splice: implement default splice_read method
[safe/jmp/linux-2.6] / fs / splice.c
1 /*
2  * "splice": joining two ropes together by interweaving their strands.
3  *
4  * This is the "extended pipe" functionality, where a pipe is used as
5  * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6  * buffer that you can use to transfer data from one end to the other.
7  *
8  * The traditional unix read/write is extended with a "splice()" operation
9  * that transfers data buffers to or from a pipe buffer.
10  *
11  * Named by Larry McVoy, original implementation from Linus, extended by
12  * Jens to support splicing to files, network, direct splicing, etc and
13  * fixing lots of bugs.
14  *
15  * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16  * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17  * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
18  *
19  */
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/splice.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm_inline.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/buffer_head.h>
29 #include <linux/module.h>
30 #include <linux/syscalls.h>
31 #include <linux/uio.h>
32 #include <linux/security.h>
33
34 /*
35  * Attempt to steal a page from a pipe buffer. This should perhaps go into
36  * a vm helper function, it's already simplified quite a bit by the
37  * addition of remove_mapping(). If success is returned, the caller may
38  * attempt to reuse this page for another destination.
39  */
40 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
41                                      struct pipe_buffer *buf)
42 {
43         struct page *page = buf->page;
44         struct address_space *mapping;
45
46         lock_page(page);
47
48         mapping = page_mapping(page);
49         if (mapping) {
50                 WARN_ON(!PageUptodate(page));
51
52                 /*
53                  * At least for ext2 with nobh option, we need to wait on
54                  * writeback completing on this page, since we'll remove it
55                  * from the pagecache.  Otherwise truncate wont wait on the
56                  * page, allowing the disk blocks to be reused by someone else
57                  * before we actually wrote our data to them. fs corruption
58                  * ensues.
59                  */
60                 wait_on_page_writeback(page);
61
62                 if (page_has_private(page) &&
63                     !try_to_release_page(page, GFP_KERNEL))
64                         goto out_unlock;
65
66                 /*
67                  * If we succeeded in removing the mapping, set LRU flag
68                  * and return good.
69                  */
70                 if (remove_mapping(mapping, page)) {
71                         buf->flags |= PIPE_BUF_FLAG_LRU;
72                         return 0;
73                 }
74         }
75
76         /*
77          * Raced with truncate or failed to remove page from current
78          * address space, unlock and return failure.
79          */
80 out_unlock:
81         unlock_page(page);
82         return 1;
83 }
84
85 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
86                                         struct pipe_buffer *buf)
87 {
88         page_cache_release(buf->page);
89         buf->flags &= ~PIPE_BUF_FLAG_LRU;
90 }
91
92 /*
93  * Check whether the contents of buf is OK to access. Since the content
94  * is a page cache page, IO may be in flight.
95  */
96 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
97                                        struct pipe_buffer *buf)
98 {
99         struct page *page = buf->page;
100         int err;
101
102         if (!PageUptodate(page)) {
103                 lock_page(page);
104
105                 /*
106                  * Page got truncated/unhashed. This will cause a 0-byte
107                  * splice, if this is the first page.
108                  */
109                 if (!page->mapping) {
110                         err = -ENODATA;
111                         goto error;
112                 }
113
114                 /*
115                  * Uh oh, read-error from disk.
116                  */
117                 if (!PageUptodate(page)) {
118                         err = -EIO;
119                         goto error;
120                 }
121
122                 /*
123                  * Page is ok afterall, we are done.
124                  */
125                 unlock_page(page);
126         }
127
128         return 0;
129 error:
130         unlock_page(page);
131         return err;
132 }
133
134 static const struct pipe_buf_operations page_cache_pipe_buf_ops = {
135         .can_merge = 0,
136         .map = generic_pipe_buf_map,
137         .unmap = generic_pipe_buf_unmap,
138         .confirm = page_cache_pipe_buf_confirm,
139         .release = page_cache_pipe_buf_release,
140         .steal = page_cache_pipe_buf_steal,
141         .get = generic_pipe_buf_get,
142 };
143
144 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
145                                     struct pipe_buffer *buf)
146 {
147         if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
148                 return 1;
149
150         buf->flags |= PIPE_BUF_FLAG_LRU;
151         return generic_pipe_buf_steal(pipe, buf);
152 }
153
154 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
155         .can_merge = 0,
156         .map = generic_pipe_buf_map,
157         .unmap = generic_pipe_buf_unmap,
158         .confirm = generic_pipe_buf_confirm,
159         .release = page_cache_pipe_buf_release,
160         .steal = user_page_pipe_buf_steal,
161         .get = generic_pipe_buf_get,
162 };
163
164 /**
165  * splice_to_pipe - fill passed data into a pipe
166  * @pipe:       pipe to fill
167  * @spd:        data to fill
168  *
169  * Description:
170  *    @spd contains a map of pages and len/offset tuples, along with
171  *    the struct pipe_buf_operations associated with these pages. This
172  *    function will link that data to the pipe.
173  *
174  */
175 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
176                        struct splice_pipe_desc *spd)
177 {
178         unsigned int spd_pages = spd->nr_pages;
179         int ret, do_wakeup, page_nr;
180
181         ret = 0;
182         do_wakeup = 0;
183         page_nr = 0;
184
185         pipe_lock(pipe);
186
187         for (;;) {
188                 if (!pipe->readers) {
189                         send_sig(SIGPIPE, current, 0);
190                         if (!ret)
191                                 ret = -EPIPE;
192                         break;
193                 }
194
195                 if (pipe->nrbufs < PIPE_BUFFERS) {
196                         int newbuf = (pipe->curbuf + pipe->nrbufs) & (PIPE_BUFFERS - 1);
197                         struct pipe_buffer *buf = pipe->bufs + newbuf;
198
199                         buf->page = spd->pages[page_nr];
200                         buf->offset = spd->partial[page_nr].offset;
201                         buf->len = spd->partial[page_nr].len;
202                         buf->private = spd->partial[page_nr].private;
203                         buf->ops = spd->ops;
204                         if (spd->flags & SPLICE_F_GIFT)
205                                 buf->flags |= PIPE_BUF_FLAG_GIFT;
206
207                         pipe->nrbufs++;
208                         page_nr++;
209                         ret += buf->len;
210
211                         if (pipe->inode)
212                                 do_wakeup = 1;
213
214                         if (!--spd->nr_pages)
215                                 break;
216                         if (pipe->nrbufs < PIPE_BUFFERS)
217                                 continue;
218
219                         break;
220                 }
221
222                 if (spd->flags & SPLICE_F_NONBLOCK) {
223                         if (!ret)
224                                 ret = -EAGAIN;
225                         break;
226                 }
227
228                 if (signal_pending(current)) {
229                         if (!ret)
230                                 ret = -ERESTARTSYS;
231                         break;
232                 }
233
234                 if (do_wakeup) {
235                         smp_mb();
236                         if (waitqueue_active(&pipe->wait))
237                                 wake_up_interruptible_sync(&pipe->wait);
238                         kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
239                         do_wakeup = 0;
240                 }
241
242                 pipe->waiting_writers++;
243                 pipe_wait(pipe);
244                 pipe->waiting_writers--;
245         }
246
247         pipe_unlock(pipe);
248
249         if (do_wakeup) {
250                 smp_mb();
251                 if (waitqueue_active(&pipe->wait))
252                         wake_up_interruptible(&pipe->wait);
253                 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
254         }
255
256         while (page_nr < spd_pages)
257                 spd->spd_release(spd, page_nr++);
258
259         return ret;
260 }
261
262 static void spd_release_page(struct splice_pipe_desc *spd, unsigned int i)
263 {
264         page_cache_release(spd->pages[i]);
265 }
266
267 static int
268 __generic_file_splice_read(struct file *in, loff_t *ppos,
269                            struct pipe_inode_info *pipe, size_t len,
270                            unsigned int flags)
271 {
272         struct address_space *mapping = in->f_mapping;
273         unsigned int loff, nr_pages, req_pages;
274         struct page *pages[PIPE_BUFFERS];
275         struct partial_page partial[PIPE_BUFFERS];
276         struct page *page;
277         pgoff_t index, end_index;
278         loff_t isize;
279         int error, page_nr;
280         struct splice_pipe_desc spd = {
281                 .pages = pages,
282                 .partial = partial,
283                 .flags = flags,
284                 .ops = &page_cache_pipe_buf_ops,
285                 .spd_release = spd_release_page,
286         };
287
288         index = *ppos >> PAGE_CACHE_SHIFT;
289         loff = *ppos & ~PAGE_CACHE_MASK;
290         req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
291         nr_pages = min(req_pages, (unsigned)PIPE_BUFFERS);
292
293         /*
294          * Lookup the (hopefully) full range of pages we need.
