fs/bio: bio_alloc_bioset: pass right object ptr to mempool_free
[safe/jmp/linux-2.6] / fs / reiserfs / fix_node.c
1 /*
2  * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
3  */
4
5 /**
6  ** old_item_num
7  ** old_entry_num
8  ** set_entry_sizes
9  ** create_virtual_node
10  ** check_left
11  ** check_right
12  ** directory_part_size
13  ** get_num_ver
14  ** set_parameters
15  ** is_leaf_removable
16  ** are_leaves_removable
17  ** get_empty_nodes
18  ** get_lfree
19  ** get_rfree
20  ** is_left_neighbor_in_cache
21  ** decrement_key
22  ** get_far_parent
23  ** get_parents
24  ** can_node_be_removed
25  ** ip_check_balance
26  ** dc_check_balance_internal
27  ** dc_check_balance_leaf
28  ** dc_check_balance
29  ** check_balance
30  ** get_direct_parent
31  ** get_neighbors
32  ** fix_nodes
33  ** 
34  ** 
35  **/
36
37 #include <linux/time.h>
38 #include <linux/string.h>
39 #include <linux/reiserfs_fs.h>
40 #include <linux/buffer_head.h>
41
42 /* To make any changes in the tree we find a node, that contains item
43    to be changed/deleted or position in the node we insert a new item
44    to. We call this node S. To do balancing we need to decide what we
45    will shift to left/right neighbor, or to a new node, where new item
46    will be etc. To make this analysis simpler we build virtual
47    node. Virtual node is an array of items, that will replace items of
48    node S. (For instance if we are going to delete an item, virtual
49    node does not contain it). Virtual node keeps information about
50    item sizes and types, mergeability of first and last items, sizes
51    of all entries in directory item. We use this array of items when
52    calculating what we can shift to neighbors and how many nodes we
53    have to have if we do not any shiftings, if we shift to left/right
54    neighbor or to both. */
55
56 /* taking item number in virtual node, returns number of item, that it has in source buffer */
57 static inline int old_item_num(int new_num, int affected_item_num, int mode)
58 {
59         if (mode == M_PASTE || mode == M_CUT || new_num < affected_item_num)
60                 return new_num;
61
62         if (mode == M_INSERT) {
63
64                 RFALSE(new_num == 0,
65                        "vs-8005: for INSERT mode and item number of inserted item");
66
67                 return new_num - 1;
68         }
69
70         RFALSE(mode != M_DELETE,
71                "vs-8010: old_item_num: mode must be M_DELETE (mode = \'%c\'",
72                mode);
73         /* delete mode */
74         return new_num + 1;
75 }
76
77 static void create_virtual_node(struct tree_balance *tb, int h)
78 {
79         struct item_head *ih;
80         struct virtual_node *vn = tb->tb_vn;
81         int new_num;
82         struct buffer_head *Sh; /* this comes from tb->S[h] */
83
84         Sh = PATH_H_PBUFFER(tb->tb_path, h);
85
86         /* size of changed node */
87         vn->vn_size =
88             MAX_CHILD_SIZE(Sh) - B_FREE_SPACE(Sh) + tb->insert_size[h];
89
90         /* for internal nodes array if virtual items is not created */
91         if (h) {
92                 vn->vn_nr_item = (vn->vn_size - DC_SIZE) / (DC_SIZE + KEY_SIZE);
93                 return;
94         }
95
96         /* number of items in virtual node  */
97         vn->vn_nr_item =
98             B_NR_ITEMS(Sh) + ((vn->vn_mode == M_INSERT) ? 1 : 0) -
99             ((vn->vn_mode == M_DELETE) ? 1 : 0);
100
101         /* first virtual item */
102         vn->vn_vi = (struct virtual_item *)(tb->tb_vn + 1);
103         memset(vn->vn_vi, 0, vn->vn_nr_item * sizeof(struct virtual_item));
104         vn->vn_free_ptr += vn->vn_nr_item * sizeof(struct virtual_item);
105
106         /* first item in the node */
107         ih = B_N_PITEM_HEAD(Sh, 0);
108
109         /* define the mergeability for 0-th item (if it is not being deleted) */
110         if (op_is_left_mergeable(&(ih->ih_key), Sh->b_size)
111             && (vn->vn_mode != M_DELETE || vn->vn_affected_item_num))
112                 vn->vn_vi[0].vi_type |= VI_TYPE_LEFT_MERGEABLE;
113
114         /* go through all items those remain in the virtual node (except for the new (inserted) one) */
115         for (new_num = 0; new_num < vn->vn_nr_item; new_num++) {
116                 int j;
117                 struct virtual_item *vi = vn->vn_vi + new_num;
118                 int is_affected =
119                     ((new_num != vn->vn_affected_item_num) ? 0 : 1);
120
121                 if (is_affected && vn->vn_mode == M_INSERT)
122                         continue;
123
124                 /* get item number in source node */
125                 j = old_item_num(new_num, vn->vn_affected_item_num,
126                                  vn->vn_mode);
127
128                 vi->vi_item_len += ih_item_len(ih + j) + IH_SIZE;
129                 vi->vi_ih = ih + j;
130                 vi->vi_item = B_I_PITEM(Sh, ih + j);
131                 vi->vi_uarea = vn->vn_free_ptr;
132
133                 // FIXME: there is no check, that item operation did not
134                 // consume too much memory
135                 vn->vn_free_ptr +=
136                     op_create_vi(vn, vi, is_affected, tb->insert_size[0]);
137                 if (tb->vn_buf + tb->vn_buf_size < vn->vn_free_ptr)
138                         reiserfs_panic(tb->tb_sb,
139                                        "vs-8030: create_virtual_node: "
140                                        "virtual node space consumed");
141
142                 if (!is_affected)
143                         /* this is not being changed */
144                         continue;
145
146                 if (vn->vn_mode == M_PASTE || vn->vn_mode == M_CUT) {
147                         vn->vn_vi[new_num].vi_item_len += tb->insert_size[0];
148                         vi->vi_new_data = vn->vn_data;  // pointer to data which is going to be pasted
149                 }
150         }
151
152         /* virtual inserted item is not defined yet */
153         if (vn->vn_mode == M_INSERT) {
154                 struct virtual_item *vi = vn->vn_vi + vn->vn_affected_item_num;
155
156                 RFALSE(vn->vn_ins_ih == NULL,
157                        "vs-8040: item header of inserted item is not specified");
158                 vi->vi_item_len = tb->insert_size[0];
159                 vi->vi_ih = vn->vn_ins_ih;
160                 vi->vi_item = vn->vn_data;
161                 vi->vi_uarea = vn->vn_free_ptr;
162
163                 op_create_vi(vn, vi, 0 /*not pasted or cut */ ,
164                              tb->insert_size[0]);
165         }
166
167         /* set right merge flag we take right delimiting key and check whether it is a mergeable item */
168         if (tb->CFR[0]) {
169                 struct reiserfs_key *key;
170
171                 key = B_N_PDELIM_KEY(tb->CFR[0], tb->rkey[0]);
172                 if (op_is_left_mergeable(key, Sh->b_size)
173                     && (vn->vn_mode != M_DELETE
174                         || vn->vn_affected_item_num != B_NR_ITEMS(Sh) - 1))
175                         vn->vn_vi[vn->vn_nr_item - 1].vi_type |=
176                             VI_TYPE_RIGHT_MERGEABLE;
177
178 #ifdef CONFIG_REISERFS_CHECK
179                 if (op_is_left_mergeable(key, Sh->b_size) &&
180                     !(vn->vn_mode != M_DELETE
181                       || vn->vn_affected_item_num != B_NR_ITEMS(Sh) - 1)) {
182                         /* we delete last item and it could be merged with right neighbor's first item */
183                         if (!
184                             (B_NR_ITEMS(Sh) == 1
185                              && is_direntry_le_ih(B_N_PITEM_HEAD(Sh, 0))
186                              && I_ENTRY_COUNT(B_N_PITEM_HEAD(Sh, 0)) == 1)) {
187                                 /* node contains more than 1 item, or item is not directory item, or this item contains more than 1 entry */
188                                 print_block(Sh, 0, -1, -1);
189                                 reiserfs_panic(tb->tb_sb,
190                                                "vs-8045: create_virtual_node: rdkey %k, affected item==%d (mode==%c) Must be %c",
191                                                key, vn->vn_affected_item_num,
192                                                vn->vn_mode, M_DELETE);
193                         }
194                 }
195 #endif
196
197         }
198 }
199
200 /* using virtual node check, how many items can be shifted to left
201    neighbor */
202 static void check_left(struct tree_balance *tb, int h, int cur_free)
203 {
204         int i;
205         struct virtual_node *vn = tb->tb_vn;
206         struct virtual_item *vi;
207         int d_size, ih_size;
208
209         RFALSE(cur_free < 0, "vs-8050: cur_free (%d) < 0", cur_free);
210
211         /* internal level */
212         if (h > 0) {
213                 tb->lnum[h] = cur_free / (DC_SIZE + KEY_SIZE);
214                 return;
215         }
216
217         /* leaf level */
218
219         if (!cur_free || !vn->vn_nr_item) {
220                 /* no free space or nothing to move */
221                 tb->lnum[h] = 0;
222                 tb->lbytes = -1;
223                 return;
224         }
225
226         RFALSE(!PATH_H_PPARENT(tb->tb_path, 0),
227                "vs-8055: parent does not exist or invalid");
228
229         vi = vn->vn_vi;
230         if ((unsigned int)cur_free >=
231             (vn->vn_size -
232              ((vi->vi_type & VI_TYPE_LEFT_MERGEABLE) ? IH_SIZE : 0))) {
233                 /* all contents of S[0] fits into L[0] */
234
235                 RFALSE(vn->vn_mode == M_INSERT || vn->vn_mode == M_PASTE,
236                        "vs-8055: invalid mode or balance condition failed");
237
238                 tb->lnum[0] = vn->vn_nr_item;
239                 tb->lbytes = -1;
240                 return;
241         }
242
243         d_size = 0, ih_size = IH_SIZE;
244
245         /* first item may be merge with last item in left neighbor */
246         if (vi->vi_type & VI_TYPE_LEFT_MERGEABLE)
247                 d_size = -((int)IH_SIZE), ih_size = 0;
248
249         tb->lnum[0] = 0;
250         for (i = 0; i < vn->vn_nr_item;
251              i++, ih_size = IH_SIZE, d_size = 0, vi++) {
252                 d_size += vi->vi_item_len;
253                 if (cur_free >= d_size) {
254                         /* the item can be shifted entirely */
255                         cur_free -= d_size;
256                         tb->lnum[0]++;
257                         continue;
258                 }
259
260                 /* the item cannot be shifted entirely, try to split it */
261                 /* check whether L[0] can hold ih and at least one byte of the item body */
262                 if (cur_free <= ih_size) {
263                         /* cannot shift even a part of the current item */
264                         tb->lbytes = -1;
265                         return;
266                 }
267                 cur_free -= ih_size;
268
269                 tb->lbytes = op_check_left(vi, cur_free, 0, 0);
270                 if (tb->lbytes != -1)
271                         /* count partially shifted item */
272                         tb->lnum[0]++;
273
274                 break;
275         }
276
277         return;
278 }
279
280 /* using virtual node check, how many items can be shifted to right
281    neighbor */
282 static void check_right(struct tree_balance *tb, int h, int cur_free)
283 {
284         int i;
285         struct virtual_node *vn = tb->tb_vn;
286         struct virtual_item *vi;
287         int d_size, ih_size;
288
289         RFALSE(cur_free < 0, "vs-8070: cur_free < 0");
290
291         /* internal level */
292         if (h > 0) {
293                 tb->rnum[h] = cur_free / (DC_SIZE + KEY_SIZE);
294                 return;
295         }
296
297         /* leaf level */
298
299         if (!cur_free || !vn->vn_nr_item) {
300                 /* no free space  */
301                 tb->rnum[h] = 0;
302                 tb->rbytes = -1;
303                 return;
304         }
305
306         RFALSE(!PATH_H_PPARENT(tb->tb_path, 0),
307                "vs-8075: parent does not exist or invalid");
308
309         vi = vn->vn_vi + vn->vn_nr_item - 1;
310         if ((unsigned int)cur_free >=
311             (vn->vn_size -
312              ((vi->vi_type & VI_TYPE_RIGHT_MERGEABLE) ? IH_SIZE : 0))) {
313                 /* all contents of S[0] fits into R[0] */
314
315                 RFALSE(vn->vn_mode == M_INSERT || vn->vn_mode == M_PASTE,
316                        "vs-8080: invalid mode or balance condition failed");
317
318                 tb->rnum[h] = vn->vn_nr_item;
319                 tb->rbytes = -1;
320                 return;
321         }
322
323         d_size = 0, ih_size = IH_SIZE;
324
325         /* last item may be merge with first item in right neighbor */
326         if (vi->vi_type & VI_TYPE_RIGHT_MERGEABLE)
327                 d_size = -(int)IH_SIZE, ih_size = 0;
328
329         tb->rnum[0] = 0;
330         for (i = vn->vn_nr_item - 1; i >= 0;
331              i--, d_size = 0, ih_size = IH_SIZE, vi--) {
332                 d_size += vi->vi_item_len;
333                 if (cur_free >= d_size) {
334                         /* the item can be shifted entirely */
335                         cur_free -= d_size;
336                         tb->rnum[0]++;
337                         continue;
338                 }
339
340                 /* check whether R[0] can hold ih and at least one byte of the item body */
341                 if (cur_free <= ih_size) {      /* cannot shift even a part of the current item */
342                         tb->rbytes = -1;
343                         return;
344                 }
345
346                 /* R[0] can hold the header of the item and at least one byte of its body */
347                 cur_free -= ih_size;    /* cur_free is still > 0 */
348
349                 tb->rbytes = op_check_right(vi, cur_free);
350                 if (tb->rbytes != -1)
351                         /* count partially shifted item */
352                         tb->rnum[0]++;
353
354                 break;
355         }
356
357         return;
358 }
359
360 /*
361  * from - number of items, which are shifted to left neighbor entirely
362  * to - number of item, which are shifted to right neighbor entirely
363  * from_bytes - number of bytes of boundary item (or directory entries) which are shifted to left neighbor
364  * to_bytes - number of bytes of boundary item (or directory entries) which are shifted to right neighbor */
365 static int get_num_ver(int mode, struct tree_balance *tb, int h,
366                        int from, int from_bytes,
367                        int to, int to_bytes, short *snum012, int flow)
368 {
369         int i;
370         int cur_free;
371         //    int bytes;
372         int units;
373         struct virtual_node *vn = tb->tb_vn;
374         //    struct virtual_item * vi;
375
376         int total_node_size, max_node_size, current_item_size;
377         int needed_nodes;
378         int start_item,         /* position of item we start filling node from */
379          end_item,              /* position of item we finish filling node by */
380          start_bytes,           /* number of first bytes (entries for directory) of start_item-th item 
381                                    we do not include into node that is being filled */
382          end_bytes;             /* number of last bytes (entries for directory) of end_item-th item 
383                                    we do node include into node that is being filled */
384         int split_item_positions[2];    /* these are positions in virtual item of
385                                            items, that are split between S[0] and
386                                            S1new and S1new and S2new */
387
388         split_item_positions[0] = -1;
389         split_item_positions[1] = -1;
390
391         /* We only create additional nodes if we are in insert or paste mode
392            or we are in replace mode at the internal level. If h is 0 and
393            the mode is M_REPLACE then in fix_nodes we change the mode to
394            paste or insert before we get here in the code.  */
395         RFALSE(tb->insert_size[h] < 0 || (mode != M_INSERT && mode != M_PASTE),
