[PATCH] splice: fix page LRU accounting
[safe/jmp/linux-2.6] / fs / splice.c
1 /*
2  * "splice": joining two ropes together by interweaving their strands.
3  *
4  * This is the "extended pipe" functionality, where a pipe is used as
5  * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6  * buffer that you can use to transfer data from one end to the other.
7  *
8  * The traditional unix read/write is extended with a "splice()" operation
9  * that transfers data buffers to or from a pipe buffer.
10  *
11  * Named by Larry McVoy, original implementation from Linus, extended by
12  * Jens to support splicing to files, network, direct splicing, etc and
13  * fixing lots of bugs.
14  *
15  * Copyright (C) 2005-2006 Jens Axboe <axboe@suse.de>
16  * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17  * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
18  *
19  */
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/pipe_fs_i.h>
24 #include <linux/mm_inline.h>
25 #include <linux/swap.h>
26 #include <linux/writeback.h>
27 #include <linux/buffer_head.h>
28 #include <linux/module.h>
29 #include <linux/syscalls.h>
30 #include <linux/uio.h>
31
32 struct partial_page {
33         unsigned int offset;
34         unsigned int len;
35 };
36
37 /*
38  * Passed to splice_to_pipe
39  */
40 struct splice_pipe_desc {
41         struct page **pages;            /* page map */
42         struct partial_page *partial;   /* pages[] may not be contig */
43         int nr_pages;                   /* number of pages in map */
44         unsigned int flags;             /* splice flags */
45         struct pipe_buf_operations *ops;/* ops associated with output pipe */
46 };
47
48 /*
49  * Attempt to steal a page from a pipe buffer. This should perhaps go into
50  * a vm helper function, it's already simplified quite a bit by the
51  * addition of remove_mapping(). If success is returned, the caller may
52  * attempt to reuse this page for another destination.
53  */
54 static int page_cache_pipe_buf_steal(struct pipe_inode_info *info,
55                                      struct pipe_buffer *buf)
56 {
57         struct page *page = buf->page;
58         struct address_space *mapping = page_mapping(page);
59
60         lock_page(page);
61
62         WARN_ON(!PageUptodate(page));
63
64         /*
65          * At least for ext2 with nobh option, we need to wait on writeback
66          * completing on this page, since we'll remove it from the pagecache.
67          * Otherwise truncate wont wait on the page, allowing the disk
68          * blocks to be reused by someone else before we actually wrote our
69          * data to them. fs corruption ensues.
70          */
71         wait_on_page_writeback(page);
72
73         if (PagePrivate(page))
74                 try_to_release_page(page, mapping_gfp_mask(mapping));
75
76         if (!remove_mapping(mapping, page)) {
77                 unlock_page(page);
78                 return 1;
79         }
80
81         return 0;
82 }
83
84 static void page_cache_pipe_buf_release(struct pipe_inode_info *info,
85                                         struct pipe_buffer *buf)
86 {
87         page_cache_release(buf->page);
88 }
89
90 static int page_cache_pipe_buf_pin(struct pipe_inode_info *info,
91                                    struct pipe_buffer *buf)
92 {
93         struct page *page = buf->page;
94         int err;
95
96         if (!PageUptodate(page)) {
97                 lock_page(page);
98
99                 /*
100                  * Page got truncated/unhashed. This will cause a 0-byte
101                  * splice, if this is the first page.
102                  */
103                 if (!page->mapping) {
104                         err = -ENODATA;
105                         goto error;
106                 }
107
108                 /*
109                  * Uh oh, read-error from disk.
110                  */
111                 if (!PageUptodate(page)) {
112                         err = -EIO;
113                         goto error;
114                 }
115
116                 /*
117                  * Page is ok afterall, we are done.
118                  */
119                 unlock_page(page);
120         }
121
122         return 0;
123 error:
124         unlock_page(page);
125         return err;
126 }
127
128 static struct pipe_buf_operations page_cache_pipe_buf_ops = {
129         .can_merge = 0,
130         .map = generic_pipe_buf_map,
131         .unmap = generic_pipe_buf_unmap,
132         .pin = page_cache_pipe_buf_pin,
133         .release = page_cache_pipe_buf_release,
134         .steal = page_cache_pipe_buf_steal,
135         .get = generic_pipe_buf_get,
136 };
137
138 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
139                                     struct pipe_buffer *buf)
140 {
141         if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
142                 return 1;
143
144         return 0;
145 }
146
147 static struct pipe_buf_operations user_page_pipe_buf_ops = {
148         .can_merge = 0,
149         .map = generic_pipe_buf_map,
150         .unmap = generic_pipe_buf_unmap,
151         .pin = generic_pipe_buf_pin,
152         .release = page_cache_pipe_buf_release,
153         .steal = user_page_pipe_buf_steal,
154         .get = generic_pipe_buf_get,
155 };
156
157 /*
158  * Pipe output worker. This sets up our pipe format with the page cache
159  * pipe buffer operations. Otherwise very similar to the regular pipe_writev().
