net: Kill skb_truesize_check(), it only catches false-positives.
[safe/jmp/linux-2.6] / include / linux / skbuff.h
1 /*
2  *      Definitions for the 'struct sk_buff' memory handlers.
3  *
4  *      Authors:
5  *              Alan Cox, <gw4pts@gw4pts.ampr.org>
6  *              Florian La Roche, <rzsfl@rz.uni-sb.de>
7  *
8  *      This program is free software; you can redistribute it and/or
9  *      modify it under the terms of the GNU General Public License
10  *      as published by the Free Software Foundation; either version
11  *      2 of the License, or (at your option) any later version.
12  */
13
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16
17 #include <linux/kernel.h>
18 #include <linux/compiler.h>
19 #include <linux/time.h>
20 #include <linux/cache.h>
21
22 #include <asm/atomic.h>
23 #include <asm/types.h>
24 #include <linux/spinlock.h>
25 #include <linux/net.h>
26 #include <linux/textsearch.h>
27 #include <net/checksum.h>
28 #include <linux/rcupdate.h>
29 #include <linux/dmaengine.h>
30 #include <linux/hrtimer.h>
31
32 #define HAVE_ALLOC_SKB          /* For the drivers to know */
33 #define HAVE_ALIGNABLE_SKB      /* Ditto 8)                */
34
35 /* Don't change this without changing skb_csum_unnecessary! */
36 #define CHECKSUM_NONE 0
37 #define CHECKSUM_UNNECESSARY 1
38 #define CHECKSUM_COMPLETE 2
39 #define CHECKSUM_PARTIAL 3
40
41 #define SKB_DATA_ALIGN(X)       (((X) + (SMP_CACHE_BYTES - 1)) & \
42                                  ~(SMP_CACHE_BYTES - 1))
43 #define SKB_WITH_OVERHEAD(X)    \
44         ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
45 #define SKB_MAX_ORDER(X, ORDER) \
46         SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
47 #define SKB_MAX_HEAD(X)         (SKB_MAX_ORDER((X), 0))
48 #define SKB_MAX_ALLOC           (SKB_MAX_ORDER(0, 2))
49
50 /* A. Checksumming of received packets by device.
51  *
52  *      NONE: device failed to checksum this packet.
53  *              skb->csum is undefined.
54  *
55  *      UNNECESSARY: device parsed packet and wouldbe verified checksum.
56  *              skb->csum is undefined.
57  *            It is bad option, but, unfortunately, many of vendors do this.
58  *            Apparently with secret goal to sell you new device, when you
59  *            will add new protocol to your host. F.e. IPv6. 8)
60  *
61  *      COMPLETE: the most generic way. Device supplied checksum of _all_
62  *          the packet as seen by netif_rx in skb->csum.
63  *          NOTE: Even if device supports only some protocols, but
64  *          is able to produce some skb->csum, it MUST use COMPLETE,
65  *          not UNNECESSARY.
66  *
67  *      PARTIAL: identical to the case for output below.  This may occur
68  *          on a packet received directly from another Linux OS, e.g.,
69  *          a virtualised Linux kernel on the same host.  The packet can
70  *          be treated in the same way as UNNECESSARY except that on
71  *          output (i.e., forwarding) the checksum must be filled in
72  *          by the OS or the hardware.
73  *
74  * B. Checksumming on output.
75  *
76  *      NONE: skb is checksummed by protocol or csum is not required.
77  *
78  *      PARTIAL: device is required to csum packet as seen by hard_start_xmit
79  *      from skb->csum_start to the end and to record the checksum
80  *      at skb->csum_start + skb->csum_offset.
81  *
82  *      Device must show its capabilities in dev->features, set
83  *      at device setup time.
84  *      NETIF_F_HW_CSUM - it is clever device, it is able to checksum
85  *                        everything.
86  *      NETIF_F_NO_CSUM - loopback or reliable single hop media.
87  *      NETIF_F_IP_CSUM - device is dumb. It is able to csum only
88  *                        TCP/UDP over IPv4. Sigh. Vendors like this
89  *                        way by an unknown reason. Though, see comment above
90  *                        about CHECKSUM_UNNECESSARY. 8)
91  *      NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
92  *
93  *      Any questions? No questions, good.              --ANK
94  */
95
96 struct net_device;
97 struct scatterlist;
98 struct pipe_inode_info;
99
100 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
101 struct nf_conntrack {
102         atomic_t use;
103 };
104 #endif
105
106 #ifdef CONFIG_BRIDGE_NETFILTER
107 struct nf_bridge_info {
108         atomic_t use;
109         struct net_device *physindev;
110         struct net_device *physoutdev;
111         unsigned int mask;
112         unsigned long data[32 / sizeof(unsigned long)];
113 };
114 #endif
115
116 struct sk_buff_head {
117         /* These two members must be first. */
118         struct sk_buff  *next;
119         struct sk_buff  *prev;
120
121         __u32           qlen;
122         spinlock_t      lock;
123 };
124
125 struct sk_buff;
126
127 /* To allow 64K frame to be packed as single skb without frag_list */
128 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
129
130 typedef struct skb_frag_struct skb_frag_t;
131
132 struct skb_frag_struct {
133         struct page *page;
134         __u32 page_offset;
135         __u32 size;
136 };
137
138 /* This data is invariant across clones and lives at
139  * the end of the header data, ie. at skb->end.
140  */
141 struct skb_shared_info {
142         atomic_t        dataref;
143         unsigned short  nr_frags;
144         unsigned short  gso_size;
145         /* Warning: this field is not always filled in (UFO)! */
146         unsigned short  gso_segs;
147         unsigned short  gso_type;
148         __be32          ip6_frag_id;
149 #ifdef CONFIG_HAS_DMA
150         unsigned int    num_dma_maps;
151 #endif
152         struct sk_buff  *frag_list;
153         skb_frag_t      frags[MAX_SKB_FRAGS];
154 #ifdef CONFIG_HAS_DMA
155         dma_addr_t      dma_maps[MAX_SKB_FRAGS + 1];
156 #endif
157 };
158
159 /* We divide dataref into two halves.  The higher 16 bits hold references
160  * to the payload part of skb->data.  The lower 16 bits hold references to
161  * the entire skb->data.  A clone of a headerless skb holds the length of
162  * the header in skb->hdr_len.
163  *
164  * All users must obey the rule that the skb->data reference count must be
165  * greater than or equal to the payload reference count.
166  *
167  * Holding a reference to the payload part means that the user does not
168  * care about modifications to the header part of skb->data.
