[PATCH] vmsplice: fix badly placed end paranthesis
[safe/jmp/linux-2.6] / fs / splice.c
1 /*
2  * "splice": joining two ropes together by interweaving their strands.
3  *
4  * This is the "extended pipe" functionality, where a pipe is used as
5  * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6  * buffer that you can use to transfer data from one end to the other.
7  *
8  * The traditional unix read/write is extended with a "splice()" operation
9  * that transfers data buffers to or from a pipe buffer.
10  *
11  * Named by Larry McVoy, original implementation from Linus, extended by
12  * Jens to support splicing to files, network, direct splicing, etc and
13  * fixing lots of bugs.
14  *
15  * Copyright (C) 2005-2006 Jens Axboe <axboe@suse.de>
16  * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17  * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
18  *
19  */
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/pipe_fs_i.h>
24 #include <linux/mm_inline.h>
25 #include <linux/swap.h>
26 #include <linux/writeback.h>
27 #include <linux/buffer_head.h>
28 #include <linux/module.h>
29 #include <linux/syscalls.h>
30 #include <linux/uio.h>
31
32 struct partial_page {
33         unsigned int offset;
34         unsigned int len;
35 };
36
37 /*
38  * Passed to splice_to_pipe
39  */
40 struct splice_pipe_desc {
41         struct page **pages;            /* page map */
42         struct partial_page *partial;   /* pages[] may not be contig */
43         int nr_pages;                   /* number of pages in map */
44         unsigned int flags;             /* splice flags */
45         struct pipe_buf_operations *ops;/* ops associated with output pipe */
46 };
47
48 /*
49  * Attempt to steal a page from a pipe buffer. This should perhaps go into
50  * a vm helper function, it's already simplified quite a bit by the
51  * addition of remove_mapping(). If success is returned, the caller may
52  * attempt to reuse this page for another destination.
53  */
54 static int page_cache_pipe_buf_steal(struct pipe_inode_info *info,
55                                      struct pipe_buffer *buf)
56 {
57         struct page *page = buf->page;
58         struct address_space *mapping = page_mapping(page);
59
60         lock_page(page);
61
62         WARN_ON(!PageUptodate(page));
63
64         /*
65          * At least for ext2 with nobh option, we need to wait on writeback
66          * completing on this page, since we'll remove it from the pagecache.
67          * Otherwise truncate wont wait on the page, allowing the disk
68          * blocks to be reused by someone else before we actually wrote our
69          * data to them. fs corruption ensues.
70          */
71         wait_on_page_writeback(page);
72
73         if (PagePrivate(page))
74                 try_to_release_page(page, mapping_gfp_mask(mapping));
75
76         if (!remove_mapping(mapping, page)) {
77                 unlock_page(page);
78                 return 1;
79         }
80
81         buf->flags |= PIPE_BUF_FLAG_LRU;
82         return 0;
83 }
84
85 static void page_cache_pipe_buf_release(struct pipe_inode_info *info,
86                                         struct pipe_buffer *buf)
87 {
88         page_cache_release(buf->page);
89         buf->page = NULL;
90         buf->flags &= ~PIPE_BUF_FLAG_LRU;
91 }
92
93 static int page_cache_pipe_buf_pin(struct pipe_inode_info *info,
94                                    struct pipe_buffer *buf)
95 {
96         struct page *page = buf->page;
97         int err;
98
99         if (!PageUptodate(page)) {
100                 lock_page(page);
101
102                 /*
103                  * Page got truncated/unhashed. This will cause a 0-byte
104                  * splice, if this is the first page.
105                  */
106                 if (!page->mapping) {
107                         err = -ENODATA;
108                         goto error;
109                 }
110
111                 /*
112                  * Uh oh, read-error from disk.
113                  */
114                 if (!PageUptodate(page)) {
115                         err = -EIO;
116                         goto error;
117                 }
118
119                 /*
120                  * Page is ok afterall, we are done.
121                  */
122                 unlock_page(page);
123         }
124
125         return 0;
126 error:
127         unlock_page(page);
128         return err;
129 }
130
131 static struct pipe_buf_operations page_cache_pipe_buf_ops = {
132         .can_merge = 0,
133         .map = generic_pipe_buf_map,
134         .unmap = generic_pipe_buf_unmap,
135         .pin = page_cache_pipe_buf_pin,
136         .release = page_cache_pipe_buf_release,
137         .steal = page_cache_pipe_buf_steal,
138         .get = generic_pipe_buf_get,
139 };
140
141 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
142                                     struct pipe_buffer *buf)
143 {
144         if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
145                 return 1;
146
147         return 0;
148 }
149
150 static struct pipe_buf_operations user_page_pipe_buf_ops = {
151         .can_merge = 0,
152         .map = generic_pipe_buf_map,
153         .unmap = generic_pipe_buf_unmap,
154         .pin = generic_pipe_buf_pin,
155         .release = page_cache_pipe_buf_release,
156         .steal = user_page_pipe_buf_steal,
157         .get = generic_pipe_buf_get,
158 };
159
160 /*
161  * Pipe output worker. This sets up our pipe format with the page cache
162  * pipe buffer operations. Otherwise very similar to the regular pipe_writev().
