pids: kill signal_struct-> __pgrp/__session and friends
[safe/jmp/linux-2.6] / kernel / exit.c
1 /*
2  *  linux/kernel/exit.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/mnt_namespace.h>
16 #include <linux/iocontext.h>
17 #include <linux/key.h>
18 #include <linux/security.h>
19 #include <linux/cpu.h>
20 #include <linux/acct.h>
21 #include <linux/tsacct_kern.h>
22 #include <linux/file.h>
23 #include <linux/fdtable.h>
24 #include <linux/binfmts.h>
25 #include <linux/nsproxy.h>
26 #include <linux/pid_namespace.h>
27 #include <linux/ptrace.h>
28 #include <linux/profile.h>
29 #include <linux/mount.h>
30 #include <linux/proc_fs.h>
31 #include <linux/kthread.h>
32 #include <linux/mempolicy.h>
33 #include <linux/taskstats_kern.h>
34 #include <linux/delayacct.h>
35 #include <linux/freezer.h>
36 #include <linux/cgroup.h>
37 #include <linux/syscalls.h>
38 #include <linux/signal.h>
39 #include <linux/posix-timers.h>
40 #include <linux/cn_proc.h>
41 #include <linux/mutex.h>
42 #include <linux/futex.h>
43 #include <linux/pipe_fs_i.h>
44 #include <linux/audit.h> /* for audit_free() */
45 #include <linux/resource.h>
46 #include <linux/blkdev.h>
47 #include <linux/task_io_accounting_ops.h>
48 #include <linux/tracehook.h>
49 #include <linux/init_task.h>
50 #include <trace/sched.h>
51
52 #include <asm/uaccess.h>
53 #include <asm/unistd.h>
54 #include <asm/pgtable.h>
55 #include <asm/mmu_context.h>
56 #include "cred-internals.h"
57
58 DEFINE_TRACE(sched_process_free);
59 DEFINE_TRACE(sched_process_exit);
60 DEFINE_TRACE(sched_process_wait);
61
62 static void exit_mm(struct task_struct * tsk);
63
64 static void __unhash_process(struct task_struct *p)
65 {
66         nr_threads--;
67         detach_pid(p, PIDTYPE_PID);
68         if (thread_group_leader(p)) {
69                 detach_pid(p, PIDTYPE_PGID);
70                 detach_pid(p, PIDTYPE_SID);
71
72                 list_del_rcu(&p->tasks);
73                 __get_cpu_var(process_counts)--;
74         }
75         list_del_rcu(&p->thread_group);
76         list_del_init(&p->sibling);
77 }
78
79 /*
80  * This function expects the tasklist_lock write-locked.
81  */
82 static void __exit_signal(struct task_struct *tsk)
83 {
84         struct signal_struct *sig = tsk->signal;
85         struct sighand_struct *sighand;
86
87         BUG_ON(!sig);
88         BUG_ON(!atomic_read(&sig->count));
89
90         sighand = rcu_dereference(tsk->sighand);
91         spin_lock(&sighand->siglock);
92
93         posix_cpu_timers_exit(tsk);
94         if (atomic_dec_and_test(&sig->count))
95                 posix_cpu_timers_exit_group(tsk);
96         else {
97                 /*
98                  * If there is any task waiting for the group exit
99                  * then notify it:
100                  */
101                 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count)
102                         wake_up_process(sig->group_exit_task);
103
104                 if (tsk == sig->curr_target)
105                         sig->curr_target = next_thread(tsk);
106                 /*
107                  * Accumulate here the counters for all threads but the
108                  * group leader as they die, so they can be added into
109                  * the process-wide totals when those are taken.
110                  * The group leader stays around as a zombie as long
111                  * as there are other threads.  When it gets reaped,
112                  * the exit.c code will add its counts into these totals.
113                  * We won't ever get here for the group leader, since it
114                  * will have been the last reference on the signal_struct.
115                  */
116                 sig->utime = cputime_add(sig->utime, task_utime(tsk));
117                 sig->stime = cputime_add(sig->stime, task_stime(tsk));
118                 sig->gtime = cputime_add(sig->gtime, task_gtime(tsk));
119                 sig->min_flt += tsk->min_flt;
120                 sig->maj_flt += tsk->maj_flt;
121                 sig->nvcsw += tsk->nvcsw;
122                 sig->nivcsw += tsk->nivcsw;
123                 sig->inblock += task_io_get_inblock(tsk);
124                 sig->oublock += task_io_get_oublock(tsk);
125                 task_io_accounting_add(&sig->ioac, &tsk->ioac);
126                 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
127                 sig = NULL; /* Marker for below. */
128         }
129
130         __unhash_process(tsk);
131
132         /*
133          * Do this under ->siglock, we can race with another thread
134          * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
135          */
136         flush_sigqueue(&tsk->pending);
137
138         tsk->signal = NULL;
139         tsk->sighand = NULL;
140         spin_unlock(&sighand->siglock);
141
142         __cleanup_sighand(sighand);
143         clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
144         if (sig) {
145                 flush_sigqueue(&sig->shared_pending);
146                 taskstats_tgid_free(sig);
147                 /*
148                  * Make sure ->signal can't go away under rq->lock,
149                  * see account_group_exec_runtime().
150                  */
151                 task_rq_unlock_wait(tsk);
152                 __cleanup_signal(sig);
153         }
154 }
155
156 static void delayed_put_task_struct(struct rcu_head *rhp)
157 {
158         struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
159
160         trace_sched_process_free(tsk);
161         put_task_struct(tsk);
162 }
163
164
165 void release_task(struct task_struct * p)
166 {
167         struct task_struct *leader;
168         int zap_leader;
169 repeat:
170         tracehook_prepare_release_task(p);
171         /* don't need to get the RCU readlock here - the process is dead and
172          * can't be modifying its own credentials */
173         atomic_dec(&__task_cred(p)->user->processes);
174
175         proc_flush_task(p);
176         write_lock_irq(&tasklist_lock);
177         tracehook_finish_release_task(p);
178         __exit_signal(p);
179
180         /*
181          * If we are the last non-leader member of the thread
182          * group, and the leader is zombie, then notify the
183          * group leader's parent process. (if it wants notification.)
184          */
185         zap_leader = 0;
186         leader = p->group_leader;
187         if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
188                 BUG_ON(task_detached(leader));
189                 do_notify_parent(leader, leader->exit_signal);
190                 /*
191                  * If we were the last child thread and the leader has
192                  * exited already, and the leader's parent ignores SIGCHLD,
193                  * then we are the one who should release the leader.
194                  *
195                  * do_notify_parent() will have marked it self-reaping in
196                  * that case.
197                  */
198                 zap_leader = task_detached(leader);
199
200                 /*
201                  * This maintains the invariant that release_task()
202                  * only runs on a task in EXIT_DEAD, just for sanity.
203                  */
204                 if (zap_leader)
205                         leader->exit_state = EXIT_DEAD;
206         }
207
208         write_unlock_irq(&tasklist_lock);
209         release_thread(p);
210         call_rcu(&p->rcu, delayed_put_task_struct);
211
212         p = leader;
213         if (unlikely(zap_leader))
214                 goto repeat;
215 }
216
217 /*
218  * This checks not only the pgrp, but falls back on the pid if no
219  * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
220  * without this...