295          */
296         spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, pages);
297         index += spd.nr_pages;
298
299         /*
300          * If find_get_pages_contig() returned fewer pages than we needed,
301          * readahead/allocate the rest and fill in the holes.
302          */
303         if (spd.nr_pages < nr_pages)
304                 page_cache_sync_readahead(mapping, &in->f_ra, in,
305                                 index, req_pages - spd.nr_pages);
306
307         error = 0;
308         while (spd.nr_pages < nr_pages) {
309                 /*
310                  * Page could be there, find_get_pages_contig() breaks on
311                  * the first hole.
312                  */
313                 page = find_get_page(mapping, index);
314                 if (!page) {
315                         /*
316                          * page didn't exist, allocate one.
317                          */
318                         page = page_cache_alloc_cold(mapping);
319                         if (!page)
320                                 break;
321
322                         error = add_to_page_cache_lru(page, mapping, index,
323                                                 mapping_gfp_mask(mapping));
324                         if (unlikely(error)) {
325                                 page_cache_release(page);
326                                 if (error == -EEXIST)
327                                         continue;
328                                 break;
329                         }
330                         /*
331                          * add_to_page_cache() locks the page, unlock it
332                          * to avoid convoluting the logic below even more.
333                          */
334                         unlock_page(page);
335                 }
336
337                 pages[spd.nr_pages++] = page;
338                 index++;
339         }
340
341         /*
342          * Now loop over the map and see if we need to start IO on any
343          * pages, fill in the partial map, etc.
344          */
345         index = *ppos >> PAGE_CACHE_SHIFT;
346         nr_pages = spd.nr_pages;
347         spd.nr_pages = 0;
348         for (page_nr = 0; page_nr < nr_pages; page_nr++) {
349                 unsigned int this_len;
350
351                 if (!len)
352                         break;
353
354                 /*
355                  * this_len is the max we'll use from this page
356                  */
357                 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
358                 page = pages[page_nr];
359
360                 if (PageReadahead(page))
361                         page_cache_async_readahead(mapping, &in->f_ra, in,
362                                         page, index, req_pages - page_nr);
363
364                 /*
365                  * If the page isn't uptodate, we may need to start io on it
366                  */
367                 if (!PageUptodate(page)) {
368                         /*
369                          * If in nonblock mode then dont block on waiting
370                          * for an in-flight io page
371                          */
372                         if (flags & SPLICE_F_NONBLOCK) {
373                                 if (!trylock_page(page)) {
374                                         error = -EAGAIN;
375                                         break;
376                                 }
377                         } else
378                                 lock_page(page);
379
380                         /*
381                          * Page was truncated, or invalidated by the
382                          * filesystem.  Redo the find/create, but this time the
383                          * page is kept locked, so there's no chance of another
384                          * race with truncate/invalidate.
385                          */
386                         if (!page->mapping) {
387                                 unlock_page(page);
388                                 page = find_or_create_page(mapping, index,
389                                                 mapping_gfp_mask(mapping));
390
391                                 if (!page) {
392                                         error = -ENOMEM;
393                                         break;
394                                 }
395                                 page_cache_release(pages[page_nr]);
396                                 pages[page_nr] = page;
397                         }
398                         /*
399                          * page was already under io and is now done, great
400                          */
401                         if (PageUptodate(page)) {
402                                 unlock_page(page);
403                                 goto fill_it;
404                         }
405
406                         /*
407                          * need to read in the page
408                          */
409                         error = mapping->a_ops->readpage(in, page);
410                         if (unlikely(error)) {
411                                 /*
412                                  * We really should re-lookup the page here,
413                                  * but it complicates things a lot. Instead
414                                  * lets just do what we already stored, and
415                                  * we'll get it the next time we are called.
416                                  */
417                                 if (error == AOP_TRUNCATED_PAGE)
418                                         error = 0;
419
420                                 break;
421                         }
422                 }
423 fill_it:
424                 /*
425                  * i_size must be checked after PageUptodate.
426                  */
427                 isize = i_size_read(mapping->host);
428                 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
429                 if (unlikely(!isize || index > end_index))
430                         break;
431
432                 /*
433                  * if this is the last page, see if we need to shrink
434                  * the length and stop
435                  */
436                 if (end_index == index) {
437                         unsigned int plen;
438
439                         /*
440                          * max good bytes in this page
441                          */
442                         plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
443                         if (plen <= loff)
444                                 break;
445
446                         /*
447                          * force quit after adding this page
448                          */
449                         this_len = min(this_len, plen - loff);
450                         len = this_len;
451                 }
452
453                 partial[page_nr].offset = loff;
454                 partial[page_nr].len = this_len;
455                 len -= this_len;
456                 loff = 0;
457                 spd.nr_pages++;
458                 index++;
459         }
460
461         /*
462          * Release any pages at the end, if we quit early. 'page_nr' is how far
463          * we got, 'nr_pages' is how many pages are in the map.
464          */
465         while (page_nr < nr_pages)
466                 page_cache_release(pages[page_nr++]);
467         in->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT;
468
469         if (spd.nr_pages)
470                 return splice_to_pipe(pipe, &spd);
471
472         return error;
473 }
474
475 /**
476  * generic_file_splice_read - splice data from file to a pipe
477  * @in:         file to splice from
478  * @ppos:       position in @in
479  * @pipe:       pipe to splice to
480  * @len:        number of bytes to splice
481  * @flags:      splice modifier flags
482  *
483  * Description:
484  *    Will read pages from given file and fill them into a pipe. Can be
485  *    used as long as the address_space operations for the source implements
486  *    a readpage() hook.
