[PATCH] VFS: Permit filesystem to perform statfs with a known root dentry
[safe/jmp/linux-2.6] / fs / xfs / linux-2.6 / xfs_super.c
1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_bit.h"
20 #include "xfs_log.h"
21 #include "xfs_clnt.h"
22 #include "xfs_inum.h"
23 #include "xfs_trans.h"
24 #include "xfs_sb.h"
25 #include "xfs_ag.h"
26 #include "xfs_dir2.h"
27 #include "xfs_alloc.h"
28 #include "xfs_dmapi.h"
29 #include "xfs_quota.h"
30 #include "xfs_mount.h"
31 #include "xfs_bmap_btree.h"
32 #include "xfs_alloc_btree.h"
33 #include "xfs_ialloc_btree.h"
34 #include "xfs_dir2_sf.h"
35 #include "xfs_attr_sf.h"
36 #include "xfs_dinode.h"
37 #include "xfs_inode.h"
38 #include "xfs_btree.h"
39 #include "xfs_ialloc.h"
40 #include "xfs_bmap.h"
41 #include "xfs_rtalloc.h"
42 #include "xfs_error.h"
43 #include "xfs_itable.h"
44 #include "xfs_rw.h"
45 #include "xfs_acl.h"
46 #include "xfs_cap.h"
47 #include "xfs_mac.h"
48 #include "xfs_attr.h"
49 #include "xfs_buf_item.h"
50 #include "xfs_utils.h"
51 #include "xfs_version.h"
52
53 #include <linux/namei.h>
54 #include <linux/init.h>
55 #include <linux/mount.h>
56 #include <linux/mempool.h>
57 #include <linux/writeback.h>
58 #include <linux/kthread.h>
59
60 STATIC struct quotactl_ops xfs_quotactl_operations;
61 STATIC struct super_operations xfs_super_operations;
62 STATIC kmem_zone_t *xfs_vnode_zone;
63 STATIC kmem_zone_t *xfs_ioend_zone;
64 mempool_t *xfs_ioend_pool;
65
66 STATIC struct xfs_mount_args *
67 xfs_args_allocate(
68         struct super_block      *sb,
69         int                     silent)
70 {
71         struct xfs_mount_args   *args;
72
73         args = kmem_zalloc(sizeof(struct xfs_mount_args), KM_SLEEP);
74         args->logbufs = args->logbufsize = -1;
75         strncpy(args->fsname, sb->s_id, MAXNAMELEN);
76
77         /* Copy the already-parsed mount(2) flags we're interested in */
78         if (sb->s_flags & MS_DIRSYNC)
79                 args->flags |= XFSMNT_DIRSYNC;
80         if (sb->s_flags & MS_SYNCHRONOUS)
81                 args->flags |= XFSMNT_WSYNC;
82         if (silent)
83                 args->flags |= XFSMNT_QUIET;
84         args->flags |= XFSMNT_32BITINODES;
85
86         return args;
87 }
88
89 __uint64_t
90 xfs_max_file_offset(
91         unsigned int            blockshift)
92 {
93         unsigned int            pagefactor = 1;
94         unsigned int            bitshift = BITS_PER_LONG - 1;
95
96         /* Figure out maximum filesize, on Linux this can depend on
97          * the filesystem blocksize (on 32 bit platforms).
98          * __block_prepare_write does this in an [unsigned] long...
99          *      page->index << (PAGE_CACHE_SHIFT - bbits)
100          * So, for page sized blocks (4K on 32 bit platforms),
101          * this wraps at around 8Tb (hence MAX_LFS_FILESIZE which is
102          *      (((u64)PAGE_CACHE_SIZE << (BITS_PER_LONG-1))-1)
103          * but for smaller blocksizes it is less (bbits = log2 bsize).
104          * Note1: get_block_t takes a long (implicit cast from above)
105          * Note2: The Large Block Device (LBD and HAVE_SECTOR_T) patch
106          * can optionally convert the [unsigned] long from above into
107          * an [unsigned] long long.