163  */
164 static ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
165                               struct splice_pipe_desc *spd)
166 {
167         int ret, do_wakeup, page_nr;
168
169         ret = 0;
170         do_wakeup = 0;
171         page_nr = 0;
172
173         if (pipe->inode)
174                 mutex_lock(&pipe->inode->i_mutex);
175
176         for (;;) {
177                 if (!pipe->readers) {
178                         send_sig(SIGPIPE, current, 0);
179                         if (!ret)
180                                 ret = -EPIPE;
181                         break;
182                 }
183
184                 if (pipe->nrbufs < PIPE_BUFFERS) {
185                         int newbuf = (pipe->curbuf + pipe->nrbufs) & (PIPE_BUFFERS - 1);
186                         struct pipe_buffer *buf = pipe->bufs + newbuf;
187
188                         buf->page = spd->pages[page_nr];
189                         buf->offset = spd->partial[page_nr].offset;
190                         buf->len = spd->partial[page_nr].len;
191                         buf->ops = spd->ops;
192                         if (spd->flags & SPLICE_F_GIFT)
193                                 buf->flags |= PIPE_BUF_FLAG_GIFT;
194
195                         pipe->nrbufs++;
196                         page_nr++;
197                         ret += buf->len;
198
199                         if (pipe->inode)
200                                 do_wakeup = 1;
201
202                         if (!--spd->nr_pages)
203                                 break;
204                         if (pipe->nrbufs < PIPE_BUFFERS)
205                                 continue;
206
207                         break;
208                 }
209
210                 if (spd->flags & SPLICE_F_NONBLOCK) {
211                         if (!ret)
212                                 ret = -EAGAIN;
213                         break;
214                 }
215
216                 if (signal_pending(current)) {
217                         if (!ret)
218                                 ret = -ERESTARTSYS;
219                         break;
220                 }
221
222                 if (do_wakeup) {
223                         smp_mb();
224                         if (waitqueue_active(&pipe->wait))
225                                 wake_up_interruptible_sync(&pipe->wait);
226                         kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
227                         do_wakeup = 0;
228                 }
229
230                 pipe->waiting_writers++;
231                 pipe_wait(pipe);
232                 pipe->waiting_writers--;
233         }
234
235         if (pipe->inode)
236                 mutex_unlock(&pipe->inode->i_mutex);
237
238         if (do_wakeup) {
239                 smp_mb();
240                 if (waitqueue_active(&pipe->wait))
241                         wake_up_interruptible(&pipe->wait);
242                 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
243         }
244
245         while (page_nr < spd->nr_pages)
246                 page_cache_release(spd->pages[page_nr++]);
247
248         return ret;
249 }
250
251 static int
252 __generic_file_splice_read(struct file *in, loff_t *ppos,
253                            struct pipe_inode_info *pipe, size_t len,
254                            unsigned int flags)
255 {
256         struct address_space *mapping = in->f_mapping;
257         unsigned int loff, nr_pages;
258         struct page *pages[PIPE_BUFFERS];
259         struct partial_page partial[PIPE_BUFFERS];
260         struct page *page;
261         pgoff_t index, end_index;
262         loff_t isize;
263         size_t total_len;
264         int error, page_nr;
265         struct splice_pipe_desc spd = {
266                 .pages = pages,
267                 .partial = partial,
268                 .flags = flags,
269                 .ops = &page_cache_pipe_buf_ops,
270         };
271
272         index = *ppos >> PAGE_CACHE_SHIFT;
273         loff = *ppos & ~PAGE_CACHE_MASK;
274         nr_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
275
276         if (nr_pages > PIPE_BUFFERS)
277                 nr_pages = PIPE_BUFFERS;
278
279         /*
280          * Initiate read-ahead on this page range. however, don't call into
281          * read-ahead if this is a non-zero offset (we are likely doing small
282          * chunk splice and the page is already there) for a single page.
283          */
284         if (!loff || nr_pages > 1)
285                 page_cache_readahead(mapping, &in->f_ra, in, index, nr_pages);
286
287         /*
288          * Now fill in the holes:
289          */
290         error = 0;
291         total_len = 0;
292
293         /*
294          * Lookup the (hopefully) full range of pages we need.
295          */
296         spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, pages);
297
298         /*
299          * If find_get_pages_contig() returned fewer pages than we needed,
300          * allocate the rest.
301          */
302         index += spd.nr_pages;
303         while (spd.nr_pages < nr_pages) {
304                 /*
305                  * Page could be there, find_get_pages_contig() breaks on
306                  * the first hole.
307                  */
308                 page = find_get_page(mapping, index);
309                 if (!page) {
310                         /*
311                          * Make sure the read-ahead engine is notified
312                          * about this failure.
313                          */
314                         handle_ra_miss(mapping, &in->f_ra, index);
315
316                         /*
317                          * page didn't exist, allocate one.
318                          */
319                         page = page_cache_alloc_cold(mapping);
320                         if (!page)
321                                 break;
322
323                         error = add_to_page_cache_lru(page, mapping, index,
324                                               mapping_gfp_mask(mapping));
325                         if (unlikely(error)) {
326                                 page_cache_release(page);
327                                 break;
328                         }
329                         /*
330                          * add_to_page_cache() locks the page, unlock it
331                          * to avoid convoluting the logic below even more.
332                          */
333                         unlock_page(page);
334                 }
335
336                 pages[spd.nr_pages++] = page;
337                 index++;
338         }
339
340         /*
341          * Now loop over the map and see if we need to start IO on any
342          * pages, fill in the partial map, etc.
343          */
344         index = *ppos >> PAGE_CACHE_SHIFT;
345         nr_pages = spd.nr_pages;
346         spd.nr_pages = 0;
347         for (page_nr = 0; page_nr < nr_pages; page_nr++) {
348                 unsigned int this_len;
349
350                 if (!len)
351                         break;
352
353                 /*
354                  * this_len is the max we'll use from this page
355                  */
356                 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
357                 page = pages[page_nr];
358
359                 /*
360                  * If the page isn't uptodate, we may need to start io on it
361                  */
362                 if (!PageUptodate(page)) {
363                         /*
364                          * If in nonblock mode then dont block on waiting
365                          * for an in-flight io page
366                          */
367                         if (flags & SPLICE_F_NONBLOCK)
368                                 break;
369
370                         lock_page(page);
371
372                         /*
373                          * page was truncated, stop here. if this isn't the
374                          * first page, we'll just complete what we already
375                          * added
376                          */
377                         if (!page->mapping) {
378                                 unlock_page(page);
379                                 break;
380                         }
381                         /*
382                          * page was already under io and is now done, great
383                          */
384                         if (PageUptodate(page)) {
385                                 unlock_page(page);
386                                 goto fill_it;
387                         }
388
389                         /*
390                          * need to read in the page
391                          */
392                         error = mapping->a_ops->readpage(in, page);
393                         if (unlikely(error)) {
394                                 /*
395                                  * We really should re-lookup the page here,
396                                  * but it complicates things a lot. Instead
397                                  * lets just do what we already stored, and
398                                  * we'll get it the next time we are called.
