ad8375758a79c3ad4d0a9aefa4b990ef2e977cef
[safe/jmp/linux-2.6] / kernel / exit.c
1 /*
2  *  linux/kernel/exit.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/mnt_namespace.h>
16 #include <linux/iocontext.h>
17 #include <linux/key.h>
18 #include <linux/security.h>
19 #include <linux/cpu.h>
20 #include <linux/acct.h>
21 #include <linux/tsacct_kern.h>
22 #include <linux/file.h>
23 #include <linux/fdtable.h>
24 #include <linux/binfmts.h>
25 #include <linux/nsproxy.h>
26 #include <linux/pid_namespace.h>
27 #include <linux/ptrace.h>
28 #include <linux/profile.h>
29 #include <linux/mount.h>
30 #include <linux/proc_fs.h>
31 #include <linux/kthread.h>
32 #include <linux/mempolicy.h>
33 #include <linux/taskstats_kern.h>
34 #include <linux/delayacct.h>
35 #include <linux/freezer.h>
36 #include <linux/cgroup.h>
37 #include <linux/syscalls.h>
38 #include <linux/signal.h>
39 #include <linux/posix-timers.h>
40 #include <linux/cn_proc.h>
41 #include <linux/mutex.h>
42 #include <linux/futex.h>
43 #include <linux/pipe_fs_i.h>
44 #include <linux/audit.h> /* for audit_free() */
45 #include <linux/resource.h>
46 #include <linux/blkdev.h>
47 #include <linux/task_io_accounting_ops.h>
48 #include <linux/tracehook.h>
49 #include <linux/init_task.h>
50 #include <trace/sched.h>
51
52 #include <asm/uaccess.h>
53 #include <asm/unistd.h>
54 #include <asm/pgtable.h>
55 #include <asm/mmu_context.h>
56 #include "cred-internals.h"
57
58 DEFINE_TRACE(sched_process_free);
59 DEFINE_TRACE(sched_process_exit);
60 DEFINE_TRACE(sched_process_wait);
61
62 static void exit_mm(struct task_struct * tsk);
63
64 static inline int task_detached(struct task_struct *p)
65 {
66         return p->exit_signal == -1;
67 }
68
69 static void __unhash_process(struct task_struct *p)
70 {
71         nr_threads--;
72         detach_pid(p, PIDTYPE_PID);
73         if (thread_group_leader(p)) {
74                 detach_pid(p, PIDTYPE_PGID);
75                 detach_pid(p, PIDTYPE_SID);
76
77                 list_del_rcu(&p->tasks);
78                 __get_cpu_var(process_counts)--;
79         }
80         list_del_rcu(&p->thread_group);
81         list_del_init(&p->sibling);
82 }
83
84 /*
85  * This function expects the tasklist_lock write-locked.
86  */
87 static void __exit_signal(struct task_struct *tsk)
88 {
89         struct signal_struct *sig = tsk->signal;
90         struct sighand_struct *sighand;
91
92         BUG_ON(!sig);
93         BUG_ON(!atomic_read(&sig->count));
94
95         sighand = rcu_dereference(tsk->sighand);
96         spin_lock(&sighand->siglock);
97
98         posix_cpu_timers_exit(tsk);
99         if (atomic_dec_and_test(&sig->count))
100                 posix_cpu_timers_exit_group(tsk);
101         else {
102                 /*
103                  * If there is any task waiting for the group exit
104                  * then notify it:
105                  */
106                 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count)
107                         wake_up_process(sig->group_exit_task);
108
109                 if (tsk == sig->curr_target)
110                         sig->curr_target = next_thread(tsk);
111                 /*
112                  * Accumulate here the counters for all threads but the
113                  * group leader as they die, so they can be added into
114                  * the process-wide totals when those are taken.
115                  * The group leader stays around as a zombie as long
116                  * as there are other threads.  When it gets reaped,
117                  * the exit.c code will add its counts into these totals.
118                  * We won't ever get here for the group leader, since it
119                  * will have been the last reference on the signal_struct.
120                  */
121                 sig->utime = cputime_add(sig->utime, task_utime(tsk));
122                 sig->stime = cputime_add(sig->stime, task_stime(tsk));
123                 sig->gtime = cputime_add(sig->gtime, task_gtime(tsk));
124                 sig->min_flt += tsk->min_flt;
125                 sig->maj_flt += tsk->maj_flt;
126                 sig->nvcsw += tsk->nvcsw;
127                 sig->nivcsw += tsk->nivcsw;
128                 sig->inblock += task_io_get_inblock(tsk);
129                 sig->oublock += task_io_get_oublock(tsk);
130                 task_io_accounting_add(&sig->ioac, &tsk->ioac);
131                 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
132                 sig = NULL; /* Marker for below. */
133         }
134
135         __unhash_process(tsk);
136
137         /*
138          * Do this under ->siglock, we can race with another thread
139          * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
140          */
141         flush_sigqueue(&tsk->pending);
142
143         tsk->signal = NULL;
144         tsk->sighand = NULL;
145         spin_unlock(&sighand->siglock);
146
147         __cleanup_sighand(sighand);
148         clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
149         if (sig) {
150                 flush_sigqueue(&sig->shared_pending);
151                 taskstats_tgid_free(sig);
152                 /*
153                  * Make sure ->signal can't go away under rq->lock,
154                  * see account_group_exec_runtime().
155                  */
156                 task_rq_unlock_wait(tsk);
157                 __cleanup_signal(sig);
158         }
159 }
160
161 static void delayed_put_task_struct(struct rcu_head *rhp)
162 {
163         struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
164
165         trace_sched_process_free(tsk);
166         put_task_struct(tsk);
167 }
168
169
170 void release_task(struct task_struct * p)
171 {
172         struct task_struct *leader;
173         int zap_leader;
174 repeat:
175         tracehook_prepare_release_task(p);
176         /* don't need to get the RCU readlock here - the process is dead and
177          * can't be modifying its own credentials */
178         atomic_dec(&__task_cred(p)->user->processes);
179
180         proc_flush_task(p);
181         write_lock_irq(&tasklist_lock);
182         tracehook_finish_release_task(p);
183         __exit_signal(p);
184
185         /*
186          * If we are the last non-leader member of the thread
187          * group, and the leader is zombie, then notify the
188          * group leader's parent process. (if it wants notification.)
189          */
190         zap_leader = 0;
191         leader = p->group_leader;
192         if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
193                 BUG_ON(task_detached(leader));
194                 do_notify_parent(leader, leader->exit_signal);
195                 /*
196                  * If we were the last child thread and the leader has
197                  * exited already, and the leader's parent ignores SIGCHLD,
198                  * then we are the one who should release the leader.
199                  *
200                  * do_notify_parent() will have marked it self-reaping in
201                  * that case.
202                  */
203                 zap_leader = task_detached(leader);
204
205                 /*
206                  * This maintains the invariant that release_task()
207                  * only runs on a task in EXIT_DEAD, just for sanity.
208                  */
209                 if (zap_leader)
210                         leader->exit_state = EXIT_DEAD;
211         }
212
213         write_unlock_irq(&tasklist_lock);
214         release_thread(p);
215         call_rcu(&p->rcu, delayed_put_task_struct);
216
217         p = leader;
218         if (unlikely(zap_leader))
219                 goto repeat;
220 }
221
222 /*
223  * This checks not only the pgrp, but falls back on the pid if no
224  * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
225  * without this...