221  *
222  * The caller must hold rcu lock or the tasklist lock.
223  */
224 struct pid *session_of_pgrp(struct pid *pgrp)
225 {
226         struct task_struct *p;
227         struct pid *sid = NULL;
228
229         p = pid_task(pgrp, PIDTYPE_PGID);
230         if (p == NULL)
231                 p = pid_task(pgrp, PIDTYPE_PID);
232         if (p != NULL)
233                 sid = task_session(p);
234
235         return sid;
236 }
237
238 /*
239  * Determine if a process group is "orphaned", according to the POSIX
240  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
241  * by terminal-generated stop signals.  Newly orphaned process groups are
242  * to receive a SIGHUP and a SIGCONT.
243  *
244  * "I ask you, have you ever known what it is to be an orphan?"
245  */
246 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
247 {
248         struct task_struct *p;
249
250         do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
251                 if ((p == ignored_task) ||
252                     (p->exit_state && thread_group_empty(p)) ||
253                     is_global_init(p->real_parent))
254                         continue;
255
256                 if (task_pgrp(p->real_parent) != pgrp &&
257                     task_session(p->real_parent) == task_session(p))
258                         return 0;
259         } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
260
261         return 1;
262 }
263
264 int is_current_pgrp_orphaned(void)
265 {
266         int retval;
267
268         read_lock(&tasklist_lock);
269         retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
270         read_unlock(&tasklist_lock);
271
272         return retval;
273 }
274
275 static int has_stopped_jobs(struct pid *pgrp)
276 {
277         int retval = 0;
278         struct task_struct *p;
279
280         do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
281                 if (!task_is_stopped(p))
282                         continue;
283                 retval = 1;
284                 break;
285         } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
286         return retval;
287 }
288
289 /*
290  * Check to see if any process groups have become orphaned as
291  * a result of our exiting, and if they have any stopped jobs,
292  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
293  */
294 static void
295 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
296 {
297         struct pid *pgrp = task_pgrp(tsk);
298         struct task_struct *ignored_task = tsk;
299
300         if (!parent)
301                  /* exit: our father is in a different pgrp than
302                   * we are and we were the only connection outside.
303                   */
304                 parent = tsk->real_parent;
305         else
306                 /* reparent: our child is in a different pgrp than
307                  * we are, and it was the only connection outside.
308                  */
309                 ignored_task = NULL;
310
311         if (task_pgrp(parent) != pgrp &&
312             task_session(parent) == task_session(tsk) &&
313             will_become_orphaned_pgrp(pgrp, ignored_task) &&
314             has_stopped_jobs(pgrp)) {
315                 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
316                 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
317         }
318 }
319
320 /**
321  * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
322  *
323  * If a kernel thread is launched as a result of a system call, or if
324  * it ever exits, it should generally reparent itself to kthreadd so it
325  * isn't in the way of other processes and is correctly cleaned up on exit.
326  *
327  * The various task state such as scheduling policy and priority may have
328  * been inherited from a user process, so we reset them to sane values here.
329  *
330  * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
331  */
332 static void reparent_to_kthreadd(void)
333 {
334         write_lock_irq(&tasklist_lock);
335
336         ptrace_unlink(current);
337         /* Reparent to init */
338         current->real_parent = current->parent = kthreadd_task;
339         list_move_tail(&current->sibling, &current->real_parent->children);
340
341         /* Set the exit signal to SIGCHLD so we signal init on exit */
342         current->exit_signal = SIGCHLD;
343
344         if (task_nice(current) < 0)
345                 set_user_nice(current, 0);
346         /* cpus_allowed? */
347         /* rt_priority? */
348         /* signals? */
349         memcpy(current->signal->rlim, init_task.signal->rlim,
350                sizeof(current->signal->rlim));
351
352         atomic_inc(&init_cred.usage);
353         commit_creds(&init_cred);
354         write_unlock_irq(&tasklist_lock);
355 }
356
357 void __set_special_pids(struct pid *pid)
358 {
359         struct task_struct *curr = current->group_leader;
360
361         if (task_session(curr) != pid)
362                 change_pid(curr, PIDTYPE_SID, pid);
363
364         if (task_pgrp(curr) != pid)
365                 change_pid(curr, PIDTYPE_PGID, pid);
366 }
367
368 static void set_special_pids(struct pid *pid)
369 {
370         write_lock_irq(&tasklist_lock);
371         __set_special_pids(pid);
372         write_unlock_irq(&tasklist_lock);
373 }
374
375 /*
376  * Let kernel threads use this to say that they
377  * allow a certain signal (since daemonize() will
378  * have disabled all of them by default).
379  */
380 int allow_signal(int sig)
381 {
382         if (!valid_signal(sig) || sig < 1)
383                 return -EINVAL;
384
385         spin_lock_irq(&current->sighand->siglock);
386         sigdelset(&current->blocked, sig);
387         if (!current->mm) {
388                 /* Kernel threads handle their own signals.
389                    Let the signal code know it'll be handled, so
390                    that they don't get converted to SIGKILL or
391                    just silently dropped */
392                 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
393         }
394         recalc_sigpending();
395         spin_unlock_irq(&current->sighand->siglock);
396         return 0;
397 }
398
399 EXPORT_SYMBOL(allow_signal);
400
401 int disallow_signal(int sig)
402 {
403         if (!valid_signal(sig) || sig < 1)
404                 return -EINVAL;
405
406         spin_lock_irq(&current->sighand->siglock);
407         current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
408         recalc_sigpending();
409         spin_unlock_irq(&current->sighand->siglock);
410         return 0;
411 }
412
413 EXPORT_SYMBOL(disallow_signal);
414
415 /*
416  *      Put all the gunge required to become a kernel thread without
417  *      attached user resources in one place where it belongs.
418  */
419
420 void daemonize(const char *name, ...)
421 {
422         va_list args;
423         struct fs_struct *fs;
424         sigset_t blocked;
425
426         va_start(args, name);
427         vsnprintf(current->comm, sizeof(current->comm), name, args);
428         va_end(args);
429
430         /*
431          * If we were started as result of loading a module, close all of the
432          * user space pages.  We don't need them, and if we didn't close them
433          * they would be locked into memory.
434          */
435         exit_mm(current);
436         /*
437          * We don't want to have TIF_FREEZE set if the system-wide hibernation
438          * or suspend transition begins right now.
439          */
440         current->flags |= (PF_NOFREEZE | PF_KTHREAD);
441
442         if (current->nsproxy != &init_nsproxy) {
443                 get_nsproxy(&init_nsproxy);
444                 switch_task_namespaces(current, &init_nsproxy);
445         }
446         set_special_pids(&init_struct_pid);
447         proc_clear_tty(current);
448
449         /* Block and flush all signals */
450         sigfillset(&blocked);
451         sigprocmask(SIG_BLOCK, &blocked, NULL);
452         flush_signals(current);
453
454         /* Become as one with the init task */
455
456         exit_fs(current);       /* current->fs->count--; */
457         fs = init_task.fs;
458         current->fs = fs;
459         atomic_inc(&fs->count);
460
461         exit_files(current);
462         current->files = init_task.files;
463         atomic_inc(&current->files->count);
464
465         reparent_to_kthreadd();
466 }
467
468 EXPORT_SYMBOL(daemonize);
469
470 static void close_files(struct files_struct * files)
471 {
472         int i, j;
473         struct fdtable *fdt;
474
475         j = 0;
476
477         /*
478          * It is safe to dereference the fd table without RCU or
479          * ->file_lock because this is the last reference to the
480          * files structure.
