splice: fix repeated kmap()'s in default_file_splice_read()
[safe/jmp/linux-2.6] / fs / splice.c
1 /*
2  * "splice": joining two ropes together by interweaving their strands.
3  *
4  * This is the "extended pipe" functionality, where a pipe is used as
5  * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6  * buffer that you can use to transfer data from one end to the other.
7  *
8  * The traditional unix read/write is extended with a "splice()" operation
9  * that transfers data buffers to or from a pipe buffer.
10  *
11  * Named by Larry McVoy, original implementation from Linus, extended by
12  * Jens to support splicing to files, network, direct splicing, etc and
13  * fixing lots of bugs.
14  *
15  * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16  * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17  * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
18  *
19  */
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/splice.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm_inline.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/buffer_head.h>
29 #include <linux/module.h>
30 #include <linux/syscalls.h>
31 #include <linux/uio.h>
32 #include <linux/security.h>
33
34 /*
35  * Attempt to steal a page from a pipe buffer. This should perhaps go into
36  * a vm helper function, it's already simplified quite a bit by the
37  * addition of remove_mapping(). If success is returned, the caller may
38  * attempt to reuse this page for another destination.
39  */
40 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
41                                      struct pipe_buffer *buf)
42 {
43         struct page *page = buf->page;
44         struct address_space *mapping;
45
46         lock_page(page);
47
48         mapping = page_mapping(page);
49         if (mapping) {
50                 WARN_ON(!PageUptodate(page));
51
52                 /*
53                  * At least for ext2 with nobh option, we need to wait on
54                  * writeback completing on this page, since we'll remove it
55                  * from the pagecache.  Otherwise truncate wont wait on the
56                  * page, allowing the disk blocks to be reused by someone else
57                  * before we actually wrote our data to them. fs corruption
58                  * ensues.
59                  */
60                 wait_on_page_writeback(page);
61
62                 if (page_has_private(page) &&
63                     !try_to_release_page(page, GFP_KERNEL))
64                         goto out_unlock;
65
66                 /*
67                  * If we succeeded in removing the mapping, set LRU flag
68                  * and return good.
69                  */
70                 if (remove_mapping(mapping, page)) {
71                         buf->flags |= PIPE_BUF_FLAG_LRU;
72                         return 0;
73                 }
74         }
75
76         /*
77          * Raced with truncate or failed to remove page from current
78          * address space, unlock and return failure.
79          */
80 out_unlock:
81         unlock_page(page);
82         return 1;
83 }
84
85 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
86                                         struct pipe_buffer *buf)
87 {
88         page_cache_release(buf->page);
89         buf->flags &= ~PIPE_BUF_FLAG_LRU;
90 }
91
92 /*
93  * Check whether the contents of buf is OK to access. Since the content
94  * is a page cache page, IO may be in flight.
95  */
96 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
97                                        struct pipe_buffer *buf)
98 {
99         struct page *page = buf->page;
100         int err;
101
102         if (!PageUptodate(page)) {
103                 lock_page(page);
104
105                 /*
106                  * Page got truncated/unhashed. This will cause a 0-byte
107                  * splice, if this is the first page.
108                  */
109                 if (!page->mapping) {
110                         err = -ENODATA;
111                         goto error;
112                 }
113
114                 /*
115                  * Uh oh, read-error from disk.
116                  */
117                 if (!PageUptodate(page)) {
118                         err = -EIO;
119                         goto error;
120                 }
121
122                 /*
123                  * Page is ok afterall, we are done.
124                  */
125                 unlock_page(page);
126         }
127
128         return 0;
129 error:
130         unlock_page(page);
131         return err;
132 }
133
134 static const struct pipe_buf_operations page_cache_pipe_buf_ops = {
135         .can_merge = 0,
136         .map = generic_pipe_buf_map,
137         .unmap = generic_pipe_buf_unmap,
138         .confirm = page_cache_pipe_buf_confirm,
139         .release = page_cache_pipe_buf_release,
140         .steal = page_cache_pipe_buf_steal,
141         .get = generic_pipe_buf_get,
142 };
143
144 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
145                                     struct pipe_buffer *buf)
146 {
147         if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
148                 return 1;
149
150         buf->flags |= PIPE_BUF_FLAG_LRU;
151         return generic_pipe_buf_steal(pipe, buf);
152 }
153
154 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
155         .can_merge = 0,
156         .map = generic_pipe_buf_map,
157         .unmap = generic_pipe_buf_unmap,
158         .confirm = generic_pipe_buf_confirm,
159         .release = page_cache_pipe_buf_release,
160         .steal = user_page_pipe_buf_steal,
161         .get = generic_pipe_buf_get,
162 };
163
164 /**
165  * splice_to_pipe - fill passed data into a pipe
166  * @pipe:       pipe to fill
167  * @spd:        data to fill
168  *
169  * Description:
170  *    @spd contains a map of pages and len/offset tuples, along with
171  *    the struct pipe_buf_operations associated with these pages. This
172  *    function will link that data to the pipe.
173  *
174  */
175 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
176                        struct splice_pipe_desc *spd)
177 {
178         unsigned int spd_pages = spd->nr_pages;
179         int ret, do_wakeup, page_nr;
180
181         ret = 0;
182         do_wakeup = 0;
183         page_nr = 0;
184
185         pipe_lock(pipe);
186
187         for (;;) {
188                 if (!pipe->readers) {
189                         send_sig(SIGPIPE, current, 0);
190                         if (!ret)
191                                 ret = -EPIPE;
192                         break;
193                 }
194
195                 if (pipe->nrbufs < PIPE_BUFFERS) {
196                         int newbuf = (pipe->curbuf + pipe->nrbufs) & (PIPE_BUFFERS - 1);
197                         struct pipe_buffer *buf = pipe->bufs + newbuf;
198
199                         buf->page = spd->pages[page_nr];
200                         buf->offset = spd->partial[page_nr].offset;
201                         buf->len = spd->partial[page_nr].len;
202                         buf->private = spd->partial[page_nr].private;
203                         buf->ops = spd->ops;
204                         if (spd->flags & SPLICE_F_GIFT)
205                                 buf->flags |= PIPE_BUF_FLAG_GIFT;
206
207                         pipe->nrbufs++;
208                         page_nr++;
209                         ret += buf->len;
210
211                         if (pipe->inode)
212                                 do_wakeup = 1;
213
214                         if (!--spd->nr_pages)
215                                 break;
216                         if (pipe->nrbufs < PIPE_BUFFERS)
217                                 continue;
218
219                         break;
220                 }
221
222                 if (spd->flags & SPLICE_F_NONBLOCK) {
223                         if (!ret)
224                                 ret = -EAGAIN;
225                         break;
226                 }
227
228                 if (signal_pending(current)) {
229                         if (!ret)
230                                 ret = -ERESTARTSYS;
231                         break;
232                 }
233
234                 if (do_wakeup) {
235                         smp_mb();
236                         if (waitqueue_active(&pipe->wait))
237                                 wake_up_interruptible_sync(&pipe->wait);
238                         kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
239                         do_wakeup = 0;
240                 }
241
242                 pipe->waiting_writers++;
243                 pipe_wait(pipe);
244                 pipe->waiting_writers--;
245         }
246
247         pipe_unlock(pipe);
248
249         if (do_wakeup) {
250                 smp_mb();
251                 if (waitqueue_active(&pipe->wait))
252                         wake_up_interruptible(&pipe->wait);
253                 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
254         }
255
256         while (page_nr < spd_pages)
257                 spd->spd_release(spd, page_nr++);
258
259         return ret;
260 }
261
262 static void spd_release_page(struct splice_pipe_desc *spd, unsigned int i)
263 {
264         page_cache_release(spd->pages[i]);
265 }
266
267 static int
268 __generic_file_splice_read(struct file *in, loff_t *ppos,
269                            struct pipe_inode_info *pipe, size_t len,
270                            unsigned int flags)
271 {
272         struct address_space *mapping = in->f_mapping;
273         unsigned int loff, nr_pages, req_pages;
274         struct page *pages[PIPE_BUFFERS];
275         struct partial_page partial[PIPE_BUFFERS];
276         struct page *page;
277         pgoff_t index, end_index;
278         loff_t isize;
279         int error, page_nr;
280         struct splice_pipe_desc spd = {
281                 .pages = pages,
282                 .partial = partial,
283                 .flags = flags,
284                 .ops = &page_cache_pipe_buf_ops,
285                 .spd_release = spd_release_page,
286         };
287
288         index = *ppos >> PAGE_CACHE_SHIFT;
289         loff = *ppos & ~PAGE_CACHE_MASK;
290         req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
291         nr_pages = min(req_pages, (unsigned)PIPE_BUFFERS);
292
293         /*
294          * Lookup the (hopefully) full range of pages we need.