108          */
109
110 #if BITS_PER_LONG == 32
111 # if defined(CONFIG_LBD)
112         ASSERT(sizeof(sector_t) == 8);
113         pagefactor = PAGE_CACHE_SIZE;
114         bitshift = BITS_PER_LONG;
115 # else
116         pagefactor = PAGE_CACHE_SIZE >> (PAGE_CACHE_SHIFT - blockshift);
117 # endif
118 #endif
119
120         return (((__uint64_t)pagefactor) << bitshift) - 1;
121 }
122
123 STATIC __inline__ void
124 xfs_set_inodeops(
125         struct inode            *inode)
126 {
127         switch (inode->i_mode & S_IFMT) {
128         case S_IFREG:
129                 inode->i_op = &xfs_inode_operations;
130                 inode->i_fop = &xfs_file_operations;
131                 inode->i_mapping->a_ops = &xfs_address_space_operations;
132                 break;
133         case S_IFDIR:
134                 inode->i_op = &xfs_dir_inode_operations;
135                 inode->i_fop = &xfs_dir_file_operations;
136                 break;
137         case S_IFLNK:
138                 inode->i_op = &xfs_symlink_inode_operations;
139                 if (inode->i_blocks)
140                         inode->i_mapping->a_ops = &xfs_address_space_operations;
141                 break;
142         default:
143                 inode->i_op = &xfs_inode_operations;
144                 init_special_inode(inode, inode->i_mode, inode->i_rdev);
145                 break;
146         }
147 }
148
149 STATIC __inline__ void
150 xfs_revalidate_inode(
151         xfs_mount_t             *mp,
152         bhv_vnode_t             *vp,
153         xfs_inode_t             *ip)
154 {
155         struct inode            *inode = vn_to_inode(vp);
156
157         inode->i_mode   = ip->i_d.di_mode;
158         inode->i_nlink  = ip->i_d.di_nlink;
159         inode->i_uid    = ip->i_d.di_uid;
160         inode->i_gid    = ip->i_d.di_gid;
161
162         switch (inode->i_mode & S_IFMT) {
163         case S_IFBLK:
164         case S_IFCHR:
165                 inode->i_rdev =
166                         MKDEV(sysv_major(ip->i_df.if_u2.if_rdev) & 0x1ff,
167                               sysv_minor(ip->i_df.if_u2.if_rdev));
168                 break;
169         default:
170                 inode->i_rdev = 0;
171                 break;
172         }
173
174         inode->i_blksize = xfs_preferred_iosize(mp);
175         inode->i_generation = ip->i_d.di_gen;
176         i_size_write(inode, ip->i_d.di_size);
177         inode->i_blocks =
178                 XFS_FSB_TO_BB(mp, ip->i_d.di_nblocks + ip->i_delayed_blks);
179         inode->i_atime.tv_sec   = ip->i_d.di_atime.t_sec;
180         inode->i_atime.tv_nsec  = ip->i_d.di_atime.t_nsec;
181         inode->i_mtime.tv_sec   = ip->i_d.di_mtime.t_sec;
182         inode->i_mtime.tv_nsec  = ip->i_d.di_mtime.t_nsec;
183         inode->i_ctime.tv_sec   = ip->i_d.di_ctime.t_sec;
184         inode->i_ctime.tv_nsec  = ip->i_d.di_ctime.t_nsec;
185         if (ip->i_d.di_flags & XFS_DIFLAG_IMMUTABLE)
186                 inode->i_flags |= S_IMMUTABLE;
187         else
188                 inode->i_flags &= ~S_IMMUTABLE;
189         if (ip->i_d.di_flags & XFS_DIFLAG_APPEND)
190                 inode->i_flags |= S_APPEND;
191         else
192                 inode->i_flags &= ~S_APPEND;
193         if (ip->i_d.di_flags & XFS_DIFLAG_SYNC)
194                 inode->i_flags |= S_SYNC;
195         else
196                 inode->i_flags &= ~S_SYNC;
197         if (ip->i_d.di_flags & XFS_DIFLAG_NOATIME)
198                 inode->i_flags |= S_NOATIME;
199         else
200                 inode->i_flags &= ~S_NOATIME;
201         vp->v_flag &= ~VMODIFIED;
202 }
203
204 void
205 xfs_initialize_vnode(
206         bhv_desc_t              *bdp,
207         bhv_vnode_t             *vp,
208         bhv_desc_t              *inode_bhv,
209         int                     unlock)
210 {
211         xfs_inode_t             *ip = XFS_BHVTOI(inode_bhv);
212         struct inode            *inode = vn_to_inode(vp);
213
214         if (!inode_bhv->bd_vobj) {
215                 vp->v_vfsp = bhvtovfs(bdp);
216                 bhv_desc_init(inode_bhv, ip, vp, &xfs_vnodeops);
217                 bhv_insert(VN_BHV_HEAD(vp), inode_bhv);
218         }
219
220         /*
221          * We need to set the ops vectors, and unlock the inode, but if
222          * we have been called during the new inode create process, it is
223          * too early to fill in the Linux inode.  We will get called a
224          * second time once the inode is properly set up, and then we can
225          * finish our work.
