait bugs.
1579                  */
1580                 if (*notask_error)
1581                         *notask_error = ret;
1582         }
1583
1584         if (likely(!ptrace) && unlikely(p->ptrace)) {
1585                 /*
1586                  * This child is hidden by ptrace.
1587                  * We aren't allowed to see it now, but eventually we will.
1588                  */
1589                 *notask_error = 0;
1590                 return 0;
1591         }
1592
1593         if (p->exit_state == EXIT_DEAD)
1594                 return 0;
1595
1596         /*
1597          * We don't reap group leaders with subthreads.
1598          */
1599         if (p->exit_state == EXIT_ZOMBIE && !delay_group_leader(p))
1600                 return wait_task_zombie(p, options, infop, stat_addr, ru);
1601
1602         /*
1603          * It's stopped or running now, so it might
1604          * later continue, exit, or stop again.
1605          */
1606         *notask_error = 0;
1607
1608         if (task_stopped_code(p, ptrace))
1609                 return wait_task_stopped(ptrace, p, options,
1610                                          infop, stat_addr, ru);
1611
1612         return wait_task_continued(p, options, infop, stat_addr, ru);
1613 }
1614
1615 /*
1616  * Do the work of do_wait() for one thread in the group, @tsk.
1617  *
1618  * -ECHILD should be in *@notask_error before the first call.
1619  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1620  * Returns zero if the search for a child should continue; then
1621  * *@notask_error is 0 if there were any eligible children,
1622  * or another error from security_task_wait(), or still -ECHILD.
1623  */
1624 static int do_wait_thread(struct task_struct *tsk, int *notask_error,
1625                           enum pid_type type, struct pid *pid, int options,
1626                           struct siginfo __user *infop, int __user *stat_addr,
1627                           struct rusage __user *ru)
1628 {
1629         struct task_struct *p;
1630
1631         list_for_each_entry(p, &tsk->children, sibling) {
1632                 /*
1633                  * Do not consider detached threads.
1634                  */
1635                 if (!task_detached(p)) {
1636                         int ret = wait_consider_task(tsk, 0, p, notask_error,
1637                                                      type, pid, options,
1638                                                      infop, stat_addr, ru);
1639                         if (ret)
1640                                 return ret;
1641                 }
1642         }
1643
1644         return 0;
1645 }
1646
1647 static int ptrace_do_wait(struct task_struct *tsk, int *notask_error,
1648                           enum pid_type type, struct pid *pid, int options,
1649                           struct siginfo __user *infop, int __user *stat_addr,
1650                           struct rusage __user *ru)
1651 {
1652         struct task_struct *p;
1653
1654         /*
1655          * Traditionally we see ptrace'd stopped tasks regardless of options.
1656          */
1657         options |= WUNTRACED;
1658
1659         list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1660                 int ret = wait_consider_task(tsk, 1, p, notask_error,
1661                                              type, pid, options,
1662                                              infop, stat_addr, ru);
1663                 if (ret)
1664                         return ret;
1665         }
1666
1667         return 0;
1668 }
1669
1670 static long do_wait(enum pid_type type, struct pid *pid, int options,
1671                     struct siginfo __user *infop, int __user *stat_addr,
1672                     struct rusage __user *ru)
1673 {
1674         DECLARE_WAITQUEUE(wait, current);
1675         struct task_struct *tsk;
1676         int retval;
1677
1678         trace_sched_process_wait(pid);
1679
1680         add_wait_queue(&current->signal->wait_chldexit,&wait);
1681 repeat:
1682         /*
1683          * If there is nothing that can match our critiera just get out.
1684          * We will clear @retval to zero if we see any child that might later
1685          * match our criteria, even if we are not able to reap it yet.
1686          */
1687         retval = -ECHILD;
1688         if ((type < PIDTYPE_MAX) && (!pid || hlist_empty(&pid->tasks[type])))
1689                 goto end;
1690
1691         current->state = TASK_INTERRUPTIBLE;
1692         read_lock(&tasklist_lock);
1693         tsk = current;
1694         do {
1695                 int tsk_result = do_wait_thread(tsk, &retval,
1696                                                 type, pid, options,
1697                                                 infop, stat_addr, ru);
1698                 if (!tsk_result)
1699                         tsk_result = ptrace_do_wait(tsk, &retval,
1700                                                     type, pid, options,
1701                                                     infop, stat_addr, ru);
1702                 if (tsk_result) {
1703                         /*
1704                          * tasklist_lock is unlocked and we have a final result.
