ocfs2: ocfs2_find_path() only needs the caching info
[safe/jmp/linux-2.6] / fs / ocfs2 / alloc.c
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * alloc.c
5  *
6  * Extent allocs and frees
7  *
8  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public
12  * License as published by the Free Software Foundation; either
13  * version 2 of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public
21  * License along with this program; if not, write to the
22  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23  * Boston, MA 021110-1307, USA.
24  */
25
26 #include <linux/fs.h>
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/swap.h>
31 #include <linux/quotaops.h>
32
33 #define MLOG_MASK_PREFIX ML_DISK_ALLOC
34 #include <cluster/masklog.h>
35
36 #include "ocfs2.h"
37
38 #include "alloc.h"
39 #include "aops.h"
40 #include "blockcheck.h"
41 #include "dlmglue.h"
42 #include "extent_map.h"
43 #include "inode.h"
44 #include "journal.h"
45 #include "localalloc.h"
46 #include "suballoc.h"
47 #include "sysfile.h"
48 #include "file.h"
49 #include "super.h"
50 #include "uptodate.h"
51 #include "xattr.h"
52
53 #include "buffer_head_io.h"
54
55
56 /*
57  * Operations for a specific extent tree type.
58  *
59  * To implement an on-disk btree (extent tree) type in ocfs2, add
60  * an ocfs2_extent_tree_operations structure and the matching
61  * ocfs2_init_<thingy>_extent_tree() function.  That's pretty much it
62  * for the allocation portion of the extent tree.
63  */
64 struct ocfs2_extent_tree_operations {
65         /*
66          * last_eb_blk is the block number of the right most leaf extent
67          * block.  Most on-disk structures containing an extent tree store
68          * this value for fast access.  The ->eo_set_last_eb_blk() and
69          * ->eo_get_last_eb_blk() operations access this value.  They are
70          *  both required.
71          */
72         void (*eo_set_last_eb_blk)(struct ocfs2_extent_tree *et,
73                                    u64 blkno);
74         u64 (*eo_get_last_eb_blk)(struct ocfs2_extent_tree *et);
75
76         /*
77          * The on-disk structure usually keeps track of how many total
78          * clusters are stored in this extent tree.  This function updates
79          * that value.  new_clusters is the delta, and must be
80          * added to the total.  Required.
81          */
82         void (*eo_update_clusters)(struct inode *inode,
83                                    struct ocfs2_extent_tree *et,
84                                    u32 new_clusters);
85
86         /*
87          * If ->eo_insert_check() exists, it is called before rec is
88          * inserted into the extent tree.  It is optional.
89          */
90         int (*eo_insert_check)(struct inode *inode,
91                                struct ocfs2_extent_tree *et,
92                                struct ocfs2_extent_rec *rec);
93         int (*eo_sanity_check)(struct inode *inode, struct ocfs2_extent_tree *et);
94
95         /*
96          * --------------------------------------------------------------
97          * The remaining are internal to ocfs2_extent_tree and don't have
98          * accessor functions
99          */
100
101         /*
102          * ->eo_fill_root_el() takes et->et_object and sets et->et_root_el.
103          * It is required.
104          */
105         void (*eo_fill_root_el)(struct ocfs2_extent_tree *et);
106
107         /*
108          * ->eo_fill_max_leaf_clusters sets et->et_max_leaf_clusters if
109          * it exists.  If it does not, et->et_max_leaf_clusters is set
110          * to 0 (unlimited).  Optional.
111          */
112         void (*eo_fill_max_leaf_clusters)(struct inode *inode,
113                                           struct ocfs2_extent_tree *et);
114 };
115
116
117 /*
118  * Pre-declare ocfs2_dinode_et_ops so we can use it as a sanity check
119  * in the methods.
120  */
121 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et);
122 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et,
123                                          u64 blkno);
124 static void ocfs2_dinode_update_clusters(struct inode *inode,
125                                          struct ocfs2_extent_tree *et,
126                                          u32 clusters);
127 static int ocfs2_dinode_insert_check(struct inode *inode,
128                                      struct ocfs2_extent_tree *et,
129                                      struct ocfs2_extent_rec *rec);
130 static int ocfs2_dinode_sanity_check(struct inode *inode,
131                                      struct ocfs2_extent_tree *et);
132 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et);
133 static struct ocfs2_extent_tree_operations ocfs2_dinode_et_ops = {
134         .eo_set_last_eb_blk     = ocfs2_dinode_set_last_eb_blk,
135         .eo_get_last_eb_blk     = ocfs2_dinode_get_last_eb_blk,
136         .eo_update_clusters     = ocfs2_dinode_update_clusters,
137         .eo_insert_check        = ocfs2_dinode_insert_check,
138         .eo_sanity_check        = ocfs2_dinode_sanity_check,
139         .eo_fill_root_el        = ocfs2_dinode_fill_root_el,
140 };
141
142 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et,
143                                          u64 blkno)
144 {
145         struct ocfs2_dinode *di = et->et_object;
146
147         BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
148         di->i_last_eb_blk = cpu_to_le64(blkno);
149 }
150
151 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et)
152 {
153         struct ocfs2_dinode *di = et->et_object;
154
155         BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
156         return le64_to_cpu(di->i_last_eb_blk);
157 }
158
159 static void ocfs2_dinode_update_clusters(struct inode *inode,
160                                          struct ocfs2_extent_tree *et,
161                                          u32 clusters)
162 {
163         struct ocfs2_dinode *di = et->et_object;
164
165         le32_add_cpu(&di->i_clusters, clusters);
166         spin_lock(&OCFS2_I(inode)->ip_lock);
167         OCFS2_I(inode)->ip_clusters = le32_to_cpu(di->i_clusters);
168         spin_unlock(&OCFS2_I(inode)->ip_lock);
169 }
170
171 static int ocfs2_dinode_insert_check(struct inode *inode,
172                                      struct ocfs2_extent_tree *et,
173                                      struct ocfs2_extent_rec *rec)
174 {
175         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
176
177         BUG_ON(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL);
178         mlog_bug_on_msg(!ocfs2_sparse_alloc(osb) &&
179                         (OCFS2_I(inode)->ip_clusters !=
180                          le32_to_cpu(rec->e_cpos)),
181                         "Device %s, asking for sparse allocation: inode %llu, "
182                         "cpos %u, clusters %u\n",
183                         osb->dev_str,
184                         (unsigned long long)OCFS2_I(inode)->ip_blkno,
185                         rec->e_cpos,
186                         OCFS2_I(inode)->ip_clusters);
187
188         return 0;
189 }
190
191 static int ocfs2_dinode_sanity_check(struct inode *inode,
192                                      struct ocfs2_extent_tree *et)
193 {
194         struct ocfs2_dinode *di = et->et_object;
195
196         BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
197         BUG_ON(!OCFS2_IS_VALID_DINODE(di));
198
199         return 0;
200 }
201
202 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et)
203 {
204         struct ocfs2_dinode *di = et->et_object;
205
206         et->et_root_el = &di->id2.i_list;
207 }
208
209
210 static void ocfs2_xattr_value_fill_root_el(struct ocfs2_extent_tree *et)
211 {
212         struct ocfs2_xattr_value_buf *vb = et->et_object;
213
214         et->et_root_el = &vb->vb_xv->xr_list;
215 }
216
217 static void ocfs2_xattr_value_set_last_eb_blk(struct ocfs2_extent_tree *et,
218                                               u64 blkno)
219 {
220         struct ocfs2_xattr_value_buf *vb = et->et_object;
221
222         vb->vb_xv->xr_last_eb_blk = cpu_to_le64(blkno);
223 }
224
225 static u64 ocfs2_xattr_value_get_last_eb_blk(struct ocfs2_extent_tree *et)
226 {
227         struct ocfs2_xattr_value_buf *vb = et->et_object;
228
229         return le64_to_cpu(vb->vb_xv->xr_last_eb_blk);
230 }
231
232 static void ocfs2_xattr_value_update_clusters(struct inode *inode,
233                                               struct ocfs2_extent_tree *et,
234                                               u32 clusters)
235 {
236         struct ocfs2_xattr_value_buf *vb = et->et_object;
237
238         le32_add_cpu(&vb->vb_xv->xr_clusters, clusters);
239 }
240
241 static struct ocfs2_extent_tree_operations ocfs2_xattr_value_et_ops = {
242         .eo_set_last_eb_blk     = ocfs2_xattr_value_set_last_eb_blk,
243         .eo_get_last_eb_blk     = ocfs2_xattr_value_get_last_eb_blk,
244         .eo_update_clusters     = ocfs2_xattr_value_update_clusters,
245         .eo_fill_root_el        = ocfs2_xattr_value_fill_root_el,
246 };
247
248 static void ocfs2_xattr_tree_fill_root_el(struct ocfs2_extent_tree *et)
249 {
250         struct ocfs2_xattr_block *xb = et->et_object;
251
252         et->et_root_el = &xb->xb_attrs.xb_root.xt_list;
253 }
254
255 static void ocfs2_xattr_tree_fill_max_leaf_clusters(struct inode *inode,
256                                                     struct ocfs2_extent_tree *et)
257 {
258         et->et_max_leaf_clusters =
259                 ocfs2_clusters_for_bytes(inode->i_sb,
260                                          OCFS2_MAX_XATTR_TREE_LEAF_SIZE);
261 }
262
263 static void ocfs2_xattr_tree_set_last_eb_blk(struct ocfs2_extent_tree *et,
264                                              u64 blkno)
265 {
266         struct ocfs2_xattr_block *xb = et->et_object;
267         struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root;
268
269         xt->xt_last_eb_blk = cpu_to_le64(blkno);
270 }
271
272 static u64 ocfs2_xattr_tree_get_last_eb_blk(struct ocfs2_extent_tree *et)
273 {
274         struct ocfs2_xattr_block *xb = et->et_object;
275         struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root;
276
277         return le64_to_cpu(xt->xt_last_eb_blk);
278 }
279
280 static void ocfs2_xattr_tree_update_clusters(struct inode *inode,
281                                              struct ocfs2_extent_tree *et,
282                                              u32 clusters)
283 {
284         struct ocfs2_xattr_block *xb = et->et_object;
285
286         le32_add_cpu(&xb->xb_attrs.xb_root.xt_clusters, clusters);
287 }
288
289 static struct ocfs2_extent_tree_operations ocfs2_xattr_tree_et_ops = {
290         .eo_set_last_eb_blk     = ocfs2_xattr_tree_set_last_eb_blk,
291         .eo_get_last_eb_blk     = ocfs2_xattr_tree_get_last_eb_blk,
292         .eo_update_clusters     = ocfs2_xattr_tree_update_clusters,
293         .eo_fill_root_el        = ocfs2_xattr_tree_fill_root_el,
294         .eo_fill_max_leaf_clusters = ocfs2_xattr_tree_fill_max_leaf_clusters,
