splice: fix leak of pages on short splice to pipe
[safe/jmp/linux-2.6] / fs / splice.c
1 /*
2  * "splice": joining two ropes together by interweaving their strands.
3  *
4  * This is the "extended pipe" functionality, where a pipe is used as
5  * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6  * buffer that you can use to transfer data from one end to the other.
7  *
8  * The traditional unix read/write is extended with a "splice()" operation
9  * that transfers data buffers to or from a pipe buffer.
10  *
11  * Named by Larry McVoy, original implementation from Linus, extended by
12  * Jens to support splicing to files, network, direct splicing, etc and
13  * fixing lots of bugs.
14  *
15  * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16  * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17  * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
18  *
19  */
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/pipe_fs_i.h>
24 #include <linux/mm_inline.h>
25 #include <linux/swap.h>
26 #include <linux/writeback.h>
27 #include <linux/buffer_head.h>
28 #include <linux/module.h>
29 #include <linux/syscalls.h>
30 #include <linux/uio.h>
31
32 struct partial_page {
33         unsigned int offset;
34         unsigned int len;
35 };
36
37 /*
38  * Passed to splice_to_pipe
39  */
40 struct splice_pipe_desc {
41         struct page **pages;            /* page map */
42         struct partial_page *partial;   /* pages[] may not be contig */
43         int nr_pages;                   /* number of pages in map */
44         unsigned int flags;             /* splice flags */
45         const struct pipe_buf_operations *ops;/* ops associated with output pipe */
46 };
47
48 /*
49  * Attempt to steal a page from a pipe buffer. This should perhaps go into
50  * a vm helper function, it's already simplified quite a bit by the
51  * addition of remove_mapping(). If success is returned, the caller may
52  * attempt to reuse this page for another destination.
53  */
54 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
55                                      struct pipe_buffer *buf)
56 {
57         struct page *page = buf->page;
58         struct address_space *mapping;
59
60         lock_page(page);
61
62         mapping = page_mapping(page);
63         if (mapping) {
64                 WARN_ON(!PageUptodate(page));
65
66                 /*
67                  * At least for ext2 with nobh option, we need to wait on
68                  * writeback completing on this page, since we'll remove it
69                  * from the pagecache.  Otherwise truncate wont wait on the
70                  * page, allowing the disk blocks to be reused by someone else
71                  * before we actually wrote our data to them. fs corruption
72                  * ensues.
73                  */
74                 wait_on_page_writeback(page);
75
76                 if (PagePrivate(page))
77                         try_to_release_page(page, GFP_KERNEL);
78
79                 /*
80                  * If we succeeded in removing the mapping, set LRU flag
81                  * and return good.
82                  */
83                 if (remove_mapping(mapping, page)) {
84                         buf->flags |= PIPE_BUF_FLAG_LRU;
85                         return 0;
86                 }
87         }
88
89         /*
90          * Raced with truncate or failed to remove page from current
91          * address space, unlock and return failure.
92          */
93         unlock_page(page);
94         return 1;
95 }
96
97 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
98                                         struct pipe_buffer *buf)
99 {
100         page_cache_release(buf->page);
101         buf->flags &= ~PIPE_BUF_FLAG_LRU;
102 }
103
104 static int page_cache_pipe_buf_pin(struct pipe_inode_info *pipe,
105                                    struct pipe_buffer *buf)
106 {
107         struct page *page = buf->page;
108         int err;
109
110         if (!PageUptodate(page)) {
111                 lock_page(page);
112
113                 /*
114                  * Page got truncated/unhashed. This will cause a 0-byte
115                  * splice, if this is the first page.
116                  */
117                 if (!page->mapping) {
118                         err = -ENODATA;
119                         goto error;
120                 }
121
122                 /*
123                  * Uh oh, read-error from disk.
124                  */
125                 if (!PageUptodate(page)) {
126                         err = -EIO;
127                         goto error;
128                 }
129
130                 /*
131                  * Page is ok afterall, we are done.
132                  */
133                 unlock_page(page);
134         }
135
136         return 0;
137 error:
138         unlock_page(page);
139         return err;
140 }
141
142 static const struct pipe_buf_operations page_cache_pipe_buf_ops = {
143         .can_merge = 0,
144         .map = generic_pipe_buf_map,
145         .unmap = generic_pipe_buf_unmap,
146         .pin = page_cache_pipe_buf_pin,
147         .release = page_cache_pipe_buf_release,
148         .steal = page_cache_pipe_buf_steal,
149         .get = generic_pipe_buf_get,
150 };
151
152 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
153                                     struct pipe_buffer *buf)
154 {
155         if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
156                 return 1;
157
158         buf->flags |= PIPE_BUF_FLAG_LRU;
159         return generic_pipe_buf_steal(pipe, buf);
160 }
161
162 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
163         .can_merge = 0,
164         .map = generic_pipe_buf_map,
165         .unmap = generic_pipe_buf_unmap,
166         .pin = generic_pipe_buf_pin,
167         .release = page_cache_pipe_buf_release,
168         .steal = user_page_pipe_buf_steal,
169         .get = generic_pipe_buf_get,
170 };
171
172 /*
173  * Pipe output worker. This sets up our pipe format with the page cache
174  * pipe buffer operations. Otherwise very similar to the regular pipe_writev().