481          */
482         fdt = files_fdtable(files);
483         for (;;) {
484                 unsigned long set;
485                 i = j * __NFDBITS;
486                 if (i >= fdt->max_fds)
487                         break;
488                 set = fdt->open_fds->fds_bits[j++];
489                 while (set) {
490                         if (set & 1) {
491                                 struct file * file = xchg(&fdt->fd[i], NULL);
492                                 if (file) {
493                                         filp_close(file, files);
494                                         cond_resched();
495                                 }
496                         }
497                         i++;
498                         set >>= 1;
499                 }
500         }
501 }
502
503 struct files_struct *get_files_struct(struct task_struct *task)
504 {
505         struct files_struct *files;
506
507         task_lock(task);
508         files = task->files;
509         if (files)
510                 atomic_inc(&files->count);
511         task_unlock(task);
512
513         return files;
514 }
515
516 void put_files_struct(struct files_struct *files)
517 {
518         struct fdtable *fdt;
519
520         if (atomic_dec_and_test(&files->count)) {
521                 close_files(files);
522                 /*
523                  * Free the fd and fdset arrays if we expanded them.
524                  * If the fdtable was embedded, pass files for freeing
525                  * at the end of the RCU grace period. Otherwise,
526                  * you can free files immediately.
527                  */
528                 fdt = files_fdtable(files);
529                 if (fdt != &files->fdtab)
530                         kmem_cache_free(files_cachep, files);
531                 free_fdtable(fdt);
532         }
533 }
534
535 void reset_files_struct(struct files_struct *files)
536 {
537         struct task_struct *tsk = current;
538         struct files_struct *old;
539
540         old = tsk->files;
541         task_lock(tsk);
542         tsk->files = files;
543         task_unlock(tsk);
544         put_files_struct(old);
545 }
546
547 void exit_files(struct task_struct *tsk)
548 {
549         struct files_struct * files = tsk->files;
550
551         if (files) {
552                 task_lock(tsk);
553                 tsk->files = NULL;
554                 task_unlock(tsk);
555                 put_files_struct(files);
556         }
557 }
558
559 void put_fs_struct(struct fs_struct *fs)
560 {
561         /* No need to hold fs->lock if we are killing it */
562         if (atomic_dec_and_test(&fs->count)) {
563                 path_put(&fs->root);
564                 path_put(&fs->pwd);
565                 kmem_cache_free(fs_cachep, fs);
566         }
567 }
568
569 void exit_fs(struct task_struct *tsk)
570 {
571         struct fs_struct * fs = tsk->fs;
572
573         if (fs) {
574                 task_lock(tsk);
575                 tsk->fs = NULL;
576                 task_unlock(tsk);
577                 put_fs_struct(fs);
578         }
579 }
580
581 EXPORT_SYMBOL_GPL(exit_fs);
582
583 #ifdef CONFIG_MM_OWNER
584 /*
585  * Task p is exiting and it owned mm, lets find a new owner for it
586  */
587 static inline int
588 mm_need_new_owner(struct mm_struct *mm, struct task_struct *p)
589 {
590         /*
591          * If there are other users of the mm and the owner (us) is exiting
592          * we need to find a new owner to take on the responsibility.
593          */
594         if (atomic_read(&mm->mm_users) <= 1)
595                 return 0;
596         if (mm->owner != p)
597                 return 0;
598         return 1;
599 }
600
601 void mm_update_next_owner(struct mm_struct *mm)
602 {
603         struct task_struct *c, *g, *p = current;
604
605 retry:
606         if (!mm_need_new_owner(mm, p))
607                 return;
608
609         read_lock(&tasklist_lock);
610         /*
611          * Search in the children
612          */
613         list_for_each_entry(c, &p->children, sibling) {
614                 if (c->mm == mm)
615                         goto assign_new_owner;
616         }
617
618         /*
619          * Search in the siblings
620          */
621         list_for_each_entry(c, &p->parent->children, sibling) {
622                 if (c->mm == mm)
623                         goto assign_new_owner;
624         }
625
626         /*
627          * Search through everything else. We should not get
628          * here often
629          */
630         do_each_thread(g, c) {
631                 if (c->mm == mm)
632                         goto assign_new_owner;
633         } while_each_thread(g, c);
634
635         read_unlock(&tasklist_lock);
636         /*
637          * We found no owner yet mm_users > 1: this implies that we are
638          * most likely racing with swapoff (try_to_unuse()) or /proc or
639          * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
640          */
641         mm->owner = NULL;
642         return;
643
644 assign_new_owner:
645         BUG_ON(c == p);
646         get_task_struct(c);
647         /*
648          * The task_lock protects c->mm from changing.
649          * We always want mm->owner->mm == mm
650          */
651         task_lock(c);
652         /*
653          * Delay read_unlock() till we have the task_lock()
654          * to ensure that c does not slip away underneath us
655          */
656         read_unlock(&tasklist_lock);
657         if (c->mm != mm) {
658                 task_unlock(c);
659                 put_task_struct(c);
660                 goto retry;
661         }
662         mm->owner = c;
663         task_unlock(c);
664         put_task_struct(c);
665 }
666 #endif /* CONFIG_MM_OWNER */
667
668 /*
669  * Turn us into a lazy TLB process if we
670  * aren't already..
671  */
672 static void exit_mm(struct task_struct * tsk)
673 {
674         struct mm_struct *mm = tsk->mm;
675         struct core_state *core_state;
676
677         mm_release(tsk, mm);
678         if (!mm)
679                 return;
680         /*
681          * Serialize with any possible pending coredump.
682          * We must hold mmap_sem around checking core_state
683          * and clearing tsk->mm.  The core-inducing thread
684          * will increment ->nr_threads for each thread in the
685          * group with ->mm != NULL.
686          */
687         down_read(&mm->mmap_sem);
688         core_state = mm->core_state;
689         if (core_state) {
690                 struct core_thread self;
691                 up_read(&mm->mmap_sem);
692
693                 self.task = tsk;
694                 self.next = xchg(&core_state->dumper.next, &self);
695                 /*
696                  * Implies mb(), the result of xchg() must be visible
697                  * to core_state->dumper.
