tracehook: exit
[safe/jmp/linux-2.6] / kernel / exit.c
1 /*
2  *  linux/kernel/exit.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/mnt_namespace.h>
16 #include <linux/iocontext.h>
17 #include <linux/key.h>
18 #include <linux/security.h>
19 #include <linux/cpu.h>
20 #include <linux/acct.h>
21 #include <linux/tsacct_kern.h>
22 #include <linux/file.h>
23 #include <linux/fdtable.h>
24 #include <linux/binfmts.h>
25 #include <linux/nsproxy.h>
26 #include <linux/pid_namespace.h>
27 #include <linux/ptrace.h>
28 #include <linux/profile.h>
29 #include <linux/mount.h>
30 #include <linux/proc_fs.h>
31 #include <linux/kthread.h>
32 #include <linux/mempolicy.h>
33 #include <linux/taskstats_kern.h>
34 #include <linux/delayacct.h>
35 #include <linux/freezer.h>
36 #include <linux/cgroup.h>
37 #include <linux/syscalls.h>
38 #include <linux/signal.h>
39 #include <linux/posix-timers.h>
40 #include <linux/cn_proc.h>
41 #include <linux/mutex.h>
42 #include <linux/futex.h>
43 #include <linux/compat.h>
44 #include <linux/pipe_fs_i.h>
45 #include <linux/audit.h> /* for audit_free() */
46 #include <linux/resource.h>
47 #include <linux/blkdev.h>
48 #include <linux/task_io_accounting_ops.h>
49 #include <linux/tracehook.h>
50
51 #include <asm/uaccess.h>
52 #include <asm/unistd.h>
53 #include <asm/pgtable.h>
54 #include <asm/mmu_context.h>
55
56 static void exit_mm(struct task_struct * tsk);
57
58 static inline int task_detached(struct task_struct *p)
59 {
60         return p->exit_signal == -1;
61 }
62
63 static void __unhash_process(struct task_struct *p)
64 {
65         nr_threads--;
66         detach_pid(p, PIDTYPE_PID);
67         if (thread_group_leader(p)) {
68                 detach_pid(p, PIDTYPE_PGID);
69                 detach_pid(p, PIDTYPE_SID);
70
71                 list_del_rcu(&p->tasks);
72                 __get_cpu_var(process_counts)--;
73         }
74         list_del_rcu(&p->thread_group);
75         list_del_init(&p->sibling);
76 }
77
78 /*
79  * This function expects the tasklist_lock write-locked.
80  */
81 static void __exit_signal(struct task_struct *tsk)
82 {
83         struct signal_struct *sig = tsk->signal;
84         struct sighand_struct *sighand;
85
86         BUG_ON(!sig);
87         BUG_ON(!atomic_read(&sig->count));
88
89         sighand = rcu_dereference(tsk->sighand);
90         spin_lock(&sighand->siglock);
91
92         posix_cpu_timers_exit(tsk);
93         if (atomic_dec_and_test(&sig->count))
94                 posix_cpu_timers_exit_group(tsk);
95         else {
96                 /*
97                  * If there is any task waiting for the group exit
98                  * then notify it:
99                  */
100                 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count)
101                         wake_up_process(sig->group_exit_task);
102
103                 if (tsk == sig->curr_target)
104                         sig->curr_target = next_thread(tsk);
105                 /*
106                  * Accumulate here the counters for all threads but the
107                  * group leader as they die, so they can be added into
108                  * the process-wide totals when those are taken.
109                  * The group leader stays around as a zombie as long
110                  * as there are other threads.  When it gets reaped,
111                  * the exit.c code will add its counts into these totals.
112                  * We won't ever get here for the group leader, since it
113                  * will have been the last reference on the signal_struct.
114                  */
115                 sig->utime = cputime_add(sig->utime, tsk->utime);
116                 sig->stime = cputime_add(sig->stime, tsk->stime);
117                 sig->gtime = cputime_add(sig->gtime, tsk->gtime);
118                 sig->min_flt += tsk->min_flt;
119                 sig->maj_flt += tsk->maj_flt;
120                 sig->nvcsw += tsk->nvcsw;
121                 sig->nivcsw += tsk->nivcsw;
122                 sig->inblock += task_io_get_inblock(tsk);
123                 sig->oublock += task_io_get_oublock(tsk);
124 #ifdef CONFIG_TASK_XACCT
125                 sig->rchar += tsk->rchar;
126                 sig->wchar += tsk->wchar;
127                 sig->syscr += tsk->syscr;
128                 sig->syscw += tsk->syscw;
129 #endif /* CONFIG_TASK_XACCT */
130 #ifdef CONFIG_TASK_IO_ACCOUNTING
131                 sig->ioac.read_bytes += tsk->ioac.read_bytes;
132                 sig->ioac.write_bytes += tsk->ioac.write_bytes;
133                 sig->ioac.cancelled_write_bytes +=
134                                         tsk->ioac.cancelled_write_bytes;
135 #endif /* CONFIG_TASK_IO_ACCOUNTING */
136                 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
137                 sig = NULL; /* Marker for below. */
138         }
139
140         __unhash_process(tsk);
141
142         /*
143          * Do this under ->siglock, we can race with another thread
144          * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
145          */
146         flush_sigqueue(&tsk->pending);
147
148         tsk->signal = NULL;
149         tsk->sighand = NULL;
150         spin_unlock(&sighand->siglock);
151
152         __cleanup_sighand(sighand);
153         clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
154         if (sig) {
155                 flush_sigqueue(&sig->shared_pending);
156                 taskstats_tgid_free(sig);
157                 __cleanup_signal(sig);
158         }
159 }
160
161 static void delayed_put_task_struct(struct rcu_head *rhp)
162 {
163         put_task_struct(container_of(rhp, struct task_struct, rcu));
164 }
165
166 /*
167  * Do final ptrace-related cleanup of a zombie being reaped.
168  *
169  * Called with write_lock(&tasklist_lock) held.
170  */
171 static void ptrace_release_task(struct task_struct *p)
172 {
173         BUG_ON(!list_empty(&p->ptraced));
174         ptrace_unlink(p);
175         BUG_ON(!list_empty(&p->ptrace_entry));
176 }
177
178 void release_task(struct task_struct * p)
179 {
180         struct task_struct *leader;
181         int zap_leader;
182 repeat:
183         atomic_dec(&p->user->processes);
184         proc_flush_task(p);
185         write_lock_irq(&tasklist_lock);
186         ptrace_release_task(p);
187         __exit_signal(p);
188
189         /*
190          * If we are the last non-leader member of the thread
191          * group, and the leader is zombie, then notify the
192          * group leader's parent process. (if it wants notification.)
193          */
194         zap_leader = 0;
195         leader = p->group_leader;
196         if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
197                 BUG_ON(task_detached(leader));
198                 do_notify_parent(leader, leader->exit_signal);
199                 /*
200                  * If we were the last child thread and the leader has
201                  * exited already, and the leader's parent ignores SIGCHLD,
202                  * then we are the one who should release the leader.
203                  *
204                  * do_notify_parent() will have marked it self-reaping in
205                  * that case.
206                  */
207                 zap_leader = task_detached(leader);
208         }
209
210         write_unlock_irq(&tasklist_lock);
211         release_thread(p);
212         call_rcu(&p->rcu, delayed_put_task_struct);
213
214         p = leader;
215         if (unlikely(zap_leader))
216                 goto repeat;
217 }
218
219 /*
220  * This checks not only the pgrp, but falls back on the pid if no
221  * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
222  * without this...
223  *
224  * The caller must hold rcu lock or the tasklist lock.