295          */
296         spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, pages);
297         index += spd.nr_pages;
298
299         /*
300          * If find_get_pages_contig() returned fewer pages than we needed,
301          * readahead/allocate the rest and fill in the holes.
302          */
303         if (spd.nr_pages < nr_pages)
304                 page_cache_sync_readahead(mapping, &in->f_ra, in,
305                                 index, req_pages - spd.nr_pages);
306
307         error = 0;
308         while (spd.nr_pages < nr_pages) {
309                 /*
310                  * Page could be there, find_get_pages_contig() breaks on
311                  * the first hole.
312                  */
313                 page = find_get_page(mapping, index);
314                 if (!page) {
315                         /*
316                          * page didn't exist, allocate one.
317                          */
318                         page = page_cache_alloc_cold(mapping);
319                         if (!page)
320                                 break;
321
322                         error = add_to_page_cache_lru(page, mapping, index,
323                                                 mapping_gfp_mask(mapping));
324                         if (unlikely(error)) {
325                                 page_cache_release(page);
326                                 if (error == -EEXIST)
327                                         continue;
328                                 break;
329                         }
330                         /*
331                          * add_to_page_cache() locks the page, unlock it
332                          * to avoid convoluting the logic below even more.
333                          */
334                         unlock_page(page);
335                 }
336
337                 pages[spd.nr_pages++] = page;
338                 index++;
339         }
340
341         /*
342          * Now loop over the map and see if we need to start IO on any
343          * pages, fill in the partial map, etc.
344          */
345         index = *ppos >> PAGE_CACHE_SHIFT;
346         nr_pages = spd.nr_pages;
347         spd.nr_pages = 0;
348         for (page_nr = 0; page_nr < nr_pages; page_nr++) {
349                 unsigned int this_len;
350
351                 if (!len)
352                         break;
353
354                 /*
355                  * this_len is the max we'll use from this page
356                  */
357                 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
358                 page = pages[page_nr];
359
360                 if (PageReadahead(page))
361                         page_cache_async_readahead(mapping, &in->f_ra, in,
362                                         page, index, req_pages - page_nr);
363
364                 /*
365                  * If the page isn't uptodate, we may need to start io on it
366                  */
367                 if (!PageUptodate(page)) {
368                         /*
369                          * If in nonblock mode then dont block on waiting
370                          * for an in-flight io page
371                          */
372                         if (flags & SPLICE_F_NONBLOCK) {
373                                 if (!trylock_page(page)) {
374                                         error = -EAGAIN;
375                                         break;
376                                 }
377                         } else
378                                 lock_page(page);
379
380                         /*
381                          * Page was truncated, or invalidated by the
382                          * filesystem.  Redo the find/create, but this time the
383                          * page is kept locked, so there's no chance of another
384                          * race with truncate/invalidate.
385                          */
386                         if (!page->mapping) {
387                                 unlock_page(page);
388                                 page = find_or_create_page(mapping, index,
389                                                 mapping_gfp_mask(mapping));
390
391                                 if (!page) {
392                                         error = -ENOMEM;
393                                         break;
394                                 }
395                                 page_cache_release(pages[page_nr]);
396                                 pages[page_nr] = page;
397                         }
398                         /*
399                          * page was already under io and is now done, great
400                          */
401                         if (PageUptodate(page)) {
402                                 unlock_page(page);
403                                 goto fill_it;
404                         }
405
406                         /*
407                          * need to read in the page
408                          */
409                         error = mapping->a_ops->readpage(in, page);
410                         if (unlikely(error)) {
411                                 /*
412                                  * We really should re-lookup the page here,
413                                  * but it complicates things a lot. Instead
414                                  * lets just do what we already stored, and
415                                  * we'll get it the next time we are called.
416                                  */
417                                 if (error == AOP_TRUNCATED_PAGE)
418                                         error = 0;
419
420                                 break;
421                         }
422                 }
423 fill_it:
424                 /*
425                  * i_size must be checked after PageUptodate.
426                  */
427                 isize = i_size_read(mapping->host);
428                 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
429                 if (unlikely(!isize || index > end_index))
430                         break;
431
432                 /*
433                  * if this is the last page, see if we need to shrink
434                  * the length and stop
435                  */
436                 if (end_index == index) {
437                         unsigned int plen;
438
439                         /*
440                          * max good bytes in this page
441                          */
442                         plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
443                         if (plen <= loff)
444                                 break;
445
446                         /*
447                          * force quit after adding this page
448                          */
449                         this_len = min(this_len, plen - loff);
450                         len = this_len;
451                 }
452
453                 partial[page_nr].offset = loff;
454                 partial[page_nr].len = this_len;
455                 len -= this_len;
456                 loff = 0;
457                 spd.nr_pages++;
458                 index++;
459         }
460
461         /*
462          * Release any pages at the end, if we quit early. 'page_nr' is how far
463          * we got, 'nr_pages' is how many pages are in the map.
464          */
465         while (page_nr < nr_pages)
466                 page_cache_release(pages[page_nr++]);
467         in->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT;
468
469         if (spd.nr_pages)
470                 return splice_to_pipe(pipe, &spd);
471
472         return error;
473 }
474
475 /**
476  * generic_file_splice_read - splice data from file to a pipe
477  * @in:         file to splice from
478  * @ppos:       position in @in
479  * @pipe:       pipe to splice to
480  * @len:        number of bytes to splice
481  * @flags:      splice modifier flags
482  *
483  * Description:
484  *    Will read pages from given file and fill them into a pipe. Can be
485  *    used as long as the address_space operations for the source implements
486  *    a readpage() hook.