1705                          */
1706                         retval = tsk_result;
1707                         goto end;
1708                 }
1709
1710                 if (options & __WNOTHREAD)
1711                         break;
1712                 tsk = next_thread(tsk);
1713                 BUG_ON(tsk->signal != current->signal);
1714         } while (tsk != current);
1715         read_unlock(&tasklist_lock);
1716
1717         if (!retval && !(options & WNOHANG)) {
1718                 retval = -ERESTARTSYS;
1719                 if (!signal_pending(current)) {
1720                         schedule();
1721                         goto repeat;
1722                 }
1723         }
1724
1725 end:
1726         current->state = TASK_RUNNING;
1727         remove_wait_queue(&current->signal->wait_chldexit,&wait);
1728         if (infop) {
1729                 if (retval > 0)
1730                         retval = 0;
1731                 else {
1732                         /*
1733                          * For a WNOHANG return, clear out all the fields
1734                          * we would set so the user can easily tell the
1735                          * difference.
1736                          */
1737                         if (!retval)
1738                                 retval = put_user(0, &infop->si_signo);
1739                         if (!retval)
1740                                 retval = put_user(0, &infop->si_errno);
1741                         if (!retval)
1742                                 retval = put_user(0, &infop->si_code);
1743                         if (!retval)
1744                                 retval = put_user(0, &infop->si_pid);
1745                         if (!retval)
1746                                 retval = put_user(0, &infop->si_uid);
1747                         if (!retval)
1748                                 retval = put_user(0, &infop->si_status);
1749                 }
1750         }
1751         return retval;
1752 }
1753
1754 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1755                 infop, int, options, struct rusage __user *, ru)
1756 {
1757         struct pid *pid = NULL;
1758         enum pid_type type;
1759         long ret;
1760
1761         if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1762                 return -EINVAL;
1763         if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1764                 return -EINVAL;
1765
1766         switch (which) {
1767         case P_ALL:
1768                 type = PIDTYPE_MAX;
1769                 break;
1770         case P_PID:
1771                 type = PIDTYPE_PID;
1772                 if (upid <= 0)
1773                         return -EINVAL;
1774                 break;
1775         case P_PGID:
1776                 type = PIDTYPE_PGID;
1777                 if (upid <= 0)
1778                         return -EINVAL;
1779                 break;
1780         default:
1781                 return -EINVAL;
1782         }
1783
1784         if (type < PIDTYPE_MAX)
1785                 pid = find_get_pid(upid);
1786         ret = do_wait(type, pid, options, infop, NULL, ru);
1787         put_pid(pid);
1788
1789         /* avoid REGPARM breakage on x86: */
1790         asmlinkage_protect(5, ret, which, upid, infop, options, ru);
1791         return ret;
1792 }
1793
1794 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1795                 int, options, struct rusage __user *, ru)
1796 {
1797         struct pid *pid = NULL;
1798         enum pid_type type;
1799         long ret;
1800
1801         if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1802                         __WNOTHREAD|__WCLONE|__WALL))
1803                 return -EINVAL;
1804
1805         if (upid == -1)
1806                 type = PIDTYPE_MAX;
1807         else if (upid < 0) {
1808                 type = PIDTYPE_PGID;
1809                 pid = find_get_pid(-upid);
1810         } else if (upid == 0) {
1811                 type = PIDTYPE_PGID;
1812                 pid = get_pid(task_pgrp(current));
1813         } else /* upid > 0 */ {
1814                 type = PIDTYPE_PID;
1815                 pid = find_get_pid(upid);
1816         }
1817
1818         ret = do_wait(type, pid, options | WEXITED, NULL, stat_addr, ru);
1819         put_pid(pid);
1820
1821         /* avoid REGPARM breakage on x86: */
1822         asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
1823         return ret;
1824 }
1825
1826 #ifdef __ARCH_WANT_SYS_WAITPID
1827
1828 /*
1829  * sys_waitpid() remains for compatibility. waitpid() should be
1830  * implemented by calling sys_wait4() from libc.a.
1831  */
1832 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1833 {
1834         return sys_wait4(pid, stat_addr, options, NULL);
1835 }
1836
1837 #endif