225  */
226 struct pid *session_of_pgrp(struct pid *pgrp)
227 {
228         struct task_struct *p;
229         struct pid *sid = NULL;
230
231         p = pid_task(pgrp, PIDTYPE_PGID);
232         if (p == NULL)
233                 p = pid_task(pgrp, PIDTYPE_PID);
234         if (p != NULL)
235                 sid = task_session(p);
236
237         return sid;
238 }
239
240 /*
241  * Determine if a process group is "orphaned", according to the POSIX
242  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
243  * by terminal-generated stop signals.  Newly orphaned process groups are
244  * to receive a SIGHUP and a SIGCONT.
245  *
246  * "I ask you, have you ever known what it is to be an orphan?"
247  */
248 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
249 {
250         struct task_struct *p;
251
252         do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
253                 if ((p == ignored_task) ||
254                     (p->exit_state && thread_group_empty(p)) ||
255                     is_global_init(p->real_parent))
256                         continue;
257
258                 if (task_pgrp(p->real_parent) != pgrp &&
259                     task_session(p->real_parent) == task_session(p))
260                         return 0;
261         } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
262
263         return 1;
264 }
265
266 int is_current_pgrp_orphaned(void)
267 {
268         int retval;
269
270         read_lock(&tasklist_lock);
271         retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
272         read_unlock(&tasklist_lock);
273
274         return retval;
275 }
276
277 static int has_stopped_jobs(struct pid *pgrp)
278 {
279         int retval = 0;
280         struct task_struct *p;
281
282         do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
283                 if (!task_is_stopped(p))
284                         continue;
285                 retval = 1;
286                 break;
287         } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
288         return retval;
289 }
290
291 /*
292  * Check to see if any process groups have become orphaned as
293  * a result of our exiting, and if they have any stopped jobs,
294  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
295  */
296 static void
297 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
298 {
299         struct pid *pgrp = task_pgrp(tsk);
300         struct task_struct *ignored_task = tsk;
301
302         if (!parent)
303                  /* exit: our father is in a different pgrp than
304                   * we are and we were the only connection outside.
305                   */
306                 parent = tsk->real_parent;
307         else
308                 /* reparent: our child is in a different pgrp than
309                  * we are, and it was the only connection outside.
310                  */
311                 ignored_task = NULL;
312
313         if (task_pgrp(parent) != pgrp &&
314             task_session(parent) == task_session(tsk) &&
315             will_become_orphaned_pgrp(pgrp, ignored_task) &&
316             has_stopped_jobs(pgrp)) {
317                 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
318                 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
319         }
320 }
321
322 /**
323  * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
324  *
325  * If a kernel thread is launched as a result of a system call, or if
326  * it ever exits, it should generally reparent itself to kthreadd so it
327  * isn't in the way of other processes and is correctly cleaned up on exit.
328  *
329  * The various task state such as scheduling policy and priority may have
330  * been inherited from a user process, so we reset them to sane values here.
331  *
332  * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
333  */
334 static void reparent_to_kthreadd(void)
335 {
336         write_lock_irq(&tasklist_lock);
337
338         ptrace_unlink(current);
339         /* Reparent to init */
340         current->real_parent = current->parent = kthreadd_task;
341         list_move_tail(&current->sibling, &current->real_parent->children);
342
343         /* Set the exit signal to SIGCHLD so we signal init on exit */
344         current->exit_signal = SIGCHLD;
345
346         if (task_nice(current) < 0)
347                 set_user_nice(current, 0);
348         /* cpus_allowed? */
349         /* rt_priority? */
350         /* signals? */
351         security_task_reparent_to_init(current);
352         memcpy(current->signal->rlim, init_task.signal->rlim,
353                sizeof(current->signal->rlim));
354         atomic_inc(&(INIT_USER->__count));
355         write_unlock_irq(&tasklist_lock);
356         switch_uid(INIT_USER);
357 }
358
359 void __set_special_pids(struct pid *pid)
360 {
361         struct task_struct *curr = current->group_leader;
362         pid_t nr = pid_nr(pid);
363
364         if (task_session(curr) != pid) {
365                 change_pid(curr, PIDTYPE_SID, pid);
366                 set_task_session(curr, nr);
367         }
368         if (task_pgrp(curr) != pid) {
369                 change_pid(curr, PIDTYPE_PGID, pid);
370                 set_task_pgrp(curr, nr);
371         }
372 }
373
374 static void set_special_pids(struct pid *pid)
375 {
376         write_lock_irq(&tasklist_lock);
377         __set_special_pids(pid);
378         write_unlock_irq(&tasklist_lock);
379 }
380
381 /*
382  * Let kernel threads use this to say that they
383  * allow a certain signal (since daemonize() will
384  * have disabled all of them by default).
385  */
386 int allow_signal(int sig)
387 {
388         if (!valid_signal(sig) || sig < 1)
389                 return -EINVAL;
390
391         spin_lock_irq(&current->sighand->siglock);
392         sigdelset(&current->blocked, sig);
393         if (!current->mm) {
394                 /* Kernel threads handle their own signals.
395                    Let the signal code know it'll be handled, so
396                    that they don't get converted to SIGKILL or
397                    just silently dropped */
398                 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
399         }
400         recalc_sigpending();
401         spin_unlock_irq(&current->sighand->siglock);
402         return 0;
403 }
404
405 EXPORT_SYMBOL(allow_signal);
406
407 int disallow_signal(int sig)
408 {
409         if (!valid_signal(sig) || sig < 1)
410                 return -EINVAL;
411
412         spin_lock_irq(&current->sighand->siglock);
413         current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
414         recalc_sigpending();
415         spin_unlock_irq(&current->sighand->siglock);
416         return 0;
417 }
418
419 EXPORT_SYMBOL(disallow_signal);
420
421 /*
422  *      Put all the gunge required to become a kernel thread without
423  *      attached user resources in one place where it belongs.
424  */
425
426 void daemonize(const char *name, ...)
427 {
428         va_list args;
429         struct fs_struct *fs;
430         sigset_t blocked;
431
432         va_start(args, name);
433         vsnprintf(current->comm, sizeof(current->comm), name, args);
434         va_end(args);
435
436         /*
437          * If we were started as result of loading a module, close all of the
438          * user space pages.  We don't need them, and if we didn't close them
439          * they would be locked into memory.
440          */
441         exit_mm(current);
442         /*
443          * We don't want to have TIF_FREEZE set if the system-wide hibernation
444          * or suspend transition begins right now.
445          */
446         current->flags |= (PF_NOFREEZE | PF_KTHREAD);
447
448         if (current->nsproxy != &init_nsproxy) {
449                 get_nsproxy(&init_nsproxy);
450                 switch_task_namespaces(current, &init_nsproxy);
451         }
452         set_special_pids(&init_struct_pid);
453         proc_clear_tty(current);
454
455         /* Block and flush all signals */
456         sigfillset(&blocked);
457         sigprocmask(SIG_BLOCK, &blocked, NULL);
458         flush_signals(current);
459
460         /* Become as one with the init task */
461
462         exit_fs(current);       /* current->fs->count--; */
463         fs = init_task.fs;
464         current->fs = fs;
465         atomic_inc(&fs->count);
466
467         exit_files(current);
468         current->files = init_task.files;
469         atomic_inc(&current->files->count);
470
471         reparent_to_kthreadd();
472 }
473
474 EXPORT_SYMBOL(daemonize);
475
476 static void close_files(struct files_struct * files)
477 {
478         int i, j;
479         struct fdtable *fdt;
480
481         j = 0;
482
483         /*
484          * It is safe to dereference the fd table without RCU or
485          * ->file_lock because this is the last reference to the
486          * files structure.
