reiserfs: Fix unwanted recursive reiserfs lock in reiserfs_unlink()
[safe/jmp/linux-2.6] / fs / ubifs / debug.c
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Artem Bityutskiy (Битюцкий Артём)
20  *          Adrian Hunter
21  */
22
23 /*
24  * This file implements most of the debugging stuff which is compiled in only
25  * when it is enabled. But some debugging check functions are implemented in
26  * corresponding subsystem, just because they are closely related and utilize
27  * various local functions of those subsystems.
28  */
29
30 #define UBIFS_DBG_PRESERVE_UBI
31
32 #include "ubifs.h"
33 #include <linux/module.h>
34 #include <linux/moduleparam.h>
35 #include <linux/debugfs.h>
36 #include <linux/math64.h>
37
38 #ifdef CONFIG_UBIFS_FS_DEBUG
39
40 DEFINE_SPINLOCK(dbg_lock);
41
42 static char dbg_key_buf0[128];
43 static char dbg_key_buf1[128];
44
45 unsigned int ubifs_msg_flags = UBIFS_MSG_FLAGS_DEFAULT;
46 unsigned int ubifs_chk_flags = UBIFS_CHK_FLAGS_DEFAULT;
47 unsigned int ubifs_tst_flags;
48
49 module_param_named(debug_msgs, ubifs_msg_flags, uint, S_IRUGO | S_IWUSR);
50 module_param_named(debug_chks, ubifs_chk_flags, uint, S_IRUGO | S_IWUSR);
51 module_param_named(debug_tsts, ubifs_tst_flags, uint, S_IRUGO | S_IWUSR);
52
53 MODULE_PARM_DESC(debug_msgs, "Debug message type flags");
54 MODULE_PARM_DESC(debug_chks, "Debug check flags");
55 MODULE_PARM_DESC(debug_tsts, "Debug special test flags");
56
57 static const char *get_key_fmt(int fmt)
58 {
59         switch (fmt) {
60         case UBIFS_SIMPLE_KEY_FMT:
61                 return "simple";
62         default:
63                 return "unknown/invalid format";
64         }
65 }
66
67 static const char *get_key_hash(int hash)
68 {
69         switch (hash) {
70         case UBIFS_KEY_HASH_R5:
71                 return "R5";
72         case UBIFS_KEY_HASH_TEST:
73                 return "test";
74         default:
75                 return "unknown/invalid name hash";
76         }
77 }
78
79 static const char *get_key_type(int type)
80 {
81         switch (type) {
82         case UBIFS_INO_KEY:
83                 return "inode";
84         case UBIFS_DENT_KEY:
85                 return "direntry";
86         case UBIFS_XENT_KEY:
87                 return "xentry";
88         case UBIFS_DATA_KEY:
89                 return "data";
90         case UBIFS_TRUN_KEY:
91                 return "truncate";
92         default:
93                 return "unknown/invalid key";
94         }
95 }
96
97 static void sprintf_key(const struct ubifs_info *c, const union ubifs_key *key,
98                         char *buffer)
99 {
100         char *p = buffer;
101         int type = key_type(c, key);
102
103         if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) {
104                 switch (type) {
105                 case UBIFS_INO_KEY:
106                         sprintf(p, "(%lu, %s)", (unsigned long)key_inum(c, key),
107                                get_key_type(type));
108                         break;
109                 case UBIFS_DENT_KEY:
110                 case UBIFS_XENT_KEY:
111                         sprintf(p, "(%lu, %s, %#08x)",
112                                 (unsigned long)key_inum(c, key),
113                                 get_key_type(type), key_hash(c, key));
114                         break;
115                 case UBIFS_DATA_KEY:
116                         sprintf(p, "(%lu, %s, %u)",
117                                 (unsigned long)key_inum(c, key),
118                                 get_key_type(type), key_block(c, key));
119                         break;
120                 case UBIFS_TRUN_KEY:
121                         sprintf(p, "(%lu, %s)",
122                                 (unsigned long)key_inum(c, key),
123                                 get_key_type(type));
124                         break;
125                 default:
126                         sprintf(p, "(bad key type: %#08x, %#08x)",
127                                 key->u32[0], key->u32[1]);
128                 }
129         } else
130                 sprintf(p, "bad key format %d", c->key_fmt);
131 }
132
133 const char *dbg_key_str0(const struct ubifs_info *c, const union ubifs_key *key)
134 {
135         /* dbg_lock must be held */
136         sprintf_key(c, key, dbg_key_buf0);
137         return dbg_key_buf0;
138 }
139
140 const char *dbg_key_str1(const struct ubifs_info *c, const union ubifs_key *key)
141 {
142         /* dbg_lock must be held */
143         sprintf_key(c, key, dbg_key_buf1);
144         return dbg_key_buf1;
145 }
146
147 const char *dbg_ntype(int type)
148 {
149         switch (type) {
150         case UBIFS_PAD_NODE:
151                 return "padding node";
152         case UBIFS_SB_NODE:
153                 return "superblock node";
154         case UBIFS_MST_NODE:
155                 return "master node";
156         case UBIFS_REF_NODE:
157                 return "reference node";
158         case UBIFS_INO_NODE:
159                 return "inode node";
160         case UBIFS_DENT_NODE:
161                 return "direntry node";
162         case UBIFS_XENT_NODE:
163                 return "xentry node";
164         case UBIFS_DATA_NODE:
165                 return "data node";
166         case UBIFS_TRUN_NODE:
167                 return "truncate node";
168         case UBIFS_IDX_NODE:
169                 return "indexing node";
170         case UBIFS_CS_NODE:
171                 return "commit start node";
172         case UBIFS_ORPH_NODE:
173                 return "orphan node";
174         default:
175                 return "unknown node";
176         }
177 }
178
179 static const char *dbg_gtype(int type)
180 {
181         switch (type) {
182         case UBIFS_NO_NODE_GROUP:
183                 return "no node group";
184         case UBIFS_IN_NODE_GROUP:
185                 return "in node group";
186         case UBIFS_LAST_OF_NODE_GROUP:
187                 return "last of node group";
188         default:
189                 return "unknown";
190         }
191 }
192
193 const char *dbg_cstate(int cmt_state)
194 {
195         switch (cmt_state) {
196         case COMMIT_RESTING:
197                 return "commit resting";
198         case COMMIT_BACKGROUND:
199                 return "background commit requested";
200         case COMMIT_REQUIRED:
201                 return "commit required";
202         case COMMIT_RUNNING_BACKGROUND:
203                 return "BACKGROUND commit running";
204         case COMMIT_RUNNING_REQUIRED:
205                 return "commit running and required";
206         case COMMIT_BROKEN:
207                 return "broken commit";
208         default:
209                 return "unknown commit state";
210         }
211 }
212
213 const char *dbg_jhead(int jhead)
214 {
215         switch (jhead) {
216         case GCHD:
217                 return "0 (GC)";
218         case BASEHD:
219                 return "1 (base)";
220         case DATAHD:
221                 return "2 (data)";
222         default:
223                 return "unknown journal head";
224         }
225 }
226
227 static void dump_ch(const struct ubifs_ch *ch)
228 {
229         printk(KERN_DEBUG "\tmagic          %#x\n", le32_to_cpu(ch->magic));
230         printk(KERN_DEBUG "\tcrc            %#x\n", le32_to_cpu(ch->crc));
231         printk(KERN_DEBUG "\tnode_type      %d (%s)\n", ch->node_type,
232                dbg_ntype(ch->node_type));
233         printk(KERN_DEBUG "\tgroup_type     %d (%s)\n", ch->group_type,
234                dbg_gtype(ch->group_type));
235         printk(KERN_DEBUG "\tsqnum          %llu\n",
236                (unsigned long long)le64_to_cpu(ch->sqnum));
237         printk(KERN_DEBUG "\tlen            %u\n", le32_to_cpu(ch->len));
238 }
239
240 void dbg_dump_inode(const struct ubifs_info *c, const struct inode *inode)
241 {
242         const struct ubifs_inode *ui = ubifs_inode(inode);
243
244         printk(KERN_DEBUG "Dump in-memory inode:");
245         printk(KERN_DEBUG "\tinode          %lu\n", inode->i_ino);
246         printk(KERN_DEBUG "\tsize           %llu\n",
247                (unsigned long long)i_size_read(inode));
248         printk(KERN_DEBUG "\tnlink          %u\n", inode->i_nlink);
249         printk(KERN_DEBUG "\tuid            %u\n", (unsigned int)inode->i_uid);
250         printk(KERN_DEBUG "\tgid            %u\n", (unsigned int)inode->i_gid);
251         printk(KERN_DEBUG "\tatime          %u.%u\n",
252                (unsigned int)inode->i_atime.tv_sec,
253                (unsigned int)inode->i_atime.tv_nsec);
254         printk(KERN_DEBUG "\tmtime          %u.%u\n",
255                (unsigned int)inode->i_mtime.tv_sec,
256                (unsigned int)inode->i_mtime.tv_nsec);
257         printk(KERN_DEBUG "\tctime          %u.%u\n",
258                (unsigned int)inode->i_ctime.tv_sec,
259                (unsigned int)inode->i_ctime.tv_nsec);
260         printk(KERN_DEBUG "\tcreat_sqnum    %llu\n", ui->creat_sqnum);
261         printk(KERN_DEBUG "\txattr_size     %u\n", ui->xattr_size);
262         printk(KERN_DEBUG "\txattr_cnt      %u\n", ui->xattr_cnt);
263         printk(KERN_DEBUG "\txattr_names    %u\n", ui->xattr_names);
264         printk(KERN_DEBUG "\tdirty          %u\n", ui->dirty);
265         printk(KERN_DEBUG "\txattr          %u\n", ui->xattr);
266         printk(KERN_DEBUG "\tbulk_read      %u\n", ui->xattr);
267         printk(KERN_DEBUG "\tsynced_i_size  %llu\n",
268                (unsigned long long)ui->synced_i_size);
269         printk(KERN_DEBUG "\tui_size        %llu\n",
270                (unsigned long long)ui->ui_size);
271         printk(KERN_DEBUG "\tflags          %d\n", ui->flags);
272         printk(KERN_DEBUG "\tcompr_type     %d\n", ui->compr_type);
273         printk(KERN_DEBUG "\tlast_page_read %lu\n", ui->last_page_read);
274         printk(KERN_DEBUG "\tread_in_a_row  %lu\n", ui->read_in_a_row);
275         printk(KERN_DEBUG "\tdata_len       %d\n", ui->data_len);
276 }
277
278 void dbg_dump_node(const struct ubifs_info *c, const void *node)
279 {
280         int i, n;
281         union ubifs_key key;
282         const struct ubifs_ch *ch = node;
283
284         if (dbg_failure_mode)
285                 return;
286
287         /* If the magic is incorrect, just hexdump the first bytes */
288         if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) {
289                 printk(KERN_DEBUG "Not a node, first %zu bytes:", UBIFS_CH_SZ);
290                 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
291                                (void *)node, UBIFS_CH_SZ, 1);
292                 return;
293         }
294
295         spin_lock(&dbg_lock);
296         dump_ch(node);
297
298         switch (ch->node_type) {
299         case UBIFS_PAD_NODE:
300         {
301                 const struct ubifs_pad_node *pad = node;
302
303                 printk(KERN_DEBUG "\tpad_len        %u\n",
304                        le32_to_cpu(pad->pad_len));
305                 break;
306         }
307         case UBIFS_SB_NODE:
308         {
309                 const struct ubifs_sb_node *sup = node;
310                 unsigned int sup_flags = le32_to_cpu(sup->flags);
311
312                 printk(KERN_DEBUG "\tkey_hash       %d (%s)\n",
313                        (int)sup->key_hash, get_key_hash(sup->key_hash));
314                 printk(KERN_DEBUG "\tkey_fmt        %d (%s)\n",
315                        (int)sup->key_fmt, get_key_fmt(sup->key_fmt));
316                 printk(KERN_DEBUG "\tflags          %#x\n", sup_flags);
317                 printk(KERN_DEBUG "\t  big_lpt      %u\n",
318                        !!(sup_flags & UBIFS_FLG_BIGLPT));
319                 printk(KERN_DEBUG "\tmin_io_size    %u\n",
320                        le32_to_cpu(sup->min_io_size));
321                 printk(KERN_DEBUG "\tleb_size       %u\n",
322                        le32_to_cpu(sup->leb_size));
323                 printk(KERN_DEBUG "\tleb_cnt        %u\n",
324                        le32_to_cpu(sup->leb_cnt));
325                 printk(KERN_DEBUG "\tmax_leb_cnt    %u\n",
326                        le32_to_cpu(sup->max_leb_cnt));
327                 printk(KERN_DEBUG "\tmax_bud_bytes  %llu\n",
328                        (unsigned long long)le64_to_cpu(sup->max_bud_bytes));
329                 printk(KERN_DEBUG "\tlog_lebs       %u\n",
330                        le32_to_cpu(sup->log_lebs));
331                 printk(KERN_DEBUG "\tlpt_lebs       %u\n",
332                        le32_to_cpu(sup->lpt_lebs));
333                 printk(KERN_DEBUG "\torph_lebs      %u\n",
334                        le32_to_cpu(sup->orph_lebs));
335                 printk(KERN_DEBUG "\tjhead_cnt      %u\n",
336                        le32_to_cpu(sup->jhead_cnt));
337                 printk(KERN_DEBUG "\tfanout         %u\n",
338                        le32_to_cpu(sup->fanout));
339                 printk(KERN_DEBUG "\tlsave_cnt      %u\n",
340                        le32_to_cpu(sup->lsave_cnt));
341                 printk(KERN_DEBUG "\tdefault_compr  %u\n",
342                        (int)le16_to_cpu(sup->default_compr));
343                 printk(KERN_DEBUG "\trp_size        %llu\n",
344                        (unsigned long long)le64_to_cpu(sup->rp_size));
345                 printk(KERN_DEBUG "\trp_uid         %u\n",
346                        le32_to_cpu(sup->rp_uid));
347                 printk(KERN_DEBUG "\trp_gid         %u\n",
348                        le32_to_cpu(sup->rp_gid));
349                 printk(KERN_DEBUG "\tfmt_version    %u\n",
350                        le32_to_cpu(sup->fmt_version));
351                 printk(KERN_DEBUG "\ttime_gran      %u\n",
352                        le32_to_cpu(sup->time_gran));
353                 printk(KERN_DEBUG "\tUUID           %02X%02X%02X%02X-%02X%02X"
354                        "-%02X%02X-%02X%02X-%02X%02X%02X%02X%02X%02X\n",
355                        sup->uuid[0], sup->uuid[1], sup->uuid[2], sup->uuid[3],
356                        sup->uuid[4], sup->uuid[5], sup->uuid[6], sup->uuid[7],
