Get rid of indirect include of fs_struct.h
[safe/jmp/linux-2.6] / kernel / exit.c
1 /*
2  *  linux/kernel/exit.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/mnt_namespace.h>
16 #include <linux/iocontext.h>
17 #include <linux/key.h>
18 #include <linux/security.h>
19 #include <linux/cpu.h>
20 #include <linux/acct.h>
21 #include <linux/tsacct_kern.h>
22 #include <linux/file.h>
23 #include <linux/fdtable.h>
24 #include <linux/binfmts.h>
25 #include <linux/nsproxy.h>
26 #include <linux/pid_namespace.h>
27 #include <linux/ptrace.h>
28 #include <linux/profile.h>
29 #include <linux/mount.h>
30 #include <linux/proc_fs.h>
31 #include <linux/kthread.h>
32 #include <linux/mempolicy.h>
33 #include <linux/taskstats_kern.h>
34 #include <linux/delayacct.h>
35 #include <linux/freezer.h>
36 #include <linux/cgroup.h>
37 #include <linux/syscalls.h>
38 #include <linux/signal.h>
39 #include <linux/posix-timers.h>
40 #include <linux/cn_proc.h>
41 #include <linux/mutex.h>
42 #include <linux/futex.h>
43 #include <linux/pipe_fs_i.h>
44 #include <linux/audit.h> /* for audit_free() */
45 #include <linux/resource.h>
46 #include <linux/blkdev.h>
47 #include <linux/task_io_accounting_ops.h>
48 #include <linux/tracehook.h>
49 #include <linux/fs_struct.h>
50 #include <linux/init_task.h>
51 #include <trace/sched.h>
52
53 #include <asm/uaccess.h>
54 #include <asm/unistd.h>
55 #include <asm/pgtable.h>
56 #include <asm/mmu_context.h>
57 #include "cred-internals.h"
58
59 DEFINE_TRACE(sched_process_free);
60 DEFINE_TRACE(sched_process_exit);
61 DEFINE_TRACE(sched_process_wait);
62
63 static void exit_mm(struct task_struct * tsk);
64
65 static inline int task_detached(struct task_struct *p)
66 {
67         return p->exit_signal == -1;
68 }
69
70 static void __unhash_process(struct task_struct *p)
71 {
72         nr_threads--;
73         detach_pid(p, PIDTYPE_PID);
74         if (thread_group_leader(p)) {
75                 detach_pid(p, PIDTYPE_PGID);
76                 detach_pid(p, PIDTYPE_SID);
77
78                 list_del_rcu(&p->tasks);
79                 __get_cpu_var(process_counts)--;
80         }
81         list_del_rcu(&p->thread_group);
82         list_del_init(&p->sibling);
83 }
84
85 /*
86  * This function expects the tasklist_lock write-locked.
87  */
88 static void __exit_signal(struct task_struct *tsk)
89 {
90         struct signal_struct *sig = tsk->signal;
91         struct sighand_struct *sighand;
92
93         BUG_ON(!sig);
94         BUG_ON(!atomic_read(&sig->count));
95
96         sighand = rcu_dereference(tsk->sighand);
97         spin_lock(&sighand->siglock);
98
99         posix_cpu_timers_exit(tsk);
100         if (atomic_dec_and_test(&sig->count))
101                 posix_cpu_timers_exit_group(tsk);
102         else {
103                 /*
104                  * If there is any task waiting for the group exit
105                  * then notify it:
106                  */
107                 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count)
108                         wake_up_process(sig->group_exit_task);
109
110                 if (tsk == sig->curr_target)
111                         sig->curr_target = next_thread(tsk);
112                 /*
113                  * Accumulate here the counters for all threads but the
114                  * group leader as they die, so they can be added into
115                  * the process-wide totals when those are taken.
116                  * The group leader stays around as a zombie as long
117                  * as there are other threads.  When it gets reaped,
118                  * the exit.c code will add its counts into these totals.
119                  * We won't ever get here for the group leader, since it
120                  * will have been the last reference on the signal_struct.
121                  */
122                 sig->utime = cputime_add(sig->utime, task_utime(tsk));
123                 sig->stime = cputime_add(sig->stime, task_stime(tsk));
124                 sig->gtime = cputime_add(sig->gtime, task_gtime(tsk));
125                 sig->min_flt += tsk->min_flt;
126                 sig->maj_flt += tsk->maj_flt;
127                 sig->nvcsw += tsk->nvcsw;
128                 sig->nivcsw += tsk->nivcsw;
129                 sig->inblock += task_io_get_inblock(tsk);
130                 sig->oublock += task_io_get_oublock(tsk);
131                 task_io_accounting_add(&sig->ioac, &tsk->ioac);
132                 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
133                 sig = NULL; /* Marker for below. */
134         }
135
136         __unhash_process(tsk);
137
138         /*
139          * Do this under ->siglock, we can race with another thread
140          * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
141          */
142         flush_sigqueue(&tsk->pending);
143
144         tsk->signal = NULL;
145         tsk->sighand = NULL;
146         spin_unlock(&sighand->siglock);
147
148         __cleanup_sighand(sighand);
149         clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
150         if (sig) {
151                 flush_sigqueue(&sig->shared_pending);
152                 taskstats_tgid_free(sig);
153                 /*
154                  * Make sure ->signal can't go away under rq->lock,
155                  * see account_group_exec_runtime().
156                  */
157                 task_rq_unlock_wait(tsk);
158                 __cleanup_signal(sig);
159         }
160 }
161
162 static void delayed_put_task_struct(struct rcu_head *rhp)
163 {
164         struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
165
166         trace_sched_process_free(tsk);
167         put_task_struct(tsk);
168 }
169
170
171 void release_task(struct task_struct * p)
172 {
173         struct task_struct *leader;
174         int zap_leader;
175 repeat:
176         tracehook_prepare_release_task(p);
177         /* don't need to get the RCU readlock here - the process is dead and
178          * can't be modifying its own credentials */
179         atomic_dec(&__task_cred(p)->user->processes);
180
181         proc_flush_task(p);
182         write_lock_irq(&tasklist_lock);
183         tracehook_finish_release_task(p);
184         __exit_signal(p);
185
186         /*
187          * If we are the last non-leader member of the thread
188          * group, and the leader is zombie, then notify the
189          * group leader's parent process. (if it wants notification.)
190          */
191         zap_leader = 0;
192         leader = p->group_leader;
193         if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
194                 BUG_ON(task_detached(leader));
195                 do_notify_parent(leader, leader->exit_signal);
196                 /*
197                  * If we were the last child thread and the leader has
198                  * exited already, and the leader's parent ignores SIGCHLD,
199                  * then we are the one who should release the leader.
200                  *
201                  * do_notify_parent() will have marked it self-reaping in
202                  * that case.
203                  */
204                 zap_leader = task_detached(leader);
205
206                 /*
207                  * This maintains the invariant that release_task()
208                  * only runs on a task in EXIT_DEAD, just for sanity.
209                  */
210                 if (zap_leader)
211                         leader->exit_state = EXIT_DEAD;
212         }
213
214         write_unlock_irq(&tasklist_lock);
215         release_thread(p);
216         call_rcu(&p->rcu, delayed_put_task_struct);
217
218         p = leader;
219         if (unlikely(zap_leader))
220                 goto repeat;
221 }
222
223 /*
224  * This checks not only the pgrp, but falls back on the pid if no
225  * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
226  * without this...
