splice: remove generic_file_splice_write_nolock()
[safe/jmp/linux-2.6] / fs / splice.c
1 /*
2  * "splice": joining two ropes together by interweaving their strands.
3  *
4  * This is the "extended pipe" functionality, where a pipe is used as
5  * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6  * buffer that you can use to transfer data from one end to the other.
7  *
8  * The traditional unix read/write is extended with a "splice()" operation
9  * that transfers data buffers to or from a pipe buffer.
10  *
11  * Named by Larry McVoy, original implementation from Linus, extended by
12  * Jens to support splicing to files, network, direct splicing, etc and
13  * fixing lots of bugs.
14  *
15  * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16  * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17  * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
18  *
19  */
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/splice.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm_inline.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/buffer_head.h>
29 #include <linux/module.h>
30 #include <linux/syscalls.h>
31 #include <linux/uio.h>
32 #include <linux/security.h>
33
34 /*
35  * Attempt to steal a page from a pipe buffer. This should perhaps go into
36  * a vm helper function, it's already simplified quite a bit by the
37  * addition of remove_mapping(). If success is returned, the caller may
38  * attempt to reuse this page for another destination.
39  */
40 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
41                                      struct pipe_buffer *buf)
42 {
43         struct page *page = buf->page;
44         struct address_space *mapping;
45
46         lock_page(page);
47
48         mapping = page_mapping(page);
49         if (mapping) {
50                 WARN_ON(!PageUptodate(page));
51
52                 /*
53                  * At least for ext2 with nobh option, we need to wait on
54                  * writeback completing on this page, since we'll remove it
55                  * from the pagecache.  Otherwise truncate wont wait on the
56                  * page, allowing the disk blocks to be reused by someone else
57                  * before we actually wrote our data to them. fs corruption
58                  * ensues.
59                  */
60                 wait_on_page_writeback(page);
61
62                 if (page_has_private(page) &&
63                     !try_to_release_page(page, GFP_KERNEL))
64                         goto out_unlock;
65
66                 /*
67                  * If we succeeded in removing the mapping, set LRU flag
68                  * and return good.
69                  */
70                 if (remove_mapping(mapping, page)) {
71                         buf->flags |= PIPE_BUF_FLAG_LRU;
72                         return 0;
73                 }
74         }
75
76         /*
77          * Raced with truncate or failed to remove page from current
78          * address space, unlock and return failure.
79          */
80 out_unlock:
81         unlock_page(page);
82         return 1;
83 }
84
85 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
86                                         struct pipe_buffer *buf)
87 {
88         page_cache_release(buf->page);
89         buf->flags &= ~PIPE_BUF_FLAG_LRU;
90 }
91
92 /*
93  * Check whether the contents of buf is OK to access. Since the content
94  * is a page cache page, IO may be in flight.
95  */
96 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
97                                        struct pipe_buffer *buf)
98 {
99         struct page *page = buf->page;
100         int err;
101
102         if (!PageUptodate(page)) {
103                 lock_page(page);
104
105                 /*
106                  * Page got truncated/unhashed. This will cause a 0-byte
107                  * splice, if this is the first page.
108                  */
109                 if (!page->mapping) {
110                         err = -ENODATA;
111                         goto error;
112                 }
113
114                 /*
115                  * Uh oh, read-error from disk.
116                  */
117                 if (!PageUptodate(page)) {
118                         err = -EIO;
119                         goto error;
120                 }
121
122                 /*
123                  * Page is ok afterall, we are done.
124                  */
125                 unlock_page(page);
126         }
127
128         return 0;
129 error:
130         unlock_page(page);
131         return err;
132 }
133
134 static const struct pipe_buf_operations page_cache_pipe_buf_ops = {
135         .can_merge = 0,
136         .map = generic_pipe_buf_map,
137         .unmap = generic_pipe_buf_unmap,
138         .confirm = page_cache_pipe_buf_confirm,
139         .release = page_cache_pipe_buf_release,
140         .steal = page_cache_pipe_buf_steal,
141         .get = generic_pipe_buf_get,
142 };
143
144 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
145                                     struct pipe_buffer *buf)
146 {
147         if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
148                 return 1;
149
150         buf->flags |= PIPE_BUF_FLAG_LRU;
151         return generic_pipe_buf_steal(pipe, buf);
152 }
153
154 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
155         .can_merge = 0,
156         .map = generic_pipe_buf_map,
157         .unmap = generic_pipe_buf_unmap,
158         .confirm = generic_pipe_buf_confirm,
159         .release = page_cache_pipe_buf_release,
160         .steal = user_page_pipe_buf_steal,
161         .get = generic_pipe_buf_get,
162 };
163
164 /**
165  * splice_to_pipe - fill passed data into a pipe
166  * @pipe:       pipe to fill
167  * @spd:        data to fill
168  *
169  * Description:
170  *    @spd contains a map of pages and len/offset tuples, along with
171  *    the struct pipe_buf_operations associated with these pages. This
172  *    function will link that data to the pipe.