396                "vs-8100: insert_size < 0 in overflow");
397
398         max_node_size = MAX_CHILD_SIZE(PATH_H_PBUFFER(tb->tb_path, h));
399
400         /* snum012 [0-2] - number of items, that lay
401            to S[0], first new node and second new node */
402         snum012[3] = -1;        /* s1bytes */
403         snum012[4] = -1;        /* s2bytes */
404
405         /* internal level */
406         if (h > 0) {
407                 i = ((to - from) * (KEY_SIZE + DC_SIZE) + DC_SIZE);
408                 if (i == max_node_size)
409                         return 1;
410                 return (i / max_node_size + 1);
411         }
412
413         /* leaf level */
414         needed_nodes = 1;
415         total_node_size = 0;
416         cur_free = max_node_size;
417
418         // start from 'from'-th item
419         start_item = from;
420         // skip its first 'start_bytes' units
421         start_bytes = ((from_bytes != -1) ? from_bytes : 0);
422
423         // last included item is the 'end_item'-th one
424         end_item = vn->vn_nr_item - to - 1;
425         // do not count last 'end_bytes' units of 'end_item'-th item
426         end_bytes = (to_bytes != -1) ? to_bytes : 0;
427
428         /* go through all item beginning from the start_item-th item and ending by
429            the end_item-th item. Do not count first 'start_bytes' units of
430            'start_item'-th item and last 'end_bytes' of 'end_item'-th item */
431
432         for (i = start_item; i <= end_item; i++) {
433                 struct virtual_item *vi = vn->vn_vi + i;
434                 int skip_from_end = ((i == end_item) ? end_bytes : 0);
435
436                 RFALSE(needed_nodes > 3, "vs-8105: too many nodes are needed");
437
438                 /* get size of current item */
439                 current_item_size = vi->vi_item_len;
440
441                 /* do not take in calculation head part (from_bytes) of from-th item */
442                 current_item_size -=
443                     op_part_size(vi, 0 /*from start */ , start_bytes);
444
445                 /* do not take in calculation tail part of last item */
446                 current_item_size -=
447                     op_part_size(vi, 1 /*from end */ , skip_from_end);
448
449                 /* if item fits into current node entierly */
450                 if (total_node_size + current_item_size <= max_node_size) {
451                         snum012[needed_nodes - 1]++;
452                         total_node_size += current_item_size;
453                         start_bytes = 0;
454                         continue;
455                 }
456
457                 if (current_item_size > max_node_size) {
458                         /* virtual item length is longer, than max size of item in
459                            a node. It is impossible for direct item */
460                         RFALSE(is_direct_le_ih(vi->vi_ih),
461                                "vs-8110: "
462                                "direct item length is %d. It can not be longer than %d",
463                                current_item_size, max_node_size);
464                         /* we will try to split it */
465                         flow = 1;
466                 }
467
468                 if (!flow) {
469                         /* as we do not split items, take new node and continue */
470                         needed_nodes++;
471                         i--;
472                         total_node_size = 0;
473                         continue;
474                 }
475                 // calculate number of item units which fit into node being
476                 // filled
477                 {
478                         int free_space;
479
480                         free_space = max_node_size - total_node_size - IH_SIZE;
481                         units =
482                             op_check_left(vi, free_space, start_bytes,
483                                           skip_from_end);
484                         if (units == -1) {
485                                 /* nothing fits into current node, take new node and continue */
486                                 needed_nodes++, i--, total_node_size = 0;
487                                 continue;
488                         }
489                 }
490
491                 /* something fits into the current node */
492                 //if (snum012[3] != -1 || needed_nodes != 1)
493                 //  reiserfs_panic (tb->tb_sb, "vs-8115: get_num_ver: too many nodes required");
494                 //snum012[needed_nodes - 1 + 3] = op_unit_num (vi) - start_bytes - units;
495                 start_bytes += units;
496                 snum012[needed_nodes - 1 + 3] = units;
497
498                 if (needed_nodes > 2)
499                         reiserfs_warning(tb->tb_sb, "vs-8111: get_num_ver: "
500                                          "split_item_position is out of boundary");
501                 snum012[needed_nodes - 1]++;
502                 split_item_positions[needed_nodes - 1] = i;
503                 needed_nodes++;
504                 /* continue from the same item with start_bytes != -1 */
505                 start_item = i;
506                 i--;
507                 total_node_size = 0;
508         }
509
510         // sum012[4] (if it is not -1) contains number of units of which
511         // are to be in S1new, snum012[3] - to be in S0. They are supposed
512         // to be S1bytes and S2bytes correspondingly, so recalculate
513         if (snum012[4] > 0) {
514                 int split_item_num;
515                 int bytes_to_r, bytes_to_l;
516                 int bytes_to_S1new;
517
518                 split_item_num = split_item_positions[1];
519                 bytes_to_l =
520                     ((from == split_item_num
521                       && from_bytes != -1) ? from_bytes : 0);
522                 bytes_to_r =
523                     ((end_item == split_item_num
524                       && end_bytes != -1) ? end_bytes : 0);
525                 bytes_to_S1new =
526                     ((split_item_positions[0] ==
527                       split_item_positions[1]) ? snum012[3] : 0);
528
529                 // s2bytes
530                 snum012[4] =
531                     op_unit_num(&vn->vn_vi[split_item_num]) - snum012[4] -
532                     bytes_to_r - bytes_to_l - bytes_to_S1new;
533
534                 if (vn->vn_vi[split_item_num].vi_index != TYPE_DIRENTRY &&
535                     vn->vn_vi[split_item_num].vi_index != TYPE_INDIRECT)
536                         reiserfs_warning(tb->tb_sb, "vs-8115: get_num_ver: not "
537                                          "directory or indirect item");
538         }
539
540         /* now we know S2bytes, calculate S1bytes */
541         if (snum012[3] > 0) {
542                 int split_item_num;
543                 int bytes_to_r, bytes_to_l;
544                 int bytes_to_S2new;
545
546                 split_item_num = split_item_positions[0];
547                 bytes_to_l =
548                     ((from == split_item_num
549                       && from_bytes != -1) ? from_bytes : 0);
550                 bytes_to_r =
551                     ((end_item == split_item_num
552                       && end_bytes != -1) ? end_bytes : 0);
553                 bytes_to_S2new =
554                     ((split_item_positions[0] == split_item_positions[1]
555                       && snum012[4] != -1) ? snum012[4] : 0);
556
557                 // s1bytes
558                 snum012[3] =
559                     op_unit_num(&vn->vn_vi[split_item_num]) - snum012[3] -
560                     bytes_to_r - bytes_to_l - bytes_to_S2new;
561         }
562
563         return needed_nodes;
564 }
565
566 #ifdef CONFIG_REISERFS_CHECK
567 extern struct tree_balance *cur_tb;
568 #endif
569
570 /* Set parameters for balancing.
571  * Performs write of results of analysis of balancing into structure tb,
572  * where it will later be used by the functions that actually do the balancing. 
573  * Parameters:
574  *      tb      tree_balance structure;
575  *      h       current level of the node;
576  *      lnum    number of items from S[h] that must be shifted to L[h];
577  *      rnum    number of items from S[h] that must be shifted to R[h];
578  *      blk_num number of blocks that S[h] will be splitted into;
579  *      s012    number of items that fall into splitted nodes.
580  *      lbytes  number of bytes which flow to the left neighbor from the item that is not
581  *              not shifted entirely
582  *      rbytes  number of bytes which flow to the right neighbor from the item that is not
583  *              not shifted entirely
584  *      s1bytes number of bytes which flow to the first  new node when S[0] splits (this number is contained in s012 array)
585  */
586
587 static void set_parameters(struct tree_balance *tb, int h, int lnum,
588                            int rnum, int blk_num, short *s012, int lb, int rb)
589 {
590
591         tb->lnum[h] = lnum;
592         tb->rnum[h] = rnum;
593         tb->blknum[h] = blk_num;
594
595         if (h == 0) {           /* only for leaf level */
596                 if (s012 != NULL) {
597                         tb->s0num = *s012++,
598                             tb->s1num = *s012++, tb->s2num = *s012++;
599                         tb->s1bytes = *s012++;
600                         tb->s2bytes = *s012;
601                 }
602                 tb->lbytes = lb;
603                 tb->rbytes = rb;
604         }
605         PROC_INFO_ADD(tb->tb_sb, lnum[h], lnum);
606         PROC_INFO_ADD(tb->tb_sb, rnum[h], rnum);
607
608         PROC_INFO_ADD(tb->tb_sb, lbytes[h], lb);
609         PROC_INFO_ADD(tb->tb_sb, rbytes[h], rb);
610 }
611
612 /* check, does node disappear if we shift tb->lnum[0] items to left
613    neighbor and tb->rnum[0] to the right one. */
614 static int is_leaf_removable(struct tree_balance *tb)
615 {
616         struct virtual_node *vn = tb->tb_vn;
617         int to_left, to_right;
618         int size;
619         int remain_items;
620
621         /* number of items, that will be shifted to left (right) neighbor
622            entirely */
623         to_left = tb->lnum[0] - ((tb->lbytes != -1) ? 1 : 0);
624         to_right = tb->rnum[0] - ((tb->rbytes != -1) ? 1 : 0);
625         remain_items = vn->vn_nr_item;
626
627         /* how many items remain in S[0] after shiftings to neighbors */
628         remain_items -= (to_left + to_right);
629
630         if (remain_items < 1) {
631                 /* all content of node can be shifted to neighbors */
632                 set_parameters(tb, 0, to_left, vn->vn_nr_item - to_left, 0,
633                                NULL, -1, -1);
634                 return 1;
635         }
636
637         if (remain_items > 1 || tb->lbytes == -1 || tb->rbytes == -1)
638                 /* S[0] is not removable */
639                 return 0;
640
641         /* check, whether we can divide 1 remaining item between neighbors */
642
643         /* get size of remaining item (in item units) */
644         size = op_unit_num(&(vn->vn_vi[to_left]));
645
646         if (tb->lbytes + tb->rbytes >= size) {
647                 set_parameters(tb, 0, to_left + 1, to_right + 1, 0, NULL,
648                                tb->lbytes, -1);
649                 return 1;
650         }
651
652         return 0;
653 }
654
655 /* check whether L, S, R can be joined in one node */
656 static int are_leaves_removable(struct tree_balance *tb, int lfree, int rfree)
657 {
658         struct virtual_node *vn = tb->tb_vn;
659         int ih_size;
660         struct buffer_head *S0;
661
662         S0 = PATH_H_PBUFFER(tb->tb_path, 0);
663
664         ih_size = 0;
665         if (vn->vn_nr_item) {
666                 if (vn->vn_vi[0].vi_type & VI_TYPE_LEFT_MERGEABLE)
667                         ih_size += IH_SIZE;
668
669                 if (vn->vn_vi[vn->vn_nr_item - 1].
670                     vi_type & VI_TYPE_RIGHT_MERGEABLE)
671                         ih_size += IH_SIZE;
672         } else {
673                 /* there was only one item and it will be deleted */
674                 struct item_head *ih;
675
676                 RFALSE(B_NR_ITEMS(S0) != 1,
677                        "vs-8125: item number must be 1: it is %d",
678                        B_NR_ITEMS(S0));
679
680                 ih = B_N_PITEM_HEAD(S0, 0);
681                 if (tb->CFR[0]
682                     && !comp_short_le_keys(&(ih->ih_key),
683                                            B_N_PDELIM_KEY(tb->CFR[0],
684                                                           tb->rkey[0])))
685                         if (is_direntry_le_ih(ih)) {
686                                 /* Directory must be in correct state here: that is
687                                    somewhere at the left side should exist first directory
688                                    item. But the item being deleted can not be that first
689                                    one because its right neighbor is item of the same
690                                    directory. (But first item always gets deleted in last
691                                    turn). So, neighbors of deleted item can be merged, so
692                                    we can save ih_size */
693                                 ih_size = IH_SIZE;
694
695                                 /* we might check that left neighbor exists and is of the
696                                    same directory */
697                                 RFALSE(le_ih_k_offset(ih) == DOT_OFFSET,
698                                        "vs-8130: first directory item can not be removed until directory is not empty");
699                         }
700
701         }
702
703         if (MAX_CHILD_SIZE(S0) + vn->vn_size <= rfree + lfree + ih_size) {
704                 set_parameters(tb, 0, -1, -1, -1, NULL, -1, -1);
705                 PROC_INFO_INC(tb->tb_sb, leaves_removable);
706                 return 1;
707         }
708         return 0;
709
710 }
711
712 /* when we do not split item, lnum and rnum are numbers of entire items */
713 #define SET_PAR_SHIFT_LEFT \
714 if (h)\
715 {\
716    int to_l;\
717    \
718    to_l = (MAX_NR_KEY(Sh)+1 - lpar + vn->vn_nr_item + 1) / 2 -\
719               (MAX_NR_KEY(Sh) + 1 - lpar);\
720               \
721               set_parameters (tb, h, to_l, 0, lnver, NULL, -1, -1);\
722 }\
723 else \
724 {\
725    if (lset==LEFT_SHIFT_FLOW)\
726      set_parameters (tb, h, lpar, 0, lnver, snum012+lset,\
727                      tb->lbytes, -1);\
728    else\
729      set_parameters (tb, h, lpar - (tb->lbytes!=-1), 0, lnver, snum012+lset,\
730                      -1, -1);\
731 }
732
733 #define SET_PAR_SHIFT_RIGHT \
734 if (h)\
735 {\
736    int to_r;\
737    \
738    to_r = (MAX_NR_KEY(Sh)+1 - rpar + vn->vn_nr_item + 1) / 2 - (MAX_NR_KEY(Sh) + 1 - rpar);\
739    \
740    set_parameters (tb, h, 0, to_r, rnver, NULL, -1, -1);\
741 }\
742 else \
743 {\
744    if (rset==RIGHT_SHIFT_FLOW)\
745      set_parameters (tb, h, 0, rpar, rnver, snum012+rset,\
746                   -1, tb->rbytes);\
747    else\
748      set_parameters (tb, h, 0, rpar - (tb->rbytes!=-1), rnver, snum012+rset,\
749                   -1, -1);\
750 }
751
752 static void free_buffers_in_tb(struct tree_balance *p_s_tb)
753 {
754         int n_counter;
755
756         decrement_counters_in_path(p_s_tb->tb_path);
757
758         for (n_counter = 0; n_counter < MAX_HEIGHT; n_counter++) {
759                 decrement_bcount(p_s_tb->L[n_counter]);
760                 p_s_tb->L[n_counter] = NULL;
761                 decrement_bcount(p_s_tb->R[n_counter]);
762                 p_s_tb->R[n_counter] = NULL;
763                 decrement_bcount(p_s_tb->FL[n_counter]);
764                 p_s_tb->FL[n_counter] = NULL;
765                 decrement_bcount(p_s_tb->FR[n_counter]);
766                 p_s_tb->FR[n_counter] = NULL;
767                 decrement_bcount(p_s_tb->CFL[n_counter]);
768                 p_s_tb->CFL[n_counter] = NULL;
769                 decrement_bcount(p_s_tb->CFR[n_counter]);
770                 p_s_tb->CFR[n_counter] = NULL;
771         }
772 }
773
774 /* Get new buffers for storing new nodes that are created while balancing.