487  *
488  */
489 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
490                                  struct pipe_inode_info *pipe, size_t len,
491                                  unsigned int flags)
492 {
493         loff_t isize, left;
494         int ret;
495
496         isize = i_size_read(in->f_mapping->host);
497         if (unlikely(*ppos >= isize))
498                 return 0;
499
500         left = isize - *ppos;
501         if (unlikely(left < len))
502                 len = left;
503
504         ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
505         if (ret > 0)
506                 *ppos += ret;
507
508         return ret;
509 }
510 EXPORT_SYMBOL(generic_file_splice_read);
511
512 static const struct pipe_buf_operations default_pipe_buf_ops = {
513         .can_merge = 0,
514         .map = generic_pipe_buf_map,
515         .unmap = generic_pipe_buf_unmap,
516         .confirm = generic_pipe_buf_confirm,
517         .release = generic_pipe_buf_release,
518         .steal = generic_pipe_buf_steal,
519         .get = generic_pipe_buf_get,
520 };
521
522 static ssize_t kernel_readv(struct file *file, const struct iovec *vec,
523                             unsigned long vlen, loff_t offset)
524 {
525         mm_segment_t old_fs;
526         loff_t pos = offset;
527         ssize_t res;
528
529         old_fs = get_fs();
530         set_fs(get_ds());
531         /* The cast to a user pointer is valid due to the set_fs() */
532         res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos);
533         set_fs(old_fs);
534
535         return res;
536 }
537
538 static ssize_t kernel_writev(struct file *file, const struct iovec *vec,
539                             unsigned long vlen, loff_t *ppos)
540 {
541         mm_segment_t old_fs;
542         ssize_t res;
543
544         old_fs = get_fs();
545         set_fs(get_ds());
546         /* The cast to a user pointer is valid due to the set_fs() */
547         res = vfs_writev(file, (const struct iovec __user *)vec, vlen, ppos);
548         set_fs(old_fs);
549
550         return res;
551 }
552
553 ssize_t default_file_splice_read(struct file *in, loff_t *ppos,
554                                  struct pipe_inode_info *pipe, size_t len,
555                                  unsigned int flags)
556 {
557         unsigned int nr_pages;
558         unsigned int nr_freed;
559         size_t offset;
560         struct page *pages[PIPE_BUFFERS];
561         struct partial_page partial[PIPE_BUFFERS];
562         struct iovec vec[PIPE_BUFFERS];
563         pgoff_t index;
564         ssize_t res;
565         size_t this_len;
566         int error;
567         int i;
568         struct splice_pipe_desc spd = {
569                 .pages = pages,
570                 .partial = partial,
571                 .flags = flags,
572                 .ops = &default_pipe_buf_ops,
573                 .spd_release = spd_release_page,
574         };
575
576         index = *ppos >> PAGE_CACHE_SHIFT;
577         offset = *ppos & ~PAGE_CACHE_MASK;
578         nr_pages = (len + offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
579
580         for (i = 0; i < nr_pages && i < PIPE_BUFFERS && len; i++) {
581                 struct page *page;
582
583                 page = alloc_page(GFP_USER);
584                 error = -ENOMEM;
585                 if (!page)
586                         goto err;
587
588                 this_len = min_t(size_t, len, PAGE_CACHE_SIZE - offset);
589                 vec[i].iov_base = (void __user *) page_address(page);
590                 vec[i].iov_len = this_len;
591                 pages[i] = page;
592                 spd.nr_pages++;
593                 len -= this_len;
594                 offset = 0;
595         }
596
597         res = kernel_readv(in, vec, spd.nr_pages, *ppos);
598         if (res < 0)
599                 goto err;
600
601         error = 0;
602         if (!res)
603                 goto err;
604
605         nr_freed = 0;
606         for (i = 0; i < spd.nr_pages; i++) {
607                 this_len = min_t(size_t, vec[i].iov_len, res);
608                 partial[i].offset = 0;
609                 partial[i].len = this_len;
610                 if (!this_len) {
611                         __free_page(pages[i]);
612                         pages[i] = NULL;
613                         nr_freed++;
614                 }
615                 res -= this_len;
616         }
617         spd.nr_pages -= nr_freed;
618
619         res = splice_to_pipe(pipe, &spd);
620         if (res > 0)
621                 *ppos += res;
622
623         return res;
624
625 err:
626         for (i = 0; i < spd.nr_pages; i++)
627                 __free_page(pages[i]);
628
629         return error;
630 }
631 EXPORT_SYMBOL(default_file_splice_read);
632
633 /*
634  * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
635  * using sendpage(). Return the number of bytes sent.
636  */
637 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
638                             struct pipe_buffer *buf, struct splice_desc *sd)
639 {
640         struct file *file = sd->u.file;
641         loff_t pos = sd->pos;
642         int ret, more;
643
644         ret = buf->ops->confirm(pipe, buf);
645         if (!ret) {
646                 more = (sd->flags & SPLICE_F_MORE) || sd->len < sd->total_len;
647
648                 ret = file->f_op->sendpage(file, buf->page, buf->offset,
649                                            sd->len, &pos, more);
650         }
651
652         return ret;
653 }
654
655 /*
656  * This is a little more tricky than the file -> pipe splicing. There are
657  * basically three cases:
658  *
659  *      - Destination page already exists in the address space and there
660  *        are users of it. For that case we have no other option that
661  *        copying the data. Tough luck.
662  *      - Destination page already exists in the address space, but there
663  *        are no users of it. Make sure it's uptodate, then drop it. Fall
664  *        through to last case.
665  *      - Destination page does not exist, we can add the pipe page to
666  *        the page cache and avoid the copy.
667  *
668  * If asked to move pages to the output file (SPLICE_F_MOVE is set in
669  * sd->flags), we attempt to migrate pages from the pipe to the output
670  * file address space page cache. This is possible if no one else has
671  * the pipe page referenced outside of the pipe and page cache. If
672  * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
673  * a new page in the output file page cache and fill/dirty that.
674  */
675 int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
676                  struct splice_desc *sd)
677 {
678         struct file *file = sd->u.file;
679         struct address_space *mapping = file->f_mapping;
680         unsigned int offset, this_len;
681         struct page *page;
682         void *fsdata;
683         int ret;
684
685         /*
686          * make sure the data in this buffer is uptodate
687          */
688         ret = buf->ops->confirm(pipe, buf);
689         if (unlikely(ret))
690                 return ret;
691
692         offset = sd->pos & ~PAGE_CACHE_MASK;
693
694         this_len = sd->len;
695         if (this_len + offset > PAGE_CACHE_SIZE)
696                 this_len = PAGE_CACHE_SIZE - offset;
697
698         ret = pagecache_write_begin(file, mapping, sd->pos, this_len,
699                                 AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
700         if (unlikely(ret))
701                 goto out;
702
703         if (buf->page != page) {
704                 /*
705                  * Careful, ->map() uses KM_USER0!
706                  */
707                 char *src = buf->ops->map(pipe, buf, 1);
708                 char *dst = kmap_atomic(page, KM_USER1);
709
710                 memcpy(dst + offset, src + buf->offset, this_len);
711                 flush_dcache_page(page);
712                 kunmap_atomic(dst, KM_USER1);
713                 buf->ops->unmap(pipe, buf, src);
714         }
715         ret = pagecache_write_end(file, mapping, sd->pos, this_len, this_len,
716                                 page, fsdata);
717 out:
718         return ret;
719 }
720 EXPORT_SYMBOL(pipe_to_file);
721
722 static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
723 {
724         smp_mb();
725         if (waitqueue_active(&pipe->wait))
726                 wake_up_interruptible(&pipe->wait);
727         kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
728 }
729
730 /**
731  * splice_from_pipe_feed - feed available data from a pipe to a file
732  * @pipe:       pipe to splice from
733  * @sd:         information to @actor
734  * @actor:      handler that splices the data
735  *
736  * Description:
737  *    This function loops over the pipe and calls @actor to do the
738  *    actual moving of a single struct pipe_buffer to the desired
739  *    destination.  It returns when there's no more buffers left in
740  *    the pipe or if the requested number of bytes (@sd->total_len)
741  *    have been copied.  It returns a positive number (one) if the
742  *    pipe needs to be filled with more data, zero if the required
743  *    number of bytes have been copied and -errno on error.
744  *
745  *    This, together with splice_from_pipe_{begin,end,next}, may be
746  *    used to implement the functionality of __splice_from_pipe() when
747  *    locking is required around copying the pipe buffers to the
748  *    destination.
749  */
750 int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
751                           splice_actor *actor)
752 {
753         int ret;
754
755         while (pipe->nrbufs) {
756                 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
757                 const struct pipe_buf_operations *ops = buf->ops;
758
759                 sd->len = buf->len;
760                 if (sd->len > sd->total_len)
761                         sd->len = sd->total_len;
762
763                 ret = actor(pipe, buf, sd);
764                 if (ret <= 0) {
765                         if (ret == -ENODATA)
766                                 ret = 0;
767                         return ret;
768                 }
769                 buf->offset += ret;
770                 buf->len -= ret;
771
772                 sd->num_spliced += ret;
773                 sd->len -= ret;
774                 sd->pos += ret;
775                 sd->total_len -= ret;
776
777                 if (!buf->len) {
778                         buf->ops = NULL;
779                         ops->release(pipe, buf);
780                         pipe->curbuf = (pipe->curbuf + 1) & (PIPE_BUFFERS - 1);
781                         pipe->nrbufs--;
782                         if (pipe->inode)
783                                 sd->need_wakeup = true;
784                 }
785
786                 if (!sd->total_len)
787                         return 0;
788         }
789
790         return 1;
791 }
792 EXPORT_SYMBOL(splice_from_pipe_feed);
793
794 /**
795  * splice_from_pipe_next - wait for some data to splice from
796  * @pipe:       pipe to splice from
797  * @sd:         information about the splice operation
798  *
799  * Description:
800  *    This function will wait for some data and return a positive
801  *    value (one) if pipe buffers are available.  It will return zero
802  *    or -errno if no more data needs to be spliced.