173  *
174  */
175 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
176                        struct splice_pipe_desc *spd)
177 {
178         unsigned int spd_pages = spd->nr_pages;
179         int ret, do_wakeup, page_nr;
180
181         ret = 0;
182         do_wakeup = 0;
183         page_nr = 0;
184
185         if (pipe->inode)
186                 mutex_lock(&pipe->inode->i_mutex);
187
188         for (;;) {
189                 if (!pipe->readers) {
190                         send_sig(SIGPIPE, current, 0);
191                         if (!ret)
192                                 ret = -EPIPE;
193                         break;
194                 }
195
196                 if (pipe->nrbufs < PIPE_BUFFERS) {
197                         int newbuf = (pipe->curbuf + pipe->nrbufs) & (PIPE_BUFFERS - 1);
198                         struct pipe_buffer *buf = pipe->bufs + newbuf;
199
200                         buf->page = spd->pages[page_nr];
201                         buf->offset = spd->partial[page_nr].offset;
202                         buf->len = spd->partial[page_nr].len;
203                         buf->private = spd->partial[page_nr].private;
204                         buf->ops = spd->ops;
205                         if (spd->flags & SPLICE_F_GIFT)
206                                 buf->flags |= PIPE_BUF_FLAG_GIFT;
207
208                         pipe->nrbufs++;
209                         page_nr++;
210                         ret += buf->len;
211
212                         if (pipe->inode)
213                                 do_wakeup = 1;
214
215                         if (!--spd->nr_pages)
216                                 break;
217                         if (pipe->nrbufs < PIPE_BUFFERS)
218                                 continue;
219
220                         break;
221                 }
222
223                 if (spd->flags & SPLICE_F_NONBLOCK) {
224                         if (!ret)
225                                 ret = -EAGAIN;
226                         break;
227                 }
228
229                 if (signal_pending(current)) {
230                         if (!ret)
231                                 ret = -ERESTARTSYS;
232                         break;
233                 }
234
235                 if (do_wakeup) {
236                         smp_mb();
237                         if (waitqueue_active(&pipe->wait))
238                                 wake_up_interruptible_sync(&pipe->wait);
239                         kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
240                         do_wakeup = 0;
241                 }
242
243                 pipe->waiting_writers++;
244                 pipe_wait(pipe);
245                 pipe->waiting_writers--;
246         }
247
248         if (pipe->inode) {
249                 mutex_unlock(&pipe->inode->i_mutex);
250
251                 if (do_wakeup) {
252                         smp_mb();
253                         if (waitqueue_active(&pipe->wait))
254                                 wake_up_interruptible(&pipe->wait);
255                         kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
256                 }
257         }
258
259         while (page_nr < spd_pages)
260                 spd->spd_release(spd, page_nr++);
261
262         return ret;
263 }
264
265 static void spd_release_page(struct splice_pipe_desc *spd, unsigned int i)
266 {
267         page_cache_release(spd->pages[i]);
268 }
269
270 static int
271 __generic_file_splice_read(struct file *in, loff_t *ppos,
272                            struct pipe_inode_info *pipe, size_t len,
273                            unsigned int flags)
274 {
275         struct address_space *mapping = in->f_mapping;
276         unsigned int loff, nr_pages, req_pages;
277         struct page *pages[PIPE_BUFFERS];
278         struct partial_page partial[PIPE_BUFFERS];
279         struct page *page;
280         pgoff_t index, end_index;
281         loff_t isize;
282         int error, page_nr;
283         struct splice_pipe_desc spd = {
284                 .pages = pages,
285                 .partial = partial,
286                 .flags = flags,
287                 .ops = &page_cache_pipe_buf_ops,
288                 .spd_release = spd_release_page,
289         };
290
291         index = *ppos >> PAGE_CACHE_SHIFT;
292         loff = *ppos & ~PAGE_CACHE_MASK;
293         req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
294         nr_pages = min(req_pages, (unsigned)PIPE_BUFFERS);
295
296         /*
297          * Lookup the (hopefully) full range of pages we need.
298          */
299         spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, pages);
300         index += spd.nr_pages;
301
302         /*
303          * If find_get_pages_contig() returned fewer pages than we needed,
304          * readahead/allocate the rest and fill in the holes.
305          */
306         if (spd.nr_pages < nr_pages)
307                 page_cache_sync_readahead(mapping, &in->f_ra, in,
308                                 index, req_pages - spd.nr_pages);
309
310         error = 0;
311         while (spd.nr_pages < nr_pages) {
312                 /*
313                  * Page could be there, find_get_pages_contig() breaks on
314                  * the first hole.
315                  */
316                 page = find_get_page(mapping, index);
317                 if (!page) {
318                         /*
319                          * page didn't exist, allocate one.
320                          */
321                         page = page_cache_alloc_cold(mapping);
322                         if (!page)
323                                 break;
324
325                         error = add_to_page_cache_lru(page, mapping, index,
326                                                 mapping_gfp_mask(mapping));
327                         if (unlikely(error)) {
328                                 page_cache_release(page);
329                                 if (error == -EEXIST)
330                                         continue;
331                                 break;
332                         }
333                         /*
334                          * add_to_page_cache() locks the page, unlock it
335                          * to avoid convoluting the logic below even more.
336                          */
337                         unlock_page(page);
338                 }
339
340                 pages[spd.nr_pages++] = page;
341                 index++;
342         }
343
344         /*
345          * Now loop over the map and see if we need to start IO on any
346          * pages, fill in the partial map, etc.
347          */
348         index = *ppos >> PAGE_CACHE_SHIFT;
349         nr_pages = spd.nr_pages;
350         spd.nr_pages = 0;
351         for (page_nr = 0; page_nr < nr_pages; page_nr++) {
352                 unsigned int this_len;
353
354                 if (!len)
355                         break;
356
357                 /*
358                  * this_len is the max we'll use from this page
359                  */
360                 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
361                 page = pages[page_nr];
362
363                 if (PageReadahead(page))
364                         page_cache_async_readahead(mapping, &in->f_ra, in,
365                                         page, index, req_pages - page_nr);
366
367                 /*
368                  * If the page isn't uptodate, we may need to start io on it
369                  */
370                 if (!PageUptodate(page)) {
371                         /*
372                          * If in nonblock mode then dont block on waiting
373                          * for an in-flight io page
374                          */
375                         if (flags & SPLICE_F_NONBLOCK) {
376                                 if (!trylock_page(page)) {
377                                         error = -EAGAIN;
378                                         break;
379                                 }
380                         } else
381                                 lock_page(page);
382
383                         /*
384                          * Page was truncated, or invalidated by the
385                          * filesystem.  Redo the find/create, but this time the
386                          * page is kept locked, so there's no chance of another
387                          * race with truncate/invalidate.
388                          */
389                         if (!page->mapping) {
390                                 unlock_page(page);
391                                 page = find_or_create_page(mapping, index,
392                                                 mapping_gfp_mask(mapping));
393
394                                 if (!page) {
395                                         error = -ENOMEM;
396                                         break;
397                                 }
398                                 page_cache_release(pages[page_nr]);
399                                 pages[page_nr] = page;
400                         }
401                         /*
402                          * page was already under io and is now done, great
403                          */
404                         if (PageUptodate(page)) {
405                                 unlock_page(page);
406                                 goto fill_it;
407                         }
408
409                         /*
410                          * need to read in the page
411                          */
412                         error = mapping->a_ops->readpage(in, page);
413                         if (unlikely(error)) {
414                                 /*
415                                  * We really should re-lookup the page here,
416                                  * but it complicates things a lot. Instead
417                                  * lets just do what we already stored, and
418                                  * we'll get it the next time we are called.
419                                  */
420                                 if (error == AOP_TRUNCATED_PAGE)
421                                         error = 0;
422
423                                 break;
424                         }
425                 }
426 fill_it:
427                 /*
428                  * i_size must be checked after PageUptodate.
429                  */
430                 isize = i_size_read(mapping->host);
431                 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
432                 if (unlikely(!isize || index > end_index))
433                         break;
434
435                 /*
436                  * if this is the last page, see if we need to shrink
437                  * the length and stop
438                  */
439                 if (end_index == index) {
440                         unsigned int plen;
441
442                         /*
443                          * max good bytes in this page
444                          */
445                         plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
446                         if (plen <= loff)
447                                 break;
448
449                         /*
450                          * force quit after adding this page
451                          */
452                         this_len = min(this_len, plen - loff);
453                         len = this_len;
454                 }
455
456                 partial[page_nr].offset = loff;
457                 partial[page_nr].len = this_len;
458                 len -= this_len;
459                 loff = 0;
460                 spd.nr_pages++;
461                 index++;
462         }
463
464         /*
465          * Release any pages at the end, if we quit early. 'page_nr' is how far
466          * we got, 'nr_pages' is how many pages are in the map.