160  */
161 static ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
162                               struct splice_pipe_desc *spd)
163 {
164         int ret, do_wakeup, page_nr;
165
166         ret = 0;
167         do_wakeup = 0;
168         page_nr = 0;
169
170         if (pipe->inode)
171                 mutex_lock(&pipe->inode->i_mutex);
172
173         for (;;) {
174                 if (!pipe->readers) {
175                         send_sig(SIGPIPE, current, 0);
176                         if (!ret)
177                                 ret = -EPIPE;
178                         break;
179                 }
180
181                 if (pipe->nrbufs < PIPE_BUFFERS) {
182                         int newbuf = (pipe->curbuf + pipe->nrbufs) & (PIPE_BUFFERS - 1);
183                         struct pipe_buffer *buf = pipe->bufs + newbuf;
184
185                         buf->page = spd->pages[page_nr];
186                         buf->offset = spd->partial[page_nr].offset;
187                         buf->len = spd->partial[page_nr].len;
188                         buf->ops = spd->ops;
189                         if (spd->flags & SPLICE_F_GIFT)
190                                 buf->flags |= PIPE_BUF_FLAG_GIFT;
191
192                         pipe->nrbufs++;
193                         page_nr++;
194                         ret += buf->len;
195
196                         if (pipe->inode)
197                                 do_wakeup = 1;
198
199                         if (!--spd->nr_pages)
200                                 break;
201                         if (pipe->nrbufs < PIPE_BUFFERS)
202                                 continue;
203
204                         break;
205                 }
206
207                 if (spd->flags & SPLICE_F_NONBLOCK) {
208                         if (!ret)
209                                 ret = -EAGAIN;
210                         break;
211                 }
212
213                 if (signal_pending(current)) {
214                         if (!ret)
215                                 ret = -ERESTARTSYS;
216                         break;
217                 }
218
219                 if (do_wakeup) {
220                         smp_mb();
221                         if (waitqueue_active(&pipe->wait))
222                                 wake_up_interruptible_sync(&pipe->wait);
223                         kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
224                         do_wakeup = 0;
225                 }
226
227                 pipe->waiting_writers++;
228                 pipe_wait(pipe);
229                 pipe->waiting_writers--;
230         }
231
232         if (pipe->inode)
233                 mutex_unlock(&pipe->inode->i_mutex);
234
235         if (do_wakeup) {
236                 smp_mb();
237                 if (waitqueue_active(&pipe->wait))
238                         wake_up_interruptible(&pipe->wait);
239                 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
240         }
241
242         while (page_nr < spd->nr_pages)
243                 page_cache_release(spd->pages[page_nr++]);
244
245         return ret;
246 }
247
248 static int
249 __generic_file_splice_read(struct file *in, loff_t *ppos,
250                            struct pipe_inode_info *pipe, size_t len,
251                            unsigned int flags)
252 {
253         struct address_space *mapping = in->f_mapping;
254         unsigned int loff, nr_pages;
255         struct page *pages[PIPE_BUFFERS];
256         struct partial_page partial[PIPE_BUFFERS];
257         struct page *page;
258         pgoff_t index, end_index;
259         loff_t isize;
260         size_t total_len;
261         int error, page_nr;
262         struct splice_pipe_desc spd = {
263                 .pages = pages,
264                 .partial = partial,
265                 .flags = flags,
266                 .ops = &page_cache_pipe_buf_ops,
267         };
268
269         index = *ppos >> PAGE_CACHE_SHIFT;
270         loff = *ppos & ~PAGE_CACHE_MASK;
271         nr_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
272
273         if (nr_pages > PIPE_BUFFERS)
274                 nr_pages = PIPE_BUFFERS;
275
276         /*
277          * Initiate read-ahead on this page range. however, don't call into
278          * read-ahead if this is a non-zero offset (we are likely doing small
279          * chunk splice and the page is already there) for a single page.
280          */
281         if (!loff || nr_pages > 1)
282                 page_cache_readahead(mapping, &in->f_ra, in, index, nr_pages);
283
284         /*
285          * Now fill in the holes:
286          */
287         error = 0;
288         total_len = 0;
289
290         /*
291          * Lookup the (hopefully) full range of pages we need.
292          */
293         spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, pages);
294
295         /*
296          * If find_get_pages_contig() returned fewer pages than we needed,
297          * allocate the rest.
298          */
299         index += spd.nr_pages;
300         while (spd.nr_pages < nr_pages) {
301                 /*
302                  * Page could be there, find_get_pages_contig() breaks on
303                  * the first hole.
304                  */
305                 page = find_get_page(mapping, index);
306                 if (!page) {
307                         /*
308                          * Make sure the read-ahead engine is notified
309                          * about this failure.
310                          */
311                         handle_ra_miss(mapping, &in->f_ra, index);
312
313                         /*
314                          * page didn't exist, allocate one.
315                          */
316                         page = page_cache_alloc_cold(mapping);
317                         if (!page)
318                                 break;
319
320                         error = add_to_page_cache_lru(page, mapping, index,
321                                               mapping_gfp_mask(mapping));
322                         if (unlikely(error)) {
323                                 page_cache_release(page);
324                                 break;
325                         }
326                         /*
327                          * add_to_page_cache() locks the page, unlock it
328                          * to avoid convoluting the logic below even more.
329                          */
330                         unlock_page(page);
331                 }
332
333                 pages[spd.nr_pages++] = page;
334                 index++;
335         }
336
337         /*
338          * Now loop over the map and see if we need to start IO on any
339          * pages, fill in the partial map, etc.
340          */
341         index = *ppos >> PAGE_CACHE_SHIFT;
342         nr_pages = spd.nr_pages;
343         spd.nr_pages = 0;
344         for (page_nr = 0; page_nr < nr_pages; page_nr++) {
345                 unsigned int this_len;
346
347                 if (!len)
348                         break;
349
350                 /*
351                  * this_len is the max we'll use from this page
352                  */
353                 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
354                 page = pages[page_nr];
355
356                 /*
357                  * If the page isn't uptodate, we may need to start io on it
358                  */
359                 if (!PageUptodate(page)) {
360                         /*
361                          * If in nonblock mode then dont block on waiting
362                          * for an in-flight io page
363                          */
364                         if (flags & SPLICE_F_NONBLOCK)
365                                 break;
366
367                         lock_page(page);
368
369                         /*
370                          * page was truncated, stop here. if this isn't the
371                          * first page, we'll just complete what we already
372                          * added
373                          */
374                         if (!page->mapping) {
375                                 unlock_page(page);
376                                 break;
377                         }
378                         /*
379                          * page was already under io and is now done, great
380                          */
381                         if (PageUptodate(page)) {
382                                 unlock_page(page);
383                                 goto fill_it;
384                         }
385
386                         /*
387                          * need to read in the page
388                          */
389                         error = mapping->a_ops->readpage(in, page);
390                         if (unlikely(error)) {
391                                 /*
392                                  * We really should re-lookup the page here,
393                                  * but it complicates things a lot. Instead
394                                  * lets just do what we already stored, and
395                                  * we'll get it the next time we are called.