175  */
176 static ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
177                               struct splice_pipe_desc *spd)
178 {
179         unsigned int spd_pages = spd->nr_pages;
180         int ret, do_wakeup, page_nr;
181
182         ret = 0;
183         do_wakeup = 0;
184         page_nr = 0;
185
186         if (pipe->inode)
187                 mutex_lock(&pipe->inode->i_mutex);
188
189         for (;;) {
190                 if (!pipe->readers) {
191                         send_sig(SIGPIPE, current, 0);
192                         if (!ret)
193                                 ret = -EPIPE;
194                         break;
195                 }
196
197                 if (pipe->nrbufs < PIPE_BUFFERS) {
198                         int newbuf = (pipe->curbuf + pipe->nrbufs) & (PIPE_BUFFERS - 1);
199                         struct pipe_buffer *buf = pipe->bufs + newbuf;
200
201                         buf->page = spd->pages[page_nr];
202                         buf->offset = spd->partial[page_nr].offset;
203                         buf->len = spd->partial[page_nr].len;
204                         buf->ops = spd->ops;
205                         if (spd->flags & SPLICE_F_GIFT)
206                                 buf->flags |= PIPE_BUF_FLAG_GIFT;
207
208                         pipe->nrbufs++;
209                         page_nr++;
210                         ret += buf->len;
211
212                         if (pipe->inode)
213                                 do_wakeup = 1;
214
215                         if (!--spd->nr_pages)
216                                 break;
217                         if (pipe->nrbufs < PIPE_BUFFERS)
218                                 continue;
219
220                         break;
221                 }
222
223                 if (spd->flags & SPLICE_F_NONBLOCK) {
224                         if (!ret)
225                                 ret = -EAGAIN;
226                         break;
227                 }
228
229                 if (signal_pending(current)) {
230                         if (!ret)
231                                 ret = -ERESTARTSYS;
232                         break;
233                 }
234
235                 if (do_wakeup) {
236                         smp_mb();
237                         if (waitqueue_active(&pipe->wait))
238                                 wake_up_interruptible_sync(&pipe->wait);
239                         kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
240                         do_wakeup = 0;
241                 }
242
243                 pipe->waiting_writers++;
244                 pipe_wait(pipe);
245                 pipe->waiting_writers--;
246         }
247
248         if (pipe->inode)
249                 mutex_unlock(&pipe->inode->i_mutex);
250
251         if (do_wakeup) {
252                 smp_mb();
253                 if (waitqueue_active(&pipe->wait))
254                         wake_up_interruptible(&pipe->wait);
255                 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
256         }
257
258         while (page_nr < spd_pages)
259                 page_cache_release(spd->pages[page_nr++]);
260
261         return ret;
262 }
263
264 static int
265 __generic_file_splice_read(struct file *in, loff_t *ppos,
266                            struct pipe_inode_info *pipe, size_t len,
267                            unsigned int flags)
268 {
269         struct address_space *mapping = in->f_mapping;
270         unsigned int loff, nr_pages;
271         struct page *pages[PIPE_BUFFERS];
272         struct partial_page partial[PIPE_BUFFERS];
273         struct page *page;
274         pgoff_t index, end_index;
275         loff_t isize;
276         int error, page_nr;
277         struct splice_pipe_desc spd = {
278                 .pages = pages,
279                 .partial = partial,
280                 .flags = flags,
281                 .ops = &page_cache_pipe_buf_ops,
282         };
283
284         index = *ppos >> PAGE_CACHE_SHIFT;
285         loff = *ppos & ~PAGE_CACHE_MASK;
286         nr_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
287
288         if (nr_pages > PIPE_BUFFERS)
289                 nr_pages = PIPE_BUFFERS;
290
291         /*
292          * Don't try to 2nd guess the read-ahead logic, call into
293          * page_cache_readahead() like the page cache reads would do.
294          */
295         page_cache_readahead(mapping, &in->f_ra, in, index, nr_pages);
296
297         /*
298          * Now fill in the holes:
299          */
300         error = 0;
301
302         /*
303          * Lookup the (hopefully) full range of pages we need.
304          */
305         spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, pages);
306
307         /*
308          * If find_get_pages_contig() returned fewer pages than we needed,
309          * allocate the rest.
310          */
311         index += spd.nr_pages;
312         while (spd.nr_pages < nr_pages) {
313                 /*
314                  * Page could be there, find_get_pages_contig() breaks on
315                  * the first hole.
316                  */
317                 page = find_get_page(mapping, index);
318                 if (!page) {
319                         /*
320                          * Make sure the read-ahead engine is notified
321                          * about this failure.
322                          */
323                         handle_ra_miss(mapping, &in->f_ra, index);
324
325                         /*
326                          * page didn't exist, allocate one.
327                          */
328                         page = page_cache_alloc_cold(mapping);
329                         if (!page)
330                                 break;
331
332                         error = add_to_page_cache_lru(page, mapping, index,
333                                               GFP_KERNEL);
334                         if (unlikely(error)) {
335                                 page_cache_release(page);
336                                 if (error == -EEXIST)
337                                         continue;
338                                 break;
339                         }
340                         /*
341                          * add_to_page_cache() locks the page, unlock it
342                          * to avoid convoluting the logic below even more.
343                          */
344                         unlock_page(page);
345                 }
346
347                 pages[spd.nr_pages++] = page;
348                 index++;
349         }
350
351         /*
352          * Now loop over the map and see if we need to start IO on any
353          * pages, fill in the partial map, etc.
354          */
355         index = *ppos >> PAGE_CACHE_SHIFT;
356         nr_pages = spd.nr_pages;
357         spd.nr_pages = 0;
358         for (page_nr = 0; page_nr < nr_pages; page_nr++) {
359                 unsigned int this_len;
360
361                 if (!len)
362                         break;
363
364                 /*
365                  * this_len is the max we'll use from this page
366                  */
367                 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
368                 page = pages[page_nr];
369
370                 /*
371                  * If the page isn't uptodate, we may need to start io on it
372                  */
373                 if (!PageUptodate(page)) {
374                         /*
375                          * If in nonblock mode then dont block on waiting
376                          * for an in-flight io page
377                          */
378                         if (flags & SPLICE_F_NONBLOCK) {
379                                 if (TestSetPageLocked(page))
380                                         break;
381                         } else
382                                 lock_page(page);
383
384                         /*
385                          * page was truncated, stop here. if this isn't the
386                          * first page, we'll just complete what we already
387                          * added
388                          */
389                         if (!page->mapping) {
390                                 unlock_page(page);
391                                 break;
392                         }
393                         /*
394                          * page was already under io and is now done, great
395                          */
396                         if (PageUptodate(page)) {
397                                 unlock_page(page);
398                                 goto fill_it;
399                         }
400
401                         /*
402                          * need to read in the page
403                          */
404                         error = mapping->a_ops->readpage(in, page);
405                         if (unlikely(error)) {
406                                 /*
407                                  * We really should re-lookup the page here,
408                                  * but it complicates things a lot. Instead
409                                  * lets just do what we already stored, and
410                                  * we'll get it the next time we are called.
