perf_counter: fix threaded task exit
[safe/jmp/linux-2.6] / kernel / exit.c
1 /*
2  *  linux/kernel/exit.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/mnt_namespace.h>
16 #include <linux/iocontext.h>
17 #include <linux/key.h>
18 #include <linux/security.h>
19 #include <linux/cpu.h>
20 #include <linux/acct.h>
21 #include <linux/tsacct_kern.h>
22 #include <linux/file.h>
23 #include <linux/fdtable.h>
24 #include <linux/binfmts.h>
25 #include <linux/nsproxy.h>
26 #include <linux/pid_namespace.h>
27 #include <linux/ptrace.h>
28 #include <linux/profile.h>
29 #include <linux/mount.h>
30 #include <linux/proc_fs.h>
31 #include <linux/kthread.h>
32 #include <linux/mempolicy.h>
33 #include <linux/taskstats_kern.h>
34 #include <linux/delayacct.h>
35 #include <linux/freezer.h>
36 #include <linux/cgroup.h>
37 #include <linux/syscalls.h>
38 #include <linux/signal.h>
39 #include <linux/posix-timers.h>
40 #include <linux/cn_proc.h>
41 #include <linux/mutex.h>
42 #include <linux/futex.h>
43 #include <linux/pipe_fs_i.h>
44 #include <linux/audit.h> /* for audit_free() */
45 #include <linux/resource.h>
46 #include <linux/blkdev.h>
47 #include <linux/task_io_accounting_ops.h>
48 #include <linux/tracehook.h>
49 #include <linux/fs_struct.h>
50 #include <linux/init_task.h>
51 #include <trace/sched.h>
52
53 #include <asm/uaccess.h>
54 #include <asm/unistd.h>
55 #include <asm/pgtable.h>
56 #include <asm/mmu_context.h>
57 #include "cred-internals.h"
58
59 DEFINE_TRACE(sched_process_free);
60 DEFINE_TRACE(sched_process_exit);
61 DEFINE_TRACE(sched_process_wait);
62
63 static void exit_mm(struct task_struct * tsk);
64
65 static void __unhash_process(struct task_struct *p)
66 {
67         nr_threads--;
68         detach_pid(p, PIDTYPE_PID);
69         if (thread_group_leader(p)) {
70                 detach_pid(p, PIDTYPE_PGID);
71                 detach_pid(p, PIDTYPE_SID);
72
73                 list_del_rcu(&p->tasks);
74                 __get_cpu_var(process_counts)--;
75         }
76         list_del_rcu(&p->thread_group);
77         list_del_init(&p->sibling);
78 }
79
80 /*
81  * This function expects the tasklist_lock write-locked.
82  */
83 static void __exit_signal(struct task_struct *tsk)
84 {
85         struct signal_struct *sig = tsk->signal;
86         struct sighand_struct *sighand;
87
88         BUG_ON(!sig);
89         BUG_ON(!atomic_read(&sig->count));
90
91         sighand = rcu_dereference(tsk->sighand);
92         spin_lock(&sighand->siglock);
93
94         posix_cpu_timers_exit(tsk);
95         if (atomic_dec_and_test(&sig->count))
96                 posix_cpu_timers_exit_group(tsk);
97         else {
98                 /*
99                  * If there is any task waiting for the group exit
100                  * then notify it:
101                  */
102                 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count)
103                         wake_up_process(sig->group_exit_task);
104
105                 if (tsk == sig->curr_target)
106                         sig->curr_target = next_thread(tsk);
107                 /*
108                  * Accumulate here the counters for all threads but the
109                  * group leader as they die, so they can be added into
110                  * the process-wide totals when those are taken.
111                  * The group leader stays around as a zombie as long
112                  * as there are other threads.  When it gets reaped,
113                  * the exit.c code will add its counts into these totals.
114                  * We won't ever get here for the group leader, since it
115                  * will have been the last reference on the signal_struct.
116                  */
117                 sig->utime = cputime_add(sig->utime, task_utime(tsk));
118                 sig->stime = cputime_add(sig->stime, task_stime(tsk));
119                 sig->gtime = cputime_add(sig->gtime, task_gtime(tsk));
120                 sig->min_flt += tsk->min_flt;
121                 sig->maj_flt += tsk->maj_flt;
122                 sig->nvcsw += tsk->nvcsw;
123                 sig->nivcsw += tsk->nivcsw;
124                 sig->inblock += task_io_get_inblock(tsk);
125                 sig->oublock += task_io_get_oublock(tsk);
126                 task_io_accounting_add(&sig->ioac, &tsk->ioac);
127                 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
128                 sig = NULL; /* Marker for below. */
129         }
130
131         __unhash_process(tsk);
132
133         /*
134          * Do this under ->siglock, we can race with another thread
135          * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
136          */
137         flush_sigqueue(&tsk->pending);
138
139         tsk->signal = NULL;
140         tsk->sighand = NULL;
141         spin_unlock(&sighand->siglock);
142
143         __cleanup_sighand(sighand);
144         clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
145         if (sig) {
146                 flush_sigqueue(&sig->shared_pending);
147                 taskstats_tgid_free(sig);
148                 /*
149                  * Make sure ->signal can't go away under rq->lock,
150                  * see account_group_exec_runtime().
151                  */
152                 task_rq_unlock_wait(tsk);
153                 __cleanup_signal(sig);
154         }
155 }
156
157 static void delayed_put_task_struct(struct rcu_head *rhp)
158 {
159         struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
160
161 #ifdef CONFIG_PERF_COUNTERS
162         WARN_ON_ONCE(!list_empty(&tsk->perf_counter_ctx.counter_list));
163 #endif
164         trace_sched_process_free(tsk);
165         put_task_struct(tsk);
166 }
167
168
169 void release_task(struct task_struct * p)
170 {
171         struct task_struct *leader;
172         int zap_leader;
173 repeat:
174         tracehook_prepare_release_task(p);
175         /* don't need to get the RCU readlock here - the process is dead and
176          * can't be modifying its own credentials */
177         atomic_dec(&__task_cred(p)->user->processes);
178
179         proc_flush_task(p);
180
181         /*
182          * Flush inherited counters to the parent - before the parent
183          * gets woken up by child-exit notifications.
184          */
185         perf_counter_exit_task(p);
186
187         write_lock_irq(&tasklist_lock);
188         tracehook_finish_release_task(p);
189         __exit_signal(p);
190
191         /*
192          * If we are the last non-leader member of the thread
193          * group, and the leader is zombie, then notify the
194          * group leader's parent process. (if it wants notification.)
195          */
196         zap_leader = 0;
197         leader = p->group_leader;
198         if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
199                 BUG_ON(task_detached(leader));
200                 do_notify_parent(leader, leader->exit_signal);
201                 /*
202                  * If we were the last child thread and the leader has
203                  * exited already, and the leader's parent ignores SIGCHLD,
204                  * then we are the one who should release the leader.
205                  *
206                  * do_notify_parent() will have marked it self-reaping in
207                  * that case.