467          */
468         while (page_nr < nr_pages)
469                 page_cache_release(pages[page_nr++]);
470         in->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT;
471
472         if (spd.nr_pages)
473                 return splice_to_pipe(pipe, &spd);
474
475         return error;
476 }
477
478 /**
479  * generic_file_splice_read - splice data from file to a pipe
480  * @in:         file to splice from
481  * @ppos:       position in @in
482  * @pipe:       pipe to splice to
483  * @len:        number of bytes to splice
484  * @flags:      splice modifier flags
485  *
486  * Description:
487  *    Will read pages from given file and fill them into a pipe. Can be
488  *    used as long as the address_space operations for the source implements
489  *    a readpage() hook.
490  *
491  */
492 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
493                                  struct pipe_inode_info *pipe, size_t len,
494                                  unsigned int flags)
495 {
496         loff_t isize, left;
497         int ret;
498
499         isize = i_size_read(in->f_mapping->host);
500         if (unlikely(*ppos >= isize))
501                 return 0;
502
503         left = isize - *ppos;
504         if (unlikely(left < len))
505                 len = left;
506
507         ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
508         if (ret > 0)
509                 *ppos += ret;
510
511         return ret;
512 }
513
514 EXPORT_SYMBOL(generic_file_splice_read);
515
516 /*
517  * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
518  * using sendpage(). Return the number of bytes sent.
519  */
520 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
521                             struct pipe_buffer *buf, struct splice_desc *sd)
522 {
523         struct file *file = sd->u.file;
524         loff_t pos = sd->pos;
525         int ret, more;
526
527         ret = buf->ops->confirm(pipe, buf);
528         if (!ret) {
529                 more = (sd->flags & SPLICE_F_MORE) || sd->len < sd->total_len;
530
531                 ret = file->f_op->sendpage(file, buf->page, buf->offset,
532                                            sd->len, &pos, more);
533         }
534
535         return ret;
536 }
537
538 /*
539  * This is a little more tricky than the file -> pipe splicing. There are
540  * basically three cases:
541  *
542  *      - Destination page already exists in the address space and there
543  *        are users of it. For that case we have no other option that
544  *        copying the data. Tough luck.
545  *      - Destination page already exists in the address space, but there
546  *        are no users of it. Make sure it's uptodate, then drop it. Fall
547  *        through to last case.
548  *      - Destination page does not exist, we can add the pipe page to
549  *        the page cache and avoid the copy.
550  *
551  * If asked to move pages to the output file (SPLICE_F_MOVE is set in
552  * sd->flags), we attempt to migrate pages from the pipe to the output
553  * file address space page cache. This is possible if no one else has
554  * the pipe page referenced outside of the pipe and page cache. If
555  * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
556  * a new page in the output file page cache and fill/dirty that.
557  */
558 int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
559                  struct splice_desc *sd)
560 {
561         struct file *file = sd->u.file;
562         struct address_space *mapping = file->f_mapping;
563         unsigned int offset, this_len;
564         struct page *page;
565         void *fsdata;
566         int ret;
567
568         /*
569          * make sure the data in this buffer is uptodate
570          */
571         ret = buf->ops->confirm(pipe, buf);
572         if (unlikely(ret))
573                 return ret;
574
575         offset = sd->pos & ~PAGE_CACHE_MASK;
576
577         this_len = sd->len;
578         if (this_len + offset > PAGE_CACHE_SIZE)
579                 this_len = PAGE_CACHE_SIZE - offset;
580
581         ret = pagecache_write_begin(file, mapping, sd->pos, this_len,
582                                 AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
583         if (unlikely(ret))
584                 goto out;
585
586         if (buf->page != page) {
587                 /*
588                  * Careful, ->map() uses KM_USER0!
589                  */
590                 char *src = buf->ops->map(pipe, buf, 1);
591                 char *dst = kmap_atomic(page, KM_USER1);
592
593                 memcpy(dst + offset, src + buf->offset, this_len);
594                 flush_dcache_page(page);
595                 kunmap_atomic(dst, KM_USER1);
596                 buf->ops->unmap(pipe, buf, src);
597         }
598         ret = pagecache_write_end(file, mapping, sd->pos, this_len, this_len,
599                                 page, fsdata);
600 out:
601         return ret;
602 }
603 EXPORT_SYMBOL(pipe_to_file);
604
605 static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
606 {
607         smp_mb();
608         if (waitqueue_active(&pipe->wait))
609                 wake_up_interruptible(&pipe->wait);
610         kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
611 }
612
613 /**
614  * splice_from_pipe_feed - feed available data from a pipe to a file
615  * @pipe:       pipe to splice from
616  * @sd:         information to @actor
617  * @actor:      handler that splices the data
618  *
619  * Description:
620
621  *    This function loops over the pipe and calls @actor to do the
622  *    actual moving of a single struct pipe_buffer to the desired
623  *    destination.  It returns when there's no more buffers left in
624  *    the pipe or if the requested number of bytes (@sd->total_len)
625  *    have been copied.  It returns a positive number (one) if the
626  *    pipe needs to be filled with more data, zero if the required
627  *    number of bytes have been copied and -errno on error.
628  *
629  *    This, together with splice_from_pipe_{begin,end,next}, may be
630  *    used to implement the functionality of __splice_from_pipe() when
631  *    locking is required around copying the pipe buffers to the
632  *    destination.
633  */
634 int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
635                           splice_actor *actor)
636 {
637         int ret;
638
639         while (pipe->nrbufs) {
640                 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
641                 const struct pipe_buf_operations *ops = buf->ops;
642
643                 sd->len = buf->len;
644                 if (sd->len > sd->total_len)
645                         sd->len = sd->total_len;
646
647                 ret = actor(pipe, buf, sd);
648                 if (ret <= 0) {
649                         if (ret == -ENODATA)
650                                 ret = 0;
651                         return ret;
652                 }
653                 buf->offset += ret;
654                 buf->len -= ret;
655
656                 sd->num_spliced += ret;
657                 sd->len -= ret;
658                 sd->pos += ret;
659                 sd->total_len -= ret;
660
661                 if (!buf->len) {
662                         buf->ops = NULL;
663                         ops->release(pipe, buf);
664                         pipe->curbuf = (pipe->curbuf + 1) & (PIPE_BUFFERS - 1);
665                         pipe->nrbufs--;
666                         if (pipe->inode)
667                                 sd->need_wakeup = true;
668                 }
669
670                 if (!sd->total_len)
671                         return 0;
672         }
673
674         return 1;
675 }
676 EXPORT_SYMBOL(splice_from_pipe_feed);
677
678 /**
679  * splice_from_pipe_next - wait for some data to splice from
680  * @pipe:       pipe to splice from
681  * @sd:         information about the splice operation
682  *
683  * Description:
684  *    This function will wait for some data and return a positive
685  *    value (one) if pipe buffers are available.  It will return zero
686  *    or -errno if no more data needs to be spliced.