226  *
227  * The caller must hold rcu lock or the tasklist lock.
228  */
229 struct pid *session_of_pgrp(struct pid *pgrp)
230 {
231         struct task_struct *p;
232         struct pid *sid = NULL;
233
234         p = pid_task(pgrp, PIDTYPE_PGID);
235         if (p == NULL)
236                 p = pid_task(pgrp, PIDTYPE_PID);
237         if (p != NULL)
238                 sid = task_session(p);
239
240         return sid;
241 }
242
243 /*
244  * Determine if a process group is "orphaned", according to the POSIX
245  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
246  * by terminal-generated stop signals.  Newly orphaned process groups are
247  * to receive a SIGHUP and a SIGCONT.
248  *
249  * "I ask you, have you ever known what it is to be an orphan?"
250  */
251 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
252 {
253         struct task_struct *p;
254
255         do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
256                 if ((p == ignored_task) ||
257                     (p->exit_state && thread_group_empty(p)) ||
258                     is_global_init(p->real_parent))
259                         continue;
260
261                 if (task_pgrp(p->real_parent) != pgrp &&
262                     task_session(p->real_parent) == task_session(p))
263                         return 0;
264         } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
265
266         return 1;
267 }
268
269 int is_current_pgrp_orphaned(void)
270 {
271         int retval;
272
273         read_lock(&tasklist_lock);
274         retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
275         read_unlock(&tasklist_lock);
276
277         return retval;
278 }
279
280 static int has_stopped_jobs(struct pid *pgrp)
281 {
282         int retval = 0;
283         struct task_struct *p;
284
285         do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
286                 if (!task_is_stopped(p))
287                         continue;
288                 retval = 1;
289                 break;
290         } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
291         return retval;
292 }
293
294 /*
295  * Check to see if any process groups have become orphaned as
296  * a result of our exiting, and if they have any stopped jobs,
297  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
298  */
299 static void
300 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
301 {
302         struct pid *pgrp = task_pgrp(tsk);
303         struct task_struct *ignored_task = tsk;
304
305         if (!parent)
306                  /* exit: our father is in a different pgrp than
307                   * we are and we were the only connection outside.
308                   */
309                 parent = tsk->real_parent;
310         else
311                 /* reparent: our child is in a different pgrp than
312                  * we are, and it was the only connection outside.
313                  */
314                 ignored_task = NULL;
315
316         if (task_pgrp(parent) != pgrp &&
317             task_session(parent) == task_session(tsk) &&
318             will_become_orphaned_pgrp(pgrp, ignored_task) &&
319             has_stopped_jobs(pgrp)) {
320                 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
321                 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
322         }
323 }
324
325 /**
326  * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
327  *
328  * If a kernel thread is launched as a result of a system call, or if
329  * it ever exits, it should generally reparent itself to kthreadd so it
330  * isn't in the way of other processes and is correctly cleaned up on exit.
331  *
332  * The various task state such as scheduling policy and priority may have
333  * been inherited from a user process, so we reset them to sane values here.
334  *
335  * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
336  */
337 static void reparent_to_kthreadd(void)
338 {
339         write_lock_irq(&tasklist_lock);
340
341         ptrace_unlink(current);
342         /* Reparent to init */
343         current->real_parent = current->parent = kthreadd_task;
344         list_move_tail(&current->sibling, &current->real_parent->children);
345
346         /* Set the exit signal to SIGCHLD so we signal init on exit */
347         current->exit_signal = SIGCHLD;
348
349         if (task_nice(current) < 0)
350                 set_user_nice(current, 0);
351         /* cpus_allowed? */
352         /* rt_priority? */
353         /* signals? */
354         memcpy(current->signal->rlim, init_task.signal->rlim,
355                sizeof(current->signal->rlim));
356
357         atomic_inc(&init_cred.usage);
358         commit_creds(&init_cred);
359         write_unlock_irq(&tasklist_lock);
360 }
361
362 void __set_special_pids(struct pid *pid)
363 {
364         struct task_struct *curr = current->group_leader;
365         pid_t nr = pid_nr(pid);
366
367         if (task_session(curr) != pid) {
368                 change_pid(curr, PIDTYPE_SID, pid);
369                 set_task_session(curr, nr);
370         }
371         if (task_pgrp(curr) != pid) {
372                 change_pid(curr, PIDTYPE_PGID, pid);
373                 set_task_pgrp(curr, nr);
374         }
375 }
376
377 static void set_special_pids(struct pid *pid)
378 {
379         write_lock_irq(&tasklist_lock);
380         __set_special_pids(pid);
381         write_unlock_irq(&tasklist_lock);
382 }
383
384 /*
385  * Let kernel threads use this to say that they
386  * allow a certain signal (since daemonize() will
387  * have disabled all of them by default).
388  */
389 int allow_signal(int sig)
390 {
391         if (!valid_signal(sig) || sig < 1)
392                 return -EINVAL;
393
394         spin_lock_irq(&current->sighand->siglock);
395         sigdelset(&current->blocked, sig);
396         if (!current->mm) {
397                 /* Kernel threads handle their own signals.
398                    Let the signal code know it'll be handled, so
399                    that they don't get converted to SIGKILL or
400                    just silently dropped */
401                 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
402         }
403         recalc_sigpending();
404         spin_unlock_irq(&current->sighand->siglock);
405         return 0;
406 }
407
408 EXPORT_SYMBOL(allow_signal);
409
410 int disallow_signal(int sig)
411 {
412         if (!valid_signal(sig) || sig < 1)
413                 return -EINVAL;
414
415         spin_lock_irq(&current->sighand->siglock);
416         current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
417         recalc_sigpending();
418         spin_unlock_irq(&current->sighand->siglock);
419         return 0;
420 }
421
422 EXPORT_SYMBOL(disallow_signal);
423
424 /*
425  *      Put all the gunge required to become a kernel thread without
426  *      attached user resources in one place where it belongs.
427  */
428
429 void daemonize(const char *name, ...)
430 {
431         va_list args;
432         sigset_t blocked;
433
434         va_start(args, name);
435         vsnprintf(current->comm, sizeof(current->comm), name, args);
436         va_end(args);
437
438         /*
439          * If we were started as result of loading a module, close all of the
440          * user space pages.  We don't need them, and if we didn't close them
441          * they would be locked into memory.
442          */
443         exit_mm(current);
444         /*
445          * We don't want to have TIF_FREEZE set if the system-wide hibernation
446          * or suspend transition begins right now.
447          */
448         current->flags |= (PF_NOFREEZE | PF_KTHREAD);
449
450         if (current->nsproxy != &init_nsproxy) {
451                 get_nsproxy(&init_nsproxy);
452                 switch_task_namespaces(current, &init_nsproxy);
453         }
454         set_special_pids(&init_struct_pid);
455         proc_clear_tty(current);
456
457         /* Block and flush all signals */
458         sigfillset(&blocked);
459         sigprocmask(SIG_BLOCK, &blocked, NULL);
460         flush_signals(current);
461
462         /* Become as one with the init task */
463
464         daemonize_fs_struct();
465         exit_files(current);
466         current->files = init_task.files;
467         atomic_inc(&current->files->count);
468
469         reparent_to_kthreadd();
470 }
471
472 EXPORT_SYMBOL(daemonize);
473
474 static void close_files(struct files_struct * files)
475 {
476         int i, j;
477         struct fdtable *fdt;
478
479         j = 0;
480
481         /*
482          * It is safe to dereference the fd table without RCU or
483          * ->file_lock because this is the last reference to the
484          * files structure.
