sysctl extern cleanup: module
[safe/jmp/linux-2.6] / kernel / audit_tree.c
1 #include "audit.h"
2 #include <linux/inotify.h>
3 #include <linux/namei.h>
4 #include <linux/mount.h>
5 #include <linux/kthread.h>
6
7 struct audit_tree;
8 struct audit_chunk;
9
10 struct audit_tree {
11         atomic_t count;
12         int goner;
13         struct audit_chunk *root;
14         struct list_head chunks;
15         struct list_head rules;
16         struct list_head list;
17         struct list_head same_root;
18         struct rcu_head head;
19         char pathname[];
20 };
21
22 struct audit_chunk {
23         struct list_head hash;
24         struct inotify_watch watch;
25         struct list_head trees;         /* with root here */
26         int dead;
27         int count;
28         atomic_long_t refs;
29         struct rcu_head head;
30         struct node {
31                 struct list_head list;
32                 struct audit_tree *owner;
33                 unsigned index;         /* index; upper bit indicates 'will prune' */
34         } owners[];
35 };
36
37 static LIST_HEAD(tree_list);
38 static LIST_HEAD(prune_list);
39
40 /*
41  * One struct chunk is attached to each inode of interest.
42  * We replace struct chunk on tagging/untagging.
43  * Rules have pointer to struct audit_tree.
44  * Rules have struct list_head rlist forming a list of rules over
45  * the same tree.
46  * References to struct chunk are collected at audit_inode{,_child}()
47  * time and used in AUDIT_TREE rule matching.
48  * These references are dropped at the same time we are calling
49  * audit_free_names(), etc.
50  *
51  * Cyclic lists galore:
52  * tree.chunks anchors chunk.owners[].list                      hash_lock
53  * tree.rules anchors rule.rlist                                audit_filter_mutex
54  * chunk.trees anchors tree.same_root                           hash_lock
55  * chunk.hash is a hash with middle bits of watch.inode as
56  * a hash function.                                             RCU, hash_lock
57  *
58  * tree is refcounted; one reference for "some rules on rules_list refer to
59  * it", one for each chunk with pointer to it.
60  *
61  * chunk is refcounted by embedded inotify_watch + .refs (non-zero refcount
62  * of watch contributes 1 to .refs).
63  *
64  * node.index allows to get from node.list to containing chunk.
65  * MSB of that sucker is stolen to mark taggings that we might have to
66  * revert - several operations have very unpleasant cleanup logics and
67  * that makes a difference.  Some.
68  */
69
70 static struct inotify_handle *rtree_ih;
71
72 static struct audit_tree *alloc_tree(const char *s)
73 {
74         struct audit_tree *tree;
75
76         tree = kmalloc(sizeof(struct audit_tree) + strlen(s) + 1, GFP_KERNEL);
77         if (tree) {
78                 atomic_set(&tree->count, 1);
79                 tree->goner = 0;
80                 INIT_LIST_HEAD(&tree->chunks);
81                 INIT_LIST_HEAD(&tree->rules);
82                 INIT_LIST_HEAD(&tree->list);
83                 INIT_LIST_HEAD(&tree->same_root);
84                 tree->root = NULL;
85                 strcpy(tree->pathname, s);
86         }
87         return tree;
88 }
89
90 static inline void get_tree(struct audit_tree *tree)
91 {
92         atomic_inc(&tree->count);
93 }
94
95 static void __put_tree(struct rcu_head *rcu)
96 {
97         struct audit_tree *tree = container_of(rcu, struct audit_tree, head);
98         kfree(tree);
99 }
100
101 static inline void put_tree(struct audit_tree *tree)
102 {
103         if (atomic_dec_and_test(&tree->count))
104                 call_rcu(&tree->head, __put_tree);
105 }
106
107 /* to avoid bringing the entire thing in audit.h */
108 const char *audit_tree_path(struct audit_tree *tree)
109 {
110         return tree->pathname;
111 }
112
113 static struct audit_chunk *alloc_chunk(int count)
114 {
115         struct audit_chunk *chunk;
116         size_t size;
117         int i;
118
