readahead: move synchronous readahead call out of splice loop
[safe/jmp/linux-2.6] / fs / splice.c
1 /*
2  * "splice": joining two ropes together by interweaving their strands.
3  *
4  * This is the "extended pipe" functionality, where a pipe is used as
5  * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6  * buffer that you can use to transfer data from one end to the other.
7  *
8  * The traditional unix read/write is extended with a "splice()" operation
9  * that transfers data buffers to or from a pipe buffer.
10  *
11  * Named by Larry McVoy, original implementation from Linus, extended by
12  * Jens to support splicing to files, network, direct splicing, etc and
13  * fixing lots of bugs.
14  *
15  * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16  * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17  * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
18  *
19  */
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/splice.h>
24 #include <linux/mm_inline.h>
25 #include <linux/swap.h>
26 #include <linux/writeback.h>
27 #include <linux/buffer_head.h>
28 #include <linux/module.h>
29 #include <linux/syscalls.h>
30 #include <linux/uio.h>
31 #include <linux/security.h>
32
33 /*
34  * Attempt to steal a page from a pipe buffer. This should perhaps go into
35  * a vm helper function, it's already simplified quite a bit by the
36  * addition of remove_mapping(). If success is returned, the caller may
37  * attempt to reuse this page for another destination.
38  */
39 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
40                                      struct pipe_buffer *buf)
41 {
42         struct page *page = buf->page;
43         struct address_space *mapping;
44
45         lock_page(page);
46
47         mapping = page_mapping(page);
48         if (mapping) {
49                 WARN_ON(!PageUptodate(page));
50
51                 /*
52                  * At least for ext2 with nobh option, we need to wait on
53                  * writeback completing on this page, since we'll remove it
54                  * from the pagecache.  Otherwise truncate wont wait on the
55                  * page, allowing the disk blocks to be reused by someone else
56                  * before we actually wrote our data to them. fs corruption
57                  * ensues.
58                  */
59                 wait_on_page_writeback(page);
60
61                 if (PagePrivate(page))
62                         try_to_release_page(page, GFP_KERNEL);
63
64                 /*
65                  * If we succeeded in removing the mapping, set LRU flag
66                  * and return good.
67                  */
68                 if (remove_mapping(mapping, page)) {
69                         buf->flags |= PIPE_BUF_FLAG_LRU;
70                         return 0;
71                 }
72         }
73
74         /*
75          * Raced with truncate or failed to remove page from current
76          * address space, unlock and return failure.
77          */
78         unlock_page(page);
79         return 1;
80 }
81
82 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
83                                         struct pipe_buffer *buf)
84 {
85         page_cache_release(buf->page);
86         buf->flags &= ~PIPE_BUF_FLAG_LRU;
87 }
88
89 /*
90  * Check whether the contents of buf is OK to access. Since the content
91  * is a page cache page, IO may be in flight.
92  */
93 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
94                                        struct pipe_buffer *buf)
95 {
96         struct page *page = buf->page;
97         int err;
98
99         if (!PageUptodate(page)) {
100                 lock_page(page);
101
102                 /*
103                  * Page got truncated/unhashed. This will cause a 0-byte
104                  * splice, if this is the first page.
105                  */
106                 if (!page->mapping) {
107                         err = -ENODATA;
108                         goto error;
109                 }
110
111                 /*
112                  * Uh oh, read-error from disk.
113                  */
114                 if (!PageUptodate(page)) {
115                         err = -EIO;
116                         goto error;
117                 }
118
119                 /*
120                  * Page is ok afterall, we are done.
121                  */
122                 unlock_page(page);
123         }
124
125         return 0;
126 error:
127         unlock_page(page);
128         return err;
129 }
130
131 static const struct pipe_buf_operations page_cache_pipe_buf_ops = {
132         .can_merge = 0,
133         .map = generic_pipe_buf_map,
134         .unmap = generic_pipe_buf_unmap,
135         .confirm = page_cache_pipe_buf_confirm,
136         .release = page_cache_pipe_buf_release,
137         .steal = page_cache_pipe_buf_steal,
138         .get = generic_pipe_buf_get,
139 };
140
141 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
142                                     struct pipe_buffer *buf)
143 {
144         if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
145                 return 1;
146
147         buf->flags |= PIPE_BUF_FLAG_LRU;
148         return generic_pipe_buf_steal(pipe, buf);
149 }
150
151 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
152         .can_merge = 0,
153         .map = generic_pipe_buf_map,
154         .unmap = generic_pipe_buf_unmap,
155         .confirm = generic_pipe_buf_confirm,
156         .release = page_cache_pipe_buf_release,
157         .steal = user_page_pipe_buf_steal,
158         .get = generic_pipe_buf_get,
159 };
160
161 /**
162  * splice_to_pipe - fill passed data into a pipe
163  * @pipe:       pipe to fill
164  * @spd:        data to fill
165  *
166  * Description:
167  *    @spd contains a map of pages and len/offset tupples, a long with
168  *    the struct pipe_buf_operations associated with these pages. This
169  *    function will link that data to the pipe.