396                                  */
397                                 if (error == AOP_TRUNCATED_PAGE)
398                                         error = 0;
399
400                                 break;
401                         }
402
403                         /*
404                          * i_size must be checked after ->readpage().
405                          */
406                         isize = i_size_read(mapping->host);
407                         end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
408                         if (unlikely(!isize || index > end_index))
409                                 break;
410
411                         /*
412                          * if this is the last page, see if we need to shrink
413                          * the length and stop
414                          */
415                         if (end_index == index) {
416                                 loff = PAGE_CACHE_SIZE - (isize & ~PAGE_CACHE_MASK);
417                                 if (total_len + loff > isize)
418                                         break;
419                                 /*
420                                  * force quit after adding this page
421                                  */
422                                 len = this_len;
423                                 this_len = min(this_len, loff);
424                                 loff = 0;
425                         }
426                 }
427 fill_it:
428                 partial[page_nr].offset = loff;
429                 partial[page_nr].len = this_len;
430                 len -= this_len;
431                 total_len += this_len;
432                 loff = 0;
433                 spd.nr_pages++;
434                 index++;
435         }
436
437         /*
438          * Release any pages at the end, if we quit early. 'i' is how far
439          * we got, 'nr_pages' is how many pages are in the map.
440          */
441         while (page_nr < nr_pages)
442                 page_cache_release(pages[page_nr++]);
443
444         if (spd.nr_pages)
445                 return splice_to_pipe(pipe, &spd);
446
447         return error;
448 }
449
450 /**
451  * generic_file_splice_read - splice data from file to a pipe
452  * @in:         file to splice from
453  * @pipe:       pipe to splice to
454  * @len:        number of bytes to splice
455  * @flags:      splice modifier flags
456  *
457  * Will read pages from given file and fill them into a pipe.
458  */
459 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
460                                  struct pipe_inode_info *pipe, size_t len,
461                                  unsigned int flags)
462 {
463         ssize_t spliced;
464         int ret;
465
466         ret = 0;
467         spliced = 0;
468
469         while (len) {
470                 ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
471
472                 if (ret < 0)
473                         break;
474                 else if (!ret) {
475                         if (spliced)
476                                 break;
477                         if (flags & SPLICE_F_NONBLOCK) {
478                                 ret = -EAGAIN;
479                                 break;
480                         }
481                 }
482
483                 *ppos += ret;
484                 len -= ret;
485                 spliced += ret;
486         }
487
488         if (spliced)
489                 return spliced;
490
491         return ret;
492 }
493
494 EXPORT_SYMBOL(generic_file_splice_read);
495
496 /*
497  * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
498  * using sendpage(). Return the number of bytes sent.
499  */
500 static int pipe_to_sendpage(struct pipe_inode_info *info,
501                             struct pipe_buffer *buf, struct splice_desc *sd)
502 {
503         struct file *file = sd->file;
504         loff_t pos = sd->pos;
505         int ret, more;
506
507         ret = buf->ops->pin(info, buf);
508         if (!ret) {
509                 more = (sd->flags & SPLICE_F_MORE) || sd->len < sd->total_len;
510
511                 ret = file->f_op->sendpage(file, buf->page, buf->offset,
512                                            sd->len, &pos, more);
513         }
514
515         return ret;
516 }
517
518 /*
519  * This is a little more tricky than the file -> pipe splicing. There are
520  * basically three cases:
521  *
522  *      - Destination page already exists in the address space and there
523  *        are users of it. For that case we have no other option that
524  *        copying the data. Tough luck.
525  *      - Destination page already exists in the address space, but there
526  *        are no users of it. Make sure it's uptodate, then drop it. Fall
527  *        through to last case.
528  *      - Destination page does not exist, we can add the pipe page to
529  *        the page cache and avoid the copy.
530  *
531  * If asked to move pages to the output file (SPLICE_F_MOVE is set in
532  * sd->flags), we attempt to migrate pages from the pipe to the output
533  * file address space page cache. This is possible if no one else has
534  * the pipe page referenced outside of the pipe and page cache. If
535  * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
536  * a new page in the output file page cache and fill/dirty that.
537  */
538 static int pipe_to_file(struct pipe_inode_info *info, struct pipe_buffer *buf,
539                         struct splice_desc *sd)
540 {
541         struct file *file = sd->file;
542         struct address_space *mapping = file->f_mapping;
543         gfp_t gfp_mask = mapping_gfp_mask(mapping);
544         unsigned int offset, this_len;
545         struct page *page;
546         pgoff_t index;
547         int ret;
548
549         /*
550          * make sure the data in this buffer is uptodate
551          */
552         ret = buf->ops->pin(info, buf);
553         if (unlikely(ret))
554                 return ret;
555
556         index = sd->pos >> PAGE_CACHE_SHIFT;
557         offset = sd->pos & ~PAGE_CACHE_MASK;
558
559         this_len = sd->len;
560         if (this_len + offset > PAGE_CACHE_SIZE)
561                 this_len = PAGE_CACHE_SIZE - offset;
562
563         /*
564          * Reuse buf page, if SPLICE_F_MOVE is set and we are doing a full
565          * page.
566          */
567         if ((sd->flags & SPLICE_F_MOVE) && this_len == PAGE_CACHE_SIZE) {
568                 /*
569                  * If steal succeeds, buf->page is now pruned from the vm
570                  * side (page cache) and we can reuse it. The page will also
571                  * be locked on successful return.