295 };
296
297 static void ocfs2_dx_root_set_last_eb_blk(struct ocfs2_extent_tree *et,
298                                           u64 blkno)
299 {
300         struct ocfs2_dx_root_block *dx_root = et->et_object;
301
302         dx_root->dr_last_eb_blk = cpu_to_le64(blkno);
303 }
304
305 static u64 ocfs2_dx_root_get_last_eb_blk(struct ocfs2_extent_tree *et)
306 {
307         struct ocfs2_dx_root_block *dx_root = et->et_object;
308
309         return le64_to_cpu(dx_root->dr_last_eb_blk);
310 }
311
312 static void ocfs2_dx_root_update_clusters(struct inode *inode,
313                                           struct ocfs2_extent_tree *et,
314                                           u32 clusters)
315 {
316         struct ocfs2_dx_root_block *dx_root = et->et_object;
317
318         le32_add_cpu(&dx_root->dr_clusters, clusters);
319 }
320
321 static int ocfs2_dx_root_sanity_check(struct inode *inode,
322                                       struct ocfs2_extent_tree *et)
323 {
324         struct ocfs2_dx_root_block *dx_root = et->et_object;
325
326         BUG_ON(!OCFS2_IS_VALID_DX_ROOT(dx_root));
327
328         return 0;
329 }
330
331 static void ocfs2_dx_root_fill_root_el(struct ocfs2_extent_tree *et)
332 {
333         struct ocfs2_dx_root_block *dx_root = et->et_object;
334
335         et->et_root_el = &dx_root->dr_list;
336 }
337
338 static struct ocfs2_extent_tree_operations ocfs2_dx_root_et_ops = {
339         .eo_set_last_eb_blk     = ocfs2_dx_root_set_last_eb_blk,
340         .eo_get_last_eb_blk     = ocfs2_dx_root_get_last_eb_blk,
341         .eo_update_clusters     = ocfs2_dx_root_update_clusters,
342         .eo_sanity_check        = ocfs2_dx_root_sanity_check,
343         .eo_fill_root_el        = ocfs2_dx_root_fill_root_el,
344 };
345
346 static void __ocfs2_init_extent_tree(struct ocfs2_extent_tree *et,
347                                      struct inode *inode,
348                                      struct buffer_head *bh,
349                                      ocfs2_journal_access_func access,
350                                      void *obj,
351                                      struct ocfs2_extent_tree_operations *ops)
352 {
353         et->et_ops = ops;
354         et->et_root_bh = bh;
355         et->et_ci = INODE_CACHE(inode);
356         et->et_root_journal_access = access;
357         if (!obj)
358                 obj = (void *)bh->b_data;
359         et->et_object = obj;
360
361         et->et_ops->eo_fill_root_el(et);
362         if (!et->et_ops->eo_fill_max_leaf_clusters)
363                 et->et_max_leaf_clusters = 0;
364         else
365                 et->et_ops->eo_fill_max_leaf_clusters(inode, et);
366 }
367
368 void ocfs2_init_dinode_extent_tree(struct ocfs2_extent_tree *et,
369                                    struct inode *inode,
370                                    struct buffer_head *bh)
371 {
372         __ocfs2_init_extent_tree(et, inode, bh, ocfs2_journal_access_di,
373                                  NULL, &ocfs2_dinode_et_ops);
374 }
375
376 void ocfs2_init_xattr_tree_extent_tree(struct ocfs2_extent_tree *et,
377                                        struct inode *inode,
378                                        struct buffer_head *bh)
379 {
380         __ocfs2_init_extent_tree(et, inode, bh, ocfs2_journal_access_xb,
381                                  NULL, &ocfs2_xattr_tree_et_ops);
382 }
383
384 void ocfs2_init_xattr_value_extent_tree(struct ocfs2_extent_tree *et,
385                                         struct inode *inode,
386                                         struct ocfs2_xattr_value_buf *vb)
387 {
388         __ocfs2_init_extent_tree(et, inode, vb->vb_bh, vb->vb_access, vb,
389                                  &ocfs2_xattr_value_et_ops);
390 }
391
392 void ocfs2_init_dx_root_extent_tree(struct ocfs2_extent_tree *et,
393                                     struct inode *inode,
394                                     struct buffer_head *bh)
395 {
396         __ocfs2_init_extent_tree(et, inode, bh, ocfs2_journal_access_dr,
397                                  NULL, &ocfs2_dx_root_et_ops);
398 }
399
400 static inline void ocfs2_et_set_last_eb_blk(struct ocfs2_extent_tree *et,
401                                             u64 new_last_eb_blk)
402 {
403         et->et_ops->eo_set_last_eb_blk(et, new_last_eb_blk);
404 }
405
406 static inline u64 ocfs2_et_get_last_eb_blk(struct ocfs2_extent_tree *et)
407 {
408         return et->et_ops->eo_get_last_eb_blk(et);
409 }
410
411 static inline void ocfs2_et_update_clusters(struct inode *inode,
412                                             struct ocfs2_extent_tree *et,
413                                             u32 clusters)
414 {
415         et->et_ops->eo_update_clusters(inode, et, clusters);
416 }
417
418 static inline int ocfs2_et_root_journal_access(handle_t *handle,
419                                                struct ocfs2_extent_tree *et,
420                                                int type)
421 {
422         return et->et_root_journal_access(handle, et->et_ci, et->et_root_bh,
423                                           type);
424 }
425
426 static inline int ocfs2_et_insert_check(struct inode *inode,
427                                         struct ocfs2_extent_tree *et,
428                                         struct ocfs2_extent_rec *rec)
429 {
430         int ret = 0;
431
432         if (et->et_ops->eo_insert_check)
433                 ret = et->et_ops->eo_insert_check(inode, et, rec);
434         return ret;
435 }
436
437 static inline int ocfs2_et_sanity_check(struct inode *inode,
438                                         struct ocfs2_extent_tree *et)
439 {
440         int ret = 0;
441
442         if (et->et_ops->eo_sanity_check)
443                 ret = et->et_ops->eo_sanity_check(inode, et);
444         return ret;
445 }
446
447 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc);
448 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
449                                          struct ocfs2_extent_block *eb);
450
451 /*
452  * Structures which describe a path through a btree, and functions to
453  * manipulate them.
454  *
455  * The idea here is to be as generic as possible with the tree
456  * manipulation code.
457  */
458 struct ocfs2_path_item {
459         struct buffer_head              *bh;
460         struct ocfs2_extent_list        *el;
461 };
462
463 #define OCFS2_MAX_PATH_DEPTH    5
464
465 struct ocfs2_path {
466         int                             p_tree_depth;
467         ocfs2_journal_access_func       p_root_access;
468         struct ocfs2_path_item          p_node[OCFS2_MAX_PATH_DEPTH];
469 };
470
471 #define path_root_bh(_path) ((_path)->p_node[0].bh)
472 #define path_root_el(_path) ((_path)->p_node[0].el)
473 #define path_root_access(_path)((_path)->p_root_access)
474 #define path_leaf_bh(_path) ((_path)->p_node[(_path)->p_tree_depth].bh)
475 #define path_leaf_el(_path) ((_path)->p_node[(_path)->p_tree_depth].el)
476 #define path_num_items(_path) ((_path)->p_tree_depth + 1)
477
478 static int ocfs2_find_path(struct ocfs2_caching_info *ci,
479                            struct ocfs2_path *path, u32 cpos);
480 static void ocfs2_adjust_rightmost_records(struct inode *inode,
481                                            handle_t *handle,
482                                            struct ocfs2_path *path,
483                                            struct ocfs2_extent_rec *insert_rec);
484 /*
485  * Reset the actual path elements so that we can re-use the structure
486  * to build another path. Generally, this involves freeing the buffer
487  * heads.
488  */
489 static void ocfs2_reinit_path(struct ocfs2_path *path, int keep_root)
490 {
491         int i, start = 0, depth = 0;
492         struct ocfs2_path_item *node;
493
494         if (keep_root)
495                 start = 1;
496
497         for(i = start; i < path_num_items(path); i++) {
498                 node = &path->p_node[i];
499
500                 brelse(node->bh);
501                 node->bh = NULL;
502                 node->el = NULL;
503         }
504
505         /*
506          * Tree depth may change during truncate, or insert. If we're
507          * keeping the root extent list, then make sure that our path
508          * structure reflects the proper depth.
509          */
510         if (keep_root)
511                 depth = le16_to_cpu(path_root_el(path)->l_tree_depth);
512         else
513                 path_root_access(path) = NULL;
514
515         path->p_tree_depth = depth;
516 }
517
518 static void ocfs2_free_path(struct ocfs2_path *path)
519 {
520         if (path) {
521                 ocfs2_reinit_path(path, 0);
522                 kfree(path);
523         }
524 }
525
526 /*
527  * All the elements of src into dest. After this call, src could be freed
528  * without affecting dest.
529  *
530  * Both paths should have the same root. Any non-root elements of dest
531  * will be freed.
532  */
533 static void ocfs2_cp_path(struct ocfs2_path *dest, struct ocfs2_path *src)
534 {
535         int i;
536
537         BUG_ON(path_root_bh(dest) != path_root_bh(src));
538         BUG_ON(path_root_el(dest) != path_root_el(src));
539         BUG_ON(path_root_access(dest) != path_root_access(src));
540
541         ocfs2_reinit_path(dest, 1);
542
543         for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
544                 dest->p_node[i].bh = src->p_node[i].bh;
545                 dest->p_node[i].el = src->p_node[i].el;
546
547                 if (dest->p_node[i].bh)
548                         get_bh(dest->p_node[i].bh);
549         }
550 }
551
552 /*
553  * Make the *dest path the same as src and re-initialize src path to
554  * have a root only.
555  */
556 static void ocfs2_mv_path(struct ocfs2_path *dest, struct ocfs2_path *src)
557 {
558         int i;
559
560         BUG_ON(path_root_bh(dest) != path_root_bh(src));
561         BUG_ON(path_root_access(dest) != path_root_access(src));
562
563         for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
564                 brelse(dest->p_node[i].bh);
565
566                 dest->p_node[i].bh = src->p_node[i].bh;
567                 dest->p_node[i].el = src->p_node[i].el;
568
569                 src->p_node[i].bh = NULL;
570                 src->p_node[i].el = NULL;
571         }
572 }
573
574 /*
575  * Insert an extent block at given index.
576  *
577  * This will not take an additional reference on eb_bh.
578  */
579 static inline void ocfs2_path_insert_eb(struct ocfs2_path *path, int index,
580                                         struct buffer_head *eb_bh)
581 {
582         struct ocfs2_extent_block *eb = (struct ocfs2_extent_block *)eb_bh->b_data;
583
584         /*
585          * Right now, no root bh is an extent block, so this helps
586          * catch code errors with dinode trees. The assertion can be
587          * safely removed if we ever need to insert extent block
588          * structures at the root.