411                                  */
412                                 if (error == AOP_TRUNCATED_PAGE)
413                                         error = 0;
414
415                                 break;
416                         }
417                 }
418 fill_it:
419                 /*
420                  * i_size must be checked after PageUptodate.
421                  */
422                 isize = i_size_read(mapping->host);
423                 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
424                 if (unlikely(!isize || index > end_index))
425                         break;
426
427                 /*
428                  * if this is the last page, see if we need to shrink
429                  * the length and stop
430                  */
431                 if (end_index == index) {
432                         unsigned int plen;
433
434                         /*
435                          * max good bytes in this page
436                          */
437                         plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
438                         if (plen <= loff)
439                                 break;
440
441                         /*
442                          * force quit after adding this page
443                          */
444                         this_len = min(this_len, plen - loff);
445                         len = this_len;
446                 }
447
448                 partial[page_nr].offset = loff;
449                 partial[page_nr].len = this_len;
450                 len -= this_len;
451                 loff = 0;
452                 spd.nr_pages++;
453                 index++;
454         }
455
456         /*
457          * Release any pages at the end, if we quit early. 'page_nr' is how far
458          * we got, 'nr_pages' is how many pages are in the map.
459          */
460         while (page_nr < nr_pages)
461                 page_cache_release(pages[page_nr++]);
462
463         if (spd.nr_pages)
464                 return splice_to_pipe(pipe, &spd);
465
466         return error;
467 }
468
469 /**
470  * generic_file_splice_read - splice data from file to a pipe
471  * @in:         file to splice from
472  * @pipe:       pipe to splice to
473  * @len:        number of bytes to splice
474  * @flags:      splice modifier flags
475  *
476  * Will read pages from given file and fill them into a pipe.
477  */
478 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
479                                  struct pipe_inode_info *pipe, size_t len,
480                                  unsigned int flags)
481 {
482         ssize_t spliced;
483         int ret;
484         loff_t isize, left;
485
486         isize = i_size_read(in->f_mapping->host);
487         if (unlikely(*ppos >= isize))
488                 return 0;
489
490         left = isize - *ppos;
491         if (unlikely(left < len))
492                 len = left;
493
494         ret = 0;
495         spliced = 0;
496         while (len) {
497                 ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
498
499                 if (ret < 0)
500                         break;
501                 else if (!ret) {
502                         if (spliced)
503                                 break;
504                         if (flags & SPLICE_F_NONBLOCK) {
505                                 ret = -EAGAIN;
506                                 break;
507                         }
508                 }
509
510                 *ppos += ret;
511                 len -= ret;
512                 spliced += ret;
513         }
514
515         if (spliced)
516                 return spliced;
517
518         return ret;
519 }
520
521 EXPORT_SYMBOL(generic_file_splice_read);
522
523 /*
524  * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
525  * using sendpage(). Return the number of bytes sent.
526  */
527 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
528                             struct pipe_buffer *buf, struct splice_desc *sd)
529 {
530         struct file *file = sd->file;
531         loff_t pos = sd->pos;
532         int ret, more;
533
534         ret = buf->ops->pin(pipe, buf);
535         if (!ret) {
536                 more = (sd->flags & SPLICE_F_MORE) || sd->len < sd->total_len;
537
538                 ret = file->f_op->sendpage(file, buf->page, buf->offset,
539                                            sd->len, &pos, more);
540         }
541
542         return ret;
543 }
544
545 /*
546  * This is a little more tricky than the file -> pipe splicing. There are
547  * basically three cases:
548  *
549  *      - Destination page already exists in the address space and there
550  *        are users of it. For that case we have no other option that
551  *        copying the data. Tough luck.
552  *      - Destination page already exists in the address space, but there
553  *        are no users of it. Make sure it's uptodate, then drop it. Fall
554  *        through to last case.
555  *      - Destination page does not exist, we can add the pipe page to
556  *        the page cache and avoid the copy.
557  *
558  * If asked to move pages to the output file (SPLICE_F_MOVE is set in
559  * sd->flags), we attempt to migrate pages from the pipe to the output
560  * file address space page cache. This is possible if no one else has
561  * the pipe page referenced outside of the pipe and page cache. If
562  * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
563  * a new page in the output file page cache and fill/dirty that.
564  */
565 static int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
566                         struct splice_desc *sd)
567 {
568         struct file *file = sd->file;
569         struct address_space *mapping = file->f_mapping;
570         unsigned int offset, this_len;
571         struct page *page;
572         pgoff_t index;
573         int ret;
574
575         /*
576          * make sure the data in this buffer is uptodate
577          */
578         ret = buf->ops->pin(pipe, buf);
579         if (unlikely(ret))
580                 return ret;
581
582         index = sd->pos >> PAGE_CACHE_SHIFT;
583         offset = sd->pos & ~PAGE_CACHE_MASK;
584
585         this_len = sd->len;
586         if (this_len + offset > PAGE_CACHE_SIZE)
587                 this_len = PAGE_CACHE_SIZE - offset;
588
589 find_page:
590         page = find_lock_page(mapping, index);
591         if (!page) {
592                 ret = -ENOMEM;
593                 page = page_cache_alloc_cold(mapping);
594                 if (unlikely(!page))
595                         goto out_ret;
596
597                 /*
598                  * This will also lock the page
599                  */
600                 ret = add_to_page_cache_lru(page, mapping, index,
601                                             GFP_KERNEL);
602                 if (unlikely(ret))
603                         goto out;
604         }
605
606         ret = mapping->a_ops->prepare_write(file, page, offset, offset+this_len);
607         if (unlikely(ret)) {
608                 loff_t isize = i_size_read(mapping->host);
609
610                 if (ret != AOP_TRUNCATED_PAGE)
611                         unlock_page(page);
612                 page_cache_release(page);
613                 if (ret == AOP_TRUNCATED_PAGE)
614                         goto find_page;
615
616                 /*
617                  * prepare_write() may have instantiated a few blocks
618                  * outside i_size.  Trim these off again.