572                  */
573                 if (buf->ops->steal(info, buf))
574                         goto find_page;
575
576                 page = buf->page;
577                 page_cache_get(page);
578
579                 /*
580                  * page must be on the LRU for adding to the pagecache.
581                  * Check this without grabbing the zone lock, if it isn't
582                  * the do grab the zone lock, recheck, and add if necessary.
583                  */
584                 if (!PageLRU(page)) {
585                         struct zone *zone = page_zone(page);
586
587                         spin_lock_irq(&zone->lru_lock);
588                         if (!PageLRU(page)) {
589                                 SetPageLRU(page);
590                                 add_page_to_inactive_list(zone, page);
591                         }
592                         spin_unlock_irq(&zone->lru_lock);
593                 }
594
595                 if (add_to_page_cache(page, mapping, index, gfp_mask)) {
596                         page_cache_release(page);
597                         unlock_page(page);
598                         goto find_page;
599                 }
600         } else {
601 find_page:
602                 page = find_lock_page(mapping, index);
603                 if (!page) {
604                         ret = -ENOMEM;
605                         page = page_cache_alloc_cold(mapping);
606                         if (unlikely(!page))
607                                 goto out_nomem;
608
609                         /*
610                          * This will also lock the page
611                          */
612                         ret = add_to_page_cache_lru(page, mapping, index,
613                                                     gfp_mask);
614                         if (unlikely(ret))
615                                 goto out;
616                 }
617
618                 /*
619                  * We get here with the page locked. If the page is also
620                  * uptodate, we don't need to do more. If it isn't, we
621                  * may need to bring it in if we are not going to overwrite
622                  * the full page.
623                  */
624                 if (!PageUptodate(page)) {
625                         if (this_len < PAGE_CACHE_SIZE) {
626                                 ret = mapping->a_ops->readpage(file, page);
627                                 if (unlikely(ret))
628                                         goto out;
629
630                                 lock_page(page);
631
632                                 if (!PageUptodate(page)) {
633                                         /*
634                                          * Page got invalidated, repeat.
635                                          */
636                                         if (!page->mapping) {
637                                                 unlock_page(page);
638                                                 page_cache_release(page);
639                                                 goto find_page;
640                                         }
641                                         ret = -EIO;
642                                         goto out;
643                                 }
644                         } else
645                                 SetPageUptodate(page);
646                 }
647         }
648
649         ret = mapping->a_ops->prepare_write(file, page, offset, offset+this_len);
650         if (ret == AOP_TRUNCATED_PAGE) {
651                 page_cache_release(page);
652                 goto find_page;
653         } else if (ret)
654                 goto out;
655
656         if (buf->page != page) {
657                 /*
658                  * Careful, ->map() uses KM_USER0!
659                  */
660                 char *src = buf->ops->map(info, buf, 1);
661                 char *dst = kmap_atomic(page, KM_USER1);
662
663                 memcpy(dst + offset, src + buf->offset, this_len);
664                 flush_dcache_page(page);
665                 kunmap_atomic(dst, KM_USER1);
666                 buf->ops->unmap(info, buf, src);
667         }
668
669         ret = mapping->a_ops->commit_write(file, page, offset, offset+this_len);
670         if (!ret) {
671                 /*
672                  * Return the number of bytes written and mark page as
673                  * accessed, we are now done!
674                  */
675                 ret = this_len;
676                 mark_page_accessed(page);
677                 balance_dirty_pages_ratelimited(mapping);
678         } else if (ret == AOP_TRUNCATED_PAGE) {
679                 page_cache_release(page);
680                 goto find_page;
681         }
682 out:
683         page_cache_release(page);
684         unlock_page(page);
685 out_nomem:
686         return ret;
687 }
688
689 /*
690  * Pipe input worker. Most of this logic works like a regular pipe, the
691  * key here is the 'actor' worker passed in that actually moves the data
692  * to the wanted destination. See pipe_to_file/pipe_to_sendpage above.
693  */
694 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
695                          loff_t *ppos, size_t len, unsigned int flags,
696                          splice_actor *actor)
697 {
698         int ret, do_wakeup, err;
699         struct splice_desc sd;
700
701         ret = 0;
702         do_wakeup = 0;
703
704         sd.total_len = len;
705         sd.flags = flags;
706         sd.file = out;
707         sd.pos = *ppos;
708
709         if (pipe->inode)
710                 mutex_lock(&pipe->inode->i_mutex);
711
712         for (;;) {
713                 if (pipe->nrbufs) {
714                         struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
715                         struct pipe_buf_operations *ops = buf->ops;
716
717                         sd.len = buf->len;
718                         if (sd.len > sd.total_len)
719                                 sd.len = sd.total_len;
720
721                         err = actor(pipe, buf, &sd);
722                         if (err <= 0) {
723                                 if (!ret && err != -ENODATA)
724                                         ret = err;
725
726                                 break;
727                         }
728
729                         ret += err;
730                         buf->offset += err;
731                         buf->len -= err;
732
733                         sd.len -= err;
734                         sd.pos += err;
735                         sd.total_len -= err;
736                         if (sd.len)
737                                 continue;
738
739                         if (!buf->len) {
740                                 buf->ops = NULL;
741                                 ops->release(pipe, buf);
742                                 pipe->curbuf = (pipe->curbuf + 1) & (PIPE_BUFFERS - 1);
743                                 pipe->nrbufs--;
744                                 if (pipe->inode)
745                                         do_wakeup = 1;
746                         }
747
748                         if (!sd.total_len)
749                                 break;
750                 }
751
752                 if (pipe->nrbufs)
753                         continue;
754                 if (!pipe->writers)
755                         break;
756                 if (!pipe->waiting_writers) {
757                         if (ret)
758                                 break;
759                 }
760
761                 if (flags & SPLICE_F_NONBLOCK) {
762                         if (!ret)
763                                 ret = -EAGAIN;
764                         break;
765                 }
766
767                 if (signal_pending(current)) {
768                         if (!ret)
769                                 ret = -ERESTARTSYS;
770                         break;
771                 }
772
773                 if (do_wakeup) {
774                         smp_mb();
775                         if (waitqueue_active(&pipe->wait))
776                                 wake_up_interruptible_sync(&pipe->wait);
777                         kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
778                         do_wakeup = 0;
779                 }
780
781                 pipe_wait(pipe);
782         }
783
784         if (pipe->inode)
785                 mutex_unlock(&pipe->inode->i_mutex);
786
787         if (do_wakeup) {
788                 smp_mb();
789                 if (waitqueue_active(&pipe->wait))
790                         wake_up_interruptible(&pipe->wait);
791                 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
792         }
793
794         return ret;
795 }
796
797 /**
798  * generic_file_splice_write - splice data from a pipe to a file
799  * @pipe:       pipe info
800  * @out:        file to write to
801  * @len:        number of bytes to splice
802  * @flags:      splice modifier flags
803  *
804  * Will either move or copy pages (determined by @flags options) from
805  * the given pipe inode to the given file.
