xfs: add log item recovery tracing
[safe/jmp/linux-2.6] / fs / xfs / xfs_log_recover.c
1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_dir2.h"
28 #include "xfs_dmapi.h"
29 #include "xfs_mount.h"
30 #include "xfs_error.h"
31 #include "xfs_bmap_btree.h"
32 #include "xfs_alloc_btree.h"
33 #include "xfs_ialloc_btree.h"
34 #include "xfs_dir2_sf.h"
35 #include "xfs_attr_sf.h"
36 #include "xfs_dinode.h"
37 #include "xfs_inode.h"
38 #include "xfs_inode_item.h"
39 #include "xfs_alloc.h"
40 #include "xfs_ialloc.h"
41 #include "xfs_log_priv.h"
42 #include "xfs_buf_item.h"
43 #include "xfs_log_recover.h"
44 #include "xfs_extfree_item.h"
45 #include "xfs_trans_priv.h"
46 #include "xfs_quota.h"
47 #include "xfs_rw.h"
48 #include "xfs_utils.h"
49 #include "xfs_trace.h"
50
51 STATIC int      xlog_find_zeroed(xlog_t *, xfs_daddr_t *);
52 STATIC int      xlog_clear_stale_blocks(xlog_t *, xfs_lsn_t);
53 #if defined(DEBUG)
54 STATIC void     xlog_recover_check_summary(xlog_t *);
55 #else
56 #define xlog_recover_check_summary(log)
57 #endif
58
59
60 /*
61  * Sector aligned buffer routines for buffer create/read/write/access
62  */
63
64 #define XLOG_SECTOR_ROUNDUP_BBCOUNT(log, bbs)   \
65         ( ((log)->l_sectbb_mask && (bbs & (log)->l_sectbb_mask)) ? \
66         ((bbs + (log)->l_sectbb_mask + 1) & ~(log)->l_sectbb_mask) : (bbs) )
67 #define XLOG_SECTOR_ROUNDDOWN_BLKNO(log, bno)   ((bno) & ~(log)->l_sectbb_mask)
68
69 STATIC xfs_buf_t *
70 xlog_get_bp(
71         xlog_t          *log,
72         int             nbblks)
73 {
74         if (nbblks <= 0 || nbblks > log->l_logBBsize) {
75                 xlog_warn("XFS: Invalid block length (0x%x) given for buffer", nbblks);
76                 XFS_ERROR_REPORT("xlog_get_bp(1)",
77                                  XFS_ERRLEVEL_HIGH, log->l_mp);
78                 return NULL;
79         }
80
81         if (log->l_sectbb_log) {
82                 if (nbblks > 1)
83                         nbblks += XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1);
84                 nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks);
85         }
86         return xfs_buf_get_noaddr(BBTOB(nbblks), log->l_mp->m_logdev_targp);
87 }
88
89 STATIC void
90 xlog_put_bp(
91         xfs_buf_t       *bp)
92 {
93         xfs_buf_free(bp);
94 }
95
96 STATIC xfs_caddr_t
97 xlog_align(
98         xlog_t          *log,
99         xfs_daddr_t     blk_no,
100         int             nbblks,
101         xfs_buf_t       *bp)
102 {
103         xfs_caddr_t     ptr;
104
105         if (!log->l_sectbb_log)
106                 return XFS_BUF_PTR(bp);
107
108         ptr = XFS_BUF_PTR(bp) + BBTOB((int)blk_no & log->l_sectbb_mask);
109         ASSERT(XFS_BUF_SIZE(bp) >=
110                 BBTOB(nbblks + (blk_no & log->l_sectbb_mask)));
111         return ptr;
112 }
113
114
115 /*
116  * nbblks should be uint, but oh well.  Just want to catch that 32-bit length.
117  */
118 STATIC int
119 xlog_bread_noalign(
120         xlog_t          *log,
121         xfs_daddr_t     blk_no,
122         int             nbblks,
123         xfs_buf_t       *bp)
124 {
125         int             error;
126
127         if (nbblks <= 0 || nbblks > log->l_logBBsize) {
128                 xlog_warn("XFS: Invalid block length (0x%x) given for buffer", nbblks);
129                 XFS_ERROR_REPORT("xlog_bread(1)",
130                                  XFS_ERRLEVEL_HIGH, log->l_mp);
131                 return EFSCORRUPTED;
132         }
133
134         if (log->l_sectbb_log) {
135                 blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no);
136                 nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks);
137         }
138
139         ASSERT(nbblks > 0);
140         ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
141         ASSERT(bp);
142
143         XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
144         XFS_BUF_READ(bp);
145         XFS_BUF_BUSY(bp);
146         XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
147         XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
148
149         xfsbdstrat(log->l_mp, bp);
150         error = xfs_iowait(bp);
151         if (error)
152                 xfs_ioerror_alert("xlog_bread", log->l_mp,
153                                   bp, XFS_BUF_ADDR(bp));
154         return error;
155 }
156
157 STATIC int
158 xlog_bread(
159         xlog_t          *log,
160         xfs_daddr_t     blk_no,
161         int             nbblks,
162         xfs_buf_t       *bp,
163         xfs_caddr_t     *offset)
164 {
165         int             error;
166
167         error = xlog_bread_noalign(log, blk_no, nbblks, bp);
168         if (error)
169                 return error;
170
171         *offset = xlog_align(log, blk_no, nbblks, bp);
172         return 0;
173 }
174
175 /*
176  * Write out the buffer at the given block for the given number of blocks.
177  * The buffer is kept locked across the write and is returned locked.
178  * This can only be used for synchronous log writes.
179  */
180 STATIC int
181 xlog_bwrite(
182         xlog_t          *log,
183         xfs_daddr_t     blk_no,
184         int             nbblks,
185         xfs_buf_t       *bp)
186 {
187         int             error;
188
189         if (nbblks <= 0 || nbblks > log->l_logBBsize) {
190                 xlog_warn("XFS: Invalid block length (0x%x) given for buffer", nbblks);
191                 XFS_ERROR_REPORT("xlog_bwrite(1)",
192                                  XFS_ERRLEVEL_HIGH, log->l_mp);
193                 return EFSCORRUPTED;
194         }
195
196         if (log->l_sectbb_log) {
197                 blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no);
198                 nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks);
199         }
200
201         ASSERT(nbblks > 0);
202         ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
203
204         XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
205         XFS_BUF_ZEROFLAGS(bp);
206         XFS_BUF_BUSY(bp);
207         XFS_BUF_HOLD(bp);
208         XFS_BUF_PSEMA(bp, PRIBIO);
209         XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
210         XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
211
212         if ((error = xfs_bwrite(log->l_mp, bp)))
213                 xfs_ioerror_alert("xlog_bwrite", log->l_mp,
214                                   bp, XFS_BUF_ADDR(bp));
215         return error;
216 }
217
218 #ifdef DEBUG
219 /*
220  * dump debug superblock and log record information
221  */
222 STATIC void
223 xlog_header_check_dump(
224         xfs_mount_t             *mp,
225         xlog_rec_header_t       *head)
226 {
227         cmn_err(CE_DEBUG, "%s:  SB : uuid = %pU, fmt = %d\n",
228                 __func__, &mp->m_sb.sb_uuid, XLOG_FMT);
229         cmn_err(CE_DEBUG, "    log : uuid = %pU, fmt = %d\n",
230                 &head->h_fs_uuid, be32_to_cpu(head->h_fmt));
231 }
232 #else
233 #define xlog_header_check_dump(mp, head)
234 #endif
235
236 /*
237  * check log record header for recovery
238  */
239 STATIC int
240 xlog_header_check_recover(
241         xfs_mount_t             *mp,
242         xlog_rec_header_t       *head)
243 {
244         ASSERT(be32_to_cpu(head->h_magicno) == XLOG_HEADER_MAGIC_NUM);
245
246         /*
247          * IRIX doesn't write the h_fmt field and leaves it zeroed
248          * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
249          * a dirty log created in IRIX.
250          */
251         if (unlikely(be32_to_cpu(head->h_fmt) != XLOG_FMT)) {
252                 xlog_warn(
253         "XFS: dirty log written in incompatible format - can't recover");
254                 xlog_header_check_dump(mp, head);
255                 XFS_ERROR_REPORT("xlog_header_check_recover(1)",
256                                  XFS_ERRLEVEL_HIGH, mp);
257                 return XFS_ERROR(EFSCORRUPTED);
258         } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
259                 xlog_warn(
260         "XFS: dirty log entry has mismatched uuid - can't recover");
261                 xlog_header_check_dump(mp, head);
262                 XFS_ERROR_REPORT("xlog_header_check_recover(2)",
263                                  XFS_ERRLEVEL_HIGH, mp);
264                 return XFS_ERROR(EFSCORRUPTED);
265         }
266         return 0;
267 }
268
269 /*
270  * read the head block of the log and check the header
271  */
272 STATIC int
273 xlog_header_check_mount(
274         xfs_mount_t             *mp,
275         xlog_rec_header_t       *head)
276 {
277         ASSERT(be32_to_cpu(head->h_magicno) == XLOG_HEADER_MAGIC_NUM);
278
279         if (uuid_is_nil(&head->h_fs_uuid)) {
280                 /*
281                  * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
282                  * h_fs_uuid is nil, we assume this log was last mounted
283                  * by IRIX and continue.
284                  */
285                 xlog_warn("XFS: nil uuid in log - IRIX style log");
286         } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
287                 xlog_warn("XFS: log has mismatched uuid - can't recover");
288                 xlog_header_check_dump(mp, head);
289                 XFS_ERROR_REPORT("xlog_header_check_mount",
290                                  XFS_ERRLEVEL_HIGH, mp);
291                 return XFS_ERROR(EFSCORRUPTED);
292         }
293         return 0;
294 }
295
296 STATIC void
297 xlog_recover_iodone(
298         struct xfs_buf  *bp)
299 {
300         if (XFS_BUF_GETERROR(bp)) {
301                 /*
302                  * We're not going to bother about retrying
303                  * this during recovery. One strike!
304                  */
305                 xfs_ioerror_alert("xlog_recover_iodone",
306                                   bp->b_mount, bp, XFS_BUF_ADDR(bp));
307                 xfs_force_shutdown(bp->b_mount, SHUTDOWN_META_IO_ERROR);
308         }
309         bp->b_mount = NULL;
310         XFS_BUF_CLR_IODONE_FUNC(bp);
311         xfs_biodone(bp);
312 }
313
314 /*
315  * This routine finds (to an approximation) the first block in the physical
316  * log which contains the given cycle.  It uses a binary search algorithm.
317  * Note that the algorithm can not be perfect because the disk will not
318  * necessarily be perfect.
319  */
320 STATIC int
321 xlog_find_cycle_start(
322         xlog_t          *log,
323         xfs_buf_t       *bp,
324         xfs_daddr_t     first_blk,
325         xfs_daddr_t     *last_blk,
326         uint            cycle)
327 {
328         xfs_caddr_t     offset;
329         xfs_daddr_t     mid_blk;
330         uint            mid_cycle;
331         int             error;
332
333         mid_blk = BLK_AVG(first_blk, *last_blk);
334         while (mid_blk != first_blk && mid_blk != *last_blk) {
335                 error = xlog_bread(log, mid_blk, 1, bp, &offset);
336                 if (error)
337                         return error;
338                 mid_cycle = xlog_get_cycle(offset);
339                 if (mid_cycle == cycle) {
340                         *last_blk = mid_blk;
341                         /* last_half_cycle == mid_cycle */
342                 } else {
343                         first_blk = mid_blk;
344                         /* first_half_cycle == mid_cycle */
345                 }
346                 mid_blk = BLK_AVG(first_blk, *last_blk);
347         }
348         ASSERT((mid_blk == first_blk && mid_blk+1 == *last_blk) ||
349                (mid_blk == *last_blk && mid_blk-1 == first_blk));
350
351         return 0;
352 }
353
354 /*
355  * Check that the range of blocks does not contain the cycle number
356  * given.  The scan needs to occur from front to back and the ptr into the
357  * region must be updated since a later routine will need to perform another
358  * test.  If the region is completely good, we end up returning the same
359  * last block number.
360  *
361  * Set blkno to -1 if we encounter no errors.  This is an invalid block number
362  * since we don't ever expect logs to get this large.
363  */
364 STATIC int
365 xlog_find_verify_cycle(
366         xlog_t          *log,
367         xfs_daddr_t     start_blk,
368         int             nbblks,
369         uint            stop_on_cycle_no,
370         xfs_daddr_t     *new_blk)
371 {
372         xfs_daddr_t     i, j;
373         uint            cycle;
374         xfs_buf_t       *bp;
375         xfs_daddr_t     bufblks;
376         xfs_caddr_t     buf = NULL;
377         int             error = 0;
378
379         bufblks = 1 << ffs(nbblks);
380
381         while (!(bp = xlog_get_bp(log, bufblks))) {
382                 /* can't get enough memory to do everything in one big buffer */
383                 bufblks >>= 1;
384                 if (bufblks <= log->l_sectbb_log)
385                         return ENOMEM;
386         }
387
388         for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
389                 int     bcount;
390
391                 bcount = min(bufblks, (start_blk + nbblks - i));
392
393                 error = xlog_bread(log, i, bcount, bp, &buf);
394                 if (error)
395                         goto out;
396
397                 for (j = 0; j < bcount; j++) {
398                         cycle = xlog_get_cycle(buf);
399                         if (cycle == stop_on_cycle_no) {
400                                 *new_blk = i+j;
401                                 goto out;
402                         }
403
404                         buf += BBSIZE;
405                 }
406         }
407
408         *new_blk = -1;
409
410 out:
411         xlog_put_bp(bp);
412         return error;
413 }
414
415 /*
416  * Potentially backup over partial log record write.
417  *
418  * In the typical case, last_blk is the number of the block directly after
419  * a good log record.  Therefore, we subtract one to get the block number
420  * of the last block in the given buffer.  extra_bblks contains the number
421  * of blocks we would have read on a previous read.  This happens when the
422  * last log record is split over the end of the physical log.
423  *
424  * extra_bblks is the number of blocks potentially verified on a previous
425  * call to this routine.
426  */
427 STATIC int
428 xlog_find_verify_log_record(
429         xlog_t                  *log,
430         xfs_daddr_t             start_blk,
431         xfs_daddr_t             *last_blk,
432         int                     extra_bblks)
433 {
434         xfs_daddr_t             i;
435         xfs_buf_t               *bp;
436         xfs_caddr_t             offset = NULL;
437         xlog_rec_header_t       *head = NULL;
438         int                     error = 0;
439         int                     smallmem = 0;
440         int                     num_blks = *last_blk - start_blk;
441         int                     xhdrs;
442
443         ASSERT(start_blk != 0 || *last_blk != start_blk);
444
445         if (!(bp = xlog_get_bp(log, num_blks))) {
446                 if (!(bp = xlog_get_bp(log, 1)))
447                         return ENOMEM;
448                 smallmem = 1;
449         } else {
450                 error = xlog_bread(log, start_blk, num_blks, bp, &offset);
451                 if (error)
452                         goto out;
453                 offset += ((num_blks - 1) << BBSHIFT);
454         }
455
456         for (i = (*last_blk) - 1; i >= 0; i--) {
457                 if (i < start_blk) {
458                         /* valid log record not found */
459                         xlog_warn(
460                 "XFS: Log inconsistent (didn't find previous header)");
461                         ASSERT(0);
462                         error = XFS_ERROR(EIO);
463                         goto out;
464                 }
465
466                 if (smallmem) {
467                         error = xlog_bread(log, i, 1, bp, &offset);
468                         if (error)
469                                 goto out;
470                 }
471
472                 head = (xlog_rec_header_t *)offset;
473
474                 if (XLOG_HEADER_MAGIC_NUM == be32_to_cpu(head->h_magicno))
475                         break;
476
477                 if (!smallmem)
478                         offset -= BBSIZE;
479         }
480
481         /*
482          * We hit the beginning of the physical log & still no header.  Return
483          * to caller.  If caller can handle a return of -1, then this routine
484          * will be called again for the end of the physical log.
485          */
486         if (i == -1) {
487                 error = -1;
488                 goto out;
489         }
490
491         /*
492          * We have the final block of the good log (the first block
493          * of the log record _before_ the head. So we check the uuid.
494          */
495         if ((error = xlog_header_check_mount(log->l_mp, head)))
496                 goto out;
497
498         /*
499          * We may have found a log record header before we expected one.
500          * last_blk will be the 1st block # with a given cycle #.  We may end
501          * up reading an entire log record.  In this case, we don't want to
502          * reset last_blk.  Only when last_blk points in the middle of a log
503          * record do we update last_blk.
504          */
505         if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
506                 uint    h_size = be32_to_cpu(head->h_size);
507
508                 xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
509                 if (h_size % XLOG_HEADER_CYCLE_SIZE)
510                         xhdrs++;
511         } else {
512                 xhdrs = 1;
513         }
514
515         if (*last_blk - i + extra_bblks !=
516             BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
517                 *last_blk = i;
518
519 out:
520         xlog_put_bp(bp);
521         return error;
522 }
523
524 /*
525  * Head is defined to be the point of the log where the next log write
526  * write could go.  This means that incomplete LR writes at the end are
527  * eliminated when calculating the head.  We aren't guaranteed that previous
528  * LR have complete transactions.  We only know that a cycle number of
529  * current cycle number -1 won't be present in the log if we start writing
530  * from our current block number.
531  *
532  * last_blk contains the block number of the first block with a given
533  * cycle number.
534  *
535  * Return: zero if normal, non-zero if error.