399                                  */
400                                 if (error == AOP_TRUNCATED_PAGE)
401                                         error = 0;
402
403                                 break;
404                         }
405
406                         /*
407                          * i_size must be checked after ->readpage().
408                          */
409                         isize = i_size_read(mapping->host);
410                         end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
411                         if (unlikely(!isize || index > end_index))
412                                 break;
413
414                         /*
415                          * if this is the last page, see if we need to shrink
416                          * the length and stop
417                          */
418                         if (end_index == index) {
419                                 loff = PAGE_CACHE_SIZE - (isize & ~PAGE_CACHE_MASK);
420                                 if (total_len + loff > isize)
421                                         break;
422                                 /*
423                                  * force quit after adding this page
424                                  */
425                                 len = this_len;
426                                 this_len = min(this_len, loff);
427                                 loff = 0;
428                         }
429                 }
430 fill_it:
431                 partial[page_nr].offset = loff;
432                 partial[page_nr].len = this_len;
433                 len -= this_len;
434                 total_len += this_len;
435                 loff = 0;
436                 spd.nr_pages++;
437                 index++;
438         }
439
440         /*
441          * Release any pages at the end, if we quit early. 'i' is how far
442          * we got, 'nr_pages' is how many pages are in the map.
443          */
444         while (page_nr < nr_pages)
445                 page_cache_release(pages[page_nr++]);
446
447         if (spd.nr_pages)
448                 return splice_to_pipe(pipe, &spd);
449
450         return error;
451 }
452
453 /**
454  * generic_file_splice_read - splice data from file to a pipe
455  * @in:         file to splice from
456  * @pipe:       pipe to splice to
457  * @len:        number of bytes to splice
458  * @flags:      splice modifier flags
459  *
460  * Will read pages from given file and fill them into a pipe.
461  */
462 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
463                                  struct pipe_inode_info *pipe, size_t len,
464                                  unsigned int flags)
465 {
466         ssize_t spliced;
467         int ret;
468
469         ret = 0;
470         spliced = 0;
471
472         while (len) {
473                 ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
474
475                 if (ret < 0)
476                         break;
477                 else if (!ret) {
478                         if (spliced)
479                                 break;
480                         if (flags & SPLICE_F_NONBLOCK) {
481                                 ret = -EAGAIN;
482                                 break;
483                         }
484                 }
485
486                 *ppos += ret;
487                 len -= ret;
488                 spliced += ret;
489         }
490
491         if (spliced)
492                 return spliced;
493
494         return ret;
495 }
496
497 EXPORT_SYMBOL(generic_file_splice_read);
498
499 /*
500  * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
501  * using sendpage(). Return the number of bytes sent.
502  */
503 static int pipe_to_sendpage(struct pipe_inode_info *info,
504                             struct pipe_buffer *buf, struct splice_desc *sd)
505 {
506         struct file *file = sd->file;
507         loff_t pos = sd->pos;
508         int ret, more;
509
510         ret = buf->ops->pin(info, buf);
511         if (!ret) {
512                 more = (sd->flags & SPLICE_F_MORE) || sd->len < sd->total_len;
513
514                 ret = file->f_op->sendpage(file, buf->page, buf->offset,
515                                            sd->len, &pos, more);
516         }
517
518         return ret;
519 }
520
521 /*
522  * This is a little more tricky than the file -> pipe splicing. There are
523  * basically three cases:
524  *
525  *      - Destination page already exists in the address space and there
526  *        are users of it. For that case we have no other option that
527  *        copying the data. Tough luck.
528  *      - Destination page already exists in the address space, but there
529  *        are no users of it. Make sure it's uptodate, then drop it. Fall
530  *        through to last case.
531  *      - Destination page does not exist, we can add the pipe page to
532  *        the page cache and avoid the copy.
533  *
534  * If asked to move pages to the output file (SPLICE_F_MOVE is set in
535  * sd->flags), we attempt to migrate pages from the pipe to the output
536  * file address space page cache. This is possible if no one else has
537  * the pipe page referenced outside of the pipe and page cache. If
538  * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
539  * a new page in the output file page cache and fill/dirty that.
540  */
541 static int pipe_to_file(struct pipe_inode_info *info, struct pipe_buffer *buf,
542                         struct splice_desc *sd)
543 {
544         struct file *file = sd->file;
545         struct address_space *mapping = file->f_mapping;
546         gfp_t gfp_mask = mapping_gfp_mask(mapping);
547         unsigned int offset, this_len;
548         struct page *page;
549         pgoff_t index;
550         int ret;
551
552         /*
553          * make sure the data in this buffer is uptodate
554          */
555         ret = buf->ops->pin(info, buf);
556         if (unlikely(ret))
557                 return ret;
558
559         index = sd->pos >> PAGE_CACHE_SHIFT;
560         offset = sd->pos & ~PAGE_CACHE_MASK;
561
562         this_len = sd->len;
563         if (this_len + offset > PAGE_CACHE_SIZE)
564                 this_len = PAGE_CACHE_SIZE - offset;
565
566         /*
567          * Reuse buf page, if SPLICE_F_MOVE is set and we are doing a full
568          * page.