487  *
488  */
489 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
490                                  struct pipe_inode_info *pipe, size_t len,
491                                  unsigned int flags)
492 {
493         loff_t isize, left;
494         int ret;
495
496         isize = i_size_read(in->f_mapping->host);
497         if (unlikely(*ppos >= isize))
498                 return 0;
499
500         left = isize - *ppos;
501         if (unlikely(left < len))
502                 len = left;
503
504         ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
505         if (ret > 0)
506                 *ppos += ret;
507
508         return ret;
509 }
510 EXPORT_SYMBOL(generic_file_splice_read);
511
512 static const struct pipe_buf_operations default_pipe_buf_ops = {
513         .can_merge = 0,
514         .map = generic_pipe_buf_map,
515         .unmap = generic_pipe_buf_unmap,
516         .confirm = generic_pipe_buf_confirm,
517         .release = generic_pipe_buf_release,
518         .steal = generic_pipe_buf_steal,
519         .get = generic_pipe_buf_get,
520 };
521
522 static ssize_t kernel_readv(struct file *file, const struct iovec *vec,
523                             unsigned long vlen, loff_t offset)
524 {
525         mm_segment_t old_fs;
526         loff_t pos = offset;
527         ssize_t res;
528
529         old_fs = get_fs();
530         set_fs(get_ds());
531         /* The cast to a user pointer is valid due to the set_fs() */
532         res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos);
533         set_fs(old_fs);
534
535         return res;
536 }
537
538 ssize_t default_file_splice_read(struct file *in, loff_t *ppos,
539                                  struct pipe_inode_info *pipe, size_t len,
540                                  unsigned int flags)
541 {
542         unsigned int nr_pages;
543         unsigned int nr_freed;
544         size_t offset;
545         struct page *pages[PIPE_BUFFERS];
546         struct partial_page partial[PIPE_BUFFERS];
547         struct iovec vec[PIPE_BUFFERS];
548         pgoff_t index;
549         ssize_t res;
550         size_t this_len;
551         int error;
552         int i;
553         struct splice_pipe_desc spd = {
554                 .pages = pages,
555                 .partial = partial,
556                 .flags = flags,
557                 .ops = &default_pipe_buf_ops,
558                 .spd_release = spd_release_page,
559         };
560
561         index = *ppos >> PAGE_CACHE_SHIFT;
562         offset = *ppos & ~PAGE_CACHE_MASK;
563         nr_pages = (len + offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
564
565         for (i = 0; i < nr_pages && i < PIPE_BUFFERS && len; i++) {
566                 struct page *page;
567
568                 page = alloc_page(GFP_HIGHUSER);
569                 error = -ENOMEM;
570                 if (!page)
571                         goto err;
572
573                 this_len = min_t(size_t, len, PAGE_CACHE_SIZE - offset);
574                 vec[i].iov_base = (void __user *) kmap(page);
575                 vec[i].iov_len = this_len;
576                 pages[i] = page;
577                 spd.nr_pages++;
578                 len -= this_len;
579                 offset = 0;
580         }
581
582         res = kernel_readv(in, vec, spd.nr_pages, *ppos);
583         if (res < 0)
584                 goto err;
585
586         error = 0;
587         if (!res)
588                 goto err;
589
590         nr_freed = 0;
591         for (i = 0; i < spd.nr_pages; i++) {
592                 kunmap(pages[i]);
593                 this_len = min_t(size_t, vec[i].iov_len, res);
594                 partial[i].offset = 0;
595                 partial[i].len = this_len;
596                 if (!this_len) {
597                         __free_page(pages[i]);
598                         pages[i] = NULL;
599                         nr_freed++;
600                 }
601                 res -= this_len;
602         }
603         spd.nr_pages -= nr_freed;
604
605         res = splice_to_pipe(pipe, &spd);
606         if (res > 0)
607                 *ppos += res;
608
609         return res;
610
611 err:
612         for (i = 0; i < spd.nr_pages; i++) {
613                 kunmap(pages[i]);
614                 __free_page(pages[i]);
615         }
616         return error;
617 }
618 EXPORT_SYMBOL(default_file_splice_read);
619
620 /*
621  * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
622  * using sendpage(). Return the number of bytes sent.
623  */
624 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
625                             struct pipe_buffer *buf, struct splice_desc *sd)
626 {
627         struct file *file = sd->u.file;
628         loff_t pos = sd->pos;
629         int ret, more;
630
631         ret = buf->ops->confirm(pipe, buf);
632         if (!ret) {
633                 more = (sd->flags & SPLICE_F_MORE) || sd->len < sd->total_len;
634
635                 ret = file->f_op->sendpage(file, buf->page, buf->offset,
636                                            sd->len, &pos, more);
637         }
638
639         return ret;
640 }
641
642 /*
643  * This is a little more tricky than the file -> pipe splicing. There are
644  * basically three cases:
645  *
646  *      - Destination page already exists in the address space and there
647  *        are users of it. For that case we have no other option that
648  *        copying the data. Tough luck.
649  *      - Destination page already exists in the address space, but there
650  *        are no users of it. Make sure it's uptodate, then drop it. Fall
651  *        through to last case.
652  *      - Destination page does not exist, we can add the pipe page to
653  *        the page cache and avoid the copy.
654  *
655  * If asked to move pages to the output file (SPLICE_F_MOVE is set in
656  * sd->flags), we attempt to migrate pages from the pipe to the output
657  * file address space page cache. This is possible if no one else has
658  * the pipe page referenced outside of the pipe and page cache. If
659  * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
660  * a new page in the output file page cache and fill/dirty that.
661  */
662 int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
663                  struct splice_desc *sd)
664 {
665         struct file *file = sd->u.file;
666         struct address_space *mapping = file->f_mapping;
667         unsigned int offset, this_len;
668         struct page *page;
669         void *fsdata;
670         int ret;
671
672         /*
673          * make sure the data in this buffer is uptodate
674          */
675         ret = buf->ops->confirm(pipe, buf);
676         if (unlikely(ret))
677                 return ret;
678
679         offset = sd->pos & ~PAGE_CACHE_MASK;
680
681         this_len = sd->len;
682         if (this_len + offset > PAGE_CACHE_SIZE)
683                 this_len = PAGE_CACHE_SIZE - offset;
684
685         ret = pagecache_write_begin(file, mapping, sd->pos, this_len,
686                                 AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
687         if (unlikely(ret))
688                 goto out;
689
690         if (buf->page != page) {
691                 /*
692                  * Careful, ->map() uses KM_USER0!
693                  */
694                 char *src = buf->ops->map(pipe, buf, 1);
695                 char *dst = kmap_atomic(page, KM_USER1);
696
697                 memcpy(dst + offset, src + buf->offset, this_len);
698                 flush_dcache_page(page);
699                 kunmap_atomic(dst, KM_USER1);
700                 buf->ops->unmap(pipe, buf, src);
701         }
702         ret = pagecache_write_end(file, mapping, sd->pos, this_len, this_len,
703                                 page, fsdata);
704 out:
705         return ret;
706 }
707 EXPORT_SYMBOL(pipe_to_file);
708
709 static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
710 {
711         smp_mb();
712         if (waitqueue_active(&pipe->wait))
713                 wake_up_interruptible(&pipe->wait);
714         kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
715 }
716
717 /**
718  * splice_from_pipe_feed - feed available data from a pipe to a file
719  * @pipe:       pipe to splice from
720  * @sd:         information to @actor
721  * @actor:      handler that splices the data
722  *
723  * Description:
724  *    This function loops over the pipe and calls @actor to do the
725  *    actual moving of a single struct pipe_buffer to the desired
726  *    destination.  It returns when there's no more buffers left in
727  *    the pipe or if the requested number of bytes (@sd->total_len)
728  *    have been copied.  It returns a positive number (one) if the
729  *    pipe needs to be filled with more data, zero if the required
730  *    number of bytes have been copied and -errno on error.
731  *
732  *    This, together with splice_from_pipe_{begin,end,next}, may be
733  *    used to implement the functionality of __splice_from_pipe() when
734  *    locking is required around copying the pipe buffers to the
735  *    destination.