536  */
537 STATIC int
538 xlog_find_head(
539         xlog_t          *log,
540         xfs_daddr_t     *return_head_blk)
541 {
542         xfs_buf_t       *bp;
543         xfs_caddr_t     offset;
544         xfs_daddr_t     new_blk, first_blk, start_blk, last_blk, head_blk;
545         int             num_scan_bblks;
546         uint            first_half_cycle, last_half_cycle;
547         uint            stop_on_cycle;
548         int             error, log_bbnum = log->l_logBBsize;
549
550         /* Is the end of the log device zeroed? */
551         if ((error = xlog_find_zeroed(log, &first_blk)) == -1) {
552                 *return_head_blk = first_blk;
553
554                 /* Is the whole lot zeroed? */
555                 if (!first_blk) {
556                         /* Linux XFS shouldn't generate totally zeroed logs -
557                          * mkfs etc write a dummy unmount record to a fresh
558                          * log so we can store the uuid in there
559                          */
560                         xlog_warn("XFS: totally zeroed log");
561                 }
562
563                 return 0;
564         } else if (error) {
565                 xlog_warn("XFS: empty log check failed");
566                 return error;
567         }
568
569         first_blk = 0;                  /* get cycle # of 1st block */
570         bp = xlog_get_bp(log, 1);
571         if (!bp)
572                 return ENOMEM;
573
574         error = xlog_bread(log, 0, 1, bp, &offset);
575         if (error)
576                 goto bp_err;
577
578         first_half_cycle = xlog_get_cycle(offset);
579
580         last_blk = head_blk = log_bbnum - 1;    /* get cycle # of last block */
581         error = xlog_bread(log, last_blk, 1, bp, &offset);
582         if (error)
583                 goto bp_err;
584
585         last_half_cycle = xlog_get_cycle(offset);
586         ASSERT(last_half_cycle != 0);
587
588         /*
589          * If the 1st half cycle number is equal to the last half cycle number,
590          * then the entire log is stamped with the same cycle number.  In this
591          * case, head_blk can't be set to zero (which makes sense).  The below
592          * math doesn't work out properly with head_blk equal to zero.  Instead,
593          * we set it to log_bbnum which is an invalid block number, but this
594          * value makes the math correct.  If head_blk doesn't changed through
595          * all the tests below, *head_blk is set to zero at the very end rather
596          * than log_bbnum.  In a sense, log_bbnum and zero are the same block
597          * in a circular file.
598          */
599         if (first_half_cycle == last_half_cycle) {
600                 /*
601                  * In this case we believe that the entire log should have
602                  * cycle number last_half_cycle.  We need to scan backwards
603                  * from the end verifying that there are no holes still
604                  * containing last_half_cycle - 1.  If we find such a hole,
605                  * then the start of that hole will be the new head.  The
606                  * simple case looks like
607                  *        x | x ... | x - 1 | x
608                  * Another case that fits this picture would be
609                  *        x | x + 1 | x ... | x
610                  * In this case the head really is somewhere at the end of the
611                  * log, as one of the latest writes at the beginning was
612                  * incomplete.
613                  * One more case is
614                  *        x | x + 1 | x ... | x - 1 | x
615                  * This is really the combination of the above two cases, and
616                  * the head has to end up at the start of the x-1 hole at the
617                  * end of the log.
618                  *
619                  * In the 256k log case, we will read from the beginning to the
620                  * end of the log and search for cycle numbers equal to x-1.
621                  * We don't worry about the x+1 blocks that we encounter,
622                  * because we know that they cannot be the head since the log
623                  * started with x.
624                  */
625                 head_blk = log_bbnum;
626                 stop_on_cycle = last_half_cycle - 1;
627         } else {
628                 /*
629                  * In this case we want to find the first block with cycle
630                  * number matching last_half_cycle.  We expect the log to be
631                  * some variation on
632                  *        x + 1 ... | x ...
633                  * The first block with cycle number x (last_half_cycle) will
634                  * be where the new head belongs.  First we do a binary search
635                  * for the first occurrence of last_half_cycle.  The binary
636                  * search may not be totally accurate, so then we scan back
637                  * from there looking for occurrences of last_half_cycle before
638                  * us.  If that backwards scan wraps around the beginning of
639                  * the log, then we look for occurrences of last_half_cycle - 1
640                  * at the end of the log.  The cases we're looking for look
641                  * like
642                  *        x + 1 ... | x | x + 1 | x ...
643                  *                               ^ binary search stopped here
644                  * or
645                  *        x + 1 ... | x ... | x - 1 | x
646                  *        <---------> less than scan distance
647                  */
648                 stop_on_cycle = last_half_cycle;
649                 if ((error = xlog_find_cycle_start(log, bp, first_blk,
650                                                 &head_blk, last_half_cycle)))
651                         goto bp_err;
652         }
653
654         /*
655          * Now validate the answer.  Scan back some number of maximum possible
656          * blocks and make sure each one has the expected cycle number.  The
657          * maximum is determined by the total possible amount of buffering
658          * in the in-core log.  The following number can be made tighter if
659          * we actually look at the block size of the filesystem.
660          */
661         num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
662         if (head_blk >= num_scan_bblks) {
663                 /*
664                  * We are guaranteed that the entire check can be performed
665                  * in one buffer.
666                  */
667                 start_blk = head_blk - num_scan_bblks;
668                 if ((error = xlog_find_verify_cycle(log,
669                                                 start_blk, num_scan_bblks,
670                                                 stop_on_cycle, &new_blk)))
671                         goto bp_err;
672                 if (new_blk != -1)
673                         head_blk = new_blk;
674         } else {                /* need to read 2 parts of log */
675                 /*
676                  * We are going to scan backwards in the log in two parts.
677                  * First we scan the physical end of the log.  In this part
678                  * of the log, we are looking for blocks with cycle number
679                  * last_half_cycle - 1.
680                  * If we find one, then we know that the log starts there, as
681                  * we've found a hole that didn't get written in going around
682                  * the end of the physical log.  The simple case for this is
683                  *        x + 1 ... | x ... | x - 1 | x
684                  *        <---------> less than scan distance
685                  * If all of the blocks at the end of the log have cycle number
686                  * last_half_cycle, then we check the blocks at the start of
687                  * the log looking for occurrences of last_half_cycle.  If we
688                  * find one, then our current estimate for the location of the
689                  * first occurrence of last_half_cycle is wrong and we move
690                  * back to the hole we've found.  This case looks like
691                  *        x + 1 ... | x | x + 1 | x ...
692                  *                               ^ binary search stopped here
693                  * Another case we need to handle that only occurs in 256k
694                  * logs is
695                  *        x + 1 ... | x ... | x+1 | x ...
696                  *                   ^ binary search stops here
697                  * In a 256k log, the scan at the end of the log will see the
698                  * x + 1 blocks.  We need to skip past those since that is
699                  * certainly not the head of the log.  By searching for
700                  * last_half_cycle-1 we accomplish that.
701                  */
702                 start_blk = log_bbnum - num_scan_bblks + head_blk;
703                 ASSERT(head_blk <= INT_MAX &&
704                         (xfs_daddr_t) num_scan_bblks - head_blk >= 0);
705                 if ((error = xlog_find_verify_cycle(log, start_blk,
706                                         num_scan_bblks - (int)head_blk,
707                                         (stop_on_cycle - 1), &new_blk)))
708                         goto bp_err;
709                 if (new_blk != -1) {
710                         head_blk = new_blk;
711                         goto bad_blk;
712                 }
713
714                 /*
715                  * Scan beginning of log now.  The last part of the physical
716                  * log is good.  This scan needs to verify that it doesn't find
717                  * the last_half_cycle.
718                  */
719                 start_blk = 0;
720                 ASSERT(head_blk <= INT_MAX);
721                 if ((error = xlog_find_verify_cycle(log,
722                                         start_blk, (int)head_blk,
723                                         stop_on_cycle, &new_blk)))
724                         goto bp_err;
725                 if (new_blk != -1)
726                         head_blk = new_blk;
727         }
728
729  bad_blk:
730         /*
731          * Now we need to make sure head_blk is not pointing to a block in
732          * the middle of a log record.
733          */
734         num_scan_bblks = XLOG_REC_SHIFT(log);
735         if (head_blk >= num_scan_bblks) {
736                 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
737
738                 /* start ptr at last block ptr before head_blk */
739                 if ((error = xlog_find_verify_log_record(log, start_blk,
740                                                         &head_blk, 0)) == -1) {
741                         error = XFS_ERROR(EIO);
742                         goto bp_err;
743                 } else if (error)
744                         goto bp_err;
745         } else {
746                 start_blk = 0;
747                 ASSERT(head_blk <= INT_MAX);
748                 if ((error = xlog_find_verify_log_record(log, start_blk,
749                                                         &head_blk, 0)) == -1) {
750                         /* We hit the beginning of the log during our search */
751                         start_blk = log_bbnum - num_scan_bblks + head_blk;
752                         new_blk = log_bbnum;
753                         ASSERT(start_blk <= INT_MAX &&
754                                 (xfs_daddr_t) log_bbnum-start_blk >= 0);
755                         ASSERT(head_blk <= INT_MAX);
756                         if ((error = xlog_find_verify_log_record(log,
757                                                         start_blk, &new_blk,
758                                                         (int)head_blk)) == -1) {
759                                 error = XFS_ERROR(EIO);
760                                 goto bp_err;
761                         } else if (error)
762                                 goto bp_err;
763                         if (new_blk != log_bbnum)
764                                 head_blk = new_blk;
765                 } else if (error)
766                         goto bp_err;
767         }
768
769         xlog_put_bp(bp);
770         if (head_blk == log_bbnum)
771                 *return_head_blk = 0;
772         else
773                 *return_head_blk = head_blk;
774         /*
775          * When returning here, we have a good block number.  Bad block
776          * means that during a previous crash, we didn't have a clean break
777          * from cycle number N to cycle number N-1.  In this case, we need
778          * to find the first block with cycle number N-1.
779          */
780         return 0;
781
782  bp_err:
783         xlog_put_bp(bp);
784
785         if (error)
786             xlog_warn("XFS: failed to find log head");
787         return error;
788 }
789
790 /*
791  * Find the sync block number or the tail of the log.
792  *
793  * This will be the block number of the last record to have its
794  * associated buffers synced to disk.  Every log record header has
795  * a sync lsn embedded in it.  LSNs hold block numbers, so it is easy
796  * to get a sync block number.  The only concern is to figure out which
797  * log record header to believe.
798  *
799  * The following algorithm uses the log record header with the largest
800  * lsn.  The entire log record does not need to be valid.  We only care
801  * that the header is valid.
802  *
803  * We could speed up search by using current head_blk buffer, but it is not
804  * available.
805  */
806 STATIC int
807 xlog_find_tail(
808         xlog_t                  *log,
809         xfs_daddr_t             *head_blk,
810         xfs_daddr_t             *tail_blk)
811 {
812         xlog_rec_header_t       *rhead;
813         xlog_op_header_t        *op_head;
814         xfs_caddr_t             offset = NULL;
815         xfs_buf_t               *bp;
816         int                     error, i, found;
817         xfs_daddr_t             umount_data_blk;
818         xfs_daddr_t             after_umount_blk;
819         xfs_lsn_t               tail_lsn;
820         int                     hblks;
821
822         found = 0;
823
824         /*
825          * Find previous log record
826          */
827         if ((error = xlog_find_head(log, head_blk)))
828                 return error;
829
830         bp = xlog_get_bp(log, 1);
831         if (!bp)
832                 return ENOMEM;
833         if (*head_blk == 0) {                           /* special case */
834                 error = xlog_bread(log, 0, 1, bp, &offset);
835                 if (error)
836                         goto bread_err;
837
838                 if (xlog_get_cycle(offset) == 0) {
839                         *tail_blk = 0;
840                         /* leave all other log inited values alone */
841                         goto exit;
842                 }
843         }
844
845         /*
846          * Search backwards looking for log record header block
847          */
848         ASSERT(*head_blk < INT_MAX);
849         for (i = (int)(*head_blk) - 1; i >= 0; i--) {
850                 error = xlog_bread(log, i, 1, bp, &offset);
851                 if (error)
852                         goto bread_err;
853
854                 if (XLOG_HEADER_MAGIC_NUM == be32_to_cpu(*(__be32 *)offset)) {
855                         found = 1;
856                         break;
857                 }
858         }
859         /*
860          * If we haven't found the log record header block, start looking
861          * again from the end of the physical log.  XXXmiken: There should be
862          * a check here to make sure we didn't search more than N blocks in
863          * the previous code.
864          */
865         if (!found) {
866                 for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
867                         error = xlog_bread(log, i, 1, bp, &offset);
868                         if (error)
869                                 goto bread_err;
870
871                         if (XLOG_HEADER_MAGIC_NUM ==
872                             be32_to_cpu(*(__be32 *)offset)) {
873                                 found = 2;
874                                 break;
875                         }
876                 }
877         }
878         if (!found) {
879                 xlog_warn("XFS: xlog_find_tail: couldn't find sync record");
880                 ASSERT(0);
881                 return XFS_ERROR(EIO);
882         }
883
884         /* find blk_no of tail of log */
885         rhead = (xlog_rec_header_t *)offset;
886         *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
887
888         /*
889          * Reset log values according to the state of the log when we
890          * crashed.  In the case where head_blk == 0, we bump curr_cycle
891          * one because the next write starts a new cycle rather than
892          * continuing the cycle of the last good log record.  At this
893          * point we have guaranteed that all partial log records have been
894          * accounted for.  Therefore, we know that the last good log record
895          * written was complete and ended exactly on the end boundary
896          * of the physical log.
897          */
898         log->l_prev_block = i;
899         log->l_curr_block = (int)*head_blk;
900         log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
901         if (found == 2)
902                 log->l_curr_cycle++;
903         log->l_tail_lsn = be64_to_cpu(rhead->h_tail_lsn);
904         log->l_last_sync_lsn = be64_to_cpu(rhead->h_lsn);
905         log->l_grant_reserve_cycle = log->l_curr_cycle;
906         log->l_grant_reserve_bytes = BBTOB(log->l_curr_block);
907         log->l_grant_write_cycle = log->l_curr_cycle;
908         log->l_grant_write_bytes = BBTOB(log->l_curr_block);
909
910         /*
911          * Look for unmount record.  If we find it, then we know there
912          * was a clean unmount.  Since 'i' could be the last block in
913          * the physical log, we convert to a log block before comparing
914          * to the head_blk.
915          *
916          * Save the current tail lsn to use to pass to
917          * xlog_clear_stale_blocks() below.  We won't want to clear the
918          * unmount record if there is one, so we pass the lsn of the
919          * unmount record rather than the block after it.
920          */
921         if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
922                 int     h_size = be32_to_cpu(rhead->h_size);
923                 int     h_version = be32_to_cpu(rhead->h_version);
924
925                 if ((h_version & XLOG_VERSION_2) &&
926                     (h_size > XLOG_HEADER_CYCLE_SIZE)) {
927                         hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
928                         if (h_size % XLOG_HEADER_CYCLE_SIZE)
929                                 hblks++;
930                 } else {
931                         hblks = 1;
932                 }
933         } else {
934                 hblks = 1;
935         }
936         after_umount_blk = (i + hblks + (int)
937                 BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize;
938         tail_lsn = log->l_tail_lsn;
939         if (*head_blk == after_umount_blk &&
940             be32_to_cpu(rhead->h_num_logops) == 1) {
941                 umount_data_blk = (i + hblks) % log->l_logBBsize;
942                 error = xlog_bread(log, umount_data_blk, 1, bp, &offset);
943                 if (error)
944                         goto bread_err;
945
946                 op_head = (xlog_op_header_t *)offset;
947                 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
948                         /*
949                          * Set tail and last sync so that newly written
950                          * log records will point recovery to after the
951                          * current unmount record.
952                          */
953                         log->l_tail_lsn =
954                                 xlog_assign_lsn(log->l_curr_cycle,
955                                                 after_umount_blk);
956                         log->l_last_sync_lsn =
957                                 xlog_assign_lsn(log->l_curr_cycle,
958                                                 after_umount_blk);
959                         *tail_blk = after_umount_blk;
960
961                         /*
962                          * Note that the unmount was clean. If the unmount
963                          * was not clean, we need to know this to rebuild the
964                          * superblock counters from the perag headers if we
965                          * have a filesystem using non-persistent counters.
966                          */
967                         log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
968                 }
969         }
970
971         /*
972          * Make sure that there are no blocks in front of the head
973          * with the same cycle number as the head.  This can happen
974          * because we allow multiple outstanding log writes concurrently,
975          * and the later writes might make it out before earlier ones.
976          *
977          * We use the lsn from before modifying it so that we'll never
978          * overwrite the unmount record after a clean unmount.
979          *
980          * Do this only if we are going to recover the filesystem
981          *
982          * NOTE: This used to say "if (!readonly)"
983          * However on Linux, we can & do recover a read-only filesystem.
984          * We only skip recovery if NORECOVERY is specified on mount,
985          * in which case we would not be here.
986          *
987          * But... if the -device- itself is readonly, just skip this.
988          * We can't recover this device anyway, so it won't matter.
989          */
990         if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp)) {
991                 error = xlog_clear_stale_blocks(log, tail_lsn);
992         }
993
994 bread_err:
995 exit:
996         xlog_put_bp(bp);
997
998         if (error)
999                 xlog_warn("XFS: failed to locate log tail");
1000         return error;
1001 }
1002
1003 /*
1004  * Is the log zeroed at all?
1005  *
1006  * The last binary search should be changed to perform an X block read
1007  * once X becomes small enough.  You can then search linearly through
1008  * the X blocks.  This will cut down on the number of reads we need to do.
1009  *
1010  * If the log is partially zeroed, this routine will pass back the blkno
1011  * of the first block with cycle number 0.  It won't have a complete LR
1012  * preceding it.
1013  *
1014  * Return:
1015  *      0  => the log is completely written to
1016  *      -1 => use *blk_no as the first block of the log
1017  *      >0 => error has occurred
1018  */
1019 STATIC int
1020 xlog_find_zeroed(
1021         xlog_t          *log,
1022         xfs_daddr_t     *blk_no)
1023 {
1024         xfs_buf_t       *bp;
1025         xfs_caddr_t     offset;
1026         uint            first_cycle, last_cycle;
1027         xfs_daddr_t     new_blk, last_blk, start_blk;
1028         xfs_daddr_t     num_scan_bblks;
1029         int             error, log_bbnum = log->l_logBBsize;
1030
1031         *blk_no = 0;
1032
1033         /* check totally zeroed log */
1034         bp = xlog_get_bp(log, 1);
1035         if (!bp)
1036                 return ENOMEM;
1037         error = xlog_bread(log, 0, 1, bp, &offset);
1038         if (error)
1039                 goto bp_err;
1040
1041         first_cycle = xlog_get_cycle(offset);
1042         if (first_cycle == 0) {         /* completely zeroed log */
1043                 *blk_no = 0;
1044                 xlog_put_bp(bp);
1045                 return -1;
1046         }
1047
1048         /* check partially zeroed log */
1049         error = xlog_bread(log, log_bbnum-1, 1, bp, &offset);
1050         if (error)
1051                 goto bp_err;
1052
1053         last_cycle = xlog_get_cycle(offset);
1054         if (last_cycle != 0) {          /* log completely written to */
1055                 xlog_put_bp(bp);
1056                 return 0;
1057         } else if (first_cycle != 1) {
1058                 /*
1059                  * If the cycle of the last block is zero, the cycle of
1060                  * the first block must be 1. If it's not, maybe we're
1061                  * not looking at a log... Bail out.