803  */
804 int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
805 {
806         while (!pipe->nrbufs) {
807                 if (!pipe->writers)
808                         return 0;
809
810                 if (!pipe->waiting_writers && sd->num_spliced)
811                         return 0;
812
813                 if (sd->flags & SPLICE_F_NONBLOCK)
814                         return -EAGAIN;
815
816                 if (signal_pending(current))
817                         return -ERESTARTSYS;
818
819                 if (sd->need_wakeup) {
820                         wakeup_pipe_writers(pipe);
821                         sd->need_wakeup = false;
822                 }
823
824                 pipe_wait(pipe);
825         }
826
827         return 1;
828 }
829 EXPORT_SYMBOL(splice_from_pipe_next);
830
831 /**
832  * splice_from_pipe_begin - start splicing from pipe
833  * @sd:         information about the splice operation
834  *
835  * Description:
836  *    This function should be called before a loop containing
837  *    splice_from_pipe_next() and splice_from_pipe_feed() to
838  *    initialize the necessary fields of @sd.
839  */
840 void splice_from_pipe_begin(struct splice_desc *sd)
841 {
842         sd->num_spliced = 0;
843         sd->need_wakeup = false;
844 }
845 EXPORT_SYMBOL(splice_from_pipe_begin);
846
847 /**
848  * splice_from_pipe_end - finish splicing from pipe
849  * @pipe:       pipe to splice from
850  * @sd:         information about the splice operation
851  *
852  * Description:
853  *    This function will wake up pipe writers if necessary.  It should
854  *    be called after a loop containing splice_from_pipe_next() and
855  *    splice_from_pipe_feed().
856  */
857 void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
858 {
859         if (sd->need_wakeup)
860                 wakeup_pipe_writers(pipe);
861 }
862 EXPORT_SYMBOL(splice_from_pipe_end);
863
864 /**
865  * __splice_from_pipe - splice data from a pipe to given actor
866  * @pipe:       pipe to splice from
867  * @sd:         information to @actor
868  * @actor:      handler that splices the data
869  *
870  * Description:
871  *    This function does little more than loop over the pipe and call
872  *    @actor to do the actual moving of a single struct pipe_buffer to
873  *    the desired destination. See pipe_to_file, pipe_to_sendpage, or
874  *    pipe_to_user.
875  *
876  */
877 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
878                            splice_actor *actor)
879 {
880         int ret;
881
882         splice_from_pipe_begin(sd);
883         do {
884                 ret = splice_from_pipe_next(pipe, sd);
885                 if (ret > 0)
886                         ret = splice_from_pipe_feed(pipe, sd, actor);
887         } while (ret > 0);
888         splice_from_pipe_end(pipe, sd);
889
890         return sd->num_spliced ? sd->num_spliced : ret;
891 }
892 EXPORT_SYMBOL(__splice_from_pipe);
893
894 /**
895  * splice_from_pipe - splice data from a pipe to a file
896  * @pipe:       pipe to splice from
897  * @out:        file to splice to
898  * @ppos:       position in @out
899  * @len:        how many bytes to splice
900  * @flags:      splice modifier flags
901  * @actor:      handler that splices the data
902  *
903  * Description:
904  *    See __splice_from_pipe. This function locks the pipe inode,
905  *    otherwise it's identical to __splice_from_pipe().
906  *
907  */
908 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
909                          loff_t *ppos, size_t len, unsigned int flags,
910                          splice_actor *actor)
911 {
912         ssize_t ret;
913         struct splice_desc sd = {
914                 .total_len = len,
915                 .flags = flags,
916                 .pos = *ppos,
917                 .u.file = out,
918         };
919
920         pipe_lock(pipe);
921         ret = __splice_from_pipe(pipe, &sd, actor);
922         pipe_unlock(pipe);
923
924         return ret;
925 }
926
927 /**
928  * generic_file_splice_write - splice data from a pipe to a file
929  * @pipe:       pipe info
930  * @out:        file to write to
931  * @ppos:       position in @out
932  * @len:        number of bytes to splice
933  * @flags:      splice modifier flags
934  *
935  * Description:
936  *    Will either move or copy pages (determined by @flags options) from
937  *    the given pipe inode to the given file.
938  *
939  */
940 ssize_t
941 generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
942                           loff_t *ppos, size_t len, unsigned int flags)
943 {
944         struct address_space *mapping = out->f_mapping;
945         struct inode *inode = mapping->host;
946         struct splice_desc sd = {
947                 .total_len = len,
948                 .flags = flags,
949                 .pos = *ppos,
950                 .u.file = out,
951         };
952         ssize_t ret;
953
954         pipe_lock(pipe);
955
956         splice_from_pipe_begin(&sd);
957         do {
958                 ret = splice_from_pipe_next(pipe, &sd);
959                 if (ret <= 0)
960                         break;
961
962                 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
963                 ret = file_remove_suid(out);
964                 if (!ret)
965                         ret = splice_from_pipe_feed(pipe, &sd, pipe_to_file);
966                 mutex_unlock(&inode->i_mutex);
967         } while (ret > 0);
968         splice_from_pipe_end(pipe, &sd);
969
970         pipe_unlock(pipe);
971
972         if (sd.num_spliced)
973                 ret = sd.num_spliced;
974
975         if (ret > 0) {
976                 unsigned long nr_pages;
977
978                 *ppos += ret;
979                 nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
980
981                 /*
982                  * If file or inode is SYNC and we actually wrote some data,
983                  * sync it.
984                  */
985                 if (unlikely((out->f_flags & O_SYNC) || IS_SYNC(inode))) {
986                         int err;
987
988                         mutex_lock(&inode->i_mutex);
989                         err = generic_osync_inode(inode, mapping,
990                                                   OSYNC_METADATA|OSYNC_DATA);
991                         mutex_unlock(&inode->i_mutex);
992
993                         if (err)
994                                 ret = err;
995                 }
996                 balance_dirty_pages_ratelimited_nr(mapping, nr_pages);
997         }
998
999         return ret;
1000 }
1001
1002 EXPORT_SYMBOL(generic_file_splice_write);
1003
1004 static struct pipe_buffer *nth_pipe_buf(struct pipe_inode_info *pipe, int n)
1005 {
1006         return &pipe->bufs[(pipe->curbuf + n) % PIPE_BUFFERS];
1007 }
1008
1009 static ssize_t default_file_splice_write(struct pipe_inode_info *pipe,
1010                                          struct file *out, loff_t *ppos,
1011                                          size_t len, unsigned int flags)
1012 {
1013         ssize_t ret = 0;
1014         ssize_t total_len = 0;
1015         int do_wakeup = 0;
1016
1017         pipe_lock(pipe);
1018         while (len) {
1019                 struct pipe_buffer *buf;
1020                 void *data[PIPE_BUFFERS];
1021                 struct iovec vec[PIPE_BUFFERS];
1022                 unsigned int nr_pages = 0;
1023                 unsigned int write_len = 0;
1024                 unsigned int now_len = len;
1025                 unsigned int this_len;
1026                 int i;
1027
1028                 BUG_ON(pipe->nrbufs > PIPE_BUFFERS);
1029                 for (i = 0; i < pipe->nrbufs && now_len; i++) {
1030                         buf = nth_pipe_buf(pipe, i);
1031
1032                         ret = buf->ops->confirm(pipe, buf);
1033                         if (ret)
1034                                 break;
1035
1036                         data[i] = buf->ops->map(pipe, buf, 0);
1037                         this_len = min(buf->len, now_len);
1038                         vec[i].iov_base = (void __user *) data[i] + buf->offset;
1039                         vec[i].iov_len = this_len;
1040                         now_len -= this_len;
1041                         write_len += this_len;
1042                         nr_pages++;
1043                 }
1044
1045                 if (nr_pages) {
1046                         ret = kernel_writev(out, vec, nr_pages, ppos);
1047                         if (ret == 0)
1048                                 ret = -EIO;
1049                         if (ret > 0) {
1050                                 len -= ret;
1051                                 total_len += ret;
1052                         }
1053                 }
1054
1055                 for (i = 0; i < nr_pages; i++) {
1056                         buf = nth_pipe_buf(pipe, i);
1057                         buf->ops->unmap(pipe, buf, data[i]);
1058
1059                         if (ret > 0) {
1060                                 this_len = min_t(unsigned, vec[i].iov_len, ret);
1061                                 buf->offset += this_len;
1062                                 buf->len -= this_len;
1063                                 ret -= this_len;
1064                         }
1065                 }
1066
1067                 if (ret < 0)
1068                         break;
1069
1070                 while (pipe->nrbufs) {
1071                         const struct pipe_buf_operations *ops;
1072
1073                         buf = nth_pipe_buf(pipe, 0);
1074                         if (buf->len)
1075                                 break;
1076
1077                         ops = buf->ops;
1078                         buf->ops = NULL;
1079                         ops->release(pipe, buf);
1080                         pipe->curbuf = (pipe->curbuf + 1) % PIPE_BUFFERS;
1081                         pipe->nrbufs--;
1082                         if (pipe->inode)
1083                                 do_wakeup = 1;
1084                 }
1085
1086                 if (pipe->nrbufs)
1087                         continue;
1088                 if (!pipe->writers)
1089                         break;
1090                 if (!pipe->waiting_writers) {
1091                         if (total_len)
1092                                 break;
1093                 }
1094
1095                 if (flags & SPLICE_F_NONBLOCK) {
1096                         ret = -EAGAIN;
1097                         break;
1098                 }
1099
1100                 if (signal_pending(current)) {
1101                         ret = -ERESTARTSYS;
1102                         break;
1103                 }
1104
1105                 if (do_wakeup) {
1106                         wakeup_pipe_writers(pipe);
1107                         do_wakeup = 0;
1108                 }
1109
1110                 pipe_wait(pipe);
1111         }
1112         pipe_unlock(pipe);
1113
1114         if (do_wakeup)
1115                 wakeup_pipe_writers(pipe);
1116
1117         return total_len ? total_len : ret;
1118 }
1119
1120 /**
1121  * generic_splice_sendpage - splice data from a pipe to a socket
1122  * @pipe:       pipe to splice from
1123  * @out:        socket to write to
1124  * @ppos:       position in @out
1125  * @len:        number of bytes to splice
1126  * @flags:      splice modifier flags
1127  *
1128  * Description:
1129  *    Will send @len bytes from the pipe to a network socket. No data copying
1130  *    is involved.