227  *
228  * The caller must hold rcu lock or the tasklist lock.
229  */
230 struct pid *session_of_pgrp(struct pid *pgrp)
231 {
232         struct task_struct *p;
233         struct pid *sid = NULL;
234
235         p = pid_task(pgrp, PIDTYPE_PGID);
236         if (p == NULL)
237                 p = pid_task(pgrp, PIDTYPE_PID);
238         if (p != NULL)
239                 sid = task_session(p);
240
241         return sid;
242 }
243
244 /*
245  * Determine if a process group is "orphaned", according to the POSIX
246  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
247  * by terminal-generated stop signals.  Newly orphaned process groups are
248  * to receive a SIGHUP and a SIGCONT.
249  *
250  * "I ask you, have you ever known what it is to be an orphan?"
251  */
252 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
253 {
254         struct task_struct *p;
255
256         do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
257                 if ((p == ignored_task) ||
258                     (p->exit_state && thread_group_empty(p)) ||
259                     is_global_init(p->real_parent))
260                         continue;
261
262                 if (task_pgrp(p->real_parent) != pgrp &&
263                     task_session(p->real_parent) == task_session(p))
264                         return 0;
265         } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
266
267         return 1;
268 }
269
270 int is_current_pgrp_orphaned(void)
271 {
272         int retval;
273
274         read_lock(&tasklist_lock);
275         retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
276         read_unlock(&tasklist_lock);
277
278         return retval;
279 }
280
281 static int has_stopped_jobs(struct pid *pgrp)
282 {
283         int retval = 0;
284         struct task_struct *p;
285
286         do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
287                 if (!task_is_stopped(p))
288                         continue;
289                 retval = 1;
290                 break;
291         } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
292         return retval;
293 }
294
295 /*
296  * Check to see if any process groups have become orphaned as
297  * a result of our exiting, and if they have any stopped jobs,
298  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
299  */
300 static void
301 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
302 {
303         struct pid *pgrp = task_pgrp(tsk);
304         struct task_struct *ignored_task = tsk;
305
306         if (!parent)
307                  /* exit: our father is in a different pgrp than
308                   * we are and we were the only connection outside.
309                   */
310                 parent = tsk->real_parent;
311         else
312                 /* reparent: our child is in a different pgrp than
313                  * we are, and it was the only connection outside.
314                  */
315                 ignored_task = NULL;
316
317         if (task_pgrp(parent) != pgrp &&
318             task_session(parent) == task_session(tsk) &&
319             will_become_orphaned_pgrp(pgrp, ignored_task) &&
320             has_stopped_jobs(pgrp)) {
321                 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
322                 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
323         }
324 }
325
326 /**
327  * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
328  *
329  * If a kernel thread is launched as a result of a system call, or if
330  * it ever exits, it should generally reparent itself to kthreadd so it
331  * isn't in the way of other processes and is correctly cleaned up on exit.
332  *
333  * The various task state such as scheduling policy and priority may have
334  * been inherited from a user process, so we reset them to sane values here.
335  *
336  * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
337  */
338 static void reparent_to_kthreadd(void)
339 {
340         write_lock_irq(&tasklist_lock);
341
342         ptrace_unlink(current);
343         /* Reparent to init */
344         current->real_parent = current->parent = kthreadd_task;
345         list_move_tail(&current->sibling, &current->real_parent->children);
346
347         /* Set the exit signal to SIGCHLD so we signal init on exit */
348         current->exit_signal = SIGCHLD;
349
350         if (task_nice(current) < 0)
351                 set_user_nice(current, 0);
352         /* cpus_allowed? */
353         /* rt_priority? */
354         /* signals? */
355         memcpy(current->signal->rlim, init_task.signal->rlim,
356                sizeof(current->signal->rlim));
357
358         atomic_inc(&init_cred.usage);
359         commit_creds(&init_cred);
360         write_unlock_irq(&tasklist_lock);
361 }
362
363 void __set_special_pids(struct pid *pid)
364 {
365         struct task_struct *curr = current->group_leader;
366         pid_t nr = pid_nr(pid);
367
368         if (task_session(curr) != pid) {
369                 change_pid(curr, PIDTYPE_SID, pid);
370                 set_task_session(curr, nr);
371         }
372         if (task_pgrp(curr) != pid) {
373                 change_pid(curr, PIDTYPE_PGID, pid);
374                 set_task_pgrp(curr, nr);
375         }
376 }
377
378 static void set_special_pids(struct pid *pid)
379 {
380         write_lock_irq(&tasklist_lock);
381         __set_special_pids(pid);
382         write_unlock_irq(&tasklist_lock);
383 }
384
385 /*
386  * Let kernel threads use this to say that they
387  * allow a certain signal (since daemonize() will
388  * have disabled all of them by default).
389  */
390 int allow_signal(int sig)
391 {
392         if (!valid_signal(sig) || sig < 1)
393                 return -EINVAL;
394
395         spin_lock_irq(&current->sighand->siglock);
396         sigdelset(&current->blocked, sig);
397         if (!current->mm) {
398                 /* Kernel threads handle their own signals.
399                    Let the signal code know it'll be handled, so
400                    that they don't get converted to SIGKILL or
401                    just silently dropped */
402                 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
403         }
404         recalc_sigpending();
405         spin_unlock_irq(&current->sighand->siglock);
406         return 0;
407 }
408
409 EXPORT_SYMBOL(allow_signal);
410
411 int disallow_signal(int sig)
412 {
413         if (!valid_signal(sig) || sig < 1)
414                 return -EINVAL;
415
416         spin_lock_irq(&current->sighand->siglock);
417         current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
418         recalc_sigpending();
419         spin_unlock_irq(&current->sighand->siglock);
420         return 0;
421 }
422
423 EXPORT_SYMBOL(disallow_signal);
424
425 /*
426  *      Put all the gunge required to become a kernel thread without
427  *      attached user resources in one place where it belongs.
428  */
429
430 void daemonize(const char *name, ...)
431 {
432         va_list args;
433         sigset_t blocked;
434
435         va_start(args, name);
436         vsnprintf(current->comm, sizeof(current->comm), name, args);
437         va_end(args);
438
439         /*
440          * If we were started as result of loading a module, close all of the
441          * user space pages.  We don't need them, and if we didn't close them
442          * they would be locked into memory.
443          */
444         exit_mm(current);
445         /*
446          * We don't want to have TIF_FREEZE set if the system-wide hibernation
447          * or suspend transition begins right now.
448          */
449         current->flags |= (PF_NOFREEZE | PF_KTHREAD);
450
451         if (current->nsproxy != &init_nsproxy) {
452                 get_nsproxy(&init_nsproxy);
453                 switch_task_namespaces(current, &init_nsproxy);
454         }
455         set_special_pids(&init_struct_pid);
456         proc_clear_tty(current);
457
458         /* Block and flush all signals */
459         sigfillset(&blocked);
460         sigprocmask(SIG_BLOCK, &blocked, NULL);
461         flush_signals(current);
462
463         /* Become as one with the init task */
464
465         daemonize_fs_struct();
466         exit_files(current);
467         current->files = init_task.files;
468         atomic_inc(&current->files->count);
469
470         reparent_to_kthreadd();
471 }
472
473 EXPORT_SYMBOL(daemonize);
474
475 static void close_files(struct files_struct * files)
476 {
477         int i, j;
478         struct fdtable *fdt;
479
480         j = 0;
481
482         /*
483          * It is safe to dereference the fd table without RCU or
484          * ->file_lock because this is the last reference to the
485          * files structure.