1062                  */
1063                 xlog_warn("XFS: Log inconsistent or not a log (last==0, first!=1)");
1064                 return XFS_ERROR(EINVAL);
1065         }
1066
1067         /* we have a partially zeroed log */
1068         last_blk = log_bbnum-1;
1069         if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1070                 goto bp_err;
1071
1072         /*
1073          * Validate the answer.  Because there is no way to guarantee that
1074          * the entire log is made up of log records which are the same size,
1075          * we scan over the defined maximum blocks.  At this point, the maximum
1076          * is not chosen to mean anything special.   XXXmiken
1077          */
1078         num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1079         ASSERT(num_scan_bblks <= INT_MAX);
1080
1081         if (last_blk < num_scan_bblks)
1082                 num_scan_bblks = last_blk;
1083         start_blk = last_blk - num_scan_bblks;
1084
1085         /*
1086          * We search for any instances of cycle number 0 that occur before
1087          * our current estimate of the head.  What we're trying to detect is
1088          *        1 ... | 0 | 1 | 0...
1089          *                       ^ binary search ends here
1090          */
1091         if ((error = xlog_find_verify_cycle(log, start_blk,
1092                                          (int)num_scan_bblks, 0, &new_blk)))
1093                 goto bp_err;
1094         if (new_blk != -1)
1095                 last_blk = new_blk;
1096
1097         /*
1098          * Potentially backup over partial log record write.  We don't need
1099          * to search the end of the log because we know it is zero.
1100          */
1101         if ((error = xlog_find_verify_log_record(log, start_blk,
1102                                 &last_blk, 0)) == -1) {
1103             error = XFS_ERROR(EIO);
1104             goto bp_err;
1105         } else if (error)
1106             goto bp_err;
1107
1108         *blk_no = last_blk;
1109 bp_err:
1110         xlog_put_bp(bp);
1111         if (error)
1112                 return error;
1113         return -1;
1114 }
1115
1116 /*
1117  * These are simple subroutines used by xlog_clear_stale_blocks() below
1118  * to initialize a buffer full of empty log record headers and write
1119  * them into the log.
1120  */
1121 STATIC void
1122 xlog_add_record(
1123         xlog_t                  *log,
1124         xfs_caddr_t             buf,
1125         int                     cycle,
1126         int                     block,
1127         int                     tail_cycle,
1128         int                     tail_block)
1129 {
1130         xlog_rec_header_t       *recp = (xlog_rec_header_t *)buf;
1131
1132         memset(buf, 0, BBSIZE);
1133         recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1134         recp->h_cycle = cpu_to_be32(cycle);
1135         recp->h_version = cpu_to_be32(
1136                         xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1137         recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1138         recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1139         recp->h_fmt = cpu_to_be32(XLOG_FMT);
1140         memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1141 }
1142
1143 STATIC int
1144 xlog_write_log_records(
1145         xlog_t          *log,
1146         int             cycle,
1147         int             start_block,
1148         int             blocks,
1149         int             tail_cycle,
1150         int             tail_block)
1151 {
1152         xfs_caddr_t     offset;
1153         xfs_buf_t       *bp;
1154         int             balign, ealign;
1155         int             sectbb = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1);
1156         int             end_block = start_block + blocks;
1157         int             bufblks;
1158         int             error = 0;
1159         int             i, j = 0;
1160
1161         bufblks = 1 << ffs(blocks);
1162         while (!(bp = xlog_get_bp(log, bufblks))) {
1163                 bufblks >>= 1;
1164                 if (bufblks <= log->l_sectbb_log)
1165                         return ENOMEM;
1166         }
1167
1168         /* We may need to do a read at the start to fill in part of
1169          * the buffer in the starting sector not covered by the first
1170          * write below.
1171          */
1172         balign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, start_block);
1173         if (balign != start_block) {
1174                 error = xlog_bread_noalign(log, start_block, 1, bp);
1175                 if (error)
1176                         goto out_put_bp;
1177
1178                 j = start_block - balign;
1179         }
1180
1181         for (i = start_block; i < end_block; i += bufblks) {
1182                 int             bcount, endcount;
1183
1184                 bcount = min(bufblks, end_block - start_block);
1185                 endcount = bcount - j;
1186
1187                 /* We may need to do a read at the end to fill in part of
1188                  * the buffer in the final sector not covered by the write.
1189                  * If this is the same sector as the above read, skip it.
1190                  */
1191                 ealign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, end_block);
1192                 if (j == 0 && (start_block + endcount > ealign)) {
1193                         offset = XFS_BUF_PTR(bp);
1194                         balign = BBTOB(ealign - start_block);
1195                         error = XFS_BUF_SET_PTR(bp, offset + balign,
1196                                                 BBTOB(sectbb));
1197                         if (error)
1198                                 break;
1199
1200                         error = xlog_bread_noalign(log, ealign, sectbb, bp);
1201                         if (error)
1202                                 break;
1203
1204                         error = XFS_BUF_SET_PTR(bp, offset, bufblks);
1205                         if (error)
1206                                 break;
1207                 }
1208
1209                 offset = xlog_align(log, start_block, endcount, bp);
1210                 for (; j < endcount; j++) {
1211                         xlog_add_record(log, offset, cycle, i+j,
1212                                         tail_cycle, tail_block);
1213                         offset += BBSIZE;
1214                 }
1215                 error = xlog_bwrite(log, start_block, endcount, bp);
1216                 if (error)
1217                         break;
1218                 start_block += endcount;
1219                 j = 0;
1220         }
1221
1222  out_put_bp:
1223         xlog_put_bp(bp);
1224         return error;
1225 }
1226
1227 /*
1228  * This routine is called to blow away any incomplete log writes out
1229  * in front of the log head.  We do this so that we won't become confused
1230  * if we come up, write only a little bit more, and then crash again.
1231  * If we leave the partial log records out there, this situation could
1232  * cause us to think those partial writes are valid blocks since they
1233  * have the current cycle number.  We get rid of them by overwriting them
1234  * with empty log records with the old cycle number rather than the
1235  * current one.
1236  *
1237  * The tail lsn is passed in rather than taken from
1238  * the log so that we will not write over the unmount record after a
1239  * clean unmount in a 512 block log.  Doing so would leave the log without
1240  * any valid log records in it until a new one was written.  If we crashed
1241  * during that time we would not be able to recover.
1242  */
1243 STATIC int
1244 xlog_clear_stale_blocks(
1245         xlog_t          *log,
1246         xfs_lsn_t       tail_lsn)
1247 {
1248         int             tail_cycle, head_cycle;
1249         int             tail_block, head_block;
1250         int             tail_distance, max_distance;
1251         int             distance;
1252         int             error;
1253
1254         tail_cycle = CYCLE_LSN(tail_lsn);
1255         tail_block = BLOCK_LSN(tail_lsn);
1256         head_cycle = log->l_curr_cycle;
1257         head_block = log->l_curr_block;
1258
1259         /*
1260          * Figure out the distance between the new head of the log
1261          * and the tail.  We want to write over any blocks beyond the
1262          * head that we may have written just before the crash, but
1263          * we don't want to overwrite the tail of the log.
1264          */
1265         if (head_cycle == tail_cycle) {
1266                 /*
1267                  * The tail is behind the head in the physical log,
1268                  * so the distance from the head to the tail is the
1269                  * distance from the head to the end of the log plus
1270                  * the distance from the beginning of the log to the
1271                  * tail.
1272                  */
1273                 if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1274                         XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1275                                          XFS_ERRLEVEL_LOW, log->l_mp);
1276                         return XFS_ERROR(EFSCORRUPTED);
1277                 }
1278                 tail_distance = tail_block + (log->l_logBBsize - head_block);
1279         } else {
1280                 /*
1281                  * The head is behind the tail in the physical log,
1282                  * so the distance from the head to the tail is just
1283                  * the tail block minus the head block.
1284                  */
1285                 if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1286                         XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1287                                          XFS_ERRLEVEL_LOW, log->l_mp);
1288                         return XFS_ERROR(EFSCORRUPTED);
1289                 }
1290                 tail_distance = tail_block - head_block;
1291         }
1292
1293         /*
1294          * If the head is right up against the tail, we can't clear
1295          * anything.
1296          */
1297         if (tail_distance <= 0) {
1298                 ASSERT(tail_distance == 0);
1299                 return 0;
1300         }
1301
1302         max_distance = XLOG_TOTAL_REC_SHIFT(log);
1303         /*
1304          * Take the smaller of the maximum amount of outstanding I/O
1305          * we could have and the distance to the tail to clear out.
1306          * We take the smaller so that we don't overwrite the tail and
1307          * we don't waste all day writing from the head to the tail
1308          * for no reason.
1309          */
1310         max_distance = MIN(max_distance, tail_distance);
1311
1312         if ((head_block + max_distance) <= log->l_logBBsize) {
1313                 /*
1314                  * We can stomp all the blocks we need to without
1315                  * wrapping around the end of the log.  Just do it
1316                  * in a single write.  Use the cycle number of the
1317                  * current cycle minus one so that the log will look like:
1318                  *     n ... | n - 1 ...
1319                  */
1320                 error = xlog_write_log_records(log, (head_cycle - 1),
1321                                 head_block, max_distance, tail_cycle,
1322                                 tail_block);
1323                 if (error)
1324                         return error;
1325         } else {
1326                 /*
1327                  * We need to wrap around the end of the physical log in
1328                  * order to clear all the blocks.  Do it in two separate
1329                  * I/Os.  The first write should be from the head to the
1330                  * end of the physical log, and it should use the current
1331                  * cycle number minus one just like above.
1332                  */
1333                 distance = log->l_logBBsize - head_block;
1334                 error = xlog_write_log_records(log, (head_cycle - 1),
1335                                 head_block, distance, tail_cycle,
1336                                 tail_block);
1337
1338                 if (error)
1339                         return error;
1340
1341                 /*
1342                  * Now write the blocks at the start of the physical log.
1343                  * This writes the remainder of the blocks we want to clear.
1344                  * It uses the current cycle number since we're now on the
1345                  * same cycle as the head so that we get:
1346                  *    n ... n ... | n - 1 ...
1347                  *    ^^^^^ blocks we're writing
1348                  */
1349                 distance = max_distance - (log->l_logBBsize - head_block);
1350                 error = xlog_write_log_records(log, head_cycle, 0, distance,
1351                                 tail_cycle, tail_block);
1352                 if (error)
1353                         return error;
1354         }
1355
1356         return 0;
1357 }
1358
1359 /******************************************************************************
1360  *
1361  *              Log recover routines
1362  *
1363  ******************************************************************************
1364  */
1365
1366 STATIC xlog_recover_t *
1367 xlog_recover_find_tid(
1368         struct hlist_head       *head,
1369         xlog_tid_t              tid)
1370 {
1371         xlog_recover_t          *trans;
1372         struct hlist_node       *n;
1373
1374         hlist_for_each_entry(trans, n, head, r_list) {
1375                 if (trans->r_log_tid == tid)
1376                         return trans;
1377         }
1378         return NULL;
1379 }
1380
1381 STATIC void
1382 xlog_recover_new_tid(
1383         struct hlist_head       *head,
1384         xlog_tid_t              tid,
1385         xfs_lsn_t               lsn)
1386 {
1387         xlog_recover_t          *trans;
1388
1389         trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP);
1390         trans->r_log_tid   = tid;
1391         trans->r_lsn       = lsn;
1392         INIT_LIST_HEAD(&trans->r_itemq);
1393
1394         INIT_HLIST_NODE(&trans->r_list);
1395         hlist_add_head(&trans->r_list, head);
1396 }
1397
1398 STATIC void
1399 xlog_recover_add_item(
1400         struct list_head        *head)
1401 {
1402         xlog_recover_item_t     *item;
1403
1404         item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
1405         INIT_LIST_HEAD(&item->ri_list);
1406         list_add_tail(&item->ri_list, head);
1407 }
1408
1409 STATIC int
1410 xlog_recover_add_to_cont_trans(
1411         struct log              *log,
1412         xlog_recover_t          *trans,
1413         xfs_caddr_t             dp,
1414         int                     len)
1415 {
1416         xlog_recover_item_t     *item;
1417         xfs_caddr_t             ptr, old_ptr;
1418         int                     old_len;
1419
1420         if (list_empty(&trans->r_itemq)) {
1421                 /* finish copying rest of trans header */
1422                 xlog_recover_add_item(&trans->r_itemq);
1423                 ptr = (xfs_caddr_t) &trans->r_theader +
1424                                 sizeof(xfs_trans_header_t) - len;
1425                 memcpy(ptr, dp, len); /* d, s, l */
1426                 return 0;
1427         }
1428         /* take the tail entry */
1429         item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
1430
1431         old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
1432         old_len = item->ri_buf[item->ri_cnt-1].i_len;
1433
1434         ptr = kmem_realloc(old_ptr, len+old_len, old_len, 0u);
1435         memcpy(&ptr[old_len], dp, len); /* d, s, l */
1436         item->ri_buf[item->ri_cnt-1].i_len += len;
1437         item->ri_buf[item->ri_cnt-1].i_addr = ptr;
1438         trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
1439         return 0;
1440 }
1441
1442 /*
1443  * The next region to add is the start of a new region.  It could be
1444  * a whole region or it could be the first part of a new region.  Because
1445  * of this, the assumption here is that the type and size fields of all
1446  * format structures fit into the first 32 bits of the structure.
1447  *
1448  * This works because all regions must be 32 bit aligned.  Therefore, we
1449  * either have both fields or we have neither field.  In the case we have
1450  * neither field, the data part of the region is zero length.  We only have
1451  * a log_op_header and can throw away the header since a new one will appear
1452  * later.  If we have at least 4 bytes, then we can determine how many regions
1453  * will appear in the current log item.
1454  */
1455 STATIC int
1456 xlog_recover_add_to_trans(
1457         struct log              *log,
1458         xlog_recover_t          *trans,
1459         xfs_caddr_t             dp,
1460         int                     len)
1461 {
1462         xfs_inode_log_format_t  *in_f;                  /* any will do */
1463         xlog_recover_item_t     *item;
1464         xfs_caddr_t             ptr;
1465
1466         if (!len)
1467                 return 0;
1468         if (list_empty(&trans->r_itemq)) {
1469                 /* we need to catch log corruptions here */
1470                 if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
1471                         xlog_warn("XFS: xlog_recover_add_to_trans: "
1472                                   "bad header magic number");
1473                         ASSERT(0);
1474                         return XFS_ERROR(EIO);
1475                 }
1476                 if (len == sizeof(xfs_trans_header_t))
1477                         xlog_recover_add_item(&trans->r_itemq);
1478                 memcpy(&trans->r_theader, dp, len); /* d, s, l */
1479                 return 0;
1480         }
1481
1482         ptr = kmem_alloc(len, KM_SLEEP);
1483         memcpy(ptr, dp, len);
1484         in_f = (xfs_inode_log_format_t *)ptr;
1485
1486         /* take the tail entry */
1487         item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
1488         if (item->ri_total != 0 &&
1489              item->ri_total == item->ri_cnt) {
1490                 /* tail item is in use, get a new one */
1491                 xlog_recover_add_item(&trans->r_itemq);
1492                 item = list_entry(trans->r_itemq.prev,
1493                                         xlog_recover_item_t, ri_list);
1494         }
1495
1496         if (item->ri_total == 0) {              /* first region to be added */
1497                 if (in_f->ilf_size == 0 ||
1498                     in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
1499                         xlog_warn(
1500         "XFS: bad number of regions (%d) in inode log format",
1501                                   in_f->ilf_size);
1502                         ASSERT(0);
1503                         return XFS_ERROR(EIO);
1504                 }
1505
1506                 item->ri_total = in_f->ilf_size;
1507                 item->ri_buf =
1508                         kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
1509                                     KM_SLEEP);
1510         }
1511         ASSERT(item->ri_total > item->ri_cnt);
1512         /* Description region is ri_buf[0] */
1513         item->ri_buf[item->ri_cnt].i_addr = ptr;
1514         item->ri_buf[item->ri_cnt].i_len  = len;
1515         item->ri_cnt++;
1516         trace_xfs_log_recover_item_add(log, trans, item, 0);
1517         return 0;
1518 }
1519
1520 /*
1521  * Sort the log items in the transaction. Cancelled buffers need
1522  * to be put first so they are processed before any items that might
1523  * modify the buffers. If they are cancelled, then the modifications
1524  * don't need to be replayed.
1525  */
1526 STATIC int
1527 xlog_recover_reorder_trans(
1528         struct log              *log,
1529         xlog_recover_t          *trans,
1530         int                     pass)
1531 {
1532         xlog_recover_item_t     *item, *n;
1533         LIST_HEAD(sort_list);
1534
1535         list_splice_init(&trans->r_itemq, &sort_list);
1536         list_for_each_entry_safe(item, n, &sort_list, ri_list) {
1537                 xfs_buf_log_format_t    *buf_f;
1538
1539                 buf_f = (xfs_buf_log_format_t *)item->ri_buf[0].i_addr;
1540
1541                 switch (ITEM_TYPE(item)) {
1542                 case XFS_LI_BUF:
1543                         if (!(buf_f->blf_flags & XFS_BLI_CANCEL)) {
1544                                 trace_xfs_log_recover_item_reorder_head(log,
1545                                                         trans, item, pass);
1546                                 list_move(&item->ri_list, &trans->r_itemq);
1547                                 break;
1548                         }
1549                 case XFS_LI_INODE:
1550                 case XFS_LI_DQUOT:
1551                 case XFS_LI_QUOTAOFF:
1552                 case XFS_LI_EFD:
1553                 case XFS_LI_EFI:
1554                         trace_xfs_log_recover_item_reorder_tail(log,
1555                                                         trans, item, pass);
1556                         list_move_tail(&item->ri_list, &trans->r_itemq);
1557                         break;
1558                 default:
1559                         xlog_warn(
1560         "XFS: xlog_recover_reorder_trans: unrecognized type of log operation");
1561                         ASSERT(0);
1562                         return XFS_ERROR(EIO);
1563                 }
1564         }
1565         ASSERT(list_empty(&sort_list));
1566         return 0;
1567 }
1568
1569 /*
1570  * Build up the table of buf cancel records so that we don't replay
1571  * cancelled data in the second pass.  For buffer records that are
1572  * not cancel records, there is nothing to do here so we just return.