736  */
737 int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
738                           splice_actor *actor)
739 {
740         int ret;
741
742         while (pipe->nrbufs) {
743                 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
744                 const struct pipe_buf_operations *ops = buf->ops;
745
746                 sd->len = buf->len;
747                 if (sd->len > sd->total_len)
748                         sd->len = sd->total_len;
749
750                 ret = actor(pipe, buf, sd);
751                 if (ret <= 0) {
752                         if (ret == -ENODATA)
753                                 ret = 0;
754                         return ret;
755                 }
756                 buf->offset += ret;
757                 buf->len -= ret;
758
759                 sd->num_spliced += ret;
760                 sd->len -= ret;
761                 sd->pos += ret;
762                 sd->total_len -= ret;
763
764                 if (!buf->len) {
765                         buf->ops = NULL;
766                         ops->release(pipe, buf);
767                         pipe->curbuf = (pipe->curbuf + 1) & (PIPE_BUFFERS - 1);
768                         pipe->nrbufs--;
769                         if (pipe->inode)
770                                 sd->need_wakeup = true;
771                 }
772
773                 if (!sd->total_len)
774                         return 0;
775         }
776
777         return 1;
778 }
779 EXPORT_SYMBOL(splice_from_pipe_feed);
780
781 /**
782  * splice_from_pipe_next - wait for some data to splice from
783  * @pipe:       pipe to splice from
784  * @sd:         information about the splice operation
785  *
786  * Description:
787  *    This function will wait for some data and return a positive
788  *    value (one) if pipe buffers are available.  It will return zero
789  *    or -errno if no more data needs to be spliced.
790  */
791 int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
792 {
793         while (!pipe->nrbufs) {
794                 if (!pipe->writers)
795                         return 0;
796
797                 if (!pipe->waiting_writers && sd->num_spliced)
798                         return 0;
799
800                 if (sd->flags & SPLICE_F_NONBLOCK)
801                         return -EAGAIN;
802
803                 if (signal_pending(current))
804                         return -ERESTARTSYS;
805
806                 if (sd->need_wakeup) {
807                         wakeup_pipe_writers(pipe);
808                         sd->need_wakeup = false;
809                 }
810
811                 pipe_wait(pipe);
812         }
813
814         return 1;
815 }
816 EXPORT_SYMBOL(splice_from_pipe_next);
817
818 /**
819  * splice_from_pipe_begin - start splicing from pipe
820  * @sd:         information about the splice operation
821  *
822  * Description:
823  *    This function should be called before a loop containing
824  *    splice_from_pipe_next() and splice_from_pipe_feed() to
825  *    initialize the necessary fields of @sd.
826  */
827 void splice_from_pipe_begin(struct splice_desc *sd)
828 {
829         sd->num_spliced = 0;
830         sd->need_wakeup = false;
831 }
832 EXPORT_SYMBOL(splice_from_pipe_begin);
833
834 /**
835  * splice_from_pipe_end - finish splicing from pipe
836  * @pipe:       pipe to splice from
837  * @sd:         information about the splice operation
838  *
839  * Description:
840  *    This function will wake up pipe writers if necessary.  It should
841  *    be called after a loop containing splice_from_pipe_next() and
842  *    splice_from_pipe_feed().
843  */
844 void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
845 {
846         if (sd->need_wakeup)
847                 wakeup_pipe_writers(pipe);
848 }
849 EXPORT_SYMBOL(splice_from_pipe_end);
850
851 /**
852  * __splice_from_pipe - splice data from a pipe to given actor
853  * @pipe:       pipe to splice from
854  * @sd:         information to @actor
855  * @actor:      handler that splices the data
856  *
857  * Description:
858  *    This function does little more than loop over the pipe and call
859  *    @actor to do the actual moving of a single struct pipe_buffer to
860  *    the desired destination. See pipe_to_file, pipe_to_sendpage, or
861  *    pipe_to_user.
862  *
863  */
864 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
865                            splice_actor *actor)
866 {
867         int ret;
868
869         splice_from_pipe_begin(sd);
870         do {
871                 ret = splice_from_pipe_next(pipe, sd);
872                 if (ret > 0)
873                         ret = splice_from_pipe_feed(pipe, sd, actor);
874         } while (ret > 0);
875         splice_from_pipe_end(pipe, sd);
876
877         return sd->num_spliced ? sd->num_spliced : ret;
878 }
879 EXPORT_SYMBOL(__splice_from_pipe);
880
881 /**
882  * splice_from_pipe - splice data from a pipe to a file
883  * @pipe:       pipe to splice from
884  * @out:        file to splice to
885  * @ppos:       position in @out
886  * @len:        how many bytes to splice
887  * @flags:      splice modifier flags
888  * @actor:      handler that splices the data
889  *
890  * Description:
891  *    See __splice_from_pipe. This function locks the pipe inode,
892  *    otherwise it's identical to __splice_from_pipe().
893  *
894  */
895 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
896                          loff_t *ppos, size_t len, unsigned int flags,
897                          splice_actor *actor)
898 {
899         ssize_t ret;
900         struct splice_desc sd = {
901                 .total_len = len,
902                 .flags = flags,
903                 .pos = *ppos,
904                 .u.file = out,
905         };
906
907         pipe_lock(pipe);
908         ret = __splice_from_pipe(pipe, &sd, actor);
909         pipe_unlock(pipe);
910
911         return ret;
912 }
913
914 /**
915  * generic_file_splice_write - splice data from a pipe to a file
916  * @pipe:       pipe info
917  * @out:        file to write to
918  * @ppos:       position in @out
919  * @len:        number of bytes to splice
920  * @flags:      splice modifier flags
921  *
922  * Description:
923  *    Will either move or copy pages (determined by @flags options) from
924  *    the given pipe inode to the given file.
925  *
926  */
927 ssize_t
928 generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
929                           loff_t *ppos, size_t len, unsigned int flags)
930 {
931         struct address_space *mapping = out->f_mapping;
932         struct inode *inode = mapping->host;
933         struct splice_desc sd = {
934                 .total_len = len,
935                 .flags = flags,
936                 .pos = *ppos,
937                 .u.file = out,
938         };
939         ssize_t ret;
940
941         pipe_lock(pipe);
942
943         splice_from_pipe_begin(&sd);
944         do {
945                 ret = splice_from_pipe_next(pipe, &sd);
946                 if (ret <= 0)
947                         break;
948
949                 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
950                 ret = file_remove_suid(out);
951                 if (!ret)
952                         ret = splice_from_pipe_feed(pipe, &sd, pipe_to_file);
953                 mutex_unlock(&inode->i_mutex);
954         } while (ret > 0);
955         splice_from_pipe_end(pipe, &sd);
956
957         pipe_unlock(pipe);
958
959         if (sd.num_spliced)
960                 ret = sd.num_spliced;
961
962         if (ret > 0) {
963                 unsigned long nr_pages;
964
965                 *ppos += ret;
966                 nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
967
968                 /*
969                  * If file or inode is SYNC and we actually wrote some data,
970                  * sync it.
971                  */
972                 if (unlikely((out->f_flags & O_SYNC) || IS_SYNC(inode))) {
973                         int err;
974
975                         mutex_lock(&inode->i_mutex);
976                         err = generic_osync_inode(inode, mapping,
977                                                   OSYNC_METADATA|OSYNC_DATA);
978                         mutex_unlock(&inode->i_mutex);
979
980                         if (err)
981                                 ret = err;
982                 }
983                 balance_dirty_pages_ratelimited_nr(mapping, nr_pages);
984         }
985
986         return ret;
987 }
988
989 EXPORT_SYMBOL(generic_file_splice_write);
990
991 /**
992  * generic_splice_sendpage - splice data from a pipe to a socket
993  * @pipe:       pipe to splice from
994  * @out:        socket to write to
995  * @ppos:       position in @out
996  * @len:        number of bytes to splice
997  * @flags:      splice modifier flags
998  *
999  * Description:
1000  *    Will send @len bytes from the pipe to a network socket. No data copying
1001  *    is involved.
1002  *
1003  */
1004 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
1005                                 loff_t *ppos, size_t len, unsigned int flags)
1006 {
1007         return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
1008 }
1009
1010 EXPORT_SYMBOL(generic_splice_sendpage);
1011
1012 /*
1013  * Attempt to initiate a splice from pipe to file.