169  */
170 #define SKB_DATAREF_SHIFT 16
171 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
172
173
174 enum {
175         SKB_FCLONE_UNAVAILABLE,
176         SKB_FCLONE_ORIG,
177         SKB_FCLONE_CLONE,
178 };
179
180 enum {
181         SKB_GSO_TCPV4 = 1 << 0,
182         SKB_GSO_UDP = 1 << 1,
183
184         /* This indicates the skb is from an untrusted source. */
185         SKB_GSO_DODGY = 1 << 2,
186
187         /* This indicates the tcp segment has CWR set. */
188         SKB_GSO_TCP_ECN = 1 << 3,
189
190         SKB_GSO_TCPV6 = 1 << 4,
191 };
192
193 #if BITS_PER_LONG > 32
194 #define NET_SKBUFF_DATA_USES_OFFSET 1
195 #endif
196
197 #ifdef NET_SKBUFF_DATA_USES_OFFSET
198 typedef unsigned int sk_buff_data_t;
199 #else
200 typedef unsigned char *sk_buff_data_t;
201 #endif
202
203 /** 
204  *      struct sk_buff - socket buffer
205  *      @next: Next buffer in list
206  *      @prev: Previous buffer in list
207  *      @sk: Socket we are owned by
208  *      @tstamp: Time we arrived
209  *      @dev: Device we arrived on/are leaving by
210  *      @transport_header: Transport layer header
211  *      @network_header: Network layer header
212  *      @mac_header: Link layer header
213  *      @dst: destination entry
214  *      @sp: the security path, used for xfrm
215  *      @cb: Control buffer. Free for use by every layer. Put private vars here
216  *      @len: Length of actual data
217  *      @data_len: Data length
218  *      @mac_len: Length of link layer header
219  *      @hdr_len: writable header length of cloned skb
220  *      @csum: Checksum (must include start/offset pair)
221  *      @csum_start: Offset from skb->head where checksumming should start
222  *      @csum_offset: Offset from csum_start where checksum should be stored
223  *      @local_df: allow local fragmentation
224  *      @cloned: Head may be cloned (check refcnt to be sure)
225  *      @nohdr: Payload reference only, must not modify header
226  *      @pkt_type: Packet class
227  *      @fclone: skbuff clone status
228  *      @ip_summed: Driver fed us an IP checksum
229  *      @priority: Packet queueing priority
230  *      @users: User count - see {datagram,tcp}.c
231  *      @protocol: Packet protocol from driver
232  *      @truesize: Buffer size 
233  *      @head: Head of buffer
234  *      @data: Data head pointer
235  *      @tail: Tail pointer
236  *      @end: End pointer
237  *      @destructor: Destruct function
238  *      @mark: Generic packet mark
239  *      @nfct: Associated connection, if any
240  *      @ipvs_property: skbuff is owned by ipvs
241  *      @peeked: this packet has been seen already, so stats have been
242  *              done for it, don't do them again
243  *      @nf_trace: netfilter packet trace flag
244  *      @nfctinfo: Relationship of this skb to the connection
245  *      @nfct_reasm: netfilter conntrack re-assembly pointer
246  *      @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
247  *      @iif: ifindex of device we arrived on
248  *      @queue_mapping: Queue mapping for multiqueue devices
249  *      @tc_index: Traffic control index
250  *      @tc_verd: traffic control verdict
251  *      @ndisc_nodetype: router type (from link layer)
252  *      @do_not_encrypt: set to prevent encryption of this frame
253  *      @requeue: set to indicate that the wireless core should attempt
254  *              a software retry on this frame if we failed to
255  *              receive an ACK for it
256  *      @dma_cookie: a cookie to one of several possible DMA operations
257  *              done by skb DMA functions
258  *      @secmark: security marking
259  *      @vlan_tci: vlan tag control information
260  */
261
262 struct sk_buff {
263         /* These two members must be first. */
264         struct sk_buff          *next;
265         struct sk_buff          *prev;
266
267         struct sock             *sk;
268         ktime_t                 tstamp;
269         struct net_device       *dev;
270
271         union {
272                 struct  dst_entry       *dst;
273                 struct  rtable          *rtable;
274         };
275 #ifdef CONFIG_XFRM
276         struct  sec_path        *sp;
277 #endif
278         /*
279          * This is the control buffer. It is free to use for every
280          * layer. Please put your private variables there. If you
281          * want to keep them across layers you have to do a skb_clone()
282          * first. This is owned by whoever has the skb queued ATM.
283          */
284         char                    cb[48];
285
286         unsigned int            len,
287                                 data_len;
288         __u16                   mac_len,
289                                 hdr_len;
290         union {
291                 __wsum          csum;
292                 struct {
293                         __u16   csum_start;
294                         __u16   csum_offset;
295                 };
296         };
297         __u32                   priority;
298         __u8                    local_df:1,
299                                 cloned:1,
300                                 ip_summed:2,
301                                 nohdr:1,
302                                 nfctinfo:3;
303         __u8                    pkt_type:3,
304                                 fclone:2,
305                                 ipvs_property:1,
306                                 peeked:1,
307                                 nf_trace:1;
308         __be16                  protocol;
309
310         void                    (*destructor)(struct sk_buff *skb);
311 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
312         struct nf_conntrack     *nfct;
313         struct sk_buff          *nfct_reasm;
314 #endif
315 #ifdef CONFIG_BRIDGE_NETFILTER
316         struct nf_bridge_info   *nf_bridge;
317 #endif
318
319         int                     iif;
320         __u16                   queue_mapping;
321 #ifdef CONFIG_NET_SCHED
322         __u16                   tc_index;       /* traffic control index */
323 #ifdef CONFIG_NET_CLS_ACT
324         __u16                   tc_verd;        /* traffic control verdict */
325 #endif
326 #endif
327 #ifdef CONFIG_IPV6_NDISC_NODETYPE
328         __u8                    ndisc_nodetype:2;
329 #endif
330 #if defined(CONFIG_MAC80211) || defined(CONFIG_MAC80211_MODULE)
331         __u8                    do_not_encrypt:1;
332         __u8                    requeue:1;
333 #endif
334         /* 0/13/14 bit hole */
335
336 #ifdef CONFIG_NET_DMA
337         dma_cookie_t            dma_cookie;
338 #endif
339 #ifdef CONFIG_NETWORK_SECMARK
340         __u32                   secmark;
341 #endif
342
343         __u32                   mark;
344
345         __u16                   vlan_tci;
346
347         sk_buff_data_t          transport_header;
348         sk_buff_data_t          network_header;
349         sk_buff_data_t          mac_header;
350         /* These elements must be at the end, see alloc_skb() for details.  */
351         sk_buff_data_t          tail;
352         sk_buff_data_t          end;
353         unsigned char           *head,
354                                 *data;
355         unsigned int            truesize;
356         atomic_t                users;
357 };
358
359 #ifdef __KERNEL__
360 /*
361  *      Handling routines are only of interest to the kernel
362  */
363 #include <linux/slab.h>
364
365 #include <asm/system.h>
366
367 #ifdef CONFIG_HAS_DMA
368 #include <linux/dma-mapping.h>
369 extern int skb_dma_map(struct device *dev, struct sk_buff *skb,
370                        enum dma_data_direction dir);
371 extern void skb_dma_unmap(struct device *dev, struct sk_buff *skb,
372                           enum dma_data_direction dir);
373 #endif
374
375 extern void kfree_skb(struct sk_buff *skb);
376 extern void            __kfree_skb(struct sk_buff *skb);
377 extern struct sk_buff *__alloc_skb(unsigned int size,
378                                    gfp_t priority, int fclone, int node);
379 static inline struct sk_buff *alloc_skb(unsigned int size,
380                                         gfp_t priority)
381 {
382         return __alloc_skb(size, priority, 0, -1);
383 }
384
385 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
386                                                gfp_t priority)
387 {
388         return __alloc_skb(size, priority, 1, -1);
389 }
390
391 extern int skb_recycle_check(struct sk_buff *skb, int skb_size);
392
393 extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
394 extern struct sk_buff *skb_clone(struct sk_buff *skb,
395                                  gfp_t priority);
396 extern struct sk_buff *skb_copy(const struct sk_buff *skb,
397                                 gfp_t priority);
398 extern struct sk_buff *pskb_copy(struct sk_buff *skb,
399                                  gfp_t gfp_mask);
400 extern int             pskb_expand_head(struct sk_buff *skb,
401                                         int nhead, int ntail,
402                                         gfp_t gfp_mask);
403 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
404                                             unsigned int headroom);
405 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
406                                        int newheadroom, int newtailroom,
407                                        gfp_t priority);
408 extern int             skb_to_sgvec(struct sk_buff *skb,
409                                     struct scatterlist *sg, int offset,
410                                     int len);
411 extern int             skb_cow_data(struct sk_buff *skb, int tailbits,
412                                     struct sk_buff **trailer);
413 extern int             skb_pad(struct sk_buff *skb, int pad);
414 #define dev_kfree_skb(a)        kfree_skb(a)
415 extern void           skb_over_panic(struct sk_buff *skb, int len,
416                                      void *here);
417 extern void           skb_under_panic(struct sk_buff *skb, int len,
418                                       void *here);
419
420 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
421                         int getfrag(void *from, char *to, int offset,
422                         int len,int odd, struct sk_buff *skb),
423                         void *from, int length);
424
425 struct skb_seq_state
426 {
427         __u32           lower_offset;
428         __u32           upper_offset;
429         __u32           frag_idx;
430         __u32           stepped_offset;
431         struct sk_buff  *root_skb;
432         struct sk_buff  *cur_skb;
433         __u8            *frag_data;
434 };
435
436 extern void           skb_prepare_seq_read(struct sk_buff *skb,
437                                            unsigned int from, unsigned int to,
438                                            struct skb_seq_state *st);
439 extern unsigned int   skb_seq_read(unsigned int consumed, const u8 **data,
440                                    struct skb_seq_state *st);
441 extern void           skb_abort_seq_read(struct skb_seq_state *st);
442
443 extern unsigned int   skb_find_text(struct sk_buff *skb, unsigned int from,
444                                     unsigned int to, struct ts_config *config,
445                                     struct ts_state *state);
446
447 #ifdef NET_SKBUFF_DATA_USES_OFFSET
448 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
449 {
450         return skb->head + skb->end;
451 }
452 #else
453 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
454 {
455         return skb->end;
456 }
457 #endif
458
459 /* Internal */
460 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
461
462 /**
463  *      skb_queue_empty - check if a queue is empty
464  *      @list: queue head
465  *
466  *      Returns true if the queue is empty, false otherwise.