1573  *
1574  * If we get a cancel record which is already in the table, this indicates
1575  * that the buffer was cancelled multiple times.  In order to ensure
1576  * that during pass 2 we keep the record in the table until we reach its
1577  * last occurrence in the log, we keep a reference count in the cancel
1578  * record in the table to tell us how many times we expect to see this
1579  * record during the second pass.
1580  */
1581 STATIC void
1582 xlog_recover_do_buffer_pass1(
1583         xlog_t                  *log,
1584         xfs_buf_log_format_t    *buf_f)
1585 {
1586         xfs_buf_cancel_t        *bcp;
1587         xfs_buf_cancel_t        *nextp;
1588         xfs_buf_cancel_t        *prevp;
1589         xfs_buf_cancel_t        **bucket;
1590         xfs_daddr_t             blkno = 0;
1591         uint                    len = 0;
1592         ushort                  flags = 0;
1593
1594         switch (buf_f->blf_type) {
1595         case XFS_LI_BUF:
1596                 blkno = buf_f->blf_blkno;
1597                 len = buf_f->blf_len;
1598                 flags = buf_f->blf_flags;
1599                 break;
1600         }
1601
1602         /*
1603          * If this isn't a cancel buffer item, then just return.
1604          */
1605         if (!(flags & XFS_BLI_CANCEL)) {
1606                 trace_xfs_log_recover_buf_not_cancel(log, buf_f);
1607                 return;
1608         }
1609
1610         /*
1611          * Insert an xfs_buf_cancel record into the hash table of
1612          * them.  If there is already an identical record, bump
1613          * its reference count.
1614          */
1615         bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
1616                                           XLOG_BC_TABLE_SIZE];
1617         /*
1618          * If the hash bucket is empty then just insert a new record into
1619          * the bucket.
1620          */
1621         if (*bucket == NULL) {
1622                 bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
1623                                                      KM_SLEEP);
1624                 bcp->bc_blkno = blkno;
1625                 bcp->bc_len = len;
1626                 bcp->bc_refcount = 1;
1627                 bcp->bc_next = NULL;
1628                 *bucket = bcp;
1629                 return;
1630         }
1631
1632         /*
1633          * The hash bucket is not empty, so search for duplicates of our
1634          * record.  If we find one them just bump its refcount.  If not
1635          * then add us at the end of the list.
1636          */
1637         prevp = NULL;
1638         nextp = *bucket;
1639         while (nextp != NULL) {
1640                 if (nextp->bc_blkno == blkno && nextp->bc_len == len) {
1641                         nextp->bc_refcount++;
1642                         trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f);
1643                         return;
1644                 }
1645                 prevp = nextp;
1646                 nextp = nextp->bc_next;
1647         }
1648         ASSERT(prevp != NULL);
1649         bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
1650                                              KM_SLEEP);
1651         bcp->bc_blkno = blkno;
1652         bcp->bc_len = len;
1653         bcp->bc_refcount = 1;
1654         bcp->bc_next = NULL;
1655         prevp->bc_next = bcp;
1656         trace_xfs_log_recover_buf_cancel_add(log, buf_f);
1657 }
1658
1659 /*
1660  * Check to see whether the buffer being recovered has a corresponding
1661  * entry in the buffer cancel record table.  If it does then return 1
1662  * so that it will be cancelled, otherwise return 0.  If the buffer is
1663  * actually a buffer cancel item (XFS_BLI_CANCEL is set), then decrement
1664  * the refcount on the entry in the table and remove it from the table
1665  * if this is the last reference.
1666  *
1667  * We remove the cancel record from the table when we encounter its
1668  * last occurrence in the log so that if the same buffer is re-used
1669  * again after its last cancellation we actually replay the changes
1670  * made at that point.
1671  */
1672 STATIC int
1673 xlog_check_buffer_cancelled(
1674         xlog_t                  *log,
1675         xfs_daddr_t             blkno,
1676         uint                    len,
1677         ushort                  flags)
1678 {
1679         xfs_buf_cancel_t        *bcp;
1680         xfs_buf_cancel_t        *prevp;
1681         xfs_buf_cancel_t        **bucket;
1682
1683         if (log->l_buf_cancel_table == NULL) {
1684                 /*
1685                  * There is nothing in the table built in pass one,
1686                  * so this buffer must not be cancelled.
1687                  */
1688                 ASSERT(!(flags & XFS_BLI_CANCEL));
1689                 return 0;
1690         }
1691
1692         bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
1693                                           XLOG_BC_TABLE_SIZE];
1694         bcp = *bucket;
1695         if (bcp == NULL) {
1696                 /*
1697                  * There is no corresponding entry in the table built
1698                  * in pass one, so this buffer has not been cancelled.
1699                  */
1700                 ASSERT(!(flags & XFS_BLI_CANCEL));
1701                 return 0;
1702         }
1703
1704         /*
1705          * Search for an entry in the buffer cancel table that
1706          * matches our buffer.
1707          */
1708         prevp = NULL;
1709         while (bcp != NULL) {
1710                 if (bcp->bc_blkno == blkno && bcp->bc_len == len) {
1711                         /*
1712                          * We've go a match, so return 1 so that the
1713                          * recovery of this buffer is cancelled.
1714                          * If this buffer is actually a buffer cancel
1715                          * log item, then decrement the refcount on the
1716                          * one in the table and remove it if this is the
1717                          * last reference.
1718                          */
1719                         if (flags & XFS_BLI_CANCEL) {
1720                                 bcp->bc_refcount--;
1721                                 if (bcp->bc_refcount == 0) {
1722                                         if (prevp == NULL) {
1723                                                 *bucket = bcp->bc_next;
1724                                         } else {
1725                                                 prevp->bc_next = bcp->bc_next;
1726                                         }
1727                                         kmem_free(bcp);
1728                                 }
1729                         }
1730                         return 1;
1731                 }
1732                 prevp = bcp;
1733                 bcp = bcp->bc_next;
1734         }
1735         /*
1736          * We didn't find a corresponding entry in the table, so
1737          * return 0 so that the buffer is NOT cancelled.
1738          */
1739         ASSERT(!(flags & XFS_BLI_CANCEL));
1740         return 0;
1741 }
1742
1743 STATIC int
1744 xlog_recover_do_buffer_pass2(
1745         xlog_t                  *log,
1746         xfs_buf_log_format_t    *buf_f)
1747 {
1748         xfs_daddr_t             blkno = 0;
1749         ushort                  flags = 0;
1750         uint                    len = 0;
1751
1752         switch (buf_f->blf_type) {
1753         case XFS_LI_BUF:
1754                 blkno = buf_f->blf_blkno;
1755                 flags = buf_f->blf_flags;
1756                 len = buf_f->blf_len;
1757                 break;
1758         }
1759
1760         return xlog_check_buffer_cancelled(log, blkno, len, flags);
1761 }
1762
1763 /*
1764  * Perform recovery for a buffer full of inodes.  In these buffers,
1765  * the only data which should be recovered is that which corresponds
1766  * to the di_next_unlinked pointers in the on disk inode structures.
1767  * The rest of the data for the inodes is always logged through the
1768  * inodes themselves rather than the inode buffer and is recovered
1769  * in xlog_recover_do_inode_trans().
1770  *
1771  * The only time when buffers full of inodes are fully recovered is
1772  * when the buffer is full of newly allocated inodes.  In this case
1773  * the buffer will not be marked as an inode buffer and so will be
1774  * sent to xlog_recover_do_reg_buffer() below during recovery.
1775  */
1776 STATIC int
1777 xlog_recover_do_inode_buffer(
1778         xfs_mount_t             *mp,
1779         xlog_recover_item_t     *item,
1780         xfs_buf_t               *bp,
1781         xfs_buf_log_format_t    *buf_f)
1782 {
1783         int                     i;
1784         int                     item_index;
1785         int                     bit;
1786         int                     nbits;
1787         int                     reg_buf_offset;
1788         int                     reg_buf_bytes;
1789         int                     next_unlinked_offset;
1790         int                     inodes_per_buf;
1791         xfs_agino_t             *logged_nextp;
1792         xfs_agino_t             *buffer_nextp;
1793         unsigned int            *data_map = NULL;
1794         unsigned int            map_size = 0;
1795
1796         trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
1797
1798         switch (buf_f->blf_type) {
1799         case XFS_LI_BUF:
1800                 data_map = buf_f->blf_data_map;
1801                 map_size = buf_f->blf_map_size;
1802                 break;
1803         }
1804         /*
1805          * Set the variables corresponding to the current region to
1806          * 0 so that we'll initialize them on the first pass through
1807          * the loop.
1808          */
1809         reg_buf_offset = 0;
1810         reg_buf_bytes = 0;
1811         bit = 0;
1812         nbits = 0;
1813         item_index = 0;
1814         inodes_per_buf = XFS_BUF_COUNT(bp) >> mp->m_sb.sb_inodelog;
1815         for (i = 0; i < inodes_per_buf; i++) {
1816                 next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
1817                         offsetof(xfs_dinode_t, di_next_unlinked);
1818
1819                 while (next_unlinked_offset >=
1820                        (reg_buf_offset + reg_buf_bytes)) {
1821                         /*
1822                          * The next di_next_unlinked field is beyond
1823                          * the current logged region.  Find the next
1824                          * logged region that contains or is beyond
1825                          * the current di_next_unlinked field.
1826                          */
1827                         bit += nbits;
1828                         bit = xfs_next_bit(data_map, map_size, bit);
1829
1830                         /*
1831                          * If there are no more logged regions in the
1832                          * buffer, then we're done.
1833                          */
1834                         if (bit == -1) {
1835                                 return 0;
1836                         }
1837
1838                         nbits = xfs_contig_bits(data_map, map_size,
1839                                                          bit);
1840                         ASSERT(nbits > 0);
1841                         reg_buf_offset = bit << XFS_BLI_SHIFT;
1842                         reg_buf_bytes = nbits << XFS_BLI_SHIFT;
1843                         item_index++;
1844                 }
1845
1846                 /*
1847                  * If the current logged region starts after the current
1848                  * di_next_unlinked field, then move on to the next
1849                  * di_next_unlinked field.
1850                  */
1851                 if (next_unlinked_offset < reg_buf_offset) {
1852                         continue;
1853                 }
1854
1855                 ASSERT(item->ri_buf[item_index].i_addr != NULL);
1856                 ASSERT((item->ri_buf[item_index].i_len % XFS_BLI_CHUNK) == 0);
1857                 ASSERT((reg_buf_offset + reg_buf_bytes) <= XFS_BUF_COUNT(bp));
1858
1859                 /*
1860                  * The current logged region contains a copy of the
1861                  * current di_next_unlinked field.  Extract its value
1862                  * and copy it to the buffer copy.
1863                  */
1864                 logged_nextp = (xfs_agino_t *)
1865                                ((char *)(item->ri_buf[item_index].i_addr) +
1866                                 (next_unlinked_offset - reg_buf_offset));
1867                 if (unlikely(*logged_nextp == 0)) {
1868                         xfs_fs_cmn_err(CE_ALERT, mp,
1869                                 "bad inode buffer log record (ptr = 0x%p, bp = 0x%p).  XFS trying to replay bad (0) inode di_next_unlinked field",
1870                                 item, bp);
1871                         XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
1872                                          XFS_ERRLEVEL_LOW, mp);
1873                         return XFS_ERROR(EFSCORRUPTED);
1874                 }
1875
1876                 buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
1877                                               next_unlinked_offset);
1878                 *buffer_nextp = *logged_nextp;
1879         }
1880
1881         return 0;
1882 }
1883
1884 /*
1885  * Perform a 'normal' buffer recovery.  Each logged region of the
1886  * buffer should be copied over the corresponding region in the
1887  * given buffer.  The bitmap in the buf log format structure indicates
1888  * where to place the logged data.
1889  */
1890 /*ARGSUSED*/
1891 STATIC void
1892 xlog_recover_do_reg_buffer(
1893         struct xfs_mount        *mp,
1894         xlog_recover_item_t     *item,
1895         xfs_buf_t               *bp,
1896         xfs_buf_log_format_t    *buf_f)
1897 {
1898         int                     i;
1899         int                     bit;
1900         int                     nbits;
1901         unsigned int            *data_map = NULL;
1902         unsigned int            map_size = 0;
1903         int                     error;
1904
1905         trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
1906
1907         switch (buf_f->blf_type) {
1908         case XFS_LI_BUF:
1909                 data_map = buf_f->blf_data_map;
1910                 map_size = buf_f->blf_map_size;
1911                 break;
1912         }
1913         bit = 0;
1914         i = 1;  /* 0 is the buf format structure */
1915         while (1) {
1916                 bit = xfs_next_bit(data_map, map_size, bit);
1917                 if (bit == -1)
1918                         break;
1919                 nbits = xfs_contig_bits(data_map, map_size, bit);
1920                 ASSERT(nbits > 0);
1921                 ASSERT(item->ri_buf[i].i_addr != NULL);
1922                 ASSERT(item->ri_buf[i].i_len % XFS_BLI_CHUNK == 0);
1923                 ASSERT(XFS_BUF_COUNT(bp) >=
1924                        ((uint)bit << XFS_BLI_SHIFT)+(nbits<<XFS_BLI_SHIFT));
1925
1926                 /*
1927                  * Do a sanity check if this is a dquot buffer. Just checking
1928                  * the first dquot in the buffer should do. XXXThis is
1929                  * probably a good thing to do for other buf types also.
1930                  */
1931                 error = 0;
1932                 if (buf_f->blf_flags &
1933                    (XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) {
1934                         if (item->ri_buf[i].i_addr == NULL) {
1935                                 cmn_err(CE_ALERT,
1936                                         "XFS: NULL dquot in %s.", __func__);
1937                                 goto next;
1938                         }
1939                         if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) {
1940                                 cmn_err(CE_ALERT,
1941                                         "XFS: dquot too small (%d) in %s.",
1942                                         item->ri_buf[i].i_len, __func__);
1943                                 goto next;
1944                         }
1945                         error = xfs_qm_dqcheck((xfs_disk_dquot_t *)
1946                                                item->ri_buf[i].i_addr,
1947                                                -1, 0, XFS_QMOPT_DOWARN,
1948                                                "dquot_buf_recover");
1949                         if (error)
1950                                 goto next;
1951                 }
1952
1953                 memcpy(xfs_buf_offset(bp,
1954                         (uint)bit << XFS_BLI_SHIFT),    /* dest */
1955                         item->ri_buf[i].i_addr,         /* source */
1956                         nbits<<XFS_BLI_SHIFT);          /* length */
1957  next:
1958                 i++;
1959                 bit += nbits;
1960         }
1961
1962         /* Shouldn't be any more regions */
1963         ASSERT(i == item->ri_total);
1964 }
1965
1966 /*
1967  * Do some primitive error checking on ondisk dquot data structures.
1968  */
1969 int
1970 xfs_qm_dqcheck(
1971         xfs_disk_dquot_t *ddq,
1972         xfs_dqid_t       id,
1973         uint             type,    /* used only when IO_dorepair is true */
1974         uint             flags,
1975         char             *str)
1976 {
1977         xfs_dqblk_t      *d = (xfs_dqblk_t *)ddq;
1978         int             errs = 0;
1979
1980         /*
1981          * We can encounter an uninitialized dquot buffer for 2 reasons:
1982          * 1. If we crash while deleting the quotainode(s), and those blks got
1983          *    used for user data. This is because we take the path of regular
1984          *    file deletion; however, the size field of quotainodes is never
1985          *    updated, so all the tricks that we play in itruncate_finish
1986          *    don't quite matter.
1987          *
1988          * 2. We don't play the quota buffers when there's a quotaoff logitem.
1989          *    But the allocation will be replayed so we'll end up with an
1990          *    uninitialized quota block.
1991          *
1992          * This is all fine; things are still consistent, and we haven't lost
1993          * any quota information. Just don't complain about bad dquot blks.
1994          */
1995         if (be16_to_cpu(ddq->d_magic) != XFS_DQUOT_MAGIC) {
1996                 if (flags & XFS_QMOPT_DOWARN)
1997                         cmn_err(CE_ALERT,
1998                         "%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x",
1999                         str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC);
2000                 errs++;
2001         }
2002         if (ddq->d_version != XFS_DQUOT_VERSION) {
2003                 if (flags & XFS_QMOPT_DOWARN)
2004                         cmn_err(CE_ALERT,
2005                         "%s : XFS dquot ID 0x%x, version 0x%x != 0x%x",
2006                         str, id, ddq->d_version, XFS_DQUOT_VERSION);
2007                 errs++;
2008         }
2009
2010         if (ddq->d_flags != XFS_DQ_USER &&
2011             ddq->d_flags != XFS_DQ_PROJ &&
2012             ddq->d_flags != XFS_DQ_GROUP) {
2013                 if (flags & XFS_QMOPT_DOWARN)
2014                         cmn_err(CE_ALERT,
2015                         "%s : XFS dquot ID 0x%x, unknown flags 0x%x",
2016                         str, id, ddq->d_flags);
2017                 errs++;
2018         }
2019
2020         if (id != -1 && id != be32_to_cpu(ddq->d_id)) {
2021                 if (flags & XFS_QMOPT_DOWARN)
2022                         cmn_err(CE_ALERT,
2023                         "%s : ondisk-dquot 0x%p, ID mismatch: "
2024                         "0x%x expected, found id 0x%x",
2025                         str, ddq, id, be32_to_cpu(ddq->d_id));
2026                 errs++;
2027         }
2028
2029         if (!errs && ddq->d_id) {
2030                 if (ddq->d_blk_softlimit &&
2031                     be64_to_cpu(ddq->d_bcount) >=
2032                                 be64_to_cpu(ddq->d_blk_softlimit)) {
2033                         if (!ddq->d_btimer) {
2034                                 if (flags & XFS_QMOPT_DOWARN)
2035                                         cmn_err(CE_ALERT,
2036                                         "%s : Dquot ID 0x%x (0x%p) "
2037                                         "BLK TIMER NOT STARTED",
2038                                         str, (int)be32_to_cpu(ddq->d_id), ddq);
2039                                 errs++;
2040                         }
2041                 }
2042                 if (ddq->d_ino_softlimit &&
2043                     be64_to_cpu(ddq->d_icount) >=
2044                                 be64_to_cpu(ddq->d_ino_softlimit)) {
2045                         if (!ddq->d_itimer) {
2046                                 if (flags & XFS_QMOPT_DOWARN)
2047                                         cmn_err(CE_ALERT,
2048                                         "%s : Dquot ID 0x%x (0x%p) "
2049                                         "INODE TIMER NOT STARTED",
2050                                         str, (int)be32_to_cpu(ddq->d_id), ddq);
2051                                 errs++;
2052                         }
2053                 }
2054                 if (ddq->d_rtb_softlimit &&
2055                     be64_to_cpu(ddq->d_rtbcount) >=
2056                                 be64_to_cpu(ddq->d_rtb_softlimit)) {
2057                         if (!ddq->d_rtbtimer) {
2058                                 if (flags & XFS_QMOPT_DOWARN)
2059                                         cmn_err(CE_ALERT,
2060                                         "%s : Dquot ID 0x%x (0x%p) "
2061                                         "RTBLK TIMER NOT STARTED",
2062                                         str, (int)be32_to_cpu(ddq->d_id), ddq);
2063                                 errs++;
2064                         }
2065                 }
2066         }
2067
2068         if (!errs || !(flags & XFS_QMOPT_DQREPAIR))
2069                 return errs;
2070
2071         if (flags & XFS_QMOPT_DOWARN)
2072                 cmn_err(CE_NOTE, "Re-initializing dquot ID 0x%x", id);
2073
2074         /*
2075          * Typically, a repair is only requested by quotacheck.