208                  */
209                 zap_leader = task_detached(leader);
210
211                 /*
212                  * This maintains the invariant that release_task()
213                  * only runs on a task in EXIT_DEAD, just for sanity.
214                  */
215                 if (zap_leader)
216                         leader->exit_state = EXIT_DEAD;
217         }
218
219         write_unlock_irq(&tasklist_lock);
220         release_thread(p);
221         call_rcu(&p->rcu, delayed_put_task_struct);
222
223         p = leader;
224         if (unlikely(zap_leader))
225                 goto repeat;
226 }
227
228 /*
229  * This checks not only the pgrp, but falls back on the pid if no
230  * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
231  * without this...
232  *
233  * The caller must hold rcu lock or the tasklist lock.
234  */
235 struct pid *session_of_pgrp(struct pid *pgrp)
236 {
237         struct task_struct *p;
238         struct pid *sid = NULL;
239
240         p = pid_task(pgrp, PIDTYPE_PGID);
241         if (p == NULL)
242                 p = pid_task(pgrp, PIDTYPE_PID);
243         if (p != NULL)
244                 sid = task_session(p);
245
246         return sid;
247 }
248
249 /*
250  * Determine if a process group is "orphaned", according to the POSIX
251  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
252  * by terminal-generated stop signals.  Newly orphaned process groups are
253  * to receive a SIGHUP and a SIGCONT.
254  *
255  * "I ask you, have you ever known what it is to be an orphan?"
256  */
257 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
258 {
259         struct task_struct *p;
260
261         do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
262                 if ((p == ignored_task) ||
263                     (p->exit_state && thread_group_empty(p)) ||
264                     is_global_init(p->real_parent))
265                         continue;
266
267                 if (task_pgrp(p->real_parent) != pgrp &&
268                     task_session(p->real_parent) == task_session(p))
269                         return 0;
270         } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
271
272         return 1;
273 }
274
275 int is_current_pgrp_orphaned(void)
276 {
277         int retval;
278
279         read_lock(&tasklist_lock);
280         retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
281         read_unlock(&tasklist_lock);
282
283         return retval;
284 }
285
286 static int has_stopped_jobs(struct pid *pgrp)
287 {
288         int retval = 0;
289         struct task_struct *p;
290
291         do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
292                 if (!task_is_stopped(p))
293                         continue;
294                 retval = 1;
295                 break;
296         } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
297         return retval;
298 }
299
300 /*
301  * Check to see if any process groups have become orphaned as
302  * a result of our exiting, and if they have any stopped jobs,
303  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
304  */
305 static void
306 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
307 {
308         struct pid *pgrp = task_pgrp(tsk);
309         struct task_struct *ignored_task = tsk;
310
311         if (!parent)
312                  /* exit: our father is in a different pgrp than
313                   * we are and we were the only connection outside.
314                   */
315                 parent = tsk->real_parent;
316         else
317                 /* reparent: our child is in a different pgrp than
318                  * we are, and it was the only connection outside.
319                  */
320                 ignored_task = NULL;
321
322         if (task_pgrp(parent) != pgrp &&
323             task_session(parent) == task_session(tsk) &&
324             will_become_orphaned_pgrp(pgrp, ignored_task) &&
325             has_stopped_jobs(pgrp)) {
326                 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
327                 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
328         }
329 }
330
331 /**
332  * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
333  *
334  * If a kernel thread is launched as a result of a system call, or if
335  * it ever exits, it should generally reparent itself to kthreadd so it
336  * isn't in the way of other processes and is correctly cleaned up on exit.
337  *
338  * The various task state such as scheduling policy and priority may have
339  * been inherited from a user process, so we reset them to sane values here.
340  *
341  * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
342  */
343 static void reparent_to_kthreadd(void)
344 {
345         write_lock_irq(&tasklist_lock);
346
347         ptrace_unlink(current);
348         /* Reparent to init */
349         current->real_parent = current->parent = kthreadd_task;
350         list_move_tail(&current->sibling, &current->real_parent->children);
351
352         /* Set the exit signal to SIGCHLD so we signal init on exit */
353         current->exit_signal = SIGCHLD;
354
355         if (task_nice(current) < 0)
356                 set_user_nice(current, 0);
357         /* cpus_allowed? */
358         /* rt_priority? */
359         /* signals? */
360         memcpy(current->signal->rlim, init_task.signal->rlim,
361                sizeof(current->signal->rlim));
362
363         atomic_inc(&init_cred.usage);
364         commit_creds(&init_cred);
365         write_unlock_irq(&tasklist_lock);
366 }
367
368 void __set_special_pids(struct pid *pid)
369 {
370         struct task_struct *curr = current->group_leader;
371
372         if (task_session(curr) != pid)
373                 change_pid(curr, PIDTYPE_SID, pid);
374
375         if (task_pgrp(curr) != pid)
376                 change_pid(curr, PIDTYPE_PGID, pid);
377 }
378
379 static void set_special_pids(struct pid *pid)
380 {
381         write_lock_irq(&tasklist_lock);
382         __set_special_pids(pid);
383         write_unlock_irq(&tasklist_lock);
384 }
385
386 /*
387  * Let kernel threads use this to say that they
388  * allow a certain signal (since daemonize() will
389  * have disabled all of them by default).
390  */
391 int allow_signal(int sig)
392 {
393         if (!valid_signal(sig) || sig < 1)
394                 return -EINVAL;
395
396         spin_lock_irq(&current->sighand->siglock);
397         sigdelset(&current->blocked, sig);
398         if (!current->mm) {
399                 /* Kernel threads handle their own signals.
400                    Let the signal code know it'll be handled, so
401                    that they don't get converted to SIGKILL or
402                    just silently dropped */
403                 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
404         }
405         recalc_sigpending();
406         spin_unlock_irq(&current->sighand->siglock);
407         return 0;
408 }
409
410 EXPORT_SYMBOL(allow_signal);
411
412 int disallow_signal(int sig)
413 {
414         if (!valid_signal(sig) || sig < 1)
415                 return -EINVAL;
416
417         spin_lock_irq(&current->sighand->siglock);
418         current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
419         recalc_sigpending();
420         spin_unlock_irq(&current->sighand->siglock);
421         return 0;
422 }
423
424 EXPORT_SYMBOL(disallow_signal);
425
426 /*
427  *      Put all the gunge required to become a kernel thread without
428  *      attached user resources in one place where it belongs.
429  */
430
431 void daemonize(const char *name, ...)
432 {
433         va_list args;
434         sigset_t blocked;
435
436         va_start(args, name);
437         vsnprintf(current->comm, sizeof(current->comm), name, args);
438         va_end(args);
439
440         /*
441          * If we were started as result of loading a module, close all of the
442          * user space pages.  We don't need them, and if we didn't close them
443          * they would be locked into memory.
444          */
445         exit_mm(current);
446         /*
447          * We don't want to have TIF_FREEZE set if the system-wide hibernation
448          * or suspend transition begins right now.