170  *
171  */
172 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
173                        struct splice_pipe_desc *spd)
174 {
175         unsigned int spd_pages = spd->nr_pages;
176         int ret, do_wakeup, page_nr;
177
178         ret = 0;
179         do_wakeup = 0;
180         page_nr = 0;
181
182         if (pipe->inode)
183                 mutex_lock(&pipe->inode->i_mutex);
184
185         for (;;) {
186                 if (!pipe->readers) {
187                         send_sig(SIGPIPE, current, 0);
188                         if (!ret)
189                                 ret = -EPIPE;
190                         break;
191                 }
192
193                 if (pipe->nrbufs < PIPE_BUFFERS) {
194                         int newbuf = (pipe->curbuf + pipe->nrbufs) & (PIPE_BUFFERS - 1);
195                         struct pipe_buffer *buf = pipe->bufs + newbuf;
196
197                         buf->page = spd->pages[page_nr];
198                         buf->offset = spd->partial[page_nr].offset;
199                         buf->len = spd->partial[page_nr].len;
200                         buf->private = spd->partial[page_nr].private;
201                         buf->ops = spd->ops;
202                         if (spd->flags & SPLICE_F_GIFT)
203                                 buf->flags |= PIPE_BUF_FLAG_GIFT;
204
205                         pipe->nrbufs++;
206                         page_nr++;
207                         ret += buf->len;
208
209                         if (pipe->inode)
210                                 do_wakeup = 1;
211
212                         if (!--spd->nr_pages)
213                                 break;
214                         if (pipe->nrbufs < PIPE_BUFFERS)
215                                 continue;
216
217                         break;
218                 }
219
220                 if (spd->flags & SPLICE_F_NONBLOCK) {
221                         if (!ret)
222                                 ret = -EAGAIN;
223                         break;
224                 }
225
226                 if (signal_pending(current)) {
227                         if (!ret)
228                                 ret = -ERESTARTSYS;
229                         break;
230                 }
231
232                 if (do_wakeup) {
233                         smp_mb();
234                         if (waitqueue_active(&pipe->wait))
235                                 wake_up_interruptible_sync(&pipe->wait);
236                         kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
237                         do_wakeup = 0;
238                 }
239
240                 pipe->waiting_writers++;
241                 pipe_wait(pipe);
242                 pipe->waiting_writers--;
243         }
244
245         if (pipe->inode) {
246                 mutex_unlock(&pipe->inode->i_mutex);
247
248                 if (do_wakeup) {
249                         smp_mb();
250                         if (waitqueue_active(&pipe->wait))
251                                 wake_up_interruptible(&pipe->wait);
252                         kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
253                 }
254         }
255
256         while (page_nr < spd_pages)
257                 page_cache_release(spd->pages[page_nr++]);
258
259         return ret;
260 }
261
262 static int
263 __generic_file_splice_read(struct file *in, loff_t *ppos,
264                            struct pipe_inode_info *pipe, size_t len,
265                            unsigned int flags)
266 {
267         struct address_space *mapping = in->f_mapping;
268         unsigned int loff, nr_pages;
269         struct page *pages[PIPE_BUFFERS];
270         struct partial_page partial[PIPE_BUFFERS];
271         struct page *page;
272         pgoff_t index, end_index;
273         loff_t isize;
274         int error, page_nr;
275         struct splice_pipe_desc spd = {
276                 .pages = pages,
277                 .partial = partial,
278                 .flags = flags,
279                 .ops = &page_cache_pipe_buf_ops,
280         };
281
282         index = *ppos >> PAGE_CACHE_SHIFT;
283         loff = *ppos & ~PAGE_CACHE_MASK;
284         nr_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
285
286         if (nr_pages > PIPE_BUFFERS)
287                 nr_pages = PIPE_BUFFERS;
288
289         /*
290          * Lookup the (hopefully) full range of pages we need.
291          */
292         spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, pages);
293         index += spd.nr_pages;
294
295         /*
296          * If find_get_pages_contig() returned fewer pages than we needed,
297          * readahead/allocate the rest and fill in the holes.
298          */
299         if (spd.nr_pages < nr_pages)
300                 page_cache_readahead_ondemand(mapping, &in->f_ra, in,
301                                 NULL, index, nr_pages - spd.nr_pages);
302
303         error = 0;
304         while (spd.nr_pages < nr_pages) {
305                 /*
306                  * Page could be there, find_get_pages_contig() breaks on
307                  * the first hole.
308                  */
309                 page = find_get_page(mapping, index);
310                 if (!page) {
311                         /*
312                          * page didn't exist, allocate one.
313                          */
314                         page = page_cache_alloc_cold(mapping);
315                         if (!page)
316                                 break;
317
318                         error = add_to_page_cache_lru(page, mapping, index,
319                                               GFP_KERNEL);
320                         if (unlikely(error)) {
321                                 page_cache_release(page);
322                                 if (error == -EEXIST)
323                                         continue;
324                                 break;
325                         }
326                         /*
327                          * add_to_page_cache() locks the page, unlock it
328                          * to avoid convoluting the logic below even more.
329                          */
330                         unlock_page(page);
331                 }
332
333                 pages[spd.nr_pages++] = page;
334                 index++;
335         }
336
337         /*
338          * Now loop over the map and see if we need to start IO on any
339          * pages, fill in the partial map, etc.
340          */
341         index = *ppos >> PAGE_CACHE_SHIFT;
342         nr_pages = spd.nr_pages;
343         spd.nr_pages = 0;
344         for (page_nr = 0; page_nr < nr_pages; page_nr++) {
345                 unsigned int this_len;
346
347                 if (!len)
348                         break;
349
350                 /*
351                  * this_len is the max we'll use from this page
352                  */
353                 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
354                 page = pages[page_nr];
355
356                 if (PageReadahead(page))
357                         page_cache_readahead_ondemand(mapping, &in->f_ra, in,
358                                         page, index, nr_pages - page_nr);
359
360                 /*
361                  * If the page isn't uptodate, we may need to start io on it
362                  */
363                 if (!PageUptodate(page)) {
364                         /*
365                          * If in nonblock mode then dont block on waiting
366                          * for an in-flight io page
367                          */
368                         if (flags & SPLICE_F_NONBLOCK) {
369                                 if (TestSetPageLocked(page))
370                                         break;
371                         } else
372                                 lock_page(page);
373
374                         /*
375                          * page was truncated, stop here. if this isn't the
376                          * first page, we'll just complete what we already
377                          * added
378                          */
379                         if (!page->mapping) {
380                                 unlock_page(page);
381                                 break;
382                         }
383                         /*
384                          * page was already under io and is now done, great
385                          */
386                         if (PageUptodate(page)) {
387                                 unlock_page(page);
388                                 goto fill_it;
389                         }
390
391                         /*
392                          * need to read in the page
393                          */
394                         error = mapping->a_ops->readpage(in, page);
395                         if (unlikely(error)) {
396                                 /*
397                                  * We really should re-lookup the page here,
398                                  * but it complicates things a lot. Instead
399                                  * lets just do what we already stored, and
400                                  * we'll get it the next time we are called.
401                                  */
402                                 if (error == AOP_TRUNCATED_PAGE)
403                                         error = 0;
404
405                                 break;
406                         }
407                 }
408 fill_it:
409                 /*
410                  * i_size must be checked after PageUptodate.
411                  */
412                 isize = i_size_read(mapping->host);
413                 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
414                 if (unlikely(!isize || index > end_index))
415                         break;
416
417                 /*
418                  * if this is the last page, see if we need to shrink
419                  * the length and stop
420                  */
421                 if (end_index == index) {
422                         unsigned int plen;
423
424                         /*
425                          * max good bytes in this page
426                          */
427                         plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
428                         if (plen <= loff)
429                                 break;
430
431                         /*
432                          * force quit after adding this page
433                          */
434                         this_len = min(this_len, plen - loff);
435                         len = this_len;
436                 }
437
438                 partial[page_nr].offset = loff;
439                 partial[page_nr].len = this_len;
440                 len -= this_len;
441                 loff = 0;
442                 spd.nr_pages++;
443                 index++;
444         }
445
446         /*
447          * Release any pages at the end, if we quit early. 'page_nr' is how far
448          * we got, 'nr_pages' is how many pages are in the map.
449          */
450         while (page_nr < nr_pages)
451                 page_cache_release(pages[page_nr++]);
452         in->f_ra.prev_index = index;
453
454         if (spd.nr_pages)
455                 return splice_to_pipe(pipe, &spd);
456
457         return error;
458 }
459
460 /**
461  * generic_file_splice_read - splice data from file to a pipe
462  * @in:         file to splice from
463  * @ppos:       position in @in
464  * @pipe:       pipe to splice to
465  * @len:        number of bytes to splice
466  * @flags:      splice modifier flags
467  *
468  * Description:
469  *    Will read pages from given file and fill them into a pipe. Can be
470  *    used as long as the address_space operations for the source implements
471  *    a readpage() hook.
