Merge commit 'v2.6.32-rc6' into perf/core
[safe/jmp/linux-2.6] / include / linux / perf_event.h
1 /*
2  * Performance events:
3  *
4  *    Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
5  *    Copyright (C) 2008-2009, Red Hat, Inc., Ingo Molnar
6  *    Copyright (C) 2008-2009, Red Hat, Inc., Peter Zijlstra
7  *
8  * Data type definitions, declarations, prototypes.
9  *
10  *    Started by: Thomas Gleixner and Ingo Molnar
11  *
12  * For licencing details see kernel-base/COPYING
13  */
14 #ifndef _LINUX_PERF_EVENT_H
15 #define _LINUX_PERF_EVENT_H
16
17 #include <linux/types.h>
18 #include <linux/ioctl.h>
19 #include <asm/byteorder.h>
20
21 /*
22  * User-space ABI bits:
23  */
24
25 /*
26  * attr.type
27  */
28 enum perf_type_id {
29         PERF_TYPE_HARDWARE                      = 0,
30         PERF_TYPE_SOFTWARE                      = 1,
31         PERF_TYPE_TRACEPOINT                    = 2,
32         PERF_TYPE_HW_CACHE                      = 3,
33         PERF_TYPE_RAW                           = 4,
34
35         PERF_TYPE_MAX,                          /* non-ABI */
36 };
37
38 /*
39  * Generalized performance event event_id types, used by the
40  * attr.event_id parameter of the sys_perf_event_open()
41  * syscall:
42  */
43 enum perf_hw_id {
44         /*
45          * Common hardware events, generalized by the kernel:
46          */
47         PERF_COUNT_HW_CPU_CYCLES                = 0,
48         PERF_COUNT_HW_INSTRUCTIONS              = 1,
49         PERF_COUNT_HW_CACHE_REFERENCES          = 2,
50         PERF_COUNT_HW_CACHE_MISSES              = 3,
51         PERF_COUNT_HW_BRANCH_INSTRUCTIONS       = 4,
52         PERF_COUNT_HW_BRANCH_MISSES             = 5,
53         PERF_COUNT_HW_BUS_CYCLES                = 6,
54
55         PERF_COUNT_HW_MAX,                      /* non-ABI */
56 };
57
58 /*
59  * Generalized hardware cache events:
60  *
61  *       { L1-D, L1-I, LLC, ITLB, DTLB, BPU } x
62  *       { read, write, prefetch } x
63  *       { accesses, misses }
64  */
65 enum perf_hw_cache_id {
66         PERF_COUNT_HW_CACHE_L1D                 = 0,
67         PERF_COUNT_HW_CACHE_L1I                 = 1,
68         PERF_COUNT_HW_CACHE_LL                  = 2,
69         PERF_COUNT_HW_CACHE_DTLB                = 3,
70         PERF_COUNT_HW_CACHE_ITLB                = 4,
71         PERF_COUNT_HW_CACHE_BPU                 = 5,
72
73         PERF_COUNT_HW_CACHE_MAX,                /* non-ABI */
74 };
75
76 enum perf_hw_cache_op_id {
77         PERF_COUNT_HW_CACHE_OP_READ             = 0,
78         PERF_COUNT_HW_CACHE_OP_WRITE            = 1,
79         PERF_COUNT_HW_CACHE_OP_PREFETCH         = 2,
80
81         PERF_COUNT_HW_CACHE_OP_MAX,             /* non-ABI */
82 };
83
84 enum perf_hw_cache_op_result_id {
85         PERF_COUNT_HW_CACHE_RESULT_ACCESS       = 0,
86         PERF_COUNT_HW_CACHE_RESULT_MISS         = 1,
87
88         PERF_COUNT_HW_CACHE_RESULT_MAX,         /* non-ABI */
89 };
90
91 /*
92  * Special "software" events provided by the kernel, even if the hardware
93  * does not support performance events. These events measure various
94  * physical and sw events of the kernel (and allow the profiling of them as
95  * well):
96  */
97 enum perf_sw_ids {
98         PERF_COUNT_SW_CPU_CLOCK                 = 0,
99         PERF_COUNT_SW_TASK_CLOCK                = 1,
100         PERF_COUNT_SW_PAGE_FAULTS               = 2,
101         PERF_COUNT_SW_CONTEXT_SWITCHES          = 3,
102         PERF_COUNT_SW_CPU_MIGRATIONS            = 4,
103         PERF_COUNT_SW_PAGE_FAULTS_MIN           = 5,
104         PERF_COUNT_SW_PAGE_FAULTS_MAJ           = 6,
105
106         PERF_COUNT_SW_MAX,                      /* non-ABI */
107 };
108
109 /*
110  * Bits that can be set in attr.sample_type to request information
111  * in the overflow packets.