806  *
807  */
808 ssize_t
809 generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
810                           loff_t *ppos, size_t len, unsigned int flags)
811 {
812         struct address_space *mapping = out->f_mapping;
813         ssize_t ret;
814
815         ret = splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_file);
816         if (ret > 0) {
817                 struct inode *inode = mapping->host;
818
819                 *ppos += ret;
820
821                 /*
822                  * If file or inode is SYNC and we actually wrote some data,
823                  * sync it.
824                  */
825                 if (unlikely((out->f_flags & O_SYNC) || IS_SYNC(inode))) {
826                         int err;
827
828                         mutex_lock(&inode->i_mutex);
829                         err = generic_osync_inode(inode, mapping,
830                                                   OSYNC_METADATA|OSYNC_DATA);
831                         mutex_unlock(&inode->i_mutex);
832
833                         if (err)
834                                 ret = err;
835                 }
836         }
837
838         return ret;
839 }
840
841 EXPORT_SYMBOL(generic_file_splice_write);
842
843 /**
844  * generic_splice_sendpage - splice data from a pipe to a socket
845  * @inode:      pipe inode
846  * @out:        socket to write to
847  * @len:        number of bytes to splice
848  * @flags:      splice modifier flags
849  *
850  * Will send @len bytes from the pipe to a network socket. No data copying
851  * is involved.
852  *
853  */
854 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
855                                 loff_t *ppos, size_t len, unsigned int flags)
856 {
857         return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
858 }
859
860 EXPORT_SYMBOL(generic_splice_sendpage);
861
862 /*
863  * Attempt to initiate a splice from pipe to file.
864  */
865 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
866                            loff_t *ppos, size_t len, unsigned int flags)
867 {
868         int ret;
869
870         if (unlikely(!out->f_op || !out->f_op->splice_write))
871                 return -EINVAL;
872
873         if (unlikely(!(out->f_mode & FMODE_WRITE)))
874                 return -EBADF;
875
876         ret = rw_verify_area(WRITE, out, ppos, len);
877         if (unlikely(ret < 0))
878                 return ret;
879
880         return out->f_op->splice_write(pipe, out, ppos, len, flags);
881 }
882
883 /*
884  * Attempt to initiate a splice from a file to a pipe.
885  */
886 static long do_splice_to(struct file *in, loff_t *ppos,
887                          struct pipe_inode_info *pipe, size_t len,
888                          unsigned int flags)
889 {
890         loff_t isize, left;
891         int ret;
892
893         if (unlikely(!in->f_op || !in->f_op->splice_read))
894                 return -EINVAL;
895
896         if (unlikely(!(in->f_mode & FMODE_READ)))
897                 return -EBADF;
898
899         ret = rw_verify_area(READ, in, ppos, len);
900         if (unlikely(ret < 0))
901                 return ret;
902
903         isize = i_size_read(in->f_mapping->host);
904         if (unlikely(*ppos >= isize))
905                 return 0;
906         
907         left = isize - *ppos;
908         if (unlikely(left < len))
909                 len = left;
910
911         return in->f_op->splice_read(in, ppos, pipe, len, flags);
912 }
913
914 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
915                       size_t len, unsigned int flags)
916 {
917         struct pipe_inode_info *pipe;
918         long ret, bytes;
919         loff_t out_off;
920         umode_t i_mode;
921         int i;
922
923         /*
924          * We require the input being a regular file, as we don't want to
925          * randomly drop data for eg socket -> socket splicing. Use the
926          * piped splicing for that!
927          */
928         i_mode = in->f_dentry->d_inode->i_mode;
929         if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
930                 return -EINVAL;
931
932         /*
933          * neither in nor out is a pipe, setup an internal pipe attached to
934          * 'out' and transfer the wanted data from 'in' to 'out' through that
935          */
936         pipe = current->splice_pipe;
937         if (unlikely(!pipe)) {
938                 pipe = alloc_pipe_info(NULL);
939                 if (!pipe)
940                         return -ENOMEM;
941
942                 /*
943                  * We don't have an immediate reader, but we'll read the stuff
944                  * out of the pipe right after the splice_to_pipe(). So set
945                  * PIPE_READERS appropriately.
946                  */
947                 pipe->readers = 1;
948
949                 current->splice_pipe = pipe;
950         }
951
952         /*
953          * Do the splice.