472  *
473  */
474 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
475                                  struct pipe_inode_info *pipe, size_t len,
476                                  unsigned int flags)
477 {
478         ssize_t spliced;
479         int ret;
480         loff_t isize, left;
481
482         isize = i_size_read(in->f_mapping->host);
483         if (unlikely(*ppos >= isize))
484                 return 0;
485
486         left = isize - *ppos;
487         if (unlikely(left < len))
488                 len = left;
489
490         ret = 0;
491         spliced = 0;
492         while (len && !spliced) {
493                 ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
494
495                 if (ret < 0)
496                         break;
497                 else if (!ret) {
498                         if (spliced)
499                                 break;
500                         if (flags & SPLICE_F_NONBLOCK) {
501                                 ret = -EAGAIN;
502                                 break;
503                         }
504                 }
505
506                 *ppos += ret;
507                 len -= ret;
508                 spliced += ret;
509         }
510
511         if (spliced)
512                 return spliced;
513
514         return ret;
515 }
516
517 EXPORT_SYMBOL(generic_file_splice_read);
518
519 /*
520  * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
521  * using sendpage(). Return the number of bytes sent.
522  */
523 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
524                             struct pipe_buffer *buf, struct splice_desc *sd)
525 {
526         struct file *file = sd->u.file;
527         loff_t pos = sd->pos;
528         int ret, more;
529
530         ret = buf->ops->confirm(pipe, buf);
531         if (!ret) {
532                 more = (sd->flags & SPLICE_F_MORE) || sd->len < sd->total_len;
533
534                 ret = file->f_op->sendpage(file, buf->page, buf->offset,
535                                            sd->len, &pos, more);
536         }
537
538         return ret;
539 }
540
541 /*
542  * This is a little more tricky than the file -> pipe splicing. There are
543  * basically three cases:
544  *
545  *      - Destination page already exists in the address space and there
546  *        are users of it. For that case we have no other option that
547  *        copying the data. Tough luck.
548  *      - Destination page already exists in the address space, but there
549  *        are no users of it. Make sure it's uptodate, then drop it. Fall
550  *        through to last case.
551  *      - Destination page does not exist, we can add the pipe page to
552  *        the page cache and avoid the copy.
553  *
554  * If asked to move pages to the output file (SPLICE_F_MOVE is set in
555  * sd->flags), we attempt to migrate pages from the pipe to the output
556  * file address space page cache. This is possible if no one else has
557  * the pipe page referenced outside of the pipe and page cache. If
558  * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
559  * a new page in the output file page cache and fill/dirty that.
560  */
561 static int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
562                         struct splice_desc *sd)
563 {
564         struct file *file = sd->u.file;
565         struct address_space *mapping = file->f_mapping;
566         unsigned int offset, this_len;
567         struct page *page;
568         pgoff_t index;
569         int ret;
570
571         /*
572          * make sure the data in this buffer is uptodate
573          */
574         ret = buf->ops->confirm(pipe, buf);
575         if (unlikely(ret))
576                 return ret;
577
578         index = sd->pos >> PAGE_CACHE_SHIFT;
579         offset = sd->pos & ~PAGE_CACHE_MASK;
580
581         this_len = sd->len;
582         if (this_len + offset > PAGE_CACHE_SIZE)
583                 this_len = PAGE_CACHE_SIZE - offset;
584
585 find_page:
586         page = find_lock_page(mapping, index);
587         if (!page) {
588                 ret = -ENOMEM;
589                 page = page_cache_alloc_cold(mapping);
590                 if (unlikely(!page))
591                         goto out_ret;
592
593                 /*
594                  * This will also lock the page
595                  */
596                 ret = add_to_page_cache_lru(page, mapping, index,
597                                             GFP_KERNEL);
598                 if (unlikely(ret))
599                         goto out;
600         }
601
602         ret = mapping->a_ops->prepare_write(file, page, offset, offset+this_len);
603         if (unlikely(ret)) {
604                 loff_t isize = i_size_read(mapping->host);
605
606                 if (ret != AOP_TRUNCATED_PAGE)
607                         unlock_page(page);
608                 page_cache_release(page);
609                 if (ret == AOP_TRUNCATED_PAGE)
610                         goto find_page;
611
612                 /*
613                  * prepare_write() may have instantiated a few blocks
614                  * outside i_size.  Trim these off again.
615                  */
616                 if (sd->pos + this_len > isize)
617                         vmtruncate(mapping->host, isize);
618
619                 goto out_ret;
620         }
621
622         if (buf->page != page) {
623                 /*
624                  * Careful, ->map() uses KM_USER0!
625                  */
626                 char *src = buf->ops->map(pipe, buf, 1);
627                 char *dst = kmap_atomic(page, KM_USER1);
628
629                 memcpy(dst + offset, src + buf->offset, this_len);
630                 flush_dcache_page(page);
631                 kunmap_atomic(dst, KM_USER1);
632                 buf->ops->unmap(pipe, buf, src);
633         }
634
635         ret = mapping->a_ops->commit_write(file, page, offset, offset+this_len);
636         if (ret) {
637                 if (ret == AOP_TRUNCATED_PAGE) {
638                         page_cache_release(page);
639                         goto find_page;
640                 }
641                 if (ret < 0)
642                         goto out;
643                 /*
644                  * Partial write has happened, so 'ret' already initialized by
645                  * number of bytes written, Where is nothing we have to do here.
646                  */
647         } else
648                 ret = this_len;
649         /*
650          * Return the number of bytes written and mark page as
651          * accessed, we are now done!
652          */
653         mark_page_accessed(page);
654 out:
655         page_cache_release(page);
656         unlock_page(page);
657 out_ret:
658         return ret;
659 }
660
661 /**
662  * __splice_from_pipe - splice data from a pipe to given actor
663  * @pipe:       pipe to splice from
664  * @sd:         information to @actor
665  * @actor:      handler that splices the data
666  *
667  * Description:
668  *    This function does little more than loop over the pipe and call
669  *    @actor to do the actual moving of a single struct pipe_buffer to
670  *    the desired destination. See pipe_to_file, pipe_to_sendpage, or
671  *    pipe_to_user.