357                        sup->uuid[8], sup->uuid[9], sup->uuid[10], sup->uuid[11],
358                        sup->uuid[12], sup->uuid[13], sup->uuid[14],
359                        sup->uuid[15]);
360                 break;
361         }
362         case UBIFS_MST_NODE:
363         {
364                 const struct ubifs_mst_node *mst = node;
365
366                 printk(KERN_DEBUG "\thighest_inum   %llu\n",
367                        (unsigned long long)le64_to_cpu(mst->highest_inum));
368                 printk(KERN_DEBUG "\tcommit number  %llu\n",
369                        (unsigned long long)le64_to_cpu(mst->cmt_no));
370                 printk(KERN_DEBUG "\tflags          %#x\n",
371                        le32_to_cpu(mst->flags));
372                 printk(KERN_DEBUG "\tlog_lnum       %u\n",
373                        le32_to_cpu(mst->log_lnum));
374                 printk(KERN_DEBUG "\troot_lnum      %u\n",
375                        le32_to_cpu(mst->root_lnum));
376                 printk(KERN_DEBUG "\troot_offs      %u\n",
377                        le32_to_cpu(mst->root_offs));
378                 printk(KERN_DEBUG "\troot_len       %u\n",
379                        le32_to_cpu(mst->root_len));
380                 printk(KERN_DEBUG "\tgc_lnum        %u\n",
381                        le32_to_cpu(mst->gc_lnum));
382                 printk(KERN_DEBUG "\tihead_lnum     %u\n",
383                        le32_to_cpu(mst->ihead_lnum));
384                 printk(KERN_DEBUG "\tihead_offs     %u\n",
385                        le32_to_cpu(mst->ihead_offs));
386                 printk(KERN_DEBUG "\tindex_size     %llu\n",
387                        (unsigned long long)le64_to_cpu(mst->index_size));
388                 printk(KERN_DEBUG "\tlpt_lnum       %u\n",
389                        le32_to_cpu(mst->lpt_lnum));
390                 printk(KERN_DEBUG "\tlpt_offs       %u\n",
391                        le32_to_cpu(mst->lpt_offs));
392                 printk(KERN_DEBUG "\tnhead_lnum     %u\n",
393                        le32_to_cpu(mst->nhead_lnum));
394                 printk(KERN_DEBUG "\tnhead_offs     %u\n",
395                        le32_to_cpu(mst->nhead_offs));
396                 printk(KERN_DEBUG "\tltab_lnum      %u\n",
397                        le32_to_cpu(mst->ltab_lnum));
398                 printk(KERN_DEBUG "\tltab_offs      %u\n",
399                        le32_to_cpu(mst->ltab_offs));
400                 printk(KERN_DEBUG "\tlsave_lnum     %u\n",
401                        le32_to_cpu(mst->lsave_lnum));
402                 printk(KERN_DEBUG "\tlsave_offs     %u\n",
403                        le32_to_cpu(mst->lsave_offs));
404                 printk(KERN_DEBUG "\tlscan_lnum     %u\n",
405                        le32_to_cpu(mst->lscan_lnum));
406                 printk(KERN_DEBUG "\tleb_cnt        %u\n",
407                        le32_to_cpu(mst->leb_cnt));
408                 printk(KERN_DEBUG "\tempty_lebs     %u\n",
409                        le32_to_cpu(mst->empty_lebs));
410                 printk(KERN_DEBUG "\tidx_lebs       %u\n",
411                        le32_to_cpu(mst->idx_lebs));
412                 printk(KERN_DEBUG "\ttotal_free     %llu\n",
413                        (unsigned long long)le64_to_cpu(mst->total_free));
414                 printk(KERN_DEBUG "\ttotal_dirty    %llu\n",
415                        (unsigned long long)le64_to_cpu(mst->total_dirty));
416                 printk(KERN_DEBUG "\ttotal_used     %llu\n",
417                        (unsigned long long)le64_to_cpu(mst->total_used));
418                 printk(KERN_DEBUG "\ttotal_dead     %llu\n",
419                        (unsigned long long)le64_to_cpu(mst->total_dead));
420                 printk(KERN_DEBUG "\ttotal_dark     %llu\n",
421                        (unsigned long long)le64_to_cpu(mst->total_dark));
422                 break;
423         }
424         case UBIFS_REF_NODE:
425         {
426                 const struct ubifs_ref_node *ref = node;
427
428                 printk(KERN_DEBUG "\tlnum           %u\n",
429                        le32_to_cpu(ref->lnum));
430                 printk(KERN_DEBUG "\toffs           %u\n",
431                        le32_to_cpu(ref->offs));
432                 printk(KERN_DEBUG "\tjhead          %u\n",
433                        le32_to_cpu(ref->jhead));
434                 break;
435         }
436         case UBIFS_INO_NODE:
437         {
438                 const struct ubifs_ino_node *ino = node;
439
440                 key_read(c, &ino->key, &key);
441                 printk(KERN_DEBUG "\tkey            %s\n", DBGKEY(&key));
442                 printk(KERN_DEBUG "\tcreat_sqnum    %llu\n",
443                        (unsigned long long)le64_to_cpu(ino->creat_sqnum));
444                 printk(KERN_DEBUG "\tsize           %llu\n",
445                        (unsigned long long)le64_to_cpu(ino->size));
446                 printk(KERN_DEBUG "\tnlink          %u\n",
447                        le32_to_cpu(ino->nlink));
448                 printk(KERN_DEBUG "\tatime          %lld.%u\n",
449                        (long long)le64_to_cpu(ino->atime_sec),
450                        le32_to_cpu(ino->atime_nsec));
451                 printk(KERN_DEBUG "\tmtime          %lld.%u\n",
452                        (long long)le64_to_cpu(ino->mtime_sec),
453                        le32_to_cpu(ino->mtime_nsec));
454                 printk(KERN_DEBUG "\tctime          %lld.%u\n",
455                        (long long)le64_to_cpu(ino->ctime_sec),
456                        le32_to_cpu(ino->ctime_nsec));
457                 printk(KERN_DEBUG "\tuid            %u\n",
458                        le32_to_cpu(ino->uid));
459                 printk(KERN_DEBUG "\tgid            %u\n",
460                        le32_to_cpu(ino->gid));
461                 printk(KERN_DEBUG "\tmode           %u\n",
462                        le32_to_cpu(ino->mode));
463                 printk(KERN_DEBUG "\tflags          %#x\n",
464                        le32_to_cpu(ino->flags));
465                 printk(KERN_DEBUG "\txattr_cnt      %u\n",
466                        le32_to_cpu(ino->xattr_cnt));
467                 printk(KERN_DEBUG "\txattr_size     %u\n",
468                        le32_to_cpu(ino->xattr_size));
469                 printk(KERN_DEBUG "\txattr_names    %u\n",
470                        le32_to_cpu(ino->xattr_names));
471                 printk(KERN_DEBUG "\tcompr_type     %#x\n",
472                        (int)le16_to_cpu(ino->compr_type));
473                 printk(KERN_DEBUG "\tdata len       %u\n",
474                        le32_to_cpu(ino->data_len));
475                 break;
476         }
477         case UBIFS_DENT_NODE:
478         case UBIFS_XENT_NODE:
479         {
480                 const struct ubifs_dent_node *dent = node;
481                 int nlen = le16_to_cpu(dent->nlen);
482
483                 key_read(c, &dent->key, &key);
484                 printk(KERN_DEBUG "\tkey            %s\n", DBGKEY(&key));
485                 printk(KERN_DEBUG "\tinum           %llu\n",
486                        (unsigned long long)le64_to_cpu(dent->inum));
487                 printk(KERN_DEBUG "\ttype           %d\n", (int)dent->type);
488                 printk(KERN_DEBUG "\tnlen           %d\n", nlen);
489                 printk(KERN_DEBUG "\tname           ");
490
491                 if (nlen > UBIFS_MAX_NLEN)
492                         printk(KERN_DEBUG "(bad name length, not printing, "
493                                           "bad or corrupted node)");
494                 else {
495                         for (i = 0; i < nlen && dent->name[i]; i++)
496                                 printk(KERN_CONT "%c", dent->name[i]);
497                 }
498                 printk(KERN_CONT "\n");
499
500                 break;
501         }
502         case UBIFS_DATA_NODE:
503         {
504                 const struct ubifs_data_node *dn = node;
505                 int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ;
506
507                 key_read(c, &dn->key, &key);
508                 printk(KERN_DEBUG "\tkey            %s\n", DBGKEY(&key));
509                 printk(KERN_DEBUG "\tsize           %u\n",
510                        le32_to_cpu(dn->size));
511                 printk(KERN_DEBUG "\tcompr_typ      %d\n",
512                        (int)le16_to_cpu(dn->compr_type));
513                 printk(KERN_DEBUG "\tdata size      %d\n",
514                        dlen);
515                 printk(KERN_DEBUG "\tdata:\n");
516                 print_hex_dump(KERN_DEBUG, "\t", DUMP_PREFIX_OFFSET, 32, 1,
517                                (void *)&dn->data, dlen, 0);
518                 break;
519         }
520         case UBIFS_TRUN_NODE:
521         {
522                 const struct ubifs_trun_node *trun = node;
523
524                 printk(KERN_DEBUG "\tinum           %u\n",
525                        le32_to_cpu(trun->inum));
526                 printk(KERN_DEBUG "\told_size       %llu\n",
527                        (unsigned long long)le64_to_cpu(trun->old_size));
528                 printk(KERN_DEBUG "\tnew_size       %llu\n",
529                        (unsigned long long)le64_to_cpu(trun->new_size));
530                 break;
531         }
532         case UBIFS_IDX_NODE:
533         {
534                 const struct ubifs_idx_node *idx = node;
535
536                 n = le16_to_cpu(idx->child_cnt);
537                 printk(KERN_DEBUG "\tchild_cnt      %d\n", n);
538                 printk(KERN_DEBUG "\tlevel          %d\n",
539                        (int)le16_to_cpu(idx->level));
540                 printk(KERN_DEBUG "\tBranches:\n");
541
542                 for (i = 0; i < n && i < c->fanout - 1; i++) {
543                         const struct ubifs_branch *br;
544
545                         br = ubifs_idx_branch(c, idx, i);
546                         key_read(c, &br->key, &key);
547                         printk(KERN_DEBUG "\t%d: LEB %d:%d len %d key %s\n",
548                                i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs),
549                                le32_to_cpu(br->len), DBGKEY(&key));
550                 }
551                 break;
552         }
553         case UBIFS_CS_NODE:
554                 break;
555         case UBIFS_ORPH_NODE:
556         {
557                 const struct ubifs_orph_node *orph = node;
558
559                 printk(KERN_DEBUG "\tcommit number  %llu\n",
560                        (unsigned long long)
561                                 le64_to_cpu(orph->cmt_no) & LLONG_MAX);
562                 printk(KERN_DEBUG "\tlast node flag %llu\n",
563                        (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63);
564                 n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3;
565                 printk(KERN_DEBUG "\t%d orphan inode numbers:\n", n);
566                 for (i = 0; i < n; i++)
567                         printk(KERN_DEBUG "\t  ino %llu\n",
568                                (unsigned long long)le64_to_cpu(orph->inos[i]));
569                 break;
570         }
571         default:
572                 printk(KERN_DEBUG "node type %d was not recognized\n",
573                        (int)ch->node_type);
574         }
575         spin_unlock(&dbg_lock);
576 }
577
578 void dbg_dump_budget_req(const struct ubifs_budget_req *req)
579 {
580         spin_lock(&dbg_lock);
581         printk(KERN_DEBUG "Budgeting request: new_ino %d, dirtied_ino %d\n",
582                req->new_ino, req->dirtied_ino);
583         printk(KERN_DEBUG "\tnew_ino_d   %d, dirtied_ino_d %d\n",
584                req->new_ino_d, req->dirtied_ino_d);
585         printk(KERN_DEBUG "\tnew_page    %d, dirtied_page %d\n",
586                req->new_page, req->dirtied_page);
587         printk(KERN_DEBUG "\tnew_dent    %d, mod_dent     %d\n",
588                req->new_dent, req->mod_dent);
589         printk(KERN_DEBUG "\tidx_growth  %d\n", req->idx_growth);
590         printk(KERN_DEBUG "\tdata_growth %d dd_growth     %d\n",
591                req->data_growth, req->dd_growth);
592         spin_unlock(&dbg_lock);
593 }
594
595 void dbg_dump_lstats(const struct ubifs_lp_stats *lst)
596 {
597         spin_lock(&dbg_lock);
598         printk(KERN_DEBUG "(pid %d) Lprops statistics: empty_lebs %d, "
599                "idx_lebs  %d\n", current->pid, lst->empty_lebs, lst->idx_lebs);
600         printk(KERN_DEBUG "\ttaken_empty_lebs %d, total_free %lld, "
601                "total_dirty %lld\n", lst->taken_empty_lebs, lst->total_free,
602                lst->total_dirty);
603         printk(KERN_DEBUG "\ttotal_used %lld, total_dark %lld, "
604                "total_dead %lld\n", lst->total_used, lst->total_dark,
605                lst->total_dead);
606         spin_unlock(&dbg_lock);
607 }
608
609 void dbg_dump_budg(struct ubifs_info *c)
610 {
611         int i;
612         struct rb_node *rb;
613         struct ubifs_bud *bud;
614         struct ubifs_gced_idx_leb *idx_gc;
615         long long available, outstanding, free;
616
617         ubifs_assert(spin_is_locked(&c->space_lock));
618         spin_lock(&dbg_lock);
619         printk(KERN_DEBUG "(pid %d) Budgeting info: budg_data_growth %lld, "
620                "budg_dd_growth %lld, budg_idx_growth %lld\n", current->pid,
621                c->budg_data_growth, c->budg_dd_growth, c->budg_idx_growth);
622         printk(KERN_DEBUG "\tdata budget sum %lld, total budget sum %lld, "
623                "freeable_cnt %d\n", c->budg_data_growth + c->budg_dd_growth,
624                c->budg_data_growth + c->budg_dd_growth + c->budg_idx_growth,
625                c->freeable_cnt);
626         printk(KERN_DEBUG "\tmin_idx_lebs %d, old_idx_sz %lld, "
627                "calc_idx_sz %lld, idx_gc_cnt %d\n", c->min_idx_lebs,
628                c->old_idx_sz, c->calc_idx_sz, c->idx_gc_cnt);
629         printk(KERN_DEBUG "\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, "
630                "clean_zn_cnt %ld\n", atomic_long_read(&c->dirty_pg_cnt),