2076          */
2077         ASSERT(id != -1);
2078         ASSERT(flags & XFS_QMOPT_DQREPAIR);
2079         memset(d, 0, sizeof(xfs_dqblk_t));
2080
2081         d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC);
2082         d->dd_diskdq.d_version = XFS_DQUOT_VERSION;
2083         d->dd_diskdq.d_flags = type;
2084         d->dd_diskdq.d_id = cpu_to_be32(id);
2085
2086         return errs;
2087 }
2088
2089 /*
2090  * Perform a dquot buffer recovery.
2091  * Simple algorithm: if we have found a QUOTAOFF logitem of the same type
2092  * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2093  * Else, treat it as a regular buffer and do recovery.
2094  */
2095 STATIC void
2096 xlog_recover_do_dquot_buffer(
2097         xfs_mount_t             *mp,
2098         xlog_t                  *log,
2099         xlog_recover_item_t     *item,
2100         xfs_buf_t               *bp,
2101         xfs_buf_log_format_t    *buf_f)
2102 {
2103         uint                    type;
2104
2105         trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
2106
2107         /*
2108          * Filesystems are required to send in quota flags at mount time.
2109          */
2110         if (mp->m_qflags == 0) {
2111                 return;
2112         }
2113
2114         type = 0;
2115         if (buf_f->blf_flags & XFS_BLI_UDQUOT_BUF)
2116                 type |= XFS_DQ_USER;
2117         if (buf_f->blf_flags & XFS_BLI_PDQUOT_BUF)
2118                 type |= XFS_DQ_PROJ;
2119         if (buf_f->blf_flags & XFS_BLI_GDQUOT_BUF)
2120                 type |= XFS_DQ_GROUP;
2121         /*
2122          * This type of quotas was turned off, so ignore this buffer
2123          */
2124         if (log->l_quotaoffs_flag & type)
2125                 return;
2126
2127         xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2128 }
2129
2130 /*
2131  * This routine replays a modification made to a buffer at runtime.
2132  * There are actually two types of buffer, regular and inode, which
2133  * are handled differently.  Inode buffers are handled differently
2134  * in that we only recover a specific set of data from them, namely
2135  * the inode di_next_unlinked fields.  This is because all other inode
2136  * data is actually logged via inode records and any data we replay
2137  * here which overlaps that may be stale.
2138  *
2139  * When meta-data buffers are freed at run time we log a buffer item
2140  * with the XFS_BLI_CANCEL bit set to indicate that previous copies
2141  * of the buffer in the log should not be replayed at recovery time.
2142  * This is so that if the blocks covered by the buffer are reused for
2143  * file data before we crash we don't end up replaying old, freed
2144  * meta-data into a user's file.
2145  *
2146  * To handle the cancellation of buffer log items, we make two passes
2147  * over the log during recovery.  During the first we build a table of
2148  * those buffers which have been cancelled, and during the second we
2149  * only replay those buffers which do not have corresponding cancel
2150  * records in the table.  See xlog_recover_do_buffer_pass[1,2] above
2151  * for more details on the implementation of the table of cancel records.
2152  */
2153 STATIC int
2154 xlog_recover_do_buffer_trans(
2155         xlog_t                  *log,
2156         xlog_recover_item_t     *item,
2157         int                     pass)
2158 {
2159         xfs_buf_log_format_t    *buf_f;
2160         xfs_mount_t             *mp;
2161         xfs_buf_t               *bp;
2162         int                     error;
2163         int                     cancel;
2164         xfs_daddr_t             blkno;
2165         int                     len;
2166         ushort                  flags;
2167         uint                    buf_flags;
2168
2169         buf_f = (xfs_buf_log_format_t *)item->ri_buf[0].i_addr;
2170
2171         if (pass == XLOG_RECOVER_PASS1) {
2172                 /*
2173                  * In this pass we're only looking for buf items
2174                  * with the XFS_BLI_CANCEL bit set.
2175                  */
2176                 xlog_recover_do_buffer_pass1(log, buf_f);
2177                 return 0;
2178         } else {
2179                 /*
2180                  * In this pass we want to recover all the buffers
2181                  * which have not been cancelled and are not
2182                  * cancellation buffers themselves.  The routine
2183                  * we call here will tell us whether or not to
2184                  * continue with the replay of this buffer.
2185                  */
2186                 cancel = xlog_recover_do_buffer_pass2(log, buf_f);
2187                 if (cancel) {
2188                         trace_xfs_log_recover_buf_cancel(log, buf_f);
2189                         return 0;
2190                 }
2191         }
2192         trace_xfs_log_recover_buf_recover(log, buf_f);
2193         switch (buf_f->blf_type) {
2194         case XFS_LI_BUF:
2195                 blkno = buf_f->blf_blkno;
2196                 len = buf_f->blf_len;
2197                 flags = buf_f->blf_flags;
2198                 break;
2199         default:
2200                 xfs_fs_cmn_err(CE_ALERT, log->l_mp,
2201                         "xfs_log_recover: unknown buffer type 0x%x, logdev %s",
2202                         buf_f->blf_type, log->l_mp->m_logname ?
2203                         log->l_mp->m_logname : "internal");
2204                 XFS_ERROR_REPORT("xlog_recover_do_buffer_trans",
2205                                  XFS_ERRLEVEL_LOW, log->l_mp);
2206                 return XFS_ERROR(EFSCORRUPTED);
2207         }
2208
2209         mp = log->l_mp;
2210         buf_flags = XBF_LOCK;
2211         if (!(flags & XFS_BLI_INODE_BUF))
2212                 buf_flags |= XBF_MAPPED;
2213
2214         bp = xfs_buf_read(mp->m_ddev_targp, blkno, len, buf_flags);
2215         if (XFS_BUF_ISERROR(bp)) {
2216                 xfs_ioerror_alert("xlog_recover_do..(read#1)", log->l_mp,
2217                                   bp, blkno);
2218                 error = XFS_BUF_GETERROR(bp);
2219                 xfs_buf_relse(bp);
2220                 return error;
2221         }
2222
2223         error = 0;
2224         if (flags & XFS_BLI_INODE_BUF) {
2225                 error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
2226         } else if (flags &
2227                   (XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) {
2228                 xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2229         } else {
2230                 xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2231         }
2232         if (error)
2233                 return XFS_ERROR(error);
2234
2235         /*
2236          * Perform delayed write on the buffer.  Asynchronous writes will be
2237          * slower when taking into account all the buffers to be flushed.
2238          *
2239          * Also make sure that only inode buffers with good sizes stay in
2240          * the buffer cache.  The kernel moves inodes in buffers of 1 block
2241          * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger.  The inode
2242          * buffers in the log can be a different size if the log was generated
2243          * by an older kernel using unclustered inode buffers or a newer kernel
2244          * running with a different inode cluster size.  Regardless, if the
2245          * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
2246          * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
2247          * the buffer out of the buffer cache so that the buffer won't
2248          * overlap with future reads of those inodes.
2249          */
2250         if (XFS_DINODE_MAGIC ==
2251             be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
2252             (XFS_BUF_COUNT(bp) != MAX(log->l_mp->m_sb.sb_blocksize,
2253                         (__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) {
2254                 XFS_BUF_STALE(bp);
2255                 error = xfs_bwrite(mp, bp);
2256         } else {
2257                 ASSERT(bp->b_mount == NULL || bp->b_mount == mp);
2258                 bp->b_mount = mp;
2259                 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2260                 xfs_bdwrite(mp, bp);
2261         }
2262
2263         return (error);
2264 }
2265
2266 STATIC int
2267 xlog_recover_do_inode_trans(
2268         xlog_t                  *log,
2269         xlog_recover_item_t     *item,
2270         int                     pass)
2271 {
2272         xfs_inode_log_format_t  *in_f;
2273         xfs_mount_t             *mp;
2274         xfs_buf_t               *bp;
2275         xfs_dinode_t            *dip;
2276         xfs_ino_t               ino;
2277         int                     len;
2278         xfs_caddr_t             src;
2279         xfs_caddr_t             dest;
2280         int                     error;
2281         int                     attr_index;
2282         uint                    fields;
2283         xfs_icdinode_t          *dicp;
2284         int                     need_free = 0;
2285
2286         if (pass == XLOG_RECOVER_PASS1) {
2287                 return 0;
2288         }
2289
2290         if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
2291                 in_f = (xfs_inode_log_format_t *)item->ri_buf[0].i_addr;
2292         } else {
2293                 in_f = (xfs_inode_log_format_t *)kmem_alloc(
2294                         sizeof(xfs_inode_log_format_t), KM_SLEEP);
2295                 need_free = 1;
2296                 error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
2297                 if (error)
2298                         goto error;
2299         }
2300         ino = in_f->ilf_ino;
2301         mp = log->l_mp;
2302
2303         /*
2304          * Inode buffers can be freed, look out for it,
2305          * and do not replay the inode.
2306          */
2307         if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
2308                                         in_f->ilf_len, 0)) {
2309                 error = 0;
2310                 trace_xfs_log_recover_inode_cancel(log, in_f);
2311                 goto error;
2312         }
2313         trace_xfs_log_recover_inode_recover(log, in_f);
2314
2315         bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len,
2316                           XBF_LOCK);
2317         if (XFS_BUF_ISERROR(bp)) {
2318                 xfs_ioerror_alert("xlog_recover_do..(read#2)", mp,
2319                                   bp, in_f->ilf_blkno);
2320                 error = XFS_BUF_GETERROR(bp);
2321                 xfs_buf_relse(bp);
2322                 goto error;
2323         }
2324         error = 0;
2325         ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
2326         dip = (xfs_dinode_t *)xfs_buf_offset(bp, in_f->ilf_boffset);
2327
2328         /*
2329          * Make sure the place we're flushing out to really looks
2330          * like an inode!
2331          */
2332         if (unlikely(be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC)) {
2333                 xfs_buf_relse(bp);
2334                 xfs_fs_cmn_err(CE_ALERT, mp,
2335                         "xfs_inode_recover: Bad inode magic number, dino ptr = 0x%p, dino bp = 0x%p, ino = %Ld",
2336                         dip, bp, ino);
2337                 XFS_ERROR_REPORT("xlog_recover_do_inode_trans(1)",
2338                                  XFS_ERRLEVEL_LOW, mp);
2339                 error = EFSCORRUPTED;
2340                 goto error;
2341         }
2342         dicp = (xfs_icdinode_t *)(item->ri_buf[1].i_addr);
2343         if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
2344                 xfs_buf_relse(bp);
2345                 xfs_fs_cmn_err(CE_ALERT, mp,
2346                         "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, ino %Ld",
2347                         item, ino);
2348                 XFS_ERROR_REPORT("xlog_recover_do_inode_trans(2)",
2349                                  XFS_ERRLEVEL_LOW, mp);
2350                 error = EFSCORRUPTED;
2351                 goto error;
2352         }
2353
2354         /* Skip replay when the on disk inode is newer than the log one */
2355         if (dicp->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
2356                 /*
2357                  * Deal with the wrap case, DI_MAX_FLUSH is less
2358                  * than smaller numbers
2359                  */
2360                 if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
2361                     dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) {
2362                         /* do nothing */
2363                 } else {
2364                         xfs_buf_relse(bp);
2365                         trace_xfs_log_recover_inode_skip(log, in_f);
2366                         error = 0;
2367                         goto error;
2368                 }
2369         }
2370         /* Take the opportunity to reset the flush iteration count */
2371         dicp->di_flushiter = 0;
2372
2373         if (unlikely((dicp->di_mode & S_IFMT) == S_IFREG)) {
2374                 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2375                     (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
2376                         XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(3)",
2377                                          XFS_ERRLEVEL_LOW, mp, dicp);
2378                         xfs_buf_relse(bp);
2379                         xfs_fs_cmn_err(CE_ALERT, mp,
2380                                 "xfs_inode_recover: Bad regular inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2381                                 item, dip, bp, ino);
2382                         error = EFSCORRUPTED;
2383                         goto error;
2384                 }
2385         } else if (unlikely((dicp->di_mode & S_IFMT) == S_IFDIR)) {
2386                 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2387                     (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
2388                     (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
2389                         XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(4)",
2390                                              XFS_ERRLEVEL_LOW, mp, dicp);
2391                         xfs_buf_relse(bp);
2392                         xfs_fs_cmn_err(CE_ALERT, mp,
2393                                 "xfs_inode_recover: Bad dir inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2394                                 item, dip, bp, ino);
2395                         error = EFSCORRUPTED;
2396                         goto error;
2397                 }
2398         }
2399         if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
2400                 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(5)",
2401                                      XFS_ERRLEVEL_LOW, mp, dicp);
2402                 xfs_buf_relse(bp);
2403                 xfs_fs_cmn_err(CE_ALERT, mp,
2404                         "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
2405                         item, dip, bp, ino,
2406                         dicp->di_nextents + dicp->di_anextents,
2407                         dicp->di_nblocks);
2408                 error = EFSCORRUPTED;
2409                 goto error;
2410         }
2411         if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
2412                 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(6)",
2413                                      XFS_ERRLEVEL_LOW, mp, dicp);
2414                 xfs_buf_relse(bp);
2415                 xfs_fs_cmn_err(CE_ALERT, mp,
2416                         "xfs_inode_recover: Bad inode log rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, forkoff 0x%x",
2417                         item, dip, bp, ino, dicp->di_forkoff);
2418                 error = EFSCORRUPTED;
2419                 goto error;
2420         }
2421         if (unlikely(item->ri_buf[1].i_len > sizeof(struct xfs_icdinode))) {
2422                 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(7)",
2423                                      XFS_ERRLEVEL_LOW, mp, dicp);
2424                 xfs_buf_relse(bp);
2425                 xfs_fs_cmn_err(CE_ALERT, mp,
2426                         "xfs_inode_recover: Bad inode log record length %d, rec ptr 0x%p",
2427                         item->ri_buf[1].i_len, item);
2428                 error = EFSCORRUPTED;
2429                 goto error;
2430         }
2431
2432         /* The core is in in-core format */
2433         xfs_dinode_to_disk(dip, (xfs_icdinode_t *)item->ri_buf[1].i_addr);
2434
2435         /* the rest is in on-disk format */
2436         if (item->ri_buf[1].i_len > sizeof(struct xfs_icdinode)) {
2437                 memcpy((xfs_caddr_t) dip + sizeof(struct xfs_icdinode),
2438                         item->ri_buf[1].i_addr + sizeof(struct xfs_icdinode),
2439                         item->ri_buf[1].i_len  - sizeof(struct xfs_icdinode));
2440         }
2441
2442         fields = in_f->ilf_fields;
2443         switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
2444         case XFS_ILOG_DEV:
2445                 xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
2446                 break;
2447         case XFS_ILOG_UUID:
2448                 memcpy(XFS_DFORK_DPTR(dip),
2449                        &in_f->ilf_u.ilfu_uuid,
2450                        sizeof(uuid_t));
2451                 break;
2452         }
2453
2454         if (in_f->ilf_size == 2)
2455                 goto write_inode_buffer;
2456         len = item->ri_buf[2].i_len;
2457         src = item->ri_buf[2].i_addr;
2458         ASSERT(in_f->ilf_size <= 4);
2459         ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
2460         ASSERT(!(fields & XFS_ILOG_DFORK) ||
2461                (len == in_f->ilf_dsize));
2462
2463         switch (fields & XFS_ILOG_DFORK) {
2464         case XFS_ILOG_DDATA:
2465         case XFS_ILOG_DEXT:
2466                 memcpy(XFS_DFORK_DPTR(dip), src, len);
2467                 break;
2468
2469         case XFS_ILOG_DBROOT:
2470                 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
2471                                  (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
2472                                  XFS_DFORK_DSIZE(dip, mp));
2473                 break;
2474
2475         default:
2476                 /*
2477                  * There are no data fork flags set.
2478                  */
2479                 ASSERT((fields & XFS_ILOG_DFORK) == 0);
2480                 break;
2481         }
2482
2483         /*
2484          * If we logged any attribute data, recover it.  There may or
2485          * may not have been any other non-core data logged in this
2486          * transaction.