672  *
673  */
674 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
675                            splice_actor *actor)
676 {
677         int ret, do_wakeup, err;
678
679         ret = 0;
680         do_wakeup = 0;
681
682         for (;;) {
683                 if (pipe->nrbufs) {
684                         struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
685                         const struct pipe_buf_operations *ops = buf->ops;
686
687                         sd->len = buf->len;
688                         if (sd->len > sd->total_len)
689                                 sd->len = sd->total_len;
690
691                         err = actor(pipe, buf, sd);
692                         if (err <= 0) {
693                                 if (!ret && err != -ENODATA)
694                                         ret = err;
695
696                                 break;
697                         }
698
699                         ret += err;
700                         buf->offset += err;
701                         buf->len -= err;
702
703                         sd->len -= err;
704                         sd->pos += err;
705                         sd->total_len -= err;
706                         if (sd->len)
707                                 continue;
708
709                         if (!buf->len) {
710                                 buf->ops = NULL;
711                                 ops->release(pipe, buf);
712                                 pipe->curbuf = (pipe->curbuf + 1) & (PIPE_BUFFERS - 1);
713                                 pipe->nrbufs--;
714                                 if (pipe->inode)
715                                         do_wakeup = 1;
716                         }
717
718                         if (!sd->total_len)
719                                 break;
720                 }
721
722                 if (pipe->nrbufs)
723                         continue;
724                 if (!pipe->writers)
725                         break;
726                 if (!pipe->waiting_writers) {
727                         if (ret)
728                                 break;
729                 }
730
731                 if (sd->flags & SPLICE_F_NONBLOCK) {
732                         if (!ret)
733                                 ret = -EAGAIN;
734                         break;
735                 }
736
737                 if (signal_pending(current)) {
738                         if (!ret)
739                                 ret = -ERESTARTSYS;
740                         break;
741                 }
742
743                 if (do_wakeup) {
744                         smp_mb();
745                         if (waitqueue_active(&pipe->wait))
746                                 wake_up_interruptible_sync(&pipe->wait);
747                         kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
748                         do_wakeup = 0;
749                 }
750
751                 pipe_wait(pipe);
752         }
753
754         if (do_wakeup) {
755                 smp_mb();
756                 if (waitqueue_active(&pipe->wait))
757                         wake_up_interruptible(&pipe->wait);
758                 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
759         }
760
761         return ret;
762 }
763 EXPORT_SYMBOL(__splice_from_pipe);
764
765 /**
766  * splice_from_pipe - splice data from a pipe to a file
767  * @pipe:       pipe to splice from
768  * @out:        file to splice to
769  * @ppos:       position in @out
770  * @len:        how many bytes to splice
771  * @flags:      splice modifier flags
772  * @actor:      handler that splices the data
773  *
774  * Description:
775  *    See __splice_from_pipe. This function locks the input and output inodes,
776  *    otherwise it's identical to __splice_from_pipe().
777  *
778  */
779 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
780                          loff_t *ppos, size_t len, unsigned int flags,
781                          splice_actor *actor)
782 {
783         ssize_t ret;
784         struct inode *inode = out->f_mapping->host;
785         struct splice_desc sd = {
786                 .total_len = len,
787                 .flags = flags,
788                 .pos = *ppos,
789                 .u.file = out,
790         };
791
792         /*
793          * The actor worker might be calling ->prepare_write and
794          * ->commit_write. Most of the time, these expect i_mutex to
795          * be held. Since this may result in an ABBA deadlock with
796          * pipe->inode, we have to order lock acquiry here.
797          */
798         inode_double_lock(inode, pipe->inode);
799         ret = __splice_from_pipe(pipe, &sd, actor);
800         inode_double_unlock(inode, pipe->inode);
801
802         return ret;
803 }
804
805 /**
806  * generic_file_splice_write_nolock - generic_file_splice_write without mutexes
807  * @pipe:       pipe info
808  * @out:        file to write to
809  * @ppos:       position in @out
810  * @len:        number of bytes to splice
811  * @flags:      splice modifier flags
812  *
813  * Description:
814  *    Will either move or copy pages (determined by @flags options) from
815  *    the given pipe inode to the given file. The caller is responsible
816  *    for acquiring i_mutex on both inodes.
817  *
818  */
819 ssize_t
820 generic_file_splice_write_nolock(struct pipe_inode_info *pipe, struct file *out,
821                                  loff_t *ppos, size_t len, unsigned int flags)
822 {
823         struct address_space *mapping = out->f_mapping;
824         struct inode *inode = mapping->host;
825         struct splice_desc sd = {
826                 .total_len = len,
827                 .flags = flags,
828                 .pos = *ppos,
829                 .u.file = out,
830         };
831         ssize_t ret;
832         int err;
833
834         err = remove_suid(out->f_path.dentry);
835         if (unlikely(err))
836                 return err;
837
838         ret = __splice_from_pipe(pipe, &sd, pipe_to_file);
839         if (ret > 0) {
840                 unsigned long nr_pages;
841
842                 *ppos += ret;
843                 nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
844
845                 /*
846                  * If file or inode is SYNC and we actually wrote some data,
847                  * sync it.
848                  */
849                 if (unlikely((out->f_flags & O_SYNC) || IS_SYNC(inode))) {
850                         err = generic_osync_inode(inode, mapping,
851                                                   OSYNC_METADATA|OSYNC_DATA);
852
853                         if (err)
854                                 ret = err;
855                 }
856                 balance_dirty_pages_ratelimited_nr(mapping, nr_pages);
857         }
858
859         return ret;
860 }
861
862 EXPORT_SYMBOL(generic_file_splice_write_nolock);
863
864 /**
865  * generic_file_splice_write - splice data from a pipe to a file
866  * @pipe:       pipe info
867  * @out:        file to write to
868  * @ppos:       position in @out
869  * @len:        number of bytes to splice
870  * @flags:      splice modifier flags
871  *
872  * Description:
873  *    Will either move or copy pages (determined by @flags options) from
874  *    the given pipe inode to the given file.
875  *
876  */
877 ssize_t
878 generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
879                           loff_t *ppos, size_t len, unsigned int flags)
880 {
881         struct address_space *mapping = out->f_mapping;
882         struct inode *inode = mapping->host;
883         ssize_t ret;
884         int err;
885
886         err = should_remove_suid(out->f_path.dentry);
887         if (unlikely(err)) {
888                 mutex_lock(&inode->i_mutex);
889                 err = __remove_suid(out->f_path.dentry, err);
890                 mutex_unlock(&inode->i_mutex);
891                 if (err)
892                         return err;
893         }
894
895         ret = splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_file);
896         if (ret > 0) {
897                 unsigned long nr_pages;
898
899                 *ppos += ret;
900                 nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
901
902                 /*
903                  * If file or inode is SYNC and we actually wrote some data,
904                  * sync it.