619                  */
620                 if (sd->pos + this_len > isize)
621                         vmtruncate(mapping->host, isize);
622
623                 goto out_ret;
624         }
625
626         if (buf->page != page) {
627                 /*
628                  * Careful, ->map() uses KM_USER0!
629                  */
630                 char *src = buf->ops->map(pipe, buf, 1);
631                 char *dst = kmap_atomic(page, KM_USER1);
632
633                 memcpy(dst + offset, src + buf->offset, this_len);
634                 flush_dcache_page(page);
635                 kunmap_atomic(dst, KM_USER1);
636                 buf->ops->unmap(pipe, buf, src);
637         }
638
639         ret = mapping->a_ops->commit_write(file, page, offset, offset+this_len);
640         if (ret) {
641                 if (ret == AOP_TRUNCATED_PAGE) {
642                         page_cache_release(page);
643                         goto find_page;
644                 }
645                 if (ret < 0)
646                         goto out;
647                 /*
648                  * Partial write has happened, so 'ret' already initialized by
649                  * number of bytes written, Where is nothing we have to do here.
650                  */
651         } else
652                 ret = this_len;
653         /*
654          * Return the number of bytes written and mark page as
655          * accessed, we are now done!
656          */
657         mark_page_accessed(page);
658 out:
659         page_cache_release(page);
660         unlock_page(page);
661 out_ret:
662         return ret;
663 }
664
665 /*
666  * Pipe input worker. Most of this logic works like a regular pipe, the
667  * key here is the 'actor' worker passed in that actually moves the data
668  * to the wanted destination. See pipe_to_file/pipe_to_sendpage above.
669  */
670 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe,
671                            struct file *out, loff_t *ppos, size_t len,
672                            unsigned int flags, splice_actor *actor)
673 {
674         int ret, do_wakeup, err;
675         struct splice_desc sd;
676
677         ret = 0;
678         do_wakeup = 0;
679
680         sd.total_len = len;
681         sd.flags = flags;
682         sd.file = out;
683         sd.pos = *ppos;
684
685         for (;;) {
686                 if (pipe->nrbufs) {
687                         struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
688                         const struct pipe_buf_operations *ops = buf->ops;
689
690                         sd.len = buf->len;
691                         if (sd.len > sd.total_len)
692                                 sd.len = sd.total_len;
693
694                         err = actor(pipe, buf, &sd);
695                         if (err <= 0) {
696                                 if (!ret && err != -ENODATA)
697                                         ret = err;
698
699                                 break;
700                         }
701
702                         ret += err;
703                         buf->offset += err;
704                         buf->len -= err;
705
706                         sd.len -= err;
707                         sd.pos += err;
708                         sd.total_len -= err;
709                         if (sd.len)
710                                 continue;
711
712                         if (!buf->len) {
713                                 buf->ops = NULL;
714                                 ops->release(pipe, buf);
715                                 pipe->curbuf = (pipe->curbuf + 1) & (PIPE_BUFFERS - 1);
716                                 pipe->nrbufs--;
717                                 if (pipe->inode)
718                                         do_wakeup = 1;
719                         }
720
721                         if (!sd.total_len)
722                                 break;
723                 }
724
725                 if (pipe->nrbufs)
726                         continue;
727                 if (!pipe->writers)
728                         break;
729                 if (!pipe->waiting_writers) {
730                         if (ret)
731                                 break;
732                 }
733
734                 if (flags & SPLICE_F_NONBLOCK) {
735                         if (!ret)
736                                 ret = -EAGAIN;
737                         break;
738                 }
739
740                 if (signal_pending(current)) {
741                         if (!ret)
742                                 ret = -ERESTARTSYS;
743                         break;
744                 }
745
746                 if (do_wakeup) {
747                         smp_mb();
748                         if (waitqueue_active(&pipe->wait))
749                                 wake_up_interruptible_sync(&pipe->wait);
750                         kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
751                         do_wakeup = 0;
752                 }
753
754                 pipe_wait(pipe);
755         }
756
757         if (do_wakeup) {
758                 smp_mb();
759                 if (waitqueue_active(&pipe->wait))
760                         wake_up_interruptible(&pipe->wait);
761                 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
762         }
763
764         return ret;
765 }
766 EXPORT_SYMBOL(__splice_from_pipe);
767
768 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
769                          loff_t *ppos, size_t len, unsigned int flags,
770                          splice_actor *actor)
771 {
772         ssize_t ret;
773         struct inode *inode = out->f_mapping->host;
774
775         /*
776          * The actor worker might be calling ->prepare_write and
777          * ->commit_write. Most of the time, these expect i_mutex to
778          * be held. Since this may result in an ABBA deadlock with
779          * pipe->inode, we have to order lock acquiry here.
780          */
781         inode_double_lock(inode, pipe->inode);
782         ret = __splice_from_pipe(pipe, out, ppos, len, flags, actor);
783         inode_double_unlock(inode, pipe->inode);
784
785         return ret;
786 }
787
788 /**
789  * generic_file_splice_write_nolock - generic_file_splice_write without mutexes
790  * @pipe:       pipe info
791  * @out:        file to write to
792  * @len:        number of bytes to splice
793  * @flags:      splice modifier flags
794  *
795  * Will either move or copy pages (determined by @flags options) from
796  * the given pipe inode to the given file. The caller is responsible
797  * for acquiring i_mutex on both inodes.
798  *
799  */
800 ssize_t
801 generic_file_splice_write_nolock(struct pipe_inode_info *pipe, struct file *out,
802                                  loff_t *ppos, size_t len, unsigned int flags)
803 {
804         struct address_space *mapping = out->f_mapping;
805         struct inode *inode = mapping->host;
806         ssize_t ret;
807         int err;
808
809         err = remove_suid(out->f_path.dentry);
810         if (unlikely(err))
811                 return err;
812
813         ret = __splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_file);
814         if (ret > 0) {
815                 unsigned long nr_pages;
816
817                 *ppos += ret;
818                 nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
819
820                 /*
821                  * If file or inode is SYNC and we actually wrote some data,
822                  * sync it.