1131  *
1132  */
1133 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
1134                                 loff_t *ppos, size_t len, unsigned int flags)
1135 {
1136         return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
1137 }
1138
1139 EXPORT_SYMBOL(generic_splice_sendpage);
1140
1141 /*
1142  * Attempt to initiate a splice from pipe to file.
1143  */
1144 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
1145                            loff_t *ppos, size_t len, unsigned int flags)
1146 {
1147         ssize_t (*splice_write)(struct pipe_inode_info *, struct file *,
1148                                 loff_t *, size_t, unsigned int);
1149         int ret;
1150
1151         if (unlikely(!(out->f_mode & FMODE_WRITE)))
1152                 return -EBADF;
1153
1154         if (unlikely(out->f_flags & O_APPEND))
1155                 return -EINVAL;
1156
1157         ret = rw_verify_area(WRITE, out, ppos, len);
1158         if (unlikely(ret < 0))
1159                 return ret;
1160
1161         splice_write = out->f_op->splice_write;
1162         if (!splice_write)
1163                 splice_write = default_file_splice_write;
1164
1165         return splice_write(pipe, out, ppos, len, flags);
1166 }
1167
1168 /*
1169  * Attempt to initiate a splice from a file to a pipe.
1170  */
1171 static long do_splice_to(struct file *in, loff_t *ppos,
1172                          struct pipe_inode_info *pipe, size_t len,
1173                          unsigned int flags)
1174 {
1175         ssize_t (*splice_read)(struct file *, loff_t *,
1176                                struct pipe_inode_info *, size_t, unsigned int);
1177         int ret;
1178
1179         if (unlikely(!(in->f_mode & FMODE_READ)))
1180                 return -EBADF;
1181
1182         ret = rw_verify_area(READ, in, ppos, len);
1183         if (unlikely(ret < 0))
1184                 return ret;
1185
1186         splice_read = in->f_op->splice_read;
1187         if (!splice_read)
1188                 splice_read = default_file_splice_read;
1189
1190         return splice_read(in, ppos, pipe, len, flags);
1191 }
1192
1193 /**
1194  * splice_direct_to_actor - splices data directly between two non-pipes
1195  * @in:         file to splice from
1196  * @sd:         actor information on where to splice to
1197  * @actor:      handles the data splicing
1198  *
1199  * Description:
1200  *    This is a special case helper to splice directly between two
1201  *    points, without requiring an explicit pipe. Internally an allocated
1202  *    pipe is cached in the process, and reused during the lifetime of
1203  *    that process.
1204  *
1205  */
1206 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
1207                                splice_direct_actor *actor)
1208 {
1209         struct pipe_inode_info *pipe;
1210         long ret, bytes;
1211         umode_t i_mode;
1212         size_t len;
1213         int i, flags;
1214
1215         /*
1216          * We require the input being a regular file, as we don't want to
1217          * randomly drop data for eg socket -> socket splicing. Use the
1218          * piped splicing for that!
1219          */
1220         i_mode = in->f_path.dentry->d_inode->i_mode;
1221         if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
1222                 return -EINVAL;
1223
1224         /*
1225          * neither in nor out is a pipe, setup an internal pipe attached to
1226          * 'out' and transfer the wanted data from 'in' to 'out' through that
1227          */
1228         pipe = current->splice_pipe;
1229         if (unlikely(!pipe)) {
1230                 pipe = alloc_pipe_info(NULL);
1231                 if (!pipe)
1232                         return -ENOMEM;
1233
1234                 /*
1235                  * We don't have an immediate reader, but we'll read the stuff
1236                  * out of the pipe right after the splice_to_pipe(). So set
1237                  * PIPE_READERS appropriately.
1238                  */
1239                 pipe->readers = 1;
1240
1241                 current->splice_pipe = pipe;
1242         }
1243
1244         /*
1245          * Do the splice.
1246          */
1247         ret = 0;
1248         bytes = 0;
1249         len = sd->total_len;
1250         flags = sd->flags;
1251
1252         /*
1253          * Don't block on output, we have to drain the direct pipe.
1254          */
1255         sd->flags &= ~SPLICE_F_NONBLOCK;
1256
1257         while (len) {
1258                 size_t read_len;
1259                 loff_t pos = sd->pos, prev_pos = pos;
1260
1261                 ret = do_splice_to(in, &pos, pipe, len, flags);
1262                 if (unlikely(ret <= 0))
1263                         goto out_release;
1264
1265                 read_len = ret;
1266                 sd->total_len = read_len;
1267
1268                 /*
1269                  * NOTE: nonblocking mode only applies to the input. We
1270                  * must not do the output in nonblocking mode as then we
1271                  * could get stuck data in the internal pipe:
1272                  */
1273                 ret = actor(pipe, sd);
1274                 if (unlikely(ret <= 0)) {
1275                         sd->pos = prev_pos;
1276                         goto out_release;
1277                 }
1278
1279                 bytes += ret;
1280                 len -= ret;
1281                 sd->pos = pos;
1282
1283                 if (ret < read_len) {
1284                         sd->pos = prev_pos + ret;
1285                         goto out_release;
1286                 }
1287         }
1288
1289 done:
1290         pipe->nrbufs = pipe->curbuf = 0;
1291         file_accessed(in);
1292         return bytes;
1293
1294 out_release:
1295         /*
1296          * If we did an incomplete transfer we must release
1297          * the pipe buffers in question:
1298          */
1299         for (i = 0; i < PIPE_BUFFERS; i++) {
1300                 struct pipe_buffer *buf = pipe->bufs + i;
1301
1302                 if (buf->ops) {
1303                         buf->ops->release(pipe, buf);
1304                         buf->ops = NULL;
1305                 }
1306         }
1307
1308         if (!bytes)
1309                 bytes = ret;
1310
1311         goto done;
1312 }
1313 EXPORT_SYMBOL(splice_direct_to_actor);
1314
1315 static int direct_splice_actor(struct pipe_inode_info *pipe,
1316                                struct splice_desc *sd)
1317 {
1318         struct file *file = sd->u.file;
1319
1320         return do_splice_from(pipe, file, &sd->pos, sd->total_len, sd->flags);
1321 }
1322
1323 /**
1324  * do_splice_direct - splices data directly between two files
1325  * @in:         file to splice from
1326  * @ppos:       input file offset
1327  * @out:        file to splice to
1328  * @len:        number of bytes to splice
1329  * @flags:      splice modifier flags
1330  *
1331  * Description:
1332  *    For use by do_sendfile(). splice can easily emulate sendfile, but
1333  *    doing it in the application would incur an extra system call
1334  *    (splice in + splice out, as compared to just sendfile()). So this helper
1335  *    can splice directly through a process-private pipe.