112  */
113 enum perf_event_sample_format {
114         PERF_SAMPLE_IP                          = 1U << 0,
115         PERF_SAMPLE_TID                         = 1U << 1,
116         PERF_SAMPLE_TIME                        = 1U << 2,
117         PERF_SAMPLE_ADDR                        = 1U << 3,
118         PERF_SAMPLE_READ                        = 1U << 4,
119         PERF_SAMPLE_CALLCHAIN                   = 1U << 5,
120         PERF_SAMPLE_ID                          = 1U << 6,
121         PERF_SAMPLE_CPU                         = 1U << 7,
122         PERF_SAMPLE_PERIOD                      = 1U << 8,
123         PERF_SAMPLE_STREAM_ID                   = 1U << 9,
124         PERF_SAMPLE_RAW                         = 1U << 10,
125
126         PERF_SAMPLE_MAX = 1U << 11,             /* non-ABI */
127 };
128
129 /*
130  * The format of the data returned by read() on a perf event fd,
131  * as specified by attr.read_format:
132  *
133  * struct read_format {
134  *      { u64           value;
135  *        { u64         time_enabled; } && PERF_FORMAT_ENABLED
136  *        { u64         time_running; } && PERF_FORMAT_RUNNING
137  *        { u64         id;           } && PERF_FORMAT_ID
138  *      } && !PERF_FORMAT_GROUP
139  *
140  *      { u64           nr;
141  *        { u64         time_enabled; } && PERF_FORMAT_ENABLED
142  *        { u64         time_running; } && PERF_FORMAT_RUNNING
143  *        { u64         value;
144  *          { u64       id;           } && PERF_FORMAT_ID
145  *        }             cntr[nr];
146  *      } && PERF_FORMAT_GROUP
147  * };
148  */
149 enum perf_event_read_format {
150         PERF_FORMAT_TOTAL_TIME_ENABLED          = 1U << 0,
151         PERF_FORMAT_TOTAL_TIME_RUNNING          = 1U << 1,
152         PERF_FORMAT_ID                          = 1U << 2,
153         PERF_FORMAT_GROUP                       = 1U << 3,
154
155         PERF_FORMAT_MAX = 1U << 4,              /* non-ABI */
156 };
157
158 #define PERF_ATTR_SIZE_VER0     64      /* sizeof first published struct */
159
160 /*
161  * Hardware event_id to monitor via a performance monitoring event:
162  */
163 struct perf_event_attr {
164
165         /*
166          * Major type: hardware/software/tracepoint/etc.
167          */
168         __u32                   type;
169
170         /*
171          * Size of the attr structure, for fwd/bwd compat.
172          */
173         __u32                   size;
174
175         /*
176          * Type specific configuration information.