226          */
227         if (ip->i_d.di_mode != 0 && unlock && (inode->i_state & I_NEW)) {
228                 xfs_revalidate_inode(XFS_BHVTOM(bdp), vp, ip);
229                 xfs_set_inodeops(inode);
230
231                 ip->i_flags &= ~XFS_INEW;
232                 barrier();
233
234                 unlock_new_inode(inode);
235         }
236 }
237
238 int
239 xfs_blkdev_get(
240         xfs_mount_t             *mp,
241         const char              *name,
242         struct block_device     **bdevp)
243 {
244         int                     error = 0;
245
246         *bdevp = open_bdev_excl(name, 0, mp);
247         if (IS_ERR(*bdevp)) {
248                 error = PTR_ERR(*bdevp);
249                 printk("XFS: Invalid device [%s], error=%d\n", name, error);
250         }
251
252         return -error;
253 }
254
255 void
256 xfs_blkdev_put(
257         struct block_device     *bdev)
258 {
259         if (bdev)
260                 close_bdev_excl(bdev);
261 }
262
263 /*
264  * Try to write out the superblock using barriers.
265  */
266 STATIC int
267 xfs_barrier_test(
268         xfs_mount_t     *mp)
269 {
270         xfs_buf_t       *sbp = xfs_getsb(mp, 0);
271         int             error;
272
273         XFS_BUF_UNDONE(sbp);
274         XFS_BUF_UNREAD(sbp);
275         XFS_BUF_UNDELAYWRITE(sbp);
276         XFS_BUF_WRITE(sbp);
277         XFS_BUF_UNASYNC(sbp);
278         XFS_BUF_ORDERED(sbp);
279
280         xfsbdstrat(mp, sbp);
281         error = xfs_iowait(sbp);
282
283         /*
284          * Clear all the flags we set and possible error state in the
285          * buffer.  We only did the write to try out whether barriers
286          * worked and shouldn't leave any traces in the superblock
287          * buffer.
288          */
289         XFS_BUF_DONE(sbp);
290         XFS_BUF_ERROR(sbp, 0);
291         XFS_BUF_UNORDERED(sbp);
292
293         xfs_buf_relse(sbp);
294         return error;
295 }
296
297 void
298 xfs_mountfs_check_barriers(xfs_mount_t *mp)
299 {
300         int error;
301
302         if (mp->m_logdev_targp != mp->m_ddev_targp) {
303                 xfs_fs_cmn_err(CE_NOTE, mp,
304                   "Disabling barriers, not supported with external log device");
305                 mp->m_flags &= ~XFS_MOUNT_BARRIER;
306                 return;
307         }
308
309         if (mp->m_ddev_targp->bt_bdev->bd_disk->queue->ordered ==
310                                         QUEUE_ORDERED_NONE) {
311                 xfs_fs_cmn_err(CE_NOTE, mp,
312                   "Disabling barriers, not supported by the underlying device");
313                 mp->m_flags &= ~XFS_MOUNT_BARRIER;
314                 return;
315         }
316
317         error = xfs_barrier_test(mp);
318         if (error) {
319                 xfs_fs_cmn_err(CE_NOTE, mp,
320                   "Disabling barriers, trial barrier write failed");
321                 mp->m_flags &= ~XFS_MOUNT_BARRIER;
322                 return;
323         }
324 }
325
326 void
327 xfs_blkdev_issue_flush(
328         xfs_buftarg_t           *buftarg)
329 {
330         blkdev_issue_flush(buftarg->bt_bdev, NULL);
331 }
332
333 STATIC struct inode *
334 xfs_fs_alloc_inode(
335         struct super_block      *sb)
336 {
337         bhv_vnode_t             *vp;
338
339         vp = kmem_zone_alloc(xfs_vnode_zone, KM_SLEEP);
340         if (unlikely(!vp))
341                 return NULL;
342         return vn_to_inode(vp);
343 }
344
345 STATIC void
346 xfs_fs_destroy_inode(
347         struct inode            *inode)
348 {
349         kmem_zone_free(xfs_vnode_zone, vn_from_inode(inode));
350 }
351
352 STATIC void
353 xfs_fs_inode_init_once(
354         void                    *vnode,
355         kmem_zone_t             *zonep,