487          */
488         fdt = files_fdtable(files);
489         for (;;) {
490                 unsigned long set;
491                 i = j * __NFDBITS;
492                 if (i >= fdt->max_fds)
493                         break;
494                 set = fdt->open_fds->fds_bits[j++];
495                 while (set) {
496                         if (set & 1) {
497                                 struct file * file = xchg(&fdt->fd[i], NULL);
498                                 if (file) {
499                                         filp_close(file, files);
500                                         cond_resched();
501                                 }
502                         }
503                         i++;
504                         set >>= 1;
505                 }
506         }
507 }
508
509 struct files_struct *get_files_struct(struct task_struct *task)
510 {
511         struct files_struct *files;
512
513         task_lock(task);
514         files = task->files;
515         if (files)
516                 atomic_inc(&files->count);
517         task_unlock(task);
518
519         return files;
520 }
521
522 void put_files_struct(struct files_struct *files)
523 {
524         struct fdtable *fdt;
525
526         if (atomic_dec_and_test(&files->count)) {
527                 close_files(files);
528                 /*
529                  * Free the fd and fdset arrays if we expanded them.
530                  * If the fdtable was embedded, pass files for freeing
531                  * at the end of the RCU grace period. Otherwise,
532                  * you can free files immediately.
533                  */
534                 fdt = files_fdtable(files);
535                 if (fdt != &files->fdtab)
536                         kmem_cache_free(files_cachep, files);
537                 free_fdtable(fdt);
538         }
539 }
540
541 void reset_files_struct(struct files_struct *files)
542 {
543         struct task_struct *tsk = current;
544         struct files_struct *old;
545
546         old = tsk->files;
547         task_lock(tsk);
548         tsk->files = files;
549         task_unlock(tsk);
550         put_files_struct(old);
551 }
552
553 void exit_files(struct task_struct *tsk)
554 {
555         struct files_struct * files = tsk->files;
556
557         if (files) {
558                 task_lock(tsk);
559                 tsk->files = NULL;
560                 task_unlock(tsk);
561                 put_files_struct(files);
562         }
563 }
564
565 void put_fs_struct(struct fs_struct *fs)
566 {
567         /* No need to hold fs->lock if we are killing it */
568         if (atomic_dec_and_test(&fs->count)) {
569                 path_put(&fs->root);
570                 path_put(&fs->pwd);
571                 if (fs->altroot.dentry)
572                         path_put(&fs->altroot);
573                 kmem_cache_free(fs_cachep, fs);
574         }
575 }
576
577 void exit_fs(struct task_struct *tsk)
578 {
579         struct fs_struct * fs = tsk->fs;
580
581         if (fs) {
582                 task_lock(tsk);
583                 tsk->fs = NULL;
584                 task_unlock(tsk);
585                 put_fs_struct(fs);
586         }
587 }
588
589 EXPORT_SYMBOL_GPL(exit_fs);
590
591 #ifdef CONFIG_MM_OWNER
592 /*
593  * Task p is exiting and it owned mm, lets find a new owner for it
594  */
595 static inline int
596 mm_need_new_owner(struct mm_struct *mm, struct task_struct *p)
597 {
598         /*
599          * If there are other users of the mm and the owner (us) is exiting
600          * we need to find a new owner to take on the responsibility.
601          */
602         if (!mm)
603                 return 0;
604         if (atomic_read(&mm->mm_users) <= 1)
605                 return 0;
606         if (mm->owner != p)
607                 return 0;
608         return 1;
609 }
610
611 void mm_update_next_owner(struct mm_struct *mm)
612 {
613         struct task_struct *c, *g, *p = current;
614
615 retry:
616         if (!mm_need_new_owner(mm, p))
617                 return;
618
619         read_lock(&tasklist_lock);
620         /*
621          * Search in the children
622          */
623         list_for_each_entry(c, &p->children, sibling) {
624                 if (c->mm == mm)
625                         goto assign_new_owner;
626         }
627
628         /*
629          * Search in the siblings
630          */
631         list_for_each_entry(c, &p->parent->children, sibling) {
632                 if (c->mm == mm)
633                         goto assign_new_owner;
634         }
635
636         /*
637          * Search through everything else. We should not get
638          * here often
639          */
640         do_each_thread(g, c) {
641                 if (c->mm == mm)
642                         goto assign_new_owner;
643         } while_each_thread(g, c);
644
645         read_unlock(&tasklist_lock);
646         return;
647
648 assign_new_owner:
649         BUG_ON(c == p);
650         get_task_struct(c);
651         /*
652          * The task_lock protects c->mm from changing.
653          * We always want mm->owner->mm == mm
654          */
655         task_lock(c);
656         /*
657          * Delay read_unlock() till we have the task_lock()
658          * to ensure that c does not slip away underneath us
659          */
660         read_unlock(&tasklist_lock);
661         if (c->mm != mm) {
662                 task_unlock(c);
663                 put_task_struct(c);
664                 goto retry;
665         }
666         cgroup_mm_owner_callbacks(mm->owner, c);
667         mm->owner = c;
668         task_unlock(c);
669         put_task_struct(c);
670 }
671 #endif /* CONFIG_MM_OWNER */
672
673 /*
674  * Turn us into a lazy TLB process if we
675  * aren't already..
676  */
677 static void exit_mm(struct task_struct * tsk)
678 {
679         struct mm_struct *mm = tsk->mm;
680         struct core_state *core_state;
681
682         mm_release(tsk, mm);
683         if (!mm)
684                 return;
685         /*
686          * Serialize with any possible pending coredump.
687          * We must hold mmap_sem around checking core_state
688          * and clearing tsk->mm.  The core-inducing thread
689          * will increment ->nr_threads for each thread in the
690          * group with ->mm != NULL.
691          */
692         down_read(&mm->mmap_sem);
693         core_state = mm->core_state;
694         if (core_state) {
695                 struct core_thread self;
696                 up_read(&mm->mmap_sem);
697
698                 self.task = tsk;
699                 self.next = xchg(&core_state->dumper.next, &self);
700                 /*
701                  * Implies mb(), the result of xchg() must be visible
702                  * to core_state->dumper.
703                  */
704                 if (atomic_dec_and_test(&core_state->nr_threads))
705                         complete(&core_state->startup);
706
707                 for (;;) {
708                         set_task_state(tsk, TASK_UNINTERRUPTIBLE);
709                         if (!self.task) /* see coredump_finish() */
710                                 break;
711                         schedule();
712                 }
713                 __set_task_state(tsk, TASK_RUNNING);
714                 down_read(&mm->mmap_sem);
715         }
716         atomic_inc(&mm->mm_count);
717         BUG_ON(mm != tsk->active_mm);
718         /* more a memory barrier than a real lock */
719         task_lock(tsk);
720         tsk->mm = NULL;
721         up_read(&mm->mmap_sem);
722         enter_lazy_tlb(mm, current);
723         /* We don't want this task to be frozen prematurely */
724         clear_freeze_flag(tsk);
725         task_unlock(tsk);
726         mm_update_next_owner(mm);
727         mmput(mm);
728 }
729
730 /*
731  * Return nonzero if @parent's children should reap themselves.
732  *
733  * Called with write_lock_irq(&tasklist_lock) held.
734  */
735 static int ignoring_children(struct task_struct *parent)
736 {
737         int ret;
738         struct sighand_struct *psig = parent->sighand;
739         unsigned long flags;
740         spin_lock_irqsave(&psig->siglock, flags);
741         ret = (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
742                (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT));
743         spin_unlock_irqrestore(&psig->siglock, flags);
744         return ret;
745 }
746
747 /*
748  * Detach all tasks we were using ptrace on.
749  * Any that need to be release_task'd are put on the @dead list.
750  *
751  * Called with write_lock(&tasklist_lock) held.
752  */
753 static void ptrace_exit(struct task_struct *parent, struct list_head *dead)
754 {
755         struct task_struct *p, *n;
756         int ign = -1;
757
758         list_for_each_entry_safe(p, n, &parent->ptraced, ptrace_entry) {
759                 __ptrace_unlink(p);
760
761                 if (p->exit_state != EXIT_ZOMBIE)
762                         continue;
763
764                 /*
765                  * If it's a zombie, our attachedness prevented normal
766                  * parent notification or self-reaping.  Do notification
767                  * now if it would have happened earlier.  If it should
768                  * reap itself, add it to the @dead list.  We can't call
769                  * release_task() here because we already hold tasklist_lock.