177          */
178         __u64                   config;
179
180         union {
181                 __u64           sample_period;
182                 __u64           sample_freq;
183         };
184
185         __u64                   sample_type;
186         __u64                   read_format;
187
188         __u64                   disabled       :  1, /* off by default        */
189                                 inherit        :  1, /* children inherit it   */
190                                 pinned         :  1, /* must always be on PMU */
191                                 exclusive      :  1, /* only group on PMU     */
192                                 exclude_user   :  1, /* don't count user      */
193                                 exclude_kernel :  1, /* ditto kernel          */
194                                 exclude_hv     :  1, /* ditto hypervisor      */
195                                 exclude_idle   :  1, /* don't count when idle */
196                                 mmap           :  1, /* include mmap data     */
197                                 comm           :  1, /* include comm data     */
198                                 freq           :  1, /* use freq, not period  */
199                                 inherit_stat   :  1, /* per task counts       */
200                                 enable_on_exec :  1, /* next exec enables     */
201                                 task           :  1, /* trace fork/exit       */
202                                 watermark      :  1, /* wakeup_watermark      */
203
204                                 __reserved_1   : 49;
205
206         union {
207                 __u32           wakeup_events;    /* wakeup every n events */
208                 __u32           wakeup_watermark; /* bytes before wakeup   */
209         };
210         __u32                   __reserved_2;
211
212         __u64                   __reserved_3;
213 };
214
215 /*
216  * Ioctls that can be done on a perf event fd:
217  */
218 #define PERF_EVENT_IOC_ENABLE           _IO ('$', 0)
219 #define PERF_EVENT_IOC_DISABLE          _IO ('$', 1)
220 #define PERF_EVENT_IOC_REFRESH          _IO ('$', 2)
221 #define PERF_EVENT_IOC_RESET            _IO ('$', 3)
222 #define PERF_EVENT_IOC_PERIOD           _IOW('$', 4, u64)
223 #define PERF_EVENT_IOC_SET_OUTPUT       _IO ('$', 5)
224 #define PERF_EVENT_IOC_SET_FILTER       _IOW('$', 6, char *)
225
226 enum perf_event_ioc_flags {
227         PERF_IOC_FLAG_GROUP             = 1U << 0,
228 };
229
230 /*
231  * Structure of the page that can be mapped via mmap
232  */
233 struct perf_event_mmap_page {
234         __u32   version;                /* version number of this structure */
235         __u32   compat_version;         /* lowest version this is compat with */
236
237         /*
238          * Bits needed to read the hw events in user-space.
239          *
240          *   u32 seq;
241          *   s64 count;
242          *
243          *   do {
244          *     seq = pc->lock;
245          *
246          *     barrier()
247          *     if (pc->index) {
248          *       count = pmc_read(pc->index - 1);
249          *       count += pc->offset;
250          *     } else
251          *       goto regular_read;
252          *
253          *     barrier();
254          *   } while (pc->lock != seq);
255          *
256          * NOTE: for obvious reason this only works on self-monitoring
257          *       processes.
258          */
259         __u32   lock;                   /* seqlock for synchronization */
260         __u32   index;                  /* hardware event identifier */
261         __s64   offset;                 /* add to hardware event value */
262         __u64   time_enabled;           /* time event active */
263         __u64   time_running;           /* time event on cpu */
264
265                 /*
266                  * Hole for extension of the self monitor capabilities
267                  */
268
269         __u64   __reserved[123];        /* align to 1k */
270
271         /*
272          * Control data for the mmap() data buffer.
273          *
274          * User-space reading the @data_head value should issue an rmb(), on
275          * SMP capable platforms, after reading this value -- see
276          * perf_event_wakeup().
277          *
278          * When the mapping is PROT_WRITE the @data_tail value should be
279          * written by userspace to reflect the last read data. In this case
280          * the kernel will not over-write unread data.