569          */
570         if ((sd->flags & SPLICE_F_MOVE) && this_len == PAGE_CACHE_SIZE) {
571                 /*
572                  * If steal succeeds, buf->page is now pruned from the vm
573                  * side (LRU and page cache) and we can reuse it. The page
574                  * will also be looked on successful return.
575                  */
576                 if (buf->ops->steal(info, buf))
577                         goto find_page;
578
579                 page = buf->page;
580                 if (add_to_page_cache(page, mapping, index, gfp_mask)) {
581                         unlock_page(page);
582                         goto find_page;
583                 }
584
585                 page_cache_get(page);
586
587                 if (!(buf->flags & PIPE_BUF_FLAG_LRU))
588                         lru_cache_add(page);
589         } else {
590 find_page:
591                 page = find_lock_page(mapping, index);
592                 if (!page) {
593                         ret = -ENOMEM;
594                         page = page_cache_alloc_cold(mapping);
595                         if (unlikely(!page))
596                                 goto out_nomem;
597
598                         /*
599                          * This will also lock the page
600                          */
601                         ret = add_to_page_cache_lru(page, mapping, index,
602                                                     gfp_mask);
603                         if (unlikely(ret))
604                                 goto out;
605                 }
606
607                 /*
608                  * We get here with the page locked. If the page is also
609                  * uptodate, we don't need to do more. If it isn't, we
610                  * may need to bring it in if we are not going to overwrite
611                  * the full page.
612                  */
613                 if (!PageUptodate(page)) {
614                         if (this_len < PAGE_CACHE_SIZE) {
615                                 ret = mapping->a_ops->readpage(file, page);
616                                 if (unlikely(ret))
617                                         goto out;
618
619                                 lock_page(page);
620
621                                 if (!PageUptodate(page)) {
622                                         /*
623                                          * Page got invalidated, repeat.
624                                          */
625                                         if (!page->mapping) {
626                                                 unlock_page(page);
627                                                 page_cache_release(page);
628                                                 goto find_page;
629                                         }
630                                         ret = -EIO;
631                                         goto out;
632                                 }
633                         } else
634                                 SetPageUptodate(page);
635                 }
636         }
637
638         ret = mapping->a_ops->prepare_write(file, page, offset, offset+this_len);
639         if (ret == AOP_TRUNCATED_PAGE) {
640                 page_cache_release(page);
641                 goto find_page;
642         } else if (ret)
643                 goto out;
644
645         if (buf->page != page) {
646                 /*
647                  * Careful, ->map() uses KM_USER0!
648                  */
649                 char *src = buf->ops->map(info, buf, 1);
650                 char *dst = kmap_atomic(page, KM_USER1);
651
652                 memcpy(dst + offset, src + buf->offset, this_len);
653                 flush_dcache_page(page);
654                 kunmap_atomic(dst, KM_USER1);
655                 buf->ops->unmap(info, buf, src);
656         }
657
658         ret = mapping->a_ops->commit_write(file, page, offset, offset+this_len);
659         if (!ret) {
660                 /*
661                  * Return the number of bytes written and mark page as
662                  * accessed, we are now done!
663                  */
664                 ret = this_len;
665                 mark_page_accessed(page);
666                 balance_dirty_pages_ratelimited(mapping);
667         } else if (ret == AOP_TRUNCATED_PAGE) {
668                 page_cache_release(page);
669                 goto find_page;
670         }
671 out:
672         page_cache_release(page);
673         unlock_page(page);
674 out_nomem:
675         return ret;
676 }
677
678 /*
679  * Pipe input worker. Most of this logic works like a regular pipe, the
680  * key here is the 'actor' worker passed in that actually moves the data
681  * to the wanted destination. See pipe_to_file/pipe_to_sendpage above.
682  */
683 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
684                          loff_t *ppos, size_t len, unsigned int flags,
685                          splice_actor *actor)
686 {
687         int ret, do_wakeup, err;
688         struct splice_desc sd;
689
690         ret = 0;
691         do_wakeup = 0;
692
693         sd.total_len = len;
694         sd.flags = flags;
695         sd.file = out;
696         sd.pos = *ppos;
697
698         if (pipe->inode)
699                 mutex_lock(&pipe->inode->i_mutex);
700
701         for (;;) {
702                 if (pipe->nrbufs) {
703                         struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
704                         struct pipe_buf_operations *ops = buf->ops;
705
706                         sd.len = buf->len;
707                         if (sd.len > sd.total_len)
708                                 sd.len = sd.total_len;
709
710                         err = actor(pipe, buf, &sd);
711                         if (err <= 0) {
712                                 if (!ret && err != -ENODATA)
713                                         ret = err;
714
715                                 break;
716                         }
717
718                         ret += err;
719                         buf->offset += err;
720                         buf->len -= err;
721
722                         sd.len -= err;
723                         sd.pos += err;
724                         sd.total_len -= err;
725                         if (sd.len)
726                                 continue;
727
728                         if (!buf->len) {
729                                 buf->ops = NULL;
730                                 ops->release(pipe, buf);
731                                 pipe->curbuf = (pipe->curbuf + 1) & (PIPE_BUFFERS - 1);
732                                 pipe->nrbufs--;
733                                 if (pipe->inode)
734                                         do_wakeup = 1;
735                         }
736
737                         if (!sd.total_len)
738                                 break;
739                 }
740
741                 if (pipe->nrbufs)
742                         continue;
743                 if (!pipe->writers)
744                         break;
745                 if (!pipe->waiting_writers) {
746                         if (ret)
747                                 break;
748                 }
749
750                 if (flags & SPLICE_F_NONBLOCK) {
751                         if (!ret)
752                                 ret = -EAGAIN;
753                         break;
754                 }
755
756                 if (signal_pending(current)) {
757                         if (!ret)
758                                 ret = -ERESTARTSYS;
759                         break;
760                 }
761
762                 if (do_wakeup) {
763                         smp_mb();
764                         if (waitqueue_active(&pipe->wait))
765                                 wake_up_interruptible_sync(&pipe->wait);
766                         kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
767                         do_wakeup = 0;
768                 }
769
770                 pipe_wait(pipe);
771         }
772
773         if (pipe->inode)
774                 mutex_unlock(&pipe->inode->i_mutex);
775
776         if (do_wakeup) {
777                 smp_mb();
778                 if (waitqueue_active(&pipe->wait))
779                         wake_up_interruptible(&pipe->wait);
780                 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
781         }
782
783         return ret;
784 }
785
786 /**
787  * generic_file_splice_write - splice data from a pipe to a file
788  * @pipe:       pipe info
789  * @out:        file to write to
790  * @len:        number of bytes to splice
791  * @flags:      splice modifier flags
792  *
793  * Will either move or copy pages (determined by @flags options) from
794  * the given pipe inode to the given file.