1014  */
1015 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
1016                            loff_t *ppos, size_t len, unsigned int flags)
1017 {
1018         int ret;
1019
1020         if (unlikely(!out->f_op || !out->f_op->splice_write))
1021                 return -EINVAL;
1022
1023         if (unlikely(!(out->f_mode & FMODE_WRITE)))
1024                 return -EBADF;
1025
1026         if (unlikely(out->f_flags & O_APPEND))
1027                 return -EINVAL;
1028
1029         ret = rw_verify_area(WRITE, out, ppos, len);
1030         if (unlikely(ret < 0))
1031                 return ret;
1032
1033         return out->f_op->splice_write(pipe, out, ppos, len, flags);
1034 }
1035
1036 /*
1037  * Attempt to initiate a splice from a file to a pipe.
1038  */
1039 static long do_splice_to(struct file *in, loff_t *ppos,
1040                          struct pipe_inode_info *pipe, size_t len,
1041                          unsigned int flags)
1042 {
1043         ssize_t (*splice_read)(struct file *, loff_t *,
1044                                struct pipe_inode_info *, size_t, unsigned int);
1045         int ret;
1046
1047         if (unlikely(!(in->f_mode & FMODE_READ)))
1048                 return -EBADF;
1049
1050         ret = rw_verify_area(READ, in, ppos, len);
1051         if (unlikely(ret < 0))
1052                 return ret;
1053
1054         splice_read = in->f_op->splice_read;
1055         if (!splice_read)
1056                 splice_read = default_file_splice_read;
1057
1058         return splice_read(in, ppos, pipe, len, flags);
1059 }
1060
1061 /**
1062  * splice_direct_to_actor - splices data directly between two non-pipes
1063  * @in:         file to splice from
1064  * @sd:         actor information on where to splice to
1065  * @actor:      handles the data splicing
1066  *
1067  * Description:
1068  *    This is a special case helper to splice directly between two
1069  *    points, without requiring an explicit pipe. Internally an allocated
1070  *    pipe is cached in the process, and reused during the lifetime of
1071  *    that process.
1072  *
1073  */
1074 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
1075                                splice_direct_actor *actor)
1076 {
1077         struct pipe_inode_info *pipe;
1078         long ret, bytes;
1079         umode_t i_mode;
1080         size_t len;
1081         int i, flags;
1082
1083         /*
1084          * We require the input being a regular file, as we don't want to
1085          * randomly drop data for eg socket -> socket splicing. Use the
1086          * piped splicing for that!
1087          */
1088         i_mode = in->f_path.dentry->d_inode->i_mode;
1089         if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
1090                 return -EINVAL;
1091
1092         /*
1093          * neither in nor out is a pipe, setup an internal pipe attached to
1094          * 'out' and transfer the wanted data from 'in' to 'out' through that
1095          */
1096         pipe = current->splice_pipe;
1097         if (unlikely(!pipe)) {
1098                 pipe = alloc_pipe_info(NULL);
1099                 if (!pipe)
1100                         return -ENOMEM;
1101
1102                 /*
1103                  * We don't have an immediate reader, but we'll read the stuff
1104                  * out of the pipe right after the splice_to_pipe(). So set
1105                  * PIPE_READERS appropriately.
1106                  */
1107                 pipe->readers = 1;
1108
1109                 current->splice_pipe = pipe;
1110         }
1111
1112         /*
1113          * Do the splice.
1114          */
1115         ret = 0;
1116         bytes = 0;
1117         len = sd->total_len;
1118         flags = sd->flags;
1119
1120         /*
1121          * Don't block on output, we have to drain the direct pipe.
1122          */
1123         sd->flags &= ~SPLICE_F_NONBLOCK;
1124
1125         while (len) {
1126                 size_t read_len;
1127                 loff_t pos = sd->pos, prev_pos = pos;
1128
1129                 ret = do_splice_to(in, &pos, pipe, len, flags);
1130                 if (unlikely(ret <= 0))
1131                         goto out_release;
1132
1133                 read_len = ret;
1134                 sd->total_len = read_len;
1135
1136                 /*
1137                  * NOTE: nonblocking mode only applies to the input. We
1138                  * must not do the output in nonblocking mode as then we
1139                  * could get stuck data in the internal pipe:
1140                  */
1141                 ret = actor(pipe, sd);
1142                 if (unlikely(ret <= 0)) {
1143                         sd->pos = prev_pos;
1144                         goto out_release;
1145                 }
1146
1147                 bytes += ret;
1148                 len -= ret;
1149                 sd->pos = pos;
1150
1151                 if (ret < read_len) {
1152                         sd->pos = prev_pos + ret;
1153                         goto out_release;
1154                 }
1155         }
1156
1157 done:
1158         pipe->nrbufs = pipe->curbuf = 0;
1159         file_accessed(in);
1160         return bytes;
1161
1162 out_release:
1163         /*
1164          * If we did an incomplete transfer we must release
1165          * the pipe buffers in question:
1166          */
1167         for (i = 0; i < PIPE_BUFFERS; i++) {
1168                 struct pipe_buffer *buf = pipe->bufs + i;
1169
1170                 if (buf->ops) {
1171                         buf->ops->release(pipe, buf);
1172                         buf->ops = NULL;
1173                 }
1174         }
1175
1176         if (!bytes)
1177                 bytes = ret;
1178
1179         goto done;
1180 }
1181 EXPORT_SYMBOL(splice_direct_to_actor);
1182
1183 static int direct_splice_actor(struct pipe_inode_info *pipe,
1184                                struct splice_desc *sd)
1185 {
1186         struct file *file = sd->u.file;
1187
1188         return do_splice_from(pipe, file, &sd->pos, sd->total_len, sd->flags);
1189 }
1190
1191 /**
1192  * do_splice_direct - splices data directly between two files
1193  * @in:         file to splice from
1194  * @ppos:       input file offset
1195  * @out:        file to splice to
1196  * @len:        number of bytes to splice
1197  * @flags:      splice modifier flags
1198  *
1199  * Description:
1200  *    For use by do_sendfile(). splice can easily emulate sendfile, but
1201  *    doing it in the application would incur an extra system call
1202  *    (splice in + splice out, as compared to just sendfile()). So this helper
1203  *    can splice directly through a process-private pipe.
1204  *
1205  */
1206 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1207                       size_t len, unsigned int flags)
1208 {
1209         struct splice_desc sd = {
1210                 .len            = len,
1211                 .total_len      = len,
1212                 .flags          = flags,
1213                 .pos            = *ppos,
1214                 .u.file         = out,
1215         };
1216         long ret;
1217
1218         ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1219         if (ret > 0)
1220                 *ppos = sd.pos;
1221
1222         return ret;
1223 }
1224
1225 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1226                                struct pipe_inode_info *opipe,
1227                                size_t len, unsigned int flags);
1228 /*
1229  * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same
1230  * location, so checking ->i_pipe is not enough to verify that this is a
1231  * pipe.
1232  */
1233 static inline struct pipe_inode_info *pipe_info(struct inode *inode)
1234 {
1235         if (S_ISFIFO(inode->i_mode))
1236                 return inode->i_pipe;
1237
1238         return NULL;
1239 }
1240
1241 /*
1242  * Determine where to splice to/from.