905                  */
906                 if (unlikely((out->f_flags & O_SYNC) || IS_SYNC(inode))) {
907                         mutex_lock(&inode->i_mutex);
908                         err = generic_osync_inode(inode, mapping,
909                                                   OSYNC_METADATA|OSYNC_DATA);
910                         mutex_unlock(&inode->i_mutex);
911
912                         if (err)
913                                 ret = err;
914                 }
915                 balance_dirty_pages_ratelimited_nr(mapping, nr_pages);
916         }
917
918         return ret;
919 }
920
921 EXPORT_SYMBOL(generic_file_splice_write);
922
923 /**
924  * generic_splice_sendpage - splice data from a pipe to a socket
925  * @pipe:       pipe to splice from
926  * @out:        socket to write to
927  * @ppos:       position in @out
928  * @len:        number of bytes to splice
929  * @flags:      splice modifier flags
930  *
931  * Description:
932  *    Will send @len bytes from the pipe to a network socket. No data copying
933  *    is involved.
934  *
935  */
936 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
937                                 loff_t *ppos, size_t len, unsigned int flags)
938 {
939         return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
940 }
941
942 EXPORT_SYMBOL(generic_splice_sendpage);
943
944 /*
945  * Attempt to initiate a splice from pipe to file.
946  */
947 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
948                            loff_t *ppos, size_t len, unsigned int flags)
949 {
950         int ret;
951
952         if (unlikely(!out->f_op || !out->f_op->splice_write))
953                 return -EINVAL;
954
955         if (unlikely(!(out->f_mode & FMODE_WRITE)))
956                 return -EBADF;
957
958         ret = rw_verify_area(WRITE, out, ppos, len);
959         if (unlikely(ret < 0))
960                 return ret;
961
962         ret = security_file_permission(out, MAY_WRITE);
963         if (unlikely(ret < 0))
964                 return ret;
965
966         return out->f_op->splice_write(pipe, out, ppos, len, flags);
967 }
968
969 /*
970  * Attempt to initiate a splice from a file to a pipe.
971  */
972 static long do_splice_to(struct file *in, loff_t *ppos,
973                          struct pipe_inode_info *pipe, size_t len,
974                          unsigned int flags)
975 {
976         int ret;
977
978         if (unlikely(!in->f_op || !in->f_op->splice_read))
979                 return -EINVAL;
980
981         if (unlikely(!(in->f_mode & FMODE_READ)))
982                 return -EBADF;
983
984         ret = rw_verify_area(READ, in, ppos, len);
985         if (unlikely(ret < 0))
986                 return ret;
987
988         ret = security_file_permission(in, MAY_READ);
989         if (unlikely(ret < 0))
990                 return ret;
991
992         return in->f_op->splice_read(in, ppos, pipe, len, flags);
993 }
994
995 /**
996  * splice_direct_to_actor - splices data directly between two non-pipes
997  * @in:         file to splice from
998  * @sd:         actor information on where to splice to
999  * @actor:      handles the data splicing
1000  *
1001  * Description:
1002  *    This is a special case helper to splice directly between two
1003  *    points, without requiring an explicit pipe. Internally an allocated
1004  *    pipe is cached in the process, and reused during the life time of
1005  *    that process.
1006  *
1007  */
1008 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
1009                                splice_direct_actor *actor)
1010 {
1011         struct pipe_inode_info *pipe;
1012         long ret, bytes;
1013         umode_t i_mode;
1014         size_t len;
1015         int i, flags;
1016
1017         /*
1018          * We require the input being a regular file, as we don't want to
1019          * randomly drop data for eg socket -> socket splicing. Use the
1020          * piped splicing for that!
1021          */
1022         i_mode = in->f_path.dentry->d_inode->i_mode;
1023         if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
1024                 return -EINVAL;
1025
1026         /*
1027          * neither in nor out is a pipe, setup an internal pipe attached to
1028          * 'out' and transfer the wanted data from 'in' to 'out' through that
1029          */
1030         pipe = current->splice_pipe;
1031         if (unlikely(!pipe)) {
1032                 pipe = alloc_pipe_info(NULL);
1033                 if (!pipe)
1034                         return -ENOMEM;
1035
1036                 /*
1037                  * We don't have an immediate reader, but we'll read the stuff
1038                  * out of the pipe right after the splice_to_pipe(). So set
1039                  * PIPE_READERS appropriately.
1040                  */
1041                 pipe->readers = 1;
1042
1043                 current->splice_pipe = pipe;
1044         }
1045
1046         /*
1047          * Do the splice.
1048          */
1049         ret = 0;
1050         bytes = 0;
1051         len = sd->total_len;
1052         flags = sd->flags;
1053
1054         /*
1055          * Don't block on output, we have to drain the direct pipe.
1056          */
1057         sd->flags &= ~SPLICE_F_NONBLOCK;
1058
1059         while (len) {
1060                 size_t read_len;
1061                 loff_t pos = sd->pos;
1062
1063                 ret = do_splice_to(in, &pos, pipe, len, flags);
1064                 if (unlikely(ret <= 0))
1065                         goto out_release;
1066
1067                 read_len = ret;
1068                 sd->total_len = read_len;
1069
1070                 /*
1071                  * NOTE: nonblocking mode only applies to the input. We
1072                  * must not do the output in nonblocking mode as then we
1073                  * could get stuck data in the internal pipe:
1074                  */
1075                 ret = actor(pipe, sd);
1076                 if (unlikely(ret <= 0))
1077                         goto out_release;
1078
1079                 bytes += ret;
1080                 len -= ret;
1081                 sd->pos = pos;
1082
1083                 if (ret < read_len)
1084                         goto out_release;
1085         }
1086
1087         pipe->nrbufs = pipe->curbuf = 0;
1088         return bytes;
1089
1090 out_release:
1091         /*
1092          * If we did an incomplete transfer we must release
1093          * the pipe buffers in question:
1094          */
1095         for (i = 0; i < PIPE_BUFFERS; i++) {
1096                 struct pipe_buffer *buf = pipe->bufs + i;
1097
1098                 if (buf->ops) {
1099                         buf->ops->release(pipe, buf);
1100                         buf->ops = NULL;
1101                 }
1102         }
1103         pipe->nrbufs = pipe->curbuf = 0;
1104
1105         /*
1106          * If we transferred some data, return the number of bytes:
1107          */
1108         if (bytes > 0)
1109                 return bytes;
1110
1111         return ret;
1112
1113 }
1114 EXPORT_SYMBOL(splice_direct_to_actor);
1115
1116 static int direct_splice_actor(struct pipe_inode_info *pipe,
1117                                struct splice_desc *sd)
1118 {
1119         struct file *file = sd->u.file;
1120
1121         return do_splice_from(pipe, file, &sd->pos, sd->total_len, sd->flags);
1122 }
1123
1124 /**
1125  * do_splice_direct - splices data directly between two files
1126  * @in:         file to splice from
1127  * @ppos:       input file offset
1128  * @out:        file to splice to
1129  * @len:        number of bytes to splice
1130  * @flags:      splice modifier flags
1131  *
1132  * Description:
1133  *    For use by do_sendfile(). splice can easily emulate sendfile, but
1134  *    doing it in the application would incur an extra system call
1135  *    (splice in + splice out, as compared to just sendfile()). So this helper
1136  *    can splice directly through a process-private pipe.