356         unsigned long           flags)
357 {
358         if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
359                       SLAB_CTOR_CONSTRUCTOR)
360                 inode_init_once(vn_to_inode((bhv_vnode_t *)vnode));
361 }
362
363 STATIC int
364 xfs_init_zones(void)
365 {
366         xfs_vnode_zone = kmem_zone_init_flags(sizeof(bhv_vnode_t), "xfs_vnode",
367                                         KM_ZONE_HWALIGN | KM_ZONE_RECLAIM |
368                                         KM_ZONE_SPREAD,
369                                         xfs_fs_inode_init_once);
370         if (!xfs_vnode_zone)
371                 goto out;
372
373         xfs_ioend_zone = kmem_zone_init(sizeof(xfs_ioend_t), "xfs_ioend");
374         if (!xfs_ioend_zone)
375                 goto out_destroy_vnode_zone;
376
377         xfs_ioend_pool = mempool_create_slab_pool(4 * MAX_BUF_PER_PAGE,
378                                                   xfs_ioend_zone);
379         if (!xfs_ioend_pool)
380                 goto out_free_ioend_zone;
381         return 0;
382
383  out_free_ioend_zone:
384         kmem_zone_destroy(xfs_ioend_zone);
385  out_destroy_vnode_zone:
386         kmem_zone_destroy(xfs_vnode_zone);
387  out:
388         return -ENOMEM;
389 }
390
391 STATIC void
392 xfs_destroy_zones(void)
393 {
394         mempool_destroy(xfs_ioend_pool);
395         kmem_zone_destroy(xfs_vnode_zone);
396         kmem_zone_destroy(xfs_ioend_zone);
397 }
398
399 /*
400  * Attempt to flush the inode, this will actually fail
401  * if the inode is pinned, but we dirty the inode again
402  * at the point when it is unpinned after a log write,
403  * since this is when the inode itself becomes flushable.
404  */
405 STATIC int
406 xfs_fs_write_inode(
407         struct inode            *inode,
408         int                     sync)
409 {
410         bhv_vnode_t             *vp = vn_from_inode(inode);
411         int                     error = 0, flags = FLUSH_INODE;
412
413         if (vp) {
414                 vn_trace_entry(vp, __FUNCTION__, (inst_t *)__return_address);
415                 if (sync)
416                         flags |= FLUSH_SYNC;
417                 error = bhv_vop_iflush(vp, flags);
418                 if (error == EAGAIN)
419                         error = sync? bhv_vop_iflush(vp, flags | FLUSH_LOG) : 0;
420         }
421         return -error;
422 }
423
424 STATIC void
425 xfs_fs_clear_inode(
426         struct inode            *inode)
427 {
428         bhv_vnode_t             *vp = vn_from_inode(inode);
429
430         vn_trace_entry(vp, __FUNCTION__, (inst_t *)__return_address);
431
432         XFS_STATS_INC(vn_rele);
433         XFS_STATS_INC(vn_remove);
434         XFS_STATS_INC(vn_reclaim);
435         XFS_STATS_DEC(vn_active);
436
437         /*
438          * This can happen because xfs_iget_core calls xfs_idestroy if we
439          * find an inode with di_mode == 0 but without IGET_CREATE set.
440          */
441         if (VNHEAD(vp))
442                 bhv_vop_inactive(vp, NULL);
443
444         VN_LOCK(vp);
445         vp->v_flag &= ~VMODIFIED;
446         VN_UNLOCK(vp, 0);
447
448         if (VNHEAD(vp))
449                 if (bhv_vop_reclaim(vp))
450                         panic("%s: cannot reclaim 0x%p\n", __FUNCTION__, vp);
451
452         ASSERT(VNHEAD(vp) == NULL);
453
454 #ifdef XFS_VNODE_TRACE
455         ktrace_free(vp->v_trace);
456 #endif
457 }
458
459 /*
460  * Enqueue a work item to be picked up by the vfs xfssyncd thread.
461  * Doing this has two advantages:
462  * - It saves on stack space, which is tight in certain situations
463  * - It can be used (with care) as a mechanism to avoid deadlocks.
464  * Flushing while allocating in a full filesystem requires both.