449          */
450         current->flags |= (PF_NOFREEZE | PF_KTHREAD);
451
452         if (current->nsproxy != &init_nsproxy) {
453                 get_nsproxy(&init_nsproxy);
454                 switch_task_namespaces(current, &init_nsproxy);
455         }
456         set_special_pids(&init_struct_pid);
457         proc_clear_tty(current);
458
459         /* Block and flush all signals */
460         sigfillset(&blocked);
461         sigprocmask(SIG_BLOCK, &blocked, NULL);
462         flush_signals(current);
463
464         /* Become as one with the init task */
465
466         daemonize_fs_struct();
467         exit_files(current);
468         current->files = init_task.files;
469         atomic_inc(&current->files->count);
470
471         reparent_to_kthreadd();
472 }
473
474 EXPORT_SYMBOL(daemonize);
475
476 static void close_files(struct files_struct * files)
477 {
478         int i, j;
479         struct fdtable *fdt;
480
481         j = 0;
482
483         /*
484          * It is safe to dereference the fd table without RCU or
485          * ->file_lock because this is the last reference to the
486          * files structure.
487          */
488         fdt = files_fdtable(files);
489         for (;;) {
490                 unsigned long set;
491                 i = j * __NFDBITS;
492                 if (i >= fdt->max_fds)
493                         break;
494                 set = fdt->open_fds->fds_bits[j++];
495                 while (set) {
496                         if (set & 1) {
497                                 struct file * file = xchg(&fdt->fd[i], NULL);
498                                 if (file) {
499                                         filp_close(file, files);
500                                         cond_resched();
501                                 }
502                         }
503                         i++;
504                         set >>= 1;
505                 }
506         }
507 }
508
509 struct files_struct *get_files_struct(struct task_struct *task)
510 {
511         struct files_struct *files;
512
513         task_lock(task);
514         files = task->files;
515         if (files)
516                 atomic_inc(&files->count);
517         task_unlock(task);
518
519         return files;
520 }
521
522 void put_files_struct(struct files_struct *files)
523 {
524         struct fdtable *fdt;
525
526         if (atomic_dec_and_test(&files->count)) {
527                 close_files(files);
528                 /*
529                  * Free the fd and fdset arrays if we expanded them.
530                  * If the fdtable was embedded, pass files for freeing
531                  * at the end of the RCU grace period. Otherwise,
532                  * you can free files immediately.
533                  */
534                 fdt = files_fdtable(files);
535                 if (fdt != &files->fdtab)
536                         kmem_cache_free(files_cachep, files);
537                 free_fdtable(fdt);
538         }
539 }
540
541 void reset_files_struct(struct files_struct *files)
542 {
543         struct task_struct *tsk = current;
544         struct files_struct *old;
545
546         old = tsk->files;
547         task_lock(tsk);
548         tsk->files = files;
549         task_unlock(tsk);
550         put_files_struct(old);
551 }
552
553 void exit_files(struct task_struct *tsk)
554 {
555         struct files_struct * files = tsk->files;
556
557         if (files) {
558                 task_lock(tsk);
559                 tsk->files = NULL;
560                 task_unlock(tsk);
561                 put_files_struct(files);
562         }
563 }
564
565 #ifdef CONFIG_MM_OWNER
566 /*
567  * Task p is exiting and it owned mm, lets find a new owner for it
568  */
569 static inline int
570 mm_need_new_owner(struct mm_struct *mm, struct task_struct *p)
571 {
572         /*
573          * If there are other users of the mm and the owner (us) is exiting
574          * we need to find a new owner to take on the responsibility.
575          */
576         if (atomic_read(&mm->mm_users) <= 1)
577                 return 0;
578         if (mm->owner != p)
579                 return 0;
580         return 1;
581 }
582
583 void mm_update_next_owner(struct mm_struct *mm)
584 {
585         struct task_struct *c, *g, *p = current;
586
587 retry:
588         if (!mm_need_new_owner(mm, p))
589                 return;
590
591         read_lock(&tasklist_lock);
592         /*
593          * Search in the children
594          */
595         list_for_each_entry(c, &p->children, sibling) {
596                 if (c->mm == mm)
597                         goto assign_new_owner;
598         }
599
600         /*
601          * Search in the siblings
602          */
603         list_for_each_entry(c, &p->parent->children, sibling) {
604                 if (c->mm == mm)
605                         goto assign_new_owner;
606         }
607
608         /*
609          * Search through everything else. We should not get
610          * here often
611          */
612         do_each_thread(g, c) {
613                 if (c->mm == mm)
614                         goto assign_new_owner;
615         } while_each_thread(g, c);
616
617         read_unlock(&tasklist_lock);
618         /*
619          * We found no owner yet mm_users > 1: this implies that we are
620          * most likely racing with swapoff (try_to_unuse()) or /proc or
621          * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
622          */
623         mm->owner = NULL;
624         return;
625
626 assign_new_owner:
627         BUG_ON(c == p);
628         get_task_struct(c);
629         /*
630          * The task_lock protects c->mm from changing.
631          * We always want mm->owner->mm == mm
632          */
633         task_lock(c);
634         /*
635          * Delay read_unlock() till we have the task_lock()
636          * to ensure that c does not slip away underneath us
637          */
638         read_unlock(&tasklist_lock);
639         if (c->mm != mm) {
640                 task_unlock(c);
641                 put_task_struct(c);
642                 goto retry;
643         }
644         mm->owner = c;
645         task_unlock(c);
646         put_task_struct(c);
647 }
648 #endif /* CONFIG_MM_OWNER */
649
650 /*
651  * Turn us into a lazy TLB process if we
652  * aren't already..
653  */
654 static void exit_mm(struct task_struct * tsk)
655 {
656         struct mm_struct *mm = tsk->mm;
657         struct core_state *core_state;
658
659         mm_release(tsk, mm);
660         if (!mm)
661                 return;
662         /*
663          * Serialize with any possible pending coredump.
664          * We must hold mmap_sem around checking core_state
665          * and clearing tsk->mm.  The core-inducing thread
666          * will increment ->nr_threads for each thread in the
667          * group with ->mm != NULL.
668          */
669         down_read(&mm->mmap_sem);
670         core_state = mm->core_state;
671         if (core_state) {
672                 struct core_thread self;
673                 up_read(&mm->mmap_sem);
674
675                 self.task = tsk;
676                 self.next = xchg(&core_state->dumper.next, &self);
677                 /*
678                  * Implies mb(), the result of xchg() must be visible
679                  * to core_state->dumper.
680                  */
681                 if (atomic_dec_and_test(&core_state->nr_threads))
682                         complete(&core_state->startup);
683
684                 for (;;) {
685                         set_task_state(tsk, TASK_UNINTERRUPTIBLE);
686                         if (!self.task) /* see coredump_finish() */
687                                 break;
688                         schedule();
689                 }
690                 __set_task_state(tsk, TASK_RUNNING);
691                 down_read(&mm->mmap_sem);
692         }
693         atomic_inc(&mm->mm_count);
694         BUG_ON(mm != tsk->active_mm);
695         /* more a memory barrier than a real lock */
696         task_lock(tsk);
697         tsk->mm = NULL;
698         up_read(&mm->mmap_sem);
699         enter_lazy_tlb(mm, current);
700         /* We don't want this task to be frozen prematurely */
701         clear_freeze_flag(tsk);
702         task_unlock(tsk);
703         mm_update_next_owner(mm);
704         mmput(mm);
705 }
706
707 /*
708  * When we die, we re-parent all our children.