775  * Returns:     SCHEDULE_OCCURRED - schedule occurred while the function worked;
776  *              CARRY_ON - schedule didn't occur while the function worked;
777  *              NO_DISK_SPACE - no disk space.
778  */
779 /* The function is NOT SCHEDULE-SAFE! */
780 static int get_empty_nodes(struct tree_balance *p_s_tb, int n_h)
781 {
782         struct buffer_head *p_s_new_bh,
783             *p_s_Sh = PATH_H_PBUFFER(p_s_tb->tb_path, n_h);
784         b_blocknr_t *p_n_blocknr, a_n_blocknrs[MAX_AMOUNT_NEEDED] = { 0, };
785         int n_counter, n_number_of_freeblk, n_amount_needed,    /* number of needed empty blocks */
786          n_retval = CARRY_ON;
787         struct super_block *p_s_sb = p_s_tb->tb_sb;
788
789         /* number_of_freeblk is the number of empty blocks which have been
790            acquired for use by the balancing algorithm minus the number of
791            empty blocks used in the previous levels of the analysis,
792            number_of_freeblk = tb->cur_blknum can be non-zero if a schedule occurs
793            after empty blocks are acquired, and the balancing analysis is
794            then restarted, amount_needed is the number needed by this level
795            (n_h) of the balancing analysis.
796
797            Note that for systems with many processes writing, it would be
798            more layout optimal to calculate the total number needed by all
799            levels and then to run reiserfs_new_blocks to get all of them at once.  */
800
801         /* Initiate number_of_freeblk to the amount acquired prior to the restart of
802            the analysis or 0 if not restarted, then subtract the amount needed
803            by all of the levels of the tree below n_h. */
804         /* blknum includes S[n_h], so we subtract 1 in this calculation */
805         for (n_counter = 0, n_number_of_freeblk = p_s_tb->cur_blknum;
806              n_counter < n_h; n_counter++)
807                 n_number_of_freeblk -=
808                     (p_s_tb->blknum[n_counter]) ? (p_s_tb->blknum[n_counter] -
809                                                    1) : 0;
810
811         /* Allocate missing empty blocks. */
812         /* if p_s_Sh == 0  then we are getting a new root */
813         n_amount_needed = (p_s_Sh) ? (p_s_tb->blknum[n_h] - 1) : 1;
814         /*  Amount_needed = the amount that we need more than the amount that we have. */
815         if (n_amount_needed > n_number_of_freeblk)
816                 n_amount_needed -= n_number_of_freeblk;
817         else                    /* If we have enough already then there is nothing to do. */
818                 return CARRY_ON;
819
820         /* No need to check quota - is not allocated for blocks used for formatted nodes */
821         if (reiserfs_new_form_blocknrs(p_s_tb, a_n_blocknrs,
822                                        n_amount_needed) == NO_DISK_SPACE)
823                 return NO_DISK_SPACE;
824
825         /* for each blocknumber we just got, get a buffer and stick it on FEB */
826         for (p_n_blocknr = a_n_blocknrs, n_counter = 0;
827              n_counter < n_amount_needed; p_n_blocknr++, n_counter++) {
828
829                 RFALSE(!*p_n_blocknr,
830                        "PAP-8135: reiserfs_new_blocknrs failed when got new blocks");
831
832                 p_s_new_bh = sb_getblk(p_s_sb, *p_n_blocknr);
833                 RFALSE(buffer_dirty(p_s_new_bh) ||
834                        buffer_journaled(p_s_new_bh) ||
835                        buffer_journal_dirty(p_s_new_bh),
836                        "PAP-8140: journlaled or dirty buffer %b for the new block",
837                        p_s_new_bh);
838
839                 /* Put empty buffers into the array. */
840                 RFALSE(p_s_tb->FEB[p_s_tb->cur_blknum],
841                        "PAP-8141: busy slot for new buffer");
842
843                 set_buffer_journal_new(p_s_new_bh);
844                 p_s_tb->FEB[p_s_tb->cur_blknum++] = p_s_new_bh;
845         }
846
847         if (n_retval == CARRY_ON && FILESYSTEM_CHANGED_TB(p_s_tb))
848                 n_retval = REPEAT_SEARCH;
849
850         return n_retval;
851 }
852
853 /* Get free space of the left neighbor, which is stored in the parent
854  * node of the left neighbor.  */
855 static int get_lfree(struct tree_balance *tb, int h)
856 {
857         struct buffer_head *l, *f;
858         int order;
859
860         if ((f = PATH_H_PPARENT(tb->tb_path, h)) == NULL ||
861             (l = tb->FL[h]) == NULL)
862                 return 0;
863
864         if (f == l)
865                 order = PATH_H_B_ITEM_ORDER(tb->tb_path, h) - 1;
866         else {
867                 order = B_NR_ITEMS(l);
868                 f = l;
869         }
870
871         return (MAX_CHILD_SIZE(f) - dc_size(B_N_CHILD(f, order)));
872 }
873
874 /* Get free space of the right neighbor,
875  * which is stored in the parent node of the right neighbor.
876  */
877 static int get_rfree(struct tree_balance *tb, int h)
878 {
879         struct buffer_head *r, *f;
880         int order;
881
882         if ((f = PATH_H_PPARENT(tb->tb_path, h)) == NULL ||
883             (r = tb->FR[h]) == NULL)
884                 return 0;
885
886         if (f == r)
887                 order = PATH_H_B_ITEM_ORDER(tb->tb_path, h) + 1;
888         else {
889                 order = 0;
890                 f = r;
891         }
892
893         return (MAX_CHILD_SIZE(f) - dc_size(B_N_CHILD(f, order)));
894
895 }
896
897 /* Check whether left neighbor is in memory. */
898 static int is_left_neighbor_in_cache(struct tree_balance *p_s_tb, int n_h)
899 {
900         struct buffer_head *p_s_father, *left;
901         struct super_block *p_s_sb = p_s_tb->tb_sb;
902         b_blocknr_t n_left_neighbor_blocknr;
903         int n_left_neighbor_position;
904
905         if (!p_s_tb->FL[n_h])   /* Father of the left neighbor does not exist. */
906                 return 0;
907
908         /* Calculate father of the node to be balanced. */
909         p_s_father = PATH_H_PBUFFER(p_s_tb->tb_path, n_h + 1);
910
911         RFALSE(!p_s_father ||
912                !B_IS_IN_TREE(p_s_father) ||
913                !B_IS_IN_TREE(p_s_tb->FL[n_h]) ||
914                !buffer_uptodate(p_s_father) ||
915                !buffer_uptodate(p_s_tb->FL[n_h]),
916                "vs-8165: F[h] (%b) or FL[h] (%b) is invalid",
917                p_s_father, p_s_tb->FL[n_h]);
918
919         /* Get position of the pointer to the left neighbor into the left father. */
920         n_left_neighbor_position = (p_s_father == p_s_tb->FL[n_h]) ?
921             p_s_tb->lkey[n_h] : B_NR_ITEMS(p_s_tb->FL[n_h]);
922         /* Get left neighbor block number. */
923         n_left_neighbor_blocknr =
924             B_N_CHILD_NUM(p_s_tb->FL[n_h], n_left_neighbor_position);
925         /* Look for the left neighbor in the cache. */
926         if ((left = sb_find_get_block(p_s_sb, n_left_neighbor_blocknr))) {
927
928                 RFALSE(buffer_uptodate(left) && !B_IS_IN_TREE(left),
929                        "vs-8170: left neighbor (%b %z) is not in the tree",
930                        left, left);
931                 put_bh(left);
932                 return 1;
933         }
934
935         return 0;
936 }
937
938 #define LEFT_PARENTS  'l'
939 #define RIGHT_PARENTS 'r'
940
941 static void decrement_key(struct cpu_key *p_s_key)
942 {
943         // call item specific function for this key
944         item_ops[cpu_key_k_type(p_s_key)]->decrement_key(p_s_key);
945 }
946
947 /* Calculate far left/right parent of the left/right neighbor of the current node, that
948  * is calculate the left/right (FL[h]/FR[h]) neighbor of the parent F[h].
949  * Calculate left/right common parent of the current node and L[h]/R[h].
950  * Calculate left/right delimiting key position.
951  * Returns:     PATH_INCORRECT   - path in the tree is not correct;
952                 SCHEDULE_OCCURRED - schedule occurred while the function worked;
953  *              CARRY_ON         - schedule didn't occur while the function worked;
954  */
955 static int get_far_parent(struct tree_balance *p_s_tb,
956                           int n_h,
957                           struct buffer_head **pp_s_father,
958                           struct buffer_head **pp_s_com_father, char c_lr_par)
959 {
960         struct buffer_head *p_s_parent;
961         INITIALIZE_PATH(s_path_to_neighbor_father);
962         struct treepath *p_s_path = p_s_tb->tb_path;
963         struct cpu_key s_lr_father_key;
964         int n_counter,
965             n_position = INT_MAX,
966             n_first_last_position = 0,
967             n_path_offset = PATH_H_PATH_OFFSET(p_s_path, n_h);
968
969         /* Starting from F[n_h] go upwards in the tree, and look for the common
970            ancestor of F[n_h], and its neighbor l/r, that should be obtained. */
971
972         n_counter = n_path_offset;
973
974         RFALSE(n_counter < FIRST_PATH_ELEMENT_OFFSET,
975                "PAP-8180: invalid path length");
976
977         for (; n_counter > FIRST_PATH_ELEMENT_OFFSET; n_counter--) {
978                 /* Check whether parent of the current buffer in the path is really parent in the tree. */
979                 if (!B_IS_IN_TREE
980                     (p_s_parent = PATH_OFFSET_PBUFFER(p_s_path, n_counter - 1)))
981                         return REPEAT_SEARCH;
982                 /* Check whether position in the parent is correct. */
983                 if ((n_position =
984                      PATH_OFFSET_POSITION(p_s_path,
985                                           n_counter - 1)) >
986                     B_NR_ITEMS(p_s_parent))
987                         return REPEAT_SEARCH;
988                 /* Check whether parent at the path really points to the child. */
989                 if (B_N_CHILD_NUM(p_s_parent, n_position) !=
990                     PATH_OFFSET_PBUFFER(p_s_path, n_counter)->b_blocknr)
991                         return REPEAT_SEARCH;
992                 /* Return delimiting key if position in the parent is not equal to first/last one. */
993                 if (c_lr_par == RIGHT_PARENTS)
994                         n_first_last_position = B_NR_ITEMS(p_s_parent);
995                 if (n_position != n_first_last_position) {
996                         *pp_s_com_father = p_s_parent;
997                         get_bh(*pp_s_com_father);
998                         /*(*pp_s_com_father = p_s_parent)->b_count++; */
999                         break;
1000                 }
1001         }
1002
1003         /* if we are in the root of the tree, then there is no common father */
1004         if (n_counter == FIRST_PATH_ELEMENT_OFFSET) {
1005                 /* Check whether first buffer in the path is the root of the tree. */
1006                 if (PATH_OFFSET_PBUFFER
1007                     (p_s_tb->tb_path,
1008                      FIRST_PATH_ELEMENT_OFFSET)->b_blocknr ==
1009                     SB_ROOT_BLOCK(p_s_tb->tb_sb)) {
1010                         *pp_s_father = *pp_s_com_father = NULL;
1011                         return CARRY_ON;
1012                 }
1013                 return REPEAT_SEARCH;
1014         }
1015
1016         RFALSE(B_LEVEL(*pp_s_com_father) <= DISK_LEAF_NODE_LEVEL,
1017                "PAP-8185: (%b %z) level too small",
1018                *pp_s_com_father, *pp_s_com_father);
1019
1020         /* Check whether the common parent is locked. */
1021
1022         if (buffer_locked(*pp_s_com_father)) {
1023                 __wait_on_buffer(*pp_s_com_father);
1024                 if (FILESYSTEM_CHANGED_TB(p_s_tb)) {
1025                         decrement_bcount(*pp_s_com_father);
1026                         return REPEAT_SEARCH;
1027                 }
1028         }
1029
1030         /* So, we got common parent of the current node and its left/right neighbor.