486          */
487         fdt = files_fdtable(files);
488         for (;;) {
489                 unsigned long set;
490                 i = j * __NFDBITS;
491                 if (i >= fdt->max_fds)
492                         break;
493                 set = fdt->open_fds->fds_bits[j++];
494                 while (set) {
495                         if (set & 1) {
496                                 struct file * file = xchg(&fdt->fd[i], NULL);
497                                 if (file) {
498                                         filp_close(file, files);
499                                         cond_resched();
500                                 }
501                         }
502                         i++;
503                         set >>= 1;
504                 }
505         }
506 }
507
508 struct files_struct *get_files_struct(struct task_struct *task)
509 {
510         struct files_struct *files;
511
512         task_lock(task);
513         files = task->files;
514         if (files)
515                 atomic_inc(&files->count);
516         task_unlock(task);
517
518         return files;
519 }
520
521 void put_files_struct(struct files_struct *files)
522 {
523         struct fdtable *fdt;
524
525         if (atomic_dec_and_test(&files->count)) {
526                 close_files(files);
527                 /*
528                  * Free the fd and fdset arrays if we expanded them.
529                  * If the fdtable was embedded, pass files for freeing
530                  * at the end of the RCU grace period. Otherwise,
531                  * you can free files immediately.
532                  */
533                 fdt = files_fdtable(files);
534                 if (fdt != &files->fdtab)
535                         kmem_cache_free(files_cachep, files);
536                 free_fdtable(fdt);
537         }
538 }
539
540 void reset_files_struct(struct files_struct *files)
541 {
542         struct task_struct *tsk = current;
543         struct files_struct *old;
544
545         old = tsk->files;
546         task_lock(tsk);
547         tsk->files = files;
548         task_unlock(tsk);
549         put_files_struct(old);
550 }
551
552 void exit_files(struct task_struct *tsk)
553 {
554         struct files_struct * files = tsk->files;
555
556         if (files) {
557                 task_lock(tsk);
558                 tsk->files = NULL;
559                 task_unlock(tsk);
560                 put_files_struct(files);
561         }
562 }
563
564 #ifdef CONFIG_MM_OWNER
565 /*
566  * Task p is exiting and it owned mm, lets find a new owner for it
567  */
568 static inline int
569 mm_need_new_owner(struct mm_struct *mm, struct task_struct *p)
570 {
571         /*
572          * If there are other users of the mm and the owner (us) is exiting
573          * we need to find a new owner to take on the responsibility.
574          */
575         if (atomic_read(&mm->mm_users) <= 1)
576                 return 0;
577         if (mm->owner != p)
578                 return 0;
579         return 1;
580 }
581
582 void mm_update_next_owner(struct mm_struct *mm)
583 {
584         struct task_struct *c, *g, *p = current;
585
586 retry:
587         if (!mm_need_new_owner(mm, p))
588                 return;
589
590         read_lock(&tasklist_lock);
591         /*
592          * Search in the children
593          */
594         list_for_each_entry(c, &p->children, sibling) {
595                 if (c->mm == mm)
596                         goto assign_new_owner;
597         }
598
599         /*
600          * Search in the siblings
601          */
602         list_for_each_entry(c, &p->parent->children, sibling) {
603                 if (c->mm == mm)
604                         goto assign_new_owner;
605         }
606
607         /*
608          * Search through everything else. We should not get
609          * here often
610          */
611         do_each_thread(g, c) {
612                 if (c->mm == mm)
613                         goto assign_new_owner;
614         } while_each_thread(g, c);
615
616         read_unlock(&tasklist_lock);
617         /*
618          * We found no owner yet mm_users > 1: this implies that we are
619          * most likely racing with swapoff (try_to_unuse()) or /proc or
620          * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
621          */
622         mm->owner = NULL;
623         return;
624
625 assign_new_owner:
626         BUG_ON(c == p);
627         get_task_struct(c);
628         /*
629          * The task_lock protects c->mm from changing.
630          * We always want mm->owner->mm == mm
631          */
632         task_lock(c);
633         /*
634          * Delay read_unlock() till we have the task_lock()
635          * to ensure that c does not slip away underneath us
636          */
637         read_unlock(&tasklist_lock);
638         if (c->mm != mm) {
639                 task_unlock(c);
640                 put_task_struct(c);
641                 goto retry;
642         }
643         mm->owner = c;
644         task_unlock(c);
645         put_task_struct(c);
646 }
647 #endif /* CONFIG_MM_OWNER */
648
649 /*
650  * Turn us into a lazy TLB process if we
651  * aren't already..
652  */
653 static void exit_mm(struct task_struct * tsk)
654 {
655         struct mm_struct *mm = tsk->mm;
656         struct core_state *core_state;
657
658         mm_release(tsk, mm);
659         if (!mm)
660                 return;
661         /*
662          * Serialize with any possible pending coredump.
663          * We must hold mmap_sem around checking core_state
664          * and clearing tsk->mm.  The core-inducing thread
665          * will increment ->nr_threads for each thread in the
666          * group with ->mm != NULL.
667          */
668         down_read(&mm->mmap_sem);
669         core_state = mm->core_state;
670         if (core_state) {
671                 struct core_thread self;
672                 up_read(&mm->mmap_sem);
673
674                 self.task = tsk;
675                 self.next = xchg(&core_state->dumper.next, &self);
676                 /*
677                  * Implies mb(), the result of xchg() must be visible
678                  * to core_state->dumper.
679                  */
680                 if (atomic_dec_and_test(&core_state->nr_threads))
681                         complete(&core_state->startup);
682
683                 for (;;) {
684                         set_task_state(tsk, TASK_UNINTERRUPTIBLE);
685                         if (!self.task) /* see coredump_finish() */
686                                 break;
687                         schedule();
688                 }
689                 __set_task_state(tsk, TASK_RUNNING);
690                 down_read(&mm->mmap_sem);
691         }
692         atomic_inc(&mm->mm_count);
693         BUG_ON(mm != tsk->active_mm);
694         /* more a memory barrier than a real lock */
695         task_lock(tsk);
696         tsk->mm = NULL;
697         up_read(&mm->mmap_sem);
698         enter_lazy_tlb(mm, current);
699         /* We don't want this task to be frozen prematurely */
700         clear_freeze_flag(tsk);
701         task_unlock(tsk);
702         mm_update_next_owner(mm);
703         mmput(mm);
704 }
705
706 /*
707  * Return nonzero if @parent's children should reap themselves.
708  *
709  * Called with write_lock_irq(&tasklist_lock) held.
710  */
711 static int ignoring_children(struct task_struct *parent)
712 {
713         int ret;
714         struct sighand_struct *psig = parent->sighand;
715         unsigned long flags;
716         spin_lock_irqsave(&psig->siglock, flags);
717         ret = (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
718                (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT));
719         spin_unlock_irqrestore(&psig->siglock, flags);
720         return ret;
721 }
722
723 /*
724  * Detach all tasks we were using ptrace on.
725  * Any that need to be release_task'd are put on the @dead list.
726  *
727  * Called with write_lock(&tasklist_lock) held.