1243  */
1244 static long do_splice(struct file *in, loff_t __user *off_in,
1245                       struct file *out, loff_t __user *off_out,
1246                       size_t len, unsigned int flags)
1247 {
1248         struct pipe_inode_info *ipipe;
1249         struct pipe_inode_info *opipe;
1250         loff_t offset, *off;
1251         long ret;
1252
1253         ipipe = pipe_info(in->f_path.dentry->d_inode);
1254         opipe = pipe_info(out->f_path.dentry->d_inode);
1255
1256         if (ipipe && opipe) {
1257                 if (off_in || off_out)
1258                         return -ESPIPE;
1259
1260                 if (!(in->f_mode & FMODE_READ))
1261                         return -EBADF;
1262
1263                 if (!(out->f_mode & FMODE_WRITE))
1264                         return -EBADF;
1265
1266                 /* Splicing to self would be fun, but... */
1267                 if (ipipe == opipe)
1268                         return -EINVAL;
1269
1270                 return splice_pipe_to_pipe(ipipe, opipe, len, flags);
1271         }
1272
1273         if (ipipe) {
1274                 if (off_in)
1275                         return -ESPIPE;
1276                 if (off_out) {
1277                         if (out->f_op->llseek == no_llseek)
1278                                 return -EINVAL;
1279                         if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1280                                 return -EFAULT;
1281                         off = &offset;
1282                 } else
1283                         off = &out->f_pos;
1284
1285                 ret = do_splice_from(ipipe, out, off, len, flags);
1286
1287                 if (off_out && copy_to_user(off_out, off, sizeof(loff_t)))
1288                         ret = -EFAULT;
1289
1290                 return ret;
1291         }
1292
1293         if (opipe) {
1294                 if (off_out)
1295                         return -ESPIPE;
1296                 if (off_in) {
1297                         if (in->f_op->llseek == no_llseek)
1298                                 return -EINVAL;
1299                         if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1300                                 return -EFAULT;
1301                         off = &offset;
1302                 } else
1303                         off = &in->f_pos;
1304
1305                 ret = do_splice_to(in, off, opipe, len, flags);
1306
1307                 if (off_in && copy_to_user(off_in, off, sizeof(loff_t)))
1308                         ret = -EFAULT;
1309
1310                 return ret;
1311         }
1312
1313         return -EINVAL;
1314 }
1315
1316 /*
1317  * Map an iov into an array of pages and offset/length tupples. With the
1318  * partial_page structure, we can map several non-contiguous ranges into
1319  * our ones pages[] map instead of splitting that operation into pieces.
1320  * Could easily be exported as a generic helper for other users, in which
1321  * case one would probably want to add a 'max_nr_pages' parameter as well.
1322  */
1323 static int get_iovec_page_array(const struct iovec __user *iov,
1324                                 unsigned int nr_vecs, struct page **pages,
1325                                 struct partial_page *partial, int aligned)
1326 {
1327         int buffers = 0, error = 0;
1328
1329         while (nr_vecs) {
1330                 unsigned long off, npages;
1331                 struct iovec entry;
1332                 void __user *base;
1333                 size_t len;
1334                 int i;
1335
1336                 error = -EFAULT;
1337                 if (copy_from_user(&entry, iov, sizeof(entry)))
1338                         break;
1339
1340                 base = entry.iov_base;
1341                 len = entry.iov_len;
1342
1343                 /*
1344                  * Sanity check this iovec. 0 read succeeds.
1345                  */
1346                 error = 0;
1347                 if (unlikely(!len))
1348                         break;
1349                 error = -EFAULT;
1350                 if (!access_ok(VERIFY_READ, base, len))
1351                         break;
1352
1353                 /*
1354                  * Get this base offset and number of pages, then map
1355                  * in the user pages.
1356                  */
1357                 off = (unsigned long) base & ~PAGE_MASK;
1358
1359                 /*
1360                  * If asked for alignment, the offset must be zero and the
1361                  * length a multiple of the PAGE_SIZE.
1362                  */
1363                 error = -EINVAL;
1364                 if (aligned && (off || len & ~PAGE_MASK))
1365                         break;
1366
1367                 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1368                 if (npages > PIPE_BUFFERS - buffers)
1369                         npages = PIPE_BUFFERS - buffers;
1370
1371                 error = get_user_pages_fast((unsigned long)base, npages,
1372                                         0, &pages[buffers]);
1373
1374                 if (unlikely(error <= 0))
1375                         break;
1376
1377                 /*
1378                  * Fill this contiguous range into the partial page map.
1379                  */
1380                 for (i = 0; i < error; i++) {
1381                         const int plen = min_t(size_t, len, PAGE_SIZE - off);
1382
1383                         partial[buffers].offset = off;
1384                         partial[buffers].len = plen;
1385
1386                         off = 0;
1387                         len -= plen;
1388                         buffers++;
1389                 }
1390
1391                 /*
1392                  * We didn't complete this iov, stop here since it probably
1393                  * means we have to move some of this into a pipe to
1394                  * be able to continue.
1395                  */
1396                 if (len)
1397                         break;
1398
1399                 /*
1400                  * Don't continue if we mapped fewer pages than we asked for,
1401                  * or if we mapped the max number of pages that we have
1402                  * room for.
1403                  */
1404                 if (error < npages || buffers == PIPE_BUFFERS)
1405                         break;
1406
1407                 nr_vecs--;
1408                 iov++;
1409         }
1410
1411         if (buffers)
1412                 return buffers;
1413
1414         return error;
1415 }
1416
1417 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1418                         struct splice_desc *sd)
1419 {
1420         char *src;
1421         int ret;
1422
1423         ret = buf->ops->confirm(pipe, buf);
1424         if (unlikely(ret))
1425                 return ret;
1426
1427         /*
1428          * See if we can use the atomic maps, by prefaulting in the
1429          * pages and doing an atomic copy
1430          */
1431         if (!fault_in_pages_writeable(sd->u.userptr, sd->len)) {
1432                 src = buf->ops->map(pipe, buf, 1);
1433                 ret = __copy_to_user_inatomic(sd->u.userptr, src + buf->offset,
1434                                                         sd->len);
1435                 buf->ops->unmap(pipe, buf, src);
1436                 if (!ret) {
1437                         ret = sd->len;
1438                         goto out;
1439                 }
1440         }
1441
1442         /*
1443          * No dice, use slow non-atomic map and copy
1444          */
1445         src = buf->ops->map(pipe, buf, 0);
1446
1447         ret = sd->len;
1448         if (copy_to_user(sd->u.userptr, src + buf->offset, sd->len))
1449                 ret = -EFAULT;
1450
1451         buf->ops->unmap(pipe, buf, src);
1452 out:
1453         if (ret > 0)
1454                 sd->u.userptr += ret;
1455         return ret;
1456 }
1457
1458 /*
1459  * For lack of a better implementation, implement vmsplice() to userspace
1460  * as a simple copy of the pipes pages to the user iov.
1461  */
1462 static long vmsplice_to_user(struct file *file, const struct iovec __user *iov,
1463                              unsigned long nr_segs, unsigned int flags)
1464 {
1465         struct pipe_inode_info *pipe;
1466         struct splice_desc sd;
1467         ssize_t size;
1468         int error;
1469         long ret;
1470
1471         pipe = pipe_info(file->f_path.dentry->d_inode);
1472         if (!pipe)
1473                 return -EBADF;
1474
1475         pipe_lock(pipe);
1476
1477         error = ret = 0;
1478         while (nr_segs) {
1479                 void __user *base;
1480                 size_t len;
1481
1482                 /*
1483                  * Get user address base and length for this iovec.
1484                  */
1485                 error = get_user(base, &iov->iov_base);
1486                 if (unlikely(error))
1487                         break;
1488                 error = get_user(len, &iov->iov_len);
1489                 if (unlikely(error))
1490                         break;
1491
1492                 /*
1493                  * Sanity check this iovec. 0 read succeeds.