589          */
590         BUG_ON(index == 0);
591
592         path->p_node[index].bh = eb_bh;
593         path->p_node[index].el = &eb->h_list;
594 }
595
596 static struct ocfs2_path *ocfs2_new_path(struct buffer_head *root_bh,
597                                          struct ocfs2_extent_list *root_el,
598                                          ocfs2_journal_access_func access)
599 {
600         struct ocfs2_path *path;
601
602         BUG_ON(le16_to_cpu(root_el->l_tree_depth) >= OCFS2_MAX_PATH_DEPTH);
603
604         path = kzalloc(sizeof(*path), GFP_NOFS);
605         if (path) {
606                 path->p_tree_depth = le16_to_cpu(root_el->l_tree_depth);
607                 get_bh(root_bh);
608                 path_root_bh(path) = root_bh;
609                 path_root_el(path) = root_el;
610                 path_root_access(path) = access;
611         }
612
613         return path;
614 }
615
616 static struct ocfs2_path *ocfs2_new_path_from_path(struct ocfs2_path *path)
617 {
618         return ocfs2_new_path(path_root_bh(path), path_root_el(path),
619                               path_root_access(path));
620 }
621
622 static struct ocfs2_path *ocfs2_new_path_from_et(struct ocfs2_extent_tree *et)
623 {
624         return ocfs2_new_path(et->et_root_bh, et->et_root_el,
625                               et->et_root_journal_access);
626 }
627
628 /*
629  * Journal the buffer at depth idx.  All idx>0 are extent_blocks,
630  * otherwise it's the root_access function.
631  *
632  * I don't like the way this function's name looks next to
633  * ocfs2_journal_access_path(), but I don't have a better one.
634  */
635 static int ocfs2_path_bh_journal_access(handle_t *handle,
636                                         struct ocfs2_caching_info *ci,
637                                         struct ocfs2_path *path,
638                                         int idx)
639 {
640         ocfs2_journal_access_func access = path_root_access(path);
641
642         if (!access)
643                 access = ocfs2_journal_access;
644
645         if (idx)
646                 access = ocfs2_journal_access_eb;
647
648         return access(handle, ci, path->p_node[idx].bh,
649                       OCFS2_JOURNAL_ACCESS_WRITE);
650 }
651
652 /*
653  * Convenience function to journal all components in a path.
654  */
655 static int ocfs2_journal_access_path(struct ocfs2_caching_info *ci,
656                                      handle_t *handle,
657                                      struct ocfs2_path *path)
658 {
659         int i, ret = 0;
660
661         if (!path)
662                 goto out;
663
664         for(i = 0; i < path_num_items(path); i++) {
665                 ret = ocfs2_path_bh_journal_access(handle, ci, path, i);
666                 if (ret < 0) {
667                         mlog_errno(ret);
668                         goto out;
669                 }
670         }
671
672 out:
673         return ret;
674 }
675
676 /*
677  * Return the index of the extent record which contains cluster #v_cluster.
678  * -1 is returned if it was not found.
679  *
680  * Should work fine on interior and exterior nodes.
681  */
682 int ocfs2_search_extent_list(struct ocfs2_extent_list *el, u32 v_cluster)
683 {
684         int ret = -1;
685         int i;
686         struct ocfs2_extent_rec *rec;
687         u32 rec_end, rec_start, clusters;
688
689         for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
690                 rec = &el->l_recs[i];
691
692                 rec_start = le32_to_cpu(rec->e_cpos);
693                 clusters = ocfs2_rec_clusters(el, rec);
694
695                 rec_end = rec_start + clusters;
696
697                 if (v_cluster >= rec_start && v_cluster < rec_end) {
698                         ret = i;
699                         break;
700                 }
701         }
702
703         return ret;
704 }
705
706 enum ocfs2_contig_type {
707         CONTIG_NONE = 0,
708         CONTIG_LEFT,
709         CONTIG_RIGHT,
710         CONTIG_LEFTRIGHT,
711 };
712
713
714 /*
715  * NOTE: ocfs2_block_extent_contig(), ocfs2_extents_adjacent() and
716  * ocfs2_extent_contig only work properly against leaf nodes!
717  */
718 static int ocfs2_block_extent_contig(struct super_block *sb,
719                                      struct ocfs2_extent_rec *ext,
720                                      u64 blkno)
721 {
722         u64 blk_end = le64_to_cpu(ext->e_blkno);
723
724         blk_end += ocfs2_clusters_to_blocks(sb,
725                                     le16_to_cpu(ext->e_leaf_clusters));
726
727         return blkno == blk_end;
728 }
729
730 static int ocfs2_extents_adjacent(struct ocfs2_extent_rec *left,
731                                   struct ocfs2_extent_rec *right)
732 {
733         u32 left_range;
734
735         left_range = le32_to_cpu(left->e_cpos) +
736                 le16_to_cpu(left->e_leaf_clusters);
737
738         return (left_range == le32_to_cpu(right->e_cpos));
739 }
740
741 static enum ocfs2_contig_type
742         ocfs2_extent_contig(struct inode *inode,
743                             struct ocfs2_extent_rec *ext,
744                             struct ocfs2_extent_rec *insert_rec)
745 {
746         u64 blkno = le64_to_cpu(insert_rec->e_blkno);
747
748         /*
749          * Refuse to coalesce extent records with different flag
750          * fields - we don't want to mix unwritten extents with user
751          * data.
752          */
753         if (ext->e_flags != insert_rec->e_flags)
754                 return CONTIG_NONE;
755
756         if (ocfs2_extents_adjacent(ext, insert_rec) &&
757             ocfs2_block_extent_contig(inode->i_sb, ext, blkno))
758                         return CONTIG_RIGHT;
759
760         blkno = le64_to_cpu(ext->e_blkno);
761         if (ocfs2_extents_adjacent(insert_rec, ext) &&
762             ocfs2_block_extent_contig(inode->i_sb, insert_rec, blkno))
763                 return CONTIG_LEFT;
764
765         return CONTIG_NONE;
766 }
767
768 /*
769  * NOTE: We can have pretty much any combination of contiguousness and
770  * appending.
771  *
772  * The usefulness of APPEND_TAIL is more in that it lets us know that
773  * we'll have to update the path to that leaf.
774  */
775 enum ocfs2_append_type {
776         APPEND_NONE = 0,
777         APPEND_TAIL,
778 };
779
780 enum ocfs2_split_type {
781         SPLIT_NONE = 0,
782         SPLIT_LEFT,
783         SPLIT_RIGHT,
784 };
785
786 struct ocfs2_insert_type {
787         enum ocfs2_split_type   ins_split;
788         enum ocfs2_append_type  ins_appending;
789         enum ocfs2_contig_type  ins_contig;
790         int                     ins_contig_index;
791         int                     ins_tree_depth;
792 };
793
794 struct ocfs2_merge_ctxt {
795         enum ocfs2_contig_type  c_contig_type;
796         int                     c_has_empty_extent;
797         int                     c_split_covers_rec;
798 };
799
800 static int ocfs2_validate_extent_block(struct super_block *sb,
801                                        struct buffer_head *bh)
802 {
803         int rc;
804         struct ocfs2_extent_block *eb =
805                 (struct ocfs2_extent_block *)bh->b_data;
806
807         mlog(0, "Validating extent block %llu\n",
808              (unsigned long long)bh->b_blocknr);
809
810         BUG_ON(!buffer_uptodate(bh));
811
812         /*
813          * If the ecc fails, we return the error but otherwise
814          * leave the filesystem running.  We know any error is
815          * local to this block.
816          */
817         rc = ocfs2_validate_meta_ecc(sb, bh->b_data, &eb->h_check);
818         if (rc) {
819                 mlog(ML_ERROR, "Checksum failed for extent block %llu\n",
820                      (unsigned long long)bh->b_blocknr);
821                 return rc;
822         }
823
824         /*
825          * Errors after here are fatal.
826          */
827
828         if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
829                 ocfs2_error(sb,
830                             "Extent block #%llu has bad signature %.*s",
831                             (unsigned long long)bh->b_blocknr, 7,
832                             eb->h_signature);
833                 return -EINVAL;
834         }
835
836         if (le64_to_cpu(eb->h_blkno) != bh->b_blocknr) {
837                 ocfs2_error(sb,
838                             "Extent block #%llu has an invalid h_blkno "
839                             "of %llu",
840                             (unsigned long long)bh->b_blocknr,
841                             (unsigned long long)le64_to_cpu(eb->h_blkno));
842                 return -EINVAL;
843         }
844
845         if (le32_to_cpu(eb->h_fs_generation) != OCFS2_SB(sb)->fs_generation) {
846                 ocfs2_error(sb,
847                             "Extent block #%llu has an invalid "
848                             "h_fs_generation of #%u",
849                             (unsigned long long)bh->b_blocknr,
850                             le32_to_cpu(eb->h_fs_generation));
851                 return -EINVAL;
852         }
853
854         return 0;
855 }
856
857 int ocfs2_read_extent_block(struct ocfs2_caching_info *ci, u64 eb_blkno,
858                             struct buffer_head **bh)
859 {
860         int rc;
861         struct buffer_head *tmp = *bh;
862
863         rc = ocfs2_read_block(ci, eb_blkno, &tmp,
864                               ocfs2_validate_extent_block);
865
866         /* If ocfs2_read_block() got us a new bh, pass it up. */
867         if (!rc && !*bh)
868                 *bh = tmp;
869
870         return rc;
871 }
872
873
874 /*
875  * How many free extents have we got before we need more meta data?