1031            Now we are geting the parent of the left/right neighbor. */
1032
1033         /* Form key to get parent of the left/right neighbor. */
1034         le_key2cpu_key(&s_lr_father_key,
1035                        B_N_PDELIM_KEY(*pp_s_com_father,
1036                                       (c_lr_par ==
1037                                        LEFT_PARENTS) ? (p_s_tb->lkey[n_h - 1] =
1038                                                         n_position -
1039                                                         1) : (p_s_tb->rkey[n_h -
1040                                                                            1] =
1041                                                               n_position)));
1042
1043         if (c_lr_par == LEFT_PARENTS)
1044                 decrement_key(&s_lr_father_key);
1045
1046         if (search_by_key
1047             (p_s_tb->tb_sb, &s_lr_father_key, &s_path_to_neighbor_father,
1048              n_h + 1) == IO_ERROR)
1049                 // path is released
1050                 return IO_ERROR;
1051
1052         if (FILESYSTEM_CHANGED_TB(p_s_tb)) {
1053                 decrement_counters_in_path(&s_path_to_neighbor_father);
1054                 decrement_bcount(*pp_s_com_father);
1055                 return REPEAT_SEARCH;
1056         }
1057
1058         *pp_s_father = PATH_PLAST_BUFFER(&s_path_to_neighbor_father);
1059
1060         RFALSE(B_LEVEL(*pp_s_father) != n_h + 1,
1061                "PAP-8190: (%b %z) level too small", *pp_s_father, *pp_s_father);
1062         RFALSE(s_path_to_neighbor_father.path_length <
1063                FIRST_PATH_ELEMENT_OFFSET, "PAP-8192: path length is too small");
1064
1065         s_path_to_neighbor_father.path_length--;
1066         decrement_counters_in_path(&s_path_to_neighbor_father);
1067         return CARRY_ON;
1068 }
1069
1070 /* Get parents of neighbors of node in the path(S[n_path_offset]) and common parents of
1071  * S[n_path_offset] and L[n_path_offset]/R[n_path_offset]: F[n_path_offset], FL[n_path_offset],
1072  * FR[n_path_offset], CFL[n_path_offset], CFR[n_path_offset].
1073  * Calculate numbers of left and right delimiting keys position: lkey[n_path_offset], rkey[n_path_offset].
1074  * Returns:     SCHEDULE_OCCURRED - schedule occurred while the function worked;
1075  *              CARRY_ON - schedule didn't occur while the function worked;
1076  */
1077 static int get_parents(struct tree_balance *p_s_tb, int n_h)
1078 {
1079         struct treepath *p_s_path = p_s_tb->tb_path;
1080         int n_position,
1081             n_ret_value,
1082             n_path_offset = PATH_H_PATH_OFFSET(p_s_tb->tb_path, n_h);
1083         struct buffer_head *p_s_curf, *p_s_curcf;
1084
1085         /* Current node is the root of the tree or will be root of the tree */
1086         if (n_path_offset <= FIRST_PATH_ELEMENT_OFFSET) {
1087                 /* The root can not have parents.
1088                    Release nodes which previously were obtained as parents of the current node neighbors. */
1089                 decrement_bcount(p_s_tb->FL[n_h]);
1090                 decrement_bcount(p_s_tb->CFL[n_h]);
1091                 decrement_bcount(p_s_tb->FR[n_h]);
1092                 decrement_bcount(p_s_tb->CFR[n_h]);
1093                 p_s_tb->FL[n_h] = p_s_tb->CFL[n_h] = p_s_tb->FR[n_h] =
1094                     p_s_tb->CFR[n_h] = NULL;
1095                 return CARRY_ON;
1096         }
1097
1098         /* Get parent FL[n_path_offset] of L[n_path_offset]. */
1099         if ((n_position = PATH_OFFSET_POSITION(p_s_path, n_path_offset - 1))) {
1100                 /* Current node is not the first child of its parent. */
1101                 /*(p_s_curf = p_s_curcf = PATH_OFFSET_PBUFFER(p_s_path, n_path_offset - 1))->b_count += 2; */
1102                 p_s_curf = p_s_curcf =
1103                     PATH_OFFSET_PBUFFER(p_s_path, n_path_offset - 1);
1104                 get_bh(p_s_curf);
1105                 get_bh(p_s_curf);
1106                 p_s_tb->lkey[n_h] = n_position - 1;
1107         } else {
1108                 /* Calculate current parent of L[n_path_offset], which is the left neighbor of the current node.
1109                    Calculate current common parent of L[n_path_offset] and the current node. Note that
1110                    CFL[n_path_offset] not equal FL[n_path_offset] and CFL[n_path_offset] not equal F[n_path_offset].
1111                    Calculate lkey[n_path_offset]. */
1112                 if ((n_ret_value = get_far_parent(p_s_tb, n_h + 1, &p_s_curf,
1113                                                   &p_s_curcf,
1114                                                   LEFT_PARENTS)) != CARRY_ON)
1115                         return n_ret_value;
1116         }
1117
1118         decrement_bcount(p_s_tb->FL[n_h]);
1119         p_s_tb->FL[n_h] = p_s_curf;     /* New initialization of FL[n_h]. */
1120         decrement_bcount(p_s_tb->CFL[n_h]);
1121         p_s_tb->CFL[n_h] = p_s_curcf;   /* New initialization of CFL[n_h]. */
1122
1123         RFALSE((p_s_curf && !B_IS_IN_TREE(p_s_curf)) ||
1124                (p_s_curcf && !B_IS_IN_TREE(p_s_curcf)),
1125                "PAP-8195: FL (%b) or CFL (%b) is invalid", p_s_curf, p_s_curcf);
1126
1127 /* Get parent FR[n_h] of R[n_h]. */
1128
1129 /* Current node is the last child of F[n_h]. FR[n_h] != F[n_h]. */
1130         if (n_position == B_NR_ITEMS(PATH_H_PBUFFER(p_s_path, n_h + 1))) {
1131 /* Calculate current parent of R[n_h], which is the right neighbor of F[n_h].
1132    Calculate current common parent of R[n_h] and current node. Note that CFR[n_h]
1133    not equal FR[n_path_offset] and CFR[n_h] not equal F[n_h]. */
1134                 if ((n_ret_value =
1135                      get_far_parent(p_s_tb, n_h + 1, &p_s_curf, &p_s_curcf,
1136                                     RIGHT_PARENTS)) != CARRY_ON)
1137                         return n_ret_value;
1138         } else {
1139 /* Current node is not the last child of its parent F[n_h]. */
1140                 /*(p_s_curf = p_s_curcf = PATH_OFFSET_PBUFFER(p_s_path, n_path_offset - 1))->b_count += 2; */
1141                 p_s_curf = p_s_curcf =
1142                     PATH_OFFSET_PBUFFER(p_s_path, n_path_offset - 1);
1143                 get_bh(p_s_curf);
1144                 get_bh(p_s_curf);
1145                 p_s_tb->rkey[n_h] = n_position;
1146         }
1147
1148         decrement_bcount(p_s_tb->FR[n_h]);
1149         p_s_tb->FR[n_h] = p_s_curf;     /* New initialization of FR[n_path_offset]. */
1150
1151         decrement_bcount(p_s_tb->CFR[n_h]);
1152         p_s_tb->CFR[n_h] = p_s_curcf;   /* New initialization of CFR[n_path_offset]. */
1153
1154         RFALSE((p_s_curf && !B_IS_IN_TREE(p_s_curf)) ||
1155                (p_s_curcf && !B_IS_IN_TREE(p_s_curcf)),
1156                "PAP-8205: FR (%b) or CFR (%b) is invalid", p_s_curf, p_s_curcf);
1157
1158         return CARRY_ON;
1159 }
1160
1161 /* it is possible to remove node as result of shiftings to
1162    neighbors even when we insert or paste item. */
1163 static inline int can_node_be_removed(int mode, int lfree, int sfree, int rfree,
1164                                       struct tree_balance *tb, int h)
1165 {
1166         struct buffer_head *Sh = PATH_H_PBUFFER(tb->tb_path, h);
1167         int levbytes = tb->insert_size[h];
1168         struct item_head *ih;
1169         struct reiserfs_key *r_key = NULL;
1170
1171         ih = B_N_PITEM_HEAD(Sh, 0);
1172         if (tb->CFR[h])
1173                 r_key = B_N_PDELIM_KEY(tb->CFR[h], tb->rkey[h]);
1174
1175         if (lfree + rfree + sfree < MAX_CHILD_SIZE(Sh) + levbytes
1176             /* shifting may merge items which might save space */
1177             -
1178             ((!h
1179               && op_is_left_mergeable(&(ih->ih_key), Sh->b_size)) ? IH_SIZE : 0)
1180             -
1181             ((!h && r_key
1182               && op_is_left_mergeable(r_key, Sh->b_size)) ? IH_SIZE : 0)
1183             + ((h) ? KEY_SIZE : 0)) {
1184                 /* node can not be removed */
1185                 if (sfree >= levbytes) {        /* new item fits into node S[h] without any shifting */
1186                         if (!h)
1187                                 tb->s0num =
1188                                     B_NR_ITEMS(Sh) +
1189                                     ((mode == M_INSERT) ? 1 : 0);
1190                         set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1191                         return NO_BALANCING_NEEDED;
1192                 }
1193         }
1194         PROC_INFO_INC(tb->tb_sb, can_node_be_removed[h]);
1195         return !NO_BALANCING_NEEDED;
1196 }
1197
1198 /* Check whether current node S[h] is balanced when increasing its size by
1199  * Inserting or Pasting.
1200  * Calculate parameters for balancing for current level h.
1201  * Parameters:
1202  *      tb      tree_balance structure;
1203  *      h       current level of the node;
1204  *      inum    item number in S[h];
1205  *      mode    i - insert, p - paste;
1206  * Returns:     1 - schedule occurred; 
1207  *              0 - balancing for higher levels needed;
1208  *             -1 - no balancing for higher levels needed;
1209  *             -2 - no disk space.
1210  */
1211 /* ip means Inserting or Pasting */
1212 static int ip_check_balance(struct tree_balance *tb, int h)
1213 {
1214         struct virtual_node *vn = tb->tb_vn;
1215         int levbytes,           /* Number of bytes that must be inserted into (value
1216                                    is negative if bytes are deleted) buffer which
1217                                    contains node being balanced.  The mnemonic is
1218                                    that the attempted change in node space used level
1219                                    is levbytes bytes. */
1220          n_ret_value;
1221
1222         int lfree, sfree, rfree /* free space in L, S and R */ ;
1223
1224         /* nver is short for number of vertixes, and lnver is the number if
1225            we shift to the left, rnver is the number if we shift to the
1226            right, and lrnver is the number if we shift in both directions.
1227            The goal is to minimize first the number of vertixes, and second,
1228            the number of vertixes whose contents are changed by shifting,
1229            and third the number of uncached vertixes whose contents are
1230            changed by shifting and must be read from disk.  */
1231         int nver, lnver, rnver, lrnver;
1232
1233         /* used at leaf level only, S0 = S[0] is the node being balanced,
1234            sInum [ I = 0,1,2 ] is the number of items that will
1235            remain in node SI after balancing.  S1 and S2 are new
1236            nodes that might be created. */
1237
1238         /* we perform 8 calls to get_num_ver().  For each call we calculate five parameters.
1239            where 4th parameter is s1bytes and 5th - s2bytes
1240          */
1241         short snum012[40] = { 0, };     /* s0num, s1num, s2num for 8 cases 
1242                                            0,1 - do not shift and do not shift but bottle
1243                                            2 - shift only whole item to left
1244                                            3 - shift to left and bottle as much as possible
1245                                            4,5 - shift to right (whole items and as much as possible
1246                                            6,7 - shift to both directions (whole items and as much as possible)
1247                                          */
1248
1249         /* Sh is the node whose balance is currently being checked */
1250         struct buffer_head *Sh;
1251
1252         Sh = PATH_H_PBUFFER(tb->tb_path, h);
1253         levbytes = tb->insert_size[h];
1254
1255         /* Calculate balance parameters for creating new root. */
1256         if (!Sh) {
1257                 if (!h)
1258                         reiserfs_panic(tb->tb_sb,
1259                                        "vs-8210: ip_check_balance: S[0] can not be 0");
1260                 switch (n_ret_value = get_empty_nodes(tb, h)) {
1261                 case CARRY_ON:
1262                         set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1263                         return NO_BALANCING_NEEDED;     /* no balancing for higher levels needed */
1264
1265                 case NO_DISK_SPACE:
1266                 case REPEAT_SEARCH:
1267                         return n_ret_value;
1268                 default:
1269                         reiserfs_panic(tb->tb_sb,
1270                                        "vs-8215: ip_check_balance: incorrect return value of get_empty_nodes");
1271                 }
1272         }
1273
1274         if ((n_ret_value = get_parents(tb, h)) != CARRY_ON)     /* get parents of S[h] neighbors. */
1275                 return n_ret_value;
1276
1277         sfree = B_FREE_SPACE(Sh);
1278
1279         /* get free space of neighbors */
1280         rfree = get_rfree(tb, h);
1281         lfree = get_lfree(tb, h);
1282
1283         if (can_node_be_removed(vn->vn_mode, lfree, sfree, rfree, tb, h) ==
1284             NO_BALANCING_NEEDED)
1285                 /* and new item fits into node S[h] without any shifting */
1286                 return NO_BALANCING_NEEDED;
1287
1288         create_virtual_node(tb, h);
1289
1290         /*  
1291            determine maximal number of items we can shift to the left neighbor (in tb structure)
1292            and the maximal number of bytes that can flow to the left neighbor
1293            from the left most liquid item that cannot be shifted from S[0] entirely (returned value)
1294          */
1295         check_left(tb, h, lfree);
1296
1297         /*
1298            determine maximal number of items we can shift to the right neighbor (in tb structure)
1299            and the maximal number of bytes that can flow to the right neighbor
1300            from the right most liquid item that cannot be shifted from S[0] entirely (returned value)
1301          */
1302         check_right(tb, h, rfree);
1303
1304         /* all contents of internal node S[h] can be moved into its
1305            neighbors, S[h] will be removed after balancing */
1306         if (h && (tb->rnum[h] + tb->lnum[h] >= vn->vn_nr_item + 1)) {
1307                 int to_r;
1308
1309                 /* Since we are working on internal nodes, and our internal
1310                    nodes have fixed size entries, then we can balance by the
1311                    number of items rather than the space they consume.  In this
1312                    routine we set the left node equal to the right node,
1313                    allowing a difference of less than or equal to 1 child
1314                    pointer. */
1315                 to_r =
1316                     ((MAX_NR_KEY(Sh) << 1) + 2 - tb->lnum[h] - tb->rnum[h] +
1317                      vn->vn_nr_item + 1) / 2 - (MAX_NR_KEY(Sh) + 1 -
1318                                                 tb->rnum[h]);
1319                 set_parameters(tb, h, vn->vn_nr_item + 1 - to_r, to_r, 0, NULL,
1320                                -1, -1);
1321                 return CARRY_ON;
1322         }
1323
1324         /* this checks balance condition, that any two neighboring nodes can not fit in one node */
1325         RFALSE(h &&
1326                (tb->lnum[h] >= vn->vn_nr_item + 1 ||
1327                 tb->rnum[h] >= vn->vn_nr_item + 1),
1328                "vs-8220: tree is not balanced on internal level");
1329         RFALSE(!h && ((tb->lnum[h] >= vn->vn_nr_item && (tb->lbytes == -1)) ||
1330                       (tb->rnum[h] >= vn->vn_nr_item && (tb->rbytes == -1))),
1331                "vs-8225: tree is not balanced on leaf level");
1332
1333         /* all contents of S[0] can be moved into its neighbors
1334            S[0] will be removed after balancing. */
1335         if (!h && is_leaf_removable(tb))
1336                 return CARRY_ON;
1337
1338         /* why do we perform this check here rather than earlier??