1494                  */
1495                 if (unlikely(!len))
1496                         break;
1497                 if (unlikely(!base)) {
1498                         error = -EFAULT;
1499                         break;
1500                 }
1501
1502                 if (unlikely(!access_ok(VERIFY_WRITE, base, len))) {
1503                         error = -EFAULT;
1504                         break;
1505                 }
1506
1507                 sd.len = 0;
1508                 sd.total_len = len;
1509                 sd.flags = flags;
1510                 sd.u.userptr = base;
1511                 sd.pos = 0;
1512
1513                 size = __splice_from_pipe(pipe, &sd, pipe_to_user);
1514                 if (size < 0) {
1515                         if (!ret)
1516                                 ret = size;
1517
1518                         break;
1519                 }
1520
1521                 ret += size;
1522
1523                 if (size < len)
1524                         break;
1525
1526                 nr_segs--;
1527                 iov++;
1528         }
1529
1530         pipe_unlock(pipe);
1531
1532         if (!ret)
1533                 ret = error;
1534
1535         return ret;
1536 }
1537
1538 /*
1539  * vmsplice splices a user address range into a pipe. It can be thought of
1540  * as splice-from-memory, where the regular splice is splice-from-file (or
1541  * to file). In both cases the output is a pipe, naturally.
1542  */
1543 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov,
1544                              unsigned long nr_segs, unsigned int flags)
1545 {
1546         struct pipe_inode_info *pipe;
1547         struct page *pages[PIPE_BUFFERS];
1548         struct partial_page partial[PIPE_BUFFERS];
1549         struct splice_pipe_desc spd = {
1550                 .pages = pages,
1551                 .partial = partial,
1552                 .flags = flags,
1553                 .ops = &user_page_pipe_buf_ops,
1554                 .spd_release = spd_release_page,
1555         };
1556
1557         pipe = pipe_info(file->f_path.dentry->d_inode);
1558         if (!pipe)
1559                 return -EBADF;
1560
1561         spd.nr_pages = get_iovec_page_array(iov, nr_segs, pages, partial,
1562                                             flags & SPLICE_F_GIFT);
1563         if (spd.nr_pages <= 0)
1564                 return spd.nr_pages;
1565
1566         return splice_to_pipe(pipe, &spd);
1567 }
1568
1569 /*
1570  * Note that vmsplice only really supports true splicing _from_ user memory
1571  * to a pipe, not the other way around. Splicing from user memory is a simple
1572  * operation that can be supported without any funky alignment restrictions
1573  * or nasty vm tricks. We simply map in the user memory and fill them into
1574  * a pipe. The reverse isn't quite as easy, though. There are two possible
1575  * solutions for that:
1576  *
1577  *      - memcpy() the data internally, at which point we might as well just
1578  *        do a regular read() on the buffer anyway.
1579  *      - Lots of nasty vm tricks, that are neither fast nor flexible (it
1580  *        has restriction limitations on both ends of the pipe).
1581  *
1582  * Currently we punt and implement it as a normal copy, see pipe_to_user().
1583  *
1584  */
1585 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov,
1586                 unsigned long, nr_segs, unsigned int, flags)
1587 {
1588         struct file *file;
1589         long error;
1590         int fput;
1591
1592         if (unlikely(nr_segs > UIO_MAXIOV))
1593                 return -EINVAL;
1594         else if (unlikely(!nr_segs))
1595                 return 0;
1596
1597         error = -EBADF;
1598         file = fget_light(fd, &fput);
1599         if (file) {
1600                 if (file->f_mode & FMODE_WRITE)
1601                         error = vmsplice_to_pipe(file, iov, nr_segs, flags);
1602                 else if (file->f_mode & FMODE_READ)
1603                         error = vmsplice_to_user(file, iov, nr_segs, flags);
1604
1605                 fput_light(file, fput);
1606         }
1607
1608         return error;
1609 }
1610
1611 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1612                 int, fd_out, loff_t __user *, off_out,
1613                 size_t, len, unsigned int, flags)
1614 {
1615         long error;
1616         struct file *in, *out;
1617         int fput_in, fput_out;
1618
1619         if (unlikely(!len))
1620                 return 0;
1621
1622         error = -EBADF;
1623         in = fget_light(fd_in, &fput_in);
1624         if (in) {
1625                 if (in->f_mode & FMODE_READ) {
1626                         out = fget_light(fd_out, &fput_out);
1627                         if (out) {
1628                                 if (out->f_mode & FMODE_WRITE)
1629                                         error = do_splice(in, off_in,
1630                                                           out, off_out,
1631                                                           len, flags);
1632                                 fput_light(out, fput_out);
1633                         }
1634                 }
1635
1636                 fput_light(in, fput_in);
1637         }
1638
1639         return error;
1640 }
1641
1642 /*
1643  * Make sure there's data to read. Wait for input if we can, otherwise
1644  * return an appropriate error.
1645  */
1646 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1647 {
1648         int ret;
1649
1650         /*
1651          * Check ->nrbufs without the inode lock first. This function
1652          * is speculative anyways, so missing one is ok.
1653          */
1654         if (pipe->nrbufs)
1655                 return 0;
1656
1657         ret = 0;
1658         pipe_lock(pipe);
1659
1660         while (!pipe->nrbufs) {
1661                 if (signal_pending(current)) {
1662                         ret = -ERESTARTSYS;
1663                         break;
1664                 }
1665                 if (!pipe->writers)
1666                         break;
1667                 if (!pipe->waiting_writers) {
1668                         if (flags & SPLICE_F_NONBLOCK) {
1669                                 ret = -EAGAIN;
1670                                 break;
1671                         }
1672                 }
1673                 pipe_wait(pipe);
1674         }
1675
1676         pipe_unlock(pipe);
1677         return ret;
1678 }
1679
1680 /*
1681  * Make sure there's writeable room. Wait for room if we can, otherwise
1682  * return an appropriate error.
1683  */
1684 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1685 {
1686         int ret;
1687
1688         /*
1689          * Check ->nrbufs without the inode lock first. This function
1690          * is speculative anyways, so missing one is ok.
1691          */
1692         if (pipe->nrbufs < PIPE_BUFFERS)
1693                 return 0;
1694
1695         ret = 0;
1696         pipe_lock(pipe);
1697
1698         while (pipe->nrbufs >= PIPE_BUFFERS) {
1699                 if (!pipe->readers) {
1700                         send_sig(SIGPIPE, current, 0);
1701                         ret = -EPIPE;
1702                         break;
1703                 }
1704                 if (flags & SPLICE_F_NONBLOCK) {
1705                         ret = -EAGAIN;
1706                         break;
1707                 }
1708                 if (signal_pending(current)) {
1709                         ret = -ERESTARTSYS;
1710                         break;
1711                 }
1712                 pipe->waiting_writers++;
1713                 pipe_wait(pipe);
1714                 pipe->waiting_writers--;
1715         }
1716
1717         pipe_unlock(pipe);
1718         return ret;
1719 }
1720
1721 /*
1722  * Splice contents of ipipe to opipe.
1723  */
1724 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1725                                struct pipe_inode_info *opipe,
1726                                size_t len, unsigned int flags)
1727 {
1728         struct pipe_buffer *ibuf, *obuf;
1729         int ret = 0, nbuf;
1730         bool input_wakeup = false;
1731
1732
1733 retry:
1734         ret = ipipe_prep(ipipe, flags);
1735         if (ret)
1736                 return ret;
1737
1738         ret = opipe_prep(opipe, flags);
1739         if (ret)
1740                 return ret;
1741
1742         /*
1743          * Potential ABBA deadlock, work around it by ordering lock
1744          * grabbing by pipe info address. Otherwise two different processes
1745          * could deadlock (one doing tee from A -> B, the other from B -> A).