485          */
486         fdt = files_fdtable(files);
487         for (;;) {
488                 unsigned long set;
489                 i = j * __NFDBITS;
490                 if (i >= fdt->max_fds)
491                         break;
492                 set = fdt->open_fds->fds_bits[j++];
493                 while (set) {
494                         if (set & 1) {
495                                 struct file * file = xchg(&fdt->fd[i], NULL);
496                                 if (file) {
497                                         filp_close(file, files);
498                                         cond_resched();
499                                 }
500                         }
501                         i++;
502                         set >>= 1;
503                 }
504         }
505 }
506
507 struct files_struct *get_files_struct(struct task_struct *task)
508 {
509         struct files_struct *files;
510
511         task_lock(task);
512         files = task->files;
513         if (files)
514                 atomic_inc(&files->count);
515         task_unlock(task);
516
517         return files;
518 }
519
520 void put_files_struct(struct files_struct *files)
521 {
522         struct fdtable *fdt;
523
524         if (atomic_dec_and_test(&files->count)) {
525                 close_files(files);
526                 /*
527                  * Free the fd and fdset arrays if we expanded them.
528                  * If the fdtable was embedded, pass files for freeing
529                  * at the end of the RCU grace period. Otherwise,
530                  * you can free files immediately.
531                  */
532                 fdt = files_fdtable(files);
533                 if (fdt != &files->fdtab)
534                         kmem_cache_free(files_cachep, files);
535                 free_fdtable(fdt);
536         }
537 }
538
539 void reset_files_struct(struct files_struct *files)
540 {
541         struct task_struct *tsk = current;
542         struct files_struct *old;
543
544         old = tsk->files;
545         task_lock(tsk);
546         tsk->files = files;
547         task_unlock(tsk);
548         put_files_struct(old);
549 }
550
551 void exit_files(struct task_struct *tsk)
552 {
553         struct files_struct * files = tsk->files;
554
555         if (files) {
556                 task_lock(tsk);
557                 tsk->files = NULL;
558                 task_unlock(tsk);
559                 put_files_struct(files);
560         }
561 }
562
563 #ifdef CONFIG_MM_OWNER
564 /*
565  * Task p is exiting and it owned mm, lets find a new owner for it
566  */
567 static inline int
568 mm_need_new_owner(struct mm_struct *mm, struct task_struct *p)
569 {
570         /*
571          * If there are other users of the mm and the owner (us) is exiting
572          * we need to find a new owner to take on the responsibility.
573          */
574         if (atomic_read(&mm->mm_users) <= 1)
575                 return 0;
576         if (mm->owner != p)
577                 return 0;
578         return 1;
579 }
580
581 void mm_update_next_owner(struct mm_struct *mm)
582 {
583         struct task_struct *c, *g, *p = current;
584
585 retry:
586         if (!mm_need_new_owner(mm, p))
587                 return;
588
589         read_lock(&tasklist_lock);
590         /*
591          * Search in the children
592          */
593         list_for_each_entry(c, &p->children, sibling) {
594                 if (c->mm == mm)
595                         goto assign_new_owner;
596         }
597
598         /*
599          * Search in the siblings
600          */
601         list_for_each_entry(c, &p->parent->children, sibling) {
602                 if (c->mm == mm)
603                         goto assign_new_owner;
604         }
605
606         /*
607          * Search through everything else. We should not get
608          * here often
609          */
610         do_each_thread(g, c) {
611                 if (c->mm == mm)
612                         goto assign_new_owner;
613         } while_each_thread(g, c);
614
615         read_unlock(&tasklist_lock);
616         /*
617          * We found no owner yet mm_users > 1: this implies that we are
618          * most likely racing with swapoff (try_to_unuse()) or /proc or
619          * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
620          */
621         mm->owner = NULL;
622         return;
623
624 assign_new_owner:
625         BUG_ON(c == p);
626         get_task_struct(c);
627         /*
628          * The task_lock protects c->mm from changing.
629          * We always want mm->owner->mm == mm
630          */
631         task_lock(c);
632         /*
633          * Delay read_unlock() till we have the task_lock()
634          * to ensure that c does not slip away underneath us
635          */
636         read_unlock(&tasklist_lock);
637         if (c->mm != mm) {
638                 task_unlock(c);
639                 put_task_struct(c);
640                 goto retry;
641         }
642         mm->owner = c;
643         task_unlock(c);
644         put_task_struct(c);
645 }
646 #endif /* CONFIG_MM_OWNER */
647
648 /*
649  * Turn us into a lazy TLB process if we
650  * aren't already..
651  */
652 static void exit_mm(struct task_struct * tsk)
653 {
654         struct mm_struct *mm = tsk->mm;
655         struct core_state *core_state;
656
657         mm_release(tsk, mm);
658         if (!mm)
659                 return;
660         /*
661          * Serialize with any possible pending coredump.
662          * We must hold mmap_sem around checking core_state
663          * and clearing tsk->mm.  The core-inducing thread
664          * will increment ->nr_threads for each thread in the
665          * group with ->mm != NULL.
666          */
667         down_read(&mm->mmap_sem);
668         core_state = mm->core_state;
669         if (core_state) {
670                 struct core_thread self;
671                 up_read(&mm->mmap_sem);
672
673                 self.task = tsk;
674                 self.next = xchg(&core_state->dumper.next, &self);
675                 /*
676                  * Implies mb(), the result of xchg() must be visible
677                  * to core_state->dumper.
678                  */
679                 if (atomic_dec_and_test(&core_state->nr_threads))
680                         complete(&core_state->startup);
681
682                 for (;;) {
683                         set_task_state(tsk, TASK_UNINTERRUPTIBLE);
684                         if (!self.task) /* see coredump_finish() */
685                                 break;
686                         schedule();
687                 }
688                 __set_task_state(tsk, TASK_RUNNING);
689                 down_read(&mm->mmap_sem);
690         }
691         atomic_inc(&mm->mm_count);
692         BUG_ON(mm != tsk->active_mm);
693         /* more a memory barrier than a real lock */
694         task_lock(tsk);
695         tsk->mm = NULL;
696         up_read(&mm->mmap_sem);
697         enter_lazy_tlb(mm, current);
698         /* We don't want this task to be frozen prematurely */
699         clear_freeze_flag(tsk);
700         task_unlock(tsk);
701         mm_update_next_owner(mm);
702         mmput(mm);
703 }
704
705 /*
706  * Return nonzero if @parent's children should reap themselves.
707  *
708  * Called with write_lock_irq(&tasklist_lock) held.
709  */
710 static int ignoring_children(struct task_struct *parent)
711 {
712         int ret;
713         struct sighand_struct *psig = parent->sighand;
714         unsigned long flags;
715         spin_lock_irqsave(&psig->siglock, flags);
716         ret = (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
717                (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT));
718         spin_unlock_irqrestore(&psig->siglock, flags);
719         return ret;
720 }
721
722 /*
723  * Detach all tasks we were using ptrace on.
724  * Any that need to be release_task'd are put on the @dead list.
725  *
726  * Called with write_lock(&tasklist_lock) held.