281          */
282         __u64   data_head;              /* head in the data section */
283         __u64   data_tail;              /* user-space written tail */
284 };
285
286 #define PERF_RECORD_MISC_CPUMODE_MASK           (3 << 0)
287 #define PERF_RECORD_MISC_CPUMODE_UNKNOWN                (0 << 0)
288 #define PERF_RECORD_MISC_KERNEL                 (1 << 0)
289 #define PERF_RECORD_MISC_USER                   (2 << 0)
290 #define PERF_RECORD_MISC_HYPERVISOR             (3 << 0)
291
292 struct perf_event_header {
293         __u32   type;
294         __u16   misc;
295         __u16   size;
296 };
297
298 enum perf_event_type {
299
300         /*
301          * The MMAP events record the PROT_EXEC mappings so that we can
302          * correlate userspace IPs to code. They have the following structure:
303          *
304          * struct {
305          *      struct perf_event_header        header;
306          *
307          *      u32                             pid, tid;
308          *      u64                             addr;
309          *      u64                             len;
310          *      u64                             pgoff;
311          *      char                            filename[];
312          * };
313          */
314         PERF_RECORD_MMAP                        = 1,
315
316         /*
317          * struct {
318          *      struct perf_event_header        header;
319          *      u64                             id;
320          *      u64                             lost;
321          * };
322          */
323         PERF_RECORD_LOST                        = 2,
324
325         /*
326          * struct {
327          *      struct perf_event_header        header;
328          *
329          *      u32                             pid, tid;
330          *      char                            comm[];
331          * };
332          */
333         PERF_RECORD_COMM                        = 3,
334
335         /*
336          * struct {
337          *      struct perf_event_header        header;
338          *      u32                             pid, ppid;
339          *      u32                             tid, ptid;
340          *      u64                             time;
341          * };
342          */
343         PERF_RECORD_EXIT                        = 4,
344
345         /*
346          * struct {
347          *      struct perf_event_header        header;
348          *      u64                             time;
349          *      u64                             id;
350          *      u64                             stream_id;
351          * };
352          */
353         PERF_RECORD_THROTTLE            = 5,
354         PERF_RECORD_UNTHROTTLE          = 6,
355
356         /*
357          * struct {
358          *      struct perf_event_header        header;
359          *      u32                             pid, ppid;
360          *      u32                             tid, ptid;
361          *      u64                             time;
362          * };
363          */
364         PERF_RECORD_FORK                        = 7,
365
366         /*
367          * struct {
368          *      struct perf_event_header        header;
369          *      u32                             pid, tid;
370          *
371          *      struct read_format              values;
372          * };
373          */
374         PERF_RECORD_READ                        = 8,
375
376         /*
377          * struct {
378          *      struct perf_event_header        header;
379          *
380          *      { u64                   ip;       } && PERF_SAMPLE_IP
381          *      { u32                   pid, tid; } && PERF_SAMPLE_TID
382          *      { u64                   time;     } && PERF_SAMPLE_TIME
383          *      { u64                   addr;     } && PERF_SAMPLE_ADDR
384          *      { u64                   id;       } && PERF_SAMPLE_ID
385          *      { u64                   stream_id;} && PERF_SAMPLE_STREAM_ID
386          *      { u32                   cpu, res; } && PERF_SAMPLE_CPU
387          *      { u64                   period;   } && PERF_SAMPLE_PERIOD
388          *
389          *      { struct read_format    values;   } && PERF_SAMPLE_READ
390          *
391          *      { u64                   nr,
392          *        u64                   ips[nr];  } && PERF_SAMPLE_CALLCHAIN
393          *
394          *      #
395          *      # The RAW record below is opaque data wrt the ABI
396          *      #
397          *      # That is, the ABI doesn't make any promises wrt to
398          *      # the stability of its content, it may vary depending
399          *      # on event, hardware, kernel version and phase of
400          *      # the moon.
401          *      #
402          *      # In other words, PERF_SAMPLE_RAW contents are not an ABI.