770                  *
771                  * If it's our own child, there is no notification to do.
772                  * But if our normal children self-reap, then this child
773                  * was prevented by ptrace and we must reap it now.
774                  */
775                 if (!task_detached(p) && thread_group_empty(p)) {
776                         if (!same_thread_group(p->real_parent, parent))
777                                 do_notify_parent(p, p->exit_signal);
778                         else {
779                                 if (ign < 0)
780                                         ign = ignoring_children(parent);
781                                 if (ign)
782                                         p->exit_signal = -1;
783                         }
784                 }
785
786                 if (task_detached(p)) {
787                         /*
788                          * Mark it as in the process of being reaped.
789                          */
790                         p->exit_state = EXIT_DEAD;
791                         list_add(&p->ptrace_entry, dead);
792                 }
793         }
794 }
795
796 /*
797  * Finish up exit-time ptrace cleanup.
798  *
799  * Called without locks.
800  */
801 static void ptrace_exit_finish(struct task_struct *parent,
802                                struct list_head *dead)
803 {
804         struct task_struct *p, *n;
805
806         BUG_ON(!list_empty(&parent->ptraced));
807
808         list_for_each_entry_safe(p, n, dead, ptrace_entry) {
809                 list_del_init(&p->ptrace_entry);
810                 release_task(p);
811         }
812 }
813
814 static void reparent_thread(struct task_struct *p, struct task_struct *father)
815 {
816         if (p->pdeath_signal)
817                 /* We already hold the tasklist_lock here.  */
818                 group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p);
819
820         list_move_tail(&p->sibling, &p->real_parent->children);
821
822         /* If this is a threaded reparent there is no need to
823          * notify anyone anything has happened.
824          */
825         if (same_thread_group(p->real_parent, father))
826                 return;
827
828         /* We don't want people slaying init.  */
829         if (!task_detached(p))
830                 p->exit_signal = SIGCHLD;
831
832         /* If we'd notified the old parent about this child's death,
833          * also notify the new parent.
834          */
835         if (!ptrace_reparented(p) &&
836             p->exit_state == EXIT_ZOMBIE &&
837             !task_detached(p) && thread_group_empty(p))
838                 do_notify_parent(p, p->exit_signal);
839
840         kill_orphaned_pgrp(p, father);
841 }
842
843 /*
844  * When we die, we re-parent all our children.
845  * Try to give them to another thread in our thread
846  * group, and if no such member exists, give it to
847  * the child reaper process (ie "init") in our pid
848  * space.
849  */
850 static void forget_original_parent(struct task_struct *father)
851 {
852         struct task_struct *p, *n, *reaper = father;
853         LIST_HEAD(ptrace_dead);
854
855         write_lock_irq(&tasklist_lock);
856
857         /*
858          * First clean up ptrace if we were using it.
859          */
860         ptrace_exit(father, &ptrace_dead);
861
862         do {
863                 reaper = next_thread(reaper);
864                 if (reaper == father) {
865                         reaper = task_child_reaper(father);
866                         break;
867                 }
868         } while (reaper->flags & PF_EXITING);
869
870         list_for_each_entry_safe(p, n, &father->children, sibling) {
871                 p->real_parent = reaper;
872                 if (p->parent == father) {
873                         BUG_ON(p->ptrace);
874                         p->parent = p->real_parent;
875                 }
876                 reparent_thread(p, father);
877         }
878
879         write_unlock_irq(&tasklist_lock);
880         BUG_ON(!list_empty(&father->children));
881
882         ptrace_exit_finish(father, &ptrace_dead);
883 }
884
885 /*
886  * Send signals to all our closest relatives so that they know
887  * to properly mourn us..
888  */
889 static void exit_notify(struct task_struct *tsk, int group_dead)
890 {
891         int state;
892
893         /*
894          * This does two things:
895          *
896          * A.  Make init inherit all the child processes
897          * B.  Check to see if any process groups have become orphaned
898          *      as a result of our exiting, and if they have any stopped
899          *      jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
900          */
901         forget_original_parent(tsk);
902         exit_task_namespaces(tsk);
903
904         write_lock_irq(&tasklist_lock);
905         if (group_dead)
906                 kill_orphaned_pgrp(tsk->group_leader, NULL);
907
908         /* Let father know we died
909          *
910          * Thread signals are configurable, but you aren't going to use
911          * that to send signals to arbitary processes.
912          * That stops right now.
913          *
914          * If the parent exec id doesn't match the exec id we saved
915          * when we started then we know the parent has changed security
916          * domain.
917          *
918          * If our self_exec id doesn't match our parent_exec_id then
919          * we have changed execution domain as these two values started
920          * the same after a fork.
921          */
922         if (tsk->exit_signal != SIGCHLD && !task_detached(tsk) &&
923             (tsk->parent_exec_id != tsk->real_parent->self_exec_id ||
924              tsk->self_exec_id != tsk->parent_exec_id) &&
925             !capable(CAP_KILL))
926                 tsk->exit_signal = SIGCHLD;
927
928         /* If something other than our normal parent is ptracing us, then
929          * send it a SIGCHLD instead of honoring exit_signal.  exit_signal
930          * only has special meaning to our real parent.
931          */
932         if (!task_detached(tsk) && thread_group_empty(tsk)) {
933                 int signal = ptrace_reparented(tsk) ?
934                                 SIGCHLD : tsk->exit_signal;
935                 do_notify_parent(tsk, signal);
936         } else if (tsk->ptrace) {
937                 do_notify_parent(tsk, SIGCHLD);
938         }
939
940         state = EXIT_ZOMBIE;
941         if (task_detached(tsk) && likely(!tsk->ptrace))
942                 state = EXIT_DEAD;
943         tsk->exit_state = state;
944
945         /* mt-exec, de_thread() is waiting for us */
946         if (thread_group_leader(tsk) &&
947             tsk->signal->notify_count < 0 &&
948             tsk->signal->group_exit_task)
949                 wake_up_process(tsk->signal->group_exit_task);
950
951         write_unlock_irq(&tasklist_lock);
952
953         /* If the process is dead, release it - nobody will wait for it */
954         if (state == EXIT_DEAD)
955                 release_task(tsk);
956 }
957
958 #ifdef CONFIG_DEBUG_STACK_USAGE
959 static void check_stack_usage(void)
960 {
961         static DEFINE_SPINLOCK(low_water_lock);
962         static int lowest_to_date = THREAD_SIZE;
963         unsigned long *n = end_of_stack(current);
964         unsigned long free;
965
966         while (*n == 0)
967                 n++;
968         free = (unsigned long)n - (unsigned long)end_of_stack(current);
969
970         if (free >= lowest_to_date)
971                 return;
972
973         spin_lock(&low_water_lock);
974         if (free < lowest_to_date) {
975                 printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
976                                 "left\n",
977                                 current->comm, free);
978                 lowest_to_date = free;
979         }
980         spin_unlock(&low_water_lock);
981 }
982 #else
983 static inline void check_stack_usage(void) {}
984 #endif
985
986 static inline void exit_child_reaper(struct task_struct *tsk)
987 {
988         if (likely(tsk->group_leader != task_child_reaper(tsk)))
989                 return;
990
991         if (tsk->nsproxy->pid_ns == &init_pid_ns)
992                 panic("Attempted to kill init!");
993
994         /*
995          * @tsk is the last thread in the 'cgroup-init' and is exiting.
996          * Terminate all remaining processes in the namespace and reap them
997          * before exiting @tsk.