119         size = offsetof(struct audit_chunk, owners) + count * sizeof(struct node);
120         chunk = kzalloc(size, GFP_KERNEL);
121         if (!chunk)
122                 return NULL;
123
124         INIT_LIST_HEAD(&chunk->hash);
125         INIT_LIST_HEAD(&chunk->trees);
126         chunk->count = count;
127         atomic_long_set(&chunk->refs, 1);
128         for (i = 0; i < count; i++) {
129                 INIT_LIST_HEAD(&chunk->owners[i].list);
130                 chunk->owners[i].index = i;
131         }
132         inotify_init_watch(&chunk->watch);
133         return chunk;
134 }
135
136 static void free_chunk(struct audit_chunk *chunk)
137 {
138         int i;
139
140         for (i = 0; i < chunk->count; i++) {
141                 if (chunk->owners[i].owner)
142                         put_tree(chunk->owners[i].owner);
143         }
144         kfree(chunk);
145 }
146
147 void audit_put_chunk(struct audit_chunk *chunk)
148 {
149         if (atomic_long_dec_and_test(&chunk->refs))
150                 free_chunk(chunk);
151 }
152
153 static void __put_chunk(struct rcu_head *rcu)
154 {
155         struct audit_chunk *chunk = container_of(rcu, struct audit_chunk, head);
156         audit_put_chunk(chunk);
157 }
158
159 enum {HASH_SIZE = 128};
160 static struct list_head chunk_hash_heads[HASH_SIZE];
161 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(hash_lock);
162
163 static inline struct list_head *chunk_hash(const struct inode *inode)
164 {
165         unsigned long n = (unsigned long)inode / L1_CACHE_BYTES;
166         return chunk_hash_heads + n % HASH_SIZE;
167 }
168
169 /* hash_lock is held by caller */
170 static void insert_hash(struct audit_chunk *chunk)
171 {
172         struct list_head *list = chunk_hash(chunk->watch.inode);
173         list_add_rcu(&chunk->hash, list);
174 }
175
176 /* called under rcu_read_lock */
177 struct audit_chunk *audit_tree_lookup(const struct inode *inode)
178 {
179         struct list_head *list = chunk_hash(inode);
180         struct audit_chunk *p;
181
182         list_for_each_entry_rcu(p, list, hash) {
183                 if (p->watch.inode == inode) {
184                         atomic_long_inc(&p->refs);
185                         return p;
186                 }
187         }
188         return NULL;
189 }
190
191 int audit_tree_match(struct audit_chunk *chunk, struct audit_tree *tree)
192 {
193         int n;
194         for (n = 0; n < chunk->count; n++)
195                 if (chunk->owners[n].owner == tree)
196                         return 1;
197         return 0;
198 }
199
200 /* tagging and untagging inodes with trees */
201
202 static struct audit_chunk *find_chunk(struct node *p)
203 {
204         int index = p->index & ~(1U<<31);
205         p -= index;
206         return container_of(p, struct audit_chunk, owners[0]);
207 }
208
209 static void untag_chunk(struct node *p)
210 {
211         struct audit_chunk *chunk = find_chunk(p);
212         struct audit_chunk *new;
213         struct audit_tree *owner;
214         int size = chunk->count - 1;
215         int i, j;
216
217         if (!pin_inotify_watch(&chunk->watch)) {
218                 /*
219                  * Filesystem is shutting down; all watches are getting
220                  * evicted, just take it off the node list for this
221                  * tree and let the eviction logics take care of the
222                  * rest.
223                  */
224                 owner = p->owner;
225                 if (owner->root == chunk) {
226                         list_del_init(&owner->same_root);
227                         owner->root = NULL;
228                 }
229                 list_del_init(&p->list);
230                 p->owner = NULL;
231                 put_tree(owner);
232                 return;
233         }
234
235         spin_unlock(&hash_lock);
236
237         /*
238          * pin_inotify_watch() succeeded, so the watch won't go away
239          * from under us.