823                  */
824                 if (unlikely((out->f_flags & O_SYNC) || IS_SYNC(inode))) {
825                         err = generic_osync_inode(inode, mapping,
826                                                   OSYNC_METADATA|OSYNC_DATA);
827
828                         if (err)
829                                 ret = err;
830                 }
831                 balance_dirty_pages_ratelimited_nr(mapping, nr_pages);
832         }
833
834         return ret;
835 }
836
837 EXPORT_SYMBOL(generic_file_splice_write_nolock);
838
839 /**
840  * generic_file_splice_write - splice data from a pipe to a file
841  * @pipe:       pipe info
842  * @out:        file to write to
843  * @len:        number of bytes to splice
844  * @flags:      splice modifier flags
845  *
846  * Will either move or copy pages (determined by @flags options) from
847  * the given pipe inode to the given file.
848  *
849  */
850 ssize_t
851 generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
852                           loff_t *ppos, size_t len, unsigned int flags)
853 {
854         struct address_space *mapping = out->f_mapping;
855         struct inode *inode = mapping->host;
856         ssize_t ret;
857         int err;
858
859         err = should_remove_suid(out->f_path.dentry);
860         if (unlikely(err)) {
861                 mutex_lock(&inode->i_mutex);
862                 err = __remove_suid(out->f_path.dentry, err);
863                 mutex_unlock(&inode->i_mutex);
864                 if (err)
865                         return err;
866         }
867
868         ret = splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_file);
869         if (ret > 0) {
870                 unsigned long nr_pages;
871
872                 *ppos += ret;
873                 nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
874
875                 /*
876                  * If file or inode is SYNC and we actually wrote some data,
877                  * sync it.
878                  */
879                 if (unlikely((out->f_flags & O_SYNC) || IS_SYNC(inode))) {
880                         mutex_lock(&inode->i_mutex);
881                         err = generic_osync_inode(inode, mapping,
882                                                   OSYNC_METADATA|OSYNC_DATA);
883                         mutex_unlock(&inode->i_mutex);
884
885                         if (err)
886                                 ret = err;
887                 }
888                 balance_dirty_pages_ratelimited_nr(mapping, nr_pages);
889         }
890
891         return ret;
892 }
893
894 EXPORT_SYMBOL(generic_file_splice_write);
895
896 /**
897  * generic_splice_sendpage - splice data from a pipe to a socket
898  * @inode:      pipe inode
899  * @out:        socket to write to
900  * @len:        number of bytes to splice
901  * @flags:      splice modifier flags
902  *
903  * Will send @len bytes from the pipe to a network socket. No data copying
904  * is involved.
905  *
906  */
907 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
908                                 loff_t *ppos, size_t len, unsigned int flags)
909 {
910         return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
911 }
912
913 EXPORT_SYMBOL(generic_splice_sendpage);
914
915 /*
916  * Attempt to initiate a splice from pipe to file.
917  */
918 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
919                            loff_t *ppos, size_t len, unsigned int flags)
920 {
921         int ret;
922
923         if (unlikely(!out->f_op || !out->f_op->splice_write))
924                 return -EINVAL;
925
926         if (unlikely(!(out->f_mode & FMODE_WRITE)))
927                 return -EBADF;
928
929         ret = rw_verify_area(WRITE, out, ppos, len);
930         if (unlikely(ret < 0))
931                 return ret;
932
933         return out->f_op->splice_write(pipe, out, ppos, len, flags);
934 }
935
936 /*
937  * Attempt to initiate a splice from a file to a pipe.
938  */
939 static long do_splice_to(struct file *in, loff_t *ppos,
940                          struct pipe_inode_info *pipe, size_t len,
941                          unsigned int flags)
942 {
943         int ret;
944
945         if (unlikely(!in->f_op || !in->f_op->splice_read))
946                 return -EINVAL;
947
948         if (unlikely(!(in->f_mode & FMODE_READ)))
949                 return -EBADF;
950
951         ret = rw_verify_area(READ, in, ppos, len);
952         if (unlikely(ret < 0))
953                 return ret;
954
955         return in->f_op->splice_read(in, ppos, pipe, len, flags);
956 }
957
958 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
959                       size_t len, unsigned int flags)
960 {
961         struct pipe_inode_info *pipe;
962         long ret, bytes;
963         loff_t out_off;
964         umode_t i_mode;
965         int i;
966
967         /*
968          * We require the input being a regular file, as we don't want to
969          * randomly drop data for eg socket -> socket splicing. Use the
970          * piped splicing for that!
971          */
972         i_mode = in->f_path.dentry->d_inode->i_mode;
973         if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
974                 return -EINVAL;
975
976         /*
977          * neither in nor out is a pipe, setup an internal pipe attached to
978          * 'out' and transfer the wanted data from 'in' to 'out' through that
979          */
980         pipe = current->splice_pipe;
981         if (unlikely(!pipe)) {
982                 pipe = alloc_pipe_info(NULL);
983                 if (!pipe)
984                         return -ENOMEM;
985
986                 /*
987                  * We don't have an immediate reader, but we'll read the stuff
988                  * out of the pipe right after the splice_to_pipe(). So set
989                  * PIPE_READERS appropriately.
990                  */
991                 pipe->readers = 1;
992
993                 current->splice_pipe = pipe;
994         }
995
996         /*
997          * Do the splice.