467  */
468 static inline int skb_queue_empty(const struct sk_buff_head *list)
469 {
470         return list->next == (struct sk_buff *)list;
471 }
472
473 /**
474  *      skb_queue_is_last - check if skb is the last entry in the queue
475  *      @list: queue head
476  *      @skb: buffer
477  *
478  *      Returns true if @skb is the last buffer on the list.
479  */
480 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
481                                      const struct sk_buff *skb)
482 {
483         return (skb->next == (struct sk_buff *) list);
484 }
485
486 /**
487  *      skb_queue_is_first - check if skb is the first entry in the queue
488  *      @list: queue head
489  *      @skb: buffer
490  *
491  *      Returns true if @skb is the first buffer on the list.
492  */
493 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
494                                       const struct sk_buff *skb)
495 {
496         return (skb->prev == (struct sk_buff *) list);
497 }
498
499 /**
500  *      skb_queue_next - return the next packet in the queue
501  *      @list: queue head
502  *      @skb: current buffer
503  *
504  *      Return the next packet in @list after @skb.  It is only valid to
505  *      call this if skb_queue_is_last() evaluates to false.
506  */
507 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
508                                              const struct sk_buff *skb)
509 {
510         /* This BUG_ON may seem severe, but if we just return then we
511          * are going to dereference garbage.
512          */
513         BUG_ON(skb_queue_is_last(list, skb));
514         return skb->next;
515 }
516
517 /**
518  *      skb_queue_prev - return the prev packet in the queue
519  *      @list: queue head
520  *      @skb: current buffer
521  *
522  *      Return the prev packet in @list before @skb.  It is only valid to
523  *      call this if skb_queue_is_first() evaluates to false.
524  */
525 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
526                                              const struct sk_buff *skb)
527 {
528         /* This BUG_ON may seem severe, but if we just return then we
529          * are going to dereference garbage.
530          */
531         BUG_ON(skb_queue_is_first(list, skb));
532         return skb->prev;
533 }
534
535 /**
536  *      skb_get - reference buffer
537  *      @skb: buffer to reference
538  *
539  *      Makes another reference to a socket buffer and returns a pointer
540  *      to the buffer.
541  */
542 static inline struct sk_buff *skb_get(struct sk_buff *skb)
543 {
544         atomic_inc(&skb->users);
545         return skb;
546 }
547
548 /*
549  * If users == 1, we are the only owner and are can avoid redundant
550  * atomic change.
551  */
552
553 /**
554  *      skb_cloned - is the buffer a clone
555  *      @skb: buffer to check
556  *
557  *      Returns true if the buffer was generated with skb_clone() and is
558  *      one of multiple shared copies of the buffer. Cloned buffers are
559  *      shared data so must not be written to under normal circumstances.
560  */
561 static inline int skb_cloned(const struct sk_buff *skb)
562 {
563         return skb->cloned &&
564                (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
565 }
566
567 /**
568  *      skb_header_cloned - is the header a clone
569  *      @skb: buffer to check
570  *
571  *      Returns true if modifying the header part of the buffer requires
572  *      the data to be copied.
573  */
574 static inline int skb_header_cloned(const struct sk_buff *skb)
575 {
576         int dataref;
577
578         if (!skb->cloned)
579                 return 0;
580
581         dataref = atomic_read(&skb_shinfo(skb)->dataref);
582         dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
583         return dataref != 1;
584 }
585
586 /**
587  *      skb_header_release - release reference to header
588  *      @skb: buffer to operate on
589  *
590  *      Drop a reference to the header part of the buffer.  This is done
591  *      by acquiring a payload reference.  You must not read from the header
592  *      part of skb->data after this.
593  */
594 static inline void skb_header_release(struct sk_buff *skb)
595 {
596         BUG_ON(skb->nohdr);
597         skb->nohdr = 1;
598         atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
599 }
600
601 /**
602  *      skb_shared - is the buffer shared
603  *      @skb: buffer to check
604  *
605  *      Returns true if more than one person has a reference to this
606  *      buffer.
607  */
608 static inline int skb_shared(const struct sk_buff *skb)
609 {
610         return atomic_read(&skb->users) != 1;
611 }
612
613 /**
614  *      skb_share_check - check if buffer is shared and if so clone it
615  *      @skb: buffer to check
616  *      @pri: priority for memory allocation
617  *
618  *      If the buffer is shared the buffer is cloned and the old copy
619  *      drops a reference. A new clone with a single reference is returned.
620  *      If the buffer is not shared the original buffer is returned. When
621  *      being called from interrupt status or with spinlocks held pri must
622  *      be GFP_ATOMIC.
623  *
624  *      NULL is returned on a memory allocation failure.
625  */
626 static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
627                                               gfp_t pri)
628 {
629         might_sleep_if(pri & __GFP_WAIT);
630         if (skb_shared(skb)) {
631                 struct sk_buff *nskb = skb_clone(skb, pri);
632                 kfree_skb(skb);
633                 skb = nskb;
634         }
635         return skb;
636 }
637
638 /*
639  *      Copy shared buffers into a new sk_buff. We effectively do COW on
640  *      packets to handle cases where we have a local reader and forward
641  *      and a couple of other messy ones. The normal one is tcpdumping
642  *      a packet thats being forwarded.
643  */
644
645 /**
646  *      skb_unshare - make a copy of a shared buffer
647  *      @skb: buffer to check
648  *      @pri: priority for memory allocation
649  *
650  *      If the socket buffer is a clone then this function creates a new
651  *      copy of the data, drops a reference count on the old copy and returns
652  *      the new copy with the reference count at 1. If the buffer is not a clone
653  *      the original buffer is returned. When called with a spinlock held or
654  *      from interrupt state @pri must be %GFP_ATOMIC
655  *
656  *      %NULL is returned on a memory allocation failure.
657  */
658 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
659                                           gfp_t pri)
660 {
661         might_sleep_if(pri & __GFP_WAIT);
662         if (skb_cloned(skb)) {
663                 struct sk_buff *nskb = skb_copy(skb, pri);
664                 kfree_skb(skb); /* Free our shared copy */
665                 skb = nskb;
666         }
667         return skb;
668 }
669
670 /**
671  *      skb_peek
672  *      @list_: list to peek at
673  *
674  *      Peek an &sk_buff. Unlike most other operations you _MUST_
675  *      be careful with this one. A peek leaves the buffer on the
676  *      list and someone else may run off with it. You must hold
677  *      the appropriate locks or have a private queue to do this.