709  * Try to give them to another thread in our thread
710  * group, and if no such member exists, give it to
711  * the child reaper process (ie "init") in our pid
712  * space.
713  */
714 static struct task_struct *find_new_reaper(struct task_struct *father)
715 {
716         struct pid_namespace *pid_ns = task_active_pid_ns(father);
717         struct task_struct *thread;
718
719         thread = father;
720         while_each_thread(father, thread) {
721                 if (thread->flags & PF_EXITING)
722                         continue;
723                 if (unlikely(pid_ns->child_reaper == father))
724                         pid_ns->child_reaper = thread;
725                 return thread;
726         }
727
728         if (unlikely(pid_ns->child_reaper == father)) {
729                 write_unlock_irq(&tasklist_lock);
730                 if (unlikely(pid_ns == &init_pid_ns))
731                         panic("Attempted to kill init!");
732
733                 zap_pid_ns_processes(pid_ns);
734                 write_lock_irq(&tasklist_lock);
735                 /*
736                  * We can not clear ->child_reaper or leave it alone.
737                  * There may by stealth EXIT_DEAD tasks on ->children,
738                  * forget_original_parent() must move them somewhere.
739                  */
740                 pid_ns->child_reaper = init_pid_ns.child_reaper;
741         }
742
743         return pid_ns->child_reaper;
744 }
745
746 /*
747 * Any that need to be release_task'd are put on the @dead list.
748  */
749 static void reparent_thread(struct task_struct *father, struct task_struct *p,
750                                 struct list_head *dead)
751 {
752         if (p->pdeath_signal)
753                 group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p);
754
755         list_move_tail(&p->sibling, &p->real_parent->children);
756
757         if (task_detached(p))
758                 return;
759         /*
760          * If this is a threaded reparent there is no need to
761          * notify anyone anything has happened.
762          */
763         if (same_thread_group(p->real_parent, father))
764                 return;
765
766         /* We don't want people slaying init.  */
767         p->exit_signal = SIGCHLD;
768
769         /* If it has exited notify the new parent about this child's death. */
770         if (!p->ptrace &&
771             p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
772                 do_notify_parent(p, p->exit_signal);
773                 if (task_detached(p)) {
774                         p->exit_state = EXIT_DEAD;
775                         list_move_tail(&p->sibling, dead);
776                 }
777         }
778
779         kill_orphaned_pgrp(p, father);
780 }
781
782 static void forget_original_parent(struct task_struct *father)
783 {
784         struct task_struct *p, *n, *reaper;
785         LIST_HEAD(dead_children);
786
787         exit_ptrace(father);
788
789         write_lock_irq(&tasklist_lock);
790         reaper = find_new_reaper(father);
791
792         list_for_each_entry_safe(p, n, &father->children, sibling) {
793                 p->real_parent = reaper;
794                 if (p->parent == father) {
795                         BUG_ON(p->ptrace);
796                         p->parent = p->real_parent;
797                 }
798                 reparent_thread(father, p, &dead_children);
799         }
800         write_unlock_irq(&tasklist_lock);
801
802         BUG_ON(!list_empty(&father->children));
803
804         list_for_each_entry_safe(p, n, &dead_children, sibling) {
805                 list_del_init(&p->sibling);
806                 release_task(p);
807         }
808 }
809
810 /*
811  * Send signals to all our closest relatives so that they know
812  * to properly mourn us..
813  */
814 static void exit_notify(struct task_struct *tsk, int group_dead)
815 {
816         int signal;
817         void *cookie;
818
819         /*
820          * This does two things:
821          *
822          * A.  Make init inherit all the child processes
823          * B.  Check to see if any process groups have become orphaned
824          *      as a result of our exiting, and if they have any stopped
825          *      jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
826          */
827         forget_original_parent(tsk);
828         exit_task_namespaces(tsk);
829
830         write_lock_irq(&tasklist_lock);
831         if (group_dead)
832                 kill_orphaned_pgrp(tsk->group_leader, NULL);
833
834         /* Let father know we died
835          *
836          * Thread signals are configurable, but you aren't going to use
837          * that to send signals to arbitary processes.
838          * That stops right now.
839          *
840          * If the parent exec id doesn't match the exec id we saved
841          * when we started then we know the parent has changed security
842          * domain.
843          *
844          * If our self_exec id doesn't match our parent_exec_id then
845          * we have changed execution domain as these two values started
846          * the same after a fork.
847          */
848         if (tsk->exit_signal != SIGCHLD && !task_detached(tsk) &&
849             (tsk->parent_exec_id != tsk->real_parent->self_exec_id ||
850              tsk->self_exec_id != tsk->parent_exec_id))
851                 tsk->exit_signal = SIGCHLD;
852
853         signal = tracehook_notify_death(tsk, &cookie, group_dead);
854         if (signal >= 0)
855                 signal = do_notify_parent(tsk, signal);
856
857         tsk->exit_state = signal == DEATH_REAP ? EXIT_DEAD : EXIT_ZOMBIE;
858
859         /* mt-exec, de_thread() is waiting for us */
860         if (thread_group_leader(tsk) &&
861             tsk->signal->group_exit_task &&
862             tsk->signal->notify_count < 0)
863                 wake_up_process(tsk->signal->group_exit_task);
864
865         write_unlock_irq(&tasklist_lock);
866
867         tracehook_report_death(tsk, signal, cookie, group_dead);
868
869         /* If the process is dead, release it - nobody will wait for it */
870         if (signal == DEATH_REAP)
871                 release_task(tsk);
872 }
873
874 #ifdef CONFIG_DEBUG_STACK_USAGE
875 static void check_stack_usage(void)
876 {
877         static DEFINE_SPINLOCK(low_water_lock);
878         static int lowest_to_date = THREAD_SIZE;
879         unsigned long free;
880
881         free = stack_not_used(current);
882
883         if (free >= lowest_to_date)
884                 return;
885
886         spin_lock(&low_water_lock);
887         if (free < lowest_to_date) {
888                 printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
889                                 "left\n",
890                                 current->comm, free);
891                 lowest_to_date = free;
892         }
893         spin_unlock(&low_water_lock);
894 }
895 #else
896 static inline void check_stack_usage(void) {}
897 #endif
898
899 NORET_TYPE void do_exit(long code)
900 {
901         struct task_struct *tsk = current;
902         int group_dead;
903
904         profile_task_exit(tsk);
905
906         WARN_ON(atomic_read(&tsk->fs_excl));
907
908         if (unlikely(in_interrupt()))
909                 panic("Aiee, killing interrupt handler!");
910         if (unlikely(!tsk->pid))
911                 panic("Attempted to kill the idle task!");
912
913         tracehook_report_exit(&code);
914
915         /*
916          * We're taking recursive faults here in do_exit. Safest is to just
917          * leave this task alone and wait for reboot.