728  */
729 static void ptrace_exit(struct task_struct *parent, struct list_head *dead)
730 {
731         struct task_struct *p, *n;
732         int ign = -1;
733
734         list_for_each_entry_safe(p, n, &parent->ptraced, ptrace_entry) {
735                 __ptrace_unlink(p);
736
737                 if (p->exit_state != EXIT_ZOMBIE)
738                         continue;
739
740                 /*
741                  * If it's a zombie, our attachedness prevented normal
742                  * parent notification or self-reaping.  Do notification
743                  * now if it would have happened earlier.  If it should
744                  * reap itself, add it to the @dead list.  We can't call
745                  * release_task() here because we already hold tasklist_lock.
746                  *
747                  * If it's our own child, there is no notification to do.
748                  * But if our normal children self-reap, then this child
749                  * was prevented by ptrace and we must reap it now.
750                  */
751                 if (!task_detached(p) && thread_group_empty(p)) {
752                         if (!same_thread_group(p->real_parent, parent))
753                                 do_notify_parent(p, p->exit_signal);
754                         else {
755                                 if (ign < 0)
756                                         ign = ignoring_children(parent);
757                                 if (ign)
758                                         p->exit_signal = -1;
759                         }
760                 }
761
762                 if (task_detached(p)) {
763                         /*
764                          * Mark it as in the process of being reaped.
765                          */
766                         p->exit_state = EXIT_DEAD;
767                         list_add(&p->ptrace_entry, dead);
768                 }
769         }
770 }
771
772 /*
773  * Finish up exit-time ptrace cleanup.
774  *
775  * Called without locks.
776  */
777 static void ptrace_exit_finish(struct task_struct *parent,
778                                struct list_head *dead)
779 {
780         struct task_struct *p, *n;
781
782         BUG_ON(!list_empty(&parent->ptraced));
783
784         list_for_each_entry_safe(p, n, dead, ptrace_entry) {
785                 list_del_init(&p->ptrace_entry);
786                 release_task(p);
787         }
788 }
789
790 static void reparent_thread(struct task_struct *p, struct task_struct *father)
791 {
792         if (p->pdeath_signal)
793                 /* We already hold the tasklist_lock here.  */
794                 group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p);
795
796         list_move_tail(&p->sibling, &p->real_parent->children);
797
798         /* If this is a threaded reparent there is no need to
799          * notify anyone anything has happened.
800          */
801         if (same_thread_group(p->real_parent, father))
802                 return;
803
804         /* We don't want people slaying init.  */
805         if (!task_detached(p))
806                 p->exit_signal = SIGCHLD;
807
808         /* If we'd notified the old parent about this child's death,
809          * also notify the new parent.
810          */
811         if (!ptrace_reparented(p) &&
812             p->exit_state == EXIT_ZOMBIE &&
813             !task_detached(p) && thread_group_empty(p))
814                 do_notify_parent(p, p->exit_signal);
815
816         kill_orphaned_pgrp(p, father);
817 }
818
819 /*
820  * When we die, we re-parent all our children.
821  * Try to give them to another thread in our thread
822  * group, and if no such member exists, give it to
823  * the child reaper process (ie "init") in our pid
824  * space.
825  */
826 static struct task_struct *find_new_reaper(struct task_struct *father)
827 {
828         struct pid_namespace *pid_ns = task_active_pid_ns(father);
829         struct task_struct *thread;
830
831         thread = father;
832         while_each_thread(father, thread) {
833                 if (thread->flags & PF_EXITING)
834                         continue;
835                 if (unlikely(pid_ns->child_reaper == father))
836                         pid_ns->child_reaper = thread;
837                 return thread;
838         }
839
840         if (unlikely(pid_ns->child_reaper == father)) {
841                 write_unlock_irq(&tasklist_lock);
842                 if (unlikely(pid_ns == &init_pid_ns))
843                         panic("Attempted to kill init!");
844
845                 zap_pid_ns_processes(pid_ns);
846                 write_lock_irq(&tasklist_lock);
847                 /*
848                  * We can not clear ->child_reaper or leave it alone.
849                  * There may by stealth EXIT_DEAD tasks on ->children,
850                  * forget_original_parent() must move them somewhere.
851                  */
852                 pid_ns->child_reaper = init_pid_ns.child_reaper;
853         }
854
855         return pid_ns->child_reaper;
856 }
857
858 static void forget_original_parent(struct task_struct *father)
859 {
860         struct task_struct *p, *n, *reaper;
861         LIST_HEAD(ptrace_dead);
862
863         write_lock_irq(&tasklist_lock);
864         reaper = find_new_reaper(father);
865         /*
866          * First clean up ptrace if we were using it.
867          */
868         ptrace_exit(father, &ptrace_dead);
869
870         list_for_each_entry_safe(p, n, &father->children, sibling) {
871                 p->real_parent = reaper;
872                 if (p->parent == father) {
873                         BUG_ON(p->ptrace);
874                         p->parent = p->real_parent;
875                 }
876                 reparent_thread(p, father);
877         }
878
879         write_unlock_irq(&tasklist_lock);
880         BUG_ON(!list_empty(&father->children));
881
882         ptrace_exit_finish(father, &ptrace_dead);
883 }
884
885 /*
886  * Send signals to all our closest relatives so that they know
887  * to properly mourn us..
888  */
889 static void exit_notify(struct task_struct *tsk, int group_dead)
890 {
891         int signal;
892         void *cookie;
893
894         /*
895          * This does two things:
896          *
897          * A.  Make init inherit all the child processes
898          * B.  Check to see if any process groups have become orphaned
899          *      as a result of our exiting, and if they have any stopped
900          *      jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
901          */
902         forget_original_parent(tsk);
903         exit_task_namespaces(tsk);
904
905         write_lock_irq(&tasklist_lock);
906         if (group_dead)
907                 kill_orphaned_pgrp(tsk->group_leader, NULL);
908
909         /* Let father know we died
910          *
911          * Thread signals are configurable, but you aren't going to use
912          * that to send signals to arbitary processes.
913          * That stops right now.
914          *
915          * If the parent exec id doesn't match the exec id we saved
916          * when we started then we know the parent has changed security
917          * domain.
918          *
919          * If our self_exec id doesn't match our parent_exec_id then
920          * we have changed execution domain as these two values started
921          * the same after a fork.
922          */
923         if (tsk->exit_signal != SIGCHLD && !task_detached(tsk) &&
924             (tsk->parent_exec_id != tsk->real_parent->self_exec_id ||
925              tsk->self_exec_id != tsk->parent_exec_id) &&
926             !capable(CAP_KILL))
927                 tsk->exit_signal = SIGCHLD;
928
929         signal = tracehook_notify_death(tsk, &cookie, group_dead);
930         if (signal >= 0)
931                 signal = do_notify_parent(tsk, signal);
932
933         tsk->exit_state = signal == DEATH_REAP ? EXIT_DEAD : EXIT_ZOMBIE;
934
935         /* mt-exec, de_thread() is waiting for us */
936         if (thread_group_leader(tsk) &&
937             tsk->signal->group_exit_task &&
938             tsk->signal->notify_count < 0)
939                 wake_up_process(tsk->signal->group_exit_task);
940
941         write_unlock_irq(&tasklist_lock);
942
943         tracehook_report_death(tsk, signal, cookie, group_dead);
944
945         /* If the process is dead, release it - nobody will wait for it */
946         if (signal == DEATH_REAP)
947                 release_task(tsk);
948 }
949
950 #ifdef CONFIG_DEBUG_STACK_USAGE
951 static void check_stack_usage(void)
952 {
953         static DEFINE_SPINLOCK(low_water_lock);
954         static int lowest_to_date = THREAD_SIZE;
955         unsigned long free;
956
957         free = stack_not_used(current);
958
959         if (free >= lowest_to_date)
960                 return;
961
962         spin_lock(&low_water_lock);
963         if (free < lowest_to_date) {
964                 printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
965                                 "left\n",
966                                 current->comm, free);
967                 lowest_to_date = free;
968         }
969         spin_unlock(&low_water_lock);
970 }
971 #else
972 static inline void check_stack_usage(void) {}
973 #endif
974
975 NORET_TYPE void do_exit(long code)
976 {
977         struct task_struct *tsk = current;
978         int group_dead;
979
980         profile_task_exit(tsk);
981
982         WARN_ON(atomic_read(&tsk->fs_excl));
983
984         if (unlikely(in_interrupt()))
985                 panic("Aiee, killing interrupt handler!");
986         if (unlikely(!tsk->pid))
987                 panic("Attempted to kill the idle task!");
988
989         tracehook_report_exit(&code);
990
991         /*
992          * We're taking recursive faults here in do_exit. Safest is to just
993          * leave this task alone and wait for reboot.