403          *      #
404          *
405          *      { u32                   size;
406          *        char                  data[size];}&& PERF_SAMPLE_RAW
407          * };
408          */
409         PERF_RECORD_SAMPLE              = 9,
410
411         PERF_RECORD_MAX,                        /* non-ABI */
412 };
413
414 enum perf_callchain_context {
415         PERF_CONTEXT_HV                 = (__u64)-32,
416         PERF_CONTEXT_KERNEL             = (__u64)-128,
417         PERF_CONTEXT_USER               = (__u64)-512,
418
419         PERF_CONTEXT_GUEST              = (__u64)-2048,
420         PERF_CONTEXT_GUEST_KERNEL       = (__u64)-2176,
421         PERF_CONTEXT_GUEST_USER         = (__u64)-2560,
422
423         PERF_CONTEXT_MAX                = (__u64)-4095,
424 };
425
426 #define PERF_FLAG_FD_NO_GROUP   (1U << 0)
427 #define PERF_FLAG_FD_OUTPUT     (1U << 1)
428
429 #ifdef __KERNEL__
430 /*
431  * Kernel-internal data types and definitions:
432  */
433
434 #ifdef CONFIG_PERF_EVENTS
435 # include <asm/perf_event.h>
436 #endif
437
438 #include <linux/list.h>
439 #include <linux/mutex.h>
440 #include <linux/rculist.h>
441 #include <linux/rcupdate.h>
442 #include <linux/spinlock.h>
443 #include <linux/hrtimer.h>
444 #include <linux/fs.h>
445 #include <linux/pid_namespace.h>
446 #include <linux/workqueue.h>
447 #include <asm/atomic.h>
448
449 #define PERF_MAX_STACK_DEPTH            255
450
451 struct perf_callchain_entry {
452         __u64                           nr;
453         __u64                           ip[PERF_MAX_STACK_DEPTH];
454 };
455
456 struct perf_raw_record {
457         u32                             size;
458         void                            *data;
459 };
460
461 struct task_struct;
462
463 /**
464  * struct hw_perf_event - performance event hardware details:
465  */
466 struct hw_perf_event {
467 #ifdef CONFIG_PERF_EVENTS
468         union {
469                 struct { /* hardware */
470                         u64             config;
471                         unsigned long   config_base;
472                         unsigned long   event_base;
473                         int             idx;
474                 };
475                 struct { /* software */
476                         s64             remaining;
477                         struct hrtimer  hrtimer;
478                 };
479         };
480         atomic64_t                      prev_count;
481         u64                             sample_period;
482         u64                             last_period;
483         atomic64_t                      period_left;
484         u64                             interrupts;
485
486         u64                             freq_count;
487         u64                             freq_interrupts;
488         u64                             freq_stamp;
489 #endif
490 };
491
492 struct perf_event;
493
494 /**
495  * struct pmu - generic performance monitoring unit
496  */
497 struct pmu {
498         int (*enable)                   (struct perf_event *event);
499         void (*disable)                 (struct perf_event *event);
500         void (*read)                    (struct perf_event *event);
501         void (*unthrottle)              (struct perf_event *event);
502 };
503
504 /**
505  * enum perf_event_active_state - the states of a event
506  */
507 enum perf_event_active_state {
508         PERF_EVENT_STATE_ERROR          = -2,
509         PERF_EVENT_STATE_OFF            = -1,
510         PERF_EVENT_STATE_INACTIVE       =  0,
511         PERF_EVENT_STATE_ACTIVE         =  1,
512 };
513
514 struct file;
515
516 struct perf_mmap_data {
517         struct rcu_head                 rcu_head;
518 #ifdef CONFIG_PERF_USE_VMALLOC
519         struct work_struct              work;
520 #endif
521         int                             data_order;
522         int                             nr_pages;       /* nr of data pages  */
523         int                             writable;       /* are we writable   */
524         int                             nr_locked;      /* nr pages mlocked  */
525
526         atomic_t                        poll;           /* POLL_ for wakeups */
527         atomic_t                        events;         /* event_id limit       */
528
529         atomic_long_t                   head;           /* write position    */
530         atomic_long_t                   done_head;      /* completed head    */
531
532         atomic_t                        lock;           /* concurrent writes */
533         atomic_t                        wakeup;         /* needs a wakeup    */
534         atomic_t                        lost;           /* nr records lost   */
535
536         long                            watermark;      /* wakeup watermark  */
537
538         struct perf_event_mmap_page     *user_page;
539         void                            *data_pages[0];
540 };
541
542 struct perf_pending_entry {
543         struct perf_pending_entry *next;
544         void (*func)(struct perf_pending_entry *);
545 };
546
547 /**
548  * struct perf_event - performance event kernel representation:
549  */
550 struct perf_event {
551 #ifdef CONFIG_PERF_EVENTS
552         struct list_head                group_entry;
553         struct list_head                event_entry;
554         struct list_head                sibling_list;
555         int                             nr_siblings;
556         struct perf_event               *group_leader;
557         struct perf_event               *output;
558         const struct pmu                *pmu;
559
560         enum perf_event_active_state    state;
561         atomic64_t                      count;
562
563         /*
564          * These are the total time in nanoseconds that the event
565          * has been enabled (i.e. eligible to run, and the task has
566          * been scheduled in, if this is a per-task event)
567          * and running (scheduled onto the CPU), respectively.