687  */
688 int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
689 {
690         while (!pipe->nrbufs) {
691                 if (!pipe->writers)
692                         return 0;
693
694                 if (!pipe->waiting_writers && sd->num_spliced)
695                         return 0;
696
697                 if (sd->flags & SPLICE_F_NONBLOCK)
698                         return -EAGAIN;
699
700                 if (signal_pending(current))
701                         return -ERESTARTSYS;
702
703                 if (sd->need_wakeup) {
704                         wakeup_pipe_writers(pipe);
705                         sd->need_wakeup = false;
706                 }
707
708                 pipe_wait(pipe);
709         }
710
711         return 1;
712 }
713 EXPORT_SYMBOL(splice_from_pipe_next);
714
715 /**
716  * splice_from_pipe_begin - start splicing from pipe
717  * @pipe:       pipe to splice from
718  *
719  * Description:
720  *    This function should be called before a loop containing
721  *    splice_from_pipe_next() and splice_from_pipe_feed() to
722  *    initialize the necessary fields of @sd.
723  */
724 void splice_from_pipe_begin(struct splice_desc *sd)
725 {
726         sd->num_spliced = 0;
727         sd->need_wakeup = false;
728 }
729 EXPORT_SYMBOL(splice_from_pipe_begin);
730
731 /**
732  * splice_from_pipe_end - finish splicing from pipe
733  * @pipe:       pipe to splice from
734  * @sd:         information about the splice operation
735  *
736  * Description:
737  *    This function will wake up pipe writers if necessary.  It should
738  *    be called after a loop containing splice_from_pipe_next() and
739  *    splice_from_pipe_feed().
740  */
741 void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
742 {
743         if (sd->need_wakeup)
744                 wakeup_pipe_writers(pipe);
745 }
746 EXPORT_SYMBOL(splice_from_pipe_end);
747
748 /**
749  * __splice_from_pipe - splice data from a pipe to given actor
750  * @pipe:       pipe to splice from
751  * @sd:         information to @actor
752  * @actor:      handler that splices the data
753  *
754  * Description:
755  *    This function does little more than loop over the pipe and call
756  *    @actor to do the actual moving of a single struct pipe_buffer to
757  *    the desired destination. See pipe_to_file, pipe_to_sendpage, or
758  *    pipe_to_user.
759  *
760  */
761 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
762                            splice_actor *actor)
763 {
764         int ret;
765
766         splice_from_pipe_begin(sd);
767         do {
768                 ret = splice_from_pipe_next(pipe, sd);
769                 if (ret > 0)
770                         ret = splice_from_pipe_feed(pipe, sd, actor);
771         } while (ret > 0);
772         splice_from_pipe_end(pipe, sd);
773
774         return sd->num_spliced ? sd->num_spliced : ret;
775 }
776 EXPORT_SYMBOL(__splice_from_pipe);
777
778 /**
779  * splice_from_pipe - splice data from a pipe to a file
780  * @pipe:       pipe to splice from
781  * @out:        file to splice to
782  * @ppos:       position in @out
783  * @len:        how many bytes to splice
784  * @flags:      splice modifier flags
785  * @actor:      handler that splices the data
786  *
787  * Description:
788  *    See __splice_from_pipe. This function locks the pipe inode,
789  *    otherwise it's identical to __splice_from_pipe().
790  *
791  */
792 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
793                          loff_t *ppos, size_t len, unsigned int flags,
794                          splice_actor *actor)
795 {
796         ssize_t ret;
797         struct splice_desc sd = {
798                 .total_len = len,
799                 .flags = flags,
800                 .pos = *ppos,
801                 .u.file = out,
802         };
803
804         if (pipe->inode)
805                 mutex_lock(&pipe->inode->i_mutex);
806         ret = __splice_from_pipe(pipe, &sd, actor);
807         if (pipe->inode)
808                 mutex_unlock(&pipe->inode->i_mutex);
809
810         return ret;
811 }
812
813 /**
814  * generic_file_splice_write - splice data from a pipe to a file
815  * @pipe:       pipe info
816  * @out:        file to write to
817  * @ppos:       position in @out
818  * @len:        number of bytes to splice
819  * @flags:      splice modifier flags
820  *
821  * Description:
822  *    Will either move or copy pages (determined by @flags options) from
823  *    the given pipe inode to the given file.
824  *
825  */
826 ssize_t
827 generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
828                           loff_t *ppos, size_t len, unsigned int flags)
829 {
830         struct address_space *mapping = out->f_mapping;
831         struct inode *inode = mapping->host;
832         struct splice_desc sd = {
833                 .total_len = len,
834                 .flags = flags,
835                 .pos = *ppos,
836                 .u.file = out,
837         };
838         ssize_t ret;
839
840         if (pipe->inode)
841                 mutex_lock_nested(&pipe->inode->i_mutex, I_MUTEX_PARENT);
842
843         splice_from_pipe_begin(&sd);
844         do {
845                 ret = splice_from_pipe_next(pipe, &sd);
846                 if (ret <= 0)
847                         break;
848
849                 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
850                 ret = file_remove_suid(out);
851                 if (!ret)
852                         ret = splice_from_pipe_feed(pipe, &sd, pipe_to_file);
853                 mutex_unlock(&inode->i_mutex);
854         } while (ret > 0);
855         splice_from_pipe_end(pipe, &sd);
856
857         if (pipe->inode)
858                 mutex_unlock(&pipe->inode->i_mutex);
859
860         if (sd.num_spliced)
861                 ret = sd.num_spliced;
862
863         if (ret > 0) {
864                 unsigned long nr_pages;
865
866                 *ppos += ret;
867                 nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
868
869                 /*
870                  * If file or inode is SYNC and we actually wrote some data,
871                  * sync it.