678  *
679  *      Returns %NULL for an empty list or a pointer to the head element.
680  *      The reference count is not incremented and the reference is therefore
681  *      volatile. Use with caution.
682  */
683 static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
684 {
685         struct sk_buff *list = ((struct sk_buff *)list_)->next;
686         if (list == (struct sk_buff *)list_)
687                 list = NULL;
688         return list;
689 }
690
691 /**
692  *      skb_peek_tail
693  *      @list_: list to peek at
694  *
695  *      Peek an &sk_buff. Unlike most other operations you _MUST_
696  *      be careful with this one. A peek leaves the buffer on the
697  *      list and someone else may run off with it. You must hold
698  *      the appropriate locks or have a private queue to do this.
699  *
700  *      Returns %NULL for an empty list or a pointer to the tail element.
701  *      The reference count is not incremented and the reference is therefore
702  *      volatile. Use with caution.
703  */
704 static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
705 {
706         struct sk_buff *list = ((struct sk_buff *)list_)->prev;
707         if (list == (struct sk_buff *)list_)
708                 list = NULL;
709         return list;
710 }
711
712 /**
713  *      skb_queue_len   - get queue length
714  *      @list_: list to measure
715  *
716  *      Return the length of an &sk_buff queue.
717  */
718 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
719 {
720         return list_->qlen;
721 }
722
723 /**
724  *      __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
725  *      @list: queue to initialize
726  *
727  *      This initializes only the list and queue length aspects of
728  *      an sk_buff_head object.  This allows to initialize the list
729  *      aspects of an sk_buff_head without reinitializing things like
730  *      the spinlock.  It can also be used for on-stack sk_buff_head
731  *      objects where the spinlock is known to not be used.
732  */
733 static inline void __skb_queue_head_init(struct sk_buff_head *list)
734 {
735         list->prev = list->next = (struct sk_buff *)list;
736         list->qlen = 0;
737 }
738
739 /*
740  * This function creates a split out lock class for each invocation;
741  * this is needed for now since a whole lot of users of the skb-queue
742  * infrastructure in drivers have different locking usage (in hardirq)
743  * than the networking core (in softirq only). In the long run either the
744  * network layer or drivers should need annotation to consolidate the
745  * main types of usage into 3 classes.
746  */
747 static inline void skb_queue_head_init(struct sk_buff_head *list)
748 {
749         spin_lock_init(&list->lock);
750         __skb_queue_head_init(list);
751 }
752
753 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
754                 struct lock_class_key *class)
755 {
756         skb_queue_head_init(list);
757         lockdep_set_class(&list->lock, class);
758 }
759
760 /*
761  *      Insert an sk_buff on a list.
762  *
763  *      The "__skb_xxxx()" functions are the non-atomic ones that
764  *      can only be called with interrupts disabled.
765  */
766 extern void        skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
767 static inline void __skb_insert(struct sk_buff *newsk,
768                                 struct sk_buff *prev, struct sk_buff *next,
769                                 struct sk_buff_head *list)
770 {
771         newsk->next = next;
772         newsk->prev = prev;
773         next->prev  = prev->next = newsk;
774         list->qlen++;
775 }
776
777 static inline void __skb_queue_splice(const struct sk_buff_head *list,
778                                       struct sk_buff *prev,
779                                       struct sk_buff *next)
780 {
781         struct sk_buff *first = list->next;
782         struct sk_buff *last = list->prev;
783
784         first->prev = prev;
785         prev->next = first;
786
787         last->next = next;
788         next->prev = last;
789 }
790
791 /**
792  *      skb_queue_splice - join two skb lists, this is designed for stacks
793  *      @list: the new list to add
794  *      @head: the place to add it in the first list
795  */
796 static inline void skb_queue_splice(const struct sk_buff_head *list,
797                                     struct sk_buff_head *head)
798 {
799         if (!skb_queue_empty(list)) {
800                 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
801                 head->qlen += list->qlen;
802         }
803 }
804
805 /**
806  *      skb_queue_splice - join two skb lists and reinitialise the emptied list
807  *      @list: the new list to add
808  *      @head: the place to add it in the first list
809  *
810  *      The list at @list is reinitialised
811  */
812 static inline void skb_queue_splice_init(struct sk_buff_head *list,
813                                          struct sk_buff_head *head)
814 {
815         if (!skb_queue_empty(list)) {
816                 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
817                 head->qlen += list->qlen;
818                 __skb_queue_head_init(list);
819         }
820 }
821
822 /**
823  *      skb_queue_splice_tail - join two skb lists, each list being a queue
824  *      @list: the new list to add
825  *      @head: the place to add it in the first list
826  */
827 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
828                                          struct sk_buff_head *head)
829 {
830         if (!skb_queue_empty(list)) {
831                 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
832                 head->qlen += list->qlen;
833         }
834 }
835
836 /**
837  *      skb_queue_splice_tail - join two skb lists and reinitialise the emptied list
838  *      @list: the new list to add
839  *      @head: the place to add it in the first list
840  *
841  *      Each of the lists is a queue.
842  *      The list at @list is reinitialised
843  */
844 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
845                                               struct sk_buff_head *head)
846 {
847         if (!skb_queue_empty(list)) {
848                 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
849                 head->qlen += list->qlen;
850                 __skb_queue_head_init(list);
851         }
852 }
853
854 /**
855  *      __skb_queue_after - queue a buffer at the list head
856  *      @list: list to use
857  *      @prev: place after this buffer
858  *      @newsk: buffer to queue
859  *
860  *      Queue a buffer int the middle of a list. This function takes no locks
861  *      and you must therefore hold required locks before calling it.
862  *
863  *      A buffer cannot be placed on two lists at the same time.
864  */
865 static inline void __skb_queue_after(struct sk_buff_head *list,
866                                      struct sk_buff *prev,
867                                      struct sk_buff *newsk)
868 {
869         __skb_insert(newsk, prev, prev->next, list);
870 }
871
872 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk,
873                        struct sk_buff_head *list);
874
875 static inline void __skb_queue_before(struct sk_buff_head *list,
876                                       struct sk_buff *next,
877                                       struct sk_buff *newsk)
878 {
879         __skb_insert(newsk, next->prev, next, list);
880 }
881
882 /**
883  *      __skb_queue_head - queue a buffer at the list head
884  *      @list: list to use
885  *      @newsk: buffer to queue
886  *
887  *      Queue a buffer at the start of a list. This function takes no locks
888  *      and you must therefore hold required locks before calling it.
889  *
890  *      A buffer cannot be placed on two lists at the same time.
891  */
892 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
893 static inline void __skb_queue_head(struct sk_buff_head *list,
894                                     struct sk_buff *newsk)
895 {
896         __skb_queue_after(list, (struct sk_buff *)list, newsk);
897 }
898
899 /**
900  *      __skb_queue_tail - queue a buffer at the list tail
901  *      @list: list to use
902  *      @newsk: buffer to queue
903  *
904  *      Queue a buffer at the end of a list. This function takes no locks
905  *      and you must therefore hold required locks before calling it.
906  *
907  *      A buffer cannot be placed on two lists at the same time.
908  */
909 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
910 static inline void __skb_queue_tail(struct sk_buff_head *list,
911                                    struct sk_buff *newsk)
912 {
913         __skb_queue_before(list, (struct sk_buff *)list, newsk);
914 }
915
916 /*
917  * remove sk_buff from list. _Must_ be called atomically, and with
918  * the list known..