998          *
999          * Note that @tsk (last thread of cgroup-init) may not necessarily
1000          * be the child-reaper (i.e main thread of cgroup-init) of the
1001          * namespace i.e the child_reaper may have already exited.
1002          *
1003          * Even after a child_reaper exits, we let it inherit orphaned children,
1004          * because, pid_ns->child_reaper remains valid as long as there is
1005          * at least one living sub-thread in the cgroup init.
1006
1007          * This living sub-thread of the cgroup-init will be notified when
1008          * a child inherited by the 'child-reaper' exits (do_notify_parent()
1009          * uses __group_send_sig_info()). Further, when reaping child processes,
1010          * do_wait() iterates over children of all living sub threads.
1011
1012          * i.e even though 'child_reaper' thread is listed as the parent of the
1013          * orphaned children, any living sub-thread in the cgroup-init can
1014          * perform the role of the child_reaper.
1015          */
1016         zap_pid_ns_processes(tsk->nsproxy->pid_ns);
1017 }
1018
1019 NORET_TYPE void do_exit(long code)
1020 {
1021         struct task_struct *tsk = current;
1022         int group_dead;
1023
1024         profile_task_exit(tsk);
1025
1026         WARN_ON(atomic_read(&tsk->fs_excl));
1027
1028         if (unlikely(in_interrupt()))
1029                 panic("Aiee, killing interrupt handler!");
1030         if (unlikely(!tsk->pid))
1031                 panic("Attempted to kill the idle task!");
1032
1033         tracehook_report_exit(&code);
1034
1035         /*
1036          * We're taking recursive faults here in do_exit. Safest is to just
1037          * leave this task alone and wait for reboot.
1038          */
1039         if (unlikely(tsk->flags & PF_EXITING)) {
1040                 printk(KERN_ALERT
1041                         "Fixing recursive fault but reboot is needed!\n");
1042                 /*
1043                  * We can do this unlocked here. The futex code uses
1044                  * this flag just to verify whether the pi state
1045                  * cleanup has been done or not. In the worst case it
1046                  * loops once more. We pretend that the cleanup was
1047                  * done as there is no way to return. Either the
1048                  * OWNER_DIED bit is set by now or we push the blocked
1049                  * task into the wait for ever nirwana as well.
1050                  */
1051                 tsk->flags |= PF_EXITPIDONE;
1052                 if (tsk->io_context)
1053                         exit_io_context();
1054                 set_current_state(TASK_UNINTERRUPTIBLE);
1055                 schedule();
1056         }
1057
1058         exit_signals(tsk);  /* sets PF_EXITING */
1059         /*
1060          * tsk->flags are checked in the futex code to protect against
1061          * an exiting task cleaning up the robust pi futexes.
1062          */
1063         smp_mb();
1064         spin_unlock_wait(&tsk->pi_lock);
1065
1066         if (unlikely(in_atomic()))
1067                 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
1068                                 current->comm, task_pid_nr(current),
1069                                 preempt_count());
1070
1071         acct_update_integrals(tsk);
1072         if (tsk->mm) {
1073                 update_hiwater_rss(tsk->mm);
1074                 update_hiwater_vm(tsk->mm);
1075         }
1076         group_dead = atomic_dec_and_test(&tsk->signal->live);
1077         if (group_dead) {
1078                 exit_child_reaper(tsk);
1079                 hrtimer_cancel(&tsk->signal->real_timer);
1080                 exit_itimers(tsk->signal);
1081         }
1082         acct_collect(code, group_dead);
1083 #ifdef CONFIG_FUTEX
1084         if (unlikely(tsk->robust_list))
1085                 exit_robust_list(tsk);
1086 #ifdef CONFIG_COMPAT
1087         if (unlikely(tsk->compat_robust_list))
1088                 compat_exit_robust_list(tsk);
1089 #endif
1090 #endif
1091         if (group_dead)
1092                 tty_audit_exit();
1093         if (unlikely(tsk->audit_context))
1094                 audit_free(tsk);
1095
1096         tsk->exit_code = code;
1097         taskstats_exit(tsk, group_dead);
1098
1099         exit_mm(tsk);
1100
1101         if (group_dead)
1102                 acct_process();
1103         exit_sem(tsk);
1104         exit_files(tsk);
1105         exit_fs(tsk);
1106         check_stack_usage();
1107         exit_thread();
1108         cgroup_exit(tsk, 1);
1109         exit_keys(tsk);
1110
1111         if (group_dead && tsk->signal->leader)
1112                 disassociate_ctty(1);
1113
1114         module_put(task_thread_info(tsk)->exec_domain->module);
1115         if (tsk->binfmt)
1116                 module_put(tsk->binfmt->module);
1117
1118         proc_exit_connector(tsk);
1119         exit_notify(tsk, group_dead);
1120 #ifdef CONFIG_NUMA
1121         mpol_put(tsk->mempolicy);
1122         tsk->mempolicy = NULL;
1123 #endif
1124 #ifdef CONFIG_FUTEX
1125         /*
1126          * This must happen late, after the PID is not
1127          * hashed anymore:
1128          */
1129         if (unlikely(!list_empty(&tsk->pi_state_list)))
1130                 exit_pi_state_list(tsk);
1131         if (unlikely(current->pi_state_cache))
1132                 kfree(current->pi_state_cache);
1133 #endif
1134         /*
1135          * Make sure we are holding no locks:
1136          */
1137         debug_check_no_locks_held(tsk);
1138         /*
1139          * We can do this unlocked here. The futex code uses this flag
1140          * just to verify whether the pi state cleanup has been done
1141          * or not. In the worst case it loops once more.
1142          */
1143         tsk->flags |= PF_EXITPIDONE;
1144
1145         if (tsk->io_context)
1146                 exit_io_context();
1147
1148         if (tsk->splice_pipe)
1149                 __free_pipe_info(tsk->splice_pipe);
1150
1151         preempt_disable();
1152         /* causes final put_task_struct in finish_task_switch(). */
1153         tsk->state = TASK_DEAD;
1154
1155         schedule();
1156         BUG();
1157         /* Avoid "noreturn function does return".  */
1158         for (;;)
1159                 cpu_relax();    /* For when BUG is null */
1160 }
1161
1162 EXPORT_SYMBOL_GPL(do_exit);
1163
1164 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
1165 {
1166         if (comp)
1167                 complete(comp);
1168
1169         do_exit(code);
1170 }
1171
1172 EXPORT_SYMBOL(complete_and_exit);
1173
1174 asmlinkage long sys_exit(int error_code)
1175 {
1176         do_exit((error_code&0xff)<<8);
1177 }
1178
1179 /*
1180  * Take down every thread in the group.  This is called by fatal signals
1181  * as well as by sys_exit_group (below).
1182  */
1183 NORET_TYPE void
1184 do_group_exit(int exit_code)
1185 {
1186         struct signal_struct *sig = current->signal;
1187
1188         BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1189
1190         if (signal_group_exit(sig))
1191                 exit_code = sig->group_exit_code;
1192         else if (!thread_group_empty(current)) {
1193                 struct sighand_struct *const sighand = current->sighand;
1194                 spin_lock_irq(&sighand->siglock);
1195                 if (signal_group_exit(sig))
1196                         /* Another thread got here before we took the lock.  */
1197                         exit_code = sig->group_exit_code;
1198                 else {
1199                         sig->group_exit_code = exit_code;
1200                         sig->flags = SIGNAL_GROUP_EXIT;
1201                         zap_other_threads(current);
1202                 }
1203                 spin_unlock_irq(&sighand->siglock);
1204         }
1205
1206         do_exit(exit_code);
1207         /* NOTREACHED */
1208 }
1209
1210 /*
1211  * this kills every thread in the thread group. Note that any externally
1212  * wait4()-ing process will get the correct exit code - even if this
1213  * thread is not the thread group leader.