465  */
466 STATIC void
467 xfs_syncd_queue_work(
468         struct bhv_vfs  *vfs,
469         void            *data,
470         void            (*syncer)(bhv_vfs_t *, void *))
471 {
472         struct bhv_vfs_sync_work *work;
473
474         work = kmem_alloc(sizeof(struct bhv_vfs_sync_work), KM_SLEEP);
475         INIT_LIST_HEAD(&work->w_list);
476         work->w_syncer = syncer;
477         work->w_data = data;
478         work->w_vfs = vfs;
479         spin_lock(&vfs->vfs_sync_lock);
480         list_add_tail(&work->w_list, &vfs->vfs_sync_list);
481         spin_unlock(&vfs->vfs_sync_lock);
482         wake_up_process(vfs->vfs_sync_task);
483 }
484
485 /*
486  * Flush delayed allocate data, attempting to free up reserved space
487  * from existing allocations.  At this point a new allocation attempt
488  * has failed with ENOSPC and we are in the process of scratching our
489  * heads, looking about for more room...
490  */
491 STATIC void
492 xfs_flush_inode_work(
493         bhv_vfs_t       *vfs,
494         void            *inode)
495 {
496         filemap_flush(((struct inode *)inode)->i_mapping);
497         iput((struct inode *)inode);
498 }
499
500 void
501 xfs_flush_inode(
502         xfs_inode_t     *ip)
503 {
504         struct inode    *inode = vn_to_inode(XFS_ITOV(ip));
505         struct bhv_vfs  *vfs = XFS_MTOVFS(ip->i_mount);
506
507         igrab(inode);
508         xfs_syncd_queue_work(vfs, inode, xfs_flush_inode_work);
509         delay(msecs_to_jiffies(500));
510 }
511
512 /*
513  * This is the "bigger hammer" version of xfs_flush_inode_work...
514  * (IOW, "If at first you don't succeed, use a Bigger Hammer").
515  */
516 STATIC void
517 xfs_flush_device_work(
518         bhv_vfs_t       *vfs,
519         void            *inode)
520 {
521         sync_blockdev(vfs->vfs_super->s_bdev);
522         iput((struct inode *)inode);
523 }
524
525 void
526 xfs_flush_device(
527         xfs_inode_t     *ip)
528 {
529         struct inode    *inode = vn_to_inode(XFS_ITOV(ip));
530         struct bhv_vfs  *vfs = XFS_MTOVFS(ip->i_mount);
531
532         igrab(inode);
533         xfs_syncd_queue_work(vfs, inode, xfs_flush_device_work);
534         delay(msecs_to_jiffies(500));
535         xfs_log_force(ip->i_mount, (xfs_lsn_t)0, XFS_LOG_FORCE|XFS_LOG_SYNC);
536 }
537
538 STATIC void
539 vfs_sync_worker(
540         bhv_vfs_t       *vfsp,
541         void            *unused)
542 {
543         int             error;
544
545         if (!(vfsp->vfs_flag & VFS_RDONLY))
546                 error = bhv_vfs_sync(vfsp, SYNC_FSDATA | SYNC_BDFLUSH | \
547                                         SYNC_ATTR | SYNC_REFCACHE, NULL);
548         vfsp->vfs_sync_seq++;
549         wmb();
550         wake_up(&vfsp->vfs_wait_single_sync_task);
551 }
552
553 STATIC int
554 xfssyncd(
555         void                    *arg)
556 {
557         long                    timeleft;
558         bhv_vfs_t               *vfsp = (bhv_vfs_t *) arg;
559         bhv_vfs_sync_work_t     *work, *n;
560         LIST_HEAD               (tmp);
561
562         timeleft = xfs_syncd_centisecs * msecs_to_jiffies(10);
563         for (;;) {
564                 timeleft = schedule_timeout_interruptible(timeleft);
565                 /* swsusp */
566                 try_to_freeze();
567                 if (kthread_should_stop() && list_empty(&vfsp->vfs_sync_list))
568                         break;
569
570                 spin_lock(&vfsp->vfs_sync_lock);
571                 /*
572                  * We can get woken by laptop mode, to do a sync -
573                  * that's the (only!) case where the list would be
574                  * empty with time remaining.