240          */
241         mutex_lock(&chunk->watch.inode->inotify_mutex);
242         if (chunk->dead) {
243                 mutex_unlock(&chunk->watch.inode->inotify_mutex);
244                 goto out;
245         }
246
247         owner = p->owner;
248
249         if (!size) {
250                 chunk->dead = 1;
251                 spin_lock(&hash_lock);
252                 list_del_init(&chunk->trees);
253                 if (owner->root == chunk)
254                         owner->root = NULL;
255                 list_del_init(&p->list);
256                 list_del_rcu(&chunk->hash);
257                 spin_unlock(&hash_lock);
258                 inotify_evict_watch(&chunk->watch);
259                 mutex_unlock(&chunk->watch.inode->inotify_mutex);
260                 put_inotify_watch(&chunk->watch);
261                 goto out;
262         }
263
264         new = alloc_chunk(size);
265         if (!new)
266                 goto Fallback;
267         if (inotify_clone_watch(&chunk->watch, &new->watch) < 0) {
268                 free_chunk(new);
269                 goto Fallback;
270         }
271
272         chunk->dead = 1;
273         spin_lock(&hash_lock);
274         list_replace_init(&chunk->trees, &new->trees);
275         if (owner->root == chunk) {
276                 list_del_init(&owner->same_root);
277                 owner->root = NULL;
278         }
279
280         for (i = j = 0; j <= size; i++, j++) {
281                 struct audit_tree *s;
282                 if (&chunk->owners[j] == p) {
283                         list_del_init(&p->list);
284                         i--;
285                         continue;
286                 }
287                 s = chunk->owners[j].owner;
288                 new->owners[i].owner = s;
289                 new->owners[i].index = chunk->owners[j].index - j + i;
290                 if (!s) /* result of earlier fallback */
291                         continue;
292                 get_tree(s);
293                 list_replace_init(&chunk->owners[j].list, &new->owners[i].list);
294         }
295
296         list_replace_rcu(&chunk->hash, &new->hash);
297         list_for_each_entry(owner, &new->trees, same_root)
298                 owner->root = new;
299         spin_unlock(&hash_lock);
300         inotify_evict_watch(&chunk->watch);
301         mutex_unlock(&chunk->watch.inode->inotify_mutex);
302         put_inotify_watch(&chunk->watch);
303         goto out;
304
305 Fallback:
306         // do the best we can
307         spin_lock(&hash_lock);
308         if (owner->root == chunk) {
309                 list_del_init(&owner->same_root);
310                 owner->root = NULL;
311         }
312         list_del_init(&p->list);
313         p->owner = NULL;
314         put_tree(owner);
315         spin_unlock(&hash_lock);
316         mutex_unlock(&chunk->watch.inode->inotify_mutex);
317 out:
318         unpin_inotify_watch(&chunk->watch);
319         spin_lock(&hash_lock);
320 }
321
322 static int create_chunk(struct inode *inode, struct audit_tree *tree)
323 {
324         struct audit_chunk *chunk = alloc_chunk(1);
325         if (!chunk)
326                 return -ENOMEM;
327
328         if (inotify_add_watch(rtree_ih, &chunk->watch, inode, IN_IGNORED | IN_DELETE_SELF) < 0) {
329                 free_chunk(chunk);
330                 return -ENOSPC;
331         }
332
333         mutex_lock(&inode->inotify_mutex);
334         spin_lock(&hash_lock);
335         if (tree->goner) {
336                 spin_unlock(&hash_lock);
337                 chunk->dead = 1;
338                 inotify_evict_watch(&chunk->watch);
339                 mutex_unlock(&inode->inotify_mutex);
340                 put_inotify_watch(&chunk->watch);
341                 return 0;
342         }
343         chunk->owners[0].index = (1U << 31);
344         chunk->owners[0].owner = tree;
345         get_tree(tree);
346         list_add(&chunk->owners[0].list, &tree->chunks);
347         if (!tree->root) {
348                 tree->root = chunk;
349                 list_add(&tree->same_root, &chunk->trees);
350         }
351         insert_hash(chunk);
352         spin_unlock(&hash_lock);
353         mutex_unlock(&inode->inotify_mutex);
354         return 0;
355 }
356
357 /* the first tagged inode becomes root of tree */
358 static int tag_chunk(struct inode *inode, struct audit_tree *tree)
359 {
360         struct inotify_watch *watch;
361         struct audit_tree *owner;
362         struct audit_chunk *chunk, *old;
363         struct node *p;
364         int n;
365
366         if (inotify_find_watch(rtree_ih, inode, &watch) < 0)
367                 return create_chunk(inode, tree);
368
369         old = container_of(watch, struct audit_chunk, watch);
370
371         /* are we already there? */
372         spin_lock(&hash_lock);
373         for (n = 0; n < old->count; n++) {