1339            Answer: we can win 1 node in some cases above. Moreover we
1340            checked it above, when we checked, that S[0] is not removable
1341            in principle */
1342         if (sfree >= levbytes) {        /* new item fits into node S[h] without any shifting */
1343                 if (!h)
1344                         tb->s0num = vn->vn_nr_item;
1345                 set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1346                 return NO_BALANCING_NEEDED;
1347         }
1348
1349         {
1350                 int lpar, rpar, nset, lset, rset, lrset;
1351                 /* 
1352                  * regular overflowing of the node
1353                  */
1354
1355                 /* get_num_ver works in 2 modes (FLOW & NO_FLOW) 
1356                    lpar, rpar - number of items we can shift to left/right neighbor (including splitting item)
1357                    nset, lset, rset, lrset - shows, whether flowing items give better packing 
1358                  */
1359 #define FLOW 1
1360 #define NO_FLOW 0               /* do not any splitting */
1361
1362                 /* we choose one the following */
1363 #define NOTHING_SHIFT_NO_FLOW   0
1364 #define NOTHING_SHIFT_FLOW      5
1365 #define LEFT_SHIFT_NO_FLOW      10
1366 #define LEFT_SHIFT_FLOW         15
1367 #define RIGHT_SHIFT_NO_FLOW     20
1368 #define RIGHT_SHIFT_FLOW        25
1369 #define LR_SHIFT_NO_FLOW        30
1370 #define LR_SHIFT_FLOW           35
1371
1372                 lpar = tb->lnum[h];
1373                 rpar = tb->rnum[h];
1374
1375                 /* calculate number of blocks S[h] must be split into when
1376                    nothing is shifted to the neighbors,
1377                    as well as number of items in each part of the split node (s012 numbers),
1378                    and number of bytes (s1bytes) of the shared drop which flow to S1 if any */
1379                 nset = NOTHING_SHIFT_NO_FLOW;
1380                 nver = get_num_ver(vn->vn_mode, tb, h,
1381                                    0, -1, h ? vn->vn_nr_item : 0, -1,
1382                                    snum012, NO_FLOW);
1383
1384                 if (!h) {
1385                         int nver1;
1386
1387                         /* note, that in this case we try to bottle between S[0] and S1 (S1 - the first new node) */
1388                         nver1 = get_num_ver(vn->vn_mode, tb, h,
1389                                             0, -1, 0, -1,
1390                                             snum012 + NOTHING_SHIFT_FLOW, FLOW);
1391                         if (nver > nver1)
1392                                 nset = NOTHING_SHIFT_FLOW, nver = nver1;
1393                 }
1394
1395                 /* calculate number of blocks S[h] must be split into when
1396                    l_shift_num first items and l_shift_bytes of the right most
1397                    liquid item to be shifted are shifted to the left neighbor,
1398                    as well as number of items in each part of the splitted node (s012 numbers),
1399                    and number of bytes (s1bytes) of the shared drop which flow to S1 if any
1400                  */
1401                 lset = LEFT_SHIFT_NO_FLOW;
1402                 lnver = get_num_ver(vn->vn_mode, tb, h,
1403                                     lpar - ((h || tb->lbytes == -1) ? 0 : 1),
1404                                     -1, h ? vn->vn_nr_item : 0, -1,
1405                                     snum012 + LEFT_SHIFT_NO_FLOW, NO_FLOW);
1406                 if (!h) {
1407                         int lnver1;
1408
1409                         lnver1 = get_num_ver(vn->vn_mode, tb, h,
1410                                              lpar -
1411                                              ((tb->lbytes != -1) ? 1 : 0),
1412                                              tb->lbytes, 0, -1,
1413                                              snum012 + LEFT_SHIFT_FLOW, FLOW);
1414                         if (lnver > lnver1)
1415                                 lset = LEFT_SHIFT_FLOW, lnver = lnver1;
1416                 }
1417
1418                 /* calculate number of blocks S[h] must be split into when
1419                    r_shift_num first items and r_shift_bytes of the left most
1420                    liquid item to be shifted are shifted to the right neighbor,
1421                    as well as number of items in each part of the splitted node (s012 numbers),
1422                    and number of bytes (s1bytes) of the shared drop which flow to S1 if any
1423                  */
1424                 rset = RIGHT_SHIFT_NO_FLOW;
1425                 rnver = get_num_ver(vn->vn_mode, tb, h,
1426                                     0, -1,
1427                                     h ? (vn->vn_nr_item - rpar) : (rpar -
1428                                                                    ((tb->
1429                                                                      rbytes !=
1430                                                                      -1) ? 1 :
1431                                                                     0)), -1,
1432                                     snum012 + RIGHT_SHIFT_NO_FLOW, NO_FLOW);
1433                 if (!h) {
1434                         int rnver1;
1435
1436                         rnver1 = get_num_ver(vn->vn_mode, tb, h,
1437                                              0, -1,
1438                                              (rpar -
1439                                               ((tb->rbytes != -1) ? 1 : 0)),
1440                                              tb->rbytes,
1441                                              snum012 + RIGHT_SHIFT_FLOW, FLOW);
1442
1443                         if (rnver > rnver1)
1444                                 rset = RIGHT_SHIFT_FLOW, rnver = rnver1;
1445                 }
1446
1447                 /* calculate number of blocks S[h] must be split into when
1448                    items are shifted in both directions,
1449                    as well as number of items in each part of the splitted node (s012 numbers),
1450                    and number of bytes (s1bytes) of the shared drop which flow to S1 if any
1451                  */
1452                 lrset = LR_SHIFT_NO_FLOW;
1453                 lrnver = get_num_ver(vn->vn_mode, tb, h,
1454                                      lpar - ((h || tb->lbytes == -1) ? 0 : 1),
1455                                      -1,
1456                                      h ? (vn->vn_nr_item - rpar) : (rpar -
1457                                                                     ((tb->
1458                                                                       rbytes !=
1459                                                                       -1) ? 1 :
1460                                                                      0)), -1,
1461                                      snum012 + LR_SHIFT_NO_FLOW, NO_FLOW);
1462                 if (!h) {
1463                         int lrnver1;
1464
1465                         lrnver1 = get_num_ver(vn->vn_mode, tb, h,
1466                                               lpar -
1467                                               ((tb->lbytes != -1) ? 1 : 0),
1468                                               tb->lbytes,
1469                                               (rpar -
1470                                                ((tb->rbytes != -1) ? 1 : 0)),
1471                                               tb->rbytes,
1472                                               snum012 + LR_SHIFT_FLOW, FLOW);
1473                         if (lrnver > lrnver1)
1474                                 lrset = LR_SHIFT_FLOW, lrnver = lrnver1;
1475                 }
1476
1477                 /* Our general shifting strategy is:
1478                    1) to minimized number of new nodes;
1479                    2) to minimized number of neighbors involved in shifting;
1480                    3) to minimized number of disk reads; */
1481
1482                 /* we can win TWO or ONE nodes by shifting in both directions */
1483                 if (lrnver < lnver && lrnver < rnver) {
1484                         RFALSE(h &&
1485                                (tb->lnum[h] != 1 ||
1486                                 tb->rnum[h] != 1 ||
1487                                 lrnver != 1 || rnver != 2 || lnver != 2
1488                                 || h != 1), "vs-8230: bad h");
1489                         if (lrset == LR_SHIFT_FLOW)
1490                                 set_parameters(tb, h, tb->lnum[h], tb->rnum[h],
1491                                                lrnver, snum012 + lrset,
1492                                                tb->lbytes, tb->rbytes);
1493                         else
1494                                 set_parameters(tb, h,
1495                                                tb->lnum[h] -
1496                                                ((tb->lbytes == -1) ? 0 : 1),
1497                                                tb->rnum[h] -
1498                                                ((tb->rbytes == -1) ? 0 : 1),
1499                                                lrnver, snum012 + lrset, -1, -1);
1500
1501                         return CARRY_ON;
1502                 }
1503
1504                 /* if shifting doesn't lead to better packing then don't shift */
1505                 if (nver == lrnver) {
1506                         set_parameters(tb, h, 0, 0, nver, snum012 + nset, -1,
1507                                        -1);
1508                         return CARRY_ON;
1509                 }
1510
1511                 /* now we know that for better packing shifting in only one
1512                    direction either to the left or to the right is required */
1513
1514                 /*  if shifting to the left is better than shifting to the right */
1515                 if (lnver < rnver) {
1516                         SET_PAR_SHIFT_LEFT;
1517                         return CARRY_ON;
1518                 }
1519
1520                 /* if shifting to the right is better than shifting to the left */
1521                 if (lnver > rnver) {
1522                         SET_PAR_SHIFT_RIGHT;
1523                         return CARRY_ON;
1524                 }
1525
1526                 /* now shifting in either direction gives the same number
1527                    of nodes and we can make use of the cached neighbors */
1528                 if (is_left_neighbor_in_cache(tb, h)) {
1529                         SET_PAR_SHIFT_LEFT;
1530                         return CARRY_ON;
1531                 }
1532
1533                 /* shift to the right independently on whether the right neighbor in cache or not */
1534                 SET_PAR_SHIFT_RIGHT;
1535                 return CARRY_ON;
1536         }
1537 }
1538
1539 /* Check whether current node S[h] is balanced when Decreasing its size by
1540  * Deleting or Cutting for INTERNAL node of S+tree.
1541  * Calculate parameters for balancing for current level h.
1542  * Parameters:
1543  *      tb      tree_balance structure;
1544  *      h       current level of the node;
1545  *      inum    item number in S[h];
1546  *      mode    i - insert, p - paste;
1547  * Returns:     1 - schedule occurred; 
1548  *              0 - balancing for higher levels needed;
1549  *             -1 - no balancing for higher levels needed;
1550  *             -2 - no disk space.
1551  *
1552  * Note: Items of internal nodes have fixed size, so the balance condition for
1553  * the internal part of S+tree is as for the B-trees.
1554  */
1555 static int dc_check_balance_internal(struct tree_balance *tb, int h)
1556 {
1557         struct virtual_node *vn = tb->tb_vn;
1558
1559         /* Sh is the node whose balance is currently being checked,
1560            and Fh is its father.  */
1561         struct buffer_head *Sh, *Fh;
1562         int maxsize, n_ret_value;
1563         int lfree, rfree /* free space in L and R */ ;
1564
1565         Sh = PATH_H_PBUFFER(tb->tb_path, h);
1566         Fh = PATH_H_PPARENT(tb->tb_path, h);
1567
1568         maxsize = MAX_CHILD_SIZE(Sh);
1569
1570 /*   using tb->insert_size[h], which is negative in this case, create_virtual_node calculates: */
1571 /*   new_nr_item = number of items node would have if operation is */
1572 /*      performed without balancing (new_nr_item); */
1573         create_virtual_node(tb, h);
1574
1575         if (!Fh) {              /* S[h] is the root. */
1576                 if (vn->vn_nr_item > 0) {
1577                         set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1578                         return NO_BALANCING_NEEDED;     /* no balancing for higher levels needed */
1579                 }
1580                 /* new_nr_item == 0.
1581                  * Current root will be deleted resulting in
1582                  * decrementing the tree height. */
1583                 set_parameters(tb, h, 0, 0, 0, NULL, -1, -1);
1584                 return CARRY_ON;
1585         }
1586
1587         if ((n_ret_value = get_parents(tb, h)) != CARRY_ON)
1588                 return n_ret_value;
1589
1590         /* get free space of neighbors */
1591         rfree = get_rfree(tb, h);
1592         lfree = get_lfree(tb, h);
1593
1594         /* determine maximal number of items we can fit into neighbors */
1595         check_left(tb, h, lfree);
1596         check_right(tb, h, rfree);
1597
1598         if (vn->vn_nr_item >= MIN_NR_KEY(Sh)) { /* Balance condition for the internal node is valid.