1214  */
1215 asmlinkage void sys_exit_group(int error_code)
1216 {
1217         do_group_exit((error_code & 0xff) << 8);
1218 }
1219
1220 static struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1221 {
1222         struct pid *pid = NULL;
1223         if (type == PIDTYPE_PID)
1224                 pid = task->pids[type].pid;
1225         else if (type < PIDTYPE_MAX)
1226                 pid = task->group_leader->pids[type].pid;
1227         return pid;
1228 }
1229
1230 static int eligible_child(enum pid_type type, struct pid *pid, int options,
1231                           struct task_struct *p)
1232 {
1233         int err;
1234
1235         if (type < PIDTYPE_MAX) {
1236                 if (task_pid_type(p, type) != pid)
1237                         return 0;
1238         }
1239
1240         /* Wait for all children (clone and not) if __WALL is set;
1241          * otherwise, wait for clone children *only* if __WCLONE is
1242          * set; otherwise, wait for non-clone children *only*.  (Note:
1243          * A "clone" child here is one that reports to its parent
1244          * using a signal other than SIGCHLD.) */
1245         if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0))
1246             && !(options & __WALL))
1247                 return 0;
1248
1249         err = security_task_wait(p);
1250         if (err)
1251                 return err;
1252
1253         return 1;
1254 }
1255
1256 static int wait_noreap_copyout(struct task_struct *p, pid_t pid, uid_t uid,
1257                                int why, int status,
1258                                struct siginfo __user *infop,
1259                                struct rusage __user *rusagep)
1260 {
1261         int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0;
1262
1263         put_task_struct(p);
1264         if (!retval)
1265                 retval = put_user(SIGCHLD, &infop->si_signo);
1266         if (!retval)
1267                 retval = put_user(0, &infop->si_errno);
1268         if (!retval)
1269                 retval = put_user((short)why, &infop->si_code);
1270         if (!retval)
1271                 retval = put_user(pid, &infop->si_pid);
1272         if (!retval)
1273                 retval = put_user(uid, &infop->si_uid);
1274         if (!retval)
1275                 retval = put_user(status, &infop->si_status);
1276         if (!retval)
1277                 retval = pid;
1278         return retval;
1279 }
1280
1281 /*
1282  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1283  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1284  * the lock and this task is uninteresting.  If we return nonzero, we have
1285  * released the lock and the system call should return.
1286  */
1287 static int wait_task_zombie(struct task_struct *p, int options,
1288                             struct siginfo __user *infop,
1289                             int __user *stat_addr, struct rusage __user *ru)
1290 {
1291         unsigned long state;
1292         int retval, status, traced;
1293         pid_t pid = task_pid_vnr(p);
1294
1295         if (!likely(options & WEXITED))
1296                 return 0;
1297
1298         if (unlikely(options & WNOWAIT)) {
1299                 uid_t uid = p->uid;
1300                 int exit_code = p->exit_code;
1301                 int why, status;
1302
1303                 get_task_struct(p);
1304                 read_unlock(&tasklist_lock);
1305                 if ((exit_code & 0x7f) == 0) {
1306                         why = CLD_EXITED;
1307                         status = exit_code >> 8;
1308                 } else {
1309                         why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1310                         status = exit_code & 0x7f;
1311                 }
1312                 return wait_noreap_copyout(p, pid, uid, why,
1313                                            status, infop, ru);
1314         }
1315
1316         /*
1317          * Try to move the task's state to DEAD
1318          * only one thread is allowed to do this:
1319          */
1320         state = xchg(&p->exit_state, EXIT_DEAD);
1321         if (state != EXIT_ZOMBIE) {
1322                 BUG_ON(state != EXIT_DEAD);
1323                 return 0;
1324         }
1325
1326         traced = ptrace_reparented(p);
1327
1328         if (likely(!traced)) {
1329                 struct signal_struct *psig;
1330                 struct signal_struct *sig;
1331
1332                 /*
1333                  * The resource counters for the group leader are in its
1334                  * own task_struct.  Those for dead threads in the group
1335                  * are in its signal_struct, as are those for the child
1336                  * processes it has previously reaped.  All these
1337                  * accumulate in the parent's signal_struct c* fields.
1338                  *
1339                  * We don't bother to take a lock here to protect these
1340                  * p->signal fields, because they are only touched by
1341                  * __exit_signal, which runs with tasklist_lock
1342                  * write-locked anyway, and so is excluded here.  We do
1343                  * need to protect the access to p->parent->signal fields,
1344                  * as other threads in the parent group can be right
1345                  * here reaping other children at the same time.
1346                  */
1347                 spin_lock_irq(&p->parent->sighand->siglock);
1348                 psig = p->parent->signal;
1349                 sig = p->signal;
1350                 psig->cutime =
1351                         cputime_add(psig->cutime,
1352                         cputime_add(p->utime,
1353                         cputime_add(sig->utime,
1354                                     sig->cutime)));
1355                 psig->cstime =
1356                         cputime_add(psig->cstime,
1357                         cputime_add(p->stime,
1358                         cputime_add(sig->stime,
1359                                     sig->cstime)));
1360                 psig->cgtime =
1361                         cputime_add(psig->cgtime,
1362                         cputime_add(p->gtime,
1363                         cputime_add(sig->gtime,
1364                                     sig->cgtime)));
1365                 psig->cmin_flt +=
1366                         p->min_flt + sig->min_flt + sig->cmin_flt;
1367                 psig->cmaj_flt +=
1368                         p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1369                 psig->cnvcsw +=
1370                         p->nvcsw + sig->nvcsw + sig->cnvcsw;
1371                 psig->cnivcsw +=
1372                         p->nivcsw + sig->nivcsw + sig->cnivcsw;
1373                 psig->cinblock +=
1374                         task_io_get_inblock(p) +
1375                         sig->inblock + sig->cinblock;
1376                 psig->coublock +=
1377                         task_io_get_oublock(p) +
1378                         sig->oublock + sig->coublock;
1379 #ifdef CONFIG_TASK_XACCT
1380                 psig->rchar += p->rchar + sig->rchar;
1381                 psig->wchar += p->wchar + sig->wchar;
1382                 psig->syscr += p->syscr + sig->syscr;
1383                 psig->syscw += p->syscw + sig->syscw;
1384 #endif /* CONFIG_TASK_XACCT */
1385 #ifdef CONFIG_TASK_IO_ACCOUNTING
1386                 psig->ioac.read_bytes +=
1387                         p->ioac.read_bytes + sig->ioac.read_bytes;
1388                 psig->ioac.write_bytes +=
1389                         p->ioac.write_bytes + sig->ioac.write_bytes;
1390                 psig->ioac.cancelled_write_bytes +=
1391                                 p->ioac.cancelled_write_bytes +
1392                                 sig->ioac.cancelled_write_bytes;
1393 #endif /* CONFIG_TASK_IO_ACCOUNTING */
1394                 spin_unlock_irq(&p->parent->sighand->siglock);
1395         }
1396
1397         /*
1398          * Now we are sure this task is interesting, and no other
1399          * thread can reap it because we set its state to EXIT_DEAD.
1400          */
1401         read_unlock(&tasklist_lock);
1402
1403         retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1404         status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1405                 ? p->signal->group_exit_code : p->exit_code;
1406         if (!retval && stat_addr)
1407                 retval = put_user(status, stat_addr);
1408         if (!retval && infop)
1409                 retval = put_user(SIGCHLD, &infop->si_signo);
1410         if (!retval && infop)
1411                 retval = put_user(0, &infop->si_errno);
1412         if (!retval && infop) {
1413                 int why;
1414
1415                 if ((status & 0x7f) == 0) {
1416                         why = CLD_EXITED;
1417                         status >>= 8;
1418                 } else {
1419                         why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1420                         status &= 0x7f;
1421                 }
1422                 retval = put_user((short)why, &infop->si_code);
1423                 if (!retval)
1424                         retval = put_user(status, &infop->si_status);
1425         }
1426         if (!retval && infop)
1427                 retval = put_user(pid, &infop->si_pid);
1428         if (!retval && infop)
1429                 retval = put_user(p->uid, &infop->si_uid);
1430         if (!retval)
1431                 retval = pid;
1432
1433         if (traced) {
1434                 write_lock_irq(&tasklist_lock);
1435                 /* We dropped tasklist, ptracer could die and untrace */
1436                 ptrace_unlink(p);
1437                 /*
1438                  * If this is not a detached task, notify the parent.