954          */
955         ret = 0;
956         bytes = 0;
957         out_off = 0;
958
959         while (len) {
960                 size_t read_len, max_read_len;
961
962                 /*
963                  * Do at most PIPE_BUFFERS pages worth of transfer:
964                  */
965                 max_read_len = min(len, (size_t)(PIPE_BUFFERS*PAGE_SIZE));
966
967                 ret = do_splice_to(in, ppos, pipe, max_read_len, flags);
968                 if (unlikely(ret < 0))
969                         goto out_release;
970
971                 read_len = ret;
972
973                 /*
974                  * NOTE: nonblocking mode only applies to the input. We
975                  * must not do the output in nonblocking mode as then we
976                  * could get stuck data in the internal pipe:
977                  */
978                 ret = do_splice_from(pipe, out, &out_off, read_len,
979                                      flags & ~SPLICE_F_NONBLOCK);
980                 if (unlikely(ret < 0))
981                         goto out_release;
982
983                 bytes += ret;
984                 len -= ret;
985
986                 /*
987                  * In nonblocking mode, if we got back a short read then
988                  * that was due to either an IO error or due to the
989                  * pagecache entry not being there. In the IO error case
990                  * the _next_ splice attempt will produce a clean IO error
991                  * return value (not a short read), so in both cases it's
992                  * correct to break out of the loop here:
993                  */
994                 if ((flags & SPLICE_F_NONBLOCK) && (read_len < max_read_len))
995                         break;
996         }
997
998         pipe->nrbufs = pipe->curbuf = 0;
999
1000         return bytes;
1001
1002 out_release:
1003         /*
1004          * If we did an incomplete transfer we must release
1005          * the pipe buffers in question:
1006          */
1007         for (i = 0; i < PIPE_BUFFERS; i++) {
1008                 struct pipe_buffer *buf = pipe->bufs + i;
1009
1010                 if (buf->ops) {
1011                         buf->ops->release(pipe, buf);
1012                         buf->ops = NULL;
1013                 }
1014         }
1015         pipe->nrbufs = pipe->curbuf = 0;
1016
1017         /*
1018          * If we transferred some data, return the number of bytes:
1019          */
1020         if (bytes > 0)
1021                 return bytes;
1022
1023         return ret;
1024 }
1025
1026 EXPORT_SYMBOL(do_splice_direct);
1027
1028 /*
1029  * Determine where to splice to/from.
1030  */
1031 static long do_splice(struct file *in, loff_t __user *off_in,
1032                       struct file *out, loff_t __user *off_out,
1033                       size_t len, unsigned int flags)
1034 {
1035         struct pipe_inode_info *pipe;
1036         loff_t offset, *off;
1037         long ret;
1038
1039         pipe = in->f_dentry->d_inode->i_pipe;
1040         if (pipe) {
1041                 if (off_in)
1042                         return -ESPIPE;
1043                 if (off_out) {
1044                         if (out->f_op->llseek == no_llseek)
1045                                 return -EINVAL;
1046                         if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1047                                 return -EFAULT;
1048                         off = &offset;
1049                 } else
1050                         off = &out->f_pos;
1051
1052                 ret = do_splice_from(pipe, out, off, len, flags);
1053
1054                 if (off_out && copy_to_user(off_out, off, sizeof(loff_t)))
1055                         ret = -EFAULT;
1056
1057                 return ret;
1058         }
1059
1060         pipe = out->f_dentry->d_inode->i_pipe;
1061         if (pipe) {
1062                 if (off_out)
1063                         return -ESPIPE;
1064                 if (off_in) {
1065                         if (in->f_op->llseek == no_llseek)
1066                                 return -EINVAL;
1067                         if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1068                                 return -EFAULT;
1069                         off = &offset;
1070                 } else
1071                         off = &in->f_pos;
1072
1073                 ret = do_splice_to(in, off, pipe, len, flags);
1074
1075                 if (off_in && copy_to_user(off_in, off, sizeof(loff_t)))
1076                         ret = -EFAULT;
1077
1078                 return ret;
1079         }
1080
1081         return -EINVAL;
1082 }
1083
1084 /*
1085  * Map an iov into an array of pages and offset/length tupples. With the
1086  * partial_page structure, we can map several non-contiguous ranges into
1087  * our ones pages[] map instead of splitting that operation into pieces.
1088  * Could easily be exported as a generic helper for other users, in which
1089  * case one would probably want to add a 'max_nr_pages' parameter as well.
1090  */
1091 static int get_iovec_page_array(const struct iovec __user *iov,
1092                                 unsigned int nr_vecs, struct page **pages,
1093                                 struct partial_page *partial, int aligned)
1094 {
1095         int buffers = 0, error = 0;
1096
1097         /*
1098          * It's ok to take the mmap_sem for reading, even
1099          * across a "get_user()".
1100          */
1101         down_read(&current->mm->mmap_sem);
1102
1103         while (nr_vecs) {
1104                 unsigned long off, npages;
1105                 void __user *base;
1106                 size_t len;
1107                 int i;
1108
1109                 /*
1110                  * Get user address base and length for this iovec.
1111                  */
1112                 error = get_user(base, &iov->iov_base);
1113                 if (unlikely(error))
1114                         break;
1115                 error = get_user(len, &iov->iov_len);
1116                 if (unlikely(error))
1117                         break;
1118
1119                 /*
1120                  * Sanity check this iovec. 0 read succeeds.
1121                  */
1122                 if (unlikely(!len))
1123                         break;
1124                 error = -EFAULT;
1125                 if (unlikely(!base))
1126                         break;
1127
1128                 /*
1129                  * Get this base offset and number of pages, then map
1130                  * in the user pages.
1131                  */
1132                 off = (unsigned long) base & ~PAGE_MASK;
1133
1134                 /*
1135                  * If asked for alignment, the offset must be zero and the
1136                  * length a multiple of the PAGE_SIZE.
1137                  */
1138                 error = -EINVAL;
1139                 if (aligned && (off || len & ~PAGE_MASK))
1140                         break;
1141
1142                 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1143                 if (npages > PIPE_BUFFERS - buffers)
1144                         npages = PIPE_BUFFERS - buffers;
1145
1146                 error = get_user_pages(current, current->mm,
1147                                        (unsigned long) base, npages, 0, 0,
1148                                        &pages[buffers], NULL);
1149
1150                 if (unlikely(error <= 0))
1151                         break;
1152
1153                 /*
1154                  * Fill this contiguous range into the partial page map.