994          */
995         if (unlikely(tsk->flags & PF_EXITING)) {
996                 printk(KERN_ALERT
997                         "Fixing recursive fault but reboot is needed!\n");
998                 /*
999                  * We can do this unlocked here. The futex code uses
1000                  * this flag just to verify whether the pi state
1001                  * cleanup has been done or not. In the worst case it
1002                  * loops once more. We pretend that the cleanup was
1003                  * done as there is no way to return. Either the
1004                  * OWNER_DIED bit is set by now or we push the blocked
1005                  * task into the wait for ever nirwana as well.
1006                  */
1007                 tsk->flags |= PF_EXITPIDONE;
1008                 set_current_state(TASK_UNINTERRUPTIBLE);
1009                 schedule();
1010         }
1011
1012         exit_signals(tsk);  /* sets PF_EXITING */
1013         /*
1014          * tsk->flags are checked in the futex code to protect against
1015          * an exiting task cleaning up the robust pi futexes.
1016          */
1017         smp_mb();
1018         spin_unlock_wait(&tsk->pi_lock);
1019
1020         if (unlikely(in_atomic()))
1021                 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
1022                                 current->comm, task_pid_nr(current),
1023                                 preempt_count());
1024
1025         acct_update_integrals(tsk);
1026
1027         group_dead = atomic_dec_and_test(&tsk->signal->live);
1028         if (group_dead) {
1029                 hrtimer_cancel(&tsk->signal->real_timer);
1030                 exit_itimers(tsk->signal);
1031         }
1032         acct_collect(code, group_dead);
1033         if (group_dead)
1034                 tty_audit_exit();
1035         if (unlikely(tsk->audit_context))
1036                 audit_free(tsk);
1037
1038         tsk->exit_code = code;
1039         taskstats_exit(tsk, group_dead);
1040
1041         exit_mm(tsk);
1042
1043         if (group_dead)
1044                 acct_process();
1045         trace_sched_process_exit(tsk);
1046
1047         exit_sem(tsk);
1048         exit_files(tsk);
1049         exit_fs(tsk);
1050         check_stack_usage();
1051         exit_thread();
1052         cgroup_exit(tsk, 1);
1053
1054         if (group_dead && tsk->signal->leader)
1055                 disassociate_ctty(1);
1056
1057         module_put(task_thread_info(tsk)->exec_domain->module);
1058         if (tsk->binfmt)
1059                 module_put(tsk->binfmt->module);
1060
1061         proc_exit_connector(tsk);
1062         exit_notify(tsk, group_dead);
1063 #ifdef CONFIG_NUMA
1064         mpol_put(tsk->mempolicy);
1065         tsk->mempolicy = NULL;
1066 #endif
1067 #ifdef CONFIG_FUTEX
1068         /*
1069          * This must happen late, after the PID is not
1070          * hashed anymore:
1071          */
1072         if (unlikely(!list_empty(&tsk->pi_state_list)))
1073                 exit_pi_state_list(tsk);
1074         if (unlikely(current->pi_state_cache))
1075                 kfree(current->pi_state_cache);
1076 #endif
1077         /*
1078          * Make sure we are holding no locks:
1079          */
1080         debug_check_no_locks_held(tsk);
1081         /*
1082          * We can do this unlocked here. The futex code uses this flag
1083          * just to verify whether the pi state cleanup has been done
1084          * or not. In the worst case it loops once more.
1085          */
1086         tsk->flags |= PF_EXITPIDONE;
1087
1088         if (tsk->io_context)
1089                 exit_io_context();
1090
1091         if (tsk->splice_pipe)
1092                 __free_pipe_info(tsk->splice_pipe);
1093
1094         preempt_disable();
1095         /* causes final put_task_struct in finish_task_switch(). */
1096         tsk->state = TASK_DEAD;
1097         schedule();
1098         BUG();
1099         /* Avoid "noreturn function does return".  */
1100         for (;;)
1101                 cpu_relax();    /* For when BUG is null */
1102 }
1103
1104 EXPORT_SYMBOL_GPL(do_exit);
1105
1106 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
1107 {
1108         if (comp)
1109                 complete(comp);
1110
1111         do_exit(code);
1112 }
1113
1114 EXPORT_SYMBOL(complete_and_exit);
1115
1116 SYSCALL_DEFINE1(exit, int, error_code)
1117 {
1118         do_exit((error_code&0xff)<<8);
1119 }
1120
1121 /*
1122  * Take down every thread in the group.  This is called by fatal signals
1123  * as well as by sys_exit_group (below).
1124  */
1125 NORET_TYPE void
1126 do_group_exit(int exit_code)
1127 {
1128         struct signal_struct *sig = current->signal;
1129
1130         BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1131
1132         if (signal_group_exit(sig))
1133                 exit_code = sig->group_exit_code;
1134         else if (!thread_group_empty(current)) {
1135                 struct sighand_struct *const sighand = current->sighand;
1136                 spin_lock_irq(&sighand->siglock);
1137                 if (signal_group_exit(sig))
1138                         /* Another thread got here before we took the lock.  */
1139                         exit_code = sig->group_exit_code;
1140                 else {
1141                         sig->group_exit_code = exit_code;
1142                         sig->flags = SIGNAL_GROUP_EXIT;
1143                         zap_other_threads(current);
1144                 }
1145                 spin_unlock_irq(&sighand->siglock);
1146         }
1147
1148         do_exit(exit_code);
1149         /* NOTREACHED */
1150 }
1151
1152 /*
1153  * this kills every thread in the thread group. Note that any externally
1154  * wait4()-ing process will get the correct exit code - even if this
1155  * thread is not the thread group leader.