727  */
728 static void ptrace_exit(struct task_struct *parent, struct list_head *dead)
729 {
730         struct task_struct *p, *n;
731         int ign = -1;
732
733         list_for_each_entry_safe(p, n, &parent->ptraced, ptrace_entry) {
734                 __ptrace_unlink(p);
735
736                 if (p->exit_state != EXIT_ZOMBIE)
737                         continue;
738
739                 /*
740                  * If it's a zombie, our attachedness prevented normal
741                  * parent notification or self-reaping.  Do notification
742                  * now if it would have happened earlier.  If it should
743                  * reap itself, add it to the @dead list.  We can't call
744                  * release_task() here because we already hold tasklist_lock.
745                  *
746                  * If it's our own child, there is no notification to do.
747                  * But if our normal children self-reap, then this child
748                  * was prevented by ptrace and we must reap it now.
749                  */
750                 if (!task_detached(p) && thread_group_empty(p)) {
751                         if (!same_thread_group(p->real_parent, parent))
752                                 do_notify_parent(p, p->exit_signal);
753                         else {
754                                 if (ign < 0)
755                                         ign = ignoring_children(parent);
756                                 if (ign)
757                                         p->exit_signal = -1;
758                         }
759                 }
760
761                 if (task_detached(p)) {
762                         /*
763                          * Mark it as in the process of being reaped.
764                          */
765                         p->exit_state = EXIT_DEAD;
766                         list_add(&p->ptrace_entry, dead);
767                 }
768         }
769 }
770
771 /*
772  * Finish up exit-time ptrace cleanup.
773  *
774  * Called without locks.
775  */
776 static void ptrace_exit_finish(struct task_struct *parent,
777                                struct list_head *dead)
778 {
779         struct task_struct *p, *n;
780
781         BUG_ON(!list_empty(&parent->ptraced));
782
783         list_for_each_entry_safe(p, n, dead, ptrace_entry) {
784                 list_del_init(&p->ptrace_entry);
785                 release_task(p);
786         }
787 }
788
789 static void reparent_thread(struct task_struct *p, struct task_struct *father)
790 {
791         if (p->pdeath_signal)
792                 /* We already hold the tasklist_lock here.  */
793                 group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p);
794
795         list_move_tail(&p->sibling, &p->real_parent->children);
796
797         /* If this is a threaded reparent there is no need to
798          * notify anyone anything has happened.
799          */
800         if (same_thread_group(p->real_parent, father))
801                 return;
802
803         /* We don't want people slaying init.  */
804         if (!task_detached(p))
805                 p->exit_signal = SIGCHLD;
806
807         /* If we'd notified the old parent about this child's death,
808          * also notify the new parent.
809          */
810         if (!ptrace_reparented(p) &&
811             p->exit_state == EXIT_ZOMBIE &&
812             !task_detached(p) && thread_group_empty(p))
813                 do_notify_parent(p, p->exit_signal);
814
815         kill_orphaned_pgrp(p, father);
816 }
817
818 /*
819  * When we die, we re-parent all our children.
820  * Try to give them to another thread in our thread
821  * group, and if no such member exists, give it to
822  * the child reaper process (ie "init") in our pid
823  * space.
824  */
825 static struct task_struct *find_new_reaper(struct task_struct *father)
826 {
827         struct pid_namespace *pid_ns = task_active_pid_ns(father);
828         struct task_struct *thread;
829
830         thread = father;
831         while_each_thread(father, thread) {
832                 if (thread->flags & PF_EXITING)
833                         continue;
834                 if (unlikely(pid_ns->child_reaper == father))
835                         pid_ns->child_reaper = thread;
836                 return thread;
837         }
838
839         if (unlikely(pid_ns->child_reaper == father)) {
840                 write_unlock_irq(&tasklist_lock);
841                 if (unlikely(pid_ns == &init_pid_ns))
842                         panic("Attempted to kill init!");
843
844                 zap_pid_ns_processes(pid_ns);
845                 write_lock_irq(&tasklist_lock);
846                 /*
847                  * We can not clear ->child_reaper or leave it alone.
848                  * There may by stealth EXIT_DEAD tasks on ->children,
849                  * forget_original_parent() must move them somewhere.
850                  */
851                 pid_ns->child_reaper = init_pid_ns.child_reaper;
852         }
853
854         return pid_ns->child_reaper;
855 }
856
857 static void forget_original_parent(struct task_struct *father)
858 {
859         struct task_struct *p, *n, *reaper;
860         LIST_HEAD(ptrace_dead);
861
862         write_lock_irq(&tasklist_lock);
863         reaper = find_new_reaper(father);
864         /*
865          * First clean up ptrace if we were using it.
866          */
867         ptrace_exit(father, &ptrace_dead);
868
869         list_for_each_entry_safe(p, n, &father->children, sibling) {
870                 p->real_parent = reaper;
871                 if (p->parent == father) {
872                         BUG_ON(p->ptrace);
873                         p->parent = p->real_parent;
874                 }
875                 reparent_thread(p, father);
876         }
877
878         write_unlock_irq(&tasklist_lock);
879         BUG_ON(!list_empty(&father->children));
880
881         ptrace_exit_finish(father, &ptrace_dead);
882 }
883
884 /*
885  * Send signals to all our closest relatives so that they know
886  * to properly mourn us..
887  */
888 static void exit_notify(struct task_struct *tsk, int group_dead)
889 {
890         int signal;
891         void *cookie;
892
893         /*
894          * This does two things:
895          *
896          * A.  Make init inherit all the child processes
897          * B.  Check to see if any process groups have become orphaned
898          *      as a result of our exiting, and if they have any stopped
899          *      jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
900          */
901         forget_original_parent(tsk);
902         exit_task_namespaces(tsk);
903
904         write_lock_irq(&tasklist_lock);
905         if (group_dead)
906                 kill_orphaned_pgrp(tsk->group_leader, NULL);
907
908         /* Let father know we died
909          *
910          * Thread signals are configurable, but you aren't going to use
911          * that to send signals to arbitary processes.
912          * That stops right now.
913          *
914          * If the parent exec id doesn't match the exec id we saved
915          * when we started then we know the parent has changed security
916          * domain.
917          *
918          * If our self_exec id doesn't match our parent_exec_id then
919          * we have changed execution domain as these two values started
920          * the same after a fork.
921          */
922         if (tsk->exit_signal != SIGCHLD && !task_detached(tsk) &&
923             (tsk->parent_exec_id != tsk->real_parent->self_exec_id ||
924              tsk->self_exec_id != tsk->parent_exec_id) &&
925             !capable(CAP_KILL))
926                 tsk->exit_signal = SIGCHLD;
927
928         signal = tracehook_notify_death(tsk, &cookie, group_dead);
929         if (signal >= 0)
930                 signal = do_notify_parent(tsk, signal);
931
932         tsk->exit_state = signal == DEATH_REAP ? EXIT_DEAD : EXIT_ZOMBIE;
933
934         /* mt-exec, de_thread() is waiting for us */
935         if (thread_group_leader(tsk) &&
936             tsk->signal->group_exit_task &&
937             tsk->signal->notify_count < 0)
938                 wake_up_process(tsk->signal->group_exit_task);
939
940         write_unlock_irq(&tasklist_lock);
941
942         tracehook_report_death(tsk, signal, cookie, group_dead);
943
944         /* If the process is dead, release it - nobody will wait for it */
945         if (signal == DEATH_REAP)
946                 release_task(tsk);
947 }
948
949 #ifdef CONFIG_DEBUG_STACK_USAGE
950 static void check_stack_usage(void)
951 {
952         static DEFINE_SPINLOCK(low_water_lock);
953         static int lowest_to_date = THREAD_SIZE;
954         unsigned long free;
955
956         free = stack_not_used(current);
957
958         if (free >= lowest_to_date)
959                 return;
960
961         spin_lock(&low_water_lock);
962         if (free < lowest_to_date) {
963                 printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
964                                 "left\n",
965                                 current->comm, free);
966                 lowest_to_date = free;
967         }
968         spin_unlock(&low_water_lock);
969 }
970 #else
971 static inline void check_stack_usage(void) {}
972 #endif
973
974 NORET_TYPE void do_exit(long code)
975 {
976         struct task_struct *tsk = current;
977         int group_dead;
978
979         profile_task_exit(tsk);
980
981         WARN_ON(atomic_read(&tsk->fs_excl));
982
983         if (unlikely(in_interrupt()))
984                 panic("Aiee, killing interrupt handler!");
985         if (unlikely(!tsk->pid))
986                 panic("Attempted to kill the idle task!");
987
988         tracehook_report_exit(&code);
989
990         /*
991          * We're taking recursive faults here in do_exit. Safest is to just
992          * leave this task alone and wait for reboot.