998          */
999         ret = 0;
1000         bytes = 0;
1001         out_off = 0;
1002
1003         while (len) {
1004                 size_t read_len, max_read_len;
1005
1006                 /*
1007                  * Do at most PIPE_BUFFERS pages worth of transfer:
1008                  */
1009                 max_read_len = min(len, (size_t)(PIPE_BUFFERS*PAGE_SIZE));
1010
1011                 ret = do_splice_to(in, ppos, pipe, max_read_len, flags);
1012                 if (unlikely(ret < 0))
1013                         goto out_release;
1014
1015                 read_len = ret;
1016
1017                 /*
1018                  * NOTE: nonblocking mode only applies to the input. We
1019                  * must not do the output in nonblocking mode as then we
1020                  * could get stuck data in the internal pipe:
1021                  */
1022                 ret = do_splice_from(pipe, out, &out_off, read_len,
1023                                      flags & ~SPLICE_F_NONBLOCK);
1024                 if (unlikely(ret < 0))
1025                         goto out_release;
1026
1027                 bytes += ret;
1028                 len -= ret;
1029
1030                 /*
1031                  * In nonblocking mode, if we got back a short read then
1032                  * that was due to either an IO error or due to the
1033                  * pagecache entry not being there. In the IO error case
1034                  * the _next_ splice attempt will produce a clean IO error
1035                  * return value (not a short read), so in both cases it's
1036                  * correct to break out of the loop here:
1037                  */
1038                 if ((flags & SPLICE_F_NONBLOCK) && (read_len < max_read_len))
1039                         break;
1040         }
1041
1042         pipe->nrbufs = pipe->curbuf = 0;
1043
1044         return bytes;
1045
1046 out_release:
1047         /*
1048          * If we did an incomplete transfer we must release
1049          * the pipe buffers in question:
1050          */
1051         for (i = 0; i < PIPE_BUFFERS; i++) {
1052                 struct pipe_buffer *buf = pipe->bufs + i;
1053
1054                 if (buf->ops) {
1055                         buf->ops->release(pipe, buf);
1056                         buf->ops = NULL;
1057                 }
1058         }
1059         pipe->nrbufs = pipe->curbuf = 0;
1060
1061         /*
1062          * If we transferred some data, return the number of bytes:
1063          */
1064         if (bytes > 0)
1065                 return bytes;
1066
1067         return ret;
1068 }
1069
1070 /*
1071  * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same
1072  * location, so checking ->i_pipe is not enough to verify that this is a
1073  * pipe.
1074  */
1075 static inline struct pipe_inode_info *pipe_info(struct inode *inode)
1076 {
1077         if (S_ISFIFO(inode->i_mode))
1078                 return inode->i_pipe;
1079
1080         return NULL;
1081 }
1082
1083 /*
1084  * Determine where to splice to/from.
1085  */
1086 static long do_splice(struct file *in, loff_t __user *off_in,
1087                       struct file *out, loff_t __user *off_out,
1088                       size_t len, unsigned int flags)
1089 {
1090         struct pipe_inode_info *pipe;
1091         loff_t offset, *off;
1092         long ret;
1093
1094         pipe = pipe_info(in->f_path.dentry->d_inode);
1095         if (pipe) {
1096                 if (off_in)
1097                         return -ESPIPE;
1098                 if (off_out) {
1099                         if (out->f_op->llseek == no_llseek)
1100                                 return -EINVAL;
1101                         if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1102                                 return -EFAULT;
1103                         off = &offset;
1104                 } else
1105                         off = &out->f_pos;
1106
1107                 ret = do_splice_from(pipe, out, off, len, flags);
1108
1109                 if (off_out && copy_to_user(off_out, off, sizeof(loff_t)))
1110                         ret = -EFAULT;
1111
1112                 return ret;
1113         }
1114
1115         pipe = pipe_info(out->f_path.dentry->d_inode);
1116         if (pipe) {
1117                 if (off_out)
1118                         return -ESPIPE;
1119                 if (off_in) {
1120                         if (in->f_op->llseek == no_llseek)
1121                                 return -EINVAL;
1122                         if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1123                                 return -EFAULT;
1124                         off = &offset;
1125                 } else
1126                         off = &in->f_pos;
1127
1128                 ret = do_splice_to(in, off, pipe, len, flags);
1129
1130                 if (off_in && copy_to_user(off_in, off, sizeof(loff_t)))
1131                         ret = -EFAULT;
1132
1133                 return ret;
1134         }
1135
1136         return -EINVAL;
1137 }
1138
1139 /*
1140  * Map an iov into an array of pages and offset/length tupples. With the
1141  * partial_page structure, we can map several non-contiguous ranges into
1142  * our ones pages[] map instead of splitting that operation into pieces.
1143  * Could easily be exported as a generic helper for other users, in which
1144  * case one would probably want to add a 'max_nr_pages' parameter as well.
1145  */
1146 static int get_iovec_page_array(const struct iovec __user *iov,
1147                                 unsigned int nr_vecs, struct page **pages,
1148                                 struct partial_page *partial, int aligned)
1149 {
1150         int buffers = 0, error = 0;
1151
1152         /*
1153          * It's ok to take the mmap_sem for reading, even
1154          * across a "get_user()".
1155          */
1156         down_read(&current->mm->mmap_sem);
1157
1158         while (nr_vecs) {
1159                 unsigned long off, npages;
1160                 void __user *base;
1161                 size_t len;
1162                 int i;
1163
1164                 /*
1165                  * Get user address base and length for this iovec.
1166                  */
1167                 error = get_user(base, &iov->iov_base);
1168                 if (unlikely(error))
1169                         break;
1170                 error = get_user(len, &iov->iov_len);
1171                 if (unlikely(error))
1172                         break;
1173
1174                 /*
1175                  * Sanity check this iovec. 0 read succeeds.
1176                  */
1177                 if (unlikely(!len))
1178                         break;
1179                 error = -EFAULT;
1180                 if (unlikely(!base))
1181                         break;
1182
1183                 /*
1184                  * Get this base offset and number of pages, then map
1185                  * in the user pages.
1186                  */
1187                 off = (unsigned long) base & ~PAGE_MASK;
1188
1189                 /*
1190                  * If asked for alignment, the offset must be zero and the
1191                  * length a multiple of the PAGE_SIZE.
1192                  */
1193                 error = -EINVAL;
1194                 if (aligned && (off || len & ~PAGE_MASK))
1195                         break;
1196
1197                 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1198                 if (npages > PIPE_BUFFERS - buffers)
1199                         npages = PIPE_BUFFERS - buffers;
1200
1201                 error = get_user_pages(current, current->mm,
1202                                        (unsigned long) base, npages, 0, 0,
1203                                        &pages[buffers], NULL);
1204
1205                 if (unlikely(error <= 0))
1206                         break;
1207
1208                 /*
1209                  * Fill this contiguous range into the partial page map.