876  */
877 int ocfs2_num_free_extents(struct ocfs2_super *osb,
878                            struct ocfs2_extent_tree *et)
879 {
880         int retval;
881         struct ocfs2_extent_list *el = NULL;
882         struct ocfs2_extent_block *eb;
883         struct buffer_head *eb_bh = NULL;
884         u64 last_eb_blk = 0;
885
886         mlog_entry_void();
887
888         el = et->et_root_el;
889         last_eb_blk = ocfs2_et_get_last_eb_blk(et);
890
891         if (last_eb_blk) {
892                 retval = ocfs2_read_extent_block(et->et_ci, last_eb_blk,
893                                                  &eb_bh);
894                 if (retval < 0) {
895                         mlog_errno(retval);
896                         goto bail;
897                 }
898                 eb = (struct ocfs2_extent_block *) eb_bh->b_data;
899                 el = &eb->h_list;
900         }
901
902         BUG_ON(el->l_tree_depth != 0);
903
904         retval = le16_to_cpu(el->l_count) - le16_to_cpu(el->l_next_free_rec);
905 bail:
906         brelse(eb_bh);
907
908         mlog_exit(retval);
909         return retval;
910 }
911
912 /* expects array to already be allocated
913  *
914  * sets h_signature, h_blkno, h_suballoc_bit, h_suballoc_slot, and
915  * l_count for you
916  */
917 static int ocfs2_create_new_meta_bhs(struct ocfs2_super *osb,
918                                      handle_t *handle,
919                                      struct inode *inode,
920                                      int wanted,
921                                      struct ocfs2_alloc_context *meta_ac,
922                                      struct buffer_head *bhs[])
923 {
924         int count, status, i;
925         u16 suballoc_bit_start;
926         u32 num_got;
927         u64 first_blkno;
928         struct ocfs2_extent_block *eb;
929
930         mlog_entry_void();
931
932         count = 0;
933         while (count < wanted) {
934                 status = ocfs2_claim_metadata(osb,
935                                               handle,
936                                               meta_ac,
937                                               wanted - count,
938                                               &suballoc_bit_start,
939                                               &num_got,
940                                               &first_blkno);
941                 if (status < 0) {
942                         mlog_errno(status);
943                         goto bail;
944                 }
945
946                 for(i = count;  i < (num_got + count); i++) {
947                         bhs[i] = sb_getblk(osb->sb, first_blkno);
948                         if (bhs[i] == NULL) {
949                                 status = -EIO;
950                                 mlog_errno(status);
951                                 goto bail;
952                         }
953                         ocfs2_set_new_buffer_uptodate(INODE_CACHE(inode),
954                                                       bhs[i]);
955
956                         status = ocfs2_journal_access_eb(handle, INODE_CACHE(inode), bhs[i],
957                                                          OCFS2_JOURNAL_ACCESS_CREATE);
958                         if (status < 0) {
959                                 mlog_errno(status);
960                                 goto bail;
961                         }
962
963                         memset(bhs[i]->b_data, 0, osb->sb->s_blocksize);
964                         eb = (struct ocfs2_extent_block *) bhs[i]->b_data;
965                         /* Ok, setup the minimal stuff here. */
966                         strcpy(eb->h_signature, OCFS2_EXTENT_BLOCK_SIGNATURE);
967                         eb->h_blkno = cpu_to_le64(first_blkno);
968                         eb->h_fs_generation = cpu_to_le32(osb->fs_generation);
969                         eb->h_suballoc_slot = cpu_to_le16(osb->slot_num);
970                         eb->h_suballoc_bit = cpu_to_le16(suballoc_bit_start);
971                         eb->h_list.l_count =
972                                 cpu_to_le16(ocfs2_extent_recs_per_eb(osb->sb));
973
974                         suballoc_bit_start++;
975                         first_blkno++;
976
977                         /* We'll also be dirtied by the caller, so
978                          * this isn't absolutely necessary. */
979                         status = ocfs2_journal_dirty(handle, bhs[i]);
980                         if (status < 0) {
981                                 mlog_errno(status);
982                                 goto bail;
983                         }
984                 }
985
986                 count += num_got;
987         }
988
989         status = 0;
990 bail:
991         if (status < 0) {
992                 for(i = 0; i < wanted; i++) {
993                         brelse(bhs[i]);
994                         bhs[i] = NULL;
995                 }
996         }
997         mlog_exit(status);
998         return status;
999 }
1000
1001 /*
1002  * Helper function for ocfs2_add_branch() and ocfs2_shift_tree_depth().
1003  *
1004  * Returns the sum of the rightmost extent rec logical offset and
1005  * cluster count.
1006  *
1007  * ocfs2_add_branch() uses this to determine what logical cluster
1008  * value should be populated into the leftmost new branch records.
1009  *
1010  * ocfs2_shift_tree_depth() uses this to determine the # clusters
1011  * value for the new topmost tree record.
1012  */
1013 static inline u32 ocfs2_sum_rightmost_rec(struct ocfs2_extent_list  *el)
1014 {
1015         int i;
1016
1017         i = le16_to_cpu(el->l_next_free_rec) - 1;
1018
1019         return le32_to_cpu(el->l_recs[i].e_cpos) +
1020                 ocfs2_rec_clusters(el, &el->l_recs[i]);
1021 }
1022
1023 /*
1024  * Change range of the branches in the right most path according to the leaf
1025  * extent block's rightmost record.
1026  */
1027 static int ocfs2_adjust_rightmost_branch(handle_t *handle,
1028                                          struct inode *inode,
1029                                          struct ocfs2_extent_tree *et)
1030 {
1031         int status;
1032         struct ocfs2_path *path = NULL;
1033         struct ocfs2_extent_list *el;
1034         struct ocfs2_extent_rec *rec;
1035
1036         path = ocfs2_new_path_from_et(et);
1037         if (!path) {
1038                 status = -ENOMEM;
1039                 return status;
1040         }
1041
1042         status = ocfs2_find_path(et->et_ci, path, UINT_MAX);
1043         if (status < 0) {
1044                 mlog_errno(status);
1045                 goto out;
1046         }
1047
1048         status = ocfs2_extend_trans(handle, path_num_items(path) +
1049                                     handle->h_buffer_credits);
1050         if (status < 0) {
1051                 mlog_errno(status);
1052                 goto out;
1053         }
1054
1055         status = ocfs2_journal_access_path(INODE_CACHE(inode), handle, path);
1056         if (status < 0) {
1057                 mlog_errno(status);
1058                 goto out;
1059         }
1060
1061         el = path_leaf_el(path);
1062         rec = &el->l_recs[le32_to_cpu(el->l_next_free_rec) - 1];
1063
1064         ocfs2_adjust_rightmost_records(inode, handle, path, rec);
1065
1066 out:
1067         ocfs2_free_path(path);
1068         return status;
1069 }
1070
1071 /*
1072  * Add an entire tree branch to our inode. eb_bh is the extent block
1073  * to start at, if we don't want to start the branch at the dinode
1074  * structure.
1075  *
1076  * last_eb_bh is required as we have to update it's next_leaf pointer
1077  * for the new last extent block.
1078  *
1079  * the new branch will be 'empty' in the sense that every block will
1080  * contain a single record with cluster count == 0.
1081  */
1082 static int ocfs2_add_branch(struct ocfs2_super *osb,
1083                             handle_t *handle,
1084                             struct inode *inode,
1085                             struct ocfs2_extent_tree *et,
1086                             struct buffer_head *eb_bh,
1087                             struct buffer_head **last_eb_bh,
1088                             struct ocfs2_alloc_context *meta_ac)
1089 {
1090         int status, new_blocks, i;
1091         u64 next_blkno, new_last_eb_blk;
1092         struct buffer_head *bh;
1093         struct buffer_head **new_eb_bhs = NULL;
1094         struct ocfs2_extent_block *eb;
1095         struct ocfs2_extent_list  *eb_el;
1096         struct ocfs2_extent_list  *el;
1097         u32 new_cpos, root_end;
1098
1099         mlog_entry_void();
1100
1101         BUG_ON(!last_eb_bh || !*last_eb_bh);
1102
1103         if (eb_bh) {
1104                 eb = (struct ocfs2_extent_block *) eb_bh->b_data;
1105                 el = &eb->h_list;
1106         } else
1107                 el = et->et_root_el;
1108
1109         /* we never add a branch to a leaf. */
1110         BUG_ON(!el->l_tree_depth);
1111
1112         new_blocks = le16_to_cpu(el->l_tree_depth);
1113
1114         eb = (struct ocfs2_extent_block *)(*last_eb_bh)->b_data;
1115         new_cpos = ocfs2_sum_rightmost_rec(&eb->h_list);
1116         root_end = ocfs2_sum_rightmost_rec(et->et_root_el);
1117
1118         /*
1119          * If there is a gap before the root end and the real end
1120          * of the righmost leaf block, we need to remove the gap
1121          * between new_cpos and root_end first so that the tree
1122          * is consistent after we add a new branch(it will start
1123          * from new_cpos).
1124          */
1125         if (root_end > new_cpos) {
1126                 mlog(0, "adjust the cluster end from %u to %u\n",
1127                      root_end, new_cpos);
1128                 status = ocfs2_adjust_rightmost_branch(handle, inode, et);
1129                 if (status) {
1130                         mlog_errno(status);
1131                         goto bail;
1132                 }
1133         }
1134
1135         /* allocate the number of new eb blocks we need */
1136         new_eb_bhs = kcalloc(new_blocks, sizeof(struct buffer_head *),
1137                              GFP_KERNEL);
1138         if (!new_eb_bhs) {
1139                 status = -ENOMEM;
1140                 mlog_errno(status);
1141                 goto bail;
1142         }
1143
1144         status = ocfs2_create_new_meta_bhs(osb, handle, inode, new_blocks,
1145                                            meta_ac, new_eb_bhs);
1146         if (status < 0) {
1147                 mlog_errno(status);
1148                 goto bail;
1149         }
1150
1151         /* Note: new_eb_bhs[new_blocks - 1] is the guy which will be
1152          * linked with the rest of the tree.
1153          * conversly, new_eb_bhs[0] is the new bottommost leaf.
1154          *
1155          * when we leave the loop, new_last_eb_blk will point to the
1156          * newest leaf, and next_blkno will point to the topmost extent
1157          * block. */
1158         next_blkno = new_last_eb_blk = 0;
1159         for(i = 0; i < new_blocks; i++) {
1160                 bh = new_eb_bhs[i];
1161                 eb = (struct ocfs2_extent_block *) bh->b_data;
1162                 /* ocfs2_create_new_meta_bhs() should create it right! */
1163                 BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb));
1164                 eb_el = &eb->h_list;
1165
1166                 status = ocfs2_journal_access_eb(handle, INODE_CACHE(inode), bh,
1167                                                  OCFS2_JOURNAL_ACCESS_CREATE);
1168                 if (status < 0) {
1169                         mlog_errno(status);
1170                         goto bail;
1171                 }
1172
1173                 eb->h_next_leaf_blk = 0;
1174                 eb_el->l_tree_depth = cpu_to_le16(i);
1175                 eb_el->l_next_free_rec = cpu_to_le16(1);
1176                 /*
1177                  * This actually counts as an empty extent as
1178                  * c_clusters == 0
1179                  */
1180                 eb_el->l_recs[0].e_cpos = cpu_to_le32(new_cpos);
1181                 eb_el->l_recs[0].e_blkno = cpu_to_le64(next_blkno);
1182                 /*
1183                  * eb_el isn't always an interior node, but even leaf
1184                  * nodes want a zero'd flags and reserved field so
1185                  * this gets the whole 32 bits regardless of use.