698                  */
699                 if (atomic_dec_and_test(&core_state->nr_threads))
700                         complete(&core_state->startup);
701
702                 for (;;) {
703                         set_task_state(tsk, TASK_UNINTERRUPTIBLE);
704                         if (!self.task) /* see coredump_finish() */
705                                 break;
706                         schedule();
707                 }
708                 __set_task_state(tsk, TASK_RUNNING);
709                 down_read(&mm->mmap_sem);
710         }
711         atomic_inc(&mm->mm_count);
712         BUG_ON(mm != tsk->active_mm);
713         /* more a memory barrier than a real lock */
714         task_lock(tsk);
715         tsk->mm = NULL;
716         up_read(&mm->mmap_sem);
717         enter_lazy_tlb(mm, current);
718         /* We don't want this task to be frozen prematurely */
719         clear_freeze_flag(tsk);
720         task_unlock(tsk);
721         mm_update_next_owner(mm);
722         mmput(mm);
723 }
724
725 /*
726  * When we die, we re-parent all our children.
727  * Try to give them to another thread in our thread
728  * group, and if no such member exists, give it to
729  * the child reaper process (ie "init") in our pid
730  * space.
731  */
732 static struct task_struct *find_new_reaper(struct task_struct *father)
733 {
734         struct pid_namespace *pid_ns = task_active_pid_ns(father);
735         struct task_struct *thread;
736
737         thread = father;
738         while_each_thread(father, thread) {
739                 if (thread->flags & PF_EXITING)
740                         continue;
741                 if (unlikely(pid_ns->child_reaper == father))
742                         pid_ns->child_reaper = thread;
743                 return thread;
744         }
745
746         if (unlikely(pid_ns->child_reaper == father)) {
747                 write_unlock_irq(&tasklist_lock);
748                 if (unlikely(pid_ns == &init_pid_ns))
749                         panic("Attempted to kill init!");
750
751                 zap_pid_ns_processes(pid_ns);
752                 write_lock_irq(&tasklist_lock);
753                 /*
754                  * We can not clear ->child_reaper or leave it alone.
755                  * There may by stealth EXIT_DEAD tasks on ->children,
756                  * forget_original_parent() must move them somewhere.
757                  */
758                 pid_ns->child_reaper = init_pid_ns.child_reaper;
759         }
760
761         return pid_ns->child_reaper;
762 }
763
764 /*
765 * Any that need to be release_task'd are put on the @dead list.
766  */
767 static void reparent_thread(struct task_struct *father, struct task_struct *p,
768                                 struct list_head *dead)
769 {
770         if (p->pdeath_signal)
771                 group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p);
772
773         list_move_tail(&p->sibling, &p->real_parent->children);
774
775         if (task_detached(p))
776                 return;
777         /*
778          * If this is a threaded reparent there is no need to
779          * notify anyone anything has happened.
780          */
781         if (same_thread_group(p->real_parent, father))
782                 return;
783
784         /* We don't want people slaying init.  */
785         p->exit_signal = SIGCHLD;
786
787         /* If it has exited notify the new parent about this child's death. */
788         if (!p->ptrace &&
789             p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
790                 do_notify_parent(p, p->exit_signal);
791                 if (task_detached(p)) {
792                         p->exit_state = EXIT_DEAD;
793                         list_move_tail(&p->sibling, dead);
794                 }
795         }
796
797         kill_orphaned_pgrp(p, father);
798 }
799
800 static void forget_original_parent(struct task_struct *father)
801 {
802         struct task_struct *p, *n, *reaper;
803         LIST_HEAD(dead_children);
804
805         exit_ptrace(father);
806
807         write_lock_irq(&tasklist_lock);
808         reaper = find_new_reaper(father);
809
810         list_for_each_entry_safe(p, n, &father->children, sibling) {
811                 p->real_parent = reaper;
812                 if (p->parent == father) {
813                         BUG_ON(p->ptrace);
814                         p->parent = p->real_parent;
815                 }
816                 reparent_thread(father, p, &dead_children);
817         }
818         write_unlock_irq(&tasklist_lock);
819
820         BUG_ON(!list_empty(&father->children));
821
822         list_for_each_entry_safe(p, n, &dead_children, sibling) {
823                 list_del_init(&p->sibling);
824                 release_task(p);
825         }
826 }
827
828 /*
829  * Send signals to all our closest relatives so that they know
830  * to properly mourn us..
831  */
832 static void exit_notify(struct task_struct *tsk, int group_dead)
833 {
834         int signal;
835         void *cookie;
836
837         /*
838          * This does two things:
839          *
840          * A.  Make init inherit all the child processes
841          * B.  Check to see if any process groups have become orphaned
842          *      as a result of our exiting, and if they have any stopped
843          *      jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
844          */
845         forget_original_parent(tsk);
846         exit_task_namespaces(tsk);
847
848         write_lock_irq(&tasklist_lock);
849         if (group_dead)
850                 kill_orphaned_pgrp(tsk->group_leader, NULL);
851
852         /* Let father know we died
853          *
854          * Thread signals are configurable, but you aren't going to use
855          * that to send signals to arbitary processes.
856          * That stops right now.
857          *
858          * If the parent exec id doesn't match the exec id we saved
859          * when we started then we know the parent has changed security
860          * domain.
861          *
862          * If our self_exec id doesn't match our parent_exec_id then
863          * we have changed execution domain as these two values started
864          * the same after a fork.
865          */
866         if (tsk->exit_signal != SIGCHLD && !task_detached(tsk) &&
867             (tsk->parent_exec_id != tsk->real_parent->self_exec_id ||
868              tsk->self_exec_id != tsk->parent_exec_id) &&
869             !capable(CAP_KILL))
870                 tsk->exit_signal = SIGCHLD;
871
872         signal = tracehook_notify_death(tsk, &cookie, group_dead);
873         if (signal >= 0)
874                 signal = do_notify_parent(tsk, signal);
875
876         tsk->exit_state = signal == DEATH_REAP ? EXIT_DEAD : EXIT_ZOMBIE;
877
878         /* mt-exec, de_thread() is waiting for us */
879         if (thread_group_leader(tsk) &&
880             tsk->signal->group_exit_task &&
881             tsk->signal->notify_count < 0)
882                 wake_up_process(tsk->signal->group_exit_task);
883
884         write_unlock_irq(&tasklist_lock);
885
886         tracehook_report_death(tsk, signal, cookie, group_dead);
887
888         /* If the process is dead, release it - nobody will wait for it */
889         if (signal == DEATH_REAP)
890                 release_task(tsk);
891 }
892
893 #ifdef CONFIG_DEBUG_STACK_USAGE
894 static void check_stack_usage(void)
895 {
896         static DEFINE_SPINLOCK(low_water_lock);
897         static int lowest_to_date = THREAD_SIZE;
898         unsigned long free;
899
900         free = stack_not_used(current);
901
902         if (free >= lowest_to_date)
903                 return;
904
905         spin_lock(&low_water_lock);
906         if (free < lowest_to_date) {
907                 printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
908                                 "left\n",
909                                 current->comm, free);
910                 lowest_to_date = free;
911         }
912         spin_unlock(&low_water_lock);
913 }
914 #else
915 static inline void check_stack_usage(void) {}
916 #endif
917
918 NORET_TYPE void do_exit(long code)
919 {
920         struct task_struct *tsk = current;
921         int group_dead;
922
923         profile_task_exit(tsk);
924
925         WARN_ON(atomic_read(&tsk->fs_excl));
926
927         if (unlikely(in_interrupt()))
928                 panic("Aiee, killing interrupt handler!");
929         if (unlikely(!tsk->pid))
930                 panic("Attempted to kill the idle task!");
931
932         tracehook_report_exit(&code);
933
934         /*
935          * We're taking recursive faults here in do_exit. Safest is to just
936          * leave this task alone and wait for reboot.