1210                  */
1211                 for (i = 0; i < error; i++) {
1212                         const int plen = min_t(size_t, len, PAGE_SIZE - off);
1213
1214                         partial[buffers].offset = off;
1215                         partial[buffers].len = plen;
1216
1217                         off = 0;
1218                         len -= plen;
1219                         buffers++;
1220                 }
1221
1222                 /*
1223                  * We didn't complete this iov, stop here since it probably
1224                  * means we have to move some of this into a pipe to
1225                  * be able to continue.
1226                  */
1227                 if (len)
1228                         break;
1229
1230                 /*
1231                  * Don't continue if we mapped fewer pages than we asked for,
1232                  * or if we mapped the max number of pages that we have
1233                  * room for.
1234                  */
1235                 if (error < npages || buffers == PIPE_BUFFERS)
1236                         break;
1237
1238                 nr_vecs--;
1239                 iov++;
1240         }
1241
1242         up_read(&current->mm->mmap_sem);
1243
1244         if (buffers)
1245                 return buffers;
1246
1247         return error;
1248 }
1249
1250 /*
1251  * vmsplice splices a user address range into a pipe. It can be thought of
1252  * as splice-from-memory, where the regular splice is splice-from-file (or
1253  * to file). In both cases the output is a pipe, naturally.
1254  *
1255  * Note that vmsplice only supports splicing _from_ user memory to a pipe,
1256  * not the other way around. Splicing from user memory is a simple operation
1257  * that can be supported without any funky alignment restrictions or nasty
1258  * vm tricks. We simply map in the user memory and fill them into a pipe.
1259  * The reverse isn't quite as easy, though. There are two possible solutions
1260  * for that:
1261  *
1262  *      - memcpy() the data internally, at which point we might as well just
1263  *        do a regular read() on the buffer anyway.
1264  *      - Lots of nasty vm tricks, that are neither fast nor flexible (it
1265  *        has restriction limitations on both ends of the pipe).
1266  *
1267  * Alas, it isn't here.
1268  *
1269  */
1270 static long do_vmsplice(struct file *file, const struct iovec __user *iov,
1271                         unsigned long nr_segs, unsigned int flags)
1272 {
1273         struct pipe_inode_info *pipe;
1274         struct page *pages[PIPE_BUFFERS];
1275         struct partial_page partial[PIPE_BUFFERS];
1276         struct splice_pipe_desc spd = {
1277                 .pages = pages,
1278                 .partial = partial,
1279                 .flags = flags,
1280                 .ops = &user_page_pipe_buf_ops,
1281         };
1282
1283         pipe = pipe_info(file->f_path.dentry->d_inode);
1284         if (!pipe)
1285                 return -EBADF;
1286         if (unlikely(nr_segs > UIO_MAXIOV))
1287                 return -EINVAL;
1288         else if (unlikely(!nr_segs))
1289                 return 0;
1290
1291         spd.nr_pages = get_iovec_page_array(iov, nr_segs, pages, partial,
1292                                             flags & SPLICE_F_GIFT);
1293         if (spd.nr_pages <= 0)
1294                 return spd.nr_pages;
1295
1296         return splice_to_pipe(pipe, &spd);
1297 }
1298
1299 asmlinkage long sys_vmsplice(int fd, const struct iovec __user *iov,
1300                              unsigned long nr_segs, unsigned int flags)
1301 {
1302         struct file *file;
1303         long error;
1304         int fput;
1305
1306         error = -EBADF;
1307         file = fget_light(fd, &fput);
1308         if (file) {
1309                 if (file->f_mode & FMODE_WRITE)
1310                         error = do_vmsplice(file, iov, nr_segs, flags);
1311
1312                 fput_light(file, fput);
1313         }
1314
1315         return error;
1316 }
1317
1318 asmlinkage long sys_splice(int fd_in, loff_t __user *off_in,
1319                            int fd_out, loff_t __user *off_out,
1320                            size_t len, unsigned int flags)
1321 {
1322         long error;
1323         struct file *in, *out;
1324         int fput_in, fput_out;
1325
1326         if (unlikely(!len))
1327                 return 0;
1328
1329         error = -EBADF;
1330         in = fget_light(fd_in, &fput_in);
1331         if (in) {
1332                 if (in->f_mode & FMODE_READ) {
1333                         out = fget_light(fd_out, &fput_out);
1334                         if (out) {
1335                                 if (out->f_mode & FMODE_WRITE)
1336                                         error = do_splice(in, off_in,
1337                                                           out, off_out,
1338                                                           len, flags);
1339                                 fput_light(out, fput_out);
1340                         }
1341                 }
1342
1343                 fput_light(in, fput_in);
1344         }
1345
1346         return error;
1347 }
1348
1349 /*
1350  * Make sure there's data to read. Wait for input if we can, otherwise
1351  * return an appropriate error.
1352  */
1353 static int link_ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1354 {
1355         int ret;
1356
1357         /*
1358          * Check ->nrbufs without the inode lock first. This function
1359          * is speculative anyways, so missing one is ok.
1360          */
1361         if (pipe->nrbufs)
1362                 return 0;
1363
1364         ret = 0;
1365         mutex_lock(&pipe->inode->i_mutex);
1366
1367         while (!pipe->nrbufs) {
1368                 if (signal_pending(current)) {
1369                         ret = -ERESTARTSYS;
1370                         break;
1371                 }
1372                 if (!pipe->writers)
1373                         break;
1374                 if (!pipe->waiting_writers) {
1375                         if (flags & SPLICE_F_NONBLOCK) {
1376                                 ret = -EAGAIN;
1377                                 break;
1378                         }
1379                 }
1380                 pipe_wait(pipe);
1381         }
1382
1383         mutex_unlock(&pipe->inode->i_mutex);
1384         return ret;
1385 }
1386
1387 /*
1388  * Make sure there's writeable room. Wait for room if we can, otherwise
1389  * return an appropriate error.