1599                                                  * In this case we balance only if it leads to better packing. */
1600                 if (vn->vn_nr_item == MIN_NR_KEY(Sh)) { /* Here we join S[h] with one of its neighbors,
1601                                                          * which is impossible with greater values of new_nr_item. */
1602                         if (tb->lnum[h] >= vn->vn_nr_item + 1) {
1603                                 /* All contents of S[h] can be moved to L[h]. */
1604                                 int n;
1605                                 int order_L;
1606
1607                                 order_L =
1608                                     ((n =
1609                                       PATH_H_B_ITEM_ORDER(tb->tb_path,
1610                                                           h)) ==
1611                                      0) ? B_NR_ITEMS(tb->FL[h]) : n - 1;
1612                                 n = dc_size(B_N_CHILD(tb->FL[h], order_L)) /
1613                                     (DC_SIZE + KEY_SIZE);
1614                                 set_parameters(tb, h, -n - 1, 0, 0, NULL, -1,
1615                                                -1);
1616                                 return CARRY_ON;
1617                         }
1618
1619                         if (tb->rnum[h] >= vn->vn_nr_item + 1) {
1620                                 /* All contents of S[h] can be moved to R[h]. */
1621                                 int n;
1622                                 int order_R;
1623
1624                                 order_R =
1625                                     ((n =
1626                                       PATH_H_B_ITEM_ORDER(tb->tb_path,
1627                                                           h)) ==
1628                                      B_NR_ITEMS(Fh)) ? 0 : n + 1;
1629                                 n = dc_size(B_N_CHILD(tb->FR[h], order_R)) /
1630                                     (DC_SIZE + KEY_SIZE);
1631                                 set_parameters(tb, h, 0, -n - 1, 0, NULL, -1,
1632                                                -1);
1633                                 return CARRY_ON;
1634                         }
1635                 }
1636
1637                 if (tb->rnum[h] + tb->lnum[h] >= vn->vn_nr_item + 1) {
1638                         /* All contents of S[h] can be moved to the neighbors (L[h] & R[h]). */
1639                         int to_r;
1640
1641                         to_r =
1642                             ((MAX_NR_KEY(Sh) << 1) + 2 - tb->lnum[h] -
1643                              tb->rnum[h] + vn->vn_nr_item + 1) / 2 -
1644                             (MAX_NR_KEY(Sh) + 1 - tb->rnum[h]);
1645                         set_parameters(tb, h, vn->vn_nr_item + 1 - to_r, to_r,
1646                                        0, NULL, -1, -1);
1647                         return CARRY_ON;
1648                 }
1649
1650                 /* Balancing does not lead to better packing. */
1651                 set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1652                 return NO_BALANCING_NEEDED;
1653         }
1654
1655         /* Current node contain insufficient number of items. Balancing is required. */
1656         /* Check whether we can merge S[h] with left neighbor. */
1657         if (tb->lnum[h] >= vn->vn_nr_item + 1)
1658                 if (is_left_neighbor_in_cache(tb, h)
1659                     || tb->rnum[h] < vn->vn_nr_item + 1 || !tb->FR[h]) {
1660                         int n;
1661                         int order_L;
1662
1663                         order_L =
1664                             ((n =
1665                               PATH_H_B_ITEM_ORDER(tb->tb_path,
1666                                                   h)) ==
1667                              0) ? B_NR_ITEMS(tb->FL[h]) : n - 1;
1668                         n = dc_size(B_N_CHILD(tb->FL[h], order_L)) / (DC_SIZE +
1669                                                                       KEY_SIZE);
1670                         set_parameters(tb, h, -n - 1, 0, 0, NULL, -1, -1);
1671                         return CARRY_ON;
1672                 }
1673
1674         /* Check whether we can merge S[h] with right neighbor. */
1675         if (tb->rnum[h] >= vn->vn_nr_item + 1) {
1676                 int n;
1677                 int order_R;
1678
1679                 order_R =
1680                     ((n =
1681                       PATH_H_B_ITEM_ORDER(tb->tb_path,
1682                                           h)) == B_NR_ITEMS(Fh)) ? 0 : (n + 1);
1683                 n = dc_size(B_N_CHILD(tb->FR[h], order_R)) / (DC_SIZE +
1684                                                               KEY_SIZE);
1685                 set_parameters(tb, h, 0, -n - 1, 0, NULL, -1, -1);
1686                 return CARRY_ON;
1687         }
1688
1689         /* All contents of S[h] can be moved to the neighbors (L[h] & R[h]). */
1690         if (tb->rnum[h] + tb->lnum[h] >= vn->vn_nr_item + 1) {
1691                 int to_r;
1692
1693                 to_r =
1694                     ((MAX_NR_KEY(Sh) << 1) + 2 - tb->lnum[h] - tb->rnum[h] +
1695                      vn->vn_nr_item + 1) / 2 - (MAX_NR_KEY(Sh) + 1 -
1696                                                 tb->rnum[h]);
1697                 set_parameters(tb, h, vn->vn_nr_item + 1 - to_r, to_r, 0, NULL,
1698                                -1, -1);
1699                 return CARRY_ON;
1700         }
1701
1702         /* For internal nodes try to borrow item from a neighbor */
1703         RFALSE(!tb->FL[h] && !tb->FR[h], "vs-8235: trying to borrow for root");
1704
1705         /* Borrow one or two items from caching neighbor */
1706         if (is_left_neighbor_in_cache(tb, h) || !tb->FR[h]) {
1707                 int from_l;
1708
1709                 from_l =
1710                     (MAX_NR_KEY(Sh) + 1 - tb->lnum[h] + vn->vn_nr_item +
1711                      1) / 2 - (vn->vn_nr_item + 1);
1712                 set_parameters(tb, h, -from_l, 0, 1, NULL, -1, -1);
1713                 return CARRY_ON;
1714         }
1715
1716         set_parameters(tb, h, 0,
1717                        -((MAX_NR_KEY(Sh) + 1 - tb->rnum[h] + vn->vn_nr_item +
1718                           1) / 2 - (vn->vn_nr_item + 1)), 1, NULL, -1, -1);
1719         return CARRY_ON;
1720 }
1721
1722 /* Check whether current node S[h] is balanced when Decreasing its size by
1723  * Deleting or Truncating for LEAF node of S+tree.
1724  * Calculate parameters for balancing for current level h.
1725  * Parameters:
1726  *      tb      tree_balance structure;
1727  *      h       current level of the node;
1728  *      inum    item number in S[h];
1729  *      mode    i - insert, p - paste;
1730  * Returns:     1 - schedule occurred; 
1731  *              0 - balancing for higher levels needed;
1732  *             -1 - no balancing for higher levels needed;
1733  *             -2 - no disk space.
1734  */
1735 static int dc_check_balance_leaf(struct tree_balance *tb, int h)
1736 {
1737         struct virtual_node *vn = tb->tb_vn;
1738
1739         /* Number of bytes that must be deleted from
1740            (value is negative if bytes are deleted) buffer which
1741            contains node being balanced.  The mnemonic is that the
1742            attempted change in node space used level is levbytes bytes. */
1743         int levbytes;
1744         /* the maximal item size */
1745         int maxsize, n_ret_value;
1746         /* S0 is the node whose balance is currently being checked,
1747            and F0 is its father.  */
1748         struct buffer_head *S0, *F0;
1749         int lfree, rfree /* free space in L and R */ ;
1750
1751         S0 = PATH_H_PBUFFER(tb->tb_path, 0);
1752         F0 = PATH_H_PPARENT(tb->tb_path, 0);
1753
1754         levbytes = tb->insert_size[h];
1755
1756         maxsize = MAX_CHILD_SIZE(S0);   /* maximal possible size of an item */
1757
1758         if (!F0) {              /* S[0] is the root now. */
1759
1760                 RFALSE(-levbytes >= maxsize - B_FREE_SPACE(S0),
1761                        "vs-8240: attempt to create empty buffer tree");
1762
1763                 set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1764                 return NO_BALANCING_NEEDED;
1765         }
1766
1767         if ((n_ret_value = get_parents(tb, h)) != CARRY_ON)
1768                 return n_ret_value;
1769
1770         /* get free space of neighbors */
1771         rfree = get_rfree(tb, h);
1772         lfree = get_lfree(tb, h);
1773
1774         create_virtual_node(tb, h);
1775
1776         /* if 3 leaves can be merge to one, set parameters and return */
1777         if (are_leaves_removable(tb, lfree, rfree))
1778                 return CARRY_ON;
1779
1780         /* determine maximal number of items we can shift to the left/right  neighbor
1781            and the maximal number of bytes that can flow to the left/right neighbor
1782            from the left/right most liquid item that cannot be shifted from S[0] entirely
1783          */
1784         check_left(tb, h, lfree);
1785         check_right(tb, h, rfree);
1786
1787         /* check whether we can merge S with left neighbor. */
1788         if (tb->lnum[0] >= vn->vn_nr_item && tb->lbytes == -1)
1789                 if (is_left_neighbor_in_cache(tb, h) || ((tb->rnum[0] - ((tb->rbytes == -1) ? 0 : 1)) < vn->vn_nr_item) ||      /* S can not be merged with R */
1790                     !tb->FR[h]) {
1791
1792                         RFALSE(!tb->FL[h],
1793                                "vs-8245: dc_check_balance_leaf: FL[h] must exist");
1794
1795                         /* set parameter to merge S[0] with its left neighbor */
1796                         set_parameters(tb, h, -1, 0, 0, NULL, -1, -1);
1797                         return CARRY_ON;
1798                 }
1799
1800         /* check whether we can merge S[0] with right neighbor. */
1801         if (tb->rnum[0] >= vn->vn_nr_item && tb->rbytes == -1) {
1802                 set_parameters(tb, h, 0, -1, 0, NULL, -1, -1);
1803                 return CARRY_ON;
1804         }
1805
1806         /* All contents of S[0] can be moved to the neighbors (L[0] & R[0]). Set parameters and return */
1807         if (is_leaf_removable(tb))
1808                 return CARRY_ON;
1809
1810         /* Balancing is not required. */
1811         tb->s0num = vn->vn_nr_item;
1812         set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1813         return NO_BALANCING_NEEDED;
1814 }
1815
1816 /* Check whether current node S[h] is balanced when Decreasing its size by
1817  * Deleting or Cutting.
1818  * Calculate parameters for balancing for current level h.
1819  * Parameters:
1820  *      tb      tree_balance structure;
1821  *      h       current level of the node;
1822  *      inum    item number in S[h];
1823  *      mode    d - delete, c - cut.
1824  * Returns:     1 - schedule occurred; 
1825  *              0 - balancing for higher levels needed;
1826  *             -1 - no balancing for higher levels needed;
1827  *             -2 - no disk space.
1828  */
1829 static int dc_check_balance(struct tree_balance *tb, int h)
1830 {
1831         RFALSE(!(PATH_H_PBUFFER(tb->tb_path, h)),
1832                "vs-8250: S is not initialized");
1833
1834         if (h)
1835                 return dc_check_balance_internal(tb, h);
1836         else
1837                 return dc_check_balance_leaf(tb, h);
1838 }
1839
1840 /* Check whether current node S[h] is balanced.
1841  * Calculate parameters for balancing for current level h.
1842  * Parameters:
1843  *
1844  *      tb      tree_balance structure:
1845  *
1846  *              tb is a large structure that must be read about in the header file
1847  *              at the same time as this procedure if the reader is to successfully
1848  *              understand this procedure
1849  *
1850  *      h       current level of the node;
1851  *      inum    item number in S[h];
1852  *      mode    i - insert, p - paste, d - delete, c - cut.
1853  * Returns:     1 - schedule occurred; 
1854  *              0 - balancing for higher levels needed;
1855  *             -1 - no balancing for higher levels needed;
1856  *             -2 - no disk space.
1857  */
1858 static int check_balance(int mode,
1859                          struct tree_balance *tb,
1860                          int h,
1861                          int inum,
1862                          int pos_in_item,
1863                          struct item_head *ins_ih, const void *data)
1864 {
1865         struct virtual_node *vn;
1866
1867         vn = tb->tb_vn = (struct virtual_node *)(tb->vn_buf);
1868         vn->vn_free_ptr = (char *)(tb->tb_vn + 1);
1869         vn->vn_mode = mode;
1870         vn->vn_affected_item_num = inum;
1871         vn->vn_pos_in_item = pos_in_item;
1872         vn->vn_ins_ih = ins_ih;
1873         vn->vn_data = data;
1874
1875         RFALSE(mode == M_INSERT && !vn->vn_ins_ih,
1876                "vs-8255: ins_ih can not be 0 in insert mode");
1877
1878         if (tb->insert_size[h] > 0)
1879                 /* Calculate balance parameters when size of node is increasing. */
1880                 return ip_check_balance(tb, h);
1881
1882         /* Calculate balance parameters when  size of node is decreasing. */
1883         return dc_check_balance(tb, h);
1884 }
1885
1886 /* Check whether parent at the path is the really parent of the current node.*/
1887 static int get_direct_parent(struct tree_balance *p_s_tb, int n_h)
1888 {
1889         struct buffer_head *p_s_bh;
1890         struct treepath *p_s_path = p_s_tb->tb_path;
1891         int n_position,
1892             n_path_offset = PATH_H_PATH_OFFSET(p_s_tb->tb_path, n_h);
1893
1894         /* We are in the root or in the new root. */
1895         if (n_path_offset <= FIRST_PATH_ELEMENT_OFFSET) {
1896
1897                 RFALSE(n_path_offset < FIRST_PATH_ELEMENT_OFFSET - 1,
1898                        "PAP-8260: invalid offset in the path");
1899
1900                 if (PATH_OFFSET_PBUFFER(p_s_path, FIRST_PATH_ELEMENT_OFFSET)->
1901                     b_blocknr == SB_ROOT_BLOCK(p_s_tb->tb_sb)) {
1902                         /* Root is not changed. */
1903                         PATH_OFFSET_PBUFFER(p_s_path, n_path_offset - 1) = NULL;
1904                         PATH_OFFSET_POSITION(p_s_path, n_path_offset - 1) = 0;
1905                         return CARRY_ON;
1906                 }
1907                 return REPEAT_SEARCH;   /* Root is changed and we must recalculate the path. */
1908         }
1909
1910         if (!B_IS_IN_TREE
1911             (p_s_bh = PATH_OFFSET_PBUFFER(p_s_path, n_path_offset - 1)))
1912                 return REPEAT_SEARCH;   /* Parent in the path is not in the tree. */
1913
1914         if ((n_position =
1915              PATH_OFFSET_POSITION(p_s_path,
1916                                   n_path_offset - 1)) > B_NR_ITEMS(p_s_bh))
1917                 return REPEAT_SEARCH;
1918
1919         if (B_N_CHILD_NUM(p_s_bh, n_position) !=
1920             PATH_OFFSET_PBUFFER(p_s_path, n_path_offset)->b_blocknr)
1921                 /* Parent in the path is not parent of the current node in the tree. */
1922                 return REPEAT_SEARCH;
1923
1924         if (buffer_locked(p_s_bh)) {
1925                 __wait_on_buffer(p_s_bh);
1926                 if (FILESYSTEM_CHANGED_TB(p_s_tb))
1927                         return REPEAT_SEARCH;
1928         }
1929
1930         return CARRY_ON;        /* Parent in the path is unlocked and really parent of the current node.  */
1931 }
1932
1933 /* Using lnum[n_h] and rnum[n_h] we should determine what neighbors
1934  * of S[n_h] we
1935  * need in order to balance S[n_h], and get them if necessary.