1439                  * If it's still not detached after that, don't release
1440                  * it now.
1441                  */
1442                 if (!task_detached(p)) {
1443                         do_notify_parent(p, p->exit_signal);
1444                         if (!task_detached(p)) {
1445                                 p->exit_state = EXIT_ZOMBIE;
1446                                 p = NULL;
1447                         }
1448                 }
1449                 write_unlock_irq(&tasklist_lock);
1450         }
1451         if (p != NULL)
1452                 release_task(p);
1453
1454         return retval;
1455 }
1456
1457 /*
1458  * Handle sys_wait4 work for one task in state TASK_STOPPED.  We hold
1459  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1460  * the lock and this task is uninteresting.  If we return nonzero, we have
1461  * released the lock and the system call should return.
1462  */
1463 static int wait_task_stopped(int ptrace, struct task_struct *p,
1464                              int options, struct siginfo __user *infop,
1465                              int __user *stat_addr, struct rusage __user *ru)
1466 {
1467         int retval, exit_code, why;
1468         uid_t uid = 0; /* unneeded, required by compiler */
1469         pid_t pid;
1470
1471         if (!(options & WUNTRACED))
1472                 return 0;
1473
1474         exit_code = 0;
1475         spin_lock_irq(&p->sighand->siglock);
1476
1477         if (unlikely(!task_is_stopped_or_traced(p)))
1478                 goto unlock_sig;
1479
1480         if (!ptrace && p->signal->group_stop_count > 0)
1481                 /*
1482                  * A group stop is in progress and this is the group leader.
1483                  * We won't report until all threads have stopped.
1484                  */
1485                 goto unlock_sig;
1486
1487         exit_code = p->exit_code;
1488         if (!exit_code)
1489                 goto unlock_sig;
1490
1491         if (!unlikely(options & WNOWAIT))
1492                 p->exit_code = 0;
1493
1494         uid = p->uid;
1495 unlock_sig:
1496         spin_unlock_irq(&p->sighand->siglock);
1497         if (!exit_code)
1498                 return 0;
1499
1500         /*
1501          * Now we are pretty sure this task is interesting.
1502          * Make sure it doesn't get reaped out from under us while we
1503          * give up the lock and then examine it below.  We don't want to
1504          * keep holding onto the tasklist_lock while we call getrusage and
1505          * possibly take page faults for user memory.
1506          */
1507         get_task_struct(p);
1508         pid = task_pid_vnr(p);
1509         why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1510         read_unlock(&tasklist_lock);
1511
1512         if (unlikely(options & WNOWAIT))
1513                 return wait_noreap_copyout(p, pid, uid,
1514                                            why, exit_code,
1515                                            infop, ru);
1516
1517         retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1518         if (!retval && stat_addr)
1519                 retval = put_user((exit_code << 8) | 0x7f, stat_addr);
1520         if (!retval && infop)
1521                 retval = put_user(SIGCHLD, &infop->si_signo);
1522         if (!retval && infop)
1523                 retval = put_user(0, &infop->si_errno);
1524         if (!retval && infop)
1525                 retval = put_user((short)why, &infop->si_code);
1526         if (!retval && infop)
1527                 retval = put_user(exit_code, &infop->si_status);
1528         if (!retval && infop)
1529                 retval = put_user(pid, &infop->si_pid);
1530         if (!retval && infop)
1531                 retval = put_user(uid, &infop->si_uid);
1532         if (!retval)
1533                 retval = pid;
1534         put_task_struct(p);
1535
1536         BUG_ON(!retval);
1537         return retval;
1538 }
1539
1540 /*
1541  * Handle do_wait work for one task in a live, non-stopped state.
1542  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1543  * the lock and this task is uninteresting.  If we return nonzero, we have
1544  * released the lock and the system call should return.
1545  */
1546 static int wait_task_continued(struct task_struct *p, int options,
1547                                struct siginfo __user *infop,
1548                                int __user *stat_addr, struct rusage __user *ru)
1549 {
1550         int retval;
1551         pid_t pid;
1552         uid_t uid;
1553
1554         if (!unlikely(options & WCONTINUED))
1555                 return 0;
1556
1557         if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1558                 return 0;
1559
1560         spin_lock_irq(&p->sighand->siglock);
1561         /* Re-check with the lock held.  */
1562         if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1563                 spin_unlock_irq(&p->sighand->siglock);
1564                 return 0;
1565         }
1566         if (!unlikely(options & WNOWAIT))
1567                 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1568         spin_unlock_irq(&p->sighand->siglock);
1569
1570         pid = task_pid_vnr(p);
1571         uid = p->uid;
1572         get_task_struct(p);
1573         read_unlock(&tasklist_lock);
1574
1575         if (!infop) {
1576                 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1577                 put_task_struct(p);
1578                 if (!retval && stat_addr)
1579                         retval = put_user(0xffff, stat_addr);
1580                 if (!retval)
1581                         retval = pid;
1582         } else {
1583                 retval = wait_noreap_copyout(p, pid, uid,
1584                                              CLD_CONTINUED, SIGCONT,
1585                                              infop, ru);
1586                 BUG_ON(retval == 0);
1587         }
1588
1589         return retval;
1590 }
1591
1592 /*
1593  * Consider @p for a wait by @parent.
1594  *
1595  * -ECHILD should be in *@notask_error before the first call.
1596  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1597  * Returns zero if the search for a child should continue;
1598  * then *@notask_error is 0 if @p is an eligible child,
1599  * or another error from security_task_wait(), or still -ECHILD.
1600  */
1601 static int wait_consider_task(struct task_struct *parent, int ptrace,
1602                               struct task_struct *p, int *notask_error,
1603                               enum pid_type type, struct pid *pid, int options,
1604                               struct siginfo __user *infop,
1605                               int __user *stat_addr, struct rusage __user *ru)
1606 {
1607         int ret = eligible_child(type, pid, options, p);
1608         if (!ret)
1609                 return ret;
1610
1611         if (unlikely(ret < 0)) {
1612                 /*
1613                  * If we have not yet seen any eligible child,
1614                  * then let this error code replace -ECHILD.
1615                  * A permission error will give the user a clue
1616                  * to look for security policy problems, rather
1617                  * than for mysterious wait bugs.
1618                  */
1619                 if (*notask_error)
1620                         *notask_error = ret;
1621         }
1622
1623         if (likely(!ptrace) && unlikely(p->ptrace)) {
1624                 /*
1625                  * This child is hidden by ptrace.
1626                  * We aren't allowed to see it now, but eventually we will.
1627                  */
1628                 *notask_error = 0;
1629                 return 0;
1630         }
1631
1632         if (p->exit_state == EXIT_DEAD)
1633                 return 0;
1634
1635         /*
1636          * We don't reap group leaders with subthreads.
1637          */
1638         if (p->exit_state == EXIT_ZOMBIE && !delay_group_leader(p))
1639                 return wait_task_zombie(p, options, infop, stat_addr, ru);
1640
1641         /*
1642          * It's stopped or running now, so it might
1643          * later continue, exit, or stop again.