631                atomic_long_read(&c->dirty_zn_cnt),
632                atomic_long_read(&c->clean_zn_cnt));
633         printk(KERN_DEBUG "\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
634                c->dark_wm, c->dead_wm, c->max_idx_node_sz);
635         printk(KERN_DEBUG "\tgc_lnum %d, ihead_lnum %d\n",
636                c->gc_lnum, c->ihead_lnum);
637         /* If we are in R/O mode, journal heads do not exist */
638         if (c->jheads)
639                 for (i = 0; i < c->jhead_cnt; i++)
640                         printk(KERN_DEBUG "\tjhead %s\t LEB %d\n",
641                                dbg_jhead(c->jheads[i].wbuf.jhead),
642                                c->jheads[i].wbuf.lnum);
643         for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) {
644                 bud = rb_entry(rb, struct ubifs_bud, rb);
645                 printk(KERN_DEBUG "\tbud LEB %d\n", bud->lnum);
646         }
647         list_for_each_entry(bud, &c->old_buds, list)
648                 printk(KERN_DEBUG "\told bud LEB %d\n", bud->lnum);
649         list_for_each_entry(idx_gc, &c->idx_gc, list)
650                 printk(KERN_DEBUG "\tGC'ed idx LEB %d unmap %d\n",
651                        idx_gc->lnum, idx_gc->unmap);
652         printk(KERN_DEBUG "\tcommit state %d\n", c->cmt_state);
653
654         /* Print budgeting predictions */
655         available = ubifs_calc_available(c, c->min_idx_lebs);
656         outstanding = c->budg_data_growth + c->budg_dd_growth;
657         free = ubifs_get_free_space_nolock(c);
658         printk(KERN_DEBUG "Budgeting predictions:\n");
659         printk(KERN_DEBUG "\tavailable: %lld, outstanding %lld, free %lld\n",
660                available, outstanding, free);
661         spin_unlock(&dbg_lock);
662 }
663
664 void dbg_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp)
665 {
666         int i, spc, dark = 0, dead = 0;
667         struct rb_node *rb;
668         struct ubifs_bud *bud;
669
670         spc = lp->free + lp->dirty;
671         if (spc < c->dead_wm)
672                 dead = spc;
673         else
674                 dark = ubifs_calc_dark(c, spc);
675
676         if (lp->flags & LPROPS_INDEX)
677                 printk(KERN_DEBUG "LEB %-7d free %-8d dirty %-8d used %-8d "
678                        "free + dirty %-8d flags %#x (", lp->lnum, lp->free,
679                        lp->dirty, c->leb_size - spc, spc, lp->flags);
680         else
681                 printk(KERN_DEBUG "LEB %-7d free %-8d dirty %-8d used %-8d "
682                        "free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d "
683                        "flags %#-4x (", lp->lnum, lp->free, lp->dirty,
684                        c->leb_size - spc, spc, dark, dead,
685                        (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags);
686
687         if (lp->flags & LPROPS_TAKEN) {
688                 if (lp->flags & LPROPS_INDEX)
689                         printk(KERN_CONT "index, taken");
690                 else
691                         printk(KERN_CONT "taken");
692         } else {
693                 const char *s;
694
695                 if (lp->flags & LPROPS_INDEX) {
696                         switch (lp->flags & LPROPS_CAT_MASK) {
697                         case LPROPS_DIRTY_IDX:
698                                 s = "dirty index";
699                                 break;
700                         case LPROPS_FRDI_IDX:
701                                 s = "freeable index";
702                                 break;
703                         default:
704                                 s = "index";
705                         }
706                 } else {
707                         switch (lp->flags & LPROPS_CAT_MASK) {
708                         case LPROPS_UNCAT:
709                                 s = "not categorized";
710                                 break;
711                         case LPROPS_DIRTY:
712                                 s = "dirty";
713                                 break;
714                         case LPROPS_FREE:
715                                 s = "free";
716                                 break;
717                         case LPROPS_EMPTY:
718                                 s = "empty";
719                                 break;
720                         case LPROPS_FREEABLE:
721                                 s = "freeable";
722                                 break;
723                         default:
724                                 s = NULL;
725                                 break;
726                         }
727                 }
728                 printk(KERN_CONT "%s", s);
729         }
730
731         for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) {
732                 bud = rb_entry(rb, struct ubifs_bud, rb);
733                 if (bud->lnum == lp->lnum) {
734                         int head = 0;
735                         for (i = 0; i < c->jhead_cnt; i++) {
736                                 if (lp->lnum == c->jheads[i].wbuf.lnum) {
737                                         printk(KERN_CONT ", jhead %s",
738                                                dbg_jhead(i));
739                                         head = 1;
740                                 }
741                         }
742                         if (!head)
743                                 printk(KERN_CONT ", bud of jhead %s",
744                                        dbg_jhead(bud->jhead));
745                 }
746         }
747         if (lp->lnum == c->gc_lnum)
748                 printk(KERN_CONT ", GC LEB");
749         printk(KERN_CONT ")\n");
750 }
751
752 void dbg_dump_lprops(struct ubifs_info *c)
753 {
754         int lnum, err;
755         struct ubifs_lprops lp;
756         struct ubifs_lp_stats lst;
757
758         printk(KERN_DEBUG "(pid %d) start dumping LEB properties\n",
759                current->pid);
760         ubifs_get_lp_stats(c, &lst);
761         dbg_dump_lstats(&lst);
762
763         for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
764                 err = ubifs_read_one_lp(c, lnum, &lp);
765                 if (err)
766                         ubifs_err("cannot read lprops for LEB %d", lnum);
767
768                 dbg_dump_lprop(c, &lp);
769         }
770         printk(KERN_DEBUG "(pid %d) finish dumping LEB properties\n",
771                current->pid);
772 }
773
774 void dbg_dump_lpt_info(struct ubifs_info *c)
775 {
776         int i;
777
778         spin_lock(&dbg_lock);
779         printk(KERN_DEBUG "(pid %d) dumping LPT information\n", current->pid);
780         printk(KERN_DEBUG "\tlpt_sz:        %lld\n", c->lpt_sz);
781         printk(KERN_DEBUG "\tpnode_sz:      %d\n", c->pnode_sz);
782         printk(KERN_DEBUG "\tnnode_sz:      %d\n", c->nnode_sz);
783         printk(KERN_DEBUG "\tltab_sz:       %d\n", c->ltab_sz);
784         printk(KERN_DEBUG "\tlsave_sz:      %d\n", c->lsave_sz);
785         printk(KERN_DEBUG "\tbig_lpt:       %d\n", c->big_lpt);
786         printk(KERN_DEBUG "\tlpt_hght:      %d\n", c->lpt_hght);
787         printk(KERN_DEBUG "\tpnode_cnt:     %d\n", c->pnode_cnt);
788         printk(KERN_DEBUG "\tnnode_cnt:     %d\n", c->nnode_cnt);
789         printk(KERN_DEBUG "\tdirty_pn_cnt:  %d\n", c->dirty_pn_cnt);
790         printk(KERN_DEBUG "\tdirty_nn_cnt:  %d\n", c->dirty_nn_cnt);
791         printk(KERN_DEBUG "\tlsave_cnt:     %d\n", c->lsave_cnt);
792         printk(KERN_DEBUG "\tspace_bits:    %d\n", c->space_bits);
793         printk(KERN_DEBUG "\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits);
794         printk(KERN_DEBUG "\tlpt_offs_bits: %d\n", c->lpt_offs_bits);
795         printk(KERN_DEBUG "\tlpt_spc_bits:  %d\n", c->lpt_spc_bits);
796         printk(KERN_DEBUG "\tpcnt_bits:     %d\n", c->pcnt_bits);
797         printk(KERN_DEBUG "\tlnum_bits:     %d\n", c->lnum_bits);
798         printk(KERN_DEBUG "\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs);
799         printk(KERN_DEBUG "\tLPT head is at %d:%d\n",
800                c->nhead_lnum, c->nhead_offs);
801         printk(KERN_DEBUG "\tLPT ltab is at %d:%d\n",
802                c->ltab_lnum, c->ltab_offs);
803         if (c->big_lpt)
804                 printk(KERN_DEBUG "\tLPT lsave is at %d:%d\n",
805                        c->lsave_lnum, c->lsave_offs);
806         for (i = 0; i < c->lpt_lebs; i++)
807                 printk(KERN_DEBUG "\tLPT LEB %d free %d dirty %d tgc %d "
808                        "cmt %d\n", i + c->lpt_first, c->ltab[i].free,
809                        c->ltab[i].dirty, c->ltab[i].tgc, c->ltab[i].cmt);
810         spin_unlock(&dbg_lock);
811 }
812
813 void dbg_dump_leb(const struct ubifs_info *c, int lnum)
814 {
815         struct ubifs_scan_leb *sleb;
816         struct ubifs_scan_node *snod;
817
818         if (dbg_failure_mode)
819                 return;
820
821         printk(KERN_DEBUG "(pid %d) start dumping LEB %d\n",
822                current->pid, lnum);
823         sleb = ubifs_scan(c, lnum, 0, c->dbg->buf, 0);
824         if (IS_ERR(sleb)) {
825                 ubifs_err("scan error %d", (int)PTR_ERR(sleb));
826                 return;
827         }
828
829         printk(KERN_DEBUG "LEB %d has %d nodes ending at %d\n", lnum,
830                sleb->nodes_cnt, sleb->endpt);
831
832         list_for_each_entry(snod, &sleb->nodes, list) {
833                 cond_resched();
834                 printk(KERN_DEBUG "Dumping node at LEB %d:%d len %d\n", lnum,
835                        snod->offs, snod->len);
836                 dbg_dump_node(c, snod->node);
837         }
838
839         printk(KERN_DEBUG "(pid %d) finish dumping LEB %d\n",
840                current->pid, lnum);
841         ubifs_scan_destroy(sleb);
842         return;
843 }
844
845 void dbg_dump_znode(const struct ubifs_info *c,
846                     const struct ubifs_znode *znode)
847 {
848         int n;
849         const struct ubifs_zbranch *zbr;
850
851         spin_lock(&dbg_lock);
852         if (znode->parent)
853                 zbr = &znode->parent->zbranch[znode->iip];
854         else
855                 zbr = &c->zroot;
856
857         printk(KERN_DEBUG "znode %p, LEB %d:%d len %d parent %p iip %d level %d"
858                " child_cnt %d flags %lx\n", znode, zbr->lnum, zbr->offs,
859                zbr->len, znode->parent, znode->iip, znode->level,
860                znode->child_cnt, znode->flags);
861
862         if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
863                 spin_unlock(&dbg_lock);
864                 return;
865         }
866
867         printk(KERN_DEBUG "zbranches:\n");
868         for (n = 0; n < znode->child_cnt; n++) {
869                 zbr = &znode->zbranch[n];
870                 if (znode->level > 0)
871                         printk(KERN_DEBUG "\t%d: znode %p LEB %d:%d len %d key "
872                                           "%s\n", n, zbr->znode, zbr->lnum,
873                                           zbr->offs, zbr->len,
874                                           DBGKEY(&zbr->key));
875                 else
876                         printk(KERN_DEBUG "\t%d: LNC %p LEB %d:%d len %d key "
877                                           "%s\n", n, zbr->znode, zbr->lnum,
878                                           zbr->offs, zbr->len,
879                                           DBGKEY(&zbr->key));
880         }
881         spin_unlock(&dbg_lock);
882 }
883
884 void dbg_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat)
885 {
886         int i;
887
888         printk(KERN_DEBUG "(pid %d) start dumping heap cat %d (%d elements)\n",
889                current->pid, cat, heap->cnt);
890         for (i = 0; i < heap->cnt; i++) {
891                 struct ubifs_lprops *lprops = heap->arr[i];
892
893                 printk(KERN_DEBUG "\t%d. LEB %d hpos %d free %d dirty %d "
894                        "flags %d\n", i, lprops->lnum, lprops->hpos,
895                        lprops->free, lprops->dirty, lprops->flags);
896         }
897         printk(KERN_DEBUG "(pid %d) finish dumping heap\n", current->pid);
898 }
899
900 void dbg_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
901                     struct ubifs_nnode *parent, int iip)
902 {
903         int i;
904
905         printk(KERN_DEBUG "(pid %d) dumping pnode:\n", current->pid);
906         printk(KERN_DEBUG "\taddress %zx parent %zx cnext %zx\n",
907                (size_t)pnode, (size_t)parent, (size_t)pnode->cnext);
908         printk(KERN_DEBUG "\tflags %lu iip %d level %d num %d\n",
909                pnode->flags, iip, pnode->level, pnode->num);
910         for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
911                 struct ubifs_lprops *lp = &pnode->lprops[i];
912
913                 printk(KERN_DEBUG "\t%d: free %d dirty %d flags %d lnum %d\n",
914                        i, lp->free, lp->dirty, lp->flags, lp->lnum);
915         }
916 }
917
918 void dbg_dump_tnc(struct ubifs_info *c)
919 {
920         struct ubifs_znode *znode;
921         int level;
922
923         printk(KERN_DEBUG "\n");
924         printk(KERN_DEBUG "(pid %d) start dumping TNC tree\n", current->pid);
925         znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL);
926         level = znode->level;
927         printk(KERN_DEBUG "== Level %d ==\n", level);
928         while (znode) {
929                 if (level != znode->level) {
930                         level = znode->level;
931                         printk(KERN_DEBUG "== Level %d ==\n", level);
932                 }
933                 dbg_dump_znode(c, znode);
934                 znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode);
935         }
936         printk(KERN_DEBUG "(pid %d) finish dumping TNC tree\n", current->pid);
937 }
938
939 static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode,
940                       void *priv)
941 {
942         dbg_dump_znode(c, znode);
943         return 0;
944 }
945
946 /**
947  * dbg_dump_index - dump the on-flash index.