918          */
919         if (unlikely(tsk->flags & PF_EXITING)) {
920                 printk(KERN_ALERT
921                         "Fixing recursive fault but reboot is needed!\n");
922                 /*
923                  * We can do this unlocked here. The futex code uses
924                  * this flag just to verify whether the pi state
925                  * cleanup has been done or not. In the worst case it
926                  * loops once more. We pretend that the cleanup was
927                  * done as there is no way to return. Either the
928                  * OWNER_DIED bit is set by now or we push the blocked
929                  * task into the wait for ever nirwana as well.
930                  */
931                 tsk->flags |= PF_EXITPIDONE;
932                 set_current_state(TASK_UNINTERRUPTIBLE);
933                 schedule();
934         }
935
936         exit_irq_thread();
937
938         exit_signals(tsk);  /* sets PF_EXITING */
939         /*
940          * tsk->flags are checked in the futex code to protect against
941          * an exiting task cleaning up the robust pi futexes.
942          */
943         smp_mb();
944         spin_unlock_wait(&tsk->pi_lock);
945
946         if (unlikely(in_atomic()))
947                 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
948                                 current->comm, task_pid_nr(current),
949                                 preempt_count());
950
951         acct_update_integrals(tsk);
952
953         group_dead = atomic_dec_and_test(&tsk->signal->live);
954         if (group_dead) {
955                 hrtimer_cancel(&tsk->signal->real_timer);
956                 exit_itimers(tsk->signal);
957         }
958         acct_collect(code, group_dead);
959         if (group_dead)
960                 tty_audit_exit();
961         if (unlikely(tsk->audit_context))
962                 audit_free(tsk);
963
964         tsk->exit_code = code;
965         taskstats_exit(tsk, group_dead);
966
967         exit_mm(tsk);
968
969         if (group_dead)
970                 acct_process();
971         trace_sched_process_exit(tsk);
972
973         exit_sem(tsk);
974         exit_files(tsk);
975         exit_fs(tsk);
976         check_stack_usage();
977         exit_thread();
978         cgroup_exit(tsk, 1);
979
980         if (group_dead && tsk->signal->leader)
981                 disassociate_ctty(1);
982
983         module_put(task_thread_info(tsk)->exec_domain->module);
984         if (tsk->binfmt)
985                 module_put(tsk->binfmt->module);
986
987         proc_exit_connector(tsk);
988         exit_notify(tsk, group_dead);
989 #ifdef CONFIG_NUMA
990         mpol_put(tsk->mempolicy);
991         tsk->mempolicy = NULL;
992 #endif
993 #ifdef CONFIG_FUTEX
994         if (unlikely(!list_empty(&tsk->pi_state_list)))
995                 exit_pi_state_list(tsk);
996         if (unlikely(current->pi_state_cache))
997                 kfree(current->pi_state_cache);
998 #endif
999         /*
1000          * Make sure we are holding no locks:
1001          */
1002         debug_check_no_locks_held(tsk);
1003         /*
1004          * We can do this unlocked here. The futex code uses this flag
1005          * just to verify whether the pi state cleanup has been done
1006          * or not. In the worst case it loops once more.
1007          */
1008         tsk->flags |= PF_EXITPIDONE;
1009
1010         if (tsk->io_context)
1011                 exit_io_context();
1012
1013         if (tsk->splice_pipe)
1014                 __free_pipe_info(tsk->splice_pipe);
1015
1016         preempt_disable();
1017         /* causes final put_task_struct in finish_task_switch(). */
1018         tsk->state = TASK_DEAD;
1019         schedule();
1020         BUG();
1021         /* Avoid "noreturn function does return".  */
1022         for (;;)
1023                 cpu_relax();    /* For when BUG is null */
1024 }
1025
1026 EXPORT_SYMBOL_GPL(do_exit);
1027
1028 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
1029 {
1030         if (comp)
1031                 complete(comp);
1032
1033         do_exit(code);
1034 }
1035
1036 EXPORT_SYMBOL(complete_and_exit);
1037
1038 SYSCALL_DEFINE1(exit, int, error_code)
1039 {
1040         do_exit((error_code&0xff)<<8);
1041 }
1042
1043 /*
1044  * Take down every thread in the group.  This is called by fatal signals
1045  * as well as by sys_exit_group (below).
1046  */
1047 NORET_TYPE void
1048 do_group_exit(int exit_code)
1049 {
1050         struct signal_struct *sig = current->signal;
1051
1052         BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1053
1054         if (signal_group_exit(sig))
1055                 exit_code = sig->group_exit_code;
1056         else if (!thread_group_empty(current)) {
1057                 struct sighand_struct *const sighand = current->sighand;
1058                 spin_lock_irq(&sighand->siglock);
1059                 if (signal_group_exit(sig))
1060                         /* Another thread got here before we took the lock.  */
1061                         exit_code = sig->group_exit_code;
1062                 else {
1063                         sig->group_exit_code = exit_code;
1064                         sig->flags = SIGNAL_GROUP_EXIT;
1065                         zap_other_threads(current);
1066                 }
1067                 spin_unlock_irq(&sighand->siglock);
1068         }
1069
1070         do_exit(exit_code);
1071         /* NOTREACHED */
1072 }
1073
1074 /*
1075  * this kills every thread in the thread group. Note that any externally
1076  * wait4()-ing process will get the correct exit code - even if this
1077  * thread is not the thread group leader.
1078  */
1079 SYSCALL_DEFINE1(exit_group, int, error_code)
1080 {
1081         do_group_exit((error_code & 0xff) << 8);
1082         /* NOTREACHED */
1083         return 0;
1084 }
1085
1086 static struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1087 {
1088         struct pid *pid = NULL;
1089         if (type == PIDTYPE_PID)
1090                 pid = task->pids[type].pid;
1091         else if (type < PIDTYPE_MAX)
1092                 pid = task->group_leader->pids[type].pid;
1093         return pid;
1094 }
1095
1096 static int eligible_child(enum pid_type type, struct pid *pid, int options,
1097                           struct task_struct *p)
1098 {
1099         int err;
1100
1101         if (type < PIDTYPE_MAX) {
1102                 if (task_pid_type(p, type) != pid)
1103                         return 0;
1104         }
1105
1106         /* Wait for all children (clone and not) if __WALL is set;
1107          * otherwise, wait for clone children *only* if __WCLONE is
1108          * set; otherwise, wait for non-clone children *only*.  (Note:
1109          * A "clone" child here is one that reports to its parent
1110          * using a signal other than SIGCHLD.) */
1111         if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0))
1112             && !(options & __WALL))
1113                 return 0;
1114
1115         err = security_task_wait(p);
1116         if (err)
1117                 return err;
1118
1119         return 1;
1120 }
1121
1122 static int wait_noreap_copyout(struct task_struct *p, pid_t pid, uid_t uid,
1123                                int why, int status,
1124                                struct siginfo __user *infop,
1125                                struct rusage __user *rusagep)
1126 {
1127         int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0;
1128
1129         put_task_struct(p);
1130         if (!retval)
1131                 retval = put_user(SIGCHLD, &infop->si_signo);
1132         if (!retval)
1133                 retval = put_user(0, &infop->si_errno);
1134         if (!retval)
1135                 retval = put_user((short)why, &infop->si_code);
1136         if (!retval)
1137                 retval = put_user(pid, &infop->si_pid);
1138         if (!retval)
1139                 retval = put_user(uid, &infop->si_uid);
1140         if (!retval)
1141                 retval = put_user(status, &infop->si_status);
1142         if (!retval)
1143                 retval = pid;
1144         return retval;
1145 }
1146
1147 /*
1148  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1149  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1150  * the lock and this task is uninteresting.  If we return nonzero, we have
1151  * released the lock and the system call should return.