575                  */
576                 if (!timeleft || list_empty(&vfsp->vfs_sync_list)) {
577                         if (!timeleft)
578                                 timeleft = xfs_syncd_centisecs *
579                                                         msecs_to_jiffies(10);
580                         INIT_LIST_HEAD(&vfsp->vfs_sync_work.w_list);
581                         list_add_tail(&vfsp->vfs_sync_work.w_list,
582                                         &vfsp->vfs_sync_list);
583                 }
584                 list_for_each_entry_safe(work, n, &vfsp->vfs_sync_list, w_list)
585                         list_move(&work->w_list, &tmp);
586                 spin_unlock(&vfsp->vfs_sync_lock);
587
588                 list_for_each_entry_safe(work, n, &tmp, w_list) {
589                         (*work->w_syncer)(vfsp, work->w_data);
590                         list_del(&work->w_list);
591                         if (work == &vfsp->vfs_sync_work)
592                                 continue;
593                         kmem_free(work, sizeof(struct bhv_vfs_sync_work));
594                 }
595         }
596
597         return 0;
598 }
599
600 STATIC int
601 xfs_fs_start_syncd(
602         bhv_vfs_t               *vfsp)
603 {
604         vfsp->vfs_sync_work.w_syncer = vfs_sync_worker;
605         vfsp->vfs_sync_work.w_vfs = vfsp;
606         vfsp->vfs_sync_task = kthread_run(xfssyncd, vfsp, "xfssyncd");
607         if (IS_ERR(vfsp->vfs_sync_task))
608                 return -PTR_ERR(vfsp->vfs_sync_task);
609         return 0;
610 }
611
612 STATIC void
613 xfs_fs_stop_syncd(
614         bhv_vfs_t               *vfsp)
615 {
616         kthread_stop(vfsp->vfs_sync_task);
617 }
618
619 STATIC void
620 xfs_fs_put_super(
621         struct super_block      *sb)
622 {
623         bhv_vfs_t               *vfsp = vfs_from_sb(sb);
624         int                     error;
625
626         xfs_fs_stop_syncd(vfsp);
627         bhv_vfs_sync(vfsp, SYNC_ATTR | SYNC_DELWRI, NULL);
628         error = bhv_vfs_unmount(vfsp, 0, NULL);
629         if (error) {
630                 printk("XFS: unmount got error=%d\n", error);
631                 printk("%s: vfs=0x%p left dangling!\n", __FUNCTION__, vfsp);
632         } else {
633                 vfs_deallocate(vfsp);
634         }
635 }
636
637 STATIC void
638 xfs_fs_write_super(
639         struct super_block      *sb)
640 {
641         if (!(sb->s_flags & MS_RDONLY))
642                 bhv_vfs_sync(vfs_from_sb(sb), SYNC_FSDATA, NULL);
643         sb->s_dirt = 0;
644 }
645
646 STATIC int
647 xfs_fs_sync_super(
648         struct super_block      *sb,
649         int                     wait)
650 {
651         bhv_vfs_t               *vfsp = vfs_from_sb(sb);
652         int                     error;
653         int                     flags;
654
655         if (unlikely(sb->s_frozen == SB_FREEZE_WRITE))
656                 flags = SYNC_QUIESCE;
657         else
658                 flags = SYNC_FSDATA | (wait ? SYNC_WAIT : 0);
659
660         error = bhv_vfs_sync(vfsp, flags, NULL);
661         sb->s_dirt = 0;
662
663         if (unlikely(laptop_mode)) {
664                 int     prev_sync_seq = vfsp->vfs_sync_seq;
665
666                 /*
667                  * The disk must be active because we're syncing.
668                  * We schedule xfssyncd now (now that the disk is
669                  * active) instead of later (when it might not be).
670                  */
671                 wake_up_process(vfsp->vfs_sync_task);
672                 /*
673                  * We have to wait for the sync iteration to complete.
674                  * If we don't, the disk activity caused by the sync
675                  * will come after the sync is completed, and that
676                  * triggers another sync from laptop mode.