1336  *
1337  */
1338 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1339                       size_t len, unsigned int flags)
1340 {
1341         struct splice_desc sd = {
1342                 .len            = len,
1343                 .total_len      = len,
1344                 .flags          = flags,
1345                 .pos            = *ppos,
1346                 .u.file         = out,
1347         };
1348         long ret;
1349
1350         ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1351         if (ret > 0)
1352                 *ppos = sd.pos;
1353
1354         return ret;
1355 }
1356
1357 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1358                                struct pipe_inode_info *opipe,
1359                                size_t len, unsigned int flags);
1360 /*
1361  * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same
1362  * location, so checking ->i_pipe is not enough to verify that this is a
1363  * pipe.
1364  */
1365 static inline struct pipe_inode_info *pipe_info(struct inode *inode)
1366 {
1367         if (S_ISFIFO(inode->i_mode))
1368                 return inode->i_pipe;
1369
1370         return NULL;
1371 }
1372
1373 /*
1374  * Determine where to splice to/from.
1375  */
1376 static long do_splice(struct file *in, loff_t __user *off_in,
1377                       struct file *out, loff_t __user *off_out,
1378                       size_t len, unsigned int flags)
1379 {
1380         struct pipe_inode_info *ipipe;
1381         struct pipe_inode_info *opipe;
1382         loff_t offset, *off;
1383         long ret;
1384
1385         ipipe = pipe_info(in->f_path.dentry->d_inode);
1386         opipe = pipe_info(out->f_path.dentry->d_inode);
1387
1388         if (ipipe && opipe) {
1389                 if (off_in || off_out)
1390                         return -ESPIPE;
1391
1392                 if (!(in->f_mode & FMODE_READ))
1393                         return -EBADF;
1394
1395                 if (!(out->f_mode & FMODE_WRITE))
1396                         return -EBADF;
1397
1398                 /* Splicing to self would be fun, but... */
1399                 if (ipipe == opipe)
1400                         return -EINVAL;
1401
1402                 return splice_pipe_to_pipe(ipipe, opipe, len, flags);
1403         }
1404
1405         if (ipipe) {
1406                 if (off_in)
1407                         return -ESPIPE;
1408                 if (off_out) {
1409                         if (out->f_op->llseek == no_llseek)
1410                                 return -EINVAL;
1411                         if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1412                                 return -EFAULT;
1413                         off = &offset;
1414                 } else
1415                         off = &out->f_pos;
1416
1417                 ret = do_splice_from(ipipe, out, off, len, flags);
1418
1419                 if (off_out && copy_to_user(off_out, off, sizeof(loff_t)))
1420                         ret = -EFAULT;
1421
1422                 return ret;
1423         }
1424
1425         if (opipe) {
1426                 if (off_out)
1427                         return -ESPIPE;
1428                 if (off_in) {
1429                         if (in->f_op->llseek == no_llseek)
1430                                 return -EINVAL;
1431                         if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1432                                 return -EFAULT;
1433                         off = &offset;
1434                 } else
1435                         off = &in->f_pos;
1436
1437                 ret = do_splice_to(in, off, opipe, len, flags);
1438
1439                 if (off_in && copy_to_user(off_in, off, sizeof(loff_t)))
1440                         ret = -EFAULT;
1441
1442                 return ret;
1443         }
1444
1445         return -EINVAL;
1446 }
1447
1448 /*
1449  * Map an iov into an array of pages and offset/length tupples. With the
1450  * partial_page structure, we can map several non-contiguous ranges into
1451  * our ones pages[] map instead of splitting that operation into pieces.
1452  * Could easily be exported as a generic helper for other users, in which
1453  * case one would probably want to add a 'max_nr_pages' parameter as well.
1454  */
1455 static int get_iovec_page_array(const struct iovec __user *iov,
1456                                 unsigned int nr_vecs, struct page **pages,
1457                                 struct partial_page *partial, int aligned)
1458 {
1459         int buffers = 0, error = 0;
1460
1461         while (nr_vecs) {
1462                 unsigned long off, npages;
1463                 struct iovec entry;
1464                 void __user *base;
1465                 size_t len;
1466                 int i;
1467
1468                 error = -EFAULT;
1469                 if (copy_from_user(&entry, iov, sizeof(entry)))
1470                         break;
1471
1472                 base = entry.iov_base;
1473                 len = entry.iov_len;
1474
1475                 /*
1476                  * Sanity check this iovec. 0 read succeeds.
1477                  */
1478                 error = 0;
1479                 if (unlikely(!len))
1480                         break;
1481                 error = -EFAULT;
1482                 if (!access_ok(VERIFY_READ, base, len))
1483                         break;
1484
1485                 /*
1486                  * Get this base offset and number of pages, then map
1487                  * in the user pages.
1488                  */
1489                 off = (unsigned long) base & ~PAGE_MASK;
1490
1491                 /*
1492                  * If asked for alignment, the offset must be zero and the
1493                  * length a multiple of the PAGE_SIZE.
1494                  */
1495                 error = -EINVAL;
1496                 if (aligned && (off || len & ~PAGE_MASK))
1497                         break;
1498
1499                 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1500                 if (npages > PIPE_BUFFERS - buffers)
1501                         npages = PIPE_BUFFERS - buffers;
1502
1503                 error = get_user_pages_fast((unsigned long)base, npages,
1504                                         0, &pages[buffers]);
1505
1506                 if (unlikely(error <= 0))
1507                         break;
1508
1509                 /*
1510                  * Fill this contiguous range into the partial page map.
1511                  */
1512                 for (i = 0; i < error; i++) {
1513                         const int plen = min_t(size_t, len, PAGE_SIZE - off);
1514
1515                         partial[buffers].offset = off;
1516                         partial[buffers].len = plen;
1517
1518                         off = 0;
1519                         len -= plen;
1520                         buffers++;
1521                 }
1522
1523                 /*
1524                  * We didn't complete this iov, stop here since it probably
1525                  * means we have to move some of this into a pipe to
1526                  * be able to continue.
1527                  */
1528                 if (len)
1529                         break;
1530
1531                 /*
1532                  * Don't continue if we mapped fewer pages than we asked for,
1533                  * or if we mapped the max number of pages that we have
1534                  * room for.
1535                  */
1536                 if (error < npages || buffers == PIPE_BUFFERS)
1537                         break;
1538
1539                 nr_vecs--;
1540                 iov++;
1541         }
1542
1543         if (buffers)
1544                 return buffers;
1545
1546         return error;
1547 }
1548
1549 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1550                         struct splice_desc *sd)
1551 {
1552         char *src;
1553         int ret;
1554
1555         ret = buf->ops->confirm(pipe, buf);
1556         if (unlikely(ret))
1557                 return ret;
1558
1559         /*
1560          * See if we can use the atomic maps, by prefaulting in the
1561          * pages and doing an atomic copy
1562          */
1563         if (!fault_in_pages_writeable(sd->u.userptr, sd->len)) {
1564                 src = buf->ops->map(pipe, buf, 1);
1565                 ret = __copy_to_user_inatomic(sd->u.userptr, src + buf->offset,
1566                                                         sd->len);
1567                 buf->ops->unmap(pipe, buf, src);
1568                 if (!ret) {
1569                         ret = sd->len;
1570                         goto out;
1571                 }
1572         }
1573
1574         /*
1575          * No dice, use slow non-atomic map and copy
1576          */
1577         src = buf->ops->map(pipe, buf, 0);
1578
1579         ret = sd->len;
1580         if (copy_to_user(sd->u.userptr, src + buf->offset, sd->len))
1581                 ret = -EFAULT;
1582
1583         buf->ops->unmap(pipe, buf, src);
1584 out:
1585         if (ret > 0)
1586                 sd->u.userptr += ret;
1587         return ret;
1588 }
1589
1590 /*
1591  * For lack of a better implementation, implement vmsplice() to userspace
1592  * as a simple copy of the pipes pages to the user iov.