374                 if (old->owners[n].owner == tree) {
375                         spin_unlock(&hash_lock);
376                         put_inotify_watch(&old->watch);
377                         return 0;
378                 }
379         }
380         spin_unlock(&hash_lock);
381
382         chunk = alloc_chunk(old->count + 1);
383         if (!chunk) {
384                 put_inotify_watch(&old->watch);
385                 return -ENOMEM;
386         }
387
388         mutex_lock(&inode->inotify_mutex);
389         if (inotify_clone_watch(&old->watch, &chunk->watch) < 0) {
390                 mutex_unlock(&inode->inotify_mutex);
391                 put_inotify_watch(&old->watch);
392                 free_chunk(chunk);
393                 return -ENOSPC;
394         }
395         spin_lock(&hash_lock);
396         if (tree->goner) {
397                 spin_unlock(&hash_lock);
398                 chunk->dead = 1;
399                 inotify_evict_watch(&chunk->watch);
400                 mutex_unlock(&inode->inotify_mutex);
401                 put_inotify_watch(&old->watch);
402                 put_inotify_watch(&chunk->watch);
403                 return 0;
404         }
405         list_replace_init(&old->trees, &chunk->trees);
406         for (n = 0, p = chunk->owners; n < old->count; n++, p++) {
407                 struct audit_tree *s = old->owners[n].owner;
408                 p->owner = s;
409                 p->index = old->owners[n].index;
410                 if (!s) /* result of fallback in untag */
411                         continue;
412                 get_tree(s);
413                 list_replace_init(&old->owners[n].list, &p->list);
414         }
415         p->index = (chunk->count - 1) | (1U<<31);
416         p->owner = tree;
417         get_tree(tree);
418         list_add(&p->list, &tree->chunks);
419         list_replace_rcu(&old->hash, &chunk->hash);
420         list_for_each_entry(owner, &chunk->trees, same_root)
421                 owner->root = chunk;
422         old->dead = 1;
423         if (!tree->root) {
424                 tree->root = chunk;
425                 list_add(&tree->same_root, &chunk->trees);
426         }
427         spin_unlock(&hash_lock);
428         inotify_evict_watch(&old->watch);
429         mutex_unlock(&inode->inotify_mutex);
430         put_inotify_watch(&old->watch); /* pair to inotify_find_watch */
431         put_inotify_watch(&old->watch); /* and kill it */
432         return 0;
433 }
434
435 static void kill_rules(struct audit_tree *tree)
436 {
437         struct audit_krule *rule, *next;
438         struct audit_entry *entry;
439         struct audit_buffer *ab;
440
441         list_for_each_entry_safe(rule, next, &tree->rules, rlist) {
442                 entry = container_of(rule, struct audit_entry, rule);
443
444                 list_del_init(&rule->rlist);
445                 if (rule->tree) {
446                         /* not a half-baked one */
447                         ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
448                         audit_log_format(ab, "op=");
449                         audit_log_string(ab, "remove rule");
450                         audit_log_format(ab, " dir=");
451                         audit_log_untrustedstring(ab, rule->tree->pathname);
452                         audit_log_key(ab, rule->filterkey);
453                         audit_log_format(ab, " list=%d res=1", rule->listnr);
454                         audit_log_end(ab);
455                         rule->tree = NULL;
456                         list_del_rcu(&entry->list);
457                         list_del(&entry->rule.list);
458                         call_rcu(&entry->rcu, audit_free_rule_rcu);
459                 }
460         }
461 }
462
463 /*
464  * finish killing struct audit_tree
465  */
466 static void prune_one(struct audit_tree *victim)
467 {
468         spin_lock(&hash_lock);
469         while (!list_empty(&victim->chunks)) {
470                 struct node *p;
471
472                 p = list_entry(victim->chunks.next, struct node, list);
473
474                 untag_chunk(p);
475         }
476         spin_unlock(&hash_lock);
477         put_tree(victim);
478 }
479
480 /* trim the uncommitted chunks from tree */
481
482 static void trim_marked(struct audit_tree *tree)
483 {
484         struct list_head *p, *q;
485         spin_lock(&hash_lock);
486         if (tree->goner) {
487                 spin_unlock(&hash_lock);
488                 return;
489         }
490         /* reorder */
491         for (p = tree->chunks.next; p != &tree->chunks; p = q) {
492                 struct node *node = list_entry(p, struct node, list);
493                 q = p->next;
494                 if (node->index & (1U<<31)) {
495                         list_del_init(p);
496                         list_add(p, &tree->chunks);
497                 }
498         }
499
500         while (!list_empty(&tree->chunks)) {