872                  */
873                 if (unlikely((out->f_flags & O_SYNC) || IS_SYNC(inode))) {
874                         int err;
875
876                         mutex_lock(&inode->i_mutex);
877                         err = generic_osync_inode(inode, mapping,
878                                                   OSYNC_METADATA|OSYNC_DATA);
879                         mutex_unlock(&inode->i_mutex);
880
881                         if (err)
882                                 ret = err;
883                 }
884                 balance_dirty_pages_ratelimited_nr(mapping, nr_pages);
885         }
886
887         return ret;
888 }
889
890 EXPORT_SYMBOL(generic_file_splice_write);
891
892 /**
893  * generic_splice_sendpage - splice data from a pipe to a socket
894  * @pipe:       pipe to splice from
895  * @out:        socket to write to
896  * @ppos:       position in @out
897  * @len:        number of bytes to splice
898  * @flags:      splice modifier flags
899  *
900  * Description:
901  *    Will send @len bytes from the pipe to a network socket. No data copying
902  *    is involved.
903  *
904  */
905 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
906                                 loff_t *ppos, size_t len, unsigned int flags)
907 {
908         return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
909 }
910
911 EXPORT_SYMBOL(generic_splice_sendpage);
912
913 /*
914  * Attempt to initiate a splice from pipe to file.
915  */
916 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
917                            loff_t *ppos, size_t len, unsigned int flags)
918 {
919         int ret;
920
921         if (unlikely(!out->f_op || !out->f_op->splice_write))
922                 return -EINVAL;
923
924         if (unlikely(!(out->f_mode & FMODE_WRITE)))
925                 return -EBADF;
926
927         if (unlikely(out->f_flags & O_APPEND))
928                 return -EINVAL;
929
930         ret = rw_verify_area(WRITE, out, ppos, len);
931         if (unlikely(ret < 0))
932                 return ret;
933
934         return out->f_op->splice_write(pipe, out, ppos, len, flags);
935 }
936
937 /*
938  * Attempt to initiate a splice from a file to a pipe.
939  */
940 static long do_splice_to(struct file *in, loff_t *ppos,
941                          struct pipe_inode_info *pipe, size_t len,
942                          unsigned int flags)
943 {
944         int ret;
945
946         if (unlikely(!in->f_op || !in->f_op->splice_read))
947                 return -EINVAL;
948
949         if (unlikely(!(in->f_mode & FMODE_READ)))
950                 return -EBADF;
951
952         ret = rw_verify_area(READ, in, ppos, len);
953         if (unlikely(ret < 0))
954                 return ret;
955
956         return in->f_op->splice_read(in, ppos, pipe, len, flags);
957 }
958
959 /**
960  * splice_direct_to_actor - splices data directly between two non-pipes
961  * @in:         file to splice from
962  * @sd:         actor information on where to splice to
963  * @actor:      handles the data splicing
964  *
965  * Description:
966  *    This is a special case helper to splice directly between two
967  *    points, without requiring an explicit pipe. Internally an allocated
968  *    pipe is cached in the process, and reused during the lifetime of
969  *    that process.
970  *
971  */
972 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
973                                splice_direct_actor *actor)
974 {
975         struct pipe_inode_info *pipe;
976         long ret, bytes;
977         umode_t i_mode;
978         size_t len;
979         int i, flags;
980
981         /*
982          * We require the input being a regular file, as we don't want to
983          * randomly drop data for eg socket -> socket splicing. Use the
984          * piped splicing for that!
985          */
986         i_mode = in->f_path.dentry->d_inode->i_mode;
987         if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
988                 return -EINVAL;
989
990         /*
991          * neither in nor out is a pipe, setup an internal pipe attached to
992          * 'out' and transfer the wanted data from 'in' to 'out' through that
993          */
994         pipe = current->splice_pipe;
995         if (unlikely(!pipe)) {
996                 pipe = alloc_pipe_info(NULL);
997                 if (!pipe)
998                         return -ENOMEM;
999
1000                 /*
1001                  * We don't have an immediate reader, but we'll read the stuff
1002                  * out of the pipe right after the splice_to_pipe(). So set
1003                  * PIPE_READERS appropriately.
1004                  */
1005                 pipe->readers = 1;
1006
1007                 current->splice_pipe = pipe;
1008         }
1009
1010         /*
1011          * Do the splice.
1012          */
1013         ret = 0;
1014         bytes = 0;
1015         len = sd->total_len;
1016         flags = sd->flags;
1017
1018         /*
1019          * Don't block on output, we have to drain the direct pipe.
1020          */
1021         sd->flags &= ~SPLICE_F_NONBLOCK;
1022
1023         while (len) {
1024                 size_t read_len;
1025                 loff_t pos = sd->pos, prev_pos = pos;
1026
1027                 ret = do_splice_to(in, &pos, pipe, len, flags);
1028                 if (unlikely(ret <= 0))
1029                         goto out_release;
1030
1031                 read_len = ret;
1032                 sd->total_len = read_len;
1033
1034                 /*
1035                  * NOTE: nonblocking mode only applies to the input. We
1036                  * must not do the output in nonblocking mode as then we
1037                  * could get stuck data in the internal pipe:
1038                  */
1039                 ret = actor(pipe, sd);
1040                 if (unlikely(ret <= 0)) {
1041                         sd->pos = prev_pos;
1042                         goto out_release;
1043                 }
1044
1045                 bytes += ret;
1046                 len -= ret;
1047                 sd->pos = pos;
1048
1049                 if (ret < read_len) {
1050                         sd->pos = prev_pos + ret;
1051                         goto out_release;
1052                 }
1053         }
1054
1055 done:
1056         pipe->nrbufs = pipe->curbuf = 0;
1057         file_accessed(in);
1058         return bytes;
1059
1060 out_release:
1061         /*
1062          * If we did an incomplete transfer we must release
1063          * the pipe buffers in question:
1064          */
1065         for (i = 0; i < PIPE_BUFFERS; i++) {
1066                 struct pipe_buffer *buf = pipe->bufs + i;
1067
1068                 if (buf->ops) {
1069                         buf->ops->release(pipe, buf);
1070                         buf->ops = NULL;
1071                 }
1072         }
1073
1074         if (!bytes)
1075                 bytes = ret;
1076
1077         goto done;
1078 }
1079 EXPORT_SYMBOL(splice_direct_to_actor);
1080
1081 static int direct_splice_actor(struct pipe_inode_info *pipe,
1082                                struct splice_desc *sd)
1083 {
1084         struct file *file = sd->u.file;
1085
1086         return do_splice_from(pipe, file, &sd->pos, sd->total_len, sd->flags);
1087 }
1088
1089 /**
1090  * do_splice_direct - splices data directly between two files
1091  * @in:         file to splice from
1092  * @ppos:       input file offset
1093  * @out:        file to splice to
1094  * @len:        number of bytes to splice
1095  * @flags:      splice modifier flags
1096  *
1097  * Description:
1098  *    For use by do_sendfile(). splice can easily emulate sendfile, but
1099  *    doing it in the application would incur an extra system call
1100  *    (splice in + splice out, as compared to just sendfile()). So this helper
1101  *    can splice directly through a process-private pipe.