948  * @c: UBIFS file-system description object
949  *
950  * This function dumps whole UBIFS indexing B-tree, unlike 'dbg_dump_tnc()'
951  * which dumps only in-memory znodes and does not read znodes which from flash.
952  */
953 void dbg_dump_index(struct ubifs_info *c)
954 {
955         dbg_walk_index(c, NULL, dump_znode, NULL);
956 }
957
958 /**
959  * dbg_save_space_info - save information about flash space.
960  * @c: UBIFS file-system description object
961  *
962  * This function saves information about UBIFS free space, dirty space, etc, in
963  * order to check it later.
964  */
965 void dbg_save_space_info(struct ubifs_info *c)
966 {
967         struct ubifs_debug_info *d = c->dbg;
968
969         ubifs_get_lp_stats(c, &d->saved_lst);
970
971         spin_lock(&c->space_lock);
972         d->saved_free = ubifs_get_free_space_nolock(c);
973         spin_unlock(&c->space_lock);
974 }
975
976 /**
977  * dbg_check_space_info - check flash space information.
978  * @c: UBIFS file-system description object
979  *
980  * This function compares current flash space information with the information
981  * which was saved when the 'dbg_save_space_info()' function was called.
982  * Returns zero if the information has not changed, and %-EINVAL it it has
983  * changed.
984  */
985 int dbg_check_space_info(struct ubifs_info *c)
986 {
987         struct ubifs_debug_info *d = c->dbg;
988         struct ubifs_lp_stats lst;
989         long long avail, free;
990
991         spin_lock(&c->space_lock);
992         avail = ubifs_calc_available(c, c->min_idx_lebs);
993         spin_unlock(&c->space_lock);
994         free = ubifs_get_free_space(c);
995
996         if (free != d->saved_free) {
997                 ubifs_err("free space changed from %lld to %lld",
998                           d->saved_free, free);
999                 goto out;
1000         }
1001
1002         return 0;
1003
1004 out:
1005         ubifs_msg("saved lprops statistics dump");
1006         dbg_dump_lstats(&d->saved_lst);
1007         ubifs_get_lp_stats(c, &lst);
1008
1009         ubifs_msg("current lprops statistics dump");
1010         dbg_dump_lstats(&lst);
1011
1012         spin_lock(&c->space_lock);
1013         dbg_dump_budg(c);
1014         spin_unlock(&c->space_lock);
1015         dump_stack();
1016         return -EINVAL;
1017 }
1018
1019 /**
1020  * dbg_check_synced_i_size - check synchronized inode size.
1021  * @inode: inode to check
1022  *
1023  * If inode is clean, synchronized inode size has to be equivalent to current
1024  * inode size. This function has to be called only for locked inodes (@i_mutex
1025  * has to be locked). Returns %0 if synchronized inode size if correct, and
1026  * %-EINVAL if not.
1027  */
1028 int dbg_check_synced_i_size(struct inode *inode)
1029 {
1030         int err = 0;
1031         struct ubifs_inode *ui = ubifs_inode(inode);
1032
1033         if (!(ubifs_chk_flags & UBIFS_CHK_GEN))
1034                 return 0;
1035         if (!S_ISREG(inode->i_mode))
1036                 return 0;
1037
1038         mutex_lock(&ui->ui_mutex);
1039         spin_lock(&ui->ui_lock);
1040         if (ui->ui_size != ui->synced_i_size && !ui->dirty) {
1041                 ubifs_err("ui_size is %lld, synced_i_size is %lld, but inode "
1042                           "is clean", ui->ui_size, ui->synced_i_size);
1043                 ubifs_err("i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino,
1044                           inode->i_mode, i_size_read(inode));
1045                 dbg_dump_stack();
1046                 err = -EINVAL;
1047         }
1048         spin_unlock(&ui->ui_lock);
1049         mutex_unlock(&ui->ui_mutex);
1050         return err;
1051 }
1052
1053 /*
1054  * dbg_check_dir - check directory inode size and link count.
1055  * @c: UBIFS file-system description object
1056  * @dir: the directory to calculate size for
1057  * @size: the result is returned here
1058  *
1059  * This function makes sure that directory size and link count are correct.
1060  * Returns zero in case of success and a negative error code in case of
1061  * failure.
1062  *
1063  * Note, it is good idea to make sure the @dir->i_mutex is locked before
1064  * calling this function.
1065  */
1066 int dbg_check_dir_size(struct ubifs_info *c, const struct inode *dir)
1067 {
1068         unsigned int nlink = 2;
1069         union ubifs_key key;
1070         struct ubifs_dent_node *dent, *pdent = NULL;
1071         struct qstr nm = { .name = NULL };
1072         loff_t size = UBIFS_INO_NODE_SZ;
1073
1074         if (!(ubifs_chk_flags & UBIFS_CHK_GEN))
1075                 return 0;
1076
1077         if (!S_ISDIR(dir->i_mode))
1078                 return 0;
1079
1080         lowest_dent_key(c, &key, dir->i_ino);
1081         while (1) {
1082                 int err;
1083
1084                 dent = ubifs_tnc_next_ent(c, &key, &nm);
1085                 if (IS_ERR(dent)) {
1086                         err = PTR_ERR(dent);
1087                         if (err == -ENOENT)
1088                                 break;
1089                         return err;
1090                 }
1091
1092                 nm.name = dent->name;
1093                 nm.len = le16_to_cpu(dent->nlen);
1094                 size += CALC_DENT_SIZE(nm.len);
1095                 if (dent->type == UBIFS_ITYPE_DIR)
1096                         nlink += 1;
1097                 kfree(pdent);
1098                 pdent = dent;
1099                 key_read(c, &dent->key, &key);
1100         }
1101         kfree(pdent);
1102
1103         if (i_size_read(dir) != size) {
1104                 ubifs_err("directory inode %lu has size %llu, "
1105                           "but calculated size is %llu", dir->i_ino,
1106                           (unsigned long long)i_size_read(dir),
1107                           (unsigned long long)size);
1108                 dump_stack();
1109                 return -EINVAL;
1110         }
1111         if (dir->i_nlink != nlink) {
1112                 ubifs_err("directory inode %lu has nlink %u, but calculated "
1113                           "nlink is %u", dir->i_ino, dir->i_nlink, nlink);
1114                 dump_stack();
1115                 return -EINVAL;
1116         }
1117
1118         return 0;
1119 }
1120
1121 /**
1122  * dbg_check_key_order - make sure that colliding keys are properly ordered.
1123  * @c: UBIFS file-system description object
1124  * @zbr1: first zbranch
1125  * @zbr2: following zbranch
1126  *
1127  * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
1128  * names of the direntries/xentries which are referred by the keys. This
1129  * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
1130  * sure the name of direntry/xentry referred by @zbr1 is less than
1131  * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
1132  * and a negative error code in case of failure.
1133  */
1134 static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1,
1135                                struct ubifs_zbranch *zbr2)
1136 {
1137         int err, nlen1, nlen2, cmp;
1138         struct ubifs_dent_node *dent1, *dent2;
1139         union ubifs_key key;
1140
1141         ubifs_assert(!keys_cmp(c, &zbr1->key, &zbr2->key));
1142         dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1143         if (!dent1)
1144                 return -ENOMEM;
1145         dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1146         if (!dent2) {
1147                 err = -ENOMEM;
1148                 goto out_free;
1149         }
1150
1151         err = ubifs_tnc_read_node(c, zbr1, dent1);
1152         if (err)
1153                 goto out_free;
1154         err = ubifs_validate_entry(c, dent1);
1155         if (err)
1156                 goto out_free;
1157
1158         err = ubifs_tnc_read_node(c, zbr2, dent2);
1159         if (err)
1160                 goto out_free;
1161         err = ubifs_validate_entry(c, dent2);
1162         if (err)
1163                 goto out_free;
1164
1165         /* Make sure node keys are the same as in zbranch */
1166         err = 1;
1167         key_read(c, &dent1->key, &key);
1168         if (keys_cmp(c, &zbr1->key, &key)) {
1169                 dbg_err("1st entry at %d:%d has key %s", zbr1->lnum,
1170                         zbr1->offs, DBGKEY(&key));
1171                 dbg_err("but it should have key %s according to tnc",
1172                         DBGKEY(&zbr1->key));
1173                 dbg_dump_node(c, dent1);
1174                 goto out_free;
1175         }
1176
1177         key_read(c, &dent2->key, &key);
1178         if (keys_cmp(c, &zbr2->key, &key)) {
1179                 dbg_err("2nd entry at %d:%d has key %s", zbr1->lnum,
1180                         zbr1->offs, DBGKEY(&key));
1181                 dbg_err("but it should have key %s according to tnc",
1182                         DBGKEY(&zbr2->key));
1183                 dbg_dump_node(c, dent2);
1184                 goto out_free;
1185         }
1186
1187         nlen1 = le16_to_cpu(dent1->nlen);
1188         nlen2 = le16_to_cpu(dent2->nlen);
1189
1190         cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2));
1191         if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) {
1192                 err = 0;
1193                 goto out_free;
1194         }
1195         if (cmp == 0 && nlen1 == nlen2)
1196                 dbg_err("2 xent/dent nodes with the same name");
1197         else
1198                 dbg_err("bad order of colliding key %s",
1199                         DBGKEY(&key));
1200
1201         ubifs_msg("first node at %d:%d\n", zbr1->lnum, zbr1->offs);
1202         dbg_dump_node(c, dent1);
1203         ubifs_msg("second node at %d:%d\n", zbr2->lnum, zbr2->offs);
1204         dbg_dump_node(c, dent2);
1205
1206 out_free:
1207         kfree(dent2);
1208         kfree(dent1);
1209         return err;
1210 }
1211
1212 /**
1213  * dbg_check_znode - check if znode is all right.