677                  */
678                 wait_event(vfsp->vfs_wait_single_sync_task,
679                                 vfsp->vfs_sync_seq != prev_sync_seq);
680         }
681
682         return -error;
683 }
684
685 STATIC int
686 xfs_fs_statfs(
687         struct dentry           *dentry,
688         struct kstatfs          *statp)
689 {
690         return -bhv_vfs_statvfs(vfs_from_sb(dentry->d_sb), statp, NULL);
691 }
692
693 STATIC int
694 xfs_fs_remount(
695         struct super_block      *sb,
696         int                     *flags,
697         char                    *options)
698 {
699         bhv_vfs_t               *vfsp = vfs_from_sb(sb);
700         struct xfs_mount_args   *args = xfs_args_allocate(sb, 0);
701         int                     error;
702
703         error = bhv_vfs_parseargs(vfsp, options, args, 1);
704         if (!error)
705                 error = bhv_vfs_mntupdate(vfsp, flags, args);
706         kmem_free(args, sizeof(*args));
707         return -error;
708 }
709
710 STATIC void
711 xfs_fs_lockfs(
712         struct super_block      *sb)
713 {
714         bhv_vfs_freeze(vfs_from_sb(sb));
715 }
716
717 STATIC int
718 xfs_fs_show_options(
719         struct seq_file         *m,
720         struct vfsmount         *mnt)
721 {
722         return -bhv_vfs_showargs(vfs_from_sb(mnt->mnt_sb), m);
723 }
724
725 STATIC int
726 xfs_fs_quotasync(
727         struct super_block      *sb,
728         int                     type)
729 {
730         return -bhv_vfs_quotactl(vfs_from_sb(sb), Q_XQUOTASYNC, 0, NULL);
731 }
732
733 STATIC int
734 xfs_fs_getxstate(
735         struct super_block      *sb,
736         struct fs_quota_stat    *fqs)
737 {
738         return -bhv_vfs_quotactl(vfs_from_sb(sb), Q_XGETQSTAT, 0, (caddr_t)fqs);
739 }
740
741 STATIC int
742 xfs_fs_setxstate(
743         struct super_block      *sb,
744         unsigned int            flags,
745         int                     op)
746 {
747         return -bhv_vfs_quotactl(vfs_from_sb(sb), op, 0, (caddr_t)&flags);
748 }
749
750 STATIC int
751 xfs_fs_getxquota(
752         struct super_block      *sb,
753         int                     type,
754         qid_t                   id,
755         struct fs_disk_quota    *fdq)
756 {
757         return -bhv_vfs_quotactl(vfs_from_sb(sb),
758                                  (type == USRQUOTA) ? Q_XGETQUOTA :
759                                   ((type == GRPQUOTA) ? Q_XGETGQUOTA :
760                                    Q_XGETPQUOTA), id, (caddr_t)fdq);
761 }
762
763 STATIC int
764 xfs_fs_setxquota(
765         struct super_block      *sb,
766         int                     type,
767         qid_t                   id,
768         struct fs_disk_quota    *fdq)
769 {
770         return -bhv_vfs_quotactl(vfs_from_sb(sb),
771                                  (type == USRQUOTA) ? Q_XSETQLIM :
772                                   ((type == GRPQUOTA) ? Q_XSETGQLIM :
773                                    Q_XSETPQLIM), id, (caddr_t)fdq);
774 }
775
776 STATIC int
777 xfs_fs_fill_super(
778         struct super_block      *sb,
779         void                    *data,
780         int                     silent)
781 {
782         struct bhv_vnode        *rootvp;
783         struct bhv_vfs          *vfsp = vfs_allocate(sb);
784         struct xfs_mount_args   *args = xfs_args_allocate(sb, silent);
785         struct kstatfs          statvfs;
786         int                     error;
787
788         bhv_insert_all_vfsops(vfsp);
789
790         error = bhv_vfs_parseargs(vfsp, (char *)data, args, 0);
791         if (error) {
792                 bhv_remove_all_vfsops(vfsp, 1);
793                 goto fail_vfsop;
794         }
795
796         sb_min_blocksize(sb, BBSIZE);
797         sb->s_export_op = &xfs_export_operations;
798         sb->s_qcop = &xfs_quotactl_operations;
799         sb->s_op = &xfs_super_operations;
800
801         error = bhv_vfs_mount(vfsp, args, NULL);
802         if (error) {
803                 bhv_remove_all_vfsops(vfsp, 1);
804                 goto fail_vfsop;
805         }
806
807         error = bhv_vfs_statvfs(vfsp, &statvfs, NULL);
808         if (error)
809                 goto fail_unmount;
810
811         sb->s_dirt = 1;
812         sb->s_magic = statvfs.f_type;
813         sb->s_blocksize = statvfs.f_bsize;
814         sb->s_blocksize_bits = ffs(statvfs.f_bsize) - 1;
815         sb->s_maxbytes = xfs_max_file_offset(sb->s_blocksize_bits);