919  */
920 extern void        skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
921 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
922 {
923         struct sk_buff *next, *prev;
924
925         list->qlen--;
926         next       = skb->next;
927         prev       = skb->prev;
928         skb->next  = skb->prev = NULL;
929         next->prev = prev;
930         prev->next = next;
931 }
932
933 /**
934  *      __skb_dequeue - remove from the head of the queue
935  *      @list: list to dequeue from
936  *
937  *      Remove the head of the list. This function does not take any locks
938  *      so must be used with appropriate locks held only. The head item is
939  *      returned or %NULL if the list is empty.
940  */
941 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
942 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
943 {
944         struct sk_buff *skb = skb_peek(list);
945         if (skb)
946                 __skb_unlink(skb, list);
947         return skb;
948 }
949
950 /**
951  *      __skb_dequeue_tail - remove from the tail of the queue
952  *      @list: list to dequeue from
953  *
954  *      Remove the tail of the list. This function does not take any locks
955  *      so must be used with appropriate locks held only. The tail item is
956  *      returned or %NULL if the list is empty.
957  */
958 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
959 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
960 {
961         struct sk_buff *skb = skb_peek_tail(list);
962         if (skb)
963                 __skb_unlink(skb, list);
964         return skb;
965 }
966
967
968 static inline int skb_is_nonlinear(const struct sk_buff *skb)
969 {
970         return skb->data_len;
971 }
972
973 static inline unsigned int skb_headlen(const struct sk_buff *skb)
974 {
975         return skb->len - skb->data_len;
976 }
977
978 static inline int skb_pagelen(const struct sk_buff *skb)
979 {
980         int i, len = 0;
981
982         for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
983                 len += skb_shinfo(skb)->frags[i].size;
984         return len + skb_headlen(skb);
985 }
986
987 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
988                                       struct page *page, int off, int size)
989 {
990         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
991
992         frag->page                = page;
993         frag->page_offset         = off;
994         frag->size                = size;
995         skb_shinfo(skb)->nr_frags = i + 1;
996 }
997
998 extern void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page,
999                             int off, int size);
1000
1001 #define SKB_PAGE_ASSERT(skb)    BUG_ON(skb_shinfo(skb)->nr_frags)
1002 #define SKB_FRAG_ASSERT(skb)    BUG_ON(skb_shinfo(skb)->frag_list)
1003 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
1004
1005 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1006 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1007 {
1008         return skb->head + skb->tail;
1009 }
1010
1011 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1012 {
1013         skb->tail = skb->data - skb->head;
1014 }
1015
1016 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1017 {
1018         skb_reset_tail_pointer(skb);
1019         skb->tail += offset;
1020 }
1021 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1022 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1023 {
1024         return skb->tail;
1025 }
1026
1027 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1028 {
1029         skb->tail = skb->data;
1030 }
1031
1032 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1033 {
1034         skb->tail = skb->data + offset;
1035 }
1036
1037 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1038
1039 /*
1040  *      Add data to an sk_buff
1041  */
1042 extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
1043 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
1044 {
1045         unsigned char *tmp = skb_tail_pointer(skb);
1046         SKB_LINEAR_ASSERT(skb);
1047         skb->tail += len;
1048         skb->len  += len;
1049         return tmp;
1050 }
1051
1052 extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
1053 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
1054 {
1055         skb->data -= len;
1056         skb->len  += len;
1057         return skb->data;
1058 }
1059
1060 extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
1061 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
1062 {
1063         skb->len -= len;
1064         BUG_ON(skb->len < skb->data_len);
1065         return skb->data += len;
1066 }
1067
1068 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
1069
1070 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
1071 {
1072         if (len > skb_headlen(skb) &&
1073             !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1074                 return NULL;
1075         skb->len -= len;
1076         return skb->data += len;
1077 }
1078
1079 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
1080 {
1081         return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
1082 }
1083
1084 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
1085 {
1086         if (likely(len <= skb_headlen(skb)))
1087                 return 1;
1088         if (unlikely(len > skb->len))
1089                 return 0;
1090         return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1091 }
1092
1093 /**
1094  *      skb_headroom - bytes at buffer head
1095  *      @skb: buffer to check
1096  *
1097  *      Return the number of bytes of free space at the head of an &sk_buff.
1098  */
1099 static inline unsigned int skb_headroom(const struct sk_buff *skb)
1100 {
1101         return skb->data - skb->head;
1102 }
1103
1104 /**
1105  *      skb_tailroom - bytes at buffer end
1106  *      @skb: buffer to check
1107  *
1108  *      Return the number of bytes of free space at the tail of an sk_buff
1109  */
1110 static inline int skb_tailroom(const struct sk_buff *skb)
1111 {
1112         return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1113 }
1114
1115 /**
1116  *      skb_reserve - adjust headroom
1117  *      @skb: buffer to alter
1118  *      @len: bytes to move
1119  *
1120  *      Increase the headroom of an empty &sk_buff by reducing the tail
1121  *      room. This is only allowed for an empty buffer.
1122  */
1123 static inline void skb_reserve(struct sk_buff *skb, int len)
1124 {
1125         skb->data += len;
1126         skb->tail += len;
1127 }
1128
1129 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1130 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1131 {
1132         return skb->head + skb->transport_header;
1133 }
1134
1135 static inline void skb_reset_transport_header(struct sk_buff *skb)
1136 {
1137         skb->transport_header = skb->data - skb->head;
1138 }
1139
1140 static inline void skb_set_transport_header(struct sk_buff *skb,
1141                                             const int offset)
1142 {
1143         skb_reset_transport_header(skb);
1144         skb->transport_header += offset;
1145 }
1146
1147 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1148 {
1149         return skb->head + skb->network_header;
1150 }
1151
1152 static inline void skb_reset_network_header(struct sk_buff *skb)
1153 {
1154         skb->network_header = skb->data - skb->head;
1155 }
1156
1157 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1158 {
1159         skb_reset_network_header(skb);
1160         skb->network_header += offset;
1161 }
1162
1163 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1164 {
1165         return skb->head + skb->mac_header;
1166 }
1167
1168 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1169 {
1170         return skb->mac_header != ~0U;
1171 }
1172
1173 static inline void skb_reset_mac_header(struct sk_buff *skb)
1174 {
1175         skb->mac_header = skb->data - skb->head;
1176 }
1177
1178 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1179 {
1180         skb_reset_mac_header(skb);
1181         skb->mac_header += offset;
1182 }
1183
1184 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1185
1186 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1187 {
1188         return skb->transport_header;
1189 }
1190
1191 static inline void skb_reset_transport_header(struct sk_buff *skb)
1192 {
1193         skb->transport_header = skb->data;
1194 }
1195
1196 static inline void skb_set_transport_header(struct sk_buff *skb,
1197                                             const int offset)
1198 {
1199         skb->transport_header = skb->data + offset;
1200 }
1201
1202 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1203 {
1204         return skb->network_header;
1205 }
1206
1207 static inline void skb_reset_network_header(struct sk_buff *skb)
1208 {
1209         skb->network_header = skb->data;
1210 }
1211
1212 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1213 {
1214         skb->network_header = skb->data + offset;
1215 }
1216
1217 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1218 {
1219         return skb->mac_header;
1220 }
1221
1222 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1223 {
1224         return skb->mac_header != NULL;
1225 }
1226
1227 static inline void skb_reset_mac_header(struct sk_buff *skb)
1228 {
1229         skb->mac_header = skb->data;
1230 }
1231
1232 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1233 {
1234         skb->mac_header = skb->data + offset;
1235 }
1236 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1237
1238 static inline int skb_transport_offset(const struct sk_buff *skb)
1239 {
1240         return skb_transport_header(skb) - skb->data;
1241 }
1242
1243 static inline u32 skb_network_header_len(const struct sk_buff *skb)
1244 {
1245         return skb->transport_header - skb->network_header;
1246 }
1247
1248 static inline int skb_network_offset(const struct sk_buff *skb)
1249 {
1250         return skb_network_header(skb) - skb->data;
1251 }
1252
1253 /*
1254  * CPUs often take a performance hit when accessing unaligned memory
1255  * locations. The actual performance hit varies, it can be small if the
1256  * hardware handles it or large if we have to take an exception and fix it
1257  * in software.