501                 struct node *node;
502
503                 node = list_entry(tree->chunks.next, struct node, list);
504
505                 /* have we run out of marked? */
506                 if (!(node->index & (1U<<31)))
507                         break;
508
509                 untag_chunk(node);
510         }
511         if (!tree->root && !tree->goner) {
512                 tree->goner = 1;
513                 spin_unlock(&hash_lock);
514                 mutex_lock(&audit_filter_mutex);
515                 kill_rules(tree);
516                 list_del_init(&tree->list);
517                 mutex_unlock(&audit_filter_mutex);
518                 prune_one(tree);
519         } else {
520                 spin_unlock(&hash_lock);
521         }
522 }
523
524 static void audit_schedule_prune(void);
525
526 /* called with audit_filter_mutex */
527 int audit_remove_tree_rule(struct audit_krule *rule)
528 {
529         struct audit_tree *tree;
530         tree = rule->tree;
531         if (tree) {
532                 spin_lock(&hash_lock);
533                 list_del_init(&rule->rlist);
534                 if (list_empty(&tree->rules) && !tree->goner) {
535                         tree->root = NULL;
536                         list_del_init(&tree->same_root);
537                         tree->goner = 1;
538                         list_move(&tree->list, &prune_list);
539                         rule->tree = NULL;
540                         spin_unlock(&hash_lock);
541                         audit_schedule_prune();
542                         return 1;
543                 }
544                 rule->tree = NULL;
545                 spin_unlock(&hash_lock);
546                 return 1;
547         }
548         return 0;
549 }
550
551 static int compare_root(struct vfsmount *mnt, void *arg)
552 {
553         return mnt->mnt_root->d_inode == arg;
554 }
555
556 void audit_trim_trees(void)
557 {
558         struct list_head cursor;
559
560         mutex_lock(&audit_filter_mutex);
561         list_add(&cursor, &tree_list);
562         while (cursor.next != &tree_list) {
563                 struct audit_tree *tree;
564                 struct path path;
565                 struct vfsmount *root_mnt;
566                 struct node *node;
567                 int err;
568
569                 tree = container_of(cursor.next, struct audit_tree, list);
570                 get_tree(tree);
571                 list_del(&cursor);
572                 list_add(&cursor, &tree->list);
573                 mutex_unlock(&audit_filter_mutex);
574
575                 err = kern_path(tree->pathname, 0, &path);
576                 if (err)
577                         goto skip_it;
578
579                 root_mnt = collect_mounts(&path);
580                 path_put(&path);
581                 if (!root_mnt)
582                         goto skip_it;
583
584                 spin_lock(&hash_lock);
585                 list_for_each_entry(node, &tree->chunks, list) {
586                         struct inode *inode = find_chunk(node)->watch.inode;
587                         node->index |= 1U<<31;
588                         if (iterate_mounts(compare_root, inode, root_mnt))
589                                 node->index &= ~(1U<<31);
590                 }
591                 spin_unlock(&hash_lock);
592                 trim_marked(tree);
593                 put_tree(tree);
594                 drop_collected_mounts(root_mnt);
595 skip_it:
596                 mutex_lock(&audit_filter_mutex);
597         }
598         list_del(&cursor);
599         mutex_unlock(&audit_filter_mutex);
600 }
601
602 int audit_make_tree(struct audit_krule *rule, char *pathname, u32 op)
603 {
604
605         if (pathname[0] != '/' ||
606             rule->listnr != AUDIT_FILTER_EXIT ||
607             op != Audit_equal ||
608             rule->inode_f || rule->watch || rule->tree)
609                 return -EINVAL;
610         rule->tree = alloc_tree(pathname);
611         if (!rule->tree)
612                 return -ENOMEM;
613         return 0;
614 }
615
616 void audit_put_tree(struct audit_tree *tree)
617 {
618         put_tree(tree);
619 }
620
621 static int tag_mount(struct vfsmount *mnt, void *arg)
622 {
623         return tag_chunk(mnt->mnt_root->d_inode, arg);
624 }
625
626 /* called with audit_filter_mutex */
627 int audit_add_tree_rule(struct audit_krule *rule)
628 {
629         struct audit_tree *seed = rule->tree, *tree;
630         struct path path;
631         struct vfsmount *mnt;
632         int err;
633
634         list_for_each_entry(tree, &tree_list, list) {
635                 if (!strcmp(seed->pathname, tree->pathname)) {
636                         put_tree(seed);
637                         rule->tree = tree;
638                         list_add(&rule->rlist, &tree->rules);
639                         return 0;
640                 }