1156  */
1157 SYSCALL_DEFINE1(exit_group, int, error_code)
1158 {
1159         do_group_exit((error_code & 0xff) << 8);
1160         /* NOTREACHED */
1161         return 0;
1162 }
1163
1164 static struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1165 {
1166         struct pid *pid = NULL;
1167         if (type == PIDTYPE_PID)
1168                 pid = task->pids[type].pid;
1169         else if (type < PIDTYPE_MAX)
1170                 pid = task->group_leader->pids[type].pid;
1171         return pid;
1172 }
1173
1174 static int eligible_child(enum pid_type type, struct pid *pid, int options,
1175                           struct task_struct *p)
1176 {
1177         int err;
1178
1179         if (type < PIDTYPE_MAX) {
1180                 if (task_pid_type(p, type) != pid)
1181                         return 0;
1182         }
1183
1184         /* Wait for all children (clone and not) if __WALL is set;
1185          * otherwise, wait for clone children *only* if __WCLONE is
1186          * set; otherwise, wait for non-clone children *only*.  (Note:
1187          * A "clone" child here is one that reports to its parent
1188          * using a signal other than SIGCHLD.) */
1189         if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0))
1190             && !(options & __WALL))
1191                 return 0;
1192
1193         err = security_task_wait(p);
1194         if (err)
1195                 return err;
1196
1197         return 1;
1198 }
1199
1200 static int wait_noreap_copyout(struct task_struct *p, pid_t pid, uid_t uid,
1201                                int why, int status,
1202                                struct siginfo __user *infop,
1203                                struct rusage __user *rusagep)
1204 {
1205         int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0;
1206
1207         put_task_struct(p);
1208         if (!retval)
1209                 retval = put_user(SIGCHLD, &infop->si_signo);
1210         if (!retval)
1211                 retval = put_user(0, &infop->si_errno);
1212         if (!retval)
1213                 retval = put_user((short)why, &infop->si_code);
1214         if (!retval)
1215                 retval = put_user(pid, &infop->si_pid);
1216         if (!retval)
1217                 retval = put_user(uid, &infop->si_uid);
1218         if (!retval)
1219                 retval = put_user(status, &infop->si_status);
1220         if (!retval)
1221                 retval = pid;
1222         return retval;
1223 }
1224
1225 /*
1226  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1227  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1228  * the lock and this task is uninteresting.  If we return nonzero, we have
1229  * released the lock and the system call should return.
1230  */
1231 static int wait_task_zombie(struct task_struct *p, int options,
1232                             struct siginfo __user *infop,
1233                             int __user *stat_addr, struct rusage __user *ru)
1234 {
1235         unsigned long state;
1236         int retval, status, traced;
1237         pid_t pid = task_pid_vnr(p);
1238         uid_t uid = __task_cred(p)->uid;
1239
1240         if (!likely(options & WEXITED))
1241                 return 0;
1242
1243         if (unlikely(options & WNOWAIT)) {
1244                 int exit_code = p->exit_code;
1245                 int why, status;
1246
1247                 get_task_struct(p);
1248                 read_unlock(&tasklist_lock);
1249                 if ((exit_code & 0x7f) == 0) {
1250                         why = CLD_EXITED;
1251                         status = exit_code >> 8;
1252                 } else {
1253                         why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1254                         status = exit_code & 0x7f;
1255                 }
1256                 return wait_noreap_copyout(p, pid, uid, why,
1257                                            status, infop, ru);
1258         }
1259
1260         /*
1261          * Try to move the task's state to DEAD
1262          * only one thread is allowed to do this:
1263          */
1264         state = xchg(&p->exit_state, EXIT_DEAD);
1265         if (state != EXIT_ZOMBIE) {
1266                 BUG_ON(state != EXIT_DEAD);
1267                 return 0;
1268         }
1269
1270         traced = ptrace_reparented(p);
1271
1272         if (likely(!traced)) {
1273                 struct signal_struct *psig;
1274                 struct signal_struct *sig;
1275                 struct task_cputime cputime;
1276
1277                 /*
1278                  * The resource counters for the group leader are in its
1279                  * own task_struct.  Those for dead threads in the group
1280                  * are in its signal_struct, as are those for the child
1281                  * processes it has previously reaped.  All these
1282                  * accumulate in the parent's signal_struct c* fields.
1283                  *
1284                  * We don't bother to take a lock here to protect these
1285                  * p->signal fields, because they are only touched by
1286                  * __exit_signal, which runs with tasklist_lock
1287                  * write-locked anyway, and so is excluded here.  We do
1288                  * need to protect the access to p->parent->signal fields,
1289                  * as other threads in the parent group can be right
1290                  * here reaping other children at the same time.
1291                  *
1292                  * We use thread_group_cputime() to get times for the thread
1293                  * group, which consolidates times for all threads in the
1294                  * group including the group leader.
1295                  */
1296                 thread_group_cputime(p, &cputime);
1297                 spin_lock_irq(&p->parent->sighand->siglock);
1298                 psig = p->parent->signal;
1299                 sig = p->signal;
1300                 psig->cutime =
1301                         cputime_add(psig->cutime,
1302                         cputime_add(cputime.utime,
1303                                     sig->cutime));
1304                 psig->cstime =
1305                         cputime_add(psig->cstime,
1306                         cputime_add(cputime.stime,
1307                                     sig->cstime));
1308                 psig->cgtime =
1309                         cputime_add(psig->cgtime,
1310                         cputime_add(p->gtime,
1311                         cputime_add(sig->gtime,
1312                                     sig->cgtime)));
1313                 psig->cmin_flt +=
1314                         p->min_flt + sig->min_flt + sig->cmin_flt;
1315                 psig->cmaj_flt +=
1316                         p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1317                 psig->cnvcsw +=
1318                         p->nvcsw + sig->nvcsw + sig->cnvcsw;
1319                 psig->cnivcsw +=
1320                         p->nivcsw + sig->nivcsw + sig->cnivcsw;
1321                 psig->cinblock +=
1322                         task_io_get_inblock(p) +
1323                         sig->inblock + sig->cinblock;
1324                 psig->coublock +=
1325                         task_io_get_oublock(p) +
1326                         sig->oublock + sig->coublock;
1327                 task_io_accounting_add(&psig->ioac, &p->ioac);
1328                 task_io_accounting_add(&psig->ioac, &sig->ioac);
1329                 spin_unlock_irq(&p->parent->sighand->siglock);
1330         }
1331
1332         /*
1333          * Now we are sure this task is interesting, and no other
1334          * thread can reap it because we set its state to EXIT_DEAD.
1335          */
1336         read_unlock(&tasklist_lock);
1337
1338         retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1339         status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1340                 ? p->signal->group_exit_code : p->exit_code;
1341         if (!retval && stat_addr)
1342                 retval = put_user(status, stat_addr);
1343         if (!retval && infop)
1344                 retval = put_user(SIGCHLD, &infop->si_signo);
1345         if (!retval && infop)
1346                 retval = put_user(0, &infop->si_errno);
1347         if (!retval && infop) {
1348                 int why;
1349
1350                 if ((status & 0x7f) == 0) {
1351                         why = CLD_EXITED;
1352                         status >>= 8;
1353                 } else {
1354                         why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1355                         status &= 0x7f;
1356                 }
1357                 retval = put_user((short)why, &infop->si_code);
1358                 if (!retval)
1359                         retval = put_user(status, &infop->si_status);
1360         }
1361         if (!retval && infop)
1362                 retval = put_user(pid, &infop->si_pid);
1363         if (!retval && infop)
1364                 retval = put_user(uid, &infop->si_uid);
1365         if (!retval)
1366                 retval = pid;
1367
1368         if (traced) {
1369                 write_lock_irq(&tasklist_lock);
1370                 /* We dropped tasklist, ptracer could die and untrace */
1371                 ptrace_unlink(p);
1372                 /*
1373                  * If this is not a detached task, notify the parent.
1374                  * If it's still not detached after that, don't release
1375                  * it now.