937          */
938         if (unlikely(tsk->flags & PF_EXITING)) {
939                 printk(KERN_ALERT
940                         "Fixing recursive fault but reboot is needed!\n");
941                 /*
942                  * We can do this unlocked here. The futex code uses
943                  * this flag just to verify whether the pi state
944                  * cleanup has been done or not. In the worst case it
945                  * loops once more. We pretend that the cleanup was
946                  * done as there is no way to return. Either the
947                  * OWNER_DIED bit is set by now or we push the blocked
948                  * task into the wait for ever nirwana as well.
949                  */
950                 tsk->flags |= PF_EXITPIDONE;
951                 set_current_state(TASK_UNINTERRUPTIBLE);
952                 schedule();
953         }
954
955         exit_signals(tsk);  /* sets PF_EXITING */
956         /*
957          * tsk->flags are checked in the futex code to protect against
958          * an exiting task cleaning up the robust pi futexes.
959          */
960         smp_mb();
961         spin_unlock_wait(&tsk->pi_lock);
962
963         if (unlikely(in_atomic()))
964                 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
965                                 current->comm, task_pid_nr(current),
966                                 preempt_count());
967
968         acct_update_integrals(tsk);
969
970         group_dead = atomic_dec_and_test(&tsk->signal->live);
971         if (group_dead) {
972                 hrtimer_cancel(&tsk->signal->real_timer);
973                 exit_itimers(tsk->signal);
974         }
975         acct_collect(code, group_dead);
976         if (group_dead)
977                 tty_audit_exit();
978         if (unlikely(tsk->audit_context))
979                 audit_free(tsk);
980
981         tsk->exit_code = code;
982         taskstats_exit(tsk, group_dead);
983
984         exit_mm(tsk);
985
986         if (group_dead)
987                 acct_process();
988         trace_sched_process_exit(tsk);
989
990         exit_sem(tsk);
991         exit_files(tsk);
992         exit_fs(tsk);
993         check_stack_usage();
994         exit_thread();
995         cgroup_exit(tsk, 1);
996
997         if (group_dead && tsk->signal->leader)
998                 disassociate_ctty(1);
999
1000         module_put(task_thread_info(tsk)->exec_domain->module);
1001         if (tsk->binfmt)
1002                 module_put(tsk->binfmt->module);
1003
1004         proc_exit_connector(tsk);
1005         exit_notify(tsk, group_dead);
1006 #ifdef CONFIG_NUMA
1007         mpol_put(tsk->mempolicy);
1008         tsk->mempolicy = NULL;
1009 #endif
1010 #ifdef CONFIG_FUTEX
1011         /*
1012          * This must happen late, after the PID is not
1013          * hashed anymore:
1014          */
1015         if (unlikely(!list_empty(&tsk->pi_state_list)))
1016                 exit_pi_state_list(tsk);
1017         if (unlikely(current->pi_state_cache))
1018                 kfree(current->pi_state_cache);
1019 #endif
1020         /*
1021          * Make sure we are holding no locks:
1022          */
1023         debug_check_no_locks_held(tsk);
1024         /*
1025          * We can do this unlocked here. The futex code uses this flag
1026          * just to verify whether the pi state cleanup has been done
1027          * or not. In the worst case it loops once more.
1028          */
1029         tsk->flags |= PF_EXITPIDONE;
1030
1031         if (tsk->io_context)
1032                 exit_io_context();
1033
1034         if (tsk->splice_pipe)
1035                 __free_pipe_info(tsk->splice_pipe);
1036
1037         preempt_disable();
1038         /* causes final put_task_struct in finish_task_switch(). */
1039         tsk->state = TASK_DEAD;
1040         schedule();
1041         BUG();
1042         /* Avoid "noreturn function does return".  */
1043         for (;;)
1044                 cpu_relax();    /* For when BUG is null */
1045 }
1046
1047 EXPORT_SYMBOL_GPL(do_exit);
1048
1049 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
1050 {
1051         if (comp)
1052                 complete(comp);
1053
1054         do_exit(code);
1055 }
1056
1057 EXPORT_SYMBOL(complete_and_exit);
1058
1059 SYSCALL_DEFINE1(exit, int, error_code)
1060 {
1061         do_exit((error_code&0xff)<<8);
1062 }
1063
1064 /*
1065  * Take down every thread in the group.  This is called by fatal signals
1066  * as well as by sys_exit_group (below).
1067  */
1068 NORET_TYPE void
1069 do_group_exit(int exit_code)
1070 {
1071         struct signal_struct *sig = current->signal;
1072
1073         BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1074
1075         if (signal_group_exit(sig))
1076                 exit_code = sig->group_exit_code;
1077         else if (!thread_group_empty(current)) {
1078                 struct sighand_struct *const sighand = current->sighand;
1079                 spin_lock_irq(&sighand->siglock);
1080                 if (signal_group_exit(sig))
1081                         /* Another thread got here before we took the lock.  */
1082                         exit_code = sig->group_exit_code;
1083                 else {
1084                         sig->group_exit_code = exit_code;
1085                         sig->flags = SIGNAL_GROUP_EXIT;
1086                         zap_other_threads(current);
1087                 }
1088                 spin_unlock_irq(&sighand->siglock);
1089         }
1090
1091         do_exit(exit_code);
1092         /* NOTREACHED */
1093 }
1094
1095 /*
1096  * this kills every thread in the thread group. Note that any externally
1097  * wait4()-ing process will get the correct exit code - even if this
1098  * thread is not the thread group leader.
1099  */
1100 SYSCALL_DEFINE1(exit_group, int, error_code)
1101 {
1102         do_group_exit((error_code & 0xff) << 8);
1103         /* NOTREACHED */
1104         return 0;
1105 }
1106
1107 static struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1108 {
1109         struct pid *pid = NULL;
1110         if (type == PIDTYPE_PID)
1111                 pid = task->pids[type].pid;
1112         else if (type < PIDTYPE_MAX)
1113                 pid = task->group_leader->pids[type].pid;
1114         return pid;
1115 }
1116
1117 static int eligible_child(enum pid_type type, struct pid *pid, int options,
1118                           struct task_struct *p)
1119 {
1120         int err;
1121
1122         if (type < PIDTYPE_MAX) {
1123                 if (task_pid_type(p, type) != pid)
1124                         return 0;
1125         }
1126
1127         /* Wait for all children (clone and not) if __WALL is set;
1128          * otherwise, wait for clone children *only* if __WCLONE is
1129          * set; otherwise, wait for non-clone children *only*.  (Note:
1130          * A "clone" child here is one that reports to its parent
1131          * using a signal other than SIGCHLD.) */
1132         if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0))
1133             && !(options & __WALL))
1134                 return 0;
1135
1136         err = security_task_wait(p);
1137         if (err)
1138                 return err;
1139
1140         return 1;
1141 }
1142
1143 static int wait_noreap_copyout(struct task_struct *p, pid_t pid, uid_t uid,
1144                                int why, int status,
1145                                struct siginfo __user *infop,
1146                                struct rusage __user *rusagep)
1147 {
1148         int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0;
1149
1150         put_task_struct(p);
1151         if (!retval)
1152                 retval = put_user(SIGCHLD, &infop->si_signo);
1153         if (!retval)
1154                 retval = put_user(0, &infop->si_errno);
1155         if (!retval)
1156                 retval = put_user((short)why, &infop->si_code);
1157         if (!retval)
1158                 retval = put_user(pid, &infop->si_pid);
1159         if (!retval)
1160                 retval = put_user(uid, &infop->si_uid);
1161         if (!retval)
1162                 retval = put_user(status, &infop->si_status);
1163         if (!retval)
1164                 retval = pid;
1165         return retval;
1166 }
1167
1168 /*
1169  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1170  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1171  * the lock and this task is uninteresting.  If we return nonzero, we have
1172  * released the lock and the system call should return.