993          */
994         if (unlikely(tsk->flags & PF_EXITING)) {
995                 printk(KERN_ALERT
996                         "Fixing recursive fault but reboot is needed!\n");
997                 /*
998                  * We can do this unlocked here. The futex code uses
999                  * this flag just to verify whether the pi state
1000                  * cleanup has been done or not. In the worst case it
1001                  * loops once more. We pretend that the cleanup was
1002                  * done as there is no way to return. Either the
1003                  * OWNER_DIED bit is set by now or we push the blocked
1004                  * task into the wait for ever nirwana as well.
1005                  */
1006                 tsk->flags |= PF_EXITPIDONE;
1007                 set_current_state(TASK_UNINTERRUPTIBLE);
1008                 schedule();
1009         }
1010
1011         exit_signals(tsk);  /* sets PF_EXITING */
1012         /*
1013          * tsk->flags are checked in the futex code to protect against
1014          * an exiting task cleaning up the robust pi futexes.
1015          */
1016         smp_mb();
1017         spin_unlock_wait(&tsk->pi_lock);
1018
1019         if (unlikely(in_atomic()))
1020                 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
1021                                 current->comm, task_pid_nr(current),
1022                                 preempt_count());
1023
1024         acct_update_integrals(tsk);
1025
1026         group_dead = atomic_dec_and_test(&tsk->signal->live);
1027         if (group_dead) {
1028                 hrtimer_cancel(&tsk->signal->real_timer);
1029                 exit_itimers(tsk->signal);
1030         }
1031         acct_collect(code, group_dead);
1032         if (group_dead)
1033                 tty_audit_exit();
1034         if (unlikely(tsk->audit_context))
1035                 audit_free(tsk);
1036
1037         tsk->exit_code = code;
1038         taskstats_exit(tsk, group_dead);
1039
1040         exit_mm(tsk);
1041
1042         if (group_dead)
1043                 acct_process();
1044         trace_sched_process_exit(tsk);
1045
1046         exit_sem(tsk);
1047         exit_files(tsk);
1048         exit_fs(tsk);
1049         check_stack_usage();
1050         exit_thread();
1051         cgroup_exit(tsk, 1);
1052
1053         if (group_dead && tsk->signal->leader)
1054                 disassociate_ctty(1);
1055
1056         module_put(task_thread_info(tsk)->exec_domain->module);
1057         if (tsk->binfmt)
1058                 module_put(tsk->binfmt->module);
1059
1060         proc_exit_connector(tsk);
1061         exit_notify(tsk, group_dead);
1062 #ifdef CONFIG_NUMA
1063         mpol_put(tsk->mempolicy);
1064         tsk->mempolicy = NULL;
1065 #endif
1066 #ifdef CONFIG_FUTEX
1067         /*
1068          * This must happen late, after the PID is not
1069          * hashed anymore:
1070          */
1071         if (unlikely(!list_empty(&tsk->pi_state_list)))
1072                 exit_pi_state_list(tsk);
1073         if (unlikely(current->pi_state_cache))
1074                 kfree(current->pi_state_cache);
1075 #endif
1076         /*
1077          * Make sure we are holding no locks:
1078          */
1079         debug_check_no_locks_held(tsk);
1080         /*
1081          * We can do this unlocked here. The futex code uses this flag
1082          * just to verify whether the pi state cleanup has been done
1083          * or not. In the worst case it loops once more.
1084          */
1085         tsk->flags |= PF_EXITPIDONE;
1086
1087         if (tsk->io_context)
1088                 exit_io_context();
1089
1090         if (tsk->splice_pipe)
1091                 __free_pipe_info(tsk->splice_pipe);
1092
1093         preempt_disable();
1094         /* causes final put_task_struct in finish_task_switch(). */
1095         tsk->state = TASK_DEAD;
1096         schedule();
1097         BUG();
1098         /* Avoid "noreturn function does return".  */
1099         for (;;)
1100                 cpu_relax();    /* For when BUG is null */
1101 }
1102
1103 EXPORT_SYMBOL_GPL(do_exit);
1104
1105 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
1106 {
1107         if (comp)
1108                 complete(comp);
1109
1110         do_exit(code);
1111 }
1112
1113 EXPORT_SYMBOL(complete_and_exit);
1114
1115 SYSCALL_DEFINE1(exit, int, error_code)
1116 {
1117         do_exit((error_code&0xff)<<8);
1118 }
1119
1120 /*
1121  * Take down every thread in the group.  This is called by fatal signals
1122  * as well as by sys_exit_group (below).
1123  */
1124 NORET_TYPE void
1125 do_group_exit(int exit_code)
1126 {
1127         struct signal_struct *sig = current->signal;
1128
1129         BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1130
1131         if (signal_group_exit(sig))
1132                 exit_code = sig->group_exit_code;
1133         else if (!thread_group_empty(current)) {
1134                 struct sighand_struct *const sighand = current->sighand;
1135                 spin_lock_irq(&sighand->siglock);
1136                 if (signal_group_exit(sig))
1137                         /* Another thread got here before we took the lock.  */
1138                         exit_code = sig->group_exit_code;
1139                 else {
1140                         sig->group_exit_code = exit_code;
1141                         sig->flags = SIGNAL_GROUP_EXIT;
1142                         zap_other_threads(current);
1143                 }
1144                 spin_unlock_irq(&sighand->siglock);
1145         }
1146
1147         do_exit(exit_code);
1148         /* NOTREACHED */
1149 }
1150
1151 /*
1152  * this kills every thread in the thread group. Note that any externally
1153  * wait4()-ing process will get the correct exit code - even if this
1154  * thread is not the thread group leader.