1376                  */
1377                 if (!task_detached(p)) {
1378                         do_notify_parent(p, p->exit_signal);
1379                         if (!task_detached(p)) {
1380                                 p->exit_state = EXIT_ZOMBIE;
1381                                 p = NULL;
1382                         }
1383                 }
1384                 write_unlock_irq(&tasklist_lock);
1385         }
1386         if (p != NULL)
1387                 release_task(p);
1388
1389         return retval;
1390 }
1391
1392 /*
1393  * Handle sys_wait4 work for one task in state TASK_STOPPED.  We hold
1394  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1395  * the lock and this task is uninteresting.  If we return nonzero, we have
1396  * released the lock and the system call should return.
1397  */
1398 static int wait_task_stopped(int ptrace, struct task_struct *p,
1399                              int options, struct siginfo __user *infop,
1400                              int __user *stat_addr, struct rusage __user *ru)
1401 {
1402         int retval, exit_code, why;
1403         uid_t uid = 0; /* unneeded, required by compiler */
1404         pid_t pid;
1405
1406         if (!(options & WUNTRACED))
1407                 return 0;
1408
1409         exit_code = 0;
1410         spin_lock_irq(&p->sighand->siglock);
1411
1412         if (unlikely(!task_is_stopped_or_traced(p)))
1413                 goto unlock_sig;
1414
1415         if (!ptrace && p->signal->group_stop_count > 0)
1416                 /*
1417                  * A group stop is in progress and this is the group leader.
1418                  * We won't report until all threads have stopped.
1419                  */
1420                 goto unlock_sig;
1421
1422         exit_code = p->exit_code;
1423         if (!exit_code)
1424                 goto unlock_sig;
1425
1426         if (!unlikely(options & WNOWAIT))
1427                 p->exit_code = 0;
1428
1429         /* don't need the RCU readlock here as we're holding a spinlock */
1430         uid = __task_cred(p)->uid;
1431 unlock_sig:
1432         spin_unlock_irq(&p->sighand->siglock);
1433         if (!exit_code)
1434                 return 0;
1435
1436         /*
1437          * Now we are pretty sure this task is interesting.
1438          * Make sure it doesn't get reaped out from under us while we
1439          * give up the lock and then examine it below.  We don't want to
1440          * keep holding onto the tasklist_lock while we call getrusage and
1441          * possibly take page faults for user memory.
1442          */
1443         get_task_struct(p);
1444         pid = task_pid_vnr(p);
1445         why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1446         read_unlock(&tasklist_lock);
1447
1448         if (unlikely(options & WNOWAIT))
1449                 return wait_noreap_copyout(p, pid, uid,
1450                                            why, exit_code,
1451                                            infop, ru);
1452
1453         retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1454         if (!retval && stat_addr)
1455                 retval = put_user((exit_code << 8) | 0x7f, stat_addr);
1456         if (!retval && infop)
1457                 retval = put_user(SIGCHLD, &infop->si_signo);
1458         if (!retval && infop)
1459                 retval = put_user(0, &infop->si_errno);
1460         if (!retval && infop)
1461                 retval = put_user((short)why, &infop->si_code);
1462         if (!retval && infop)
1463                 retval = put_user(exit_code, &infop->si_status);
1464         if (!retval && infop)
1465                 retval = put_user(pid, &infop->si_pid);
1466         if (!retval && infop)
1467                 retval = put_user(uid, &infop->si_uid);
1468         if (!retval)
1469                 retval = pid;
1470         put_task_struct(p);
1471
1472         BUG_ON(!retval);
1473         return retval;
1474 }
1475
1476 /*
1477  * Handle do_wait work for one task in a live, non-stopped state.
1478  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1479  * the lock and this task is uninteresting.  If we return nonzero, we have
1480  * released the lock and the system call should return.
1481  */
1482 static int wait_task_continued(struct task_struct *p, int options,
1483                                struct siginfo __user *infop,
1484                                int __user *stat_addr, struct rusage __user *ru)
1485 {
1486         int retval;
1487         pid_t pid;
1488         uid_t uid;
1489
1490         if (!unlikely(options & WCONTINUED))
1491                 return 0;
1492
1493         if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1494                 return 0;
1495
1496         spin_lock_irq(&p->sighand->siglock);
1497         /* Re-check with the lock held.  */
1498         if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1499                 spin_unlock_irq(&p->sighand->siglock);
1500                 return 0;
1501         }
1502         if (!unlikely(options & WNOWAIT))
1503                 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1504         uid = __task_cred(p)->uid;
1505         spin_unlock_irq(&p->sighand->siglock);
1506
1507         pid = task_pid_vnr(p);
1508         get_task_struct(p);
1509         read_unlock(&tasklist_lock);
1510
1511         if (!infop) {
1512                 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1513                 put_task_struct(p);
1514                 if (!retval && stat_addr)
1515                         retval = put_user(0xffff, stat_addr);
1516                 if (!retval)
1517                         retval = pid;
1518         } else {
1519                 retval = wait_noreap_copyout(p, pid, uid,
1520                                              CLD_CONTINUED, SIGCONT,
1521                                              infop, ru);
1522                 BUG_ON(retval == 0);
1523         }
1524
1525         return retval;
1526 }
1527
1528 /*
1529  * Consider @p for a wait by @parent.
1530  *
1531  * -ECHILD should be in *@notask_error before the first call.
1532  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1533  * Returns zero if the search for a child should continue;
1534  * then *@notask_error is 0 if @p is an eligible child,
1535  * or another error from security_task_wait(), or still -ECHILD.
1536  */
1537 static int wait_consider_task(struct task_struct *parent, int ptrace,
1538                               struct task_struct *p, int *notask_error,
1539                               enum pid_type type, struct pid *pid, int options,
1540                               struct siginfo __user *infop,
1541                               int __user *stat_addr, struct rusage __user *ru)
1542 {
1543         int ret = eligible_child(type, pid, options, p);
1544         if (!ret)
1545                 return ret;
1546
1547         if (unlikely(ret < 0)) {
1548                 /*
1549                  * If we have not yet seen any eligible child,
1550                  * then let this error code replace -ECHILD.
1551                  * A permission error will give the user a clue
1552                  * to look for security policy problems, rather
1553                  * than for mysterious wait bugs.
1554                  */
1555                 if (*notask_error)
1556                         *notask_error = ret;
1557         }
1558
1559         if (likely(!ptrace) && unlikely(p->ptrace)) {
1560                 /*
1561                  * This child is hidden by ptrace.
1562                  * We aren't allowed to see it now, but eventually we will.
1563                  */
1564                 *notask_error = 0;
1565                 return 0;
1566         }
1567
1568         if (p->exit_state == EXIT_DEAD)
1569                 return 0;
1570
1571         /*
1572          * We don't reap group leaders with subthreads.
1573          */
1574         if (p->exit_state == EXIT_ZOMBIE && !delay_group_leader(p))
1575                 return wait_task_zombie(p, options, infop, stat_addr, ru);
1576
1577         /*
1578          * It's stopped or running now, so it might
1579          * later continue, exit, or stop again.
1580          */
1581         *notask_error = 0;
1582
1583         if (task_is_stopped_or_traced(p))
1584                 return wait_task_stopped(ptrace, p, options,
1585                                          infop, stat_addr, ru);
1586
1587         return wait_task_continued(p, options, infop, stat_addr, ru);
1588 }
1589
1590 /*
1591  * Do the work of do_wait() for one thread in the group, @tsk.