1214  * @c: UBIFS file-system description object
1215  * @zbr: zbranch which points to this znode
1216  *
1217  * This function makes sure that znode referred to by @zbr is all right.
1218  * Returns zero if it is, and %-EINVAL if it is not.
1219  */
1220 static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr)
1221 {
1222         struct ubifs_znode *znode = zbr->znode;
1223         struct ubifs_znode *zp = znode->parent;
1224         int n, err, cmp;
1225
1226         if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
1227                 err = 1;
1228                 goto out;
1229         }
1230         if (znode->level < 0) {
1231                 err = 2;
1232                 goto out;
1233         }
1234         if (znode->iip < 0 || znode->iip >= c->fanout) {
1235                 err = 3;
1236                 goto out;
1237         }
1238
1239         if (zbr->len == 0)
1240                 /* Only dirty zbranch may have no on-flash nodes */
1241                 if (!ubifs_zn_dirty(znode)) {
1242                         err = 4;
1243                         goto out;
1244                 }
1245
1246         if (ubifs_zn_dirty(znode)) {
1247                 /*
1248                  * If znode is dirty, its parent has to be dirty as well. The
1249                  * order of the operation is important, so we have to have
1250                  * memory barriers.
1251                  */
1252                 smp_mb();
1253                 if (zp && !ubifs_zn_dirty(zp)) {
1254                         /*
1255                          * The dirty flag is atomic and is cleared outside the
1256                          * TNC mutex, so znode's dirty flag may now have
1257                          * been cleared. The child is always cleared before the
1258                          * parent, so we just need to check again.
1259                          */
1260                         smp_mb();
1261                         if (ubifs_zn_dirty(znode)) {
1262                                 err = 5;
1263                                 goto out;
1264                         }
1265                 }
1266         }
1267
1268         if (zp) {
1269                 const union ubifs_key *min, *max;
1270
1271                 if (znode->level != zp->level - 1) {
1272                         err = 6;
1273                         goto out;
1274                 }
1275
1276                 /* Make sure the 'parent' pointer in our znode is correct */
1277                 err = ubifs_search_zbranch(c, zp, &zbr->key, &n);
1278                 if (!err) {
1279                         /* This zbranch does not exist in the parent */
1280                         err = 7;
1281                         goto out;
1282                 }
1283
1284                 if (znode->iip >= zp->child_cnt) {
1285                         err = 8;
1286                         goto out;
1287                 }
1288
1289                 if (znode->iip != n) {
1290                         /* This may happen only in case of collisions */
1291                         if (keys_cmp(c, &zp->zbranch[n].key,
1292                                      &zp->zbranch[znode->iip].key)) {
1293                                 err = 9;
1294                                 goto out;
1295                         }
1296                         n = znode->iip;
1297                 }
1298
1299                 /*
1300                  * Make sure that the first key in our znode is greater than or
1301                  * equal to the key in the pointing zbranch.
1302                  */
1303                 min = &zbr->key;
1304                 cmp = keys_cmp(c, min, &znode->zbranch[0].key);
1305                 if (cmp == 1) {
1306                         err = 10;
1307                         goto out;
1308                 }
1309
1310                 if (n + 1 < zp->child_cnt) {
1311                         max = &zp->zbranch[n + 1].key;
1312
1313                         /*
1314                          * Make sure the last key in our znode is less or
1315                          * equivalent than the key in the zbranch which goes
1316                          * after our pointing zbranch.
1317                          */
1318                         cmp = keys_cmp(c, max,
1319                                 &znode->zbranch[znode->child_cnt - 1].key);
1320                         if (cmp == -1) {
1321                                 err = 11;
1322                                 goto out;
1323                         }
1324                 }
1325         } else {
1326                 /* This may only be root znode */
1327                 if (zbr != &c->zroot) {
1328                         err = 12;
1329                         goto out;
1330                 }
1331         }
1332
1333         /*
1334          * Make sure that next key is greater or equivalent then the previous
1335          * one.
1336          */
1337         for (n = 1; n < znode->child_cnt; n++) {
1338                 cmp = keys_cmp(c, &znode->zbranch[n - 1].key,
1339                                &znode->zbranch[n].key);
1340                 if (cmp > 0) {
1341                         err = 13;
1342                         goto out;
1343                 }
1344                 if (cmp == 0) {
1345                         /* This can only be keys with colliding hash */
1346                         if (!is_hash_key(c, &znode->zbranch[n].key)) {
1347                                 err = 14;
1348                                 goto out;
1349                         }
1350
1351                         if (znode->level != 0 || c->replaying)
1352                                 continue;
1353
1354                         /*
1355                          * Colliding keys should follow binary order of
1356                          * corresponding xentry/dentry names.
1357                          */
1358                         err = dbg_check_key_order(c, &znode->zbranch[n - 1],
1359                                                   &znode->zbranch[n]);
1360                         if (err < 0)
1361                                 return err;
1362                         if (err) {
1363                                 err = 15;
1364                                 goto out;
1365                         }
1366                 }
1367         }
1368
1369         for (n = 0; n < znode->child_cnt; n++) {
1370                 if (!znode->zbranch[n].znode &&
1371                     (znode->zbranch[n].lnum == 0 ||
1372                      znode->zbranch[n].len == 0)) {
1373                         err = 16;
1374                         goto out;
1375                 }
1376
1377                 if (znode->zbranch[n].lnum != 0 &&
1378                     znode->zbranch[n].len == 0) {
1379                         err = 17;
1380                         goto out;
1381                 }
1382
1383                 if (znode->zbranch[n].lnum == 0 &&
1384                     znode->zbranch[n].len != 0) {
1385                         err = 18;
1386                         goto out;
1387                 }
1388
1389                 if (znode->zbranch[n].lnum == 0 &&
1390                     znode->zbranch[n].offs != 0) {
1391                         err = 19;
1392                         goto out;
1393                 }
1394
1395                 if (znode->level != 0 && znode->zbranch[n].znode)
1396                         if (znode->zbranch[n].znode->parent != znode) {
1397                                 err = 20;
1398                                 goto out;
1399                         }
1400         }
1401
1402         return 0;
1403
1404 out:
1405         ubifs_err("failed, error %d", err);
1406         ubifs_msg("dump of the znode");
1407         dbg_dump_znode(c, znode);
1408         if (zp) {
1409                 ubifs_msg("dump of the parent znode");
1410                 dbg_dump_znode(c, zp);
1411         }
1412         dump_stack();
1413         return -EINVAL;
1414 }
1415
1416 /**
1417  * dbg_check_tnc - check TNC tree.
1418  * @c: UBIFS file-system description object
1419  * @extra: do extra checks that are possible at start commit
1420  *
1421  * This function traverses whole TNC tree and checks every znode. Returns zero
1422  * if everything is all right and %-EINVAL if something is wrong with TNC.
1423  */
1424 int dbg_check_tnc(struct ubifs_info *c, int extra)
1425 {
1426         struct ubifs_znode *znode;
1427         long clean_cnt = 0, dirty_cnt = 0;
1428         int err, last;
1429
1430         if (!(ubifs_chk_flags & UBIFS_CHK_TNC))
1431                 return 0;
1432
1433         ubifs_assert(mutex_is_locked(&c->tnc_mutex));
1434         if (!c->zroot.znode)
1435                 return 0;
1436
1437         znode = ubifs_tnc_postorder_first(c->zroot.znode);
1438         while (1) {
1439                 struct ubifs_znode *prev;
1440                 struct ubifs_zbranch *zbr;
1441
1442                 if (!znode->parent)
1443                         zbr = &c->zroot;
1444                 else
1445                         zbr = &znode->parent->zbranch[znode->iip];
1446
1447                 err = dbg_check_znode(c, zbr);
1448                 if (err)
1449                         return err;
1450
1451                 if (extra) {
1452                         if (ubifs_zn_dirty(znode))
1453                                 dirty_cnt += 1;
1454                         else
1455                                 clean_cnt += 1;
1456                 }
1457
1458                 prev = znode;
1459                 znode = ubifs_tnc_postorder_next(znode);
1460                 if (!znode)
1461                         break;
1462
1463                 /*
1464                  * If the last key of this znode is equivalent to the first key
1465                  * of the next znode (collision), then check order of the keys.
1466                  */
1467                 last = prev->child_cnt - 1;
1468                 if (prev->level == 0 && znode->level == 0 && !c->replaying &&
1469                     !keys_cmp(c, &prev->zbranch[last].key,
1470                               &znode->zbranch[0].key)) {
1471                         err = dbg_check_key_order(c, &prev->zbranch[last],
1472                                                   &znode->zbranch[0]);
1473                         if (err < 0)
1474                                 return err;
1475                         if (err) {
1476                                 ubifs_msg("first znode");
1477                                 dbg_dump_znode(c, prev);
1478                                 ubifs_msg("second znode");
1479                                 dbg_dump_znode(c, znode);
1480                                 return -EINVAL;
1481                         }
1482                 }
1483         }
1484
1485         if (extra) {
1486                 if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) {
1487                         ubifs_err("incorrect clean_zn_cnt %ld, calculated %ld",
1488                                   atomic_long_read(&c->clean_zn_cnt),
1489                                   clean_cnt);
1490                         return -EINVAL;
1491                 }
1492                 if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) {
1493                         ubifs_err("incorrect dirty_zn_cnt %ld, calculated %ld",
1494                                   atomic_long_read(&c->dirty_zn_cnt),
1495                                   dirty_cnt);
1496                         return -EINVAL;
1497                 }
1498         }
1499
1500         return 0;
1501 }
1502
1503 /**
1504  * dbg_walk_index - walk the on-flash index.
1505  * @c: UBIFS file-system description object
1506  * @leaf_cb: called for each leaf node
1507  * @znode_cb: called for each indexing node
1508  * @priv: private data which is passed to callbacks
1509  *
1510  * This function walks the UBIFS index and calls the @leaf_cb for each leaf
1511  * node and @znode_cb for each indexing node. Returns zero in case of success
1512  * and a negative error code in case of failure.
1513  *
1514  * It would be better if this function removed every znode it pulled to into
1515  * the TNC, so that the behavior more closely matched the non-debugging
1516  * behavior.
1517  */
1518 int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb,
1519                    dbg_znode_callback znode_cb, void *priv)
1520 {
1521         int err;
1522         struct ubifs_zbranch *zbr;
1523         struct ubifs_znode *znode, *child;
1524
1525         mutex_lock(&c->tnc_mutex);
1526         /* If the root indexing node is not in TNC - pull it */
1527         if (!c->zroot.znode) {
1528                 c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1529                 if (IS_ERR(c->zroot.znode)) {
1530                         err = PTR_ERR(c->zroot.znode);
1531                         c->zroot.znode = NULL;
1532                         goto out_unlock;
1533                 }
1534         }
1535
1536         /*
1537          * We are going to traverse the indexing tree in the postorder manner.
1538          * Go down and find the leftmost indexing node where we are going to
1539          * start from.
1540          */
1541         znode = c->zroot.znode;
1542         while (znode->level > 0) {
1543                 zbr = &znode->zbranch[0];
1544                 child = zbr->znode;
1545                 if (!child) {
1546                         child = ubifs_load_znode(c, zbr, znode, 0);
1547                         if (IS_ERR(child)) {
1548                                 err = PTR_ERR(child);
1549                                 goto out_unlock;
1550                         }
1551                         zbr->znode = child;
1552                 }
1553
1554                 znode = child;
1555         }
1556
1557         /* Iterate over all indexing nodes */
1558         while (1) {
1559                 int idx;
1560
1561                 cond_resched();
1562
1563                 if (znode_cb) {
1564                         err = znode_cb(c, znode, priv);
1565                         if (err) {
1566                                 ubifs_err("znode checking function returned "
1567                                           "error %d", err);
1568                                 dbg_dump_znode(c, znode);
1569                                 goto out_dump;
1570                         }
1571                 }
1572                 if (leaf_cb && znode->level == 0) {
1573                         for (idx = 0; idx < znode->child_cnt; idx++) {
1574                                 zbr = &znode->zbranch[idx];
1575                                 err = leaf_cb(c, zbr, priv);
1576                                 if (err) {
1577                                         ubifs_err("leaf checking function "
1578                                                   "returned error %d, for leaf "
1579                                                   "at LEB %d:%d",
1580                                                   err, zbr->lnum, zbr->offs);
1581                                         goto out_dump;
1582                                 }
1583                         }
1584                 }
1585
1586                 if (!znode->parent)
1587                         break;
1588
1589                 idx = znode->iip + 1;
1590                 znode = znode->parent;
1591                 if (idx < znode->child_cnt) {
1592                         /* Switch to the next index in the parent */
1593                         zbr = &znode->zbranch[idx];
1594                         child = zbr->znode;
1595                         if (!child) {
1596                                 child = ubifs_load_znode(c, zbr, znode, idx);
1597                                 if (IS_ERR(child)) {
1598                                         err = PTR_ERR(child);
1599                                         goto out_unlock;
1600                                 }
1601                                 zbr->znode = child;
1602                         }
1603                         znode = child;
1604                 } else
1605                         /*
1606                          * This is the last child, switch to the parent and
1607                          * continue.