2487          */
2488         if (in_f->ilf_fields & XFS_ILOG_AFORK) {
2489                 if (in_f->ilf_fields & XFS_ILOG_DFORK) {
2490                         attr_index = 3;
2491                 } else {
2492                         attr_index = 2;
2493                 }
2494                 len = item->ri_buf[attr_index].i_len;
2495                 src = item->ri_buf[attr_index].i_addr;
2496                 ASSERT(len == in_f->ilf_asize);
2497
2498                 switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
2499                 case XFS_ILOG_ADATA:
2500                 case XFS_ILOG_AEXT:
2501                         dest = XFS_DFORK_APTR(dip);
2502                         ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
2503                         memcpy(dest, src, len);
2504                         break;
2505
2506                 case XFS_ILOG_ABROOT:
2507                         dest = XFS_DFORK_APTR(dip);
2508                         xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
2509                                          len, (xfs_bmdr_block_t*)dest,
2510                                          XFS_DFORK_ASIZE(dip, mp));
2511                         break;
2512
2513                 default:
2514                         xlog_warn("XFS: xlog_recover_do_inode_trans: Invalid flag");
2515                         ASSERT(0);
2516                         xfs_buf_relse(bp);
2517                         error = EIO;
2518                         goto error;
2519                 }
2520         }
2521
2522 write_inode_buffer:
2523         ASSERT(bp->b_mount == NULL || bp->b_mount == mp);
2524         bp->b_mount = mp;
2525         XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2526         xfs_bdwrite(mp, bp);
2527 error:
2528         if (need_free)
2529                 kmem_free(in_f);
2530         return XFS_ERROR(error);
2531 }
2532
2533 /*
2534  * Recover QUOTAOFF records. We simply make a note of it in the xlog_t
2535  * structure, so that we know not to do any dquot item or dquot buffer recovery,
2536  * of that type.
2537  */
2538 STATIC int
2539 xlog_recover_do_quotaoff_trans(
2540         xlog_t                  *log,
2541         xlog_recover_item_t     *item,
2542         int                     pass)
2543 {
2544         xfs_qoff_logformat_t    *qoff_f;
2545
2546         if (pass == XLOG_RECOVER_PASS2) {
2547                 return (0);
2548         }
2549
2550         qoff_f = (xfs_qoff_logformat_t *)item->ri_buf[0].i_addr;
2551         ASSERT(qoff_f);
2552
2553         /*
2554          * The logitem format's flag tells us if this was user quotaoff,
2555          * group/project quotaoff or both.
2556          */
2557         if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
2558                 log->l_quotaoffs_flag |= XFS_DQ_USER;
2559         if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
2560                 log->l_quotaoffs_flag |= XFS_DQ_PROJ;
2561         if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
2562                 log->l_quotaoffs_flag |= XFS_DQ_GROUP;
2563
2564         return (0);
2565 }
2566
2567 /*
2568  * Recover a dquot record
2569  */
2570 STATIC int
2571 xlog_recover_do_dquot_trans(
2572         xlog_t                  *log,
2573         xlog_recover_item_t     *item,
2574         int                     pass)
2575 {
2576         xfs_mount_t             *mp;
2577         xfs_buf_t               *bp;
2578         struct xfs_disk_dquot   *ddq, *recddq;
2579         int                     error;
2580         xfs_dq_logformat_t      *dq_f;
2581         uint                    type;
2582
2583         if (pass == XLOG_RECOVER_PASS1) {
2584                 return 0;
2585         }
2586         mp = log->l_mp;
2587
2588         /*
2589          * Filesystems are required to send in quota flags at mount time.
2590          */
2591         if (mp->m_qflags == 0)
2592                 return (0);
2593
2594         recddq = (xfs_disk_dquot_t *)item->ri_buf[1].i_addr;
2595
2596         if (item->ri_buf[1].i_addr == NULL) {
2597                 cmn_err(CE_ALERT,
2598                         "XFS: NULL dquot in %s.", __func__);
2599                 return XFS_ERROR(EIO);
2600         }
2601         if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) {
2602                 cmn_err(CE_ALERT,
2603                         "XFS: dquot too small (%d) in %s.",
2604                         item->ri_buf[1].i_len, __func__);
2605                 return XFS_ERROR(EIO);
2606         }
2607
2608         /*
2609          * This type of quotas was turned off, so ignore this record.
2610          */
2611         type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
2612         ASSERT(type);
2613         if (log->l_quotaoffs_flag & type)
2614                 return (0);
2615
2616         /*
2617          * At this point we know that quota was _not_ turned off.
2618          * Since the mount flags are not indicating to us otherwise, this
2619          * must mean that quota is on, and the dquot needs to be replayed.
2620          * Remember that we may not have fully recovered the superblock yet,
2621          * so we can't do the usual trick of looking at the SB quota bits.
2622          *
2623          * The other possibility, of course, is that the quota subsystem was
2624          * removed since the last mount - ENOSYS.
2625          */
2626         dq_f = (xfs_dq_logformat_t *)item->ri_buf[0].i_addr;
2627         ASSERT(dq_f);
2628         if ((error = xfs_qm_dqcheck(recddq,
2629                            dq_f->qlf_id,
2630                            0, XFS_QMOPT_DOWARN,
2631                            "xlog_recover_do_dquot_trans (log copy)"))) {
2632                 return XFS_ERROR(EIO);
2633         }
2634         ASSERT(dq_f->qlf_len == 1);
2635
2636         error = xfs_read_buf(mp, mp->m_ddev_targp,
2637                              dq_f->qlf_blkno,
2638                              XFS_FSB_TO_BB(mp, dq_f->qlf_len),
2639                              0, &bp);
2640         if (error) {
2641                 xfs_ioerror_alert("xlog_recover_do..(read#3)", mp,
2642                                   bp, dq_f->qlf_blkno);
2643                 return error;
2644         }
2645         ASSERT(bp);
2646         ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
2647
2648         /*
2649          * At least the magic num portion should be on disk because this
2650          * was among a chunk of dquots created earlier, and we did some
2651          * minimal initialization then.
2652          */
2653         if (xfs_qm_dqcheck(ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
2654                            "xlog_recover_do_dquot_trans")) {
2655                 xfs_buf_relse(bp);
2656                 return XFS_ERROR(EIO);
2657         }
2658
2659         memcpy(ddq, recddq, item->ri_buf[1].i_len);
2660
2661         ASSERT(dq_f->qlf_size == 2);
2662         ASSERT(bp->b_mount == NULL || bp->b_mount == mp);
2663         bp->b_mount = mp;
2664         XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2665         xfs_bdwrite(mp, bp);
2666
2667         return (0);
2668 }
2669
2670 /*
2671  * This routine is called to create an in-core extent free intent
2672  * item from the efi format structure which was logged on disk.
2673  * It allocates an in-core efi, copies the extents from the format
2674  * structure into it, and adds the efi to the AIL with the given
2675  * LSN.
2676  */
2677 STATIC int
2678 xlog_recover_do_efi_trans(
2679         xlog_t                  *log,
2680         xlog_recover_item_t     *item,
2681         xfs_lsn_t               lsn,
2682         int                     pass)
2683 {
2684         int                     error;
2685         xfs_mount_t             *mp;
2686         xfs_efi_log_item_t      *efip;
2687         xfs_efi_log_format_t    *efi_formatp;
2688
2689         if (pass == XLOG_RECOVER_PASS1) {
2690                 return 0;
2691         }
2692
2693         efi_formatp = (xfs_efi_log_format_t *)item->ri_buf[0].i_addr;
2694
2695         mp = log->l_mp;
2696         efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
2697         if ((error = xfs_efi_copy_format(&(item->ri_buf[0]),
2698                                          &(efip->efi_format)))) {
2699                 xfs_efi_item_free(efip);
2700                 return error;
2701         }
2702         efip->efi_next_extent = efi_formatp->efi_nextents;
2703         efip->efi_flags |= XFS_EFI_COMMITTED;
2704
2705         spin_lock(&log->l_ailp->xa_lock);
2706         /*
2707          * xfs_trans_ail_update() drops the AIL lock.
2708          */
2709         xfs_trans_ail_update(log->l_ailp, (xfs_log_item_t *)efip, lsn);
2710         return 0;
2711 }
2712
2713
2714 /*
2715  * This routine is called when an efd format structure is found in
2716  * a committed transaction in the log.  It's purpose is to cancel
2717  * the corresponding efi if it was still in the log.  To do this
2718  * it searches the AIL for the efi with an id equal to that in the
2719  * efd format structure.  If we find it, we remove the efi from the
2720  * AIL and free it.
2721  */
2722 STATIC void
2723 xlog_recover_do_efd_trans(
2724         xlog_t                  *log,
2725         xlog_recover_item_t     *item,
2726         int                     pass)
2727 {
2728         xfs_efd_log_format_t    *efd_formatp;
2729         xfs_efi_log_item_t      *efip = NULL;
2730         xfs_log_item_t          *lip;
2731         __uint64_t              efi_id;
2732         struct xfs_ail_cursor   cur;
2733         struct xfs_ail          *ailp = log->l_ailp;
2734
2735         if (pass == XLOG_RECOVER_PASS1) {
2736                 return;
2737         }
2738
2739         efd_formatp = (xfs_efd_log_format_t *)item->ri_buf[0].i_addr;
2740         ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
2741                 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
2742                (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
2743                 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
2744         efi_id = efd_formatp->efd_efi_id;
2745
2746         /*
2747          * Search for the efi with the id in the efd format structure
2748          * in the AIL.
2749          */
2750         spin_lock(&ailp->xa_lock);
2751         lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
2752         while (lip != NULL) {
2753                 if (lip->li_type == XFS_LI_EFI) {
2754                         efip = (xfs_efi_log_item_t *)lip;
2755                         if (efip->efi_format.efi_id == efi_id) {
2756                                 /*
2757                                  * xfs_trans_ail_delete() drops the
2758                                  * AIL lock.
2759                                  */
2760                                 xfs_trans_ail_delete(ailp, lip);
2761                                 xfs_efi_item_free(efip);
2762                                 spin_lock(&ailp->xa_lock);
2763                                 break;
2764                         }
2765                 }
2766                 lip = xfs_trans_ail_cursor_next(ailp, &cur);
2767         }
2768         xfs_trans_ail_cursor_done(ailp, &cur);
2769         spin_unlock(&ailp->xa_lock);
2770 }
2771
2772 /*
2773  * Perform the transaction
2774  *
2775  * If the transaction modifies a buffer or inode, do it now.  Otherwise,
2776  * EFIs and EFDs get queued up by adding entries into the AIL for them.
2777  */
2778 STATIC int
2779 xlog_recover_do_trans(
2780         xlog_t                  *log,
2781         xlog_recover_t          *trans,
2782         int                     pass)
2783 {
2784         int                     error = 0;
2785         xlog_recover_item_t     *item;
2786
2787         error = xlog_recover_reorder_trans(log, trans, pass);
2788         if (error)
2789                 return error;
2790
2791         list_for_each_entry(item, &trans->r_itemq, ri_list) {
2792                 trace_xfs_log_recover_item_recover(log, trans, item, pass);
2793                 switch (ITEM_TYPE(item)) {
2794                 case XFS_LI_BUF:
2795                         error = xlog_recover_do_buffer_trans(log, item, pass);
2796                         break;
2797                 case XFS_LI_INODE:
2798                         error = xlog_recover_do_inode_trans(log, item, pass);
2799                         break;
2800                 case XFS_LI_EFI:
2801                         error = xlog_recover_do_efi_trans(log, item,
2802                                                           trans->r_lsn, pass);
2803                         break;
2804                 case XFS_LI_EFD:
2805                         xlog_recover_do_efd_trans(log, item, pass);
2806                         error = 0;
2807                         break;
2808                 case XFS_LI_DQUOT:
2809                         error = xlog_recover_do_dquot_trans(log, item, pass);
2810                         break;
2811                 case XFS_LI_QUOTAOFF:
2812                         error = xlog_recover_do_quotaoff_trans(log, item,
2813                                                                pass);
2814                         break;
2815                 default:
2816                         xlog_warn(
2817         "XFS: invalid item type (%d) xlog_recover_do_trans", ITEM_TYPE(item));
2818                         ASSERT(0);
2819                         error = XFS_ERROR(EIO);
2820                         break;
2821                 }
2822
2823                 if (error)
2824                         return error;
2825         }
2826
2827         return 0;
2828 }
2829
2830 /*
2831  * Free up any resources allocated by the transaction
2832  *
2833  * Remember that EFIs, EFDs, and IUNLINKs are handled later.
2834  */
2835 STATIC void
2836 xlog_recover_free_trans(
2837         xlog_recover_t          *trans)
2838 {
2839         xlog_recover_item_t     *item, *n;
2840         int                     i;
2841
2842         list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
2843                 /* Free the regions in the item. */
2844                 list_del(&item->ri_list);
2845                 for (i = 0; i < item->ri_cnt; i++)
2846                         kmem_free(item->ri_buf[i].i_addr);
2847                 /* Free the item itself */
2848                 kmem_free(item->ri_buf);
2849                 kmem_free(item);
2850         }
2851         /* Free the transaction recover structure */
2852         kmem_free(trans);
2853 }
2854
2855 STATIC int
2856 xlog_recover_commit_trans(
2857         xlog_t                  *log,
2858         xlog_recover_t          *trans,
2859         int                     pass)
2860 {
2861         int                     error;
2862
2863         hlist_del(&trans->r_list);
2864         if ((error = xlog_recover_do_trans(log, trans, pass)))
2865                 return error;
2866         xlog_recover_free_trans(trans);                 /* no error */
2867         return 0;
2868 }
2869
2870 STATIC int
2871 xlog_recover_unmount_trans(
2872         xlog_recover_t          *trans)
2873 {
2874         /* Do nothing now */
2875         xlog_warn("XFS: xlog_recover_unmount_trans: Unmount LR");
2876         return 0;
2877 }
2878
2879 /*
2880  * There are two valid states of the r_state field.  0 indicates that the
2881  * transaction structure is in a normal state.  We have either seen the
2882  * start of the transaction or the last operation we added was not a partial
2883  * operation.  If the last operation we added to the transaction was a
2884  * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
2885  *
2886  * NOTE: skip LRs with 0 data length.
2887  */
2888 STATIC int
2889 xlog_recover_process_data(
2890         xlog_t                  *log,
2891         struct hlist_head       rhash[],
2892         xlog_rec_header_t       *rhead,
2893         xfs_caddr_t             dp,
2894         int                     pass)
2895 {
2896         xfs_caddr_t             lp;
2897         int                     num_logops;
2898         xlog_op_header_t        *ohead;
2899         xlog_recover_t          *trans;
2900         xlog_tid_t              tid;
2901         int                     error;
2902         unsigned long           hash;
2903         uint                    flags;
2904
2905         lp = dp + be32_to_cpu(rhead->h_len);
2906         num_logops = be32_to_cpu(rhead->h_num_logops);
2907
2908         /* check the log format matches our own - else we can't recover */
2909         if (xlog_header_check_recover(log->l_mp, rhead))
2910                 return (XFS_ERROR(EIO));
2911
2912         while ((dp < lp) && num_logops) {
2913                 ASSERT(dp + sizeof(xlog_op_header_t) <= lp);
2914                 ohead = (xlog_op_header_t *)dp;
2915                 dp += sizeof(xlog_op_header_t);
2916                 if (ohead->oh_clientid != XFS_TRANSACTION &&
2917                     ohead->oh_clientid != XFS_LOG) {
2918                         xlog_warn(
2919                 "XFS: xlog_recover_process_data: bad clientid");
2920                         ASSERT(0);
2921                         return (XFS_ERROR(EIO));
2922                 }
2923                 tid = be32_to_cpu(ohead->oh_tid);
2924                 hash = XLOG_RHASH(tid);
2925                 trans = xlog_recover_find_tid(&rhash[hash], tid);
2926                 if (trans == NULL) {               /* not found; add new tid */
2927                         if (ohead->oh_flags & XLOG_START_TRANS)
2928                                 xlog_recover_new_tid(&rhash[hash], tid,
2929                                         be64_to_cpu(rhead->h_lsn));
2930                 } else {
2931                         if (dp + be32_to_cpu(ohead->oh_len) > lp) {
2932                                 xlog_warn(
2933                         "XFS: xlog_recover_process_data: bad length");
2934                                 WARN_ON(1);
2935                                 return (XFS_ERROR(EIO));
2936                         }
2937                         flags = ohead->oh_flags & ~XLOG_END_TRANS;
2938                         if (flags & XLOG_WAS_CONT_TRANS)
2939                                 flags &= ~XLOG_CONTINUE_TRANS;
2940                         switch (flags) {
2941                         case XLOG_COMMIT_TRANS:
2942                                 error = xlog_recover_commit_trans(log,
2943                                                                 trans, pass);
2944                                 break;
2945                         case XLOG_UNMOUNT_TRANS:
2946                                 error = xlog_recover_unmount_trans(trans);
2947                                 break;
2948                         case XLOG_WAS_CONT_TRANS:
2949                                 error = xlog_recover_add_to_cont_trans(log,
2950                                                 trans, dp,
2951                                                 be32_to_cpu(ohead->oh_len));
2952                                 break;
2953                         case XLOG_START_TRANS:
2954                                 xlog_warn(
2955                         "XFS: xlog_recover_process_data: bad transaction");
2956                                 ASSERT(0);
2957                                 error = XFS_ERROR(EIO);
2958                                 break;
2959                         case 0:
2960                         case XLOG_CONTINUE_TRANS:
2961                                 error = xlog_recover_add_to_trans(log, trans,
2962                                                 dp, be32_to_cpu(ohead->oh_len));
2963                                 break;
2964                         default:
2965                                 xlog_warn(
2966                         "XFS: xlog_recover_process_data: bad flag");
2967                                 ASSERT(0);
2968                                 error = XFS_ERROR(EIO);
2969                                 break;
2970                         }
2971                         if (error)
2972                                 return error;
2973                 }
2974                 dp += be32_to_cpu(ohead->oh_len);
2975                 num_logops--;
2976         }
2977         return 0;
2978 }
2979
2980 /*
2981  * Process an extent free intent item that was recovered from
2982  * the log.  We need to free the extents that it describes.
2983  */
2984 STATIC int
2985 xlog_recover_process_efi(
2986         xfs_mount_t             *mp,
2987         xfs_efi_log_item_t      *efip)
2988 {
2989         xfs_efd_log_item_t      *efdp;
2990         xfs_trans_t             *tp;
2991         int                     i;
2992         int                     error = 0;
2993         xfs_extent_t            *extp;
2994         xfs_fsblock_t           startblock_fsb;
2995
2996         ASSERT(!(efip->efi_flags & XFS_EFI_RECOVERED));
2997
2998         /*
2999          * First check the validity of the extents described by the
3000          * EFI.  If any are bad, then assume that all are bad and
3001          * just toss the EFI.
3002          */
3003         for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3004                 extp = &(efip->efi_format.efi_extents[i]);
3005                 startblock_fsb = XFS_BB_TO_FSB(mp,
3006                                    XFS_FSB_TO_DADDR(mp, extp->ext_start));
3007                 if ((startblock_fsb == 0) ||
3008                     (extp->ext_len == 0) ||
3009                     (startblock_fsb >= mp->m_sb.sb_dblocks) ||
3010                     (extp->ext_len >= mp->m_sb.sb_agblocks)) {
3011                         /*
3012                          * This will pull the EFI from the AIL and
3013                          * free the memory associated with it.