1155  */
1156 SYSCALL_DEFINE1(exit_group, int, error_code)
1157 {
1158         do_group_exit((error_code & 0xff) << 8);
1159         /* NOTREACHED */
1160         return 0;
1161 }
1162
1163 static struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1164 {
1165         struct pid *pid = NULL;
1166         if (type == PIDTYPE_PID)
1167                 pid = task->pids[type].pid;
1168         else if (type < PIDTYPE_MAX)
1169                 pid = task->group_leader->pids[type].pid;
1170         return pid;
1171 }
1172
1173 static int eligible_child(enum pid_type type, struct pid *pid, int options,
1174                           struct task_struct *p)
1175 {
1176         int err;
1177
1178         if (type < PIDTYPE_MAX) {
1179                 if (task_pid_type(p, type) != pid)
1180                         return 0;
1181         }
1182
1183         /* Wait for all children (clone and not) if __WALL is set;
1184          * otherwise, wait for clone children *only* if __WCLONE is
1185          * set; otherwise, wait for non-clone children *only*.  (Note:
1186          * A "clone" child here is one that reports to its parent
1187          * using a signal other than SIGCHLD.) */
1188         if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0))
1189             && !(options & __WALL))
1190                 return 0;
1191
1192         err = security_task_wait(p);
1193         if (err)
1194                 return err;
1195
1196         return 1;
1197 }
1198
1199 static int wait_noreap_copyout(struct task_struct *p, pid_t pid, uid_t uid,
1200                                int why, int status,
1201                                struct siginfo __user *infop,
1202                                struct rusage __user *rusagep)
1203 {
1204         int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0;
1205
1206         put_task_struct(p);
1207         if (!retval)
1208                 retval = put_user(SIGCHLD, &infop->si_signo);
1209         if (!retval)
1210                 retval = put_user(0, &infop->si_errno);
1211         if (!retval)
1212                 retval = put_user((short)why, &infop->si_code);
1213         if (!retval)
1214                 retval = put_user(pid, &infop->si_pid);
1215         if (!retval)
1216                 retval = put_user(uid, &infop->si_uid);
1217         if (!retval)
1218                 retval = put_user(status, &infop->si_status);
1219         if (!retval)
1220                 retval = pid;
1221         return retval;
1222 }
1223
1224 /*
1225  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1226  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1227  * the lock and this task is uninteresting.  If we return nonzero, we have
1228  * released the lock and the system call should return.
1229  */
1230 static int wait_task_zombie(struct task_struct *p, int options,
1231                             struct siginfo __user *infop,
1232                             int __user *stat_addr, struct rusage __user *ru)
1233 {
1234         unsigned long state;
1235         int retval, status, traced;
1236         pid_t pid = task_pid_vnr(p);
1237         uid_t uid = __task_cred(p)->uid;
1238
1239         if (!likely(options & WEXITED))
1240                 return 0;
1241
1242         if (unlikely(options & WNOWAIT)) {
1243                 int exit_code = p->exit_code;
1244                 int why, status;
1245
1246                 get_task_struct(p);
1247                 read_unlock(&tasklist_lock);
1248                 if ((exit_code & 0x7f) == 0) {
1249                         why = CLD_EXITED;
1250                         status = exit_code >> 8;
1251                 } else {
1252                         why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1253                         status = exit_code & 0x7f;
1254                 }
1255                 return wait_noreap_copyout(p, pid, uid, why,
1256                                            status, infop, ru);
1257         }
1258
1259         /*
1260          * Try to move the task's state to DEAD
1261          * only one thread is allowed to do this:
1262          */
1263         state = xchg(&p->exit_state, EXIT_DEAD);
1264         if (state != EXIT_ZOMBIE) {
1265                 BUG_ON(state != EXIT_DEAD);
1266                 return 0;
1267         }
1268
1269         traced = ptrace_reparented(p);
1270
1271         if (likely(!traced)) {
1272                 struct signal_struct *psig;
1273                 struct signal_struct *sig;
1274                 struct task_cputime cputime;
1275
1276                 /*
1277                  * The resource counters for the group leader are in its
1278                  * own task_struct.  Those for dead threads in the group
1279                  * are in its signal_struct, as are those for the child
1280                  * processes it has previously reaped.  All these
1281                  * accumulate in the parent's signal_struct c* fields.
1282                  *
1283                  * We don't bother to take a lock here to protect these
1284                  * p->signal fields, because they are only touched by
1285                  * __exit_signal, which runs with tasklist_lock
1286                  * write-locked anyway, and so is excluded here.  We do
1287                  * need to protect the access to p->parent->signal fields,
1288                  * as other threads in the parent group can be right
1289                  * here reaping other children at the same time.
1290                  *
1291                  * We use thread_group_cputime() to get times for the thread
1292                  * group, which consolidates times for all threads in the
1293                  * group including the group leader.
1294                  */
1295                 thread_group_cputime(p, &cputime);
1296                 spin_lock_irq(&p->parent->sighand->siglock);
1297                 psig = p->parent->signal;
1298                 sig = p->signal;
1299                 psig->cutime =
1300                         cputime_add(psig->cutime,
1301                         cputime_add(cputime.utime,
1302                                     sig->cutime));
1303                 psig->cstime =
1304                         cputime_add(psig->cstime,
1305                         cputime_add(cputime.stime,
1306                                     sig->cstime));
1307                 psig->cgtime =
1308                         cputime_add(psig->cgtime,
1309                         cputime_add(p->gtime,
1310                         cputime_add(sig->gtime,
1311                                     sig->cgtime)));
1312                 psig->cmin_flt +=
1313                         p->min_flt + sig->min_flt + sig->cmin_flt;
1314                 psig->cmaj_flt +=
1315                         p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1316                 psig->cnvcsw +=
1317                         p->nvcsw + sig->nvcsw + sig->cnvcsw;
1318                 psig->cnivcsw +=
1319                         p->nivcsw + sig->nivcsw + sig->cnivcsw;
1320                 psig->cinblock +=
1321                         task_io_get_inblock(p) +
1322                         sig->inblock + sig->cinblock;
1323                 psig->coublock +=
1324                         task_io_get_oublock(p) +
1325                         sig->oublock + sig->coublock;
1326                 task_io_accounting_add(&psig->ioac, &p->ioac);
1327                 task_io_accounting_add(&psig->ioac, &sig->ioac);
1328                 spin_unlock_irq(&p->parent->sighand->siglock);
1329         }
1330
1331         /*
1332          * Now we are sure this task is interesting, and no other
1333          * thread can reap it because we set its state to EXIT_DEAD.
1334          */
1335         read_unlock(&tasklist_lock);
1336
1337         retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1338         status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1339                 ? p->signal->group_exit_code : p->exit_code;
1340         if (!retval && stat_addr)
1341                 retval = put_user(status, stat_addr);
1342         if (!retval && infop)
1343                 retval = put_user(SIGCHLD, &infop->si_signo);
1344         if (!retval && infop)
1345                 retval = put_user(0, &infop->si_errno);
1346         if (!retval && infop) {
1347                 int why;
1348
1349                 if ((status & 0x7f) == 0) {
1350                         why = CLD_EXITED;
1351                         status >>= 8;
1352                 } else {
1353                         why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1354                         status &= 0x7f;
1355                 }
1356                 retval = put_user((short)why, &infop->si_code);
1357                 if (!retval)
1358                         retval = put_user(status, &infop->si_status);
1359         }
1360         if (!retval && infop)
1361                 retval = put_user(pid, &infop->si_pid);
1362         if (!retval && infop)
1363                 retval = put_user(uid, &infop->si_uid);
1364         if (!retval)
1365                 retval = pid;
1366
1367         if (traced) {
1368                 write_lock_irq(&tasklist_lock);
1369                 /* We dropped tasklist, ptracer could die and untrace */
1370                 ptrace_unlink(p);
1371                 /*
1372                  * If this is not a detached task, notify the parent.
1373                  * If it's still not detached after that, don't release
1374                  * it now.