1390  */
1391 static int link_opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1392 {
1393         int ret;
1394
1395         /*
1396          * Check ->nrbufs without the inode lock first. This function
1397          * is speculative anyways, so missing one is ok.
1398          */
1399         if (pipe->nrbufs < PIPE_BUFFERS)
1400                 return 0;
1401
1402         ret = 0;
1403         mutex_lock(&pipe->inode->i_mutex);
1404
1405         while (pipe->nrbufs >= PIPE_BUFFERS) {
1406                 if (!pipe->readers) {
1407                         send_sig(SIGPIPE, current, 0);
1408                         ret = -EPIPE;
1409                         break;
1410                 }
1411                 if (flags & SPLICE_F_NONBLOCK) {
1412                         ret = -EAGAIN;
1413                         break;
1414                 }
1415                 if (signal_pending(current)) {
1416                         ret = -ERESTARTSYS;
1417                         break;
1418                 }
1419                 pipe->waiting_writers++;
1420                 pipe_wait(pipe);
1421                 pipe->waiting_writers--;
1422         }
1423
1424         mutex_unlock(&pipe->inode->i_mutex);
1425         return ret;
1426 }
1427
1428 /*
1429  * Link contents of ipipe to opipe.
1430  */
1431 static int link_pipe(struct pipe_inode_info *ipipe,
1432                      struct pipe_inode_info *opipe,
1433                      size_t len, unsigned int flags)
1434 {
1435         struct pipe_buffer *ibuf, *obuf;
1436         int ret = 0, i = 0, nbuf;
1437
1438         /*
1439          * Potential ABBA deadlock, work around it by ordering lock
1440          * grabbing by inode address. Otherwise two different processes
1441          * could deadlock (one doing tee from A -> B, the other from B -> A).
1442          */
1443         inode_double_lock(ipipe->inode, opipe->inode);
1444
1445         do {
1446                 if (!opipe->readers) {
1447                         send_sig(SIGPIPE, current, 0);
1448                         if (!ret)
1449                                 ret = -EPIPE;
1450                         break;
1451                 }
1452
1453                 /*
1454                  * If we have iterated all input buffers or ran out of
1455                  * output room, break.
1456                  */
1457                 if (i >= ipipe->nrbufs || opipe->nrbufs >= PIPE_BUFFERS)
1458                         break;
1459
1460                 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (PIPE_BUFFERS - 1));
1461                 nbuf = (opipe->curbuf + opipe->nrbufs) & (PIPE_BUFFERS - 1);
1462
1463                 /*
1464                  * Get a reference to this pipe buffer,
1465                  * so we can copy the contents over.
1466                  */
1467                 ibuf->ops->get(ipipe, ibuf);
1468
1469                 obuf = opipe->bufs + nbuf;
1470                 *obuf = *ibuf;
1471
1472                 /*
1473                  * Don't inherit the gift flag, we need to
1474                  * prevent multiple steals of this page.
1475                  */
1476                 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1477
1478                 if (obuf->len > len)
1479                         obuf->len = len;
1480
1481                 opipe->nrbufs++;
1482                 ret += obuf->len;
1483                 len -= obuf->len;
1484                 i++;
1485         } while (len);
1486
1487         inode_double_unlock(ipipe->inode, opipe->inode);
1488
1489         /*
1490          * If we put data in the output pipe, wakeup any potential readers.
1491          */
1492         if (ret > 0) {
1493                 smp_mb();
1494                 if (waitqueue_active(&opipe->wait))
1495                         wake_up_interruptible(&opipe->wait);
1496                 kill_fasync(&opipe->fasync_readers, SIGIO, POLL_IN);
1497         }
1498
1499         return ret;
1500 }
1501
1502 /*
1503  * This is a tee(1) implementation that works on pipes. It doesn't copy
1504  * any data, it simply references the 'in' pages on the 'out' pipe.
1505  * The 'flags' used are the SPLICE_F_* variants, currently the only
1506  * applicable one is SPLICE_F_NONBLOCK.
1507  */
1508 static long do_tee(struct file *in, struct file *out, size_t len,
1509                    unsigned int flags)
1510 {
1511         struct pipe_inode_info *ipipe = pipe_info(in->f_path.dentry->d_inode);
1512         struct pipe_inode_info *opipe = pipe_info(out->f_path.dentry->d_inode);
1513         int ret = -EINVAL;
1514
1515         /*
1516          * Duplicate the contents of ipipe to opipe without actually
1517          * copying the data.
1518          */
1519         if (ipipe && opipe && ipipe != opipe) {
1520                 /*
1521                  * Keep going, unless we encounter an error. The ipipe/opipe
1522                  * ordering doesn't really matter.
1523                  */
1524                 ret = link_ipipe_prep(ipipe, flags);
1525                 if (!ret) {
1526                         ret = link_opipe_prep(opipe, flags);
1527                         if (!ret) {
1528                                 ret = link_pipe(ipipe, opipe, len, flags);
1529                                 if (!ret && (flags & SPLICE_F_NONBLOCK))
1530                                         ret = -EAGAIN;
1531                         }
1532                 }
1533         }
1534
1535         return ret;
1536 }
1537
1538 asmlinkage long sys_tee(int fdin, int fdout, size_t len, unsigned int flags)
1539 {
1540         struct file *in;
1541         int error, fput_in;
1542
1543         if (unlikely(!len))
1544                 return 0;
1545
1546         error = -EBADF;
1547         in = fget_light(fdin, &fput_in);
1548         if (in) {
1549                 if (in->f_mode & FMODE_READ) {
1550                         int fput_out;
1551                         struct file *out = fget_light(fdout, &fput_out);
1552
1553                         if (out) {
1554                                 if (out->f_mode & FMODE_WRITE)
1555                                         error = do_tee(in, out, len, flags);
1556                                 fput_light(out, fput_out);
1557                         }
1558                 }
1559                 fput_light(in, fput_in);
1560         }
1561
1562         return error;
1563 }