1152  */
1153 static int wait_task_zombie(struct task_struct *p, int options,
1154                             struct siginfo __user *infop,
1155                             int __user *stat_addr, struct rusage __user *ru)
1156 {
1157         unsigned long state;
1158         int retval, status, traced;
1159         pid_t pid = task_pid_vnr(p);
1160         uid_t uid = __task_cred(p)->uid;
1161
1162         if (!likely(options & WEXITED))
1163                 return 0;
1164
1165         if (unlikely(options & WNOWAIT)) {
1166                 int exit_code = p->exit_code;
1167                 int why, status;
1168
1169                 get_task_struct(p);
1170                 read_unlock(&tasklist_lock);
1171                 if ((exit_code & 0x7f) == 0) {
1172                         why = CLD_EXITED;
1173                         status = exit_code >> 8;
1174                 } else {
1175                         why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1176                         status = exit_code & 0x7f;
1177                 }
1178                 return wait_noreap_copyout(p, pid, uid, why,
1179                                            status, infop, ru);
1180         }
1181
1182         /*
1183          * Try to move the task's state to DEAD
1184          * only one thread is allowed to do this:
1185          */
1186         state = xchg(&p->exit_state, EXIT_DEAD);
1187         if (state != EXIT_ZOMBIE) {
1188                 BUG_ON(state != EXIT_DEAD);
1189                 return 0;
1190         }
1191
1192         traced = ptrace_reparented(p);
1193
1194         if (likely(!traced)) {
1195                 struct signal_struct *psig;
1196                 struct signal_struct *sig;
1197                 struct task_cputime cputime;
1198
1199                 /*
1200                  * The resource counters for the group leader are in its
1201                  * own task_struct.  Those for dead threads in the group
1202                  * are in its signal_struct, as are those for the child
1203                  * processes it has previously reaped.  All these
1204                  * accumulate in the parent's signal_struct c* fields.
1205                  *
1206                  * We don't bother to take a lock here to protect these
1207                  * p->signal fields, because they are only touched by
1208                  * __exit_signal, which runs with tasklist_lock
1209                  * write-locked anyway, and so is excluded here.  We do
1210                  * need to protect the access to p->parent->signal fields,
1211                  * as other threads in the parent group can be right
1212                  * here reaping other children at the same time.
1213                  *
1214                  * We use thread_group_cputime() to get times for the thread
1215                  * group, which consolidates times for all threads in the
1216                  * group including the group leader.
1217                  */
1218                 thread_group_cputime(p, &cputime);
1219                 spin_lock_irq(&p->parent->sighand->siglock);
1220                 psig = p->parent->signal;
1221                 sig = p->signal;
1222                 psig->cutime =
1223                         cputime_add(psig->cutime,
1224                         cputime_add(cputime.utime,
1225                                     sig->cutime));
1226                 psig->cstime =
1227                         cputime_add(psig->cstime,
1228                         cputime_add(cputime.stime,
1229                                     sig->cstime));
1230                 psig->cgtime =
1231                         cputime_add(psig->cgtime,
1232                         cputime_add(p->gtime,
1233                         cputime_add(sig->gtime,
1234                                     sig->cgtime)));
1235                 psig->cmin_flt +=
1236                         p->min_flt + sig->min_flt + sig->cmin_flt;
1237                 psig->cmaj_flt +=
1238                         p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1239                 psig->cnvcsw +=
1240                         p->nvcsw + sig->nvcsw + sig->cnvcsw;
1241                 psig->cnivcsw +=
1242                         p->nivcsw + sig->nivcsw + sig->cnivcsw;
1243                 psig->cinblock +=
1244                         task_io_get_inblock(p) +
1245                         sig->inblock + sig->cinblock;
1246                 psig->coublock +=
1247                         task_io_get_oublock(p) +
1248                         sig->oublock + sig->coublock;
1249                 task_io_accounting_add(&psig->ioac, &p->ioac);
1250                 task_io_accounting_add(&psig->ioac, &sig->ioac);
1251                 spin_unlock_irq(&p->parent->sighand->siglock);
1252         }
1253
1254         /*
1255          * Now we are sure this task is interesting, and no other
1256          * thread can reap it because we set its state to EXIT_DEAD.
1257          */
1258         read_unlock(&tasklist_lock);
1259
1260         /*
1261          * Flush inherited counters to the parent - before the parent
1262          * gets woken up by child-exit notifications.
1263          */
1264         perf_counter_exit_task(p);
1265
1266         retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1267         status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1268                 ? p->signal->group_exit_code : p->exit_code;
1269         if (!retval && stat_addr)
1270                 retval = put_user(status, stat_addr);
1271         if (!retval && infop)
1272                 retval = put_user(SIGCHLD, &infop->si_signo);
1273         if (!retval && infop)
1274                 retval = put_user(0, &infop->si_errno);
1275         if (!retval && infop) {
1276                 int why;
1277
1278                 if ((status & 0x7f) == 0) {
1279                         why = CLD_EXITED;
1280                         status >>= 8;
1281                 } else {
1282                         why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1283                         status &= 0x7f;
1284                 }
1285                 retval = put_user((short)why, &infop->si_code);
1286                 if (!retval)
1287                         retval = put_user(status, &infop->si_status);
1288         }
1289         if (!retval && infop)
1290                 retval = put_user(pid, &infop->si_pid);
1291         if (!retval && infop)
1292                 retval = put_user(uid, &infop->si_uid);
1293         if (!retval)
1294                 retval = pid;
1295
1296         if (traced) {
1297                 write_lock_irq(&tasklist_lock);
1298                 /* We dropped tasklist, ptracer could die and untrace */
1299                 ptrace_unlink(p);
1300                 /*
1301                  * If this is not a detached task, notify the parent.
1302                  * If it's still not detached after that, don't release
1303                  * it now.
1304                  */
1305                 if (!task_detached(p)) {
1306                         do_notify_parent(p, p->exit_signal);
1307                         if (!task_detached(p)) {
1308                                 p->exit_state = EXIT_ZOMBIE;
1309                                 p = NULL;
1310                         }
1311                 }
1312                 write_unlock_irq(&tasklist_lock);
1313         }
1314         if (p != NULL)
1315                 release_task(p);
1316
1317         return retval;
1318 }
1319
1320 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1321 {
1322         if (ptrace) {
1323                 if (task_is_stopped_or_traced(p))
1324                         return &p->exit_code;
1325         } else {
1326                 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1327                         return &p->signal->group_exit_code;
1328         }
1329         return NULL;
1330 }
1331
1332 /*
1333  * Handle sys_wait4 work for one task in state TASK_STOPPED.  We hold
1334  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1335  * the lock and this task is uninteresting.  If we return nonzero, we have
1336  * released the lock and the system call should return.