568          *
569          * They are computed from tstamp_enabled, tstamp_running and
570          * tstamp_stopped when the event is in INACTIVE or ACTIVE state.
571          */
572         u64                             total_time_enabled;
573         u64                             total_time_running;
574
575         /*
576          * These are timestamps used for computing total_time_enabled
577          * and total_time_running when the event is in INACTIVE or
578          * ACTIVE state, measured in nanoseconds from an arbitrary point
579          * in time.
580          * tstamp_enabled: the notional time when the event was enabled
581          * tstamp_running: the notional time when the event was scheduled on
582          * tstamp_stopped: in INACTIVE state, the notional time when the
583          *      event was scheduled off.
584          */
585         u64                             tstamp_enabled;
586         u64                             tstamp_running;
587         u64                             tstamp_stopped;
588
589         struct perf_event_attr  attr;
590         struct hw_perf_event            hw;
591
592         struct perf_event_context       *ctx;
593         struct file                     *filp;
594
595         /*
596          * These accumulate total time (in nanoseconds) that children
597          * events have been enabled and running, respectively.
598          */
599         atomic64_t                      child_total_time_enabled;
600         atomic64_t                      child_total_time_running;
601
602         /*
603          * Protect attach/detach and child_list:
604          */
605         struct mutex                    child_mutex;
606         struct list_head                child_list;
607         struct perf_event               *parent;
608
609         int                             oncpu;
610         int                             cpu;
611
612         struct list_head                owner_entry;
613         struct task_struct              *owner;
614
615         /* mmap bits */
616         struct mutex                    mmap_mutex;
617         atomic_t                        mmap_count;
618         struct perf_mmap_data           *data;
619
620         /* poll related */
621         wait_queue_head_t               waitq;
622         struct fasync_struct            *fasync;
623
624         /* delayed work for NMIs and such */
625         int                             pending_wakeup;
626         int                             pending_kill;
627         int                             pending_disable;
628         struct perf_pending_entry       pending;
629
630         atomic_t                        event_limit;
631
632         void (*destroy)(struct perf_event *);
633         struct rcu_head                 rcu_head;
634
635         struct pid_namespace            *ns;
636         u64                             id;
637
638 #ifdef CONFIG_EVENT_PROFILE
639         struct event_filter             *filter;
640 #endif
641
642 #endif /* CONFIG_PERF_EVENTS */
643 };
644
645 /**
646  * struct perf_event_context - event context structure
647  *
648  * Used as a container for task events and CPU events as well:
649  */
650 struct perf_event_context {
651         /*
652          * Protect the states of the events in the list,
653          * nr_active, and the list:
654          */
655         spinlock_t                      lock;
656         /*
657          * Protect the list of events.  Locking either mutex or lock
658          * is sufficient to ensure the list doesn't change; to change
659          * the list you need to lock both the mutex and the spinlock.