1102  *
1103  */
1104 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1105                       size_t len, unsigned int flags)
1106 {
1107         struct splice_desc sd = {
1108                 .len            = len,
1109                 .total_len      = len,
1110                 .flags          = flags,
1111                 .pos            = *ppos,
1112                 .u.file         = out,
1113         };
1114         long ret;
1115
1116         ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1117         if (ret > 0)
1118                 *ppos = sd.pos;
1119
1120         return ret;
1121 }
1122
1123 /*
1124  * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same
1125  * location, so checking ->i_pipe is not enough to verify that this is a
1126  * pipe.
1127  */
1128 static inline struct pipe_inode_info *pipe_info(struct inode *inode)
1129 {
1130         if (S_ISFIFO(inode->i_mode))
1131                 return inode->i_pipe;
1132
1133         return NULL;
1134 }
1135
1136 /*
1137  * Determine where to splice to/from.
1138  */
1139 static long do_splice(struct file *in, loff_t __user *off_in,
1140                       struct file *out, loff_t __user *off_out,
1141                       size_t len, unsigned int flags)
1142 {
1143         struct pipe_inode_info *pipe;
1144         loff_t offset, *off;
1145         long ret;
1146
1147         pipe = pipe_info(in->f_path.dentry->d_inode);
1148         if (pipe) {
1149                 if (off_in)
1150                         return -ESPIPE;
1151                 if (off_out) {
1152                         if (out->f_op->llseek == no_llseek)
1153                                 return -EINVAL;
1154                         if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1155                                 return -EFAULT;
1156                         off = &offset;
1157                 } else
1158                         off = &out->f_pos;
1159
1160                 ret = do_splice_from(pipe, out, off, len, flags);
1161
1162                 if (off_out && copy_to_user(off_out, off, sizeof(loff_t)))
1163                         ret = -EFAULT;
1164
1165                 return ret;
1166         }
1167
1168         pipe = pipe_info(out->f_path.dentry->d_inode);
1169         if (pipe) {
1170                 if (off_out)
1171                         return -ESPIPE;
1172                 if (off_in) {
1173                         if (in->f_op->llseek == no_llseek)
1174                                 return -EINVAL;
1175                         if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1176                                 return -EFAULT;
1177                         off = &offset;
1178                 } else
1179                         off = &in->f_pos;
1180
1181                 ret = do_splice_to(in, off, pipe, len, flags);
1182
1183                 if (off_in && copy_to_user(off_in, off, sizeof(loff_t)))
1184                         ret = -EFAULT;
1185
1186                 return ret;
1187         }
1188
1189         return -EINVAL;
1190 }
1191
1192 /*
1193  * Map an iov into an array of pages and offset/length tupples. With the
1194  * partial_page structure, we can map several non-contiguous ranges into
1195  * our ones pages[] map instead of splitting that operation into pieces.
1196  * Could easily be exported as a generic helper for other users, in which
1197  * case one would probably want to add a 'max_nr_pages' parameter as well.
1198  */
1199 static int get_iovec_page_array(const struct iovec __user *iov,
1200                                 unsigned int nr_vecs, struct page **pages,
1201                                 struct partial_page *partial, int aligned)
1202 {
1203         int buffers = 0, error = 0;
1204
1205         while (nr_vecs) {
1206                 unsigned long off, npages;
1207                 struct iovec entry;
1208                 void __user *base;
1209                 size_t len;
1210                 int i;
1211
1212                 error = -EFAULT;
1213                 if (copy_from_user(&entry, iov, sizeof(entry)))
1214                         break;
1215
1216                 base = entry.iov_base;
1217                 len = entry.iov_len;
1218
1219                 /*
1220                  * Sanity check this iovec. 0 read succeeds.
1221                  */
1222                 error = 0;
1223                 if (unlikely(!len))
1224                         break;
1225                 error = -EFAULT;
1226                 if (!access_ok(VERIFY_READ, base, len))
1227                         break;
1228
1229                 /*
1230                  * Get this base offset and number of pages, then map
1231                  * in the user pages.
1232                  */
1233                 off = (unsigned long) base & ~PAGE_MASK;
1234
1235                 /*
1236                  * If asked for alignment, the offset must be zero and the
1237                  * length a multiple of the PAGE_SIZE.
1238                  */
1239                 error = -EINVAL;
1240                 if (aligned && (off || len & ~PAGE_MASK))
1241                         break;
1242
1243                 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1244                 if (npages > PIPE_BUFFERS - buffers)
1245                         npages = PIPE_BUFFERS - buffers;
1246
1247                 error = get_user_pages_fast((unsigned long)base, npages,
1248                                         0, &pages[buffers]);
1249
1250                 if (unlikely(error <= 0))
1251                         break;
1252
1253                 /*
1254                  * Fill this contiguous range into the partial page map.
1255                  */
1256                 for (i = 0; i < error; i++) {
1257                         const int plen = min_t(size_t, len, PAGE_SIZE - off);
1258
1259                         partial[buffers].offset = off;
1260                         partial[buffers].len = plen;
1261
1262                         off = 0;
1263                         len -= plen;
1264                         buffers++;
1265                 }
1266
1267                 /*
1268                  * We didn't complete this iov, stop here since it probably
1269                  * means we have to move some of this into a pipe to
1270                  * be able to continue.
1271                  */
1272                 if (len)
1273                         break;
1274
1275                 /*
1276                  * Don't continue if we mapped fewer pages than we asked for,
1277                  * or if we mapped the max number of pages that we have
1278                  * room for.
1279                  */
1280                 if (error < npages || buffers == PIPE_BUFFERS)
1281                         break;
1282
1283                 nr_vecs--;
1284                 iov++;
1285         }
1286
1287         if (buffers)
1288                 return buffers;
1289
1290         return error;
1291 }
1292
1293 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1294                         struct splice_desc *sd)
1295 {
1296         char *src;
1297         int ret;
1298
1299         ret = buf->ops->confirm(pipe, buf);
1300         if (unlikely(ret))
1301                 return ret;
1302
1303         /*
1304          * See if we can use the atomic maps, by prefaulting in the
1305          * pages and doing an atomic copy
1306          */
1307         if (!fault_in_pages_writeable(sd->u.userptr, sd->len)) {
1308                 src = buf->ops->map(pipe, buf, 1);
1309                 ret = __copy_to_user_inatomic(sd->u.userptr, src + buf->offset,
1310                                                         sd->len);
1311                 buf->ops->unmap(pipe, buf, src);
1312                 if (!ret) {
1313                         ret = sd->len;
1314                         goto out;
1315                 }
1316         }
1317
1318         /*
1319          * No dice, use slow non-atomic map and copy
1320          */
1321         src = buf->ops->map(pipe, buf, 0);
1322
1323         ret = sd->len;
1324         if (copy_to_user(sd->u.userptr, src + buf->offset, sd->len))
1325                 ret = -EFAULT;
1326
1327         buf->ops->unmap(pipe, buf, src);
1328 out:
1329         if (ret > 0)
1330                 sd->u.userptr += ret;
1331         return ret;
1332 }
1333
1334 /*
1335  * For lack of a better implementation, implement vmsplice() to userspace
1336  * as a simple copy of the pipes pages to the user iov.