1608                          */
1609                         continue;
1610
1611                 /* Go to the lowest leftmost znode in the new sub-tree */
1612                 while (znode->level > 0) {
1613                         zbr = &znode->zbranch[0];
1614                         child = zbr->znode;
1615                         if (!child) {
1616                                 child = ubifs_load_znode(c, zbr, znode, 0);
1617                                 if (IS_ERR(child)) {
1618                                         err = PTR_ERR(child);
1619                                         goto out_unlock;
1620                                 }
1621                                 zbr->znode = child;
1622                         }
1623                         znode = child;
1624                 }
1625         }
1626
1627         mutex_unlock(&c->tnc_mutex);
1628         return 0;
1629
1630 out_dump:
1631         if (znode->parent)
1632                 zbr = &znode->parent->zbranch[znode->iip];
1633         else
1634                 zbr = &c->zroot;
1635         ubifs_msg("dump of znode at LEB %d:%d", zbr->lnum, zbr->offs);
1636         dbg_dump_znode(c, znode);
1637 out_unlock:
1638         mutex_unlock(&c->tnc_mutex);
1639         return err;
1640 }
1641
1642 /**
1643  * add_size - add znode size to partially calculated index size.
1644  * @c: UBIFS file-system description object
1645  * @znode: znode to add size for
1646  * @priv: partially calculated index size
1647  *
1648  * This is a helper function for 'dbg_check_idx_size()' which is called for
1649  * every indexing node and adds its size to the 'long long' variable pointed to
1650  * by @priv.
1651  */
1652 static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv)
1653 {
1654         long long *idx_size = priv;
1655         int add;
1656
1657         add = ubifs_idx_node_sz(c, znode->child_cnt);
1658         add = ALIGN(add, 8);
1659         *idx_size += add;
1660         return 0;
1661 }
1662
1663 /**
1664  * dbg_check_idx_size - check index size.
1665  * @c: UBIFS file-system description object
1666  * @idx_size: size to check
1667  *
1668  * This function walks the UBIFS index, calculates its size and checks that the
1669  * size is equivalent to @idx_size. Returns zero in case of success and a
1670  * negative error code in case of failure.
1671  */
1672 int dbg_check_idx_size(struct ubifs_info *c, long long idx_size)
1673 {
1674         int err;
1675         long long calc = 0;
1676
1677         if (!(ubifs_chk_flags & UBIFS_CHK_IDX_SZ))
1678                 return 0;
1679
1680         err = dbg_walk_index(c, NULL, add_size, &calc);
1681         if (err) {
1682                 ubifs_err("error %d while walking the index", err);
1683                 return err;
1684         }
1685
1686         if (calc != idx_size) {
1687                 ubifs_err("index size check failed: calculated size is %lld, "
1688                           "should be %lld", calc, idx_size);
1689                 dump_stack();
1690                 return -EINVAL;
1691         }
1692
1693         return 0;
1694 }
1695
1696 /**
1697  * struct fsck_inode - information about an inode used when checking the file-system.
1698  * @rb: link in the RB-tree of inodes
1699  * @inum: inode number
1700  * @mode: inode type, permissions, etc
1701  * @nlink: inode link count
1702  * @xattr_cnt: count of extended attributes
1703  * @references: how many directory/xattr entries refer this inode (calculated
1704  *              while walking the index)
1705  * @calc_cnt: for directory inode count of child directories
1706  * @size: inode size (read from on-flash inode)
1707  * @xattr_sz: summary size of all extended attributes (read from on-flash
1708  *            inode)
1709  * @calc_sz: for directories calculated directory size
1710  * @calc_xcnt: count of extended attributes
1711  * @calc_xsz: calculated summary size of all extended attributes
1712  * @xattr_nms: sum of lengths of all extended attribute names belonging to this
1713  *             inode (read from on-flash inode)
1714  * @calc_xnms: calculated sum of lengths of all extended attribute names
1715  */
1716 struct fsck_inode {
1717         struct rb_node rb;
1718         ino_t inum;
1719         umode_t mode;
1720         unsigned int nlink;
1721         unsigned int xattr_cnt;
1722         int references;
1723         int calc_cnt;
1724         long long size;
1725         unsigned int xattr_sz;
1726         long long calc_sz;
1727         long long calc_xcnt;
1728         long long calc_xsz;
1729         unsigned int xattr_nms;
1730         long long calc_xnms;
1731 };
1732
1733 /**
1734  * struct fsck_data - private FS checking information.
1735  * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
1736  */
1737 struct fsck_data {
1738         struct rb_root inodes;
1739 };
1740
1741 /**
1742  * add_inode - add inode information to RB-tree of inodes.
1743  * @c: UBIFS file-system description object
1744  * @fsckd: FS checking information
1745  * @ino: raw UBIFS inode to add
1746  *
1747  * This is a helper function for 'check_leaf()' which adds information about
1748  * inode @ino to the RB-tree of inodes. Returns inode information pointer in
1749  * case of success and a negative error code in case of failure.
1750  */
1751 static struct fsck_inode *add_inode(struct ubifs_info *c,
1752                                     struct fsck_data *fsckd,
1753                                     struct ubifs_ino_node *ino)
1754 {
1755         struct rb_node **p, *parent = NULL;
1756         struct fsck_inode *fscki;
1757         ino_t inum = key_inum_flash(c, &ino->key);
1758
1759         p = &fsckd->inodes.rb_node;
1760         while (*p) {
1761                 parent = *p;
1762                 fscki = rb_entry(parent, struct fsck_inode, rb);
1763                 if (inum < fscki->inum)
1764                         p = &(*p)->rb_left;
1765                 else if (inum > fscki->inum)
1766                         p = &(*p)->rb_right;
1767                 else
1768                         return fscki;
1769         }
1770
1771         if (inum > c->highest_inum) {
1772                 ubifs_err("too high inode number, max. is %lu",
1773                           (unsigned long)c->highest_inum);
1774                 return ERR_PTR(-EINVAL);
1775         }
1776
1777         fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS);
1778         if (!fscki)
1779                 return ERR_PTR(-ENOMEM);
1780
1781         fscki->inum = inum;
1782         fscki->nlink = le32_to_cpu(ino->nlink);
1783         fscki->size = le64_to_cpu(ino->size);
1784         fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
1785         fscki->xattr_sz = le32_to_cpu(ino->xattr_size);
1786         fscki->xattr_nms = le32_to_cpu(ino->xattr_names);
1787         fscki->mode = le32_to_cpu(ino->mode);
1788         if (S_ISDIR(fscki->mode)) {
1789                 fscki->calc_sz = UBIFS_INO_NODE_SZ;
1790                 fscki->calc_cnt = 2;
1791         }
1792         rb_link_node(&fscki->rb, parent, p);
1793         rb_insert_color(&fscki->rb, &fsckd->inodes);
1794         return fscki;
1795 }
1796
1797 /**
1798  * search_inode - search inode in the RB-tree of inodes.
1799  * @fsckd: FS checking information
1800  * @inum: inode number to search
1801  *
1802  * This is a helper function for 'check_leaf()' which searches inode @inum in
1803  * the RB-tree of inodes and returns an inode information pointer or %NULL if
1804  * the inode was not found.
1805  */
1806 static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum)
1807 {
1808         struct rb_node *p;
1809         struct fsck_inode *fscki;
1810
1811         p = fsckd->inodes.rb_node;
1812         while (p) {
1813                 fscki = rb_entry(p, struct fsck_inode, rb);
1814                 if (inum < fscki->inum)
1815                         p = p->rb_left;
1816                 else if (inum > fscki->inum)
1817                         p = p->rb_right;
1818                 else
1819                         return fscki;
1820         }
1821         return NULL;
1822 }
1823
1824 /**
1825  * read_add_inode - read inode node and add it to RB-tree of inodes.
1826  * @c: UBIFS file-system description object
1827  * @fsckd: FS checking information
1828  * @inum: inode number to read
1829  *
1830  * This is a helper function for 'check_leaf()' which finds inode node @inum in
1831  * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
1832  * information pointer in case of success and a negative error code in case of
1833  * failure.
1834  */
1835 static struct fsck_inode *read_add_inode(struct ubifs_info *c,
1836                                          struct fsck_data *fsckd, ino_t inum)
1837 {
1838         int n, err;
1839         union ubifs_key key;
1840         struct ubifs_znode *znode;
1841         struct ubifs_zbranch *zbr;
1842         struct ubifs_ino_node *ino;
1843         struct fsck_inode *fscki;
1844
1845         fscki = search_inode(fsckd, inum);
1846         if (fscki)
1847                 return fscki;
1848
1849         ino_key_init(c, &key, inum);
1850         err = ubifs_lookup_level0(c, &key, &znode, &n);
1851         if (!err) {
1852                 ubifs_err("inode %lu not found in index", (unsigned long)inum);
1853                 return ERR_PTR(-ENOENT);
1854         } else if (err < 0) {
1855                 ubifs_err("error %d while looking up inode %lu",
1856                           err, (unsigned long)inum);
1857                 return ERR_PTR(err);
1858         }
1859
1860         zbr = &znode->zbranch[n];
1861         if (zbr->len < UBIFS_INO_NODE_SZ) {
1862                 ubifs_err("bad node %lu node length %d",
1863                           (unsigned long)inum, zbr->len);
1864                 return ERR_PTR(-EINVAL);
1865         }
1866
1867         ino = kmalloc(zbr->len, GFP_NOFS);
1868         if (!ino)
1869                 return ERR_PTR(-ENOMEM);
1870
1871         err = ubifs_tnc_read_node(c, zbr, ino);
1872         if (err) {
1873                 ubifs_err("cannot read inode node at LEB %d:%d, error %d",
1874                           zbr->lnum, zbr->offs, err);
1875                 kfree(ino);
1876                 return ERR_PTR(err);
1877         }
1878
1879         fscki = add_inode(c, fsckd, ino);
1880         kfree(ino);
1881         if (IS_ERR(fscki)) {
1882                 ubifs_err("error %ld while adding inode %lu node",
1883                           PTR_ERR(fscki), (unsigned long)inum);
1884                 return fscki;
1885         }
1886
1887         return fscki;
1888 }
1889
1890 /**
1891  * check_leaf - check leaf node.
1892  * @c: UBIFS file-system description object
1893  * @zbr: zbranch of the leaf node to check
1894  * @priv: FS checking information
1895  *
1896  * This is a helper function for 'dbg_check_filesystem()' which is called for
1897  * every single leaf node while walking the indexing tree. It checks that the
1898  * leaf node referred from the indexing tree exists, has correct CRC, and does
1899  * some other basic validation. This function is also responsible for building
1900  * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
1901  * calculates reference count, size, etc for each inode in order to later
1902  * compare them to the information stored inside the inodes and detect possible
1903  * inconsistencies. Returns zero in case of success and a negative error code
1904  * in case of failure.
1905  */
1906 static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr,
1907                       void *priv)
1908 {
1909         ino_t inum;
1910         void *node;
1911         struct ubifs_ch *ch;
1912         int err, type = key_type(c, &zbr->key);
1913         struct fsck_inode *fscki;
1914
1915         if (zbr->len < UBIFS_CH_SZ) {
1916                 ubifs_err("bad leaf length %d (LEB %d:%d)",
1917                           zbr->len, zbr->lnum, zbr->offs);
1918                 return -EINVAL;
1919         }
1920
1921         node = kmalloc(zbr->len, GFP_NOFS);
1922         if (!node)
1923                 return -ENOMEM;
1924
1925         err = ubifs_tnc_read_node(c, zbr, node);
1926         if (err) {
1927                 ubifs_err("cannot read leaf node at LEB %d:%d, error %d",
1928                           zbr->lnum, zbr->offs, err);
1929                 goto out_free;
1930         }
1931
1932         /* If this is an inode node, add it to RB-tree of inodes */
1933         if (type == UBIFS_INO_KEY) {
1934                 fscki = add_inode(c, priv, node);
1935                 if (IS_ERR(fscki)) {
1936                         err = PTR_ERR(fscki);
1937                         ubifs_err("error %d while adding inode node", err);
1938                         goto out_dump;
1939                 }
1940                 goto out;
1941         }
1942
1943         if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY &&
1944             type != UBIFS_DATA_KEY) {
1945                 ubifs_err("unexpected node type %d at LEB %d:%d",
1946                           type, zbr->lnum, zbr->offs);
1947                 err = -EINVAL;
1948                 goto out_free;
1949         }
1950
1951         ch = node;
1952         if (le64_to_cpu(ch->sqnum) > c->max_sqnum) {
1953                 ubifs_err("too high sequence number, max. is %llu",
1954                           c->max_sqnum);
1955                 err = -EINVAL;
1956                 goto out_dump;
1957         }
1958
1959         if (type == UBIFS_DATA_KEY) {
1960                 long long blk_offs;
1961                 struct ubifs_data_node *dn = node;
1962
1963                 /*
1964                  * Search the inode node this data node belongs to and insert
1965                  * it to the RB-tree of inodes.