1155                  */
1156                 for (i = 0; i < error; i++) {
1157                         const int plen = min_t(size_t, len, PAGE_SIZE - off);
1158
1159                         partial[buffers].offset = off;
1160                         partial[buffers].len = plen;
1161
1162                         off = 0;
1163                         len -= plen;
1164                         buffers++;
1165                 }
1166
1167                 /*
1168                  * We didn't complete this iov, stop here since it probably
1169                  * means we have to move some of this into a pipe to
1170                  * be able to continue.
1171                  */
1172                 if (len)
1173                         break;
1174
1175                 /*
1176                  * Don't continue if we mapped fewer pages than we asked for,
1177                  * or if we mapped the max number of pages that we have
1178                  * room for.
1179                  */
1180                 if (error < npages || buffers == PIPE_BUFFERS)
1181                         break;
1182
1183                 nr_vecs--;
1184                 iov++;
1185         }
1186
1187         up_read(&current->mm->mmap_sem);
1188
1189         if (buffers)
1190                 return buffers;
1191
1192         return error;
1193 }
1194
1195 /*
1196  * vmsplice splices a user address range into a pipe. It can be thought of
1197  * as splice-from-memory, where the regular splice is splice-from-file (or
1198  * to file). In both cases the output is a pipe, naturally.
1199  *
1200  * Note that vmsplice only supports splicing _from_ user memory to a pipe,
1201  * not the other way around. Splicing from user memory is a simple operation
1202  * that can be supported without any funky alignment restrictions or nasty
1203  * vm tricks. We simply map in the user memory and fill them into a pipe.
1204  * The reverse isn't quite as easy, though. There are two possible solutions
1205  * for that:
1206  *
1207  *      - memcpy() the data internally, at which point we might as well just
1208  *        do a regular read() on the buffer anyway.
1209  *      - Lots of nasty vm tricks, that are neither fast nor flexible (it
1210  *        has restriction limitations on both ends of the pipe).
1211  *
1212  * Alas, it isn't here.
1213  *
1214  */
1215 static long do_vmsplice(struct file *file, const struct iovec __user *iov,
1216                         unsigned long nr_segs, unsigned int flags)
1217 {
1218         struct pipe_inode_info *pipe = file->f_dentry->d_inode->i_pipe;
1219         struct page *pages[PIPE_BUFFERS];
1220         struct partial_page partial[PIPE_BUFFERS];
1221         struct splice_pipe_desc spd = {
1222                 .pages = pages,
1223                 .partial = partial,
1224                 .flags = flags,
1225                 .ops = &user_page_pipe_buf_ops,
1226         };
1227
1228         if (unlikely(!pipe))
1229                 return -EBADF;
1230         if (unlikely(nr_segs > UIO_MAXIOV))
1231                 return -EINVAL;
1232         else if (unlikely(!nr_segs))
1233                 return 0;
1234
1235         spd.nr_pages = get_iovec_page_array(iov, nr_segs, pages, partial,
1236                                             flags & SPLICE_F_GIFT);
1237         if (spd.nr_pages <= 0)
1238                 return spd.nr_pages;
1239
1240         return splice_to_pipe(pipe, &spd);
1241 }
1242
1243 asmlinkage long sys_vmsplice(int fd, const struct iovec __user *iov,
1244                              unsigned long nr_segs, unsigned int flags)
1245 {
1246         struct file *file;
1247         long error;
1248         int fput;
1249
1250         error = -EBADF;
1251         file = fget_light(fd, &fput);
1252         if (file) {
1253                 if (file->f_mode & FMODE_WRITE)
1254                         error = do_vmsplice(file, iov, nr_segs, flags);
1255
1256                 fput_light(file, fput);
1257         }
1258
1259         return error;
1260 }
1261
1262 asmlinkage long sys_splice(int fd_in, loff_t __user *off_in,
1263                            int fd_out, loff_t __user *off_out,
1264                            size_t len, unsigned int flags)
1265 {
1266         long error;
1267         struct file *in, *out;
1268         int fput_in, fput_out;
1269
1270         if (unlikely(!len))
1271                 return 0;
1272
1273         error = -EBADF;
1274         in = fget_light(fd_in, &fput_in);
1275         if (in) {
1276                 if (in->f_mode & FMODE_READ) {
1277                         out = fget_light(fd_out, &fput_out);
1278                         if (out) {
1279                                 if (out->f_mode & FMODE_WRITE)
1280                                         error = do_splice(in, off_in,
1281                                                           out, off_out,
1282                                                           len, flags);
1283                                 fput_light(out, fput_out);
1284                         }
1285                 }
1286
1287                 fput_light(in, fput_in);
1288         }
1289
1290         return error;
1291 }
1292
1293 /*
1294  * Link contents of ipipe to opipe.
1295  */
1296 static int link_pipe(struct pipe_inode_info *ipipe,
1297                      struct pipe_inode_info *opipe,
1298                      size_t len, unsigned int flags)
1299 {
1300         struct pipe_buffer *ibuf, *obuf;
1301         int ret, do_wakeup, i, ipipe_first;
1302
1303         ret = do_wakeup = ipipe_first = 0;
1304
1305         /*
1306          * Potential ABBA deadlock, work around it by ordering lock
1307          * grabbing by inode address. Otherwise two different processes
1308          * could deadlock (one doing tee from A -> B, the other from B -> A).