1186                  */
1187                 eb_el->l_recs[0].e_int_clusters = cpu_to_le32(0);
1188                 if (!eb_el->l_tree_depth)
1189                         new_last_eb_blk = le64_to_cpu(eb->h_blkno);
1190
1191                 status = ocfs2_journal_dirty(handle, bh);
1192                 if (status < 0) {
1193                         mlog_errno(status);
1194                         goto bail;
1195                 }
1196
1197                 next_blkno = le64_to_cpu(eb->h_blkno);
1198         }
1199
1200         /* This is a bit hairy. We want to update up to three blocks
1201          * here without leaving any of them in an inconsistent state
1202          * in case of error. We don't have to worry about
1203          * journal_dirty erroring as it won't unless we've aborted the
1204          * handle (in which case we would never be here) so reserving
1205          * the write with journal_access is all we need to do. */
1206         status = ocfs2_journal_access_eb(handle, INODE_CACHE(inode), *last_eb_bh,
1207                                          OCFS2_JOURNAL_ACCESS_WRITE);
1208         if (status < 0) {
1209                 mlog_errno(status);
1210                 goto bail;
1211         }
1212         status = ocfs2_et_root_journal_access(handle, et,
1213                                               OCFS2_JOURNAL_ACCESS_WRITE);
1214         if (status < 0) {
1215                 mlog_errno(status);
1216                 goto bail;
1217         }
1218         if (eb_bh) {
1219                 status = ocfs2_journal_access_eb(handle, INODE_CACHE(inode), eb_bh,
1220                                                  OCFS2_JOURNAL_ACCESS_WRITE);
1221                 if (status < 0) {
1222                         mlog_errno(status);
1223                         goto bail;
1224                 }
1225         }
1226
1227         /* Link the new branch into the rest of the tree (el will
1228          * either be on the root_bh, or the extent block passed in. */
1229         i = le16_to_cpu(el->l_next_free_rec);
1230         el->l_recs[i].e_blkno = cpu_to_le64(next_blkno);
1231         el->l_recs[i].e_cpos = cpu_to_le32(new_cpos);
1232         el->l_recs[i].e_int_clusters = 0;
1233         le16_add_cpu(&el->l_next_free_rec, 1);
1234
1235         /* fe needs a new last extent block pointer, as does the
1236          * next_leaf on the previously last-extent-block. */
1237         ocfs2_et_set_last_eb_blk(et, new_last_eb_blk);
1238
1239         eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
1240         eb->h_next_leaf_blk = cpu_to_le64(new_last_eb_blk);
1241
1242         status = ocfs2_journal_dirty(handle, *last_eb_bh);
1243         if (status < 0)
1244                 mlog_errno(status);
1245         status = ocfs2_journal_dirty(handle, et->et_root_bh);
1246         if (status < 0)
1247                 mlog_errno(status);
1248         if (eb_bh) {
1249                 status = ocfs2_journal_dirty(handle, eb_bh);
1250                 if (status < 0)
1251                         mlog_errno(status);
1252         }
1253
1254         /*
1255          * Some callers want to track the rightmost leaf so pass it
1256          * back here.
1257          */
1258         brelse(*last_eb_bh);
1259         get_bh(new_eb_bhs[0]);
1260         *last_eb_bh = new_eb_bhs[0];
1261
1262         status = 0;
1263 bail:
1264         if (new_eb_bhs) {
1265                 for (i = 0; i < new_blocks; i++)
1266                         brelse(new_eb_bhs[i]);
1267                 kfree(new_eb_bhs);
1268         }
1269
1270         mlog_exit(status);
1271         return status;
1272 }
1273
1274 /*
1275  * adds another level to the allocation tree.
1276  * returns back the new extent block so you can add a branch to it
1277  * after this call.
1278  */
1279 static int ocfs2_shift_tree_depth(struct ocfs2_super *osb,
1280                                   handle_t *handle,
1281                                   struct inode *inode,
1282                                   struct ocfs2_extent_tree *et,
1283                                   struct ocfs2_alloc_context *meta_ac,
1284                                   struct buffer_head **ret_new_eb_bh)
1285 {
1286         int status, i;
1287         u32 new_clusters;
1288         struct buffer_head *new_eb_bh = NULL;
1289         struct ocfs2_extent_block *eb;
1290         struct ocfs2_extent_list  *root_el;
1291         struct ocfs2_extent_list  *eb_el;
1292
1293         mlog_entry_void();
1294
1295         status = ocfs2_create_new_meta_bhs(osb, handle, inode, 1, meta_ac,
1296                                            &new_eb_bh);
1297         if (status < 0) {
1298                 mlog_errno(status);
1299                 goto bail;
1300         }
1301
1302         eb = (struct ocfs2_extent_block *) new_eb_bh->b_data;
1303         /* ocfs2_create_new_meta_bhs() should create it right! */
1304         BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb));
1305
1306         eb_el = &eb->h_list;
1307         root_el = et->et_root_el;
1308
1309         status = ocfs2_journal_access_eb(handle, INODE_CACHE(inode), new_eb_bh,
1310                                          OCFS2_JOURNAL_ACCESS_CREATE);
1311         if (status < 0) {
1312                 mlog_errno(status);
1313                 goto bail;
1314         }
1315
1316         /* copy the root extent list data into the new extent block */
1317         eb_el->l_tree_depth = root_el->l_tree_depth;
1318         eb_el->l_next_free_rec = root_el->l_next_free_rec;
1319         for (i = 0; i < le16_to_cpu(root_el->l_next_free_rec); i++)
1320                 eb_el->l_recs[i] = root_el->l_recs[i];
1321
1322         status = ocfs2_journal_dirty(handle, new_eb_bh);
1323         if (status < 0) {
1324                 mlog_errno(status);
1325                 goto bail;
1326         }
1327
1328         status = ocfs2_et_root_journal_access(handle, et,
1329                                               OCFS2_JOURNAL_ACCESS_WRITE);
1330         if (status < 0) {
1331                 mlog_errno(status);
1332                 goto bail;
1333         }
1334
1335         new_clusters = ocfs2_sum_rightmost_rec(eb_el);
1336
1337         /* update root_bh now */
1338         le16_add_cpu(&root_el->l_tree_depth, 1);
1339         root_el->l_recs[0].e_cpos = 0;
1340         root_el->l_recs[0].e_blkno = eb->h_blkno;
1341         root_el->l_recs[0].e_int_clusters = cpu_to_le32(new_clusters);
1342         for (i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++)
1343                 memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
1344         root_el->l_next_free_rec = cpu_to_le16(1);
1345
1346         /* If this is our 1st tree depth shift, then last_eb_blk
1347          * becomes the allocated extent block */
1348         if (root_el->l_tree_depth == cpu_to_le16(1))
1349                 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
1350
1351         status = ocfs2_journal_dirty(handle, et->et_root_bh);
1352         if (status < 0) {
1353                 mlog_errno(status);
1354                 goto bail;
1355         }
1356
1357         *ret_new_eb_bh = new_eb_bh;
1358         new_eb_bh = NULL;
1359         status = 0;
1360 bail:
1361         brelse(new_eb_bh);
1362
1363         mlog_exit(status);
1364         return status;
1365 }
1366
1367 /*
1368  * Should only be called when there is no space left in any of the
1369  * leaf nodes. What we want to do is find the lowest tree depth
1370  * non-leaf extent block with room for new records. There are three
1371  * valid results of this search:
1372  *
1373  * 1) a lowest extent block is found, then we pass it back in
1374  *    *lowest_eb_bh and return '0'
1375  *
1376  * 2) the search fails to find anything, but the root_el has room. We
1377  *    pass NULL back in *lowest_eb_bh, but still return '0'
1378  *
1379  * 3) the search fails to find anything AND the root_el is full, in
1380  *    which case we return > 0
1381  *
1382  * return status < 0 indicates an error.
1383  */
1384 static int ocfs2_find_branch_target(struct ocfs2_super *osb,
1385                                     struct ocfs2_extent_tree *et,
1386                                     struct buffer_head **target_bh)
1387 {
1388         int status = 0, i;
1389         u64 blkno;
1390         struct ocfs2_extent_block *eb;
1391         struct ocfs2_extent_list  *el;
1392         struct buffer_head *bh = NULL;
1393         struct buffer_head *lowest_bh = NULL;
1394
1395         mlog_entry_void();
1396
1397         *target_bh = NULL;
1398
1399         el = et->et_root_el;
1400
1401         while(le16_to_cpu(el->l_tree_depth) > 1) {
1402                 if (le16_to_cpu(el->l_next_free_rec) == 0) {
1403                         ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
1404                                     "Owner %llu has empty "
1405                                     "extent list (next_free_rec == 0)",
1406                                     (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci));
1407                         status = -EIO;
1408                         goto bail;
1409                 }
1410                 i = le16_to_cpu(el->l_next_free_rec) - 1;
1411                 blkno = le64_to_cpu(el->l_recs[i].e_blkno);
1412                 if (!blkno) {
1413                         ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
1414                                     "Owner %llu has extent "
1415                                     "list where extent # %d has no physical "
1416                                     "block start",
1417                                     (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), i);
1418                         status = -EIO;
1419                         goto bail;
1420                 }
1421
1422                 brelse(bh);
1423                 bh = NULL;
1424
1425                 status = ocfs2_read_extent_block(et->et_ci, blkno, &bh);
1426                 if (status < 0) {
1427                         mlog_errno(status);
1428                         goto bail;
1429                 }
1430
1431                 eb = (struct ocfs2_extent_block *) bh->b_data;
1432                 el = &eb->h_list;
1433
1434                 if (le16_to_cpu(el->l_next_free_rec) <
1435                     le16_to_cpu(el->l_count)) {
1436                         brelse(lowest_bh);
1437                         lowest_bh = bh;
1438                         get_bh(lowest_bh);
1439                 }
1440         }
1441
1442         /* If we didn't find one and the fe doesn't have any room,
1443          * then return '1' */
1444         el = et->et_root_el;
1445         if (!lowest_bh && (el->l_next_free_rec == el->l_count))
1446                 status = 1;
1447
1448         *target_bh = lowest_bh;
1449 bail:
1450         brelse(bh);
1451
1452         mlog_exit(status);
1453         return status;
1454 }
1455
1456 /*
1457  * Grow a b-tree so that it has more records.
1458  *
1459  * We might shift the tree depth in which case existing paths should
1460  * be considered invalid.
1461  *
1462  * Tree depth after the grow is returned via *final_depth.
1463  *
1464  * *last_eb_bh will be updated by ocfs2_add_branch().
1465  */
1466 static int ocfs2_grow_tree(struct inode *inode, handle_t *handle,
1467                            struct ocfs2_extent_tree *et, int *final_depth,
1468                            struct buffer_head **last_eb_bh,
1469                            struct ocfs2_alloc_context *meta_ac)
1470 {
1471         int ret, shift;
1472         struct ocfs2_extent_list *el = et->et_root_el;
1473         int depth = le16_to_cpu(el->l_tree_depth);
1474         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1475         struct buffer_head *bh = NULL;
1476
1477         BUG_ON(meta_ac == NULL);
1478
1479         shift = ocfs2_find_branch_target(osb, et, &bh);
1480         if (shift < 0) {
1481                 ret = shift;
1482                 mlog_errno(ret);
1483                 goto out;
1484         }
1485
1486         /* We traveled all the way to the bottom of the allocation tree
1487          * and didn't find room for any more extents - we need to add
1488          * another tree level */
1489         if (shift) {
1490                 BUG_ON(bh);
1491                 mlog(0, "need to shift tree depth (current = %d)\n", depth);
1492
1493                 /* ocfs2_shift_tree_depth will return us a buffer with
1494                  * the new extent block (so we can pass that to
1495                  * ocfs2_add_branch). */
1496                 ret = ocfs2_shift_tree_depth(osb, handle, inode, et,
1497                                              meta_ac, &bh);
1498                 if (ret < 0) {
1499                         mlog_errno(ret);
1500                         goto out;
1501                 }
1502                 depth++;
1503                 if (depth == 1) {
1504                         /*
1505                          * Special case: we have room now if we shifted from
1506                          * tree_depth 0, so no more work needs to be done.