1337  */
1338 static long vmsplice_to_user(struct file *file, const struct iovec __user *iov,
1339                              unsigned long nr_segs, unsigned int flags)
1340 {
1341         struct pipe_inode_info *pipe;
1342         struct splice_desc sd;
1343         ssize_t size;
1344         int error;
1345         long ret;
1346
1347         pipe = pipe_info(file->f_path.dentry->d_inode);
1348         if (!pipe)
1349                 return -EBADF;
1350
1351         if (pipe->inode)
1352                 mutex_lock(&pipe->inode->i_mutex);
1353
1354         error = ret = 0;
1355         while (nr_segs) {
1356                 void __user *base;
1357                 size_t len;
1358
1359                 /*
1360                  * Get user address base and length for this iovec.
1361                  */
1362                 error = get_user(base, &iov->iov_base);
1363                 if (unlikely(error))
1364                         break;
1365                 error = get_user(len, &iov->iov_len);
1366                 if (unlikely(error))
1367                         break;
1368
1369                 /*
1370                  * Sanity check this iovec. 0 read succeeds.
1371                  */
1372                 if (unlikely(!len))
1373                         break;
1374                 if (unlikely(!base)) {
1375                         error = -EFAULT;
1376                         break;
1377                 }
1378
1379                 if (unlikely(!access_ok(VERIFY_WRITE, base, len))) {
1380                         error = -EFAULT;
1381                         break;
1382                 }
1383
1384                 sd.len = 0;
1385                 sd.total_len = len;
1386                 sd.flags = flags;
1387                 sd.u.userptr = base;
1388                 sd.pos = 0;
1389
1390                 size = __splice_from_pipe(pipe, &sd, pipe_to_user);
1391                 if (size < 0) {
1392                         if (!ret)
1393                                 ret = size;
1394
1395                         break;
1396                 }
1397
1398                 ret += size;
1399
1400                 if (size < len)
1401                         break;
1402
1403                 nr_segs--;
1404                 iov++;
1405         }
1406
1407         if (pipe->inode)
1408                 mutex_unlock(&pipe->inode->i_mutex);
1409
1410         if (!ret)
1411                 ret = error;
1412
1413         return ret;
1414 }
1415
1416 /*
1417  * vmsplice splices a user address range into a pipe. It can be thought of
1418  * as splice-from-memory, where the regular splice is splice-from-file (or
1419  * to file). In both cases the output is a pipe, naturally.
1420  */
1421 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov,
1422                              unsigned long nr_segs, unsigned int flags)
1423 {
1424         struct pipe_inode_info *pipe;
1425         struct page *pages[PIPE_BUFFERS];
1426         struct partial_page partial[PIPE_BUFFERS];
1427         struct splice_pipe_desc spd = {
1428                 .pages = pages,
1429                 .partial = partial,
1430                 .flags = flags,
1431                 .ops = &user_page_pipe_buf_ops,
1432                 .spd_release = spd_release_page,
1433         };
1434
1435         pipe = pipe_info(file->f_path.dentry->d_inode);
1436         if (!pipe)
1437                 return -EBADF;
1438
1439         spd.nr_pages = get_iovec_page_array(iov, nr_segs, pages, partial,
1440                                             flags & SPLICE_F_GIFT);
1441         if (spd.nr_pages <= 0)
1442                 return spd.nr_pages;
1443
1444         return splice_to_pipe(pipe, &spd);
1445 }
1446
1447 /*
1448  * Note that vmsplice only really supports true splicing _from_ user memory
1449  * to a pipe, not the other way around. Splicing from user memory is a simple
1450  * operation that can be supported without any funky alignment restrictions
1451  * or nasty vm tricks. We simply map in the user memory and fill them into
1452  * a pipe. The reverse isn't quite as easy, though. There are two possible
1453  * solutions for that:
1454  *
1455  *      - memcpy() the data internally, at which point we might as well just
1456  *        do a regular read() on the buffer anyway.
1457  *      - Lots of nasty vm tricks, that are neither fast nor flexible (it
1458  *        has restriction limitations on both ends of the pipe).
1459  *
1460  * Currently we punt and implement it as a normal copy, see pipe_to_user().
1461  *
1462  */
1463 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov,
1464                 unsigned long, nr_segs, unsigned int, flags)
1465 {
1466         struct file *file;
1467         long error;
1468         int fput;
1469
1470         if (unlikely(nr_segs > UIO_MAXIOV))
1471                 return -EINVAL;
1472         else if (unlikely(!nr_segs))
1473                 return 0;
1474
1475         error = -EBADF;
1476         file = fget_light(fd, &fput);
1477         if (file) {
1478                 if (file->f_mode & FMODE_WRITE)
1479                         error = vmsplice_to_pipe(file, iov, nr_segs, flags);
1480                 else if (file->f_mode & FMODE_READ)
1481                         error = vmsplice_to_user(file, iov, nr_segs, flags);
1482
1483                 fput_light(file, fput);
1484         }
1485
1486         return error;
1487 }
1488
1489 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1490                 int, fd_out, loff_t __user *, off_out,
1491                 size_t, len, unsigned int, flags)
1492 {
1493         long error;
1494         struct file *in, *out;
1495         int fput_in, fput_out;
1496
1497         if (unlikely(!len))
1498                 return 0;
1499
1500         error = -EBADF;
1501         in = fget_light(fd_in, &fput_in);
1502         if (in) {
1503                 if (in->f_mode & FMODE_READ) {
1504                         out = fget_light(fd_out, &fput_out);
1505                         if (out) {
1506                                 if (out->f_mode & FMODE_WRITE)
1507                                         error = do_splice(in, off_in,
1508                                                           out, off_out,
1509                                                           len, flags);
1510                                 fput_light(out, fput_out);
1511                         }
1512                 }
1513
1514                 fput_light(in, fput_in);
1515         }
1516
1517         return error;
1518 }
1519
1520 /*
1521  * Make sure there's data to read. Wait for input if we can, otherwise
1522  * return an appropriate error.
1523  */
1524 static int link_ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1525 {
1526         int ret;
1527
1528         /*
1529          * Check ->nrbufs without the inode lock first. This function
1530          * is speculative anyways, so missing one is ok.