660          */
661         struct mutex                    mutex;
662
663         struct list_head                group_list;
664         struct list_head                event_list;
665         int                             nr_events;
666         int                             nr_active;
667         int                             is_active;
668         int                             nr_stat;
669         atomic_t                        refcount;
670         struct task_struct              *task;
671
672         /*
673          * Context clock, runs when context enabled.
674          */
675         u64                             time;
676         u64                             timestamp;
677
678         /*
679          * These fields let us detect when two contexts have both
680          * been cloned (inherited) from a common ancestor.
681          */
682         struct perf_event_context       *parent_ctx;
683         u64                             parent_gen;
684         u64                             generation;
685         int                             pin_count;
686         struct rcu_head                 rcu_head;
687 };
688
689 /**
690  * struct perf_event_cpu_context - per cpu event context structure
691  */
692 struct perf_cpu_context {
693         struct perf_event_context       ctx;
694         struct perf_event_context       *task_ctx;
695         int                             active_oncpu;
696         int                             max_pertask;
697         int                             exclusive;
698
699         /*
700          * Recursion avoidance:
701          *
702          * task, softirq, irq, nmi context
703          */
704         int                             recursion[4];
705 };
706
707 struct perf_output_handle {
708         struct perf_event               *event;
709         struct perf_mmap_data           *data;
710         unsigned long                   head;
711         unsigned long                   offset;
712         int                             nmi;
713         int                             sample;
714         int                             locked;
715         unsigned long                   flags;
716 };
717
718 #ifdef CONFIG_PERF_EVENTS
719
720 /*
721  * Set by architecture code:
722  */
723 extern int perf_max_events;
724
725 extern const struct pmu *hw_perf_event_init(struct perf_event *event);
726
727 extern void perf_event_task_sched_in(struct task_struct *task, int cpu);
728 extern void perf_event_task_sched_out(struct task_struct *task,
729                                         struct task_struct *next, int cpu);
730 extern void perf_event_task_tick(struct task_struct *task, int cpu);
731 extern int perf_event_init_task(struct task_struct *child);
732 extern void perf_event_exit_task(struct task_struct *child);
733 extern void perf_event_free_task(struct task_struct *task);
734 extern void set_perf_event_pending(void);
735 extern void perf_event_do_pending(void);
736 extern void perf_event_print_debug(void);
737 extern void __perf_disable(void);
738 extern bool __perf_enable(void);
739 extern void perf_disable(void);
740 extern void perf_enable(void);
741 extern int perf_event_task_disable(void);
742 extern int perf_event_task_enable(void);
743 extern int hw_perf_group_sched_in(struct perf_event *group_leader,
744                struct perf_cpu_context *cpuctx,
745                struct perf_event_context *ctx, int cpu);
746 extern void perf_event_update_userpage(struct perf_event *event);
747
748 struct perf_sample_data {
749         u64                             type;
750
751         u64                             ip;
752         struct {
753                 u32     pid;
754                 u32     tid;
755         }                               tid_entry;
756         u64                             time;
757         u64                             addr;
758         u64                             id;
759         u64                             stream_id;
760         struct {
761                 u32     cpu;
762                 u32     reserved;
763         }                               cpu_entry;
764         u64                             period;
765         struct perf_callchain_entry     *callchain;
766         struct perf_raw_record          *raw;
767 };
768
769 extern void perf_output_sample(struct perf_output_handle *handle,
770                                struct perf_event_header *header,
771                                struct perf_sample_data *data,