1137  *
1138  */
1139 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1140                       size_t len, unsigned int flags)
1141 {
1142         struct splice_desc sd = {
1143                 .len            = len,
1144                 .total_len      = len,
1145                 .flags          = flags,
1146                 .pos            = *ppos,
1147                 .u.file         = out,
1148         };
1149         long ret;
1150
1151         ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1152         if (ret > 0)
1153                 *ppos += ret;
1154
1155         return ret;
1156 }
1157
1158 /*
1159  * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same
1160  * location, so checking ->i_pipe is not enough to verify that this is a
1161  * pipe.
1162  */
1163 static inline struct pipe_inode_info *pipe_info(struct inode *inode)
1164 {
1165         if (S_ISFIFO(inode->i_mode))
1166                 return inode->i_pipe;
1167
1168         return NULL;
1169 }
1170
1171 /*
1172  * Determine where to splice to/from.
1173  */
1174 static long do_splice(struct file *in, loff_t __user *off_in,
1175                       struct file *out, loff_t __user *off_out,
1176                       size_t len, unsigned int flags)
1177 {
1178         struct pipe_inode_info *pipe;
1179         loff_t offset, *off;
1180         long ret;
1181
1182         pipe = pipe_info(in->f_path.dentry->d_inode);
1183         if (pipe) {
1184                 if (off_in)
1185                         return -ESPIPE;
1186                 if (off_out) {
1187                         if (out->f_op->llseek == no_llseek)
1188                                 return -EINVAL;
1189                         if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1190                                 return -EFAULT;
1191                         off = &offset;
1192                 } else
1193                         off = &out->f_pos;
1194
1195                 ret = do_splice_from(pipe, out, off, len, flags);
1196
1197                 if (off_out && copy_to_user(off_out, off, sizeof(loff_t)))
1198                         ret = -EFAULT;
1199
1200                 return ret;
1201         }
1202
1203         pipe = pipe_info(out->f_path.dentry->d_inode);
1204         if (pipe) {
1205                 if (off_out)
1206                         return -ESPIPE;
1207                 if (off_in) {
1208                         if (in->f_op->llseek == no_llseek)
1209                                 return -EINVAL;
1210                         if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1211                                 return -EFAULT;
1212                         off = &offset;
1213                 } else
1214                         off = &in->f_pos;
1215
1216                 ret = do_splice_to(in, off, pipe, len, flags);
1217
1218                 if (off_in && copy_to_user(off_in, off, sizeof(loff_t)))
1219                         ret = -EFAULT;
1220
1221                 return ret;
1222         }
1223
1224         return -EINVAL;
1225 }
1226
1227 /*
1228  * Map an iov into an array of pages and offset/length tupples. With the
1229  * partial_page structure, we can map several non-contiguous ranges into
1230  * our ones pages[] map instead of splitting that operation into pieces.
1231  * Could easily be exported as a generic helper for other users, in which
1232  * case one would probably want to add a 'max_nr_pages' parameter as well.
1233  */
1234 static int get_iovec_page_array(const struct iovec __user *iov,
1235                                 unsigned int nr_vecs, struct page **pages,
1236                                 struct partial_page *partial, int aligned)
1237 {
1238         int buffers = 0, error = 0;
1239
1240         /*
1241          * It's ok to take the mmap_sem for reading, even
1242          * across a "get_user()".
1243          */
1244         down_read(&current->mm->mmap_sem);
1245
1246         while (nr_vecs) {
1247                 unsigned long off, npages;
1248                 void __user *base;
1249                 size_t len;
1250                 int i;
1251
1252                 /*
1253                  * Get user address base and length for this iovec.
1254                  */
1255                 error = get_user(base, &iov->iov_base);
1256                 if (unlikely(error))
1257                         break;
1258                 error = get_user(len, &iov->iov_len);
1259                 if (unlikely(error))
1260                         break;
1261
1262                 /*
1263                  * Sanity check this iovec. 0 read succeeds.
1264                  */
1265                 if (unlikely(!len))
1266                         break;
1267                 error = -EFAULT;
1268                 if (unlikely(!base))
1269                         break;
1270
1271                 /*
1272                  * Get this base offset and number of pages, then map
1273                  * in the user pages.
1274                  */
1275                 off = (unsigned long) base & ~PAGE_MASK;
1276
1277                 /*
1278                  * If asked for alignment, the offset must be zero and the
1279                  * length a multiple of the PAGE_SIZE.
1280                  */
1281                 error = -EINVAL;
1282                 if (aligned && (off || len & ~PAGE_MASK))
1283                         break;
1284
1285                 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1286                 if (npages > PIPE_BUFFERS - buffers)
1287                         npages = PIPE_BUFFERS - buffers;
1288
1289                 error = get_user_pages(current, current->mm,
1290                                        (unsigned long) base, npages, 0, 0,
1291                                        &pages[buffers], NULL);
1292
1293                 if (unlikely(error <= 0))
1294                         break;
1295
1296                 /*
1297                  * Fill this contiguous range into the partial page map.
1298                  */
1299                 for (i = 0; i < error; i++) {
1300                         const int plen = min_t(size_t, len, PAGE_SIZE - off);
1301
1302                         partial[buffers].offset = off;
1303                         partial[buffers].len = plen;
1304
1305                         off = 0;
1306                         len -= plen;
1307                         buffers++;
1308                 }
1309
1310                 /*
1311                  * We didn't complete this iov, stop here since it probably
1312                  * means we have to move some of this into a pipe to
1313                  * be able to continue.
1314                  */
1315                 if (len)
1316                         break;
1317
1318                 /*
1319                  * Don't continue if we mapped fewer pages than we asked for,
1320                  * or if we mapped the max number of pages that we have
1321                  * room for.
1322                  */
1323                 if (error < npages || buffers == PIPE_BUFFERS)
1324                         break;
1325
1326                 nr_vecs--;
1327                 iov++;
1328         }
1329
1330         up_read(&current->mm->mmap_sem);
1331
1332         if (buffers)
1333                 return buffers;
1334
1335         return error;
1336 }
1337
1338 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1339                         struct splice_desc *sd)
1340 {
1341         char *src;
1342         int ret;
1343
1344         ret = buf->ops->confirm(pipe, buf);
1345         if (unlikely(ret))
1346                 return ret;
1347
1348         /*
1349          * See if we can use the atomic maps, by prefaulting in the
1350          * pages and doing an atomic copy
1351          */
1352         if (!fault_in_pages_writeable(sd->u.userptr, sd->len)) {
1353                 src = buf->ops->map(pipe, buf, 1);
1354                 ret = __copy_to_user_inatomic(sd->u.userptr, src + buf->offset,
1355                                                         sd->len);
1356                 buf->ops->unmap(pipe, buf, src);
1357                 if (!ret) {
1358                         ret = sd->len;
1359                         goto out;
1360                 }
1361         }
1362
1363         /*
1364          * No dice, use slow non-atomic map and copy
1365          */
1366         src = buf->ops->map(pipe, buf, 0);
1367
1368         ret = sd->len;
1369         if (copy_to_user(sd->u.userptr, src + buf->offset, sd->len))
1370                 ret = -EFAULT;
1371
1372 out:
1373         if (ret > 0)
1374                 sd->u.userptr += ret;
1375         buf->ops->unmap(pipe, buf, src);
1376         return ret;
1377 }
1378
1379 /*
1380  * For lack of a better implementation, implement vmsplice() to userspace
1381  * as a simple copy of the pipes pages to the user iov.