795  *
796  */
797 ssize_t
798 generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
799                           loff_t *ppos, size_t len, unsigned int flags)
800 {
801         struct address_space *mapping = out->f_mapping;
802         ssize_t ret;
803
804         ret = splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_file);
805         if (ret > 0) {
806                 struct inode *inode = mapping->host;
807
808                 *ppos += ret;
809
810                 /*
811                  * If file or inode is SYNC and we actually wrote some data,
812                  * sync it.
813                  */
814                 if (unlikely((out->f_flags & O_SYNC) || IS_SYNC(inode))) {
815                         int err;
816
817                         mutex_lock(&inode->i_mutex);
818                         err = generic_osync_inode(inode, mapping,
819                                                   OSYNC_METADATA|OSYNC_DATA);
820                         mutex_unlock(&inode->i_mutex);
821
822                         if (err)
823                                 ret = err;
824                 }
825         }
826
827         return ret;
828 }
829
830 EXPORT_SYMBOL(generic_file_splice_write);
831
832 /**
833  * generic_splice_sendpage - splice data from a pipe to a socket
834  * @inode:      pipe inode
835  * @out:        socket to write to
836  * @len:        number of bytes to splice
837  * @flags:      splice modifier flags
838  *
839  * Will send @len bytes from the pipe to a network socket. No data copying
840  * is involved.
841  *
842  */
843 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
844                                 loff_t *ppos, size_t len, unsigned int flags)
845 {
846         return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
847 }
848
849 EXPORT_SYMBOL(generic_splice_sendpage);
850
851 /*
852  * Attempt to initiate a splice from pipe to file.
853  */
854 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
855                            loff_t *ppos, size_t len, unsigned int flags)
856 {
857         int ret;
858
859         if (unlikely(!out->f_op || !out->f_op->splice_write))
860                 return -EINVAL;
861
862         if (unlikely(!(out->f_mode & FMODE_WRITE)))
863                 return -EBADF;
864
865         ret = rw_verify_area(WRITE, out, ppos, len);
866         if (unlikely(ret < 0))
867                 return ret;
868
869         return out->f_op->splice_write(pipe, out, ppos, len, flags);
870 }
871
872 /*
873  * Attempt to initiate a splice from a file to a pipe.
874  */
875 static long do_splice_to(struct file *in, loff_t *ppos,
876                          struct pipe_inode_info *pipe, size_t len,
877                          unsigned int flags)
878 {
879         loff_t isize, left;
880         int ret;
881
882         if (unlikely(!in->f_op || !in->f_op->splice_read))
883                 return -EINVAL;
884
885         if (unlikely(!(in->f_mode & FMODE_READ)))
886                 return -EBADF;
887
888         ret = rw_verify_area(READ, in, ppos, len);
889         if (unlikely(ret < 0))
890                 return ret;
891
892         isize = i_size_read(in->f_mapping->host);
893         if (unlikely(*ppos >= isize))
894                 return 0;
895         
896         left = isize - *ppos;
897         if (unlikely(left < len))
898                 len = left;
899
900         return in->f_op->splice_read(in, ppos, pipe, len, flags);
901 }
902
903 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
904                       size_t len, unsigned int flags)
905 {
906         struct pipe_inode_info *pipe;
907         long ret, bytes;
908         loff_t out_off;
909         umode_t i_mode;
910         int i;
911
912         /*
913          * We require the input being a regular file, as we don't want to
914          * randomly drop data for eg socket -> socket splicing. Use the
915          * piped splicing for that!
916          */
917         i_mode = in->f_dentry->d_inode->i_mode;
918         if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
919                 return -EINVAL;
920
921         /*
922          * neither in nor out is a pipe, setup an internal pipe attached to
923          * 'out' and transfer the wanted data from 'in' to 'out' through that
924          */
925         pipe = current->splice_pipe;
926         if (unlikely(!pipe)) {
927                 pipe = alloc_pipe_info(NULL);
928                 if (!pipe)
929                         return -ENOMEM;
930
931                 /*
932                  * We don't have an immediate reader, but we'll read the stuff
933                  * out of the pipe right after the splice_to_pipe(). So set
934                  * PIPE_READERS appropriately.
935                  */
936                 pipe->readers = 1;
937
938                 current->splice_pipe = pipe;
939         }
940
941         /*
942          * Do the splice.