772                                struct perf_event *event);
773 extern void perf_prepare_sample(struct perf_event_header *header,
774                                 struct perf_sample_data *data,
775                                 struct perf_event *event,
776                                 struct pt_regs *regs);
777
778 extern int perf_event_overflow(struct perf_event *event, int nmi,
779                                  struct perf_sample_data *data,
780                                  struct pt_regs *regs);
781
782 /*
783  * Return 1 for a software event, 0 for a hardware event
784  */
785 static inline int is_software_event(struct perf_event *event)
786 {
787         return (event->attr.type != PERF_TYPE_RAW) &&
788                 (event->attr.type != PERF_TYPE_HARDWARE) &&
789                 (event->attr.type != PERF_TYPE_HW_CACHE);
790 }
791
792 extern atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
793
794 extern void __perf_sw_event(u32, u64, int, struct pt_regs *, u64);
795
796 static inline void
797 perf_sw_event(u32 event_id, u64 nr, int nmi, struct pt_regs *regs, u64 addr)
798 {
799         if (atomic_read(&perf_swevent_enabled[event_id]))
800                 __perf_sw_event(event_id, nr, nmi, regs, addr);
801 }
802
803 extern void __perf_event_mmap(struct vm_area_struct *vma);
804
805 static inline void perf_event_mmap(struct vm_area_struct *vma)
806 {
807         if (vma->vm_flags & VM_EXEC)
808                 __perf_event_mmap(vma);
809 }
810
811 extern void perf_event_comm(struct task_struct *tsk);
812 extern void perf_event_fork(struct task_struct *tsk);
813
814 extern struct perf_callchain_entry *perf_callchain(struct pt_regs *regs);
815
816 extern int sysctl_perf_event_paranoid;
817 extern int sysctl_perf_event_mlock;
818 extern int sysctl_perf_event_sample_rate;
819
820 extern void perf_event_init(void);
821 extern void perf_tp_event(int event_id, u64 addr, u64 count,
822                                  void *record, int entry_size);
823
824 #ifndef perf_misc_flags
825 #define perf_misc_flags(regs)   (user_mode(regs) ? PERF_RECORD_MISC_USER : \
826                                  PERF_RECORD_MISC_KERNEL)
827 #define perf_instruction_pointer(regs)  instruction_pointer(regs)
828 #endif
829
830 extern int perf_output_begin(struct perf_output_handle *handle,
831                              struct perf_event *event, unsigned int size,
832                              int nmi, int sample);
833 extern void perf_output_end(struct perf_output_handle *handle);
834 extern void perf_output_copy(struct perf_output_handle *handle,
835                              const void *buf, unsigned int len);
836 #else
837 static inline void
838 perf_event_task_sched_in(struct task_struct *task, int cpu)             { }
839 static inline void
840 perf_event_task_sched_out(struct task_struct *task,
841                             struct task_struct *next, int cpu)          { }
842 static inline void
843 perf_event_task_tick(struct task_struct *task, int cpu)                 { }
844 static inline int perf_event_init_task(struct task_struct *child)       { return 0; }
845 static inline void perf_event_exit_task(struct task_struct *child)      { }
846 static inline void perf_event_free_task(struct task_struct *task)       { }
847 static inline void perf_event_do_pending(void)                          { }
848 static inline void perf_event_print_debug(void)                         { }
849 static inline void perf_disable(void)                                   { }
850 static inline void perf_enable(void)                                    { }
851 static inline int perf_event_task_disable(void)                         { return -EINVAL; }
852 static inline int perf_event_task_enable(void)                          { return -EINVAL; }
853
854 static inline void
855 perf_sw_event(u32 event_id, u64 nr, int nmi,
856                      struct pt_regs *regs, u64 addr)                    { }
857
858 static inline void perf_event_mmap(struct vm_area_struct *vma)          { }
859 static inline void perf_event_comm(struct task_struct *tsk)             { }
860 static inline void perf_event_fork(struct task_struct *tsk)             { }
861 static inline void perf_event_init(void)                                { }
862
863 #endif
864
865 #define perf_output_put(handle, x) \
866         perf_output_copy((handle), &(x), sizeof(x))
867
868 #endif /* __KERNEL__ */
869 #endif /* _LINUX_PERF_EVENT_H */