1592  *
1593  * -ECHILD should be in *@notask_error before the first call.
1594  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1595  * Returns zero if the search for a child should continue; then
1596  * *@notask_error is 0 if there were any eligible children,
1597  * or another error from security_task_wait(), or still -ECHILD.
1598  */
1599 static int do_wait_thread(struct task_struct *tsk, int *notask_error,
1600                           enum pid_type type, struct pid *pid, int options,
1601                           struct siginfo __user *infop, int __user *stat_addr,
1602                           struct rusage __user *ru)
1603 {
1604         struct task_struct *p;
1605
1606         list_for_each_entry(p, &tsk->children, sibling) {
1607                 /*
1608                  * Do not consider detached threads.
1609                  */
1610                 if (!task_detached(p)) {
1611                         int ret = wait_consider_task(tsk, 0, p, notask_error,
1612                                                      type, pid, options,
1613                                                      infop, stat_addr, ru);
1614                         if (ret)
1615                                 return ret;
1616                 }
1617         }
1618
1619         return 0;
1620 }
1621
1622 static int ptrace_do_wait(struct task_struct *tsk, int *notask_error,
1623                           enum pid_type type, struct pid *pid, int options,
1624                           struct siginfo __user *infop, int __user *stat_addr,
1625                           struct rusage __user *ru)
1626 {
1627         struct task_struct *p;
1628
1629         /*
1630          * Traditionally we see ptrace'd stopped tasks regardless of options.
1631          */
1632         options |= WUNTRACED;
1633
1634         list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1635                 int ret = wait_consider_task(tsk, 1, p, notask_error,
1636                                              type, pid, options,
1637                                              infop, stat_addr, ru);
1638                 if (ret)
1639                         return ret;
1640         }
1641
1642         return 0;
1643 }
1644
1645 static long do_wait(enum pid_type type, struct pid *pid, int options,
1646                     struct siginfo __user *infop, int __user *stat_addr,
1647                     struct rusage __user *ru)
1648 {
1649         DECLARE_WAITQUEUE(wait, current);
1650         struct task_struct *tsk;
1651         int retval;
1652
1653         trace_sched_process_wait(pid);
1654
1655         add_wait_queue(&current->signal->wait_chldexit,&wait);
1656 repeat:
1657         /*
1658          * If there is nothing that can match our critiera just get out.
1659          * We will clear @retval to zero if we see any child that might later
1660          * match our criteria, even if we are not able to reap it yet.
1661          */
1662         retval = -ECHILD;
1663         if ((type < PIDTYPE_MAX) && (!pid || hlist_empty(&pid->tasks[type])))
1664                 goto end;
1665
1666         current->state = TASK_INTERRUPTIBLE;
1667         read_lock(&tasklist_lock);
1668         tsk = current;
1669         do {
1670                 int tsk_result = do_wait_thread(tsk, &retval,
1671                                                 type, pid, options,
1672                                                 infop, stat_addr, ru);
1673                 if (!tsk_result)
1674                         tsk_result = ptrace_do_wait(tsk, &retval,
1675                                                     type, pid, options,
1676                                                     infop, stat_addr, ru);
1677                 if (tsk_result) {
1678                         /*
1679                          * tasklist_lock is unlocked and we have a final result.
1680                          */
1681                         retval = tsk_result;
1682                         goto end;
1683                 }
1684
1685                 if (options & __WNOTHREAD)
1686                         break;
1687                 tsk = next_thread(tsk);
1688                 BUG_ON(tsk->signal != current->signal);
1689         } while (tsk != current);
1690         read_unlock(&tasklist_lock);
1691
1692         if (!retval && !(options & WNOHANG)) {
1693                 retval = -ERESTARTSYS;
1694                 if (!signal_pending(current)) {
1695                         schedule();
1696                         goto repeat;
1697                 }
1698         }
1699
1700 end:
1701         current->state = TASK_RUNNING;
1702         remove_wait_queue(&current->signal->wait_chldexit,&wait);
1703         if (infop) {
1704                 if (retval > 0)
1705                         retval = 0;
1706                 else {
1707                         /*
1708                          * For a WNOHANG return, clear out all the fields
1709                          * we would set so the user can easily tell the
1710                          * difference.
1711                          */
1712                         if (!retval)
1713                                 retval = put_user(0, &infop->si_signo);
1714                         if (!retval)
1715                                 retval = put_user(0, &infop->si_errno);
1716                         if (!retval)
1717                                 retval = put_user(0, &infop->si_code);
1718                         if (!retval)
1719                                 retval = put_user(0, &infop->si_pid);
1720                         if (!retval)
1721                                 retval = put_user(0, &infop->si_uid);
1722                         if (!retval)
1723                                 retval = put_user(0, &infop->si_status);
1724                 }
1725         }
1726         return retval;
1727 }
1728
1729 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1730                 infop, int, options, struct rusage __user *, ru)
1731 {
1732         struct pid *pid = NULL;
1733         enum pid_type type;
1734         long ret;
1735
1736         if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1737                 return -EINVAL;
1738         if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1739                 return -EINVAL;
1740
1741         switch (which) {
1742         case P_ALL:
1743                 type = PIDTYPE_MAX;
1744                 break;
1745         case P_PID:
1746                 type = PIDTYPE_PID;
1747                 if (upid <= 0)
1748                         return -EINVAL;
1749                 break;
1750         case P_PGID:
1751                 type = PIDTYPE_PGID;
1752                 if (upid <= 0)
1753                         return -EINVAL;
1754                 break;
1755         default:
1756                 return -EINVAL;
1757         }
1758
1759         if (type < PIDTYPE_MAX)
1760                 pid = find_get_pid(upid);
1761         ret = do_wait(type, pid, options, infop, NULL, ru);
1762         put_pid(pid);
1763
1764         /* avoid REGPARM breakage on x86: */
1765         asmlinkage_protect(5, ret, which, upid, infop, options, ru);
1766         return ret;
1767 }
1768
1769 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1770                 int, options, struct rusage __user *, ru)
1771 {
1772         struct pid *pid = NULL;
1773         enum pid_type type;
1774         long ret;
1775
1776         if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1777                         __WNOTHREAD|__WCLONE|__WALL))
1778                 return -EINVAL;
1779
1780         if (upid == -1)
1781                 type = PIDTYPE_MAX;
1782         else if (upid < 0) {
1783                 type = PIDTYPE_PGID;
1784                 pid = find_get_pid(-upid);
1785         } else if (upid == 0) {
1786                 type = PIDTYPE_PGID;
1787                 pid = get_pid(task_pgrp(current));
1788         } else /* upid > 0 */ {
1789                 type = PIDTYPE_PID;
1790                 pid = find_get_pid(upid);
1791         }
1792
1793         ret = do_wait(type, pid, options | WEXITED, NULL, stat_addr, ru);
1794         put_pid(pid);
1795
1796         /* avoid REGPARM breakage on x86: */
1797         asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
1798         return ret;
1799 }
1800
1801 #ifdef __ARCH_WANT_SYS_WAITPID
1802
1803 /*
1804  * sys_waitpid() remains for compatibility. waitpid() should be
1805  * implemented by calling sys_wait4() from libc.a.
1806  */
1807 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1808 {
1809         return sys_wait4(pid, stat_addr, options, NULL);
1810 }
1811
1812 #endif