1375                  */
1376                 if (!task_detached(p)) {
1377                         do_notify_parent(p, p->exit_signal);
1378                         if (!task_detached(p)) {
1379                                 p->exit_state = EXIT_ZOMBIE;
1380                                 p = NULL;
1381                         }
1382                 }
1383                 write_unlock_irq(&tasklist_lock);
1384         }
1385         if (p != NULL)
1386                 release_task(p);
1387
1388         return retval;
1389 }
1390
1391 /*
1392  * Handle sys_wait4 work for one task in state TASK_STOPPED.  We hold
1393  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1394  * the lock and this task is uninteresting.  If we return nonzero, we have
1395  * released the lock and the system call should return.
1396  */
1397 static int wait_task_stopped(int ptrace, struct task_struct *p,
1398                              int options, struct siginfo __user *infop,
1399                              int __user *stat_addr, struct rusage __user *ru)
1400 {
1401         int retval, exit_code, why;
1402         uid_t uid = 0; /* unneeded, required by compiler */
1403         pid_t pid;
1404
1405         if (!(options & WUNTRACED))
1406                 return 0;
1407
1408         exit_code = 0;
1409         spin_lock_irq(&p->sighand->siglock);
1410
1411         if (unlikely(!task_is_stopped_or_traced(p)))
1412                 goto unlock_sig;
1413
1414         if (!ptrace && p->signal->group_stop_count > 0)
1415                 /*
1416                  * A group stop is in progress and this is the group leader.
1417                  * We won't report until all threads have stopped.
1418                  */
1419                 goto unlock_sig;
1420
1421         exit_code = p->exit_code;
1422         if (!exit_code)
1423                 goto unlock_sig;
1424
1425         if (!unlikely(options & WNOWAIT))
1426                 p->exit_code = 0;
1427
1428         /* don't need the RCU readlock here as we're holding a spinlock */
1429         uid = __task_cred(p)->uid;
1430 unlock_sig:
1431         spin_unlock_irq(&p->sighand->siglock);
1432         if (!exit_code)
1433                 return 0;
1434
1435         /*
1436          * Now we are pretty sure this task is interesting.
1437          * Make sure it doesn't get reaped out from under us while we
1438          * give up the lock and then examine it below.  We don't want to
1439          * keep holding onto the tasklist_lock while we call getrusage and
1440          * possibly take page faults for user memory.
1441          */
1442         get_task_struct(p);
1443         pid = task_pid_vnr(p);
1444         why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1445         read_unlock(&tasklist_lock);
1446
1447         if (unlikely(options & WNOWAIT))
1448                 return wait_noreap_copyout(p, pid, uid,
1449                                            why, exit_code,
1450                                            infop, ru);
1451
1452         retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1453         if (!retval && stat_addr)
1454                 retval = put_user((exit_code << 8) | 0x7f, stat_addr);
1455         if (!retval && infop)
1456                 retval = put_user(SIGCHLD, &infop->si_signo);
1457         if (!retval && infop)
1458                 retval = put_user(0, &infop->si_errno);
1459         if (!retval && infop)
1460                 retval = put_user((short)why, &infop->si_code);
1461         if (!retval && infop)
1462                 retval = put_user(exit_code, &infop->si_status);
1463         if (!retval && infop)
1464                 retval = put_user(pid, &infop->si_pid);
1465         if (!retval && infop)
1466                 retval = put_user(uid, &infop->si_uid);
1467         if (!retval)
1468                 retval = pid;
1469         put_task_struct(p);
1470
1471         BUG_ON(!retval);
1472         return retval;
1473 }
1474
1475 /*
1476  * Handle do_wait work for one task in a live, non-stopped state.
1477  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1478  * the lock and this task is uninteresting.  If we return nonzero, we have
1479  * released the lock and the system call should return.
1480  */
1481 static int wait_task_continued(struct task_struct *p, int options,
1482                                struct siginfo __user *infop,
1483                                int __user *stat_addr, struct rusage __user *ru)
1484 {
1485         int retval;
1486         pid_t pid;
1487         uid_t uid;
1488
1489         if (!unlikely(options & WCONTINUED))
1490                 return 0;
1491
1492         if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1493                 return 0;
1494
1495         spin_lock_irq(&p->sighand->siglock);
1496         /* Re-check with the lock held.  */
1497         if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1498                 spin_unlock_irq(&p->sighand->siglock);
1499                 return 0;
1500         }
1501         if (!unlikely(options & WNOWAIT))
1502                 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1503         uid = __task_cred(p)->uid;
1504         spin_unlock_irq(&p->sighand->siglock);
1505
1506         pid = task_pid_vnr(p);
1507         get_task_struct(p);
1508         read_unlock(&tasklist_lock);
1509
1510         if (!infop) {
1511                 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1512                 put_task_struct(p);
1513                 if (!retval && stat_addr)
1514                         retval = put_user(0xffff, stat_addr);
1515                 if (!retval)
1516                         retval = pid;
1517         } else {
1518                 retval = wait_noreap_copyout(p, pid, uid,
1519                                              CLD_CONTINUED, SIGCONT,
1520                                              infop, ru);
1521                 BUG_ON(retval == 0);
1522         }
1523
1524         return retval;
1525 }
1526
1527 /*
1528  * Consider @p for a wait by @parent.
1529  *
1530  * -ECHILD should be in *@notask_error before the first call.
1531  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1532  * Returns zero if the search for a child should continue;
1533  * then *@notask_error is 0 if @p is an eligible child,
1534  * or another error from security_task_wait(), or still -ECHILD.
1535  */
1536 static int wait_consider_task(struct task_struct *parent, int ptrace,
1537                               struct task_struct *p, int *notask_error,
1538                               enum pid_type type, struct pid *pid, int options,
1539                               struct siginfo __user *infop,
1540                               int __user *stat_addr, struct rusage __user *ru)
1541 {
1542         int ret = eligible_child(type, pid, options, p);
1543         if (!ret)
1544                 return ret;
1545
1546         if (unlikely(ret < 0)) {
1547                 /*
1548                  * If we have not yet seen any eligible child,
1549                  * then let this error code replace -ECHILD.
1550                  * A permission error will give the user a clue
1551                  * to look for security policy problems, rather
1552                  * than for mysterious wait bugs.
1553                  */
1554                 if (*notask_error)
1555                         *notask_error = ret;
1556         }
1557
1558         if (likely(!ptrace) && unlikely(p->ptrace)) {
1559                 /*
1560                  * This child is hidden by ptrace.
1561                  * We aren't allowed to see it now, but eventually we will.
1562                  */
1563                 *notask_error = 0;
1564                 return 0;
1565         }
1566
1567         if (p->exit_state == EXIT_DEAD)
1568                 return 0;
1569
1570         /*
1571          * We don't reap group leaders with subthreads.
1572          */
1573         if (p->exit_state == EXIT_ZOMBIE && !delay_group_leader(p))
1574                 return wait_task_zombie(p, options, infop, stat_addr, ru);
1575
1576         /*
1577          * It's stopped or running now, so it might
1578          * later continue, exit, or stop again.
1579          */
1580         *notask_error = 0;
1581
1582         if (task_is_stopped_or_traced(p))
1583                 return wait_task_stopped(ptrace, p, options,
1584                                          infop, stat_addr, ru);
1585
1586         return wait_task_continued(p, options, infop, stat_addr, ru);
1587 }
1588
1589 /*
1590  * Do the work of do_wait() for one thread in the group, @tsk.