1936  * Returns:     SCHEDULE_OCCURRED - schedule occurred while the function worked;
1937  *              CARRY_ON - schedule didn't occur while the function worked;
1938  */
1939 static int get_neighbors(struct tree_balance *p_s_tb, int n_h)
1940 {
1941         int n_child_position,
1942             n_path_offset = PATH_H_PATH_OFFSET(p_s_tb->tb_path, n_h + 1);
1943         unsigned long n_son_number;
1944         struct super_block *p_s_sb = p_s_tb->tb_sb;
1945         struct buffer_head *p_s_bh;
1946
1947         PROC_INFO_INC(p_s_sb, get_neighbors[n_h]);
1948
1949         if (p_s_tb->lnum[n_h]) {
1950                 /* We need left neighbor to balance S[n_h]. */
1951                 PROC_INFO_INC(p_s_sb, need_l_neighbor[n_h]);
1952                 p_s_bh = PATH_OFFSET_PBUFFER(p_s_tb->tb_path, n_path_offset);
1953
1954                 RFALSE(p_s_bh == p_s_tb->FL[n_h] &&
1955                        !PATH_OFFSET_POSITION(p_s_tb->tb_path, n_path_offset),
1956                        "PAP-8270: invalid position in the parent");
1957
1958                 n_child_position =
1959                     (p_s_bh ==
1960                      p_s_tb->FL[n_h]) ? p_s_tb->lkey[n_h] : B_NR_ITEMS(p_s_tb->
1961                                                                        FL[n_h]);
1962                 n_son_number = B_N_CHILD_NUM(p_s_tb->FL[n_h], n_child_position);
1963                 p_s_bh = sb_bread(p_s_sb, n_son_number);
1964                 if (!p_s_bh)
1965                         return IO_ERROR;
1966                 if (FILESYSTEM_CHANGED_TB(p_s_tb)) {
1967                         decrement_bcount(p_s_bh);
1968                         PROC_INFO_INC(p_s_sb, get_neighbors_restart[n_h]);
1969                         return REPEAT_SEARCH;
1970                 }
1971
1972                 RFALSE(!B_IS_IN_TREE(p_s_tb->FL[n_h]) ||
1973                        n_child_position > B_NR_ITEMS(p_s_tb->FL[n_h]) ||
1974                        B_N_CHILD_NUM(p_s_tb->FL[n_h], n_child_position) !=
1975                        p_s_bh->b_blocknr, "PAP-8275: invalid parent");
1976                 RFALSE(!B_IS_IN_TREE(p_s_bh), "PAP-8280: invalid child");
1977                 RFALSE(!n_h &&
1978                        B_FREE_SPACE(p_s_bh) !=
1979                        MAX_CHILD_SIZE(p_s_bh) -
1980                        dc_size(B_N_CHILD(p_s_tb->FL[0], n_child_position)),
1981                        "PAP-8290: invalid child size of left neighbor");
1982
1983                 decrement_bcount(p_s_tb->L[n_h]);
1984                 p_s_tb->L[n_h] = p_s_bh;
1985         }
1986
1987         if (p_s_tb->rnum[n_h]) {        /* We need right neighbor to balance S[n_path_offset]. */
1988                 PROC_INFO_INC(p_s_sb, need_r_neighbor[n_h]);
1989                 p_s_bh = PATH_OFFSET_PBUFFER(p_s_tb->tb_path, n_path_offset);
1990
1991                 RFALSE(p_s_bh == p_s_tb->FR[n_h] &&
1992                        PATH_OFFSET_POSITION(p_s_tb->tb_path,
1993                                             n_path_offset) >=
1994                        B_NR_ITEMS(p_s_bh),
1995                        "PAP-8295: invalid position in the parent");
1996
1997                 n_child_position =
1998                     (p_s_bh == p_s_tb->FR[n_h]) ? p_s_tb->rkey[n_h] + 1 : 0;
1999                 n_son_number = B_N_CHILD_NUM(p_s_tb->FR[n_h], n_child_position);
2000                 p_s_bh = sb_bread(p_s_sb, n_son_number);
2001                 if (!p_s_bh)
2002                         return IO_ERROR;
2003                 if (FILESYSTEM_CHANGED_TB(p_s_tb)) {
2004                         decrement_bcount(p_s_bh);
2005                         PROC_INFO_INC(p_s_sb, get_neighbors_restart[n_h]);
2006                         return REPEAT_SEARCH;
2007                 }
2008                 decrement_bcount(p_s_tb->R[n_h]);
2009                 p_s_tb->R[n_h] = p_s_bh;
2010
2011                 RFALSE(!n_h
2012                        && B_FREE_SPACE(p_s_bh) !=
2013                        MAX_CHILD_SIZE(p_s_bh) -
2014                        dc_size(B_N_CHILD(p_s_tb->FR[0], n_child_position)),
2015                        "PAP-8300: invalid child size of right neighbor (%d != %d - %d)",
2016                        B_FREE_SPACE(p_s_bh), MAX_CHILD_SIZE(p_s_bh),
2017                        dc_size(B_N_CHILD(p_s_tb->FR[0], n_child_position)));
2018
2019         }
2020         return CARRY_ON;
2021 }
2022
2023 static int get_virtual_node_size(struct super_block *sb, struct buffer_head *bh)
2024 {
2025         int max_num_of_items;
2026         int max_num_of_entries;
2027         unsigned long blocksize = sb->s_blocksize;
2028
2029 #define MIN_NAME_LEN 1
2030
2031         max_num_of_items = (blocksize - BLKH_SIZE) / (IH_SIZE + MIN_ITEM_LEN);
2032         max_num_of_entries = (blocksize - BLKH_SIZE - IH_SIZE) /
2033             (DEH_SIZE + MIN_NAME_LEN);
2034
2035         return sizeof(struct virtual_node) +
2036             max(max_num_of_items * sizeof(struct virtual_item),
2037                 sizeof(struct virtual_item) + sizeof(struct direntry_uarea) +
2038                 (max_num_of_entries - 1) * sizeof(__u16));
2039 }
2040
2041 /* maybe we should fail balancing we are going to perform when kmalloc
2042    fails several times. But now it will loop until kmalloc gets
2043    required memory */
2044 static int get_mem_for_virtual_node(struct tree_balance *tb)
2045 {
2046         int check_fs = 0;
2047         int size;
2048         char *buf;
2049
2050         size = get_virtual_node_size(tb->tb_sb, PATH_PLAST_BUFFER(tb->tb_path));
2051
2052         if (size > tb->vn_buf_size) {
2053                 /* we have to allocate more memory for virtual node */
2054                 if (tb->vn_buf) {
2055                         /* free memory allocated before */
2056                         kfree(tb->vn_buf);
2057                         /* this is not needed if kfree is atomic */
2058                         check_fs = 1;
2059                 }
2060
2061                 /* virtual node requires now more memory */
2062                 tb->vn_buf_size = size;
2063
2064                 /* get memory for virtual item */
2065                 buf = kmalloc(size, GFP_ATOMIC | __GFP_NOWARN);
2066                 if (!buf) {
2067                         /* getting memory with GFP_KERNEL priority may involve
2068                            balancing now (due to indirect_to_direct conversion on
2069                            dcache shrinking). So, release path and collected
2070                            resources here */
2071                         free_buffers_in_tb(tb);
2072                         buf = kmalloc(size, GFP_NOFS);
2073                         if (!buf) {
2074                                 tb->vn_buf_size = 0;
2075                         }
2076                         tb->vn_buf = buf;
2077                         schedule();
2078                         return REPEAT_SEARCH;
2079                 }
2080
2081                 tb->vn_buf = buf;
2082         }
2083
2084         if (check_fs && FILESYSTEM_CHANGED_TB(tb))
2085                 return REPEAT_SEARCH;
2086
2087         return CARRY_ON;
2088 }
2089
2090 #ifdef CONFIG_REISERFS_CHECK
2091 static void tb_buffer_sanity_check(struct super_block *p_s_sb,
2092                                    struct buffer_head *p_s_bh,
2093                                    const char *descr, int level)
2094 {
2095         if (p_s_bh) {
2096                 if (atomic_read(&(p_s_bh->b_count)) <= 0) {
2097
2098                         reiserfs_panic(p_s_sb,
2099                                        "jmacd-1: tb_buffer_sanity_check(): negative or zero reference counter for buffer %s[%d] (%b)\n",
2100                                        descr, level, p_s_bh);
2101                 }
2102
2103                 if (!buffer_uptodate(p_s_bh)) {
2104                         reiserfs_panic(p_s_sb,
2105                                        "jmacd-2: tb_buffer_sanity_check(): buffer is not up to date %s[%d] (%b)\n",
2106                                        descr, level, p_s_bh);
2107                 }
2108
2109                 if (!B_IS_IN_TREE(p_s_bh)) {
2110                         reiserfs_panic(p_s_sb,
2111                                        "jmacd-3: tb_buffer_sanity_check(): buffer is not in tree %s[%d] (%b)\n",
2112                                        descr, level, p_s_bh);
2113                 }
2114
2115                 if (p_s_bh->b_bdev != p_s_sb->s_bdev) {
2116                         reiserfs_panic(p_s_sb,
2117                                        "jmacd-4: tb_buffer_sanity_check(): buffer has wrong device %s[%d] (%b)\n",
2118                                        descr, level, p_s_bh);
2119                 }
2120
2121                 if (p_s_bh->b_size != p_s_sb->s_blocksize) {
2122                         reiserfs_panic(p_s_sb,
2123                                        "jmacd-5: tb_buffer_sanity_check(): buffer has wrong blocksize %s[%d] (%b)\n",
2124                                        descr, level, p_s_bh);
2125                 }
2126
2127                 if (p_s_bh->b_blocknr > SB_BLOCK_COUNT(p_s_sb)) {
2128                         reiserfs_panic(p_s_sb,
2129                                        "jmacd-6: tb_buffer_sanity_check(): buffer block number too high %s[%d] (%b)\n",
2130                                        descr, level, p_s_bh);
2131                 }
2132         }
2133 }
2134 #else
2135 static void tb_buffer_sanity_check(struct super_block *p_s_sb,
2136                                    struct buffer_head *p_s_bh,
2137                                    const char *descr, int level)
2138 {;
2139 }
2140 #endif
2141
2142 static int clear_all_dirty_bits(struct super_block *s, struct buffer_head *bh)
2143 {
2144         return reiserfs_prepare_for_journal(s, bh, 0);
2145 }
2146
2147 static int wait_tb_buffers_until_unlocked(struct tree_balance *p_s_tb)
2148 {
2149         struct buffer_head *locked;
2150 #ifdef CONFIG_REISERFS_CHECK
2151         int repeat_counter = 0;
2152 #endif
2153         int i;
2154
2155         do {
2156
2157                 locked = NULL;
2158
2159                 for (i = p_s_tb->tb_path->path_length;
2160                      !locked && i > ILLEGAL_PATH_ELEMENT_OFFSET; i--) {
2161                         if (PATH_OFFSET_PBUFFER(p_s_tb->tb_path, i)) {
2162                                 /* if I understand correctly, we can only be sure the last buffer
2163                                  ** in the path is in the tree --clm
2164                                  */
2165 #ifdef CONFIG_REISERFS_CHECK
2166                                 if (PATH_PLAST_BUFFER(p_s_tb->tb_path) ==
2167                                     PATH_OFFSET_PBUFFER(p_s_tb->tb_path, i)) {
2168                                         tb_buffer_sanity_check(p_s_tb->tb_sb,
2169                                                                PATH_OFFSET_PBUFFER
2170                                                                (p_s_tb->tb_path,
2171                                                                 i), "S",
2172                                                                p_s_tb->tb_path->
2173                                                                path_length - i);
2174                                 }
2175 #endif
2176                                 if (!clear_all_dirty_bits(p_s_tb->tb_sb,
2177                                                           PATH_OFFSET_PBUFFER
2178                                                           (p_s_tb->tb_path,
2179                                                            i))) {
2180                                         locked =
2181                                             PATH_OFFSET_PBUFFER(p_s_tb->tb_path,
2182                                                                 i);
2183                                 }
2184                         }
2185                 }
2186
2187                 for (i = 0; !locked && i < MAX_HEIGHT && p_s_tb->insert_size[i];
2188                      i++) {
2189
2190                         if (p_s_tb->lnum[i]) {
2191
2192                                 if (p_s_tb->L[i]) {
2193                                         tb_buffer_sanity_check(p_s_tb->tb_sb,
2194                                                                p_s_tb->L[i],
2195                                                                "L", i);
2196                                         if (!clear_all_dirty_bits
2197                                             (p_s_tb->tb_sb, p_s_tb->L[i]))
2198                                                 locked = p_s_tb->L[i];
2199                                 }
2200
2201                                 if (!locked && p_s_tb->FL[i]) {
2202                                         tb_buffer_sanity_check(p_s_tb->tb_sb,
2203                                                                p_s_tb->FL[i],
2204                                                                "FL", i);
2205                                         if (!clear_all_dirty_bits
2206                                             (p_s_tb->tb_sb, p_s_tb->FL[i]))
2207                                                 locked = p_s_tb->FL[i];
2208                                 }
2209
2210                                 if (!locked && p_s_tb->CFL[i]) {
2211                                         tb_buffer_sanity_check(p_s_tb->tb_sb,
2212                                                                p_s_tb->CFL[i],
2213                                                                "CFL", i);
2214                                         if (!clear_all_dirty_bits
2215                                             (p_s_tb->tb_sb, p_s_tb->CFL[i]))
2216                                                 locked = p_s_tb->CFL[i];
2217                                 }
2218
2219                         }
2220
2221                         if (!locked && (p_s_tb->rnum[i])) {
2222
2223                                 if (p_s_tb->R[i]) {
2224                                         tb_buffer_sanity_check(p_s_tb->tb_sb,
2225                                                                p_s_tb->R[i],
2226                                                                "R", i);
2227                                         if (!clear_all_dirty_bits
2228                                             (p_s_tb->tb_sb, p_s_tb->R[i]))
2229                                                 locked = p_s_tb->R[i];
2230                                 }
2231
2232                                 if (!locked && p_s_tb->FR[i]) {
2233                                         tb_buffer_sanity_check(p_s_tb->tb_sb,
2234                                                                p_s_tb->FR[i],
2235                                                                "FR", i);
2236                                         if (!clear_all_dirty_bits
2237                                             (p_s_tb->tb_sb, p_s_tb->FR[i]))
2238                                                 locked = p_s_tb->FR[i];
2239                                 }
2240
2241                                 if (!locked && p_s_tb->CFR[i]) {
2242                                         tb_buffer_sanity_check(p_s_tb->tb_sb,
2243                                                                p_s_tb->CFR[i],
2244                                                                "CFR", i);
2245                                         if (!clear_all_dirty_bits
2246                                             (p_s_tb->tb_sb, p_s_tb->CFR[i]))
2247                                                 locked = p_s_tb->CFR[i];
2248                                 }
2249                         }
2250                 }
2251                 /* as far as I can tell, this is not required.  The FEB list seems
2252                  ** to be full of newly allocated nodes, which will never be locked,
2253                  ** dirty, or anything else.
2254                  ** To be safe, I'm putting in the checks and waits in.  For the moment,
2255                  ** they are needed to keep the code in journal.c from complaining
2256                  ** about the buffer.  That code is inside CONFIG_REISERFS_CHECK as well.
2257                  ** --clm
2258                  */
2259                 for (i = 0; !locked && i < MAX_FEB_SIZE; i++) {
2260                         if (p_s_tb->FEB[i]) {
2261                                 if (!clear_all_dirty_bits
2262                                     (p_s_tb->tb_sb, p_s_tb->FEB[i]))
2263                                         locked = p_s_tb->FEB[i];
2264                         }
2265                 }
2266
2267                 if (locked) {
2268 #ifdef CONFIG_REISERFS_CHECK
2269                         repeat_counter++;
2270                         if ((repeat_counter % 10000) == 0) {
2271                                 reiserfs_warning(p_s_tb->tb_sb,
2272                                                  "wait_tb_buffers_until_released(): too many "
2273                                                  "iterations waiting for buffer to unlock "
2274                                                  "(%b)", locked);
2275
2276                                 /* Don't loop forever.  Try to recover from possible error. */
2277
2278                                 return (FILESYSTEM_CHANGED_TB(p_s_tb)) ?