943          */
944         ret = 0;
945         bytes = 0;
946         out_off = 0;
947
948         while (len) {
949                 size_t read_len, max_read_len;
950
951                 /*
952                  * Do at most PIPE_BUFFERS pages worth of transfer:
953                  */
954                 max_read_len = min(len, (size_t)(PIPE_BUFFERS*PAGE_SIZE));
955
956                 ret = do_splice_to(in, ppos, pipe, max_read_len, flags);
957                 if (unlikely(ret < 0))
958                         goto out_release;
959
960                 read_len = ret;
961
962                 /*
963                  * NOTE: nonblocking mode only applies to the input. We
964                  * must not do the output in nonblocking mode as then we
965                  * could get stuck data in the internal pipe:
966                  */
967                 ret = do_splice_from(pipe, out, &out_off, read_len,
968                                      flags & ~SPLICE_F_NONBLOCK);
969                 if (unlikely(ret < 0))
970                         goto out_release;
971
972                 bytes += ret;
973                 len -= ret;
974
975                 /*
976                  * In nonblocking mode, if we got back a short read then
977                  * that was due to either an IO error or due to the
978                  * pagecache entry not being there. In the IO error case
979                  * the _next_ splice attempt will produce a clean IO error
980                  * return value (not a short read), so in both cases it's
981                  * correct to break out of the loop here:
982                  */
983                 if ((flags & SPLICE_F_NONBLOCK) && (read_len < max_read_len))
984                         break;
985         }
986
987         pipe->nrbufs = pipe->curbuf = 0;
988
989         return bytes;
990
991 out_release:
992         /*
993          * If we did an incomplete transfer we must release
994          * the pipe buffers in question:
995          */
996         for (i = 0; i < PIPE_BUFFERS; i++) {
997                 struct pipe_buffer *buf = pipe->bufs + i;
998
999                 if (buf->ops) {
1000                         buf->ops->release(pipe, buf);
1001                         buf->ops = NULL;
1002                 }
1003         }
1004         pipe->nrbufs = pipe->curbuf = 0;
1005
1006         /*
1007          * If we transferred some data, return the number of bytes:
1008          */
1009         if (bytes > 0)
1010                 return bytes;
1011
1012         return ret;
1013 }
1014
1015 EXPORT_SYMBOL(do_splice_direct);
1016
1017 /*
1018  * Determine where to splice to/from.
1019  */
1020 static long do_splice(struct file *in, loff_t __user *off_in,
1021                       struct file *out, loff_t __user *off_out,
1022                       size_t len, unsigned int flags)
1023 {
1024         struct pipe_inode_info *pipe;
1025         loff_t offset, *off;
1026         long ret;
1027
1028         pipe = in->f_dentry->d_inode->i_pipe;
1029         if (pipe) {
1030                 if (off_in)
1031                         return -ESPIPE;
1032                 if (off_out) {
1033                         if (out->f_op->llseek == no_llseek)
1034                                 return -EINVAL;
1035                         if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1036                                 return -EFAULT;
1037                         off = &offset;
1038                 } else
1039                         off = &out->f_pos;
1040
1041                 ret = do_splice_from(pipe, out, off, len, flags);
1042
1043                 if (off_out && copy_to_user(off_out, off, sizeof(loff_t)))
1044                         ret = -EFAULT;
1045
1046                 return ret;
1047         }
1048
1049         pipe = out->f_dentry->d_inode->i_pipe;
1050         if (pipe) {
1051                 if (off_out)
1052                         return -ESPIPE;
1053                 if (off_in) {
1054                         if (in->f_op->llseek == no_llseek)
1055                                 return -EINVAL;
1056                         if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1057                                 return -EFAULT;
1058                         off = &offset;
1059                 } else
1060                         off = &in->f_pos;
1061
1062                 ret = do_splice_to(in, off, pipe, len, flags);
1063
1064                 if (off_in && copy_to_user(off_in, off, sizeof(loff_t)))
1065                         ret = -EFAULT;
1066
1067                 return ret;
1068         }
1069
1070         return -EINVAL;
1071 }
1072
1073 /*
1074  * Map an iov into an array of pages and offset/length tupples. With the
1075  * partial_page structure, we can map several non-contiguous ranges into
1076  * our ones pages[] map instead of splitting that operation into pieces.
1077  * Could easily be exported as a generic helper for other users, in which
1078  * case one would probably want to add a 'max_nr_pages' parameter as well.
1079  */
1080 static int get_iovec_page_array(const struct iovec __user *iov,
1081                                 unsigned int nr_vecs, struct page **pages,
1082                                 struct partial_page *partial, int aligned)
1083 {
1084         int buffers = 0, error = 0;
1085
1086         /*
1087          * It's ok to take the mmap_sem for reading, even
1088          * across a "get_user()".
1089          */
1090         down_read(&current->mm->mmap_sem);
1091
1092         while (nr_vecs) {
1093                 unsigned long off, npages;
1094                 void __user *base;
1095                 size_t len;
1096                 int i;
1097
1098                 /*
1099                  * Get user address base and length for this iovec.
1100                  */
1101                 error = get_user(base, &iov->iov_base);
1102                 if (unlikely(error))
1103                         break;
1104                 error = get_user(len, &iov->iov_len);
1105                 if (unlikely(error))
1106                         break;
1107
1108                 /*
1109                  * Sanity check this iovec. 0 read succeeds.
1110                  */
1111                 if (unlikely(!len))
1112                         break;
1113                 error = -EFAULT;
1114                 if (unlikely(!base))
1115                         break;
1116
1117                 /*
1118                  * Get this base offset and number of pages, then map
1119                  * in the user pages.
1120                  */
1121                 off = (unsigned long) base & ~PAGE_MASK;
1122
1123                 /*
1124                  * If asked for alignment, the offset must be zero and the
1125                  * length a multiple of the PAGE_SIZE.
1126                  */
1127                 error = -EINVAL;
1128                 if (aligned && (off || len & ~PAGE_MASK))
1129                         break;
1130
1131                 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1132                 if (npages > PIPE_BUFFERS - buffers)
1133                         npages = PIPE_BUFFERS - buffers;
1134
1135                 error = get_user_pages(current, current->mm,
1136                                        (unsigned long) base, npages, 0, 0,
1137                                        &pages[buffers], NULL);
1138
1139                 if (unlikely(error <= 0))
1140                         break;
1141
1142                 /*
1143                  * Fill this contiguous range into the partial page map.