1258  *
1259  * Since an ethernet header is 14 bytes network drivers often end up with
1260  * the IP header at an unaligned offset. The IP header can be aligned by
1261  * shifting the start of the packet by 2 bytes. Drivers should do this
1262  * with:
1263  *
1264  * skb_reserve(NET_IP_ALIGN);
1265  *
1266  * The downside to this alignment of the IP header is that the DMA is now
1267  * unaligned. On some architectures the cost of an unaligned DMA is high
1268  * and this cost outweighs the gains made by aligning the IP header.
1269  * 
1270  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1271  * to be overridden.
1272  */
1273 #ifndef NET_IP_ALIGN
1274 #define NET_IP_ALIGN    2
1275 #endif
1276
1277 /*
1278  * The networking layer reserves some headroom in skb data (via
1279  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1280  * the header has to grow. In the default case, if the header has to grow
1281  * 16 bytes or less we avoid the reallocation.
1282  *
1283  * Unfortunately this headroom changes the DMA alignment of the resulting
1284  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1285  * on some architectures. An architecture can override this value,
1286  * perhaps setting it to a cacheline in size (since that will maintain
1287  * cacheline alignment of the DMA). It must be a power of 2.
1288  *
1289  * Various parts of the networking layer expect at least 16 bytes of
1290  * headroom, you should not reduce this.
1291  */
1292 #ifndef NET_SKB_PAD
1293 #define NET_SKB_PAD     16
1294 #endif
1295
1296 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1297
1298 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
1299 {
1300         if (unlikely(skb->data_len)) {
1301                 WARN_ON(1);
1302                 return;
1303         }
1304         skb->len = len;
1305         skb_set_tail_pointer(skb, len);
1306 }
1307
1308 extern void skb_trim(struct sk_buff *skb, unsigned int len);
1309
1310 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1311 {
1312         if (skb->data_len)
1313                 return ___pskb_trim(skb, len);
1314         __skb_trim(skb, len);
1315         return 0;
1316 }
1317
1318 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1319 {
1320         return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1321 }
1322
1323 /**
1324  *      pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1325  *      @skb: buffer to alter
1326  *      @len: new length
1327  *
1328  *      This is identical to pskb_trim except that the caller knows that
1329  *      the skb is not cloned so we should never get an error due to out-
1330  *      of-memory.
1331  */
1332 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
1333 {
1334         int err = pskb_trim(skb, len);
1335         BUG_ON(err);
1336 }
1337
1338 /**
1339  *      skb_orphan - orphan a buffer
1340  *      @skb: buffer to orphan
1341  *
1342  *      If a buffer currently has an owner then we call the owner's
1343  *      destructor function and make the @skb unowned. The buffer continues
1344  *      to exist but is no longer charged to its former owner.
1345  */
1346 static inline void skb_orphan(struct sk_buff *skb)
1347 {
1348         if (skb->destructor)
1349                 skb->destructor(skb);
1350         skb->destructor = NULL;
1351         skb->sk         = NULL;
1352 }
1353
1354 /**
1355  *      __skb_queue_purge - empty a list
1356  *      @list: list to empty
1357  *
1358  *      Delete all buffers on an &sk_buff list. Each buffer is removed from
1359  *      the list and one reference dropped. This function does not take the
1360  *      list lock and the caller must hold the relevant locks to use it.
1361  */
1362 extern void skb_queue_purge(struct sk_buff_head *list);
1363 static inline void __skb_queue_purge(struct sk_buff_head *list)
1364 {
1365         struct sk_buff *skb;
1366         while ((skb = __skb_dequeue(list)) != NULL)
1367                 kfree_skb(skb);
1368 }
1369
1370 /**
1371  *      __dev_alloc_skb - allocate an skbuff for receiving
1372  *      @length: length to allocate
1373  *      @gfp_mask: get_free_pages mask, passed to alloc_skb
1374  *
1375  *      Allocate a new &sk_buff and assign it a usage count of one. The
1376  *      buffer has unspecified headroom built in. Users should allocate
1377  *      the headroom they think they need without accounting for the
1378  *      built in space. The built in space is used for optimisations.
1379  *
1380  *      %NULL is returned if there is no free memory.
1381  */
1382 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1383                                               gfp_t gfp_mask)
1384 {
1385         struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
1386         if (likely(skb))
1387                 skb_reserve(skb, NET_SKB_PAD);
1388         return skb;
1389 }
1390
1391 extern struct sk_buff *dev_alloc_skb(unsigned int length);
1392
1393 extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
1394                 unsigned int length, gfp_t gfp_mask);
1395
1396 /**
1397  *      netdev_alloc_skb - allocate an skbuff for rx on a specific device
1398  *      @dev: network device to receive on
1399  *      @length: length to allocate
1400  *
1401  *      Allocate a new &sk_buff and assign it a usage count of one. The
1402  *      buffer has unspecified headroom built in. Users should allocate
1403  *      the headroom they think they need without accounting for the
1404  *      built in space. The built in space is used for optimisations.
1405  *
1406  *      %NULL is returned if there is no free memory. Although this function
1407  *      allocates memory it can be called from an interrupt.
1408  */
1409 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
1410                 unsigned int length)
1411 {
1412         return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
1413 }
1414
1415 extern struct page *__netdev_alloc_page(struct net_device *dev, gfp_t gfp_mask);
1416
1417 /**
1418  *      netdev_alloc_page - allocate a page for ps-rx on a specific device
1419  *      @dev: network device to receive on
1420  *
1421  *      Allocate a new page node local to the specified device.
1422  *
1423  *      %NULL is returned if there is no free memory.
1424  */
1425 static inline struct page *netdev_alloc_page(struct net_device *dev)
1426 {
1427         return __netdev_alloc_page(dev, GFP_ATOMIC);
1428 }
1429
1430 static inline void netdev_free_page(struct net_device *dev, struct page *page)
1431 {
1432         __free_page(page);
1433 }
1434
1435 /**
1436  *      skb_clone_writable - is the header of a clone writable
1437  *      @skb: buffer to check
1438  *      @len: length up to which to write
1439  *
1440  *      Returns true if modifying the header part of the cloned buffer
1441  *      does not requires the data to be copied.
1442  */
1443 static inline int skb_clone_writable(struct sk_buff *skb, unsigned int len)
1444 {
1445         return !skb_header_cloned(skb) &&
1446                skb_headroom(skb) + len <= skb->hdr_len;
1447 }
1448
1449 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
1450                             int cloned)
1451 {
1452         int delta = 0;
1453
1454         if (headroom < NET_SKB_PAD)
1455                 headroom = NET_SKB_PAD;
1456         if (headroom > skb_headroom(skb))
1457                 delta = headroom - skb_headroom(skb);
1458
1459         if (delta || cloned)
1460                 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
1461                                         GFP_ATOMIC);
1462         return 0;
1463 }
1464
1465 /**
1466  *      skb_cow - copy header of skb when it is required
1467  *      @skb: buffer to cow
1468  *      @headroom: needed headroom
1469  *
1470  *      If the skb passed lacks sufficient headroom or its data part
1471  *      is shared, data is reallocated. If reallocation fails, an error
1472  *      is returned and original skb is not changed.
1473  *
1474  *      The result is skb with writable area skb->head...skb->tail
1475  *      and at least @headroom of space at head.