816         sb->s_time_gran = 1;
817         set_posix_acl_flag(sb);
818
819         error = bhv_vfs_root(vfsp, &rootvp);
820         if (error)
821                 goto fail_unmount;
822
823         sb->s_root = d_alloc_root(vn_to_inode(rootvp));
824         if (!sb->s_root) {
825                 error = ENOMEM;
826                 goto fail_vnrele;
827         }
828         if (is_bad_inode(sb->s_root->d_inode)) {
829                 error = EINVAL;
830                 goto fail_vnrele;
831         }
832         if ((error = xfs_fs_start_syncd(vfsp)))
833                 goto fail_vnrele;
834         vn_trace_exit(rootvp, __FUNCTION__, (inst_t *)__return_address);
835
836         kmem_free(args, sizeof(*args));
837         return 0;
838
839 fail_vnrele:
840         if (sb->s_root) {
841                 dput(sb->s_root);
842                 sb->s_root = NULL;
843         } else {
844                 VN_RELE(rootvp);
845         }
846
847 fail_unmount:
848         bhv_vfs_unmount(vfsp, 0, NULL);
849
850 fail_vfsop:
851         vfs_deallocate(vfsp);
852         kmem_free(args, sizeof(*args));
853         return -error;
854 }
855
856 STATIC int
857 xfs_fs_get_sb(
858         struct file_system_type *fs_type,
859         int                     flags,
860         const char              *dev_name,
861         void                    *data,
862         struct vfsmount         *mnt)
863 {
864         return get_sb_bdev(fs_type, flags, dev_name, data, xfs_fs_fill_super,
865                            mnt);
866 }
867
868 STATIC struct super_operations xfs_super_operations = {
869         .alloc_inode            = xfs_fs_alloc_inode,
870         .destroy_inode          = xfs_fs_destroy_inode,
871         .write_inode            = xfs_fs_write_inode,
872         .clear_inode            = xfs_fs_clear_inode,
873         .put_super              = xfs_fs_put_super,
874         .write_super            = xfs_fs_write_super,
875         .sync_fs                = xfs_fs_sync_super,
876         .write_super_lockfs     = xfs_fs_lockfs,
877         .statfs                 = xfs_fs_statfs,
878         .remount_fs             = xfs_fs_remount,
879         .show_options           = xfs_fs_show_options,
880 };
881
882 STATIC struct quotactl_ops xfs_quotactl_operations = {
883         .quota_sync             = xfs_fs_quotasync,
884         .get_xstate             = xfs_fs_getxstate,
885         .set_xstate             = xfs_fs_setxstate,
886         .get_xquota             = xfs_fs_getxquota,
887         .set_xquota             = xfs_fs_setxquota,
888 };
889
890 STATIC struct file_system_type xfs_fs_type = {
891         .owner                  = THIS_MODULE,
892         .name                   = "xfs",
893         .get_sb                 = xfs_fs_get_sb,
894         .kill_sb                = kill_block_super,
895         .fs_flags               = FS_REQUIRES_DEV,
896 };
897
898
899 STATIC int __init
900 init_xfs_fs( void )
901 {
902         int                     error;
903         struct sysinfo          si;
904         static char             message[] __initdata = KERN_INFO \
905                 XFS_VERSION_STRING " with " XFS_BUILD_OPTIONS " enabled\n";
906
907         printk(message);
908
909         si_meminfo(&si);
910         xfs_physmem = si.totalram;
911
912         ktrace_init(64);
913
914         error = xfs_init_zones();
915         if (error < 0)
916                 goto undo_zones;
917
918         error = xfs_buf_init();
919         if (error < 0)
920                 goto undo_buffers;
921
922         vn_init();
923         xfs_init();
924         uuid_init();
925         vfs_initquota();
926
927         error = register_filesystem(&xfs_fs_type);
928         if (error)
929                 goto undo_register;
930         return 0;
931
932 undo_register:
933         xfs_buf_terminate();
934
935 undo_buffers:
936         xfs_destroy_zones();
937
938 undo_zones:
939         return error;
940 }
941
942 STATIC void __exit
943 exit_xfs_fs( void )
944 {
945         vfs_exitquota();
946         unregister_filesystem(&xfs_fs_type);
947         xfs_cleanup();
948         xfs_buf_terminate();
949         xfs_destroy_zones();
950         ktrace_uninit();
951 }
952
953 module_init(init_xfs_fs);
954 module_exit(exit_xfs_fs);
955
956 MODULE_AUTHOR("Silicon Graphics, Inc.");
957 MODULE_DESCRIPTION(XFS_VERSION_STRING " with " XFS_BUILD_OPTIONS " enabled");
958 MODULE_LICENSE("GPL");