1593  */
1594 static long vmsplice_to_user(struct file *file, const struct iovec __user *iov,
1595                              unsigned long nr_segs, unsigned int flags)
1596 {
1597         struct pipe_inode_info *pipe;
1598         struct splice_desc sd;
1599         ssize_t size;
1600         int error;
1601         long ret;
1602
1603         pipe = pipe_info(file->f_path.dentry->d_inode);
1604         if (!pipe)
1605                 return -EBADF;
1606
1607         pipe_lock(pipe);
1608
1609         error = ret = 0;
1610         while (nr_segs) {
1611                 void __user *base;
1612                 size_t len;
1613
1614                 /*
1615                  * Get user address base and length for this iovec.
1616                  */
1617                 error = get_user(base, &iov->iov_base);
1618                 if (unlikely(error))
1619                         break;
1620                 error = get_user(len, &iov->iov_len);
1621                 if (unlikely(error))
1622                         break;
1623
1624                 /*
1625                  * Sanity check this iovec. 0 read succeeds.
1626                  */
1627                 if (unlikely(!len))
1628                         break;
1629                 if (unlikely(!base)) {
1630                         error = -EFAULT;
1631                         break;
1632                 }
1633
1634                 if (unlikely(!access_ok(VERIFY_WRITE, base, len))) {
1635                         error = -EFAULT;
1636                         break;
1637                 }
1638
1639                 sd.len = 0;
1640                 sd.total_len = len;
1641                 sd.flags = flags;
1642                 sd.u.userptr = base;
1643                 sd.pos = 0;
1644
1645                 size = __splice_from_pipe(pipe, &sd, pipe_to_user);
1646                 if (size < 0) {
1647                         if (!ret)
1648                                 ret = size;
1649
1650                         break;
1651                 }
1652
1653                 ret += size;
1654
1655                 if (size < len)
1656                         break;
1657
1658                 nr_segs--;
1659                 iov++;
1660         }
1661
1662         pipe_unlock(pipe);
1663
1664         if (!ret)
1665                 ret = error;
1666
1667         return ret;
1668 }
1669
1670 /*
1671  * vmsplice splices a user address range into a pipe. It can be thought of
1672  * as splice-from-memory, where the regular splice is splice-from-file (or
1673  * to file). In both cases the output is a pipe, naturally.
1674  */
1675 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov,
1676                              unsigned long nr_segs, unsigned int flags)
1677 {
1678         struct pipe_inode_info *pipe;
1679         struct page *pages[PIPE_BUFFERS];
1680         struct partial_page partial[PIPE_BUFFERS];
1681         struct splice_pipe_desc spd = {
1682                 .pages = pages,
1683                 .partial = partial,
1684                 .flags = flags,
1685                 .ops = &user_page_pipe_buf_ops,
1686                 .spd_release = spd_release_page,
1687         };
1688
1689         pipe = pipe_info(file->f_path.dentry->d_inode);
1690         if (!pipe)
1691                 return -EBADF;
1692
1693         spd.nr_pages = get_iovec_page_array(iov, nr_segs, pages, partial,
1694                                             flags & SPLICE_F_GIFT);
1695         if (spd.nr_pages <= 0)
1696                 return spd.nr_pages;
1697
1698         return splice_to_pipe(pipe, &spd);
1699 }
1700
1701 /*
1702  * Note that vmsplice only really supports true splicing _from_ user memory
1703  * to a pipe, not the other way around. Splicing from user memory is a simple
1704  * operation that can be supported without any funky alignment restrictions
1705  * or nasty vm tricks. We simply map in the user memory and fill them into
1706  * a pipe. The reverse isn't quite as easy, though. There are two possible
1707  * solutions for that:
1708  *
1709  *      - memcpy() the data internally, at which point we might as well just
1710  *        do a regular read() on the buffer anyway.
1711  *      - Lots of nasty vm tricks, that are neither fast nor flexible (it
1712  *        has restriction limitations on both ends of the pipe).
1713  *
1714  * Currently we punt and implement it as a normal copy, see pipe_to_user().
1715  *
1716  */
1717 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov,
1718                 unsigned long, nr_segs, unsigned int, flags)
1719 {
1720         struct file *file;
1721         long error;
1722         int fput;
1723
1724         if (unlikely(nr_segs > UIO_MAXIOV))
1725                 return -EINVAL;
1726         else if (unlikely(!nr_segs))
1727                 return 0;
1728
1729         error = -EBADF;
1730         file = fget_light(fd, &fput);
1731         if (file) {
1732                 if (file->f_mode & FMODE_WRITE)
1733                         error = vmsplice_to_pipe(file, iov, nr_segs, flags);
1734                 else if (file->f_mode & FMODE_READ)
1735                         error = vmsplice_to_user(file, iov, nr_segs, flags);
1736
1737                 fput_light(file, fput);
1738         }
1739
1740         return error;
1741 }
1742
1743 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1744                 int, fd_out, loff_t __user *, off_out,
1745                 size_t, len, unsigned int, flags)
1746 {
1747         long error;
1748         struct file *in, *out;
1749         int fput_in, fput_out;
1750
1751         if (unlikely(!len))
1752                 return 0;
1753
1754         error = -EBADF;
1755         in = fget_light(fd_in, &fput_in);
1756         if (in) {
1757                 if (in->f_mode & FMODE_READ) {
1758                         out = fget_light(fd_out, &fput_out);
1759                         if (out) {
1760                                 if (out->f_mode & FMODE_WRITE)
1761                                         error = do_splice(in, off_in,
1762                                                           out, off_out,
1763                                                           len, flags);
1764                                 fput_light(out, fput_out);
1765                         }
1766                 }
1767
1768                 fput_light(in, fput_in);
1769         }
1770
1771         return error;
1772 }
1773
1774 /*
1775  * Make sure there's data to read. Wait for input if we can, otherwise
1776  * return an appropriate error.
1777  */
1778 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1779 {
1780         int ret;
1781
1782         /*
1783          * Check ->nrbufs without the inode lock first. This function
1784          * is speculative anyways, so missing one is ok.
1785          */
1786         if (pipe->nrbufs)
1787                 return 0;
1788
1789         ret = 0;
1790         pipe_lock(pipe);
1791
1792         while (!pipe->nrbufs) {
1793                 if (signal_pending(current)) {
1794                         ret = -ERESTARTSYS;
1795                         break;
1796                 }
1797                 if (!pipe->writers)
1798                         break;
1799                 if (!pipe->waiting_writers) {
1800                         if (flags & SPLICE_F_NONBLOCK) {
1801                                 ret = -EAGAIN;
1802                                 break;
1803                         }
1804                 }
1805                 pipe_wait(pipe);
1806         }
1807
1808         pipe_unlock(pipe);
1809         return ret;
1810 }
1811
1812 /*
1813  * Make sure there's writeable room. Wait for room if we can, otherwise
1814  * return an appropriate error.
1815  */
1816 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1817 {
1818         int ret;
1819
1820         /*
1821          * Check ->nrbufs without the inode lock first. This function
1822          * is speculative anyways, so missing one is ok.
1823          */
1824         if (pipe->nrbufs < PIPE_BUFFERS)
1825                 return 0;
1826
1827         ret = 0;
1828         pipe_lock(pipe);
1829
1830         while (pipe->nrbufs >= PIPE_BUFFERS) {
1831                 if (!pipe->readers) {
1832                         send_sig(SIGPIPE, current, 0);
1833                         ret = -EPIPE;
1834                         break;
1835                 }
1836                 if (flags & SPLICE_F_NONBLOCK) {
1837                         ret = -EAGAIN;
1838                         break;
1839                 }
1840                 if (signal_pending(current)) {
1841                         ret = -ERESTARTSYS;
1842                         break;
1843                 }
1844                 pipe->waiting_writers++;
1845                 pipe_wait(pipe);
1846                 pipe->waiting_writers--;
1847         }
1848
1849         pipe_unlock(pipe);
1850         return ret;
1851 }
1852
1853 /*
1854  * Splice contents of ipipe to opipe.