641         }
642         tree = seed;
643         list_add(&tree->list, &tree_list);
644         list_add(&rule->rlist, &tree->rules);
645         /* do not set rule->tree yet */
646         mutex_unlock(&audit_filter_mutex);
647
648         err = kern_path(tree->pathname, 0, &path);
649         if (err)
650                 goto Err;
651         mnt = collect_mounts(&path);
652         path_put(&path);
653         if (!mnt) {
654                 err = -ENOMEM;
655                 goto Err;
656         }
657
658         get_tree(tree);
659         err = iterate_mounts(tag_mount, tree, mnt);
660         drop_collected_mounts(mnt);
661
662         if (!err) {
663                 struct node *node;
664                 spin_lock(&hash_lock);
665                 list_for_each_entry(node, &tree->chunks, list)
666                         node->index &= ~(1U<<31);
667                 spin_unlock(&hash_lock);
668         } else {
669                 trim_marked(tree);
670                 goto Err;
671         }
672
673         mutex_lock(&audit_filter_mutex);
674         if (list_empty(&rule->rlist)) {
675                 put_tree(tree);
676                 return -ENOENT;
677         }
678         rule->tree = tree;
679         put_tree(tree);
680
681         return 0;
682 Err:
683         mutex_lock(&audit_filter_mutex);
684         list_del_init(&tree->list);
685         list_del_init(&tree->rules);
686         put_tree(tree);
687         return err;
688 }
689
690 int audit_tag_tree(char *old, char *new)
691 {
692         struct list_head cursor, barrier;
693         int failed = 0;
694         struct path path1, path2;
695         struct vfsmount *tagged;
696         int err;
697
698         err = kern_path(new, 0, &path2);
699         if (err)
700                 return err;
701         tagged = collect_mounts(&path2);
702         path_put(&path2);
703         if (!tagged)
704                 return -ENOMEM;
705
706         err = kern_path(old, 0, &path1);
707         if (err) {
708                 drop_collected_mounts(tagged);
709                 return err;
710         }
711
712         mutex_lock(&audit_filter_mutex);
713         list_add(&barrier, &tree_list);
714         list_add(&cursor, &barrier);
715
716         while (cursor.next != &tree_list) {
717                 struct audit_tree *tree;
718                 int good_one = 0;
719
720                 tree = container_of(cursor.next, struct audit_tree, list);
721                 get_tree(tree);
722                 list_del(&cursor);
723                 list_add(&cursor, &tree->list);
724                 mutex_unlock(&audit_filter_mutex);
725
726                 err = kern_path(tree->pathname, 0, &path2);
727                 if (!err) {
728                         good_one = path_is_under(&path1, &path2);
729                         path_put(&path2);
730                 }
731
732                 if (!good_one) {
733                         put_tree(tree);
734                         mutex_lock(&audit_filter_mutex);
735                         continue;
736                 }
737
738                 failed = iterate_mounts(tag_mount, tree, tagged);
739                 if (failed) {
740                         put_tree(tree);
741                         mutex_lock(&audit_filter_mutex);
742                         break;
743                 }
744
745                 mutex_lock(&audit_filter_mutex);
746                 spin_lock(&hash_lock);
747                 if (!tree->goner) {
748                         list_del(&tree->list);
749                         list_add(&tree->list, &tree_list);
750                 }
751                 spin_unlock(&hash_lock);
752                 put_tree(tree);
753         }
754
755         while (barrier.prev != &tree_list) {
756                 struct audit_tree *tree;
757
758                 tree = container_of(barrier.prev, struct audit_tree, list);
759                 get_tree(tree);
760                 list_del(&tree->list);
761                 list_add(&tree->list, &barrier);
762                 mutex_unlock(&audit_filter_mutex);
763
764                 if (!failed) {
765                         struct node *node;
766                         spin_lock(&hash_lock);
767                         list_for_each_entry(node, &tree->chunks, list)
768                                 node->index &= ~(1U<<31);
769                         spin_unlock(&hash_lock);
770                 } else {
771                         trim_marked(tree);
772                 }
773
774                 put_tree(tree);
775                 mutex_lock(&audit_filter_mutex);
776         }
777         list_del(&barrier);
778         list_del(&cursor);
779         mutex_unlock(&audit_filter_mutex);
780         path_put(&path1);
781         drop_collected_mounts(tagged);
782         return failed;
783 }
784
785 /*
786  * That gets run when evict_chunk() ends up needing to kill audit_tree.