1531          */
1532         if (pipe->nrbufs)
1533                 return 0;
1534
1535         ret = 0;
1536         mutex_lock(&pipe->inode->i_mutex);
1537
1538         while (!pipe->nrbufs) {
1539                 if (signal_pending(current)) {
1540                         ret = -ERESTARTSYS;
1541                         break;
1542                 }
1543                 if (!pipe->writers)
1544                         break;
1545                 if (!pipe->waiting_writers) {
1546                         if (flags & SPLICE_F_NONBLOCK) {
1547                                 ret = -EAGAIN;
1548                                 break;
1549                         }
1550                 }
1551                 pipe_wait(pipe);
1552         }
1553
1554         mutex_unlock(&pipe->inode->i_mutex);
1555         return ret;
1556 }
1557
1558 /*
1559  * Make sure there's writeable room. Wait for room if we can, otherwise
1560  * return an appropriate error.
1561  */
1562 static int link_opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1563 {
1564         int ret;
1565
1566         /*
1567          * Check ->nrbufs without the inode lock first. This function
1568          * is speculative anyways, so missing one is ok.
1569          */
1570         if (pipe->nrbufs < PIPE_BUFFERS)
1571                 return 0;
1572
1573         ret = 0;
1574         mutex_lock(&pipe->inode->i_mutex);
1575
1576         while (pipe->nrbufs >= PIPE_BUFFERS) {
1577                 if (!pipe->readers) {
1578                         send_sig(SIGPIPE, current, 0);
1579                         ret = -EPIPE;
1580                         break;
1581                 }
1582                 if (flags & SPLICE_F_NONBLOCK) {
1583                         ret = -EAGAIN;
1584                         break;
1585                 }
1586                 if (signal_pending(current)) {
1587                         ret = -ERESTARTSYS;
1588                         break;
1589                 }
1590                 pipe->waiting_writers++;
1591                 pipe_wait(pipe);
1592                 pipe->waiting_writers--;
1593         }
1594
1595         mutex_unlock(&pipe->inode->i_mutex);
1596         return ret;
1597 }
1598
1599 /*
1600  * Link contents of ipipe to opipe.
1601  */
1602 static int link_pipe(struct pipe_inode_info *ipipe,
1603                      struct pipe_inode_info *opipe,
1604                      size_t len, unsigned int flags)
1605 {
1606         struct pipe_buffer *ibuf, *obuf;
1607         int ret = 0, i = 0, nbuf;
1608
1609         /*
1610          * Potential ABBA deadlock, work around it by ordering lock
1611          * grabbing by inode address. Otherwise two different processes
1612          * could deadlock (one doing tee from A -> B, the other from B -> A).
1613          */
1614         inode_double_lock(ipipe->inode, opipe->inode);
1615
1616         do {
1617                 if (!opipe->readers) {
1618                         send_sig(SIGPIPE, current, 0);
1619                         if (!ret)
1620                                 ret = -EPIPE;
1621                         break;
1622                 }
1623
1624                 /*
1625                  * If we have iterated all input buffers or ran out of
1626                  * output room, break.
1627                  */
1628                 if (i >= ipipe->nrbufs || opipe->nrbufs >= PIPE_BUFFERS)
1629                         break;
1630
1631                 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (PIPE_BUFFERS - 1));
1632                 nbuf = (opipe->curbuf + opipe->nrbufs) & (PIPE_BUFFERS - 1);
1633
1634                 /*
1635                  * Get a reference to this pipe buffer,
1636                  * so we can copy the contents over.
1637                  */
1638                 ibuf->ops->get(ipipe, ibuf);
1639
1640                 obuf = opipe->bufs + nbuf;
1641                 *obuf = *ibuf;
1642
1643                 /*
1644                  * Don't inherit the gift flag, we need to
1645                  * prevent multiple steals of this page.
1646                  */
1647                 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1648
1649                 if (obuf->len > len)
1650                         obuf->len = len;
1651
1652                 opipe->nrbufs++;
1653                 ret += obuf->len;
1654                 len -= obuf->len;
1655                 i++;
1656         } while (len);
1657
1658         /*
1659          * return EAGAIN if we have the potential of some data in the
1660          * future, otherwise just return 0
1661          */
1662         if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK))
1663                 ret = -EAGAIN;
1664
1665         inode_double_unlock(ipipe->inode, opipe->inode);
1666
1667         /*
1668          * If we put data in the output pipe, wakeup any potential readers.
1669          */
1670         if (ret > 0) {
1671                 smp_mb();
1672                 if (waitqueue_active(&opipe->wait))
1673                         wake_up_interruptible(&opipe->wait);
1674                 kill_fasync(&opipe->fasync_readers, SIGIO, POLL_IN);
1675         }
1676
1677         return ret;
1678 }
1679
1680 /*
1681  * This is a tee(1) implementation that works on pipes. It doesn't copy
1682  * any data, it simply references the 'in' pages on the 'out' pipe.
1683  * The 'flags' used are the SPLICE_F_* variants, currently the only
1684  * applicable one is SPLICE_F_NONBLOCK.
1685  */
1686 static long do_tee(struct file *in, struct file *out, size_t len,
1687                    unsigned int flags)
1688 {
1689         struct pipe_inode_info *ipipe = pipe_info(in->f_path.dentry->d_inode);
1690         struct pipe_inode_info *opipe = pipe_info(out->f_path.dentry->d_inode);
1691         int ret = -EINVAL;
1692
1693         /*
1694          * Duplicate the contents of ipipe to opipe without actually
1695          * copying the data.
1696          */
1697         if (ipipe && opipe && ipipe != opipe) {
1698                 /*
1699                  * Keep going, unless we encounter an error. The ipipe/opipe
1700                  * ordering doesn't really matter.
1701                  */
1702                 ret = link_ipipe_prep(ipipe, flags);
1703                 if (!ret) {
1704                         ret = link_opipe_prep(opipe, flags);
1705                         if (!ret)
1706                                 ret = link_pipe(ipipe, opipe, len, flags);
1707                 }
1708         }
1709
1710         return ret;
1711 }
1712
1713 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
1714 {
1715         struct file *in;
1716         int error, fput_in;
1717
1718         if (unlikely(!len))
1719                 return 0;
1720
1721         error = -EBADF;
1722         in = fget_light(fdin, &fput_in);
1723         if (in) {
1724                 if (in->f_mode & FMODE_READ) {
1725                         int fput_out;
1726                         struct file *out = fget_light(fdout, &fput_out);
1727
1728                         if (out) {
1729                                 if (out->f_mode & FMODE_WRITE)
1730                                         error = do_tee(in, out, len, flags);
1731                                 fput_light(out, fput_out);
1732                         }
1733                 }
1734                 fput_light(in, fput_in);
1735         }
1736
1737         return error;
1738 }