1144                  */
1145                 for (i = 0; i < error; i++) {
1146                         const int plen = min_t(size_t, len, PAGE_SIZE - off);
1147
1148                         partial[buffers].offset = off;
1149                         partial[buffers].len = plen;
1150
1151                         off = 0;
1152                         len -= plen;
1153                         buffers++;
1154                 }
1155
1156                 /*
1157                  * We didn't complete this iov, stop here since it probably
1158                  * means we have to move some of this into a pipe to
1159                  * be able to continue.
1160                  */
1161                 if (len)
1162                         break;
1163
1164                 /*
1165                  * Don't continue if we mapped fewer pages than we asked for,
1166                  * or if we mapped the max number of pages that we have
1167                  * room for.
1168                  */
1169                 if (error < npages || buffers == PIPE_BUFFERS)
1170                         break;
1171
1172                 nr_vecs--;
1173                 iov++;
1174         }
1175
1176         up_read(&current->mm->mmap_sem);
1177
1178         if (buffers)
1179                 return buffers;
1180
1181         return error;
1182 }
1183
1184 /*
1185  * vmsplice splices a user address range into a pipe. It can be thought of
1186  * as splice-from-memory, where the regular splice is splice-from-file (or
1187  * to file). In both cases the output is a pipe, naturally.
1188  *
1189  * Note that vmsplice only supports splicing _from_ user memory to a pipe,
1190  * not the other way around. Splicing from user memory is a simple operation
1191  * that can be supported without any funky alignment restrictions or nasty
1192  * vm tricks. We simply map in the user memory and fill them into a pipe.
1193  * The reverse isn't quite as easy, though. There are two possible solutions
1194  * for that:
1195  *
1196  *      - memcpy() the data internally, at which point we might as well just
1197  *        do a regular read() on the buffer anyway.
1198  *      - Lots of nasty vm tricks, that are neither fast nor flexible (it
1199  *        has restriction limitations on both ends of the pipe).
1200  *
1201  * Alas, it isn't here.
1202  *
1203  */
1204 static long do_vmsplice(struct file *file, const struct iovec __user *iov,
1205                         unsigned long nr_segs, unsigned int flags)
1206 {
1207         struct pipe_inode_info *pipe = file->f_dentry->d_inode->i_pipe;
1208         struct page *pages[PIPE_BUFFERS];
1209         struct partial_page partial[PIPE_BUFFERS];
1210         struct splice_pipe_desc spd = {
1211                 .pages = pages,
1212                 .partial = partial,
1213                 .flags = flags,
1214                 .ops = &user_page_pipe_buf_ops,
1215         };
1216
1217         if (unlikely(!pipe))
1218                 return -EBADF;
1219         if (unlikely(nr_segs > UIO_MAXIOV))
1220                 return -EINVAL;
1221         else if (unlikely(!nr_segs))
1222                 return 0;
1223
1224         spd.nr_pages = get_iovec_page_array(iov, nr_segs, pages, partial,
1225                                             flags & SPLICE_F_GIFT);
1226         if (spd.nr_pages <= 0)
1227                 return spd.nr_pages;
1228
1229         return splice_to_pipe(pipe, &spd);
1230 }
1231
1232 asmlinkage long sys_vmsplice(int fd, const struct iovec __user *iov,
1233                              unsigned long nr_segs, unsigned int flags)
1234 {
1235         struct file *file;
1236         long error;
1237         int fput;
1238
1239         error = -EBADF;
1240         file = fget_light(fd, &fput);
1241         if (file) {
1242                 if (file->f_mode & FMODE_WRITE)
1243                         error = do_vmsplice(file, iov, nr_segs, flags);
1244
1245                 fput_light(file, fput);
1246         }
1247
1248         return error;
1249 }
1250
1251 asmlinkage long sys_splice(int fd_in, loff_t __user *off_in,
1252                            int fd_out, loff_t __user *off_out,
1253                            size_t len, unsigned int flags)
1254 {
1255         long error;
1256         struct file *in, *out;
1257         int fput_in, fput_out;
1258
1259         if (unlikely(!len))
1260                 return 0;
1261
1262         error = -EBADF;
1263         in = fget_light(fd_in, &fput_in);
1264         if (in) {
1265                 if (in->f_mode & FMODE_READ) {
1266                         out = fget_light(fd_out, &fput_out);
1267                         if (out) {
1268                                 if (out->f_mode & FMODE_WRITE)
1269                                         error = do_splice(in, off_in,
1270                                                           out, off_out,
1271                                                           len, flags);
1272                                 fput_light(out, fput_out);
1273                         }
1274                 }
1275
1276                 fput_light(in, fput_in);
1277         }
1278
1279         return error;
1280 }
1281
1282 /*
1283  * Link contents of ipipe to opipe.
1284  */
1285 static int link_pipe(struct pipe_inode_info *ipipe,
1286                      struct pipe_inode_info *opipe,
1287                      size_t len, unsigned int flags)
1288 {
1289         struct pipe_buffer *ibuf, *obuf;
1290         int ret, do_wakeup, i, ipipe_first;
1291
1292         ret = do_wakeup = ipipe_first = 0;
1293
1294         /*
1295          * Potential ABBA deadlock, work around it by ordering lock
1296          * grabbing by inode address. Otherwise two different processes
1297          * could deadlock (one doing tee from A -> B, the other from B -> A).