1476  */
1477 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1478 {
1479         return __skb_cow(skb, headroom, skb_cloned(skb));
1480 }
1481
1482 /**
1483  *      skb_cow_head - skb_cow but only making the head writable
1484  *      @skb: buffer to cow
1485  *      @headroom: needed headroom
1486  *
1487  *      This function is identical to skb_cow except that we replace the
1488  *      skb_cloned check by skb_header_cloned.  It should be used when
1489  *      you only need to push on some header and do not need to modify
1490  *      the data.
1491  */
1492 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
1493 {
1494         return __skb_cow(skb, headroom, skb_header_cloned(skb));
1495 }
1496
1497 /**
1498  *      skb_padto       - pad an skbuff up to a minimal size
1499  *      @skb: buffer to pad
1500  *      @len: minimal length
1501  *
1502  *      Pads up a buffer to ensure the trailing bytes exist and are
1503  *      blanked. If the buffer already contains sufficient data it
1504  *      is untouched. Otherwise it is extended. Returns zero on
1505  *      success. The skb is freed on error.
1506  */
1507  
1508 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1509 {
1510         unsigned int size = skb->len;
1511         if (likely(size >= len))
1512                 return 0;
1513         return skb_pad(skb, len - size);
1514 }
1515
1516 static inline int skb_add_data(struct sk_buff *skb,
1517                                char __user *from, int copy)
1518 {
1519         const int off = skb->len;
1520
1521         if (skb->ip_summed == CHECKSUM_NONE) {
1522                 int err = 0;
1523                 __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
1524                                                             copy, 0, &err);
1525                 if (!err) {
1526                         skb->csum = csum_block_add(skb->csum, csum, off);
1527                         return 0;
1528                 }
1529         } else if (!copy_from_user(skb_put(skb, copy), from, copy))
1530                 return 0;
1531
1532         __skb_trim(skb, off);
1533         return -EFAULT;
1534 }
1535
1536 static inline int skb_can_coalesce(struct sk_buff *skb, int i,
1537                                    struct page *page, int off)
1538 {
1539         if (i) {
1540                 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1541
1542                 return page == frag->page &&
1543                        off == frag->page_offset + frag->size;
1544         }
1545         return 0;
1546 }
1547
1548 static inline int __skb_linearize(struct sk_buff *skb)
1549 {
1550         return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
1551 }
1552
1553 /**
1554  *      skb_linearize - convert paged skb to linear one
1555  *      @skb: buffer to linarize
1556  *
1557  *      If there is no free memory -ENOMEM is returned, otherwise zero
1558  *      is returned and the old skb data released.
1559  */
1560 static inline int skb_linearize(struct sk_buff *skb)
1561 {
1562         return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
1563 }
1564
1565 /**
1566  *      skb_linearize_cow - make sure skb is linear and writable
1567  *      @skb: buffer to process
1568  *
1569  *      If there is no free memory -ENOMEM is returned, otherwise zero
1570  *      is returned and the old skb data released.
1571  */
1572 static inline int skb_linearize_cow(struct sk_buff *skb)
1573 {
1574         return skb_is_nonlinear(skb) || skb_cloned(skb) ?
1575                __skb_linearize(skb) : 0;
1576 }
1577
1578 /**
1579  *      skb_postpull_rcsum - update checksum for received skb after pull
1580  *      @skb: buffer to update
1581  *      @start: start of data before pull
1582  *      @len: length of data pulled
1583  *
1584  *      After doing a pull on a received packet, you need to call this to
1585  *      update the CHECKSUM_COMPLETE checksum, or set ip_summed to
1586  *      CHECKSUM_NONE so that it can be recomputed from scratch.
1587  */
1588
1589 static inline void skb_postpull_rcsum(struct sk_buff *skb,
1590                                       const void *start, unsigned int len)
1591 {
1592         if (skb->ip_summed == CHECKSUM_COMPLETE)
1593                 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
1594 }
1595
1596 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
1597
1598 /**
1599  *      pskb_trim_rcsum - trim received skb and update checksum
1600  *      @skb: buffer to trim
1601  *      @len: new length
1602  *
1603  *      This is exactly the same as pskb_trim except that it ensures the
1604  *      checksum of received packets are still valid after the operation.
1605  */
1606
1607 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
1608 {
1609         if (likely(len >= skb->len))
1610                 return 0;
1611         if (skb->ip_summed == CHECKSUM_COMPLETE)
1612                 skb->ip_summed = CHECKSUM_NONE;
1613         return __pskb_trim(skb, len);
1614 }
1615
1616 #define skb_queue_walk(queue, skb) \
1617                 for (skb = (queue)->next;                                       \
1618                      prefetch(skb->next), (skb != (struct sk_buff *)(queue));   \
1619                      skb = skb->next)
1620
1621 #define skb_queue_walk_safe(queue, skb, tmp)                                    \
1622                 for (skb = (queue)->next, tmp = skb->next;                      \
1623                      skb != (struct sk_buff *)(queue);                          \
1624                      skb = tmp, tmp = skb->next)
1625
1626 #define skb_queue_walk_from(queue, skb)                                         \
1627                 for (; prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \
1628                      skb = skb->next)
1629
1630 #define skb_queue_walk_from_safe(queue, skb, tmp)                               \
1631                 for (tmp = skb->next;                                           \
1632                      skb != (struct sk_buff *)(queue);                          \
1633                      skb = tmp, tmp = skb->next)
1634
1635 #define skb_queue_reverse_walk(queue, skb) \
1636                 for (skb = (queue)->prev;                                       \
1637                      prefetch(skb->prev), (skb != (struct sk_buff *)(queue));   \
1638                      skb = skb->prev)
1639
1640
1641 extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
1642                                            int *peeked, int *err);
1643 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
1644                                          int noblock, int *err);
1645 extern unsigned int    datagram_poll(struct file *file, struct socket *sock,
1646                                      struct poll_table_struct *wait);
1647 extern int             skb_copy_datagram_iovec(const struct sk_buff *from,
1648                                                int offset, struct iovec *to,
1649                                                int size);
1650 extern int             skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
1651                                                         int hlen,
1652                                                         struct iovec *iov);
1653 extern int             skb_copy_datagram_from_iovec(struct sk_buff *skb,
1654                                                     int offset,
1655                                                     struct iovec *from,
1656                                                     int len);
1657 extern void            skb_free_datagram(struct sock *sk, struct sk_buff *skb);
1658 extern int             skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
1659                                          unsigned int flags);
1660 extern __wsum          skb_checksum(const struct sk_buff *skb, int offset,
1661                                     int len, __wsum csum);
1662 extern int             skb_copy_bits(const struct sk_buff *skb, int offset,
1663                                      void *to, int len);
1664 extern int             skb_store_bits(struct sk_buff *skb, int offset,
1665                                       const void *from, int len);
1666 extern __wsum          skb_copy_and_csum_bits(const struct sk_buff *skb,
1667                                               int offset, u8 *to, int len,
1668                                               __wsum csum);
1669 extern int             skb_splice_bits(struct sk_buff *skb,
1670                                                 unsigned int offset,
1671                                                 struct pipe_inode_info *pipe,
1672                                                 unsigned int len,
1673                                                 unsigned int flags);
1674 extern void            skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
1675 extern void            skb_split(struct sk_buff *skb,
1676                                  struct sk_buff *skb1, const u32 len);
1677 extern int             skb_shift(struct sk_buff *tgt, struct sk_buff *skb,
1678                                  int shiftlen);
1679
1680 extern struct sk_buff *skb_segment(struct sk_buff *skb, int features);
1681 extern int             skb_gro_receive(struct sk_buff **head,
1682                                        struct sk_buff *skb);
1683
1684 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
1685                                        int len, void *buffer)
1686 {
1687         int hlen = skb_headlen(skb);
1688
1689         if (hlen - offset >= len)
1690                 return skb->data + offset;
1691
1692         if (skb_copy_bits(skb, offset, buffer, len) < 0)
1693                 return NULL;
1694
1695         return buffer;
1696 }
1697
1698 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
1699                                              void *to,
1700                                              const unsigned int len)
1701 {
1702         memcpy(to, skb->data, len);
1703 }
1704
1705 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
1706                                                     const int offset, void *to,
1707                                                     const unsigned int len)
1708 {
1709         memcpy(to, skb->data + offset, len);
1710 }
1711
1712 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
1713                                            const void *from,
1714                                            const unsigned int len)
1715 {
1716         memcpy(skb->data, from, len);
1717 }
1718
1719 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
1720                                                   const int offset,
1721                                                   const void *from,
1722                                                   const unsigned int len)
1723 {
1724         memcpy(skb->data + offset, from, len);
1725 }
1726
1727 extern void skb_init(void);
1728
1729 /**
1730  *      skb_get_timestamp - get timestamp from a skb
1731  *      @skb: skb to get stamp from
1732  *      @stamp: pointer to struct timeval to store stamp in
1733  *
1734  *      Timestamps are stored in the skb as offsets to a base timestamp.