1507                          *
1508                          * We won't be calling add_branch, so pass
1509                          * back *last_eb_bh as the new leaf. At depth
1510                          * zero, it should always be null so there's
1511                          * no reason to brelse.
1512                          */
1513                         BUG_ON(*last_eb_bh);
1514                         get_bh(bh);
1515                         *last_eb_bh = bh;
1516                         goto out;
1517                 }
1518         }
1519
1520         /* call ocfs2_add_branch to add the final part of the tree with
1521          * the new data. */
1522         mlog(0, "add branch. bh = %p\n", bh);
1523         ret = ocfs2_add_branch(osb, handle, inode, et, bh, last_eb_bh,
1524                                meta_ac);
1525         if (ret < 0) {
1526                 mlog_errno(ret);
1527                 goto out;
1528         }
1529
1530 out:
1531         if (final_depth)
1532                 *final_depth = depth;
1533         brelse(bh);
1534         return ret;
1535 }
1536
1537 /*
1538  * This function will discard the rightmost extent record.
1539  */
1540 static void ocfs2_shift_records_right(struct ocfs2_extent_list *el)
1541 {
1542         int next_free = le16_to_cpu(el->l_next_free_rec);
1543         int count = le16_to_cpu(el->l_count);
1544         unsigned int num_bytes;
1545
1546         BUG_ON(!next_free);
1547         /* This will cause us to go off the end of our extent list. */
1548         BUG_ON(next_free >= count);
1549
1550         num_bytes = sizeof(struct ocfs2_extent_rec) * next_free;
1551
1552         memmove(&el->l_recs[1], &el->l_recs[0], num_bytes);
1553 }
1554
1555 static void ocfs2_rotate_leaf(struct ocfs2_extent_list *el,
1556                               struct ocfs2_extent_rec *insert_rec)
1557 {
1558         int i, insert_index, next_free, has_empty, num_bytes;
1559         u32 insert_cpos = le32_to_cpu(insert_rec->e_cpos);
1560         struct ocfs2_extent_rec *rec;
1561
1562         next_free = le16_to_cpu(el->l_next_free_rec);
1563         has_empty = ocfs2_is_empty_extent(&el->l_recs[0]);
1564
1565         BUG_ON(!next_free);
1566
1567         /* The tree code before us didn't allow enough room in the leaf. */
1568         BUG_ON(el->l_next_free_rec == el->l_count && !has_empty);
1569
1570         /*
1571          * The easiest way to approach this is to just remove the
1572          * empty extent and temporarily decrement next_free.
1573          */
1574         if (has_empty) {
1575                 /*
1576                  * If next_free was 1 (only an empty extent), this
1577                  * loop won't execute, which is fine. We still want
1578                  * the decrement above to happen.
1579                  */
1580                 for(i = 0; i < (next_free - 1); i++)
1581                         el->l_recs[i] = el->l_recs[i+1];
1582
1583                 next_free--;
1584         }
1585
1586         /*
1587          * Figure out what the new record index should be.
1588          */
1589         for(i = 0; i < next_free; i++) {
1590                 rec = &el->l_recs[i];
1591
1592                 if (insert_cpos < le32_to_cpu(rec->e_cpos))
1593                         break;
1594         }
1595         insert_index = i;
1596
1597         mlog(0, "ins %u: index %d, has_empty %d, next_free %d, count %d\n",
1598              insert_cpos, insert_index, has_empty, next_free, le16_to_cpu(el->l_count));
1599
1600         BUG_ON(insert_index < 0);
1601         BUG_ON(insert_index >= le16_to_cpu(el->l_count));
1602         BUG_ON(insert_index > next_free);
1603
1604         /*
1605          * No need to memmove if we're just adding to the tail.
1606          */
1607         if (insert_index != next_free) {
1608                 BUG_ON(next_free >= le16_to_cpu(el->l_count));
1609
1610                 num_bytes = next_free - insert_index;
1611                 num_bytes *= sizeof(struct ocfs2_extent_rec);
1612                 memmove(&el->l_recs[insert_index + 1],
1613                         &el->l_recs[insert_index],
1614                         num_bytes);
1615         }
1616
1617         /*
1618          * Either we had an empty extent, and need to re-increment or
1619          * there was no empty extent on a non full rightmost leaf node,
1620          * in which case we still need to increment.
1621          */
1622         next_free++;
1623         el->l_next_free_rec = cpu_to_le16(next_free);
1624         /*
1625          * Make sure none of the math above just messed up our tree.
1626          */
1627         BUG_ON(le16_to_cpu(el->l_next_free_rec) > le16_to_cpu(el->l_count));
1628
1629         el->l_recs[insert_index] = *insert_rec;
1630
1631 }
1632
1633 static void ocfs2_remove_empty_extent(struct ocfs2_extent_list *el)
1634 {
1635         int size, num_recs = le16_to_cpu(el->l_next_free_rec);
1636
1637         BUG_ON(num_recs == 0);
1638
1639         if (ocfs2_is_empty_extent(&el->l_recs[0])) {
1640                 num_recs--;
1641                 size = num_recs * sizeof(struct ocfs2_extent_rec);
1642                 memmove(&el->l_recs[0], &el->l_recs[1], size);
1643                 memset(&el->l_recs[num_recs], 0,
1644                        sizeof(struct ocfs2_extent_rec));
1645                 el->l_next_free_rec = cpu_to_le16(num_recs);
1646         }
1647 }
1648
1649 /*
1650  * Create an empty extent record .
1651  *
1652  * l_next_free_rec may be updated.
1653  *
1654  * If an empty extent already exists do nothing.
1655  */
1656 static void ocfs2_create_empty_extent(struct ocfs2_extent_list *el)
1657 {
1658         int next_free = le16_to_cpu(el->l_next_free_rec);
1659
1660         BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
1661
1662         if (next_free == 0)
1663                 goto set_and_inc;
1664
1665         if (ocfs2_is_empty_extent(&el->l_recs[0]))
1666                 return;
1667
1668         mlog_bug_on_msg(el->l_count == el->l_next_free_rec,
1669                         "Asked to create an empty extent in a full list:\n"
1670                         "count = %u, tree depth = %u",
1671                         le16_to_cpu(el->l_count),
1672                         le16_to_cpu(el->l_tree_depth));
1673
1674         ocfs2_shift_records_right(el);
1675
1676 set_and_inc:
1677         le16_add_cpu(&el->l_next_free_rec, 1);
1678         memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
1679 }
1680
1681 /*
1682  * For a rotation which involves two leaf nodes, the "root node" is
1683  * the lowest level tree node which contains a path to both leafs. This
1684  * resulting set of information can be used to form a complete "subtree"
1685  *
1686  * This function is passed two full paths from the dinode down to a
1687  * pair of adjacent leaves. It's task is to figure out which path
1688  * index contains the subtree root - this can be the root index itself
1689  * in a worst-case rotation.
1690  *
1691  * The array index of the subtree root is passed back.
1692  */
1693 static int ocfs2_find_subtree_root(struct inode *inode,
1694                                    struct ocfs2_path *left,
1695                                    struct ocfs2_path *right)
1696 {
1697         int i = 0;
1698
1699         /*
1700          * Check that the caller passed in two paths from the same tree.
1701          */
1702         BUG_ON(path_root_bh(left) != path_root_bh(right));
1703
1704         do {
1705                 i++;
1706
1707                 /*
1708                  * The caller didn't pass two adjacent paths.
1709                  */
1710                 mlog_bug_on_msg(i > left->p_tree_depth,
1711                                 "Inode %lu, left depth %u, right depth %u\n"
1712                                 "left leaf blk %llu, right leaf blk %llu\n",
1713                                 inode->i_ino, left->p_tree_depth,
1714                                 right->p_tree_depth,
1715                                 (unsigned long long)path_leaf_bh(left)->b_blocknr,
1716                                 (unsigned long long)path_leaf_bh(right)->b_blocknr);
1717         } while (left->p_node[i].bh->b_blocknr ==
1718                  right->p_node[i].bh->b_blocknr);
1719
1720         return i - 1;
1721 }
1722
1723 typedef void (path_insert_t)(void *, struct buffer_head *);
1724
1725 /*
1726  * Traverse a btree path in search of cpos, starting at root_el.
1727  *
1728  * This code can be called with a cpos larger than the tree, in which
1729  * case it will return the rightmost path.
1730  */
1731 static int __ocfs2_find_path(struct ocfs2_caching_info *ci,
1732                              struct ocfs2_extent_list *root_el, u32 cpos,
1733                              path_insert_t *func, void *data)
1734 {
1735         int i, ret = 0;
1736         u32 range;
1737         u64 blkno;
1738         struct buffer_head *bh = NULL;
1739         struct ocfs2_extent_block *eb;
1740         struct ocfs2_extent_list *el;
1741         struct ocfs2_extent_rec *rec;
1742
1743         el = root_el;
1744         while (el->l_tree_depth) {
1745                 if (le16_to_cpu(el->l_next_free_rec) == 0) {
1746                         ocfs2_error(ocfs2_metadata_cache_get_super(ci),
1747                                     "Owner %llu has empty extent list at "
1748                                     "depth %u\n",
1749                                     (unsigned long long)ocfs2_metadata_cache_owner(ci),
1750                                     le16_to_cpu(el->l_tree_depth));
1751                         ret = -EROFS;
1752                         goto out;
1753
1754                 }
1755
1756                 for(i = 0; i < le16_to_cpu(el->l_next_free_rec) - 1; i++) {
1757                         rec = &el->l_recs[i];
1758
1759                         /*
1760                          * In the case that cpos is off the allocation
1761                          * tree, this should just wind up returning the
1762                          * rightmost record.
1763                          */
1764                         range = le32_to_cpu(rec->e_cpos) +
1765                                 ocfs2_rec_clusters(el, rec);
1766                         if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
1767                             break;
1768                 }
1769
1770                 blkno = le64_to_cpu(el->l_recs[i].e_blkno);
1771                 if (blkno == 0) {
1772                         ocfs2_error(ocfs2_metadata_cache_get_super(ci),
1773                                     "Owner %llu has bad blkno in extent list "
1774                                     "at depth %u (index %d)\n",
1775                                     (unsigned long long)ocfs2_metadata_cache_owner(ci),
1776                                     le16_to_cpu(el->l_tree_depth), i);
1777                         ret = -EROFS;
1778                         goto out;
1779                 }
1780
1781                 brelse(bh);
1782                 bh = NULL;
1783                 ret = ocfs2_read_extent_block(ci, blkno, &bh);
1784                 if (ret) {
1785                         mlog_errno(ret);
1786                         goto out;
1787                 }
1788
1789                 eb = (struct ocfs2_extent_block *) bh->b_data;
1790                 el = &eb->h_list;
1791
1792                 if (le16_to_cpu(el->l_next_free_rec) >
1793                     le16_to_cpu(el->l_count)) {
1794                         ocfs2_error(ocfs2_metadata_cache_get_super(ci),
1795                                     "Owner %llu has bad count in extent list "
1796                                     "at block %llu (next free=%u, count=%u)\n",
1797                                     (unsigned long long)ocfs2_metadata_cache_owner(ci),
1798                                     (unsigned long long)bh->b_blocknr,
1799                                     le16_to_cpu(el->l_next_free_rec),
1800                                     le16_to_cpu(el->l_count));
1801                         ret = -EROFS;
1802                         goto out;
1803                 }
1804
1805                 if (func)
1806                         func(data, bh);
1807         }
1808
1809 out:
1810         /*
1811          * Catch any trailing bh that the loop didn't handle.