787  * Runs from a separate thread.
788  */
789 static int prune_tree_thread(void *unused)
790 {
791         mutex_lock(&audit_cmd_mutex);
792         mutex_lock(&audit_filter_mutex);
793
794         while (!list_empty(&prune_list)) {
795                 struct audit_tree *victim;
796
797                 victim = list_entry(prune_list.next, struct audit_tree, list);
798                 list_del_init(&victim->list);
799
800                 mutex_unlock(&audit_filter_mutex);
801
802                 prune_one(victim);
803
804                 mutex_lock(&audit_filter_mutex);
805         }
806
807         mutex_unlock(&audit_filter_mutex);
808         mutex_unlock(&audit_cmd_mutex);
809         return 0;
810 }
811
812 static void audit_schedule_prune(void)
813 {
814         kthread_run(prune_tree_thread, NULL, "audit_prune_tree");
815 }
816
817 /*
818  * ... and that one is done if evict_chunk() decides to delay until the end
819  * of syscall.  Runs synchronously.
820  */
821 void audit_kill_trees(struct list_head *list)
822 {
823         mutex_lock(&audit_cmd_mutex);
824         mutex_lock(&audit_filter_mutex);
825
826         while (!list_empty(list)) {
827                 struct audit_tree *victim;
828
829                 victim = list_entry(list->next, struct audit_tree, list);
830                 kill_rules(victim);
831                 list_del_init(&victim->list);
832
833                 mutex_unlock(&audit_filter_mutex);
834
835                 prune_one(victim);
836
837                 mutex_lock(&audit_filter_mutex);
838         }
839
840         mutex_unlock(&audit_filter_mutex);
841         mutex_unlock(&audit_cmd_mutex);
842 }
843
844 /*
845  *  Here comes the stuff asynchronous to auditctl operations
846  */
847
848 /* inode->inotify_mutex is locked */
849 static void evict_chunk(struct audit_chunk *chunk)
850 {
851         struct audit_tree *owner;
852         struct list_head *postponed = audit_killed_trees();
853         int need_prune = 0;
854         int n;
855
856         if (chunk->dead)
857                 return;
858
859         chunk->dead = 1;
860         mutex_lock(&audit_filter_mutex);
861         spin_lock(&hash_lock);
862         while (!list_empty(&chunk->trees)) {
863                 owner = list_entry(chunk->trees.next,
864                                    struct audit_tree, same_root);
865                 owner->goner = 1;
866                 owner->root = NULL;
867                 list_del_init(&owner->same_root);
868                 spin_unlock(&hash_lock);
869                 if (!postponed) {
870                         kill_rules(owner);
871                         list_move(&owner->list, &prune_list);
872                         need_prune = 1;
873                 } else {
874                         list_move(&owner->list, postponed);
875                 }
876                 spin_lock(&hash_lock);
877         }
878         list_del_rcu(&chunk->hash);
879         for (n = 0; n < chunk->count; n++)
880                 list_del_init(&chunk->owners[n].list);
881         spin_unlock(&hash_lock);
882         if (need_prune)
883                 audit_schedule_prune();
884         mutex_unlock(&audit_filter_mutex);
885 }
886
887 static void handle_event(struct inotify_watch *watch, u32 wd, u32 mask,
888                          u32 cookie, const char *dname, struct inode *inode)
889 {
890         struct audit_chunk *chunk = container_of(watch, struct audit_chunk, watch);
891
892         if (mask & IN_IGNORED) {
893                 evict_chunk(chunk);
894                 put_inotify_watch(watch);
895         }
896 }
897
898 static void destroy_watch(struct inotify_watch *watch)
899 {
900         struct audit_chunk *chunk = container_of(watch, struct audit_chunk, watch);
901         call_rcu(&chunk->head, __put_chunk);
902 }
903
904 static const struct inotify_operations rtree_inotify_ops = {
905         .handle_event   = handle_event,
906         .destroy_watch  = destroy_watch,
907 };
908
909 static int __init audit_tree_init(void)
910 {
911         int i;
912
913         rtree_ih = inotify_init(&rtree_inotify_ops);
914         if (IS_ERR(rtree_ih))
915                 audit_panic("cannot initialize inotify handle for rectree watches");
916
917         for (i = 0; i < HASH_SIZE; i++)
918                 INIT_LIST_HEAD(&chunk_hash_heads[i]);
919
920         return 0;
921 }
922 __initcall(audit_tree_init);