1966                  */
1967                 inum = key_inum_flash(c, &dn->key);
1968                 fscki = read_add_inode(c, priv, inum);
1969                 if (IS_ERR(fscki)) {
1970                         err = PTR_ERR(fscki);
1971                         ubifs_err("error %d while processing data node and "
1972                                   "trying to find inode node %lu",
1973                                   err, (unsigned long)inum);
1974                         goto out_dump;
1975                 }
1976
1977                 /* Make sure the data node is within inode size */
1978                 blk_offs = key_block_flash(c, &dn->key);
1979                 blk_offs <<= UBIFS_BLOCK_SHIFT;
1980                 blk_offs += le32_to_cpu(dn->size);
1981                 if (blk_offs > fscki->size) {
1982                         ubifs_err("data node at LEB %d:%d is not within inode "
1983                                   "size %lld", zbr->lnum, zbr->offs,
1984                                   fscki->size);
1985                         err = -EINVAL;
1986                         goto out_dump;
1987                 }
1988         } else {
1989                 int nlen;
1990                 struct ubifs_dent_node *dent = node;
1991                 struct fsck_inode *fscki1;
1992
1993                 err = ubifs_validate_entry(c, dent);
1994                 if (err)
1995                         goto out_dump;
1996
1997                 /*
1998                  * Search the inode node this entry refers to and the parent
1999                  * inode node and insert them to the RB-tree of inodes.
2000                  */
2001                 inum = le64_to_cpu(dent->inum);
2002                 fscki = read_add_inode(c, priv, inum);
2003                 if (IS_ERR(fscki)) {
2004                         err = PTR_ERR(fscki);
2005                         ubifs_err("error %d while processing entry node and "
2006                                   "trying to find inode node %lu",
2007                                   err, (unsigned long)inum);
2008                         goto out_dump;
2009                 }
2010
2011                 /* Count how many direntries or xentries refers this inode */
2012                 fscki->references += 1;
2013
2014                 inum = key_inum_flash(c, &dent->key);
2015                 fscki1 = read_add_inode(c, priv, inum);
2016                 if (IS_ERR(fscki1)) {
2017                         err = PTR_ERR(fscki);
2018                         ubifs_err("error %d while processing entry node and "
2019                                   "trying to find parent inode node %lu",
2020                                   err, (unsigned long)inum);
2021                         goto out_dump;
2022                 }
2023
2024                 nlen = le16_to_cpu(dent->nlen);
2025                 if (type == UBIFS_XENT_KEY) {
2026                         fscki1->calc_xcnt += 1;
2027                         fscki1->calc_xsz += CALC_DENT_SIZE(nlen);
2028                         fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size);
2029                         fscki1->calc_xnms += nlen;
2030                 } else {
2031                         fscki1->calc_sz += CALC_DENT_SIZE(nlen);
2032                         if (dent->type == UBIFS_ITYPE_DIR)
2033                                 fscki1->calc_cnt += 1;
2034                 }
2035         }
2036
2037 out:
2038         kfree(node);
2039         return 0;
2040
2041 out_dump:
2042         ubifs_msg("dump of node at LEB %d:%d", zbr->lnum, zbr->offs);
2043         dbg_dump_node(c, node);
2044 out_free:
2045         kfree(node);
2046         return err;
2047 }
2048
2049 /**
2050  * free_inodes - free RB-tree of inodes.
2051  * @fsckd: FS checking information
2052  */
2053 static void free_inodes(struct fsck_data *fsckd)
2054 {
2055         struct rb_node *this = fsckd->inodes.rb_node;
2056         struct fsck_inode *fscki;
2057
2058         while (this) {
2059                 if (this->rb_left)
2060                         this = this->rb_left;
2061                 else if (this->rb_right)
2062                         this = this->rb_right;
2063                 else {
2064                         fscki = rb_entry(this, struct fsck_inode, rb);
2065                         this = rb_parent(this);
2066                         if (this) {
2067                                 if (this->rb_left == &fscki->rb)
2068                                         this->rb_left = NULL;
2069                                 else
2070                                         this->rb_right = NULL;
2071                         }
2072                         kfree(fscki);
2073                 }
2074         }
2075 }
2076
2077 /**
2078  * check_inodes - checks all inodes.
2079  * @c: UBIFS file-system description object
2080  * @fsckd: FS checking information
2081  *
2082  * This is a helper function for 'dbg_check_filesystem()' which walks the
2083  * RB-tree of inodes after the index scan has been finished, and checks that
2084  * inode nlink, size, etc are correct. Returns zero if inodes are fine,
2085  * %-EINVAL if not, and a negative error code in case of failure.
2086  */
2087 static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd)
2088 {
2089         int n, err;
2090         union ubifs_key key;
2091         struct ubifs_znode *znode;
2092         struct ubifs_zbranch *zbr;
2093         struct ubifs_ino_node *ino;
2094         struct fsck_inode *fscki;
2095         struct rb_node *this = rb_first(&fsckd->inodes);
2096
2097         while (this) {
2098                 fscki = rb_entry(this, struct fsck_inode, rb);
2099                 this = rb_next(this);
2100
2101                 if (S_ISDIR(fscki->mode)) {
2102                         /*
2103                          * Directories have to have exactly one reference (they
2104                          * cannot have hardlinks), although root inode is an
2105                          * exception.
2106                          */
2107                         if (fscki->inum != UBIFS_ROOT_INO &&
2108                             fscki->references != 1) {
2109                                 ubifs_err("directory inode %lu has %d "
2110                                           "direntries which refer it, but "
2111                                           "should be 1",
2112                                           (unsigned long)fscki->inum,
2113                                           fscki->references);
2114                                 goto out_dump;
2115                         }
2116                         if (fscki->inum == UBIFS_ROOT_INO &&
2117                             fscki->references != 0) {
2118                                 ubifs_err("root inode %lu has non-zero (%d) "
2119                                           "direntries which refer it",
2120                                           (unsigned long)fscki->inum,
2121                                           fscki->references);
2122                                 goto out_dump;
2123                         }
2124                         if (fscki->calc_sz != fscki->size) {
2125                                 ubifs_err("directory inode %lu size is %lld, "
2126                                           "but calculated size is %lld",
2127                                           (unsigned long)fscki->inum,
2128                                           fscki->size, fscki->calc_sz);
2129                                 goto out_dump;
2130                         }
2131                         if (fscki->calc_cnt != fscki->nlink) {
2132                                 ubifs_err("directory inode %lu nlink is %d, "
2133                                           "but calculated nlink is %d",
2134                                           (unsigned long)fscki->inum,
2135                                           fscki->nlink, fscki->calc_cnt);
2136                                 goto out_dump;
2137                         }
2138                 } else {
2139                         if (fscki->references != fscki->nlink) {
2140                                 ubifs_err("inode %lu nlink is %d, but "
2141                                           "calculated nlink is %d",
2142                                           (unsigned long)fscki->inum,
2143                                           fscki->nlink, fscki->references);
2144                                 goto out_dump;
2145                         }
2146                 }
2147                 if (fscki->xattr_sz != fscki->calc_xsz) {
2148                         ubifs_err("inode %lu has xattr size %u, but "
2149                                   "calculated size is %lld",
2150                                   (unsigned long)fscki->inum, fscki->xattr_sz,
2151                                   fscki->calc_xsz);
2152                         goto out_dump;
2153                 }
2154                 if (fscki->xattr_cnt != fscki->calc_xcnt) {
2155                         ubifs_err("inode %lu has %u xattrs, but "
2156                                   "calculated count is %lld",
2157                                   (unsigned long)fscki->inum,
2158                                   fscki->xattr_cnt, fscki->calc_xcnt);
2159                         goto out_dump;
2160                 }
2161                 if (fscki->xattr_nms != fscki->calc_xnms) {
2162                         ubifs_err("inode %lu has xattr names' size %u, but "
2163                                   "calculated names' size is %lld",
2164                                   (unsigned long)fscki->inum, fscki->xattr_nms,
2165                                   fscki->calc_xnms);
2166                         goto out_dump;
2167                 }
2168         }
2169
2170         return 0;
2171
2172 out_dump:
2173         /* Read the bad inode and dump it */
2174         ino_key_init(c, &key, fscki->inum);
2175         err = ubifs_lookup_level0(c, &key, &znode, &n);
2176         if (!err) {
2177                 ubifs_err("inode %lu not found in index",
2178                           (unsigned long)fscki->inum);
2179                 return -ENOENT;
2180         } else if (err < 0) {
2181                 ubifs_err("error %d while looking up inode %lu",
2182                           err, (unsigned long)fscki->inum);
2183                 return err;
2184         }
2185
2186         zbr = &znode->zbranch[n];
2187         ino = kmalloc(zbr->len, GFP_NOFS);
2188         if (!ino)
2189                 return -ENOMEM;
2190
2191         err = ubifs_tnc_read_node(c, zbr, ino);
2192         if (err) {
2193                 ubifs_err("cannot read inode node at LEB %d:%d, error %d",
2194                           zbr->lnum, zbr->offs, err);
2195                 kfree(ino);
2196                 return err;
2197         }
2198
2199         ubifs_msg("dump of the inode %lu sitting in LEB %d:%d",
2200                   (unsigned long)fscki->inum, zbr->lnum, zbr->offs);
2201         dbg_dump_node(c, ino);
2202         kfree(ino);
2203         return -EINVAL;
2204 }
2205
2206 /**
2207  * dbg_check_filesystem - check the file-system.
2208  * @c: UBIFS file-system description object
2209  *
2210  * This function checks the file system, namely:
2211  * o makes sure that all leaf nodes exist and their CRCs are correct;
2212  * o makes sure inode nlink, size, xattr size/count are correct (for all
2213  *   inodes).
2214  *
2215  * The function reads whole indexing tree and all nodes, so it is pretty
2216  * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
2217  * not, and a negative error code in case of failure.