1812          */
1813         brelse(bh);
1814
1815         return ret;
1816 }
1817
1818 /*
1819  * Given an initialized path (that is, it has a valid root extent
1820  * list), this function will traverse the btree in search of the path
1821  * which would contain cpos.
1822  *
1823  * The path traveled is recorded in the path structure.
1824  *
1825  * Note that this will not do any comparisons on leaf node extent
1826  * records, so it will work fine in the case that we just added a tree
1827  * branch.
1828  */
1829 struct find_path_data {
1830         int index;
1831         struct ocfs2_path *path;
1832 };
1833 static void find_path_ins(void *data, struct buffer_head *bh)
1834 {
1835         struct find_path_data *fp = data;
1836
1837         get_bh(bh);
1838         ocfs2_path_insert_eb(fp->path, fp->index, bh);
1839         fp->index++;
1840 }
1841 static int ocfs2_find_path(struct ocfs2_caching_info *ci,
1842                            struct ocfs2_path *path, u32 cpos)
1843 {
1844         struct find_path_data data;
1845
1846         data.index = 1;
1847         data.path = path;
1848         return __ocfs2_find_path(ci, path_root_el(path), cpos,
1849                                  find_path_ins, &data);
1850 }
1851
1852 static void find_leaf_ins(void *data, struct buffer_head *bh)
1853 {
1854         struct ocfs2_extent_block *eb =(struct ocfs2_extent_block *)bh->b_data;
1855         struct ocfs2_extent_list *el = &eb->h_list;
1856         struct buffer_head **ret = data;
1857
1858         /* We want to retain only the leaf block. */
1859         if (le16_to_cpu(el->l_tree_depth) == 0) {
1860                 get_bh(bh);
1861                 *ret = bh;
1862         }
1863 }
1864 /*
1865  * Find the leaf block in the tree which would contain cpos. No
1866  * checking of the actual leaf is done.
1867  *
1868  * Some paths want to call this instead of allocating a path structure
1869  * and calling ocfs2_find_path().
1870  *
1871  * This function doesn't handle non btree extent lists.
1872  */
1873 int ocfs2_find_leaf(struct ocfs2_caching_info *ci,
1874                     struct ocfs2_extent_list *root_el, u32 cpos,
1875                     struct buffer_head **leaf_bh)
1876 {
1877         int ret;
1878         struct buffer_head *bh = NULL;
1879
1880         ret = __ocfs2_find_path(ci, root_el, cpos, find_leaf_ins, &bh);
1881         if (ret) {
1882                 mlog_errno(ret);
1883                 goto out;
1884         }
1885
1886         *leaf_bh = bh;
1887 out:
1888         return ret;
1889 }
1890
1891 /*
1892  * Adjust the adjacent records (left_rec, right_rec) involved in a rotation.
1893  *
1894  * Basically, we've moved stuff around at the bottom of the tree and
1895  * we need to fix up the extent records above the changes to reflect
1896  * the new changes.
1897  *
1898  * left_rec: the record on the left.
1899  * left_child_el: is the child list pointed to by left_rec
1900  * right_rec: the record to the right of left_rec
1901  * right_child_el: is the child list pointed to by right_rec
1902  *
1903  * By definition, this only works on interior nodes.
1904  */
1905 static void ocfs2_adjust_adjacent_records(struct ocfs2_extent_rec *left_rec,
1906                                   struct ocfs2_extent_list *left_child_el,
1907                                   struct ocfs2_extent_rec *right_rec,
1908                                   struct ocfs2_extent_list *right_child_el)
1909 {
1910         u32 left_clusters, right_end;
1911
1912         /*
1913          * Interior nodes never have holes. Their cpos is the cpos of
1914          * the leftmost record in their child list. Their cluster
1915          * count covers the full theoretical range of their child list
1916          * - the range between their cpos and the cpos of the record
1917          * immediately to their right.
1918          */
1919         left_clusters = le32_to_cpu(right_child_el->l_recs[0].e_cpos);
1920         if (!ocfs2_rec_clusters(right_child_el, &right_child_el->l_recs[0])) {
1921                 BUG_ON(right_child_el->l_tree_depth);
1922                 BUG_ON(le16_to_cpu(right_child_el->l_next_free_rec) <= 1);
1923                 left_clusters = le32_to_cpu(right_child_el->l_recs[1].e_cpos);
1924         }
1925         left_clusters -= le32_to_cpu(left_rec->e_cpos);
1926         left_rec->e_int_clusters = cpu_to_le32(left_clusters);
1927
1928         /*
1929          * Calculate the rightmost cluster count boundary before
1930          * moving cpos - we will need to adjust clusters after
1931          * updating e_cpos to keep the same highest cluster count.
1932          */
1933         right_end = le32_to_cpu(right_rec->e_cpos);
1934         right_end += le32_to_cpu(right_rec->e_int_clusters);
1935
1936         right_rec->e_cpos = left_rec->e_cpos;
1937         le32_add_cpu(&right_rec->e_cpos, left_clusters);
1938
1939         right_end -= le32_to_cpu(right_rec->e_cpos);
1940         right_rec->e_int_clusters = cpu_to_le32(right_end);
1941 }
1942
1943 /*
1944  * Adjust the adjacent root node records involved in a
1945  * rotation. left_el_blkno is passed in as a key so that we can easily
1946  * find it's index in the root list.
1947  */
1948 static void ocfs2_adjust_root_records(struct ocfs2_extent_list *root_el,
1949                                       struct ocfs2_extent_list *left_el,
1950                                       struct ocfs2_extent_list *right_el,
1951                                       u64 left_el_blkno)
1952 {
1953         int i;
1954
1955         BUG_ON(le16_to_cpu(root_el->l_tree_depth) <=
1956                le16_to_cpu(left_el->l_tree_depth));
1957
1958         for(i = 0; i < le16_to_cpu(root_el->l_next_free_rec) - 1; i++) {
1959                 if (le64_to_cpu(root_el->l_recs[i].e_blkno) == left_el_blkno)
1960                         break;
1961         }
1962
1963         /*
1964          * The path walking code should have never returned a root and
1965          * two paths which are not adjacent.
1966          */
1967         BUG_ON(i >= (le16_to_cpu(root_el->l_next_free_rec) - 1));
1968
1969         ocfs2_adjust_adjacent_records(&root_el->l_recs[i], left_el,
1970                                       &root_el->l_recs[i + 1], right_el);
1971 }
1972
1973 /*
1974  * We've changed a leaf block (in right_path) and need to reflect that
1975  * change back up the subtree.
1976  *
1977  * This happens in multiple places:
1978  *   - When we've moved an extent record from the left path leaf to the right
1979  *     path leaf to make room for an empty extent in the left path leaf.
1980  *   - When our insert into the right path leaf is at the leftmost edge
1981  *     and requires an update of the path immediately to it's left. This
1982  *     can occur at the end of some types of rotation and appending inserts.
1983  *   - When we've adjusted the last extent record in the left path leaf and the
1984  *     1st extent record in the right path leaf during cross extent block merge.
1985  */
1986 static void ocfs2_complete_edge_insert(struct inode *inode, handle_t *handle,
1987                                        struct ocfs2_path *left_path,
1988                                        struct ocfs2_path *right_path,
1989                                        int subtree_index)
1990 {
1991         int ret, i, idx;
1992         struct ocfs2_extent_list *el, *left_el, *right_el;
1993         struct ocfs2_extent_rec *left_rec, *right_rec;
1994         struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
1995
1996         /*
1997          * Update the counts and position values within all the
1998          * interior nodes to reflect the leaf rotation we just did.
1999          *
2000          * The root node is handled below the loop.
2001          *
2002          * We begin the loop with right_el and left_el pointing to the
2003          * leaf lists and work our way up.
2004          *
2005          * NOTE: within this loop, left_el and right_el always refer
2006          * to the *child* lists.
2007          */
2008         left_el = path_leaf_el(left_path);
2009         right_el = path_leaf_el(right_path);
2010         for(i = left_path->p_tree_depth - 1; i > subtree_index; i--) {
2011                 mlog(0, "Adjust records at index %u\n", i);
2012
2013                 /*
2014                  * One nice property of knowing that all of these
2015                  * nodes are below the root is that we only deal with
2016                  * the leftmost right node record and the rightmost
2017                  * left node record.
2018                  */
2019                 el = left_path->p_node[i].el;
2020                 idx = le16_to_cpu(left_el->l_next_free_rec) - 1;
2021                 left_rec = &el->l_recs[idx];
2022
2023                 el = right_path->p_node[i].el;
2024                 right_rec = &el->l_recs[0];
2025
2026                 ocfs2_adjust_adjacent_records(left_rec, left_el, right_rec,
2027                                               right_el);
2028
2029                 ret = ocfs2_journal_dirty(handle, left_path->p_node[i].bh);
2030                 if (ret)
2031                         mlog_errno(ret);
2032
2033                 ret = ocfs2_journal_dirty(handle, right_path->p_node[i].bh);
2034                 if (ret)
2035                         mlog_errno(ret);
2036
2037                 /*
2038                  * Setup our list pointers now so that the current
2039                  * parents become children in the next iteration.
2040                  */
2041                 left_el = left_path->p_node[i].el;
2042                 right_el = right_path->p_node[i].el;
2043         }
2044
2045         /*
2046          * At the root node, adjust the two adjacent records which
2047          * begin our path to the leaves.
2048          */
2049
2050         el = left_path->p_node[subtree_index].el;
2051         left_el = left_path->p_node[subtree_index + 1].el;
2052         right_el = right_path->p_node[subtree_index + 1].el;
2053
2054         ocfs2_adjust_root_records(el, left_el, right_el,
2055                                   left_path->p_node[subtree_index + 1].bh->b_blocknr);
2056
2057         root_bh = left_path->p_node[subtree_index].bh;
2058
2059         ret = ocfs2_journal_dirty(handle, root_bh);
2060         if (ret)
2061                 mlog_errno(ret);
2062 }
2063
2064 static int ocfs2_rotate_subtree_right(struct inode *inode,
2065                                       handle_t *handle,
2066                                       struct ocfs2_path *left_path,
2067                                       struct ocfs2_path *right_path,
2068                                       int subtree_index)
2069 {
2070         int ret, i;
2071         struct buffer_head *right_leaf_bh;
2072         struct buffer_head *left_leaf_bh = NULL;
2073         struct buffer_head *root_bh;
2074         struct ocfs2_extent_list *right_el, *left_el;
2075         struct ocfs2_extent_rec move_rec;
2076
2077         left_leaf_bh = path_leaf_bh(left_path);
2078         left_el = path_leaf_el(left_path);
2079
2080         if (left_el->l_next_free_rec != left_el->l_count) {
2081                 ocfs2_error(inode->i_sb,
2082                             "Inode %llu has non-full interior leaf node %llu"
2083                             "(next free = %u)",
2084                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
2085                             (unsigned long long)left_leaf_bh->b_blocknr,
2086                             le16_to_cpu(left_el->l_next_free_rec));
2087                 return -EROFS;
2088         }
2089
2090         /*
2091          * This extent block may already have an empty record, so we
2092          * return early if so.