1337  */
1338 static int wait_task_stopped(int ptrace, struct task_struct *p,
1339                              int options, struct siginfo __user *infop,
1340                              int __user *stat_addr, struct rusage __user *ru)
1341 {
1342         int retval, exit_code, *p_code, why;
1343         uid_t uid = 0; /* unneeded, required by compiler */
1344         pid_t pid;
1345
1346         if (!(options & WUNTRACED))
1347                 return 0;
1348
1349         exit_code = 0;
1350         spin_lock_irq(&p->sighand->siglock);
1351
1352         p_code = task_stopped_code(p, ptrace);
1353         if (unlikely(!p_code))
1354                 goto unlock_sig;
1355
1356         exit_code = *p_code;
1357         if (!exit_code)
1358                 goto unlock_sig;
1359
1360         if (!unlikely(options & WNOWAIT))
1361                 *p_code = 0;
1362
1363         /* don't need the RCU readlock here as we're holding a spinlock */
1364         uid = __task_cred(p)->uid;
1365 unlock_sig:
1366         spin_unlock_irq(&p->sighand->siglock);
1367         if (!exit_code)
1368                 return 0;
1369
1370         /*
1371          * Now we are pretty sure this task is interesting.
1372          * Make sure it doesn't get reaped out from under us while we
1373          * give up the lock and then examine it below.  We don't want to
1374          * keep holding onto the tasklist_lock while we call getrusage and
1375          * possibly take page faults for user memory.
1376          */
1377         get_task_struct(p);
1378         pid = task_pid_vnr(p);
1379         why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1380         read_unlock(&tasklist_lock);
1381
1382         if (unlikely(options & WNOWAIT))
1383                 return wait_noreap_copyout(p, pid, uid,
1384                                            why, exit_code,
1385                                            infop, ru);
1386
1387         retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1388         if (!retval && stat_addr)
1389                 retval = put_user((exit_code << 8) | 0x7f, stat_addr);
1390         if (!retval && infop)
1391                 retval = put_user(SIGCHLD, &infop->si_signo);
1392         if (!retval && infop)
1393                 retval = put_user(0, &infop->si_errno);
1394         if (!retval && infop)
1395                 retval = put_user((short)why, &infop->si_code);
1396         if (!retval && infop)
1397                 retval = put_user(exit_code, &infop->si_status);
1398         if (!retval && infop)
1399                 retval = put_user(pid, &infop->si_pid);
1400         if (!retval && infop)
1401                 retval = put_user(uid, &infop->si_uid);
1402         if (!retval)
1403                 retval = pid;
1404         put_task_struct(p);
1405
1406         BUG_ON(!retval);
1407         return retval;
1408 }
1409
1410 /*
1411  * Handle do_wait work for one task in a live, non-stopped state.
1412  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1413  * the lock and this task is uninteresting.  If we return nonzero, we have
1414  * released the lock and the system call should return.
1415  */
1416 static int wait_task_continued(struct task_struct *p, int options,
1417                                struct siginfo __user *infop,
1418                                int __user *stat_addr, struct rusage __user *ru)
1419 {
1420         int retval;
1421         pid_t pid;
1422         uid_t uid;
1423
1424         if (!unlikely(options & WCONTINUED))
1425                 return 0;
1426
1427         if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1428                 return 0;
1429
1430         spin_lock_irq(&p->sighand->siglock);
1431         /* Re-check with the lock held.  */
1432         if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1433                 spin_unlock_irq(&p->sighand->siglock);
1434                 return 0;
1435         }
1436         if (!unlikely(options & WNOWAIT))
1437                 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1438         uid = __task_cred(p)->uid;
1439         spin_unlock_irq(&p->sighand->siglock);
1440
1441         pid = task_pid_vnr(p);
1442         get_task_struct(p);
1443         read_unlock(&tasklist_lock);
1444
1445         if (!infop) {
1446                 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1447                 put_task_struct(p);
1448                 if (!retval && stat_addr)
1449                         retval = put_user(0xffff, stat_addr);
1450                 if (!retval)
1451                         retval = pid;
1452         } else {
1453                 retval = wait_noreap_copyout(p, pid, uid,
1454                                              CLD_CONTINUED, SIGCONT,
1455                                              infop, ru);
1456                 BUG_ON(retval == 0);
1457         }
1458
1459         return retval;
1460 }
1461
1462 /*
1463  * Consider @p for a wait by @parent.
1464  *
1465  * -ECHILD should be in *@notask_error before the first call.
1466  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1467  * Returns zero if the search for a child should continue;
1468  * then *@notask_error is 0 if @p is an eligible child,
1469  * or another error from security_task_wait(), or still -ECHILD.
1470  */
1471 static int wait_consider_task(struct task_struct *parent, int ptrace,
1472                               struct task_struct *p, int *notask_error,
1473                               enum pid_type type, struct pid *pid, int options,
1474                               struct siginfo __user *infop,
1475                               int __user *stat_addr, struct rusage __user *ru)
1476 {
1477         int ret = eligible_child(type, pid, options, p);
1478         if (!ret)
1479                 return ret;
1480
1481         if (unlikely(ret < 0)) {
1482                 /*
1483                  * If we have not yet seen any eligible child,
1484                  * then let this error code replace -ECHILD.
1485                  * A permission error will give the user a clue
1486                  * to look for security policy problems, rather
1487                  * than for mysterious wait bugs.
1488                  */
1489                 if (*notask_error)
1490                         *notask_error = ret;
1491         }
1492
1493         if (likely(!ptrace) && unlikely(p->ptrace)) {
1494                 /*
1495                  * This child is hidden by ptrace.
1496                  * We aren't allowed to see it now, but eventually we will.
1497                  */
1498                 *notask_error = 0;
1499                 return 0;
1500         }
1501
1502         if (p->exit_state == EXIT_DEAD)
1503                 return 0;
1504
1505         /*
1506          * We don't reap group leaders with subthreads.
1507          */
1508         if (p->exit_state == EXIT_ZOMBIE && !delay_group_leader(p))
1509                 return wait_task_zombie(p, options, infop, stat_addr, ru);
1510
1511         /*
1512          * It's stopped or running now, so it might
1513          * later continue, exit, or stop again.
1514          */
1515         *notask_error = 0;
1516
1517         if (task_stopped_code(p, ptrace))
1518                 return wait_task_stopped(ptrace, p, options,
1519                                          infop, stat_addr, ru);
1520
1521         return wait_task_continued(p, options, infop, stat_addr, ru);
1522 }
1523
1524 /*
1525  * Do the work of do_wait() for one thread in the group, @tsk.
1526  *
1527  * -ECHILD should be in *@notask_error before the first call.
1528  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1529  * Returns zero if the search for a child should continue; then
1530  * *@notask_error is 0 if there were any eligible children,
1531  * or another error from security_task_wait(), or still -ECHILD.