3014                          */
3015                         xfs_efi_release(efip, efip->efi_format.efi_nextents);
3016                         return XFS_ERROR(EIO);
3017                 }
3018         }
3019
3020         tp = xfs_trans_alloc(mp, 0);
3021         error = xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0);
3022         if (error)
3023                 goto abort_error;
3024         efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
3025
3026         for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3027                 extp = &(efip->efi_format.efi_extents[i]);
3028                 error = xfs_free_extent(tp, extp->ext_start, extp->ext_len);
3029                 if (error)
3030                         goto abort_error;
3031                 xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
3032                                          extp->ext_len);
3033         }
3034
3035         efip->efi_flags |= XFS_EFI_RECOVERED;
3036         error = xfs_trans_commit(tp, 0);
3037         return error;
3038
3039 abort_error:
3040         xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3041         return error;
3042 }
3043
3044 /*
3045  * When this is called, all of the EFIs which did not have
3046  * corresponding EFDs should be in the AIL.  What we do now
3047  * is free the extents associated with each one.
3048  *
3049  * Since we process the EFIs in normal transactions, they
3050  * will be removed at some point after the commit.  This prevents
3051  * us from just walking down the list processing each one.
3052  * We'll use a flag in the EFI to skip those that we've already
3053  * processed and use the AIL iteration mechanism's generation
3054  * count to try to speed this up at least a bit.
3055  *
3056  * When we start, we know that the EFIs are the only things in
3057  * the AIL.  As we process them, however, other items are added
3058  * to the AIL.  Since everything added to the AIL must come after
3059  * everything already in the AIL, we stop processing as soon as
3060  * we see something other than an EFI in the AIL.
3061  */
3062 STATIC int
3063 xlog_recover_process_efis(
3064         xlog_t                  *log)
3065 {
3066         xfs_log_item_t          *lip;
3067         xfs_efi_log_item_t      *efip;
3068         int                     error = 0;
3069         struct xfs_ail_cursor   cur;
3070         struct xfs_ail          *ailp;
3071
3072         ailp = log->l_ailp;
3073         spin_lock(&ailp->xa_lock);
3074         lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3075         while (lip != NULL) {
3076                 /*
3077                  * We're done when we see something other than an EFI.
3078                  * There should be no EFIs left in the AIL now.
3079                  */
3080                 if (lip->li_type != XFS_LI_EFI) {
3081 #ifdef DEBUG
3082                         for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
3083                                 ASSERT(lip->li_type != XFS_LI_EFI);
3084 #endif
3085                         break;
3086                 }
3087
3088                 /*
3089                  * Skip EFIs that we've already processed.
3090                  */
3091                 efip = (xfs_efi_log_item_t *)lip;
3092                 if (efip->efi_flags & XFS_EFI_RECOVERED) {
3093                         lip = xfs_trans_ail_cursor_next(ailp, &cur);
3094                         continue;
3095                 }
3096
3097                 spin_unlock(&ailp->xa_lock);
3098                 error = xlog_recover_process_efi(log->l_mp, efip);
3099                 spin_lock(&ailp->xa_lock);
3100                 if (error)
3101                         goto out;
3102                 lip = xfs_trans_ail_cursor_next(ailp, &cur);
3103         }
3104 out:
3105         xfs_trans_ail_cursor_done(ailp, &cur);
3106         spin_unlock(&ailp->xa_lock);
3107         return error;
3108 }
3109
3110 /*
3111  * This routine performs a transaction to null out a bad inode pointer
3112  * in an agi unlinked inode hash bucket.
3113  */
3114 STATIC void
3115 xlog_recover_clear_agi_bucket(
3116         xfs_mount_t     *mp,
3117         xfs_agnumber_t  agno,
3118         int             bucket)
3119 {
3120         xfs_trans_t     *tp;
3121         xfs_agi_t       *agi;
3122         xfs_buf_t       *agibp;
3123         int             offset;
3124         int             error;
3125
3126         tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
3127         error = xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp),
3128                                   0, 0, 0);
3129         if (error)
3130                 goto out_abort;
3131
3132         error = xfs_read_agi(mp, tp, agno, &agibp);
3133         if (error)
3134                 goto out_abort;
3135
3136         agi = XFS_BUF_TO_AGI(agibp);
3137         agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
3138         offset = offsetof(xfs_agi_t, agi_unlinked) +
3139                  (sizeof(xfs_agino_t) * bucket);
3140         xfs_trans_log_buf(tp, agibp, offset,
3141                           (offset + sizeof(xfs_agino_t) - 1));
3142
3143         error = xfs_trans_commit(tp, 0);
3144         if (error)
3145                 goto out_error;
3146         return;
3147
3148 out_abort:
3149         xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3150 out_error:
3151         xfs_fs_cmn_err(CE_WARN, mp, "xlog_recover_clear_agi_bucket: "
3152                         "failed to clear agi %d. Continuing.", agno);
3153         return;
3154 }
3155
3156 STATIC xfs_agino_t
3157 xlog_recover_process_one_iunlink(
3158         struct xfs_mount                *mp,
3159         xfs_agnumber_t                  agno,
3160         xfs_agino_t                     agino,
3161         int                             bucket)
3162 {
3163         struct xfs_buf                  *ibp;
3164         struct xfs_dinode               *dip;
3165         struct xfs_inode                *ip;
3166         xfs_ino_t                       ino;
3167         int                             error;
3168
3169         ino = XFS_AGINO_TO_INO(mp, agno, agino);
3170         error = xfs_iget(mp, NULL, ino, 0, 0, &ip, 0);
3171         if (error)
3172                 goto fail;
3173
3174         /*
3175          * Get the on disk inode to find the next inode in the bucket.
3176          */
3177         error = xfs_itobp(mp, NULL, ip, &dip, &ibp, XBF_LOCK);
3178         if (error)
3179                 goto fail_iput;
3180
3181         ASSERT(ip->i_d.di_nlink == 0);
3182         ASSERT(ip->i_d.di_mode != 0);
3183
3184         /* setup for the next pass */
3185         agino = be32_to_cpu(dip->di_next_unlinked);
3186         xfs_buf_relse(ibp);
3187
3188         /*
3189          * Prevent any DMAPI event from being sent when the reference on
3190          * the inode is dropped.
3191          */
3192         ip->i_d.di_dmevmask = 0;
3193
3194         IRELE(ip);
3195         return agino;
3196
3197  fail_iput:
3198         IRELE(ip);
3199  fail:
3200         /*
3201          * We can't read in the inode this bucket points to, or this inode
3202          * is messed up.  Just ditch this bucket of inodes.  We will lose
3203          * some inodes and space, but at least we won't hang.
3204          *
3205          * Call xlog_recover_clear_agi_bucket() to perform a transaction to
3206          * clear the inode pointer in the bucket.
3207          */
3208         xlog_recover_clear_agi_bucket(mp, agno, bucket);
3209         return NULLAGINO;
3210 }
3211
3212 /*
3213  * xlog_iunlink_recover
3214  *
3215  * This is called during recovery to process any inodes which
3216  * we unlinked but not freed when the system crashed.  These
3217  * inodes will be on the lists in the AGI blocks.  What we do
3218  * here is scan all the AGIs and fully truncate and free any
3219  * inodes found on the lists.  Each inode is removed from the
3220  * lists when it has been fully truncated and is freed.  The
3221  * freeing of the inode and its removal from the list must be
3222  * atomic.
3223  */
3224 STATIC void
3225 xlog_recover_process_iunlinks(
3226         xlog_t          *log)
3227 {
3228         xfs_mount_t     *mp;
3229         xfs_agnumber_t  agno;
3230         xfs_agi_t       *agi;
3231         xfs_buf_t       *agibp;
3232         xfs_agino_t     agino;
3233         int             bucket;
3234         int             error;
3235         uint            mp_dmevmask;
3236
3237         mp = log->l_mp;
3238
3239         /*
3240          * Prevent any DMAPI event from being sent while in this function.
3241          */
3242         mp_dmevmask = mp->m_dmevmask;
3243         mp->m_dmevmask = 0;
3244
3245         for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3246                 /*
3247                  * Find the agi for this ag.
3248                  */
3249                 error = xfs_read_agi(mp, NULL, agno, &agibp);
3250                 if (error) {
3251                         /*
3252                          * AGI is b0rked. Don't process it.
3253                          *
3254                          * We should probably mark the filesystem as corrupt
3255                          * after we've recovered all the ag's we can....
3256                          */
3257                         continue;
3258                 }
3259                 agi = XFS_BUF_TO_AGI(agibp);
3260
3261                 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
3262                         agino = be32_to_cpu(agi->agi_unlinked[bucket]);
3263                         while (agino != NULLAGINO) {
3264                                 /*
3265                                  * Release the agi buffer so that it can
3266                                  * be acquired in the normal course of the
3267                                  * transaction to truncate and free the inode.
3268                                  */
3269                                 xfs_buf_relse(agibp);
3270
3271                                 agino = xlog_recover_process_one_iunlink(mp,
3272                                                         agno, agino, bucket);
3273
3274                                 /*
3275                                  * Reacquire the agibuffer and continue around
3276                                  * the loop. This should never fail as we know
3277                                  * the buffer was good earlier on.
3278                                  */
3279                                 error = xfs_read_agi(mp, NULL, agno, &agibp);
3280                                 ASSERT(error == 0);
3281                                 agi = XFS_BUF_TO_AGI(agibp);
3282                         }
3283                 }
3284
3285                 /*
3286                  * Release the buffer for the current agi so we can
3287                  * go on to the next one.
3288                  */
3289                 xfs_buf_relse(agibp);
3290         }
3291
3292         mp->m_dmevmask = mp_dmevmask;
3293 }
3294
3295
3296 #ifdef DEBUG
3297 STATIC void
3298 xlog_pack_data_checksum(
3299         xlog_t          *log,
3300         xlog_in_core_t  *iclog,
3301         int             size)
3302 {
3303         int             i;
3304         __be32          *up;
3305         uint            chksum = 0;
3306
3307         up = (__be32 *)iclog->ic_datap;
3308         /* divide length by 4 to get # words */
3309         for (i = 0; i < (size >> 2); i++) {
3310                 chksum ^= be32_to_cpu(*up);
3311                 up++;
3312         }
3313         iclog->ic_header.h_chksum = cpu_to_be32(chksum);
3314 }
3315 #else
3316 #define xlog_pack_data_checksum(log, iclog, size)
3317 #endif
3318
3319 /*
3320  * Stamp cycle number in every block
3321  */
3322 void
3323 xlog_pack_data(
3324         xlog_t                  *log,
3325         xlog_in_core_t          *iclog,
3326         int                     roundoff)
3327 {
3328         int                     i, j, k;
3329         int                     size = iclog->ic_offset + roundoff;
3330         __be32                  cycle_lsn;
3331         xfs_caddr_t             dp;
3332
3333         xlog_pack_data_checksum(log, iclog, size);
3334
3335         cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
3336
3337         dp = iclog->ic_datap;
3338         for (i = 0; i < BTOBB(size) &&
3339                 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
3340                 iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
3341                 *(__be32 *)dp = cycle_lsn;
3342                 dp += BBSIZE;
3343         }
3344
3345         if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3346                 xlog_in_core_2_t *xhdr = iclog->ic_data;
3347
3348                 for ( ; i < BTOBB(size); i++) {
3349                         j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3350                         k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3351                         xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
3352                         *(__be32 *)dp = cycle_lsn;
3353                         dp += BBSIZE;
3354                 }
3355
3356                 for (i = 1; i < log->l_iclog_heads; i++) {
3357                         xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
3358                 }
3359         }
3360 }
3361
3362 #if defined(DEBUG) && defined(XFS_LOUD_RECOVERY)
3363 STATIC void
3364 xlog_unpack_data_checksum(
3365         xlog_rec_header_t       *rhead,
3366         xfs_caddr_t             dp,
3367         xlog_t                  *log)
3368 {
3369         __be32                  *up = (__be32 *)dp;
3370         uint                    chksum = 0;
3371         int                     i;
3372
3373         /* divide length by 4 to get # words */
3374         for (i=0; i < be32_to_cpu(rhead->h_len) >> 2; i++) {
3375                 chksum ^= be32_to_cpu(*up);
3376                 up++;
3377         }
3378         if (chksum != be32_to_cpu(rhead->h_chksum)) {
3379             if (rhead->h_chksum ||
3380                 ((log->l_flags & XLOG_CHKSUM_MISMATCH) == 0)) {
3381                     cmn_err(CE_DEBUG,
3382                         "XFS: LogR chksum mismatch: was (0x%x) is (0x%x)\n",
3383                             be32_to_cpu(rhead->h_chksum), chksum);
3384                     cmn_err(CE_DEBUG,
3385 "XFS: Disregard message if filesystem was created with non-DEBUG kernel");
3386                     if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3387                             cmn_err(CE_DEBUG,
3388                                 "XFS: LogR this is a LogV2 filesystem\n");
3389                     }
3390                     log->l_flags |= XLOG_CHKSUM_MISMATCH;
3391             }
3392         }
3393 }
3394 #else
3395 #define xlog_unpack_data_checksum(rhead, dp, log)
3396 #endif
3397
3398 STATIC void
3399 xlog_unpack_data(
3400         xlog_rec_header_t       *rhead,
3401         xfs_caddr_t             dp,
3402         xlog_t                  *log)
3403 {
3404         int                     i, j, k;
3405
3406         for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
3407                   i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
3408                 *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
3409                 dp += BBSIZE;
3410         }
3411
3412         if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3413                 xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
3414                 for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
3415                         j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3416                         k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3417                         *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
3418                         dp += BBSIZE;
3419                 }
3420         }
3421
3422         xlog_unpack_data_checksum(rhead, dp, log);
3423 }
3424
3425 STATIC int
3426 xlog_valid_rec_header(
3427         xlog_t                  *log,
3428         xlog_rec_header_t       *rhead,
3429         xfs_daddr_t             blkno)
3430 {
3431         int                     hlen;
3432
3433         if (unlikely(be32_to_cpu(rhead->h_magicno) != XLOG_HEADER_MAGIC_NUM)) {
3434                 XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
3435                                 XFS_ERRLEVEL_LOW, log->l_mp);
3436                 return XFS_ERROR(EFSCORRUPTED);
3437         }
3438         if (unlikely(
3439             (!rhead->h_version ||
3440             (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
3441                 xlog_warn("XFS: %s: unrecognised log version (%d).",
3442                         __func__, be32_to_cpu(rhead->h_version));
3443                 return XFS_ERROR(EIO);
3444         }
3445
3446         /* LR body must have data or it wouldn't have been written */
3447         hlen = be32_to_cpu(rhead->h_len);
3448         if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
3449                 XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
3450                                 XFS_ERRLEVEL_LOW, log->l_mp);
3451                 return XFS_ERROR(EFSCORRUPTED);
3452         }
3453         if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
3454                 XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
3455                                 XFS_ERRLEVEL_LOW, log->l_mp);
3456                 return XFS_ERROR(EFSCORRUPTED);
3457         }
3458         return 0;
3459 }
3460
3461 /*
3462  * Read the log from tail to head and process the log records found.
3463  * Handle the two cases where the tail and head are in the same cycle
3464  * and where the active portion of the log wraps around the end of
3465  * the physical log separately.  The pass parameter is passed through
3466  * to the routines called to process the data and is not looked at
3467  * here.
3468  */
3469 STATIC int
3470 xlog_do_recovery_pass(
3471         xlog_t                  *log,
3472         xfs_daddr_t             head_blk,
3473         xfs_daddr_t             tail_blk,
3474         int                     pass)
3475 {
3476         xlog_rec_header_t       *rhead;
3477         xfs_daddr_t             blk_no;
3478         xfs_caddr_t             offset;
3479         xfs_buf_t               *hbp, *dbp;
3480         int                     error = 0, h_size;
3481         int                     bblks, split_bblks;
3482         int                     hblks, split_hblks, wrapped_hblks;
3483         struct hlist_head       rhash[XLOG_RHASH_SIZE];
3484
3485         ASSERT(head_blk != tail_blk);
3486
3487         /*
3488          * Read the header of the tail block and get the iclog buffer size from
3489          * h_size.  Use this to tell how many sectors make up the log header.
3490          */
3491         if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3492                 /*
3493                  * When using variable length iclogs, read first sector of
3494                  * iclog header and extract the header size from it.  Get a
3495                  * new hbp that is the correct size.
3496                  */
3497                 hbp = xlog_get_bp(log, 1);
3498                 if (!hbp)
3499                         return ENOMEM;
3500
3501                 error = xlog_bread(log, tail_blk, 1, hbp, &offset);
3502                 if (error)
3503                         goto bread_err1;
3504
3505                 rhead = (xlog_rec_header_t *)offset;
3506                 error = xlog_valid_rec_header(log, rhead, tail_blk);
3507                 if (error)
3508                         goto bread_err1;
3509                 h_size = be32_to_cpu(rhead->h_size);
3510                 if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
3511                     (h_size > XLOG_HEADER_CYCLE_SIZE)) {
3512                         hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
3513                         if (h_size % XLOG_HEADER_CYCLE_SIZE)
3514                                 hblks++;
3515                         xlog_put_bp(hbp);
3516                         hbp = xlog_get_bp(log, hblks);
3517                 } else {
3518                         hblks = 1;
3519                 }
3520         } else {
3521                 ASSERT(log->l_sectbb_log == 0);
3522                 hblks = 1;
3523                 hbp = xlog_get_bp(log, 1);
3524                 h_size = XLOG_BIG_RECORD_BSIZE;
3525         }
3526
3527         if (!hbp)
3528                 return ENOMEM;
3529         dbp = xlog_get_bp(log, BTOBB(h_size));
3530         if (!dbp) {
3531                 xlog_put_bp(hbp);
3532                 return ENOMEM;
3533         }
3534
3535         memset(rhash, 0, sizeof(rhash));
3536         if (tail_blk <= head_blk) {
3537                 for (blk_no = tail_blk; blk_no < head_blk; ) {
3538                         error = xlog_bread(log, blk_no, hblks, hbp, &offset);
3539                         if (error)
3540                                 goto bread_err2;
3541
3542                         rhead = (xlog_rec_header_t *)offset;
3543                         error = xlog_valid_rec_header(log, rhead, blk_no);
3544                         if (error)
3545                                 goto bread_err2;
3546
3547                         /* blocks in data section */
3548                         bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3549                         error = xlog_bread(log, blk_no + hblks, bblks, dbp,
3550                                            &offset);
3551                         if (error)
3552                                 goto bread_err2;
3553
3554                         xlog_unpack_data(rhead, offset, log);
3555                         if ((error = xlog_recover_process_data(log,
3556                                                 rhash, rhead, offset, pass)))
3557                                 goto bread_err2;
3558                         blk_no += bblks + hblks;
3559                 }
3560         } else {
3561                 /*
3562                  * Perform recovery around the end of the physical log.