2218  */
2219 int dbg_check_filesystem(struct ubifs_info *c)
2220 {
2221         int err;
2222         struct fsck_data fsckd;
2223
2224         if (!(ubifs_chk_flags & UBIFS_CHK_FS))
2225                 return 0;
2226
2227         fsckd.inodes = RB_ROOT;
2228         err = dbg_walk_index(c, check_leaf, NULL, &fsckd);
2229         if (err)
2230                 goto out_free;
2231
2232         err = check_inodes(c, &fsckd);
2233         if (err)
2234                 goto out_free;
2235
2236         free_inodes(&fsckd);
2237         return 0;
2238
2239 out_free:
2240         ubifs_err("file-system check failed with error %d", err);
2241         dump_stack();
2242         free_inodes(&fsckd);
2243         return err;
2244 }
2245
2246 static int invocation_cnt;
2247
2248 int dbg_force_in_the_gaps(void)
2249 {
2250         if (!dbg_force_in_the_gaps_enabled)
2251                 return 0;
2252         /* Force in-the-gaps every 8th commit */
2253         return !((invocation_cnt++) & 0x7);
2254 }
2255
2256 /* Failure mode for recovery testing */
2257
2258 #define chance(n, d) (simple_rand() <= (n) * 32768LL / (d))
2259
2260 struct failure_mode_info {
2261         struct list_head list;
2262         struct ubifs_info *c;
2263 };
2264
2265 static LIST_HEAD(fmi_list);
2266 static DEFINE_SPINLOCK(fmi_lock);
2267
2268 static unsigned int next;
2269
2270 static int simple_rand(void)
2271 {
2272         if (next == 0)
2273                 next = current->pid;
2274         next = next * 1103515245 + 12345;
2275         return (next >> 16) & 32767;
2276 }
2277
2278 static void failure_mode_init(struct ubifs_info *c)
2279 {
2280         struct failure_mode_info *fmi;
2281
2282         fmi = kmalloc(sizeof(struct failure_mode_info), GFP_NOFS);
2283         if (!fmi) {
2284                 ubifs_err("Failed to register failure mode - no memory");
2285                 return;
2286         }
2287         fmi->c = c;
2288         spin_lock(&fmi_lock);
2289         list_add_tail(&fmi->list, &fmi_list);
2290         spin_unlock(&fmi_lock);
2291 }
2292
2293 static void failure_mode_exit(struct ubifs_info *c)
2294 {
2295         struct failure_mode_info *fmi, *tmp;
2296
2297         spin_lock(&fmi_lock);
2298         list_for_each_entry_safe(fmi, tmp, &fmi_list, list)
2299                 if (fmi->c == c) {
2300                         list_del(&fmi->list);
2301                         kfree(fmi);
2302                 }
2303         spin_unlock(&fmi_lock);
2304 }
2305
2306 static struct ubifs_info *dbg_find_info(struct ubi_volume_desc *desc)
2307 {
2308         struct failure_mode_info *fmi;
2309
2310         spin_lock(&fmi_lock);
2311         list_for_each_entry(fmi, &fmi_list, list)
2312                 if (fmi->c->ubi == desc) {
2313                         struct ubifs_info *c = fmi->c;
2314
2315                         spin_unlock(&fmi_lock);
2316                         return c;
2317                 }
2318         spin_unlock(&fmi_lock);
2319         return NULL;
2320 }
2321
2322 static int in_failure_mode(struct ubi_volume_desc *desc)
2323 {
2324         struct ubifs_info *c = dbg_find_info(desc);
2325
2326         if (c && dbg_failure_mode)
2327                 return c->dbg->failure_mode;
2328         return 0;
2329 }
2330
2331 static int do_fail(struct ubi_volume_desc *desc, int lnum, int write)
2332 {
2333         struct ubifs_info *c = dbg_find_info(desc);
2334         struct ubifs_debug_info *d;
2335
2336         if (!c || !dbg_failure_mode)
2337                 return 0;
2338         d = c->dbg;
2339         if (d->failure_mode)
2340                 return 1;
2341         if (!d->fail_cnt) {
2342                 /* First call - decide delay to failure */
2343                 if (chance(1, 2)) {
2344                         unsigned int delay = 1 << (simple_rand() >> 11);
2345
2346                         if (chance(1, 2)) {
2347                                 d->fail_delay = 1;
2348                                 d->fail_timeout = jiffies +
2349                                                   msecs_to_jiffies(delay);
2350                                 dbg_rcvry("failing after %ums", delay);
2351                         } else {
2352                                 d->fail_delay = 2;
2353                                 d->fail_cnt_max = delay;
2354                                 dbg_rcvry("failing after %u calls", delay);
2355                         }
2356                 }
2357                 d->fail_cnt += 1;
2358         }
2359         /* Determine if failure delay has expired */
2360         if (d->fail_delay == 1) {
2361                 if (time_before(jiffies, d->fail_timeout))
2362                         return 0;
2363         } else if (d->fail_delay == 2)
2364                 if (d->fail_cnt++ < d->fail_cnt_max)
2365                         return 0;
2366         if (lnum == UBIFS_SB_LNUM) {
2367                 if (write) {
2368                         if (chance(1, 2))
2369                                 return 0;
2370                 } else if (chance(19, 20))
2371                         return 0;
2372                 dbg_rcvry("failing in super block LEB %d", lnum);
2373         } else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) {
2374                 if (chance(19, 20))
2375                         return 0;
2376                 dbg_rcvry("failing in master LEB %d", lnum);
2377         } else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) {
2378                 if (write) {
2379                         if (chance(99, 100))
2380                                 return 0;
2381                 } else if (chance(399, 400))
2382                         return 0;
2383                 dbg_rcvry("failing in log LEB %d", lnum);
2384         } else if (lnum >= c->lpt_first && lnum <= c->lpt_last) {
2385                 if (write) {
2386                         if (chance(7, 8))
2387                                 return 0;
2388                 } else if (chance(19, 20))
2389                         return 0;
2390                 dbg_rcvry("failing in LPT LEB %d", lnum);
2391         } else if (lnum >= c->orph_first && lnum <= c->orph_last) {
2392                 if (write) {
2393                         if (chance(1, 2))
2394                                 return 0;
2395                 } else if (chance(9, 10))
2396                         return 0;
2397                 dbg_rcvry("failing in orphan LEB %d", lnum);
2398         } else if (lnum == c->ihead_lnum) {
2399                 if (chance(99, 100))
2400                         return 0;
2401                 dbg_rcvry("failing in index head LEB %d", lnum);
2402         } else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) {
2403                 if (chance(9, 10))
2404                         return 0;
2405                 dbg_rcvry("failing in GC head LEB %d", lnum);
2406         } else if (write && !RB_EMPTY_ROOT(&c->buds) &&
2407                    !ubifs_search_bud(c, lnum)) {
2408                 if (chance(19, 20))
2409                         return 0;
2410                 dbg_rcvry("failing in non-bud LEB %d", lnum);
2411         } else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND ||
2412                    c->cmt_state == COMMIT_RUNNING_REQUIRED) {
2413                 if (chance(999, 1000))
2414                         return 0;
2415                 dbg_rcvry("failing in bud LEB %d commit running", lnum);
2416         } else {
2417                 if (chance(9999, 10000))
2418                         return 0;
2419                 dbg_rcvry("failing in bud LEB %d commit not running", lnum);
2420         }
2421         ubifs_err("*** SETTING FAILURE MODE ON (LEB %d) ***", lnum);
2422         d->failure_mode = 1;
2423         dump_stack();
2424         return 1;
2425 }
2426
2427 static void cut_data(const void *buf, int len)
2428 {
2429         int flen, i;
2430         unsigned char *p = (void *)buf;
2431
2432         flen = (len * (long long)simple_rand()) >> 15;
2433         for (i = flen; i < len; i++)
2434                 p[i] = 0xff;
2435 }
2436
2437 int dbg_leb_read(struct ubi_volume_desc *desc, int lnum, char *buf, int offset,
2438                  int len, int check)
2439 {
2440         if (in_failure_mode(desc))
2441                 return -EIO;
2442         return ubi_leb_read(desc, lnum, buf, offset, len, check);
2443 }
2444
2445 int dbg_leb_write(struct ubi_volume_desc *desc, int lnum, const void *buf,
2446                   int offset, int len, int dtype)
2447 {
2448         int err, failing;
2449
2450         if (in_failure_mode(desc))
2451                 return -EIO;
2452         failing = do_fail(desc, lnum, 1);
2453         if (failing)
2454                 cut_data(buf, len);
2455         err = ubi_leb_write(desc, lnum, buf, offset, len, dtype);
2456         if (err)
2457                 return err;
2458         if (failing)
2459                 return -EIO;
2460         return 0;
2461 }
2462
2463 int dbg_leb_change(struct ubi_volume_desc *desc, int lnum, const void *buf,
2464                    int len, int dtype)
2465 {
2466         int err;
2467
2468         if (do_fail(desc, lnum, 1))
2469                 return -EIO;
2470         err = ubi_leb_change(desc, lnum, buf, len, dtype);
2471         if (err)
2472                 return err;
2473         if (do_fail(desc, lnum, 1))
2474                 return -EIO;
2475         return 0;
2476 }
2477
2478 int dbg_leb_erase(struct ubi_volume_desc *desc, int lnum)
2479 {
2480         int err;
2481
2482         if (do_fail(desc, lnum, 0))
2483                 return -EIO;
2484         err = ubi_leb_erase(desc, lnum);
2485         if (err)
2486                 return err;
2487         if (do_fail(desc, lnum, 0))
2488                 return -EIO;
2489         return 0;
2490 }
2491
2492 int dbg_leb_unmap(struct ubi_volume_desc *desc, int lnum)
2493 {
2494         int err;
2495
2496         if (do_fail(desc, lnum, 0))
2497                 return -EIO;
2498         err = ubi_leb_unmap(desc, lnum);
2499         if (err)
2500                 return err;
2501         if (do_fail(desc, lnum, 0))
2502                 return -EIO;
2503         return 0;
2504 }
2505
2506 int dbg_is_mapped(struct ubi_volume_desc *desc, int lnum)
2507 {
2508         if (in_failure_mode(desc))
2509                 return -EIO;
2510         return ubi_is_mapped(desc, lnum);
2511 }
2512
2513 int dbg_leb_map(struct ubi_volume_desc *desc, int lnum, int dtype)
2514 {
2515         int err;
2516
2517         if (do_fail(desc, lnum, 0))
2518                 return -EIO;
2519         err = ubi_leb_map(desc, lnum, dtype);
2520         if (err)
2521                 return err;
2522         if (do_fail(desc, lnum, 0))
2523                 return -EIO;
2524         return 0;
2525 }
2526
2527 /**
2528  * ubifs_debugging_init - initialize UBIFS debugging.
2529  * @c: UBIFS file-system description object
2530  *
2531  * This function initializes debugging-related data for the file system.
2532  * Returns zero in case of success and a negative error code in case of
2533  * failure.
2534  */
2535 int ubifs_debugging_init(struct ubifs_info *c)
2536 {
2537         c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL);
2538         if (!c->dbg)
2539                 return -ENOMEM;
2540
2541         c->dbg->buf = vmalloc(c->leb_size);
2542         if (!c->dbg->buf)
2543                 goto out;
2544
2545         failure_mode_init(c);
2546         return 0;
2547
2548 out:
2549         kfree(c->dbg);
2550         return -ENOMEM;
2551 }
2552
2553 /**
2554  * ubifs_debugging_exit - free debugging data.
2555  * @c: UBIFS file-system description object
2556  */
2557 void ubifs_debugging_exit(struct ubifs_info *c)
2558 {
2559         failure_mode_exit(c);
2560         vfree(c->dbg->buf);
2561         kfree(c->dbg);
2562 }
2563
2564 /*
2565  * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
2566  * contain the stuff specific to particular file-system mounts.
2567  */
2568 static struct dentry *dfs_rootdir;
2569
2570 /**
2571  * dbg_debugfs_init - initialize debugfs file-system.
2572  *
2573  * UBIFS uses debugfs file-system to expose various debugging knobs to
2574  * user-space. This function creates "ubifs" directory in the debugfs
2575  * file-system. Returns zero in case of success and a negative error code in
2576  * case of failure.
2577  */
2578 int dbg_debugfs_init(void)
2579 {
2580         dfs_rootdir = debugfs_create_dir("ubifs", NULL);
2581         if (IS_ERR(dfs_rootdir)) {
2582                 int err = PTR_ERR(dfs_rootdir);
2583                 ubifs_err("cannot create \"ubifs\" debugfs directory, "
2584                           "error %d\n", err);
2585                 return err;
2586         }
2587
2588         return 0;
2589 }
2590
2591 /**
2592  * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
2593  */
2594 void dbg_debugfs_exit(void)
2595 {
2596         debugfs_remove(dfs_rootdir);
2597 }
2598
2599 static int open_debugfs_file(struct inode *inode, struct file *file)
2600 {
2601         file->private_data = inode->i_private;
2602         return 0;
2603 }
2604
2605 static ssize_t write_debugfs_file(struct file *file, const char __user *buf,
2606                                   size_t count, loff_t *ppos)
2607 {
2608         struct ubifs_info *c = file->private_data;
2609         struct ubifs_debug_info *d = c->dbg;
2610
2611         if (file->f_path.dentry == d->dfs_dump_lprops)
2612                 dbg_dump_lprops(c);
2613         else if (file->f_path.dentry == d->dfs_dump_budg) {
2614                 spin_lock(&c->space_lock);
2615                 dbg_dump_budg(c);
2616                 spin_unlock(&c->space_lock);
2617         } else if (file->f_path.dentry == d->dfs_dump_tnc) {
2618                 mutex_lock(&c->tnc_mutex);
2619                 dbg_dump_tnc(c);
2620                 mutex_unlock(&c->tnc_mutex);
2621         } else
2622                 return -EINVAL;
2623
2624         *ppos += count;
2625         return count;
2626 }
2627
2628 static const struct file_operations dfs_fops = {
2629         .open = open_debugfs_file,
2630         .write = write_debugfs_file,
2631         .owner = THIS_MODULE,
2632 };
2633
2634 /**
2635  * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
2636  * @c: UBIFS file-system description object
2637  *
2638  * This function creates all debugfs files for this instance of UBIFS. Returns
2639  * zero in case of success and a negative error code in case of failure.
2640  *
2641  * Note, the only reason we have not merged this function with the
2642  * 'ubifs_debugging_init()' function is because it is better to initialize
2643  * debugfs interfaces at the very end of the mount process, and remove them at
2644  * the very beginning of the mount process.
2645  */
2646 int dbg_debugfs_init_fs(struct ubifs_info *c)
2647 {
2648         int err;
2649         const char *fname;
2650         struct dentry *dent;
2651         struct ubifs_debug_info *d = c->dbg;
2652
2653         sprintf(d->dfs_dir_name, "ubi%d_%d", c->vi.ubi_num, c->vi.vol_id);
2654         d->dfs_dir = debugfs_create_dir(d->dfs_dir_name, dfs_rootdir);
2655         if (IS_ERR(d->dfs_dir)) {
2656                 err = PTR_ERR(d->dfs_dir);
2657                 ubifs_err("cannot create \"%s\" debugfs directory, error %d\n",
2658                           d->dfs_dir_name, err);
2659                 goto out;
2660         }
2661
2662         fname = "dump_lprops";
2663         dent = debugfs_create_file(fname, S_IWUGO, d->dfs_dir, c, &dfs_fops);
2664         if (IS_ERR(dent))
2665                 goto out_remove;
2666         d->dfs_dump_lprops = dent;
2667
2668         fname = "dump_budg";
2669         dent = debugfs_create_file(fname, S_IWUGO, d->dfs_dir, c, &dfs_fops);
2670         if (IS_ERR(dent))
2671                 goto out_remove;
2672         d->dfs_dump_budg = dent;
2673
2674         fname = "dump_tnc";
2675         dent = debugfs_create_file(fname, S_IWUGO, d->dfs_dir, c, &dfs_fops);
2676         if (IS_ERR(dent))
2677                 goto out_remove;
2678         d->dfs_dump_tnc = dent;
2679
2680         return 0;
2681
2682 out_remove:
2683         err = PTR_ERR(dent);
2684         ubifs_err("cannot create \"%s\" debugfs directory, error %d\n",
2685                   fname, err);
2686         debugfs_remove_recursive(d->dfs_dir);
2687 out:
2688         return err;
2689 }
2690
2691 /**
2692  * dbg_debugfs_exit_fs - remove all debugfs files.
2693  * @c: UBIFS file-system description object
2694  */
2695 void dbg_debugfs_exit_fs(struct ubifs_info *c)
2696 {
2697         debugfs_remove_recursive(c->dbg->dfs_dir);
2698 }
2699
2700 #endif /* CONFIG_UBIFS_FS_DEBUG */