2279                                     REPEAT_SEARCH : CARRY_ON;
2280                         }
2281 #endif
2282                         __wait_on_buffer(locked);
2283                         if (FILESYSTEM_CHANGED_TB(p_s_tb)) {
2284                                 return REPEAT_SEARCH;
2285                         }
2286                 }
2287
2288         } while (locked);
2289
2290         return CARRY_ON;
2291 }
2292
2293 /* Prepare for balancing, that is
2294  *      get all necessary parents, and neighbors;
2295  *      analyze what and where should be moved;
2296  *      get sufficient number of new nodes;
2297  * Balancing will start only after all resources will be collected at a time.
2298  * 
2299  * When ported to SMP kernels, only at the last moment after all needed nodes
2300  * are collected in cache, will the resources be locked using the usual
2301  * textbook ordered lock acquisition algorithms.  Note that ensuring that
2302  * this code neither write locks what it does not need to write lock nor locks out of order
2303  * will be a pain in the butt that could have been avoided.  Grumble grumble. -Hans
2304  * 
2305  * fix is meant in the sense of render unchanging
2306  * 
2307  * Latency might be improved by first gathering a list of what buffers are needed
2308  * and then getting as many of them in parallel as possible? -Hans
2309  *
2310  * Parameters:
2311  *      op_mode i - insert, d - delete, c - cut (truncate), p - paste (append)
2312  *      tb      tree_balance structure;
2313  *      inum    item number in S[h];
2314  *      pos_in_item - comment this if you can
2315  *      ins_ih & ins_sd are used when inserting
2316  * Returns:     1 - schedule occurred while the function worked;
2317  *              0 - schedule didn't occur while the function worked;
2318  *             -1 - if no_disk_space 
2319  */
2320
2321 int fix_nodes(int n_op_mode, struct tree_balance *p_s_tb, struct item_head *p_s_ins_ih, // item head of item being inserted
2322               const void *data  // inserted item or data to be pasted
2323     )
2324 {
2325         int n_ret_value, n_h, n_item_num = PATH_LAST_POSITION(p_s_tb->tb_path);
2326         int n_pos_in_item;
2327
2328         /* we set wait_tb_buffers_run when we have to restore any dirty bits cleared
2329          ** during wait_tb_buffers_run
2330          */
2331         int wait_tb_buffers_run = 0;
2332         struct buffer_head *p_s_tbS0 = PATH_PLAST_BUFFER(p_s_tb->tb_path);
2333
2334         ++REISERFS_SB(p_s_tb->tb_sb)->s_fix_nodes;
2335
2336         n_pos_in_item = p_s_tb->tb_path->pos_in_item;
2337
2338         p_s_tb->fs_gen = get_generation(p_s_tb->tb_sb);
2339
2340         /* we prepare and log the super here so it will already be in the
2341          ** transaction when do_balance needs to change it.
2342          ** This way do_balance won't have to schedule when trying to prepare
2343          ** the super for logging
2344          */
2345         reiserfs_prepare_for_journal(p_s_tb->tb_sb,
2346                                      SB_BUFFER_WITH_SB(p_s_tb->tb_sb), 1);
2347         journal_mark_dirty(p_s_tb->transaction_handle, p_s_tb->tb_sb,
2348                            SB_BUFFER_WITH_SB(p_s_tb->tb_sb));
2349         if (FILESYSTEM_CHANGED_TB(p_s_tb))
2350                 return REPEAT_SEARCH;
2351
2352         /* if it possible in indirect_to_direct conversion */
2353         if (buffer_locked(p_s_tbS0)) {
2354                 __wait_on_buffer(p_s_tbS0);
2355                 if (FILESYSTEM_CHANGED_TB(p_s_tb))
2356                         return REPEAT_SEARCH;
2357         }
2358 #ifdef CONFIG_REISERFS_CHECK
2359         if (cur_tb) {
2360                 print_cur_tb("fix_nodes");
2361                 reiserfs_panic(p_s_tb->tb_sb,
2362                                "PAP-8305: fix_nodes:  there is pending do_balance");
2363         }
2364
2365         if (!buffer_uptodate(p_s_tbS0) || !B_IS_IN_TREE(p_s_tbS0)) {
2366                 reiserfs_panic(p_s_tb->tb_sb,
2367                                "PAP-8320: fix_nodes: S[0] (%b %z) is not uptodate "
2368                                "at the beginning of fix_nodes or not in tree (mode %c)",
2369                                p_s_tbS0, p_s_tbS0, n_op_mode);
2370         }
2371
2372         /* Check parameters. */
2373         switch (n_op_mode) {
2374         case M_INSERT:
2375                 if (n_item_num <= 0 || n_item_num > B_NR_ITEMS(p_s_tbS0))
2376                         reiserfs_panic(p_s_tb->tb_sb,
2377                                        "PAP-8330: fix_nodes: Incorrect item number %d (in S0 - %d) in case of insert",
2378                                        n_item_num, B_NR_ITEMS(p_s_tbS0));
2379                 break;
2380         case M_PASTE:
2381         case M_DELETE:
2382         case M_CUT:
2383                 if (n_item_num < 0 || n_item_num >= B_NR_ITEMS(p_s_tbS0)) {
2384                         print_block(p_s_tbS0, 0, -1, -1);
2385                         reiserfs_panic(p_s_tb->tb_sb,
2386                                        "PAP-8335: fix_nodes: Incorrect item number(%d); mode = %c insert_size = %d\n",
2387                                        n_item_num, n_op_mode,
2388                                        p_s_tb->insert_size[0]);
2389                 }
2390                 break;
2391         default:
2392                 reiserfs_panic(p_s_tb->tb_sb,
2393                                "PAP-8340: fix_nodes: Incorrect mode of operation");
2394         }
2395 #endif
2396
2397         if (get_mem_for_virtual_node(p_s_tb) == REPEAT_SEARCH)
2398                 // FIXME: maybe -ENOMEM when tb->vn_buf == 0? Now just repeat
2399                 return REPEAT_SEARCH;
2400
2401         /* Starting from the leaf level; for all levels n_h of the tree. */
2402         for (n_h = 0; n_h < MAX_HEIGHT && p_s_tb->insert_size[n_h]; n_h++) {
2403                 if ((n_ret_value = get_direct_parent(p_s_tb, n_h)) != CARRY_ON) {
2404                         goto repeat;
2405                 }
2406
2407                 if ((n_ret_value =
2408                      check_balance(n_op_mode, p_s_tb, n_h, n_item_num,
2409                                    n_pos_in_item, p_s_ins_ih,
2410                                    data)) != CARRY_ON) {
2411                         if (n_ret_value == NO_BALANCING_NEEDED) {
2412                                 /* No balancing for higher levels needed. */
2413                                 if ((n_ret_value =
2414                                      get_neighbors(p_s_tb, n_h)) != CARRY_ON) {
2415                                         goto repeat;
2416                                 }
2417                                 if (n_h != MAX_HEIGHT - 1)
2418                                         p_s_tb->insert_size[n_h + 1] = 0;
2419                                 /* ok, analysis and resource gathering are complete */
2420                                 break;
2421                         }
2422                         goto repeat;
2423                 }
2424
2425                 if ((n_ret_value = get_neighbors(p_s_tb, n_h)) != CARRY_ON) {
2426                         goto repeat;
2427                 }
2428
2429                 if ((n_ret_value = get_empty_nodes(p_s_tb, n_h)) != CARRY_ON) {
2430                         goto repeat;    /* No disk space, or schedule occurred and
2431                                            analysis may be invalid and needs to be redone. */
2432                 }
2433
2434                 if (!PATH_H_PBUFFER(p_s_tb->tb_path, n_h)) {
2435                         /* We have a positive insert size but no nodes exist on this
2436                            level, this means that we are creating a new root. */
2437
2438                         RFALSE(p_s_tb->blknum[n_h] != 1,
2439                                "PAP-8350: creating new empty root");
2440
2441                         if (n_h < MAX_HEIGHT - 1)
2442                                 p_s_tb->insert_size[n_h + 1] = 0;
2443                 } else if (!PATH_H_PBUFFER(p_s_tb->tb_path, n_h + 1)) {
2444                         if (p_s_tb->blknum[n_h] > 1) {
2445                                 /* The tree needs to be grown, so this node S[n_h]
2446                                    which is the root node is split into two nodes,
2447                                    and a new node (S[n_h+1]) will be created to
2448                                    become the root node.  */
2449
2450                                 RFALSE(n_h == MAX_HEIGHT - 1,
2451                                        "PAP-8355: attempt to create too high of a tree");
2452
2453                                 p_s_tb->insert_size[n_h + 1] =
2454                                     (DC_SIZE +
2455                                      KEY_SIZE) * (p_s_tb->blknum[n_h] - 1) +
2456                                     DC_SIZE;
2457                         } else if (n_h < MAX_HEIGHT - 1)
2458                                 p_s_tb->insert_size[n_h + 1] = 0;
2459                 } else
2460                         p_s_tb->insert_size[n_h + 1] =
2461                             (DC_SIZE + KEY_SIZE) * (p_s_tb->blknum[n_h] - 1);
2462         }
2463
2464         if ((n_ret_value = wait_tb_buffers_until_unlocked(p_s_tb)) == CARRY_ON) {
2465                 if (FILESYSTEM_CHANGED_TB(p_s_tb)) {
2466                         wait_tb_buffers_run = 1;
2467                         n_ret_value = REPEAT_SEARCH;
2468                         goto repeat;
2469                 } else {
2470                         return CARRY_ON;
2471                 }
2472         } else {
2473                 wait_tb_buffers_run = 1;
2474                 goto repeat;
2475         }
2476
2477       repeat:
2478         // fix_nodes was unable to perform its calculation due to
2479         // filesystem got changed under us, lack of free disk space or i/o
2480         // failure. If the first is the case - the search will be
2481         // repeated. For now - free all resources acquired so far except
2482         // for the new allocated nodes
2483         {
2484                 int i;
2485
2486                 /* Release path buffers. */
2487                 if (wait_tb_buffers_run) {
2488                         pathrelse_and_restore(p_s_tb->tb_sb, p_s_tb->tb_path);
2489                 } else {
2490                         pathrelse(p_s_tb->tb_path);
2491                 }
2492                 /* brelse all resources collected for balancing */
2493                 for (i = 0; i < MAX_HEIGHT; i++) {
2494                         if (wait_tb_buffers_run) {
2495                                 reiserfs_restore_prepared_buffer(p_s_tb->tb_sb,
2496                                                                  p_s_tb->L[i]);
2497                                 reiserfs_restore_prepared_buffer(p_s_tb->tb_sb,
2498                                                                  p_s_tb->R[i]);
2499                                 reiserfs_restore_prepared_buffer(p_s_tb->tb_sb,
2500                                                                  p_s_tb->FL[i]);
2501                                 reiserfs_restore_prepared_buffer(p_s_tb->tb_sb,
2502                                                                  p_s_tb->FR[i]);
2503                                 reiserfs_restore_prepared_buffer(p_s_tb->tb_sb,
2504                                                                  p_s_tb->
2505                                                                  CFL[i]);
2506                                 reiserfs_restore_prepared_buffer(p_s_tb->tb_sb,
2507                                                                  p_s_tb->
2508                                                                  CFR[i]);
2509                         }
2510
2511                         brelse(p_s_tb->L[i]);
2512                         p_s_tb->L[i] = NULL;
2513                         brelse(p_s_tb->R[i]);
2514                         p_s_tb->R[i] = NULL;
2515                         brelse(p_s_tb->FL[i]);
2516                         p_s_tb->FL[i] = NULL;
2517                         brelse(p_s_tb->FR[i]);
2518                         p_s_tb->FR[i] = NULL;
2519                         brelse(p_s_tb->CFL[i]);
2520                         p_s_tb->CFL[i] = NULL;
2521                         brelse(p_s_tb->CFR[i]);
2522                         p_s_tb->CFR[i] = NULL;
2523                 }
2524
2525                 if (wait_tb_buffers_run) {
2526                         for (i = 0; i < MAX_FEB_SIZE; i++) {
2527                                 if (p_s_tb->FEB[i]) {
2528                                         reiserfs_restore_prepared_buffer
2529                                             (p_s_tb->tb_sb, p_s_tb->FEB[i]);
2530                                 }
2531                         }
2532                 }
2533                 return n_ret_value;
2534         }
2535
2536 }
2537
2538 /* Anatoly will probably forgive me renaming p_s_tb to tb. I just
2539    wanted to make lines shorter */
2540 void unfix_nodes(struct tree_balance *tb)
2541 {
2542         int i;
2543
2544         /* Release path buffers. */
2545         pathrelse_and_restore(tb->tb_sb, tb->tb_path);
2546
2547         /* brelse all resources collected for balancing */
2548         for (i = 0; i < MAX_HEIGHT; i++) {
2549                 reiserfs_restore_prepared_buffer(tb->tb_sb, tb->L[i]);
2550                 reiserfs_restore_prepared_buffer(tb->tb_sb, tb->R[i]);
2551                 reiserfs_restore_prepared_buffer(tb->tb_sb, tb->FL[i]);
2552                 reiserfs_restore_prepared_buffer(tb->tb_sb, tb->FR[i]);
2553                 reiserfs_restore_prepared_buffer(tb->tb_sb, tb->CFL[i]);
2554                 reiserfs_restore_prepared_buffer(tb->tb_sb, tb->CFR[i]);
2555
2556                 brelse(tb->L[i]);
2557                 brelse(tb->R[i]);
2558                 brelse(tb->FL[i]);
2559                 brelse(tb->FR[i]);
2560                 brelse(tb->CFL[i]);
2561                 brelse(tb->CFR[i]);
2562         }
2563
2564         /* deal with list of allocated (used and unused) nodes */
2565         for (i = 0; i < MAX_FEB_SIZE; i++) {
2566                 if (tb->FEB[i]) {
2567                         b_blocknr_t blocknr = tb->FEB[i]->b_blocknr;
2568                         /* de-allocated block which was not used by balancing and
2569                            bforget about buffer for it */
2570                         brelse(tb->FEB[i]);
2571                         reiserfs_free_block(tb->transaction_handle, NULL,
2572                                             blocknr, 0);
2573                 }
2574                 if (tb->used[i]) {
2575                         /* release used as new nodes including a new root */
2576                         brelse(tb->used[i]);
2577                 }
2578         }
2579
2580         kfree(tb->vn_buf);
2581
2582 }