1382  */
1383 static long vmsplice_to_user(struct file *file, const struct iovec __user *iov,
1384                              unsigned long nr_segs, unsigned int flags)
1385 {
1386         struct pipe_inode_info *pipe;
1387         struct splice_desc sd;
1388         ssize_t size;
1389         int error;
1390         long ret;
1391
1392         pipe = pipe_info(file->f_path.dentry->d_inode);
1393         if (!pipe)
1394                 return -EBADF;
1395
1396         if (pipe->inode)
1397                 mutex_lock(&pipe->inode->i_mutex);
1398
1399         error = ret = 0;
1400         while (nr_segs) {
1401                 void __user *base;
1402                 size_t len;
1403
1404                 /*
1405                  * Get user address base and length for this iovec.
1406                  */
1407                 error = get_user(base, &iov->iov_base);
1408                 if (unlikely(error))
1409                         break;
1410                 error = get_user(len, &iov->iov_len);
1411                 if (unlikely(error))
1412                         break;
1413
1414                 /*
1415                  * Sanity check this iovec. 0 read succeeds.
1416                  */
1417                 if (unlikely(!len))
1418                         break;
1419                 if (unlikely(!base)) {
1420                         error = -EFAULT;
1421                         break;
1422                 }
1423
1424                 sd.len = 0;
1425                 sd.total_len = len;
1426                 sd.flags = flags;
1427                 sd.u.userptr = base;
1428                 sd.pos = 0;
1429
1430                 size = __splice_from_pipe(pipe, &sd, pipe_to_user);
1431                 if (size < 0) {
1432                         if (!ret)
1433                                 ret = size;
1434
1435                         break;
1436                 }
1437
1438                 ret += size;
1439
1440                 if (size < len)
1441                         break;
1442
1443                 nr_segs--;
1444                 iov++;
1445         }
1446
1447         if (pipe->inode)
1448                 mutex_unlock(&pipe->inode->i_mutex);
1449
1450         if (!ret)
1451                 ret = error;
1452
1453         return ret;
1454 }
1455
1456 /*
1457  * vmsplice splices a user address range into a pipe. It can be thought of
1458  * as splice-from-memory, where the regular splice is splice-from-file (or
1459  * to file). In both cases the output is a pipe, naturally.
1460  */
1461 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov,
1462                              unsigned long nr_segs, unsigned int flags)
1463 {
1464         struct pipe_inode_info *pipe;
1465         struct page *pages[PIPE_BUFFERS];
1466         struct partial_page partial[PIPE_BUFFERS];
1467         struct splice_pipe_desc spd = {
1468                 .pages = pages,
1469                 .partial = partial,
1470                 .flags = flags,
1471                 .ops = &user_page_pipe_buf_ops,
1472         };
1473
1474         pipe = pipe_info(file->f_path.dentry->d_inode);
1475         if (!pipe)
1476                 return -EBADF;
1477
1478         spd.nr_pages = get_iovec_page_array(iov, nr_segs, pages, partial,
1479                                             flags & SPLICE_F_GIFT);
1480         if (spd.nr_pages <= 0)
1481                 return spd.nr_pages;
1482
1483         return splice_to_pipe(pipe, &spd);
1484 }
1485
1486 /*
1487  * Note that vmsplice only really supports true splicing _from_ user memory
1488  * to a pipe, not the other way around. Splicing from user memory is a simple
1489  * operation that can be supported without any funky alignment restrictions
1490  * or nasty vm tricks. We simply map in the user memory and fill them into
1491  * a pipe. The reverse isn't quite as easy, though. There are two possible
1492  * solutions for that:
1493  *
1494  *      - memcpy() the data internally, at which point we might as well just
1495  *        do a regular read() on the buffer anyway.
1496  *      - Lots of nasty vm tricks, that are neither fast nor flexible (it
1497  *        has restriction limitations on both ends of the pipe).
1498  *
1499  * Currently we punt and implement it as a normal copy, see pipe_to_user().
1500  *
1501  */
1502 asmlinkage long sys_vmsplice(int fd, const struct iovec __user *iov,
1503                              unsigned long nr_segs, unsigned int flags)
1504 {
1505         struct file *file;
1506         long error;
1507         int fput;
1508
1509         if (unlikely(nr_segs > UIO_MAXIOV))
1510                 return -EINVAL;
1511         else if (unlikely(!nr_segs))
1512                 return 0;
1513
1514         error = -EBADF;
1515         file = fget_light(fd, &fput);
1516         if (file) {
1517                 if (file->f_mode & FMODE_WRITE)
1518                         error = vmsplice_to_pipe(file, iov, nr_segs, flags);
1519                 else if (file->f_mode & FMODE_READ)
1520                         error = vmsplice_to_user(file, iov, nr_segs, flags);
1521
1522                 fput_light(file, fput);
1523         }
1524
1525         return error;
1526 }
1527
1528 asmlinkage long sys_splice(int fd_in, loff_t __user *off_in,
1529                            int fd_out, loff_t __user *off_out,
1530                            size_t len, unsigned int flags)
1531 {
1532         long error;
1533         struct file *in, *out;
1534         int fput_in, fput_out;
1535
1536         if (unlikely(!len))
1537                 return 0;
1538
1539         error = -EBADF;
1540         in = fget_light(fd_in, &fput_in);
1541         if (in) {
1542                 if (in->f_mode & FMODE_READ) {
1543                         out = fget_light(fd_out, &fput_out);
1544                         if (out) {
1545                                 if (out->f_mode & FMODE_WRITE)
1546                                         error = do_splice(in, off_in,
1547                                                           out, off_out,
1548                                                           len, flags);
1549                                 fput_light(out, fput_out);
1550                         }
1551                 }
1552
1553                 fput_light(in, fput_in);
1554         }
1555
1556         return error;
1557 }
1558
1559 /*
1560  * Make sure there's data to read. Wait for input if we can, otherwise
1561  * return an appropriate error.
1562  */
1563 static int link_ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1564 {
1565         int ret;
1566
1567         /*
1568          * Check ->nrbufs without the inode lock first. This function
1569          * is speculative anyways, so missing one is ok.