1532  */
1533 static int do_wait_thread(struct task_struct *tsk, int *notask_error,
1534                           enum pid_type type, struct pid *pid, int options,
1535                           struct siginfo __user *infop, int __user *stat_addr,
1536                           struct rusage __user *ru)
1537 {
1538         struct task_struct *p;
1539
1540         list_for_each_entry(p, &tsk->children, sibling) {
1541                 /*
1542                  * Do not consider detached threads.
1543                  */
1544                 if (!task_detached(p)) {
1545                         int ret = wait_consider_task(tsk, 0, p, notask_error,
1546                                                      type, pid, options,
1547                                                      infop, stat_addr, ru);
1548                         if (ret)
1549                                 return ret;
1550                 }
1551         }
1552
1553         return 0;
1554 }
1555
1556 static int ptrace_do_wait(struct task_struct *tsk, int *notask_error,
1557                           enum pid_type type, struct pid *pid, int options,
1558                           struct siginfo __user *infop, int __user *stat_addr,
1559                           struct rusage __user *ru)
1560 {
1561         struct task_struct *p;
1562
1563         /*
1564          * Traditionally we see ptrace'd stopped tasks regardless of options.
1565          */
1566         options |= WUNTRACED;
1567
1568         list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1569                 int ret = wait_consider_task(tsk, 1, p, notask_error,
1570                                              type, pid, options,
1571                                              infop, stat_addr, ru);
1572                 if (ret)
1573                         return ret;
1574         }
1575
1576         return 0;
1577 }
1578
1579 static long do_wait(enum pid_type type, struct pid *pid, int options,
1580                     struct siginfo __user *infop, int __user *stat_addr,
1581                     struct rusage __user *ru)
1582 {
1583         DECLARE_WAITQUEUE(wait, current);
1584         struct task_struct *tsk;
1585         int retval;
1586
1587         trace_sched_process_wait(pid);
1588
1589         add_wait_queue(&current->signal->wait_chldexit,&wait);
1590 repeat:
1591         /*
1592          * If there is nothing that can match our critiera just get out.
1593          * We will clear @retval to zero if we see any child that might later
1594          * match our criteria, even if we are not able to reap it yet.
1595          */
1596         retval = -ECHILD;
1597         if ((type < PIDTYPE_MAX) && (!pid || hlist_empty(&pid->tasks[type])))
1598                 goto end;
1599
1600         current->state = TASK_INTERRUPTIBLE;
1601         read_lock(&tasklist_lock);
1602         tsk = current;
1603         do {
1604                 int tsk_result = do_wait_thread(tsk, &retval,
1605                                                 type, pid, options,
1606                                                 infop, stat_addr, ru);
1607                 if (!tsk_result)
1608                         tsk_result = ptrace_do_wait(tsk, &retval,
1609                                                     type, pid, options,
1610                                                     infop, stat_addr, ru);
1611                 if (tsk_result) {
1612                         /*
1613                          * tasklist_lock is unlocked and we have a final result.
1614                          */
1615                         retval = tsk_result;
1616                         goto end;
1617                 }
1618
1619                 if (options & __WNOTHREAD)
1620                         break;
1621                 tsk = next_thread(tsk);
1622                 BUG_ON(tsk->signal != current->signal);
1623         } while (tsk != current);
1624         read_unlock(&tasklist_lock);
1625
1626         if (!retval && !(options & WNOHANG)) {
1627                 retval = -ERESTARTSYS;
1628                 if (!signal_pending(current)) {
1629                         schedule();
1630                         goto repeat;
1631                 }
1632         }
1633
1634 end:
1635         current->state = TASK_RUNNING;
1636         remove_wait_queue(&current->signal->wait_chldexit,&wait);
1637         if (infop) {
1638                 if (retval > 0)
1639                         retval = 0;
1640                 else {
1641                         /*
1642                          * For a WNOHANG return, clear out all the fields
1643                          * we would set so the user can easily tell the
1644                          * difference.
1645                          */
1646                         if (!retval)
1647                                 retval = put_user(0, &infop->si_signo);
1648                         if (!retval)
1649                                 retval = put_user(0, &infop->si_errno);
1650                         if (!retval)
1651                                 retval = put_user(0, &infop->si_code);
1652                         if (!retval)
1653                                 retval = put_user(0, &infop->si_pid);
1654                         if (!retval)
1655                                 retval = put_user(0, &infop->si_uid);
1656                         if (!retval)
1657                                 retval = put_user(0, &infop->si_status);
1658                 }
1659         }
1660         return retval;
1661 }
1662
1663 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1664                 infop, int, options, struct rusage __user *, ru)
1665 {
1666         struct pid *pid = NULL;
1667         enum pid_type type;
1668         long ret;
1669
1670         if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1671                 return -EINVAL;
1672         if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1673                 return -EINVAL;
1674
1675         switch (which) {
1676         case P_ALL:
1677                 type = PIDTYPE_MAX;
1678                 break;
1679         case P_PID:
1680                 type = PIDTYPE_PID;
1681                 if (upid <= 0)
1682                         return -EINVAL;
1683                 break;
1684         case P_PGID:
1685                 type = PIDTYPE_PGID;
1686                 if (upid <= 0)
1687                         return -EINVAL;
1688                 break;
1689         default:
1690                 return -EINVAL;
1691         }
1692
1693         if (type < PIDTYPE_MAX)
1694                 pid = find_get_pid(upid);
1695         ret = do_wait(type, pid, options, infop, NULL, ru);
1696         put_pid(pid);
1697
1698         /* avoid REGPARM breakage on x86: */
1699         asmlinkage_protect(5, ret, which, upid, infop, options, ru);
1700         return ret;
1701 }
1702
1703 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1704                 int, options, struct rusage __user *, ru)
1705 {
1706         struct pid *pid = NULL;
1707         enum pid_type type;
1708         long ret;
1709
1710         if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1711                         __WNOTHREAD|__WCLONE|__WALL))
1712                 return -EINVAL;
1713
1714         if (upid == -1)
1715                 type = PIDTYPE_MAX;
1716         else if (upid < 0) {
1717                 type = PIDTYPE_PGID;
1718                 pid = find_get_pid(-upid);
1719         } else if (upid == 0) {
1720                 type = PIDTYPE_PGID;
1721                 pid = get_task_pid(current, PIDTYPE_PGID);
1722         } else /* upid > 0 */ {
1723                 type = PIDTYPE_PID;
1724                 pid = find_get_pid(upid);
1725         }
1726
1727         ret = do_wait(type, pid, options | WEXITED, NULL, stat_addr, ru);
1728         put_pid(pid);
1729
1730         /* avoid REGPARM breakage on x86: */
1731         asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
1732         return ret;
1733 }
1734
1735 #ifdef __ARCH_WANT_SYS_WAITPID
1736
1737 /*
1738  * sys_waitpid() remains for compatibility. waitpid() should be
1739  * implemented by calling sys_wait4() from libc.a.
1740  */
1741 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1742 {
1743         return sys_wait4(pid, stat_addr, options, NULL);
1744 }
1745
1746 #endif