1173  */
1174 static int wait_task_zombie(struct task_struct *p, int options,
1175                             struct siginfo __user *infop,
1176                             int __user *stat_addr, struct rusage __user *ru)
1177 {
1178         unsigned long state;
1179         int retval, status, traced;
1180         pid_t pid = task_pid_vnr(p);
1181         uid_t uid = __task_cred(p)->uid;
1182
1183         if (!likely(options & WEXITED))
1184                 return 0;
1185
1186         if (unlikely(options & WNOWAIT)) {
1187                 int exit_code = p->exit_code;
1188                 int why, status;
1189
1190                 get_task_struct(p);
1191                 read_unlock(&tasklist_lock);
1192                 if ((exit_code & 0x7f) == 0) {
1193                         why = CLD_EXITED;
1194                         status = exit_code >> 8;
1195                 } else {
1196                         why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1197                         status = exit_code & 0x7f;
1198                 }
1199                 return wait_noreap_copyout(p, pid, uid, why,
1200                                            status, infop, ru);
1201         }
1202
1203         /*
1204          * Try to move the task's state to DEAD
1205          * only one thread is allowed to do this:
1206          */
1207         state = xchg(&p->exit_state, EXIT_DEAD);
1208         if (state != EXIT_ZOMBIE) {
1209                 BUG_ON(state != EXIT_DEAD);
1210                 return 0;
1211         }
1212
1213         traced = ptrace_reparented(p);
1214
1215         if (likely(!traced)) {
1216                 struct signal_struct *psig;
1217                 struct signal_struct *sig;
1218                 struct task_cputime cputime;
1219
1220                 /*
1221                  * The resource counters for the group leader are in its
1222                  * own task_struct.  Those for dead threads in the group
1223                  * are in its signal_struct, as are those for the child
1224                  * processes it has previously reaped.  All these
1225                  * accumulate in the parent's signal_struct c* fields.
1226                  *
1227                  * We don't bother to take a lock here to protect these
1228                  * p->signal fields, because they are only touched by
1229                  * __exit_signal, which runs with tasklist_lock
1230                  * write-locked anyway, and so is excluded here.  We do
1231                  * need to protect the access to p->parent->signal fields,
1232                  * as other threads in the parent group can be right
1233                  * here reaping other children at the same time.
1234                  *
1235                  * We use thread_group_cputime() to get times for the thread
1236                  * group, which consolidates times for all threads in the
1237                  * group including the group leader.
1238                  */
1239                 thread_group_cputime(p, &cputime);
1240                 spin_lock_irq(&p->parent->sighand->siglock);
1241                 psig = p->parent->signal;
1242                 sig = p->signal;
1243                 psig->cutime =
1244                         cputime_add(psig->cutime,
1245                         cputime_add(cputime.utime,
1246                                     sig->cutime));
1247                 psig->cstime =
1248                         cputime_add(psig->cstime,
1249                         cputime_add(cputime.stime,
1250                                     sig->cstime));
1251                 psig->cgtime =
1252                         cputime_add(psig->cgtime,
1253                         cputime_add(p->gtime,
1254                         cputime_add(sig->gtime,
1255                                     sig->cgtime)));
1256                 psig->cmin_flt +=
1257                         p->min_flt + sig->min_flt + sig->cmin_flt;
1258                 psig->cmaj_flt +=
1259                         p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1260                 psig->cnvcsw +=
1261                         p->nvcsw + sig->nvcsw + sig->cnvcsw;
1262                 psig->cnivcsw +=
1263                         p->nivcsw + sig->nivcsw + sig->cnivcsw;
1264                 psig->cinblock +=
1265                         task_io_get_inblock(p) +
1266                         sig->inblock + sig->cinblock;
1267                 psig->coublock +=
1268                         task_io_get_oublock(p) +
1269                         sig->oublock + sig->coublock;
1270                 task_io_accounting_add(&psig->ioac, &p->ioac);
1271                 task_io_accounting_add(&psig->ioac, &sig->ioac);
1272                 spin_unlock_irq(&p->parent->sighand->siglock);
1273         }
1274
1275         /*
1276          * Now we are sure this task is interesting, and no other
1277          * thread can reap it because we set its state to EXIT_DEAD.
1278          */
1279         read_unlock(&tasklist_lock);
1280
1281         retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1282         status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1283                 ? p->signal->group_exit_code : p->exit_code;
1284         if (!retval && stat_addr)
1285                 retval = put_user(status, stat_addr);
1286         if (!retval && infop)
1287                 retval = put_user(SIGCHLD, &infop->si_signo);
1288         if (!retval && infop)
1289                 retval = put_user(0, &infop->si_errno);
1290         if (!retval && infop) {
1291                 int why;
1292
1293                 if ((status & 0x7f) == 0) {
1294                         why = CLD_EXITED;
1295                         status >>= 8;
1296                 } else {
1297                         why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1298                         status &= 0x7f;
1299                 }
1300                 retval = put_user((short)why, &infop->si_code);
1301                 if (!retval)
1302                         retval = put_user(status, &infop->si_status);
1303         }
1304         if (!retval && infop)
1305                 retval = put_user(pid, &infop->si_pid);
1306         if (!retval && infop)
1307                 retval = put_user(uid, &infop->si_uid);
1308         if (!retval)
1309                 retval = pid;
1310
1311         if (traced) {
1312                 write_lock_irq(&tasklist_lock);
1313                 /* We dropped tasklist, ptracer could die and untrace */
1314                 ptrace_unlink(p);
1315                 /*
1316                  * If this is not a detached task, notify the parent.
1317                  * If it's still not detached after that, don't release
1318                  * it now.
1319                  */
1320                 if (!task_detached(p)) {
1321                         do_notify_parent(p, p->exit_signal);
1322                         if (!task_detached(p)) {
1323                                 p->exit_state = EXIT_ZOMBIE;
1324                                 p = NULL;
1325                         }
1326                 }
1327                 write_unlock_irq(&tasklist_lock);
1328         }
1329         if (p != NULL)
1330                 release_task(p);
1331
1332         return retval;
1333 }
1334
1335 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1336 {
1337         if (ptrace) {
1338                 if (task_is_stopped_or_traced(p))
1339                         return &p->exit_code;
1340         } else {
1341                 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1342                         return &p->signal->group_exit_code;
1343         }
1344         return NULL;
1345 }
1346
1347 /*
1348  * Handle sys_wait4 work for one task in state TASK_STOPPED.  We hold
1349  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1350  * the lock and this task is uninteresting.  If we return nonzero, we have
1351  * released the lock and the system call should return.