1309          */
1310         if (ipipe->inode < opipe->inode) {
1311                 ipipe_first = 1;
1312                 mutex_lock(&ipipe->inode->i_mutex);
1313                 mutex_lock(&opipe->inode->i_mutex);
1314         } else {
1315                 mutex_lock(&opipe->inode->i_mutex);
1316                 mutex_lock(&ipipe->inode->i_mutex);
1317         }
1318
1319         for (i = 0;; i++) {
1320                 if (!opipe->readers) {
1321                         send_sig(SIGPIPE, current, 0);
1322                         if (!ret)
1323                                 ret = -EPIPE;
1324                         break;
1325                 }
1326                 if (ipipe->nrbufs - i) {
1327                         ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (PIPE_BUFFERS - 1));
1328
1329                         /*
1330                          * If we have room, fill this buffer
1331                          */
1332                         if (opipe->nrbufs < PIPE_BUFFERS) {
1333                                 int nbuf = (opipe->curbuf + opipe->nrbufs) & (PIPE_BUFFERS - 1);
1334
1335                                 /*
1336                                  * Get a reference to this pipe buffer,
1337                                  * so we can copy the contents over.
1338                                  */
1339                                 ibuf->ops->get(ipipe, ibuf);
1340
1341                                 obuf = opipe->bufs + nbuf;
1342                                 *obuf = *ibuf;
1343
1344                                 /*
1345                                  * Don't inherit the gift flag, we need to
1346                                  * prevent multiple steals of this page.
1347                                  */
1348                                 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1349
1350                                 if (obuf->len > len)
1351                                         obuf->len = len;
1352
1353                                 opipe->nrbufs++;
1354                                 do_wakeup = 1;
1355                                 ret += obuf->len;
1356                                 len -= obuf->len;
1357
1358                                 if (!len)
1359                                         break;
1360                                 if (opipe->nrbufs < PIPE_BUFFERS)
1361                                         continue;
1362                         }
1363
1364                         /*
1365                          * We have input available, but no output room.
1366                          * If we already copied data, return that. If we
1367                          * need to drop the opipe lock, it must be ordered
1368                          * last to avoid deadlocks.
1369                          */
1370                         if ((flags & SPLICE_F_NONBLOCK) || !ipipe_first) {
1371                                 if (!ret)
1372                                         ret = -EAGAIN;
1373                                 break;
1374                         }
1375                         if (signal_pending(current)) {
1376                                 if (!ret)
1377                                         ret = -ERESTARTSYS;
1378                                 break;
1379                         }
1380                         if (do_wakeup) {
1381                                 smp_mb();
1382                                 if (waitqueue_active(&opipe->wait))
1383                                         wake_up_interruptible(&opipe->wait);
1384                                 kill_fasync(&opipe->fasync_readers, SIGIO, POLL_IN);
1385                                 do_wakeup = 0;
1386                         }
1387
1388                         opipe->waiting_writers++;
1389                         pipe_wait(opipe);
1390                         opipe->waiting_writers--;
1391                         continue;
1392                 }
1393
1394                 /*
1395                  * No input buffers, do the usual checks for available
1396                  * writers and blocking and wait if necessary
1397                  */
1398                 if (!ipipe->writers)
1399                         break;
1400                 if (!ipipe->waiting_writers) {
1401                         if (ret)
1402                                 break;
1403                 }
1404                 /*
1405                  * pipe_wait() drops the ipipe mutex. To avoid deadlocks
1406                  * with another process, we can only safely do that if
1407                  * the ipipe lock is ordered last.
1408                  */
1409                 if ((flags & SPLICE_F_NONBLOCK) || ipipe_first) {
1410                         if (!ret)
1411                                 ret = -EAGAIN;
1412                         break;
1413                 }
1414                 if (signal_pending(current)) {
1415                         if (!ret)
1416                                 ret = -ERESTARTSYS;
1417                         break;
1418                 }
1419
1420                 if (waitqueue_active(&ipipe->wait))
1421                         wake_up_interruptible_sync(&ipipe->wait);
1422                 kill_fasync(&ipipe->fasync_writers, SIGIO, POLL_OUT);
1423
1424                 pipe_wait(ipipe);
1425         }
1426
1427         mutex_unlock(&ipipe->inode->i_mutex);
1428         mutex_unlock(&opipe->inode->i_mutex);
1429
1430         if (do_wakeup) {
1431                 smp_mb();
1432                 if (waitqueue_active(&opipe->wait))
1433                         wake_up_interruptible(&opipe->wait);
1434                 kill_fasync(&opipe->fasync_readers, SIGIO, POLL_IN);
1435         }
1436
1437         return ret;
1438 }
1439
1440 /*
1441  * This is a tee(1) implementation that works on pipes. It doesn't copy
1442  * any data, it simply references the 'in' pages on the 'out' pipe.
1443  * The 'flags' used are the SPLICE_F_* variants, currently the only
1444  * applicable one is SPLICE_F_NONBLOCK.
1445  */
1446 static long do_tee(struct file *in, struct file *out, size_t len,
1447                    unsigned int flags)
1448 {
1449         struct pipe_inode_info *ipipe = in->f_dentry->d_inode->i_pipe;
1450         struct pipe_inode_info *opipe = out->f_dentry->d_inode->i_pipe;
1451
1452         /*
1453          * Link ipipe to the two output pipes, consuming as we go along.
1454          */
1455         if (ipipe && opipe)
1456                 return link_pipe(ipipe, opipe, len, flags);
1457
1458         return -EINVAL;
1459 }
1460
1461 asmlinkage long sys_tee(int fdin, int fdout, size_t len, unsigned int flags)
1462 {
1463         struct file *in;
1464         int error, fput_in;
1465
1466         if (unlikely(!len))
1467                 return 0;
1468
1469         error = -EBADF;
1470         in = fget_light(fdin, &fput_in);
1471         if (in) {
1472                 if (in->f_mode & FMODE_READ) {
1473                         int fput_out;
1474                         struct file *out = fget_light(fdout, &fput_out);
1475
1476                         if (out) {
1477                                 if (out->f_mode & FMODE_WRITE)
1478                                         error = do_tee(in, out, len, flags);
1479                                 fput_light(out, fput_out);
1480                         }
1481                 }
1482                 fput_light(in, fput_in);
1483         }
1484
1485         return error;
1486 }