1855  */
1856 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1857                                struct pipe_inode_info *opipe,
1858                                size_t len, unsigned int flags)
1859 {
1860         struct pipe_buffer *ibuf, *obuf;
1861         int ret = 0, nbuf;
1862         bool input_wakeup = false;
1863
1864
1865 retry:
1866         ret = ipipe_prep(ipipe, flags);
1867         if (ret)
1868                 return ret;
1869
1870         ret = opipe_prep(opipe, flags);
1871         if (ret)
1872                 return ret;
1873
1874         /*
1875          * Potential ABBA deadlock, work around it by ordering lock
1876          * grabbing by pipe info address. Otherwise two different processes
1877          * could deadlock (one doing tee from A -> B, the other from B -> A).
1878          */
1879         pipe_double_lock(ipipe, opipe);
1880
1881         do {
1882                 if (!opipe->readers) {
1883                         send_sig(SIGPIPE, current, 0);
1884                         if (!ret)
1885                                 ret = -EPIPE;
1886                         break;
1887                 }
1888
1889                 if (!ipipe->nrbufs && !ipipe->writers)
1890                         break;
1891
1892                 /*
1893                  * Cannot make any progress, because either the input
1894                  * pipe is empty or the output pipe is full.
1895                  */
1896                 if (!ipipe->nrbufs || opipe->nrbufs >= PIPE_BUFFERS) {
1897                         /* Already processed some buffers, break */
1898                         if (ret)
1899                                 break;
1900
1901                         if (flags & SPLICE_F_NONBLOCK) {
1902                                 ret = -EAGAIN;
1903                                 break;
1904                         }
1905
1906                         /*
1907                          * We raced with another reader/writer and haven't
1908                          * managed to process any buffers.  A zero return
1909                          * value means EOF, so retry instead.
1910                          */
1911                         pipe_unlock(ipipe);
1912                         pipe_unlock(opipe);
1913                         goto retry;
1914                 }
1915
1916                 ibuf = ipipe->bufs + ipipe->curbuf;
1917                 nbuf = (opipe->curbuf + opipe->nrbufs) % PIPE_BUFFERS;
1918                 obuf = opipe->bufs + nbuf;
1919
1920                 if (len >= ibuf->len) {
1921                         /*
1922                          * Simply move the whole buffer from ipipe to opipe
1923                          */
1924                         *obuf = *ibuf;
1925                         ibuf->ops = NULL;
1926                         opipe->nrbufs++;
1927                         ipipe->curbuf = (ipipe->curbuf + 1) % PIPE_BUFFERS;
1928                         ipipe->nrbufs--;
1929                         input_wakeup = true;
1930                 } else {
1931                         /*
1932                          * Get a reference to this pipe buffer,
1933                          * so we can copy the contents over.
1934                          */
1935                         ibuf->ops->get(ipipe, ibuf);
1936                         *obuf = *ibuf;
1937
1938                         /*
1939                          * Don't inherit the gift flag, we need to
1940                          * prevent multiple steals of this page.
1941                          */
1942                         obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1943
1944                         obuf->len = len;
1945                         opipe->nrbufs++;
1946                         ibuf->offset += obuf->len;
1947                         ibuf->len -= obuf->len;
1948                 }
1949                 ret += obuf->len;
1950                 len -= obuf->len;
1951         } while (len);
1952
1953         pipe_unlock(ipipe);
1954         pipe_unlock(opipe);
1955
1956         /*
1957          * If we put data in the output pipe, wakeup any potential readers.
1958          */
1959         if (ret > 0) {
1960                 smp_mb();
1961                 if (waitqueue_active(&opipe->wait))
1962                         wake_up_interruptible(&opipe->wait);
1963                 kill_fasync(&opipe->fasync_readers, SIGIO, POLL_IN);
1964         }
1965         if (input_wakeup)
1966                 wakeup_pipe_writers(ipipe);
1967
1968         return ret;
1969 }
1970
1971 /*
1972  * Link contents of ipipe to opipe.
1973  */
1974 static int link_pipe(struct pipe_inode_info *ipipe,
1975                      struct pipe_inode_info *opipe,
1976                      size_t len, unsigned int flags)
1977 {
1978         struct pipe_buffer *ibuf, *obuf;
1979         int ret = 0, i = 0, nbuf;
1980
1981         /*
1982          * Potential ABBA deadlock, work around it by ordering lock
1983          * grabbing by pipe info address. Otherwise two different processes
1984          * could deadlock (one doing tee from A -> B, the other from B -> A).
1985          */
1986         pipe_double_lock(ipipe, opipe);
1987
1988         do {
1989                 if (!opipe->readers) {
1990                         send_sig(SIGPIPE, current, 0);
1991                         if (!ret)
1992                                 ret = -EPIPE;
1993                         break;
1994                 }
1995
1996                 /*
1997                  * If we have iterated all input buffers or ran out of
1998                  * output room, break.
1999                  */
2000                 if (i >= ipipe->nrbufs || opipe->nrbufs >= PIPE_BUFFERS)
2001                         break;
2002
2003                 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (PIPE_BUFFERS - 1));
2004                 nbuf = (opipe->curbuf + opipe->nrbufs) & (PIPE_BUFFERS - 1);
2005
2006                 /*
2007                  * Get a reference to this pipe buffer,
2008                  * so we can copy the contents over.
2009                  */
2010                 ibuf->ops->get(ipipe, ibuf);
2011
2012                 obuf = opipe->bufs + nbuf;
2013                 *obuf = *ibuf;
2014
2015                 /*
2016                  * Don't inherit the gift flag, we need to
2017                  * prevent multiple steals of this page.
2018                  */
2019                 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
2020
2021                 if (obuf->len > len)
2022                         obuf->len = len;
2023
2024                 opipe->nrbufs++;
2025                 ret += obuf->len;
2026                 len -= obuf->len;
2027                 i++;
2028         } while (len);
2029
2030         /*
2031          * return EAGAIN if we have the potential of some data in the
2032          * future, otherwise just return 0
2033          */
2034         if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK))
2035                 ret = -EAGAIN;
2036
2037         pipe_unlock(ipipe);
2038         pipe_unlock(opipe);
2039
2040         /*
2041          * If we put data in the output pipe, wakeup any potential readers.
2042          */
2043         if (ret > 0) {
2044                 smp_mb();
2045                 if (waitqueue_active(&opipe->wait))
2046                         wake_up_interruptible(&opipe->wait);
2047                 kill_fasync(&opipe->fasync_readers, SIGIO, POLL_IN);
2048         }
2049
2050         return ret;
2051 }
2052
2053 /*
2054  * This is a tee(1) implementation that works on pipes. It doesn't copy
2055  * any data, it simply references the 'in' pages on the 'out' pipe.
2056  * The 'flags' used are the SPLICE_F_* variants, currently the only
2057  * applicable one is SPLICE_F_NONBLOCK.
2058  */
2059 static long do_tee(struct file *in, struct file *out, size_t len,
2060                    unsigned int flags)
2061 {
2062         struct pipe_inode_info *ipipe = pipe_info(in->f_path.dentry->d_inode);
2063         struct pipe_inode_info *opipe = pipe_info(out->f_path.dentry->d_inode);
2064         int ret = -EINVAL;
2065
2066         /*
2067          * Duplicate the contents of ipipe to opipe without actually
2068          * copying the data.
2069          */
2070         if (ipipe && opipe && ipipe != opipe) {
2071                 /*
2072                  * Keep going, unless we encounter an error. The ipipe/opipe
2073                  * ordering doesn't really matter.
2074                  */
2075                 ret = ipipe_prep(ipipe, flags);
2076                 if (!ret) {
2077                         ret = opipe_prep(opipe, flags);
2078                         if (!ret)
2079                                 ret = link_pipe(ipipe, opipe, len, flags);
2080                 }
2081         }
2082
2083         return ret;
2084 }
2085
2086 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
2087 {
2088         struct file *in;
2089         int error, fput_in;
2090
2091         if (unlikely(!len))
2092                 return 0;
2093
2094         error = -EBADF;
2095         in = fget_light(fdin, &fput_in);
2096         if (in) {
2097                 if (in->f_mode & FMODE_READ) {
2098                         int fput_out;
2099                         struct file *out = fget_light(fdout, &fput_out);
2100
2101                         if (out) {
2102                                 if (out->f_mode & FMODE_WRITE)
2103                                         error = do_tee(in, out, len, flags);
2104                                 fput_light(out, fput_out);
2105                         }
2106                 }
2107                 fput_light(in, fput_in);
2108         }
2109
2110         return error;
2111 }