1352  */
1353 static int wait_task_stopped(int ptrace, struct task_struct *p,
1354                              int options, struct siginfo __user *infop,
1355                              int __user *stat_addr, struct rusage __user *ru)
1356 {
1357         int retval, exit_code, *p_code, why;
1358         uid_t uid = 0; /* unneeded, required by compiler */
1359         pid_t pid;
1360
1361         if (!(options & WUNTRACED))
1362                 return 0;
1363
1364         exit_code = 0;
1365         spin_lock_irq(&p->sighand->siglock);
1366
1367         p_code = task_stopped_code(p, ptrace);
1368         if (unlikely(!p_code))
1369                 goto unlock_sig;
1370
1371         exit_code = *p_code;
1372         if (!exit_code)
1373                 goto unlock_sig;
1374
1375         if (!unlikely(options & WNOWAIT))
1376                 *p_code = 0;
1377
1378         /* don't need the RCU readlock here as we're holding a spinlock */
1379         uid = __task_cred(p)->uid;
1380 unlock_sig:
1381         spin_unlock_irq(&p->sighand->siglock);
1382         if (!exit_code)
1383                 return 0;
1384
1385         /*
1386          * Now we are pretty sure this task is interesting.
1387          * Make sure it doesn't get reaped out from under us while we
1388          * give up the lock and then examine it below.  We don't want to
1389          * keep holding onto the tasklist_lock while we call getrusage and
1390          * possibly take page faults for user memory.
1391          */
1392         get_task_struct(p);
1393         pid = task_pid_vnr(p);
1394         why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1395         read_unlock(&tasklist_lock);
1396
1397         if (unlikely(options & WNOWAIT))
1398                 return wait_noreap_copyout(p, pid, uid,
1399                                            why, exit_code,
1400                                            infop, ru);
1401
1402         retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1403         if (!retval && stat_addr)
1404                 retval = put_user((exit_code << 8) | 0x7f, stat_addr);
1405         if (!retval && infop)
1406                 retval = put_user(SIGCHLD, &infop->si_signo);
1407         if (!retval && infop)
1408                 retval = put_user(0, &infop->si_errno);
1409         if (!retval && infop)
1410                 retval = put_user((short)why, &infop->si_code);
1411         if (!retval && infop)
1412                 retval = put_user(exit_code, &infop->si_status);
1413         if (!retval && infop)
1414                 retval = put_user(pid, &infop->si_pid);
1415         if (!retval && infop)
1416                 retval = put_user(uid, &infop->si_uid);
1417         if (!retval)
1418                 retval = pid;
1419         put_task_struct(p);
1420
1421         BUG_ON(!retval);
1422         return retval;
1423 }
1424
1425 /*
1426  * Handle do_wait work for one task in a live, non-stopped state.
1427  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1428  * the lock and this task is uninteresting.  If we return nonzero, we have
1429  * released the lock and the system call should return.
1430  */
1431 static int wait_task_continued(struct task_struct *p, int options,
1432                                struct siginfo __user *infop,
1433                                int __user *stat_addr, struct rusage __user *ru)
1434 {
1435         int retval;
1436         pid_t pid;
1437         uid_t uid;
1438
1439         if (!unlikely(options & WCONTINUED))
1440                 return 0;
1441
1442         if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1443                 return 0;
1444
1445         spin_lock_irq(&p->sighand->siglock);
1446         /* Re-check with the lock held.  */
1447         if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1448                 spin_unlock_irq(&p->sighand->siglock);
1449                 return 0;
1450         }
1451         if (!unlikely(options & WNOWAIT))
1452                 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1453         uid = __task_cred(p)->uid;
1454         spin_unlock_irq(&p->sighand->siglock);
1455
1456         pid = task_pid_vnr(p);
1457         get_task_struct(p);
1458         read_unlock(&tasklist_lock);
1459
1460         if (!infop) {
1461                 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1462                 put_task_struct(p);
1463                 if (!retval && stat_addr)
1464                         retval = put_user(0xffff, stat_addr);
1465                 if (!retval)
1466                         retval = pid;
1467         } else {
1468                 retval = wait_noreap_copyout(p, pid, uid,
1469                                              CLD_CONTINUED, SIGCONT,
1470                                              infop, ru);
1471                 BUG_ON(retval == 0);
1472         }
1473
1474         return retval;
1475 }
1476
1477 /*
1478  * Consider @p for a wait by @parent.
1479  *
1480  * -ECHILD should be in *@notask_error before the first call.
1481  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1482  * Returns zero if the search for a child should continue;
1483  * then *@notask_error is 0 if @p is an eligible child,
1484  * or another error from security_task_wait(), or still -ECHILD.
1485  */
1486 static int wait_consider_task(struct task_struct *parent, int ptrace,
1487                               struct task_struct *p, int *notask_error,
1488                               enum pid_type type, struct pid *pid, int options,
1489                               struct siginfo __user *infop,
1490                               int __user *stat_addr, struct rusage __user *ru)
1491 {
1492         int ret = eligible_child(type, pid, options, p);
1493         if (!ret)
1494                 return ret;
1495
1496         if (unlikely(ret < 0)) {
1497                 /*
1498                  * If we have not yet seen any eligible child,
1499                  * then let this error code replace -ECHILD.
1500                  * A permission error will give the user a clue
1501                  * to look for security policy problems, rather
1502                  * than for mysterious wait bugs.
1503                  */
1504                 if (*notask_error)
1505                         *notask_error = ret;
1506         }
1507
1508         if (likely(!ptrace) && unlikely(p->ptrace)) {
1509                 /*
1510                  * This child is hidden by ptrace.
1511                  * We aren't allowed to see it now, but eventually we will.
1512                  */
1513                 *notask_error = 0;
1514                 return 0;
1515         }
1516
1517         if (p->exit_state == EXIT_DEAD)
1518                 return 0;
1519
1520         /*
1521          * We don't reap group leaders with subthreads.
1522          */
1523         if (p->exit_state == EXIT_ZOMBIE && !delay_group_leader(p))
1524                 return wait_task_zombie(p, options, infop, stat_addr, ru);
1525
1526         /*
1527          * It's stopped or running now, so it might
1528          * later continue, exit, or stop again.
1529          */
1530         *notask_error = 0;
1531
1532         if (task_stopped_code(p, ptrace))
1533                 return wait_task_stopped(ptrace, p, options,
1534                                          infop, stat_addr, ru);
1535
1536         return wait_task_continued(p, options, infop, stat_addr, ru);
1537 }
1538
1539 /*
1540  * Do the work of do_wait() for one thread in the group, @tsk.
1541  *
1542  * -ECHILD should be in *@notask_error before the first call.
1543  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1544  * Returns zero if the search for a child should continue; then
1545  * *@notask_error is 0 if there were any eligible children,
1546  * or another error from security_task_wait(), or still -ECHILD.