3563                  * When the head is not on the same cycle number as the tail,
3564                  * we can't do a sequential recovery as above.
3565                  */
3566                 blk_no = tail_blk;
3567                 while (blk_no < log->l_logBBsize) {
3568                         /*
3569                          * Check for header wrapping around physical end-of-log
3570                          */
3571                         offset = XFS_BUF_PTR(hbp);
3572                         split_hblks = 0;
3573                         wrapped_hblks = 0;
3574                         if (blk_no + hblks <= log->l_logBBsize) {
3575                                 /* Read header in one read */
3576                                 error = xlog_bread(log, blk_no, hblks, hbp,
3577                                                    &offset);
3578                                 if (error)
3579                                         goto bread_err2;
3580                         } else {
3581                                 /* This LR is split across physical log end */
3582                                 if (blk_no != log->l_logBBsize) {
3583                                         /* some data before physical log end */
3584                                         ASSERT(blk_no <= INT_MAX);
3585                                         split_hblks = log->l_logBBsize - (int)blk_no;
3586                                         ASSERT(split_hblks > 0);
3587                                         error = xlog_bread(log, blk_no,
3588                                                            split_hblks, hbp,
3589                                                            &offset);
3590                                         if (error)
3591                                                 goto bread_err2;
3592                                 }
3593
3594                                 /*
3595                                  * Note: this black magic still works with
3596                                  * large sector sizes (non-512) only because:
3597                                  * - we increased the buffer size originally
3598                                  *   by 1 sector giving us enough extra space
3599                                  *   for the second read;
3600                                  * - the log start is guaranteed to be sector
3601                                  *   aligned;
3602                                  * - we read the log end (LR header start)
3603                                  *   _first_, then the log start (LR header end)
3604                                  *   - order is important.
3605                                  */
3606                                 wrapped_hblks = hblks - split_hblks;
3607                                 error = XFS_BUF_SET_PTR(hbp,
3608                                                 offset + BBTOB(split_hblks),
3609                                                 BBTOB(hblks - split_hblks));
3610                                 if (error)
3611                                         goto bread_err2;
3612
3613                                 error = xlog_bread_noalign(log, 0,
3614                                                            wrapped_hblks, hbp);
3615                                 if (error)
3616                                         goto bread_err2;
3617
3618                                 error = XFS_BUF_SET_PTR(hbp, offset,
3619                                                         BBTOB(hblks));
3620                                 if (error)
3621                                         goto bread_err2;
3622                         }
3623                         rhead = (xlog_rec_header_t *)offset;
3624                         error = xlog_valid_rec_header(log, rhead,
3625                                                 split_hblks ? blk_no : 0);
3626                         if (error)
3627                                 goto bread_err2;
3628
3629                         bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3630                         blk_no += hblks;
3631
3632                         /* Read in data for log record */
3633                         if (blk_no + bblks <= log->l_logBBsize) {
3634                                 error = xlog_bread(log, blk_no, bblks, dbp,
3635                                                    &offset);
3636                                 if (error)
3637                                         goto bread_err2;
3638                         } else {
3639                                 /* This log record is split across the
3640                                  * physical end of log */
3641                                 offset = XFS_BUF_PTR(dbp);
3642                                 split_bblks = 0;
3643                                 if (blk_no != log->l_logBBsize) {
3644                                         /* some data is before the physical
3645                                          * end of log */
3646                                         ASSERT(!wrapped_hblks);
3647                                         ASSERT(blk_no <= INT_MAX);
3648                                         split_bblks =
3649                                                 log->l_logBBsize - (int)blk_no;
3650                                         ASSERT(split_bblks > 0);
3651                                         error = xlog_bread(log, blk_no,
3652                                                         split_bblks, dbp,
3653                                                         &offset);
3654                                         if (error)
3655                                                 goto bread_err2;
3656                                 }
3657
3658                                 /*
3659                                  * Note: this black magic still works with
3660                                  * large sector sizes (non-512) only because:
3661                                  * - we increased the buffer size originally
3662                                  *   by 1 sector giving us enough extra space
3663                                  *   for the second read;
3664                                  * - the log start is guaranteed to be sector
3665                                  *   aligned;
3666                                  * - we read the log end (LR header start)
3667                                  *   _first_, then the log start (LR header end)
3668                                  *   - order is important.
3669                                  */
3670                                 error = XFS_BUF_SET_PTR(dbp,
3671                                                 offset + BBTOB(split_bblks),
3672                                                 BBTOB(bblks - split_bblks));
3673                                 if (error)
3674                                         goto bread_err2;
3675
3676                                 error = xlog_bread_noalign(log, wrapped_hblks,
3677                                                 bblks - split_bblks,
3678                                                 dbp);
3679                                 if (error)
3680                                         goto bread_err2;
3681
3682                                 error = XFS_BUF_SET_PTR(dbp, offset, h_size);
3683                                 if (error)
3684                                         goto bread_err2;
3685                         }
3686                         xlog_unpack_data(rhead, offset, log);
3687                         if ((error = xlog_recover_process_data(log, rhash,
3688                                                         rhead, offset, pass)))
3689                                 goto bread_err2;
3690                         blk_no += bblks;
3691                 }
3692
3693                 ASSERT(blk_no >= log->l_logBBsize);
3694                 blk_no -= log->l_logBBsize;
3695
3696                 /* read first part of physical log */
3697                 while (blk_no < head_blk) {
3698                         error = xlog_bread(log, blk_no, hblks, hbp, &offset);
3699                         if (error)
3700                                 goto bread_err2;
3701
3702                         rhead = (xlog_rec_header_t *)offset;
3703                         error = xlog_valid_rec_header(log, rhead, blk_no);
3704                         if (error)
3705                                 goto bread_err2;
3706
3707                         bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3708                         error = xlog_bread(log, blk_no+hblks, bblks, dbp,
3709                                            &offset);
3710                         if (error)
3711                                 goto bread_err2;
3712
3713                         xlog_unpack_data(rhead, offset, log);
3714                         if ((error = xlog_recover_process_data(log, rhash,
3715                                                         rhead, offset, pass)))
3716                                 goto bread_err2;
3717                         blk_no += bblks + hblks;
3718                 }
3719         }
3720
3721  bread_err2:
3722         xlog_put_bp(dbp);
3723  bread_err1:
3724         xlog_put_bp(hbp);
3725         return error;
3726 }
3727
3728 /*
3729  * Do the recovery of the log.  We actually do this in two phases.
3730  * The two passes are necessary in order to implement the function
3731  * of cancelling a record written into the log.  The first pass
3732  * determines those things which have been cancelled, and the
3733  * second pass replays log items normally except for those which
3734  * have been cancelled.  The handling of the replay and cancellations
3735  * takes place in the log item type specific routines.
3736  *
3737  * The table of items which have cancel records in the log is allocated
3738  * and freed at this level, since only here do we know when all of
3739  * the log recovery has been completed.
3740  */
3741 STATIC int
3742 xlog_do_log_recovery(
3743         xlog_t          *log,
3744         xfs_daddr_t     head_blk,
3745         xfs_daddr_t     tail_blk)
3746 {
3747         int             error;
3748
3749         ASSERT(head_blk != tail_blk);
3750
3751         /*
3752          * First do a pass to find all of the cancelled buf log items.
3753          * Store them in the buf_cancel_table for use in the second pass.
3754          */
3755         log->l_buf_cancel_table =
3756                 (xfs_buf_cancel_t **)kmem_zalloc(XLOG_BC_TABLE_SIZE *
3757                                                  sizeof(xfs_buf_cancel_t*),
3758                                                  KM_SLEEP);
3759         error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3760                                       XLOG_RECOVER_PASS1);
3761         if (error != 0) {
3762                 kmem_free(log->l_buf_cancel_table);
3763                 log->l_buf_cancel_table = NULL;
3764                 return error;
3765         }
3766         /*
3767          * Then do a second pass to actually recover the items in the log.
3768          * When it is complete free the table of buf cancel items.
3769          */
3770         error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3771                                       XLOG_RECOVER_PASS2);
3772 #ifdef DEBUG
3773         if (!error) {
3774                 int     i;
3775
3776                 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
3777                         ASSERT(log->l_buf_cancel_table[i] == NULL);
3778         }
3779 #endif  /* DEBUG */
3780
3781         kmem_free(log->l_buf_cancel_table);
3782         log->l_buf_cancel_table = NULL;
3783
3784         return error;
3785 }
3786
3787 /*
3788  * Do the actual recovery
3789  */
3790 STATIC int
3791 xlog_do_recover(
3792         xlog_t          *log,
3793         xfs_daddr_t     head_blk,
3794         xfs_daddr_t     tail_blk)
3795 {
3796         int             error;
3797         xfs_buf_t       *bp;
3798         xfs_sb_t        *sbp;
3799
3800         /*
3801          * First replay the images in the log.
3802          */
3803         error = xlog_do_log_recovery(log, head_blk, tail_blk);
3804         if (error) {
3805                 return error;
3806         }
3807
3808         XFS_bflush(log->l_mp->m_ddev_targp);
3809
3810         /*
3811          * If IO errors happened during recovery, bail out.
3812          */
3813         if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
3814                 return (EIO);
3815         }
3816
3817         /*
3818          * We now update the tail_lsn since much of the recovery has completed
3819          * and there may be space available to use.  If there were no extent
3820          * or iunlinks, we can free up the entire log and set the tail_lsn to
3821          * be the last_sync_lsn.  This was set in xlog_find_tail to be the
3822          * lsn of the last known good LR on disk.  If there are extent frees
3823          * or iunlinks they will have some entries in the AIL; so we look at
3824          * the AIL to determine how to set the tail_lsn.
3825          */
3826         xlog_assign_tail_lsn(log->l_mp);
3827
3828         /*
3829          * Now that we've finished replaying all buffer and inode
3830          * updates, re-read in the superblock.
3831          */
3832         bp = xfs_getsb(log->l_mp, 0);
3833         XFS_BUF_UNDONE(bp);
3834         ASSERT(!(XFS_BUF_ISWRITE(bp)));
3835         ASSERT(!(XFS_BUF_ISDELAYWRITE(bp)));
3836         XFS_BUF_READ(bp);
3837         XFS_BUF_UNASYNC(bp);
3838         xfsbdstrat(log->l_mp, bp);
3839         error = xfs_iowait(bp);
3840         if (error) {
3841                 xfs_ioerror_alert("xlog_do_recover",
3842                                   log->l_mp, bp, XFS_BUF_ADDR(bp));
3843                 ASSERT(0);
3844                 xfs_buf_relse(bp);
3845                 return error;
3846         }
3847
3848         /* Convert superblock from on-disk format */
3849         sbp = &log->l_mp->m_sb;
3850         xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
3851         ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
3852         ASSERT(xfs_sb_good_version(sbp));
3853         xfs_buf_relse(bp);
3854
3855         /* We've re-read the superblock so re-initialize per-cpu counters */
3856         xfs_icsb_reinit_counters(log->l_mp);
3857
3858         xlog_recover_check_summary(log);
3859
3860         /* Normal transactions can now occur */
3861         log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
3862         return 0;
3863 }
3864
3865 /*
3866  * Perform recovery and re-initialize some log variables in xlog_find_tail.
3867  *
3868  * Return error or zero.
3869  */
3870 int
3871 xlog_recover(
3872         xlog_t          *log)
3873 {
3874         xfs_daddr_t     head_blk, tail_blk;
3875         int             error;
3876
3877         /* find the tail of the log */
3878         if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
3879                 return error;
3880
3881         if (tail_blk != head_blk) {
3882                 /* There used to be a comment here:
3883                  *
3884                  * disallow recovery on read-only mounts.  note -- mount
3885                  * checks for ENOSPC and turns it into an intelligent
3886                  * error message.
3887                  * ...but this is no longer true.  Now, unless you specify
3888                  * NORECOVERY (in which case this function would never be
3889                  * called), we just go ahead and recover.  We do this all
3890                  * under the vfs layer, so we can get away with it unless
3891                  * the device itself is read-only, in which case we fail.
3892                  */
3893                 if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
3894                         return error;
3895                 }
3896
3897                 cmn_err(CE_NOTE,
3898                         "Starting XFS recovery on filesystem: %s (logdev: %s)",
3899                         log->l_mp->m_fsname, log->l_mp->m_logname ?
3900                         log->l_mp->m_logname : "internal");
3901
3902                 error = xlog_do_recover(log, head_blk, tail_blk);
3903                 log->l_flags |= XLOG_RECOVERY_NEEDED;
3904         }
3905         return error;
3906 }
3907
3908 /*
3909  * In the first part of recovery we replay inodes and buffers and build
3910  * up the list of extent free items which need to be processed.  Here
3911  * we process the extent free items and clean up the on disk unlinked
3912  * inode lists.  This is separated from the first part of recovery so
3913  * that the root and real-time bitmap inodes can be read in from disk in
3914  * between the two stages.  This is necessary so that we can free space
3915  * in the real-time portion of the file system.
3916  */
3917 int
3918 xlog_recover_finish(
3919         xlog_t          *log)
3920 {
3921         /*
3922          * Now we're ready to do the transactions needed for the
3923          * rest of recovery.  Start with completing all the extent
3924          * free intent records and then process the unlinked inode
3925          * lists.  At this point, we essentially run in normal mode
3926          * except that we're still performing recovery actions
3927          * rather than accepting new requests.
3928          */
3929         if (log->l_flags & XLOG_RECOVERY_NEEDED) {
3930                 int     error;
3931                 error = xlog_recover_process_efis(log);
3932                 if (error) {
3933                         cmn_err(CE_ALERT,
3934                                 "Failed to recover EFIs on filesystem: %s",
3935                                 log->l_mp->m_fsname);
3936                         return error;
3937                 }
3938                 /*
3939                  * Sync the log to get all the EFIs out of the AIL.
3940                  * This isn't absolutely necessary, but it helps in
3941                  * case the unlink transactions would have problems
3942                  * pushing the EFIs out of the way.
3943                  */
3944                 xfs_log_force(log->l_mp, XFS_LOG_SYNC);
3945
3946                 xlog_recover_process_iunlinks(log);
3947
3948                 xlog_recover_check_summary(log);
3949
3950                 cmn_err(CE_NOTE,
3951                         "Ending XFS recovery on filesystem: %s (logdev: %s)",
3952                         log->l_mp->m_fsname, log->l_mp->m_logname ?
3953                         log->l_mp->m_logname : "internal");
3954                 log->l_flags &= ~XLOG_RECOVERY_NEEDED;
3955         } else {
3956                 cmn_err(CE_DEBUG,
3957                         "!Ending clean XFS mount for filesystem: %s\n",
3958                         log->l_mp->m_fsname);
3959         }
3960         return 0;
3961 }
3962
3963
3964 #if defined(DEBUG)
3965 /*
3966  * Read all of the agf and agi counters and check that they
3967  * are consistent with the superblock counters.
3968  */
3969 void
3970 xlog_recover_check_summary(
3971         xlog_t          *log)
3972 {
3973         xfs_mount_t     *mp;
3974         xfs_agf_t       *agfp;
3975         xfs_buf_t       *agfbp;
3976         xfs_buf_t       *agibp;
3977         xfs_buf_t       *sbbp;
3978 #ifdef XFS_LOUD_RECOVERY
3979         xfs_sb_t        *sbp;
3980 #endif
3981         xfs_agnumber_t  agno;
3982         __uint64_t      freeblks;
3983         __uint64_t      itotal;
3984         __uint64_t      ifree;
3985         int             error;
3986
3987         mp = log->l_mp;
3988
3989         freeblks = 0LL;
3990         itotal = 0LL;
3991         ifree = 0LL;
3992         for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3993                 error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
3994                 if (error) {
3995                         xfs_fs_cmn_err(CE_ALERT, mp,
3996                                         "xlog_recover_check_summary(agf)"
3997                                         "agf read failed agno %d error %d",
3998                                                         agno, error);
3999                 } else {
4000                         agfp = XFS_BUF_TO_AGF(agfbp);
4001                         freeblks += be32_to_cpu(agfp->agf_freeblks) +
4002                                     be32_to_cpu(agfp->agf_flcount);
4003                         xfs_buf_relse(agfbp);
4004                 }
4005
4006                 error = xfs_read_agi(mp, NULL, agno, &agibp);
4007                 if (!error) {
4008                         struct xfs_agi  *agi = XFS_BUF_TO_AGI(agibp);
4009
4010                         itotal += be32_to_cpu(agi->agi_count);
4011                         ifree += be32_to_cpu(agi->agi_freecount);
4012                         xfs_buf_relse(agibp);
4013                 }
4014         }
4015
4016         sbbp = xfs_getsb(mp, 0);
4017 #ifdef XFS_LOUD_RECOVERY
4018         sbp = &mp->m_sb;
4019         xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(sbbp));
4020         cmn_err(CE_NOTE,
4021                 "xlog_recover_check_summary: sb_icount %Lu itotal %Lu",
4022                 sbp->sb_icount, itotal);
4023         cmn_err(CE_NOTE,
4024                 "xlog_recover_check_summary: sb_ifree %Lu itotal %Lu",
4025                 sbp->sb_ifree, ifree);
4026         cmn_err(CE_NOTE,
4027                 "xlog_recover_check_summary: sb_fdblocks %Lu freeblks %Lu",
4028                 sbp->sb_fdblocks, freeblks);
4029 #if 0
4030         /*
4031          * This is turned off until I account for the allocation
4032          * btree blocks which live in free space.
4033          */
4034         ASSERT(sbp->sb_icount == itotal);
4035         ASSERT(sbp->sb_ifree == ifree);
4036         ASSERT(sbp->sb_fdblocks == freeblks);
4037 #endif
4038 #endif
4039         xfs_buf_relse(sbbp);
4040 }
4041 #endif /* DEBUG */