1746          */
1747         pipe_double_lock(ipipe, opipe);
1748
1749         do {
1750                 if (!opipe->readers) {
1751                         send_sig(SIGPIPE, current, 0);
1752                         if (!ret)
1753                                 ret = -EPIPE;
1754                         break;
1755                 }
1756
1757                 if (!ipipe->nrbufs && !ipipe->writers)
1758                         break;
1759
1760                 /*
1761                  * Cannot make any progress, because either the input
1762                  * pipe is empty or the output pipe is full.
1763                  */
1764                 if (!ipipe->nrbufs || opipe->nrbufs >= PIPE_BUFFERS) {
1765                         /* Already processed some buffers, break */
1766                         if (ret)
1767                                 break;
1768
1769                         if (flags & SPLICE_F_NONBLOCK) {
1770                                 ret = -EAGAIN;
1771                                 break;
1772                         }
1773
1774                         /*
1775                          * We raced with another reader/writer and haven't
1776                          * managed to process any buffers.  A zero return
1777                          * value means EOF, so retry instead.
1778                          */
1779                         pipe_unlock(ipipe);
1780                         pipe_unlock(opipe);
1781                         goto retry;
1782                 }
1783
1784                 ibuf = ipipe->bufs + ipipe->curbuf;
1785                 nbuf = (opipe->curbuf + opipe->nrbufs) % PIPE_BUFFERS;
1786                 obuf = opipe->bufs + nbuf;
1787
1788                 if (len >= ibuf->len) {
1789                         /*
1790                          * Simply move the whole buffer from ipipe to opipe
1791                          */
1792                         *obuf = *ibuf;
1793                         ibuf->ops = NULL;
1794                         opipe->nrbufs++;
1795                         ipipe->curbuf = (ipipe->curbuf + 1) % PIPE_BUFFERS;
1796                         ipipe->nrbufs--;
1797                         input_wakeup = true;
1798                 } else {
1799                         /*
1800                          * Get a reference to this pipe buffer,
1801                          * so we can copy the contents over.
1802                          */
1803                         ibuf->ops->get(ipipe, ibuf);
1804                         *obuf = *ibuf;
1805
1806                         /*
1807                          * Don't inherit the gift flag, we need to
1808                          * prevent multiple steals of this page.
1809                          */
1810                         obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1811
1812                         obuf->len = len;
1813                         opipe->nrbufs++;
1814                         ibuf->offset += obuf->len;
1815                         ibuf->len -= obuf->len;
1816                 }
1817                 ret += obuf->len;
1818                 len -= obuf->len;
1819         } while (len);
1820
1821         pipe_unlock(ipipe);
1822         pipe_unlock(opipe);
1823
1824         /*
1825          * If we put data in the output pipe, wakeup any potential readers.
1826          */
1827         if (ret > 0) {
1828                 smp_mb();
1829                 if (waitqueue_active(&opipe->wait))
1830                         wake_up_interruptible(&opipe->wait);
1831                 kill_fasync(&opipe->fasync_readers, SIGIO, POLL_IN);
1832         }
1833         if (input_wakeup)
1834                 wakeup_pipe_writers(ipipe);
1835
1836         return ret;
1837 }
1838
1839 /*
1840  * Link contents of ipipe to opipe.
1841  */
1842 static int link_pipe(struct pipe_inode_info *ipipe,
1843                      struct pipe_inode_info *opipe,
1844                      size_t len, unsigned int flags)
1845 {
1846         struct pipe_buffer *ibuf, *obuf;
1847         int ret = 0, i = 0, nbuf;
1848
1849         /*
1850          * Potential ABBA deadlock, work around it by ordering lock
1851          * grabbing by pipe info address. Otherwise two different processes
1852          * could deadlock (one doing tee from A -> B, the other from B -> A).
1853          */
1854         pipe_double_lock(ipipe, opipe);
1855
1856         do {
1857                 if (!opipe->readers) {
1858                         send_sig(SIGPIPE, current, 0);
1859                         if (!ret)
1860                                 ret = -EPIPE;
1861                         break;
1862                 }
1863
1864                 /*
1865                  * If we have iterated all input buffers or ran out of
1866                  * output room, break.
1867                  */
1868                 if (i >= ipipe->nrbufs || opipe->nrbufs >= PIPE_BUFFERS)
1869                         break;
1870
1871                 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (PIPE_BUFFERS - 1));
1872                 nbuf = (opipe->curbuf + opipe->nrbufs) & (PIPE_BUFFERS - 1);
1873
1874                 /*
1875                  * Get a reference to this pipe buffer,
1876                  * so we can copy the contents over.
1877                  */
1878                 ibuf->ops->get(ipipe, ibuf);
1879
1880                 obuf = opipe->bufs + nbuf;
1881                 *obuf = *ibuf;
1882
1883                 /*
1884                  * Don't inherit the gift flag, we need to
1885                  * prevent multiple steals of this page.
1886                  */
1887                 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1888
1889                 if (obuf->len > len)
1890                         obuf->len = len;
1891
1892                 opipe->nrbufs++;
1893                 ret += obuf->len;
1894                 len -= obuf->len;
1895                 i++;
1896         } while (len);
1897
1898         /*
1899          * return EAGAIN if we have the potential of some data in the
1900          * future, otherwise just return 0
1901          */
1902         if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK))
1903                 ret = -EAGAIN;
1904
1905         pipe_unlock(ipipe);
1906         pipe_unlock(opipe);
1907
1908         /*
1909          * If we put data in the output pipe, wakeup any potential readers.
1910          */
1911         if (ret > 0) {
1912                 smp_mb();
1913                 if (waitqueue_active(&opipe->wait))
1914                         wake_up_interruptible(&opipe->wait);
1915                 kill_fasync(&opipe->fasync_readers, SIGIO, POLL_IN);
1916         }
1917
1918         return ret;
1919 }
1920
1921 /*
1922  * This is a tee(1) implementation that works on pipes. It doesn't copy
1923  * any data, it simply references the 'in' pages on the 'out' pipe.
1924  * The 'flags' used are the SPLICE_F_* variants, currently the only
1925  * applicable one is SPLICE_F_NONBLOCK.
1926  */
1927 static long do_tee(struct file *in, struct file *out, size_t len,
1928                    unsigned int flags)
1929 {
1930         struct pipe_inode_info *ipipe = pipe_info(in->f_path.dentry->d_inode);
1931         struct pipe_inode_info *opipe = pipe_info(out->f_path.dentry->d_inode);
1932         int ret = -EINVAL;
1933
1934         /*
1935          * Duplicate the contents of ipipe to opipe without actually
1936          * copying the data.
1937          */
1938         if (ipipe && opipe && ipipe != opipe) {
1939                 /*
1940                  * Keep going, unless we encounter an error. The ipipe/opipe
1941                  * ordering doesn't really matter.
1942                  */
1943                 ret = ipipe_prep(ipipe, flags);
1944                 if (!ret) {
1945                         ret = opipe_prep(opipe, flags);
1946                         if (!ret)
1947                                 ret = link_pipe(ipipe, opipe, len, flags);
1948                 }
1949         }
1950
1951         return ret;
1952 }
1953
1954 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
1955 {
1956         struct file *in;
1957         int error, fput_in;
1958
1959         if (unlikely(!len))
1960                 return 0;
1961
1962         error = -EBADF;
1963         in = fget_light(fdin, &fput_in);
1964         if (in) {
1965                 if (in->f_mode & FMODE_READ) {
1966                         int fput_out;
1967                         struct file *out = fget_light(fdout, &fput_out);
1968
1969                         if (out) {
1970                                 if (out->f_mode & FMODE_WRITE)
1971                                         error = do_tee(in, out, len, flags);
1972                                 fput_light(out, fput_out);
1973                         }
1974                 }
1975                 fput_light(in, fput_in);
1976         }
1977
1978         return error;
1979 }