1547  */
1548 static int do_wait_thread(struct task_struct *tsk, int *notask_error,
1549                           enum pid_type type, struct pid *pid, int options,
1550                           struct siginfo __user *infop, int __user *stat_addr,
1551                           struct rusage __user *ru)
1552 {
1553         struct task_struct *p;
1554
1555         list_for_each_entry(p, &tsk->children, sibling) {
1556                 /*
1557                  * Do not consider detached threads.
1558                  */
1559                 if (!task_detached(p)) {
1560                         int ret = wait_consider_task(tsk, 0, p, notask_error,
1561                                                      type, pid, options,
1562                                                      infop, stat_addr, ru);
1563                         if (ret)
1564                                 return ret;
1565                 }
1566         }
1567
1568         return 0;
1569 }
1570
1571 static int ptrace_do_wait(struct task_struct *tsk, int *notask_error,
1572                           enum pid_type type, struct pid *pid, int options,
1573                           struct siginfo __user *infop, int __user *stat_addr,
1574                           struct rusage __user *ru)
1575 {
1576         struct task_struct *p;
1577
1578         /*
1579          * Traditionally we see ptrace'd stopped tasks regardless of options.
1580          */
1581         options |= WUNTRACED;
1582
1583         list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1584                 int ret = wait_consider_task(tsk, 1, p, notask_error,
1585                                              type, pid, options,
1586                                              infop, stat_addr, ru);
1587                 if (ret)
1588                         return ret;
1589         }
1590
1591         return 0;
1592 }
1593
1594 static long do_wait(enum pid_type type, struct pid *pid, int options,
1595                     struct siginfo __user *infop, int __user *stat_addr,
1596                     struct rusage __user *ru)
1597 {
1598         DECLARE_WAITQUEUE(wait, current);
1599         struct task_struct *tsk;
1600         int retval;
1601
1602         trace_sched_process_wait(pid);
1603
1604         add_wait_queue(&current->signal->wait_chldexit,&wait);
1605 repeat:
1606         /*
1607          * If there is nothing that can match our critiera just get out.
1608          * We will clear @retval to zero if we see any child that might later
1609          * match our criteria, even if we are not able to reap it yet.
1610          */
1611         retval = -ECHILD;
1612         if ((type < PIDTYPE_MAX) && (!pid || hlist_empty(&pid->tasks[type])))
1613                 goto end;
1614
1615         current->state = TASK_INTERRUPTIBLE;
1616         read_lock(&tasklist_lock);
1617         tsk = current;
1618         do {
1619                 int tsk_result = do_wait_thread(tsk, &retval,
1620                                                 type, pid, options,
1621                                                 infop, stat_addr, ru);
1622                 if (!tsk_result)
1623                         tsk_result = ptrace_do_wait(tsk, &retval,
1624                                                     type, pid, options,
1625                                                     infop, stat_addr, ru);
1626                 if (tsk_result) {
1627                         /*
1628                          * tasklist_lock is unlocked and we have a final result.
1629                          */
1630                         retval = tsk_result;
1631                         goto end;
1632                 }
1633
1634                 if (options & __WNOTHREAD)
1635                         break;
1636                 tsk = next_thread(tsk);
1637                 BUG_ON(tsk->signal != current->signal);
1638         } while (tsk != current);
1639         read_unlock(&tasklist_lock);
1640
1641         if (!retval && !(options & WNOHANG)) {
1642                 retval = -ERESTARTSYS;
1643                 if (!signal_pending(current)) {
1644                         schedule();
1645                         goto repeat;
1646                 }
1647         }
1648
1649 end:
1650         current->state = TASK_RUNNING;
1651         remove_wait_queue(&current->signal->wait_chldexit,&wait);
1652         if (infop) {
1653                 if (retval > 0)
1654                         retval = 0;
1655                 else {
1656                         /*
1657                          * For a WNOHANG return, clear out all the fields
1658                          * we would set so the user can easily tell the
1659                          * difference.
1660                          */
1661                         if (!retval)
1662                                 retval = put_user(0, &infop->si_signo);
1663                         if (!retval)
1664                                 retval = put_user(0, &infop->si_errno);
1665                         if (!retval)
1666                                 retval = put_user(0, &infop->si_code);
1667                         if (!retval)
1668                                 retval = put_user(0, &infop->si_pid);
1669                         if (!retval)
1670                                 retval = put_user(0, &infop->si_uid);
1671                         if (!retval)
1672                                 retval = put_user(0, &infop->si_status);
1673                 }
1674         }
1675         return retval;
1676 }
1677
1678 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1679                 infop, int, options, struct rusage __user *, ru)
1680 {
1681         struct pid *pid = NULL;
1682         enum pid_type type;
1683         long ret;
1684
1685         if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1686                 return -EINVAL;
1687         if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1688                 return -EINVAL;
1689
1690         switch (which) {
1691         case P_ALL:
1692                 type = PIDTYPE_MAX;
1693                 break;
1694         case P_PID:
1695                 type = PIDTYPE_PID;
1696                 if (upid <= 0)
1697                         return -EINVAL;
1698                 break;
1699         case P_PGID:
1700                 type = PIDTYPE_PGID;
1701                 if (upid <= 0)
1702                         return -EINVAL;
1703                 break;
1704         default:
1705                 return -EINVAL;
1706         }
1707
1708         if (type < PIDTYPE_MAX)
1709                 pid = find_get_pid(upid);
1710         ret = do_wait(type, pid, options, infop, NULL, ru);
1711         put_pid(pid);
1712
1713         /* avoid REGPARM breakage on x86: */
1714         asmlinkage_protect(5, ret, which, upid, infop, options, ru);
1715         return ret;
1716 }
1717
1718 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1719                 int, options, struct rusage __user *, ru)
1720 {
1721         struct pid *pid = NULL;
1722         enum pid_type type;
1723         long ret;
1724
1725         if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1726                         __WNOTHREAD|__WCLONE|__WALL))
1727                 return -EINVAL;
1728
1729         if (upid == -1)
1730                 type = PIDTYPE_MAX;
1731         else if (upid < 0) {
1732                 type = PIDTYPE_PGID;
1733                 pid = find_get_pid(-upid);
1734         } else if (upid == 0) {
1735                 type = PIDTYPE_PGID;
1736                 pid = get_task_pid(current, PIDTYPE_PGID);
1737         } else /* upid > 0 */ {
1738                 type = PIDTYPE_PID;
1739                 pid = find_get_pid(upid);
1740         }
1741
1742         ret = do_wait(type, pid, options | WEXITED, NULL, stat_addr, ru);
1743         put_pid(pid);
1744
1745         /* avoid REGPARM breakage on x86: */
1746         asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
1747         return ret;
1748 }
1749
1750 #ifdef __ARCH_WANT_SYS_WAITPID
1751
1752 /*
1753  * sys_waitpid() remains for compatibility. waitpid() should be
1754  * implemented by calling sys_wait4() from libc.a.
1755  */
1756 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1757 {
1758         return sys_wait4(pid, stat_addr, options, NULL);
1759 }
1760
1761 #endif