1591  *
1592  * -ECHILD should be in *@notask_error before the first call.
1593  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1594  * Returns zero if the search for a child should continue; then
1595  * *@notask_error is 0 if there were any eligible children,
1596  * or another error from security_task_wait(), or still -ECHILD.
1597  */
1598 static int do_wait_thread(struct task_struct *tsk, int *notask_error,
1599                           enum pid_type type, struct pid *pid, int options,
1600                           struct siginfo __user *infop, int __user *stat_addr,
1601                           struct rusage __user *ru)
1602 {
1603         struct task_struct *p;
1604
1605         list_for_each_entry(p, &tsk->children, sibling) {
1606                 /*
1607                  * Do not consider detached threads.
1608                  */
1609                 if (!task_detached(p)) {
1610                         int ret = wait_consider_task(tsk, 0, p, notask_error,
1611                                                      type, pid, options,
1612                                                      infop, stat_addr, ru);
1613                         if (ret)
1614                                 return ret;
1615                 }
1616         }
1617
1618         return 0;
1619 }
1620
1621 static int ptrace_do_wait(struct task_struct *tsk, int *notask_error,
1622                           enum pid_type type, struct pid *pid, int options,
1623                           struct siginfo __user *infop, int __user *stat_addr,
1624                           struct rusage __user *ru)
1625 {
1626         struct task_struct *p;
1627
1628         /*
1629          * Traditionally we see ptrace'd stopped tasks regardless of options.
1630          */
1631         options |= WUNTRACED;
1632
1633         list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1634                 int ret = wait_consider_task(tsk, 1, p, notask_error,
1635                                              type, pid, options,
1636                                              infop, stat_addr, ru);
1637                 if (ret)
1638                         return ret;
1639         }
1640
1641         return 0;
1642 }
1643
1644 static long do_wait(enum pid_type type, struct pid *pid, int options,
1645                     struct siginfo __user *infop, int __user *stat_addr,
1646                     struct rusage __user *ru)
1647 {
1648         DECLARE_WAITQUEUE(wait, current);
1649         struct task_struct *tsk;
1650         int retval;
1651
1652         trace_sched_process_wait(pid);
1653
1654         add_wait_queue(&current->signal->wait_chldexit,&wait);
1655 repeat:
1656         /*
1657          * If there is nothing that can match our critiera just get out.
1658          * We will clear @retval to zero if we see any child that might later
1659          * match our criteria, even if we are not able to reap it yet.
1660          */
1661         retval = -ECHILD;
1662         if ((type < PIDTYPE_MAX) && (!pid || hlist_empty(&pid->tasks[type])))
1663                 goto end;
1664
1665         current->state = TASK_INTERRUPTIBLE;
1666         read_lock(&tasklist_lock);
1667         tsk = current;
1668         do {
1669                 int tsk_result = do_wait_thread(tsk, &retval,
1670                                                 type, pid, options,
1671                                                 infop, stat_addr, ru);
1672                 if (!tsk_result)
1673                         tsk_result = ptrace_do_wait(tsk, &retval,
1674                                                     type, pid, options,
1675                                                     infop, stat_addr, ru);
1676                 if (tsk_result) {
1677                         /*
1678                          * tasklist_lock is unlocked and we have a final result.
1679                          */
1680                         retval = tsk_result;
1681                         goto end;
1682                 }
1683
1684                 if (options & __WNOTHREAD)
1685                         break;
1686                 tsk = next_thread(tsk);
1687                 BUG_ON(tsk->signal != current->signal);
1688         } while (tsk != current);
1689         read_unlock(&tasklist_lock);
1690
1691         if (!retval && !(options & WNOHANG)) {
1692                 retval = -ERESTARTSYS;
1693                 if (!signal_pending(current)) {
1694                         schedule();
1695                         goto repeat;
1696                 }
1697         }
1698
1699 end:
1700         current->state = TASK_RUNNING;
1701         remove_wait_queue(&current->signal->wait_chldexit,&wait);
1702         if (infop) {
1703                 if (retval > 0)
1704                         retval = 0;
1705                 else {
1706                         /*
1707                          * For a WNOHANG return, clear out all the fields
1708                          * we would set so the user can easily tell the
1709                          * difference.
1710                          */
1711                         if (!retval)
1712                                 retval = put_user(0, &infop->si_signo);
1713                         if (!retval)
1714                                 retval = put_user(0, &infop->si_errno);
1715                         if (!retval)
1716                                 retval = put_user(0, &infop->si_code);
1717                         if (!retval)
1718                                 retval = put_user(0, &infop->si_pid);
1719                         if (!retval)
1720                                 retval = put_user(0, &infop->si_uid);
1721                         if (!retval)
1722                                 retval = put_user(0, &infop->si_status);
1723                 }
1724         }
1725         return retval;
1726 }
1727
1728 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1729                 infop, int, options, struct rusage __user *, ru)
1730 {
1731         struct pid *pid = NULL;
1732         enum pid_type type;
1733         long ret;
1734
1735         if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1736                 return -EINVAL;
1737         if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1738                 return -EINVAL;
1739
1740         switch (which) {
1741         case P_ALL:
1742                 type = PIDTYPE_MAX;
1743                 break;
1744         case P_PID:
1745                 type = PIDTYPE_PID;
1746                 if (upid <= 0)
1747                         return -EINVAL;
1748                 break;
1749         case P_PGID:
1750                 type = PIDTYPE_PGID;
1751                 if (upid <= 0)
1752                         return -EINVAL;
1753                 break;
1754         default:
1755                 return -EINVAL;
1756         }
1757
1758         if (type < PIDTYPE_MAX)
1759                 pid = find_get_pid(upid);
1760         ret = do_wait(type, pid, options, infop, NULL, ru);
1761         put_pid(pid);
1762
1763         /* avoid REGPARM breakage on x86: */
1764         asmlinkage_protect(5, ret, which, upid, infop, options, ru);
1765         return ret;
1766 }
1767
1768 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1769                 int, options, struct rusage __user *, ru)
1770 {
1771         struct pid *pid = NULL;
1772         enum pid_type type;
1773         long ret;
1774
1775         if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1776                         __WNOTHREAD|__WCLONE|__WALL))
1777                 return -EINVAL;
1778
1779         if (upid == -1)
1780                 type = PIDTYPE_MAX;
1781         else if (upid < 0) {
1782                 type = PIDTYPE_PGID;
1783                 pid = find_get_pid(-upid);
1784         } else if (upid == 0) {
1785                 type = PIDTYPE_PGID;
1786                 pid = get_pid(task_pgrp(current));
1787         } else /* upid > 0 */ {
1788                 type = PIDTYPE_PID;
1789                 pid = find_get_pid(upid);
1790         }
1791
1792         ret = do_wait(type, pid, options | WEXITED, NULL, stat_addr, ru);
1793         put_pid(pid);
1794
1795         /* avoid REGPARM breakage on x86: */
1796         asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
1797         return ret;
1798 }
1799
1800 #ifdef __ARCH_WANT_SYS_WAITPID
1801
1802 /*
1803  * sys_waitpid() remains for compatibility. waitpid() should be
1804  * implemented by calling sys_wait4() from libc.a.
1805  */
1806 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1807 {
1808         return sys_wait4(pid, stat_addr, options, NULL);
1809 }
1810
1811 #endif