1298          */
1299         if (ipipe->inode < opipe->inode) {
1300                 ipipe_first = 1;
1301                 mutex_lock(&ipipe->inode->i_mutex);
1302                 mutex_lock(&opipe->inode->i_mutex);
1303         } else {
1304                 mutex_lock(&opipe->inode->i_mutex);
1305                 mutex_lock(&ipipe->inode->i_mutex);
1306         }
1307
1308         for (i = 0;; i++) {
1309                 if (!opipe->readers) {
1310                         send_sig(SIGPIPE, current, 0);
1311                         if (!ret)
1312                                 ret = -EPIPE;
1313                         break;
1314                 }
1315                 if (ipipe->nrbufs - i) {
1316                         ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (PIPE_BUFFERS - 1));
1317
1318                         /*
1319                          * If we have room, fill this buffer
1320                          */
1321                         if (opipe->nrbufs < PIPE_BUFFERS) {
1322                                 int nbuf = (opipe->curbuf + opipe->nrbufs) & (PIPE_BUFFERS - 1);
1323
1324                                 /*
1325                                  * Get a reference to this pipe buffer,
1326                                  * so we can copy the contents over.
1327                                  */
1328                                 ibuf->ops->get(ipipe, ibuf);
1329
1330                                 obuf = opipe->bufs + nbuf;
1331                                 *obuf = *ibuf;
1332
1333                                 /*
1334                                  * Don't inherit the gift flag, we need to
1335                                  * prevent multiple steals of this page.
1336                                  */
1337                                 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1338
1339                                 if (obuf->len > len)
1340                                         obuf->len = len;
1341
1342                                 opipe->nrbufs++;
1343                                 do_wakeup = 1;
1344                                 ret += obuf->len;
1345                                 len -= obuf->len;
1346
1347                                 if (!len)
1348                                         break;
1349                                 if (opipe->nrbufs < PIPE_BUFFERS)
1350                                         continue;
1351                         }
1352
1353                         /*
1354                          * We have input available, but no output room.
1355                          * If we already copied data, return that. If we
1356                          * need to drop the opipe lock, it must be ordered
1357                          * last to avoid deadlocks.
1358                          */
1359                         if ((flags & SPLICE_F_NONBLOCK) || !ipipe_first) {
1360                                 if (!ret)
1361                                         ret = -EAGAIN;
1362                                 break;
1363                         }
1364                         if (signal_pending(current)) {
1365                                 if (!ret)
1366                                         ret = -ERESTARTSYS;
1367                                 break;
1368                         }
1369                         if (do_wakeup) {
1370                                 smp_mb();
1371                                 if (waitqueue_active(&opipe->wait))
1372                                         wake_up_interruptible(&opipe->wait);
1373                                 kill_fasync(&opipe->fasync_readers, SIGIO, POLL_IN);
1374                                 do_wakeup = 0;
1375                         }
1376
1377                         opipe->waiting_writers++;
1378                         pipe_wait(opipe);
1379                         opipe->waiting_writers--;
1380                         continue;
1381                 }
1382
1383                 /*
1384                  * No input buffers, do the usual checks for available
1385                  * writers and blocking and wait if necessary
1386                  */
1387                 if (!ipipe->writers)
1388                         break;
1389                 if (!ipipe->waiting_writers) {
1390                         if (ret)
1391                                 break;
1392                 }
1393                 /*
1394                  * pipe_wait() drops the ipipe mutex. To avoid deadlocks
1395                  * with another process, we can only safely do that if
1396                  * the ipipe lock is ordered last.
1397                  */
1398                 if ((flags & SPLICE_F_NONBLOCK) || ipipe_first) {
1399                         if (!ret)
1400                                 ret = -EAGAIN;
1401                         break;
1402                 }
1403                 if (signal_pending(current)) {
1404                         if (!ret)
1405                                 ret = -ERESTARTSYS;
1406                         break;
1407                 }
1408
1409                 if (waitqueue_active(&ipipe->wait))
1410                         wake_up_interruptible_sync(&ipipe->wait);
1411                 kill_fasync(&ipipe->fasync_writers, SIGIO, POLL_OUT);
1412
1413                 pipe_wait(ipipe);
1414         }
1415
1416         mutex_unlock(&ipipe->inode->i_mutex);
1417         mutex_unlock(&opipe->inode->i_mutex);
1418
1419         if (do_wakeup) {
1420                 smp_mb();
1421                 if (waitqueue_active(&opipe->wait))
1422                         wake_up_interruptible(&opipe->wait);
1423                 kill_fasync(&opipe->fasync_readers, SIGIO, POLL_IN);
1424         }
1425
1426         return ret;
1427 }
1428
1429 /*
1430  * This is a tee(1) implementation that works on pipes. It doesn't copy
1431  * any data, it simply references the 'in' pages on the 'out' pipe.
1432  * The 'flags' used are the SPLICE_F_* variants, currently the only
1433  * applicable one is SPLICE_F_NONBLOCK.
1434  */
1435 static long do_tee(struct file *in, struct file *out, size_t len,
1436                    unsigned int flags)
1437 {
1438         struct pipe_inode_info *ipipe = in->f_dentry->d_inode->i_pipe;
1439         struct pipe_inode_info *opipe = out->f_dentry->d_inode->i_pipe;
1440
1441         /*
1442          * Link ipipe to the two output pipes, consuming as we go along.
1443          */
1444         if (ipipe && opipe)
1445                 return link_pipe(ipipe, opipe, len, flags);
1446
1447         return -EINVAL;
1448 }
1449
1450 asmlinkage long sys_tee(int fdin, int fdout, size_t len, unsigned int flags)
1451 {
1452         struct file *in;
1453         int error, fput_in;
1454
1455         if (unlikely(!len))
1456                 return 0;
1457
1458         error = -EBADF;
1459         in = fget_light(fdin, &fput_in);
1460         if (in) {
1461                 if (in->f_mode & FMODE_READ) {
1462                         int fput_out;
1463                         struct file *out = fget_light(fdout, &fput_out);
1464
1465                         if (out) {
1466                                 if (out->f_mode & FMODE_WRITE)
1467                                         error = do_tee(in, out, len, flags);
1468                                 fput_light(out, fput_out);
1469                         }
1470                 }
1471                 fput_light(in, fput_in);
1472         }
1473
1474         return error;
1475 }