1570          */
1571         if (pipe->nrbufs)
1572                 return 0;
1573
1574         ret = 0;
1575         mutex_lock(&pipe->inode->i_mutex);
1576
1577         while (!pipe->nrbufs) {
1578                 if (signal_pending(current)) {
1579                         ret = -ERESTARTSYS;
1580                         break;
1581                 }
1582                 if (!pipe->writers)
1583                         break;
1584                 if (!pipe->waiting_writers) {
1585                         if (flags & SPLICE_F_NONBLOCK) {
1586                                 ret = -EAGAIN;
1587                                 break;
1588                         }
1589                 }
1590                 pipe_wait(pipe);
1591         }
1592
1593         mutex_unlock(&pipe->inode->i_mutex);
1594         return ret;
1595 }
1596
1597 /*
1598  * Make sure there's writeable room. Wait for room if we can, otherwise
1599  * return an appropriate error.
1600  */
1601 static int link_opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1602 {
1603         int ret;
1604
1605         /*
1606          * Check ->nrbufs without the inode lock first. This function
1607          * is speculative anyways, so missing one is ok.
1608          */
1609         if (pipe->nrbufs < PIPE_BUFFERS)
1610                 return 0;
1611
1612         ret = 0;
1613         mutex_lock(&pipe->inode->i_mutex);
1614
1615         while (pipe->nrbufs >= PIPE_BUFFERS) {
1616                 if (!pipe->readers) {
1617                         send_sig(SIGPIPE, current, 0);
1618                         ret = -EPIPE;
1619                         break;
1620                 }
1621                 if (flags & SPLICE_F_NONBLOCK) {
1622                         ret = -EAGAIN;
1623                         break;
1624                 }
1625                 if (signal_pending(current)) {
1626                         ret = -ERESTARTSYS;
1627                         break;
1628                 }
1629                 pipe->waiting_writers++;
1630                 pipe_wait(pipe);
1631                 pipe->waiting_writers--;
1632         }
1633
1634         mutex_unlock(&pipe->inode->i_mutex);
1635         return ret;
1636 }
1637
1638 /*
1639  * Link contents of ipipe to opipe.
1640  */
1641 static int link_pipe(struct pipe_inode_info *ipipe,
1642                      struct pipe_inode_info *opipe,
1643                      size_t len, unsigned int flags)
1644 {
1645         struct pipe_buffer *ibuf, *obuf;
1646         int ret = 0, i = 0, nbuf;
1647
1648         /*
1649          * Potential ABBA deadlock, work around it by ordering lock
1650          * grabbing by inode address. Otherwise two different processes
1651          * could deadlock (one doing tee from A -> B, the other from B -> A).
1652          */
1653         inode_double_lock(ipipe->inode, opipe->inode);
1654
1655         do {
1656                 if (!opipe->readers) {
1657                         send_sig(SIGPIPE, current, 0);
1658                         if (!ret)
1659                                 ret = -EPIPE;
1660                         break;
1661                 }
1662
1663                 /*
1664                  * If we have iterated all input buffers or ran out of
1665                  * output room, break.
1666                  */
1667                 if (i >= ipipe->nrbufs || opipe->nrbufs >= PIPE_BUFFERS)
1668                         break;
1669
1670                 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (PIPE_BUFFERS - 1));
1671                 nbuf = (opipe->curbuf + opipe->nrbufs) & (PIPE_BUFFERS - 1);
1672
1673                 /*
1674                  * Get a reference to this pipe buffer,
1675                  * so we can copy the contents over.
1676                  */
1677                 ibuf->ops->get(ipipe, ibuf);
1678
1679                 obuf = opipe->bufs + nbuf;
1680                 *obuf = *ibuf;
1681
1682                 /*
1683                  * Don't inherit the gift flag, we need to
1684                  * prevent multiple steals of this page.
1685                  */
1686                 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1687
1688                 if (obuf->len > len)
1689                         obuf->len = len;
1690
1691                 opipe->nrbufs++;
1692                 ret += obuf->len;
1693                 len -= obuf->len;
1694                 i++;
1695         } while (len);
1696
1697         inode_double_unlock(ipipe->inode, opipe->inode);
1698
1699         /*
1700          * If we put data in the output pipe, wakeup any potential readers.
1701          */
1702         if (ret > 0) {
1703                 smp_mb();
1704                 if (waitqueue_active(&opipe->wait))
1705                         wake_up_interruptible(&opipe->wait);
1706                 kill_fasync(&opipe->fasync_readers, SIGIO, POLL_IN);
1707         }
1708
1709         return ret;
1710 }
1711
1712 /*
1713  * This is a tee(1) implementation that works on pipes. It doesn't copy
1714  * any data, it simply references the 'in' pages on the 'out' pipe.
1715  * The 'flags' used are the SPLICE_F_* variants, currently the only
1716  * applicable one is SPLICE_F_NONBLOCK.
1717  */
1718 static long do_tee(struct file *in, struct file *out, size_t len,
1719                    unsigned int flags)
1720 {
1721         struct pipe_inode_info *ipipe = pipe_info(in->f_path.dentry->d_inode);
1722         struct pipe_inode_info *opipe = pipe_info(out->f_path.dentry->d_inode);
1723         int ret = -EINVAL;
1724
1725         /*
1726          * Duplicate the contents of ipipe to opipe without actually
1727          * copying the data.
1728          */
1729         if (ipipe && opipe && ipipe != opipe) {
1730                 /*
1731                  * Keep going, unless we encounter an error. The ipipe/opipe
1732                  * ordering doesn't really matter.
1733                  */
1734                 ret = link_ipipe_prep(ipipe, flags);
1735                 if (!ret) {
1736                         ret = link_opipe_prep(opipe, flags);
1737                         if (!ret) {
1738                                 ret = link_pipe(ipipe, opipe, len, flags);
1739                                 if (!ret && (flags & SPLICE_F_NONBLOCK))
1740                                         ret = -EAGAIN;
1741                         }
1742                 }
1743         }
1744
1745         return ret;
1746 }
1747
1748 asmlinkage long sys_tee(int fdin, int fdout, size_t len, unsigned int flags)
1749 {
1750         struct file *in;
1751         int error, fput_in;
1752
1753         if (unlikely(!len))
1754                 return 0;
1755
1756         error = -EBADF;
1757         in = fget_light(fdin, &fput_in);
1758         if (in) {
1759                 if (in->f_mode & FMODE_READ) {
1760                         int fput_out;
1761                         struct file *out = fget_light(fdout, &fput_out);
1762
1763                         if (out) {
1764                                 if (out->f_mode & FMODE_WRITE)
1765                                         error = do_tee(in, out, len, flags);
1766                                 fput_light(out, fput_out);
1767                         }
1768                 }
1769                 fput_light(in, fput_in);
1770         }
1771
1772         return error;
1773 }