1644          */
1645         *notask_error = 0;
1646
1647         if (task_is_stopped_or_traced(p))
1648                 return wait_task_stopped(ptrace, p, options,
1649                                          infop, stat_addr, ru);
1650
1651         return wait_task_continued(p, options, infop, stat_addr, ru);
1652 }
1653
1654 /*
1655  * Do the work of do_wait() for one thread in the group, @tsk.
1656  *
1657  * -ECHILD should be in *@notask_error before the first call.
1658  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1659  * Returns zero if the search for a child should continue; then
1660  * *@notask_error is 0 if there were any eligible children,
1661  * or another error from security_task_wait(), or still -ECHILD.
1662  */
1663 static int do_wait_thread(struct task_struct *tsk, int *notask_error,
1664                           enum pid_type type, struct pid *pid, int options,
1665                           struct siginfo __user *infop, int __user *stat_addr,
1666                           struct rusage __user *ru)
1667 {
1668         struct task_struct *p;
1669
1670         list_for_each_entry(p, &tsk->children, sibling) {
1671                 /*
1672                  * Do not consider detached threads.
1673                  */
1674                 if (!task_detached(p)) {
1675                         int ret = wait_consider_task(tsk, 0, p, notask_error,
1676                                                      type, pid, options,
1677                                                      infop, stat_addr, ru);
1678                         if (ret)
1679                                 return ret;
1680                 }
1681         }
1682
1683         return 0;
1684 }
1685
1686 static int ptrace_do_wait(struct task_struct *tsk, int *notask_error,
1687                           enum pid_type type, struct pid *pid, int options,
1688                           struct siginfo __user *infop, int __user *stat_addr,
1689                           struct rusage __user *ru)
1690 {
1691         struct task_struct *p;
1692
1693         /*
1694          * Traditionally we see ptrace'd stopped tasks regardless of options.
1695          */
1696         options |= WUNTRACED;
1697
1698         list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1699                 int ret = wait_consider_task(tsk, 1, p, notask_error,
1700                                              type, pid, options,
1701                                              infop, stat_addr, ru);
1702                 if (ret)
1703                         return ret;
1704         }
1705
1706         return 0;
1707 }
1708
1709 static long do_wait(enum pid_type type, struct pid *pid, int options,
1710                     struct siginfo __user *infop, int __user *stat_addr,
1711                     struct rusage __user *ru)
1712 {
1713         DECLARE_WAITQUEUE(wait, current);
1714         struct task_struct *tsk;
1715         int retval;
1716
1717         add_wait_queue(&current->signal->wait_chldexit,&wait);
1718 repeat:
1719         /*
1720          * If there is nothing that can match our critiera just get out.
1721          * We will clear @retval to zero if we see any child that might later
1722          * match our criteria, even if we are not able to reap it yet.
1723          */
1724         retval = -ECHILD;
1725         if ((type < PIDTYPE_MAX) && (!pid || hlist_empty(&pid->tasks[type])))
1726                 goto end;
1727
1728         current->state = TASK_INTERRUPTIBLE;
1729         read_lock(&tasklist_lock);
1730         tsk = current;
1731         do {
1732                 int tsk_result = do_wait_thread(tsk, &retval,
1733                                                 type, pid, options,
1734                                                 infop, stat_addr, ru);
1735                 if (!tsk_result)
1736                         tsk_result = ptrace_do_wait(tsk, &retval,
1737                                                     type, pid, options,
1738                                                     infop, stat_addr, ru);
1739                 if (tsk_result) {
1740                         /*
1741                          * tasklist_lock is unlocked and we have a final result.
1742                          */
1743                         retval = tsk_result;
1744                         goto end;
1745                 }
1746
1747                 if (options & __WNOTHREAD)
1748                         break;
1749                 tsk = next_thread(tsk);
1750                 BUG_ON(tsk->signal != current->signal);
1751         } while (tsk != current);
1752         read_unlock(&tasklist_lock);
1753
1754         if (!retval && !(options & WNOHANG)) {
1755                 retval = -ERESTARTSYS;
1756                 if (!signal_pending(current)) {
1757                         schedule();
1758                         goto repeat;
1759                 }
1760         }
1761
1762 end:
1763         current->state = TASK_RUNNING;
1764         remove_wait_queue(&current->signal->wait_chldexit,&wait);
1765         if (infop) {
1766                 if (retval > 0)
1767                         retval = 0;
1768                 else {
1769                         /*
1770                          * For a WNOHANG return, clear out all the fields
1771                          * we would set so the user can easily tell the
1772                          * difference.
1773                          */
1774                         if (!retval)
1775                                 retval = put_user(0, &infop->si_signo);
1776                         if (!retval)
1777                                 retval = put_user(0, &infop->si_errno);
1778                         if (!retval)
1779                                 retval = put_user(0, &infop->si_code);
1780                         if (!retval)
1781                                 retval = put_user(0, &infop->si_pid);
1782                         if (!retval)
1783                                 retval = put_user(0, &infop->si_uid);
1784                         if (!retval)
1785                                 retval = put_user(0, &infop->si_status);
1786                 }
1787         }
1788         return retval;
1789 }
1790
1791 asmlinkage long sys_waitid(int which, pid_t upid,
1792                            struct siginfo __user *infop, int options,
1793                            struct rusage __user *ru)
1794 {
1795         struct pid *pid = NULL;
1796         enum pid_type type;
1797         long ret;
1798
1799         if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1800                 return -EINVAL;
1801         if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1802                 return -EINVAL;
1803
1804         switch (which) {
1805         case P_ALL:
1806                 type = PIDTYPE_MAX;
1807                 break;
1808         case P_PID:
1809                 type = PIDTYPE_PID;
1810                 if (upid <= 0)
1811                         return -EINVAL;
1812                 break;
1813         case P_PGID:
1814                 type = PIDTYPE_PGID;
1815                 if (upid <= 0)
1816                         return -EINVAL;
1817                 break;
1818         default:
1819                 return -EINVAL;
1820         }
1821
1822         if (type < PIDTYPE_MAX)
1823                 pid = find_get_pid(upid);
1824         ret = do_wait(type, pid, options, infop, NULL, ru);
1825         put_pid(pid);
1826
1827         /* avoid REGPARM breakage on x86: */
1828         asmlinkage_protect(5, ret, which, upid, infop, options, ru);
1829         return ret;
1830 }
1831
1832 asmlinkage long sys_wait4(pid_t upid, int __user *stat_addr,
1833                           int options, struct rusage __user *ru)
1834 {
1835         struct pid *pid = NULL;
1836         enum pid_type type;
1837         long ret;
1838
1839         if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1840                         __WNOTHREAD|__WCLONE|__WALL))
1841                 return -EINVAL;
1842
1843         if (upid == -1)
1844                 type = PIDTYPE_MAX;
1845         else if (upid < 0) {
1846                 type = PIDTYPE_PGID;
1847                 pid = find_get_pid(-upid);
1848         } else if (upid == 0) {
1849                 type = PIDTYPE_PGID;
1850                 pid = get_pid(task_pgrp(current));
1851         } else /* upid > 0 */ {
1852                 type = PIDTYPE_PID;
1853                 pid = find_get_pid(upid);
1854         }
1855
1856         ret = do_wait(type, pid, options | WEXITED, NULL, stat_addr, ru);
1857         put_pid(pid);
1858
1859         /* avoid REGPARM breakage on x86: */
1860         asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
1861         return ret;
1862 }
1863
1864 #ifdef __ARCH_WANT_SYS_WAITPID
1865
1866 /*
1867  * sys_waitpid() remains for compatibility. waitpid() should be
1868  * implemented by calling sys_wait4() from libc.a.
1869  */
1870 asmlinkage long sys_waitpid(pid_t pid, int __user *stat_addr, int options)
1871 {
1872         return sys_wait4(pid, stat_addr, options, NULL);
1873 }
1874
1875 #endif