1735  *      This function converts the offset back to a struct timeval and stores
1736  *      it in stamp.
1737  */
1738 static inline void skb_get_timestamp(const struct sk_buff *skb, struct timeval *stamp)
1739 {
1740         *stamp = ktime_to_timeval(skb->tstamp);
1741 }
1742
1743 static inline void __net_timestamp(struct sk_buff *skb)
1744 {
1745         skb->tstamp = ktime_get_real();
1746 }
1747
1748 static inline ktime_t net_timedelta(ktime_t t)
1749 {
1750         return ktime_sub(ktime_get_real(), t);
1751 }
1752
1753 static inline ktime_t net_invalid_timestamp(void)
1754 {
1755         return ktime_set(0, 0);
1756 }
1757
1758 extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
1759 extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
1760
1761 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
1762 {
1763         return skb->ip_summed & CHECKSUM_UNNECESSARY;
1764 }
1765
1766 /**
1767  *      skb_checksum_complete - Calculate checksum of an entire packet
1768  *      @skb: packet to process
1769  *
1770  *      This function calculates the checksum over the entire packet plus
1771  *      the value of skb->csum.  The latter can be used to supply the
1772  *      checksum of a pseudo header as used by TCP/UDP.  It returns the
1773  *      checksum.
1774  *
1775  *      For protocols that contain complete checksums such as ICMP/TCP/UDP,
1776  *      this function can be used to verify that checksum on received
1777  *      packets.  In that case the function should return zero if the
1778  *      checksum is correct.  In particular, this function will return zero
1779  *      if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
1780  *      hardware has already verified the correctness of the checksum.
1781  */
1782 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
1783 {
1784         return skb_csum_unnecessary(skb) ?
1785                0 : __skb_checksum_complete(skb);
1786 }
1787
1788 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1789 extern void nf_conntrack_destroy(struct nf_conntrack *nfct);
1790 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
1791 {
1792         if (nfct && atomic_dec_and_test(&nfct->use))
1793                 nf_conntrack_destroy(nfct);
1794 }
1795 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
1796 {
1797         if (nfct)
1798                 atomic_inc(&nfct->use);
1799 }
1800 static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
1801 {
1802         if (skb)
1803                 atomic_inc(&skb->users);
1804 }
1805 static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
1806 {
1807         if (skb)
1808                 kfree_skb(skb);
1809 }
1810 #endif
1811 #ifdef CONFIG_BRIDGE_NETFILTER
1812 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
1813 {
1814         if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
1815                 kfree(nf_bridge);
1816 }
1817 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
1818 {
1819         if (nf_bridge)
1820                 atomic_inc(&nf_bridge->use);
1821 }
1822 #endif /* CONFIG_BRIDGE_NETFILTER */
1823 static inline void nf_reset(struct sk_buff *skb)
1824 {
1825 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1826         nf_conntrack_put(skb->nfct);
1827         skb->nfct = NULL;
1828         nf_conntrack_put_reasm(skb->nfct_reasm);
1829         skb->nfct_reasm = NULL;
1830 #endif
1831 #ifdef CONFIG_BRIDGE_NETFILTER
1832         nf_bridge_put(skb->nf_bridge);
1833         skb->nf_bridge = NULL;
1834 #endif
1835 }
1836
1837 /* Note: This doesn't put any conntrack and bridge info in dst. */
1838 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
1839 {
1840 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1841         dst->nfct = src->nfct;
1842         nf_conntrack_get(src->nfct);
1843         dst->nfctinfo = src->nfctinfo;
1844         dst->nfct_reasm = src->nfct_reasm;
1845         nf_conntrack_get_reasm(src->nfct_reasm);
1846 #endif
1847 #ifdef CONFIG_BRIDGE_NETFILTER
1848         dst->nf_bridge  = src->nf_bridge;
1849         nf_bridge_get(src->nf_bridge);
1850 #endif
1851 }
1852
1853 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
1854 {
1855 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1856         nf_conntrack_put(dst->nfct);
1857         nf_conntrack_put_reasm(dst->nfct_reasm);
1858 #endif
1859 #ifdef CONFIG_BRIDGE_NETFILTER
1860         nf_bridge_put(dst->nf_bridge);
1861 #endif
1862         __nf_copy(dst, src);
1863 }
1864
1865 #ifdef CONFIG_NETWORK_SECMARK
1866 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1867 {
1868         to->secmark = from->secmark;
1869 }
1870
1871 static inline void skb_init_secmark(struct sk_buff *skb)
1872 {
1873         skb->secmark = 0;
1874 }
1875 #else
1876 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1877 { }
1878
1879 static inline void skb_init_secmark(struct sk_buff *skb)
1880 { }
1881 #endif
1882
1883 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
1884 {
1885         skb->queue_mapping = queue_mapping;
1886 }
1887
1888 static inline u16 skb_get_queue_mapping(struct sk_buff *skb)
1889 {
1890         return skb->queue_mapping;
1891 }
1892
1893 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
1894 {
1895         to->queue_mapping = from->queue_mapping;
1896 }
1897
1898 #ifdef CONFIG_XFRM
1899 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
1900 {
1901         return skb->sp;
1902 }
1903 #else
1904 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
1905 {
1906         return NULL;
1907 }
1908 #endif
1909
1910 static inline int skb_is_gso(const struct sk_buff *skb)
1911 {
1912         return skb_shinfo(skb)->gso_size;
1913 }
1914
1915 static inline int skb_is_gso_v6(const struct sk_buff *skb)
1916 {
1917         return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
1918 }
1919
1920 extern void __skb_warn_lro_forwarding(const struct sk_buff *skb);
1921
1922 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
1923 {
1924         /* LRO sets gso_size but not gso_type, whereas if GSO is really
1925          * wanted then gso_type will be set. */
1926         struct skb_shared_info *shinfo = skb_shinfo(skb);
1927         if (shinfo->gso_size != 0 && unlikely(shinfo->gso_type == 0)) {
1928                 __skb_warn_lro_forwarding(skb);
1929                 return true;
1930         }
1931         return false;
1932 }
1933
1934 static inline void skb_forward_csum(struct sk_buff *skb)
1935 {
1936         /* Unfortunately we don't support this one.  Any brave souls? */
1937         if (skb->ip_summed == CHECKSUM_COMPLETE)
1938                 skb->ip_summed = CHECKSUM_NONE;
1939 }
1940
1941 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
1942 #endif  /* __KERNEL__ */
1943 #endif  /* _LINUX_SKBUFF_H */