2093          */
2094         if (ocfs2_is_empty_extent(&left_el->l_recs[0]))
2095                 return 0;
2096
2097         root_bh = left_path->p_node[subtree_index].bh;
2098         BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
2099
2100         ret = ocfs2_path_bh_journal_access(handle, INODE_CACHE(inode), right_path,
2101                                            subtree_index);
2102         if (ret) {
2103                 mlog_errno(ret);
2104                 goto out;
2105         }
2106
2107         for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
2108                 ret = ocfs2_path_bh_journal_access(handle, INODE_CACHE(inode),
2109                                                    right_path, i);
2110                 if (ret) {
2111                         mlog_errno(ret);
2112                         goto out;
2113                 }
2114
2115                 ret = ocfs2_path_bh_journal_access(handle, INODE_CACHE(inode),
2116                                                    left_path, i);
2117                 if (ret) {
2118                         mlog_errno(ret);
2119                         goto out;
2120                 }
2121         }
2122
2123         right_leaf_bh = path_leaf_bh(right_path);
2124         right_el = path_leaf_el(right_path);
2125
2126         /* This is a code error, not a disk corruption. */
2127         mlog_bug_on_msg(!right_el->l_next_free_rec, "Inode %llu: Rotate fails "
2128                         "because rightmost leaf block %llu is empty\n",
2129                         (unsigned long long)OCFS2_I(inode)->ip_blkno,
2130                         (unsigned long long)right_leaf_bh->b_blocknr);
2131
2132         ocfs2_create_empty_extent(right_el);
2133
2134         ret = ocfs2_journal_dirty(handle, right_leaf_bh);
2135         if (ret) {
2136                 mlog_errno(ret);
2137                 goto out;
2138         }
2139
2140         /* Do the copy now. */
2141         i = le16_to_cpu(left_el->l_next_free_rec) - 1;
2142         move_rec = left_el->l_recs[i];
2143         right_el->l_recs[0] = move_rec;
2144
2145         /*
2146          * Clear out the record we just copied and shift everything
2147          * over, leaving an empty extent in the left leaf.
2148          *
2149          * We temporarily subtract from next_free_rec so that the
2150          * shift will lose the tail record (which is now defunct).
2151          */
2152         le16_add_cpu(&left_el->l_next_free_rec, -1);
2153         ocfs2_shift_records_right(left_el);
2154         memset(&left_el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2155         le16_add_cpu(&left_el->l_next_free_rec, 1);
2156
2157         ret = ocfs2_journal_dirty(handle, left_leaf_bh);
2158         if (ret) {
2159                 mlog_errno(ret);
2160                 goto out;
2161         }
2162
2163         ocfs2_complete_edge_insert(inode, handle, left_path, right_path,
2164                                 subtree_index);
2165
2166 out:
2167         return ret;
2168 }
2169
2170 /*
2171  * Given a full path, determine what cpos value would return us a path
2172  * containing the leaf immediately to the left of the current one.
2173  *
2174  * Will return zero if the path passed in is already the leftmost path.
2175  */
2176 static int ocfs2_find_cpos_for_left_leaf(struct super_block *sb,
2177                                          struct ocfs2_path *path, u32 *cpos)
2178 {
2179         int i, j, ret = 0;
2180         u64 blkno;
2181         struct ocfs2_extent_list *el;
2182
2183         BUG_ON(path->p_tree_depth == 0);
2184
2185         *cpos = 0;
2186
2187         blkno = path_leaf_bh(path)->b_blocknr;
2188
2189         /* Start at the tree node just above the leaf and work our way up. */
2190         i = path->p_tree_depth - 1;
2191         while (i >= 0) {
2192                 el = path->p_node[i].el;
2193
2194                 /*
2195                  * Find the extent record just before the one in our
2196                  * path.
2197                  */
2198                 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
2199                         if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
2200                                 if (j == 0) {
2201                                         if (i == 0) {
2202                                                 /*
2203                                                  * We've determined that the
2204                                                  * path specified is already
2205                                                  * the leftmost one - return a
2206                                                  * cpos of zero.
2207                                                  */
2208                                                 goto out;
2209                                         }
2210                                         /*
2211                                          * The leftmost record points to our
2212                                          * leaf - we need to travel up the
2213                                          * tree one level.
2214                                          */
2215                                         goto next_node;
2216                                 }
2217
2218                                 *cpos = le32_to_cpu(el->l_recs[j - 1].e_cpos);
2219                                 *cpos = *cpos + ocfs2_rec_clusters(el,
2220                                                            &el->l_recs[j - 1]);
2221                                 *cpos = *cpos - 1;
2222                                 goto out;
2223                         }
2224                 }
2225
2226                 /*
2227                  * If we got here, we never found a valid node where
2228                  * the tree indicated one should be.
2229                  */
2230                 ocfs2_error(sb,
2231                             "Invalid extent tree at extent block %llu\n",
2232                             (unsigned long long)blkno);
2233                 ret = -EROFS;
2234                 goto out;
2235
2236 next_node:
2237                 blkno = path->p_node[i].bh->b_blocknr;
2238                 i--;
2239         }
2240
2241 out:
2242         return ret;
2243 }
2244
2245 /*
2246  * Extend the transaction by enough credits to complete the rotation,
2247  * and still leave at least the original number of credits allocated
2248  * to this transaction.
2249  */
2250 static int ocfs2_extend_rotate_transaction(handle_t *handle, int subtree_depth,
2251                                            int op_credits,
2252                                            struct ocfs2_path *path)
2253 {
2254         int credits = (path->p_tree_depth - subtree_depth) * 2 + 1 + op_credits;
2255
2256         if (handle->h_buffer_credits < credits)
2257                 return ocfs2_extend_trans(handle, credits);
2258
2259         return 0;
2260 }
2261
2262 /*
2263  * Trap the case where we're inserting into the theoretical range past
2264  * the _actual_ left leaf range. Otherwise, we'll rotate a record
2265  * whose cpos is less than ours into the right leaf.
2266  *
2267  * It's only necessary to look at the rightmost record of the left
2268  * leaf because the logic that calls us should ensure that the
2269  * theoretical ranges in the path components above the leaves are
2270  * correct.
2271  */
2272 static int ocfs2_rotate_requires_path_adjustment(struct ocfs2_path *left_path,
2273                                                  u32 insert_cpos)
2274 {
2275         struct ocfs2_extent_list *left_el;
2276         struct ocfs2_extent_rec *rec;
2277         int next_free;
2278
2279         left_el = path_leaf_el(left_path);
2280         next_free = le16_to_cpu(left_el->l_next_free_rec);
2281         rec = &left_el->l_recs[next_free - 1];
2282
2283         if (insert_cpos > le32_to_cpu(rec->e_cpos))
2284                 return 1;
2285         return 0;
2286 }
2287
2288 static int ocfs2_leftmost_rec_contains(struct ocfs2_extent_list *el, u32 cpos)
2289 {
2290         int next_free = le16_to_cpu(el->l_next_free_rec);
2291         unsigned int range;
2292         struct ocfs2_extent_rec *rec;
2293
2294         if (next_free == 0)
2295                 return 0;
2296
2297         rec = &el->l_recs[0];
2298         if (ocfs2_is_empty_extent(rec)) {
2299                 /* Empty list. */
2300                 if (next_free == 1)
2301                         return 0;
2302                 rec = &el->l_recs[1];
2303         }
2304
2305         range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
2306         if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
2307                 return 1;
2308         return 0;
2309 }
2310
2311 /*
2312  * Rotate all the records in a btree right one record, starting at insert_cpos.
2313  *
2314  * The path to the rightmost leaf should be passed in.
2315  *
2316  * The array is assumed to be large enough to hold an entire path (tree depth).
2317  *
2318  * Upon succesful return from this function:
2319  *
2320  * - The 'right_path' array will contain a path to the leaf block
2321  *   whose range contains e_cpos.
2322  * - That leaf block will have a single empty extent in list index 0.
2323  * - In the case that the rotation requires a post-insert update,
2324  *   *ret_left_path will contain a valid path which can be passed to
2325  *   ocfs2_insert_path().
2326  */
2327 static int ocfs2_rotate_tree_right(struct inode *inode,
2328                                    handle_t *handle,
2329                                    enum ocfs2_split_type split,
2330                                    u32 insert_cpos,
2331                                    struct ocfs2_path *right_path,
2332                                    struct ocfs2_path **ret_left_path)
2333 {
2334         int ret, start, orig_credits = handle->h_buffer_credits;
2335         u32 cpos;
2336         struct ocfs2_path *left_path = NULL;
2337
2338         *ret_left_path = NULL;
2339
2340         left_path = ocfs2_new_path_from_path(right_path);
2341         if (!left_path) {
2342                 ret = -ENOMEM;
2343                 mlog_errno(ret);
2344                 goto out;
2345         }
2346
2347         ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path, &cpos);
2348         if (ret) {
2349                 mlog_errno(ret);
2350                 goto out;
2351         }
2352
2353         mlog(0, "Insert: %u, first left path cpos: %u\n", insert_cpos, cpos);
2354
2355         /*
2356          * What we want to do here is:
2357          *
2358          * 1) Start with the rightmost path.
2359          *
2360          * 2) Determine a path to the leaf block directly to the left
2361          *    of that leaf.
2362          *
2363          * 3) Determine the 'subtree root' - the lowest level tree node
2364          *    which contains a path to both leaves.
2365          *
2366          * 4) Rotate the subtree.
2367          *
2368          * 5) Find the next subtree by considering the left path to be
2369          *    the new right path.
2370          *
2371          * The check at the top of this while loop also accepts
2372          * insert_cpos == cpos because cpos is only a _theoretical_
2373          * value to get us the left path - insert_cpos might very well
2374          * be filling that hole.
2375          *
2376          * Stop at a cpos of '0' because we either started at the
2377          * leftmost branch (i.e., a tree with one branch and a
2378          * rotation inside of it), or we've gone as far as we can in
2379          * rotating subtrees.
2380          */
2381         while (cpos && insert_cpos <= cpos) {
2382                 mlog(0, "Rotating a tree: ins. cpos: %u, left path cpos: %u\n",
2383                      insert_cpos, cpos);
2384
2385                 ret = ocfs2_find_path(INODE_CACHE(inode), left_path, cpos);
2386                 if (ret) {
2387                         mlog_errno(ret);
2388                         goto out;
2389                 }
2390
2391                 mlog_bug_on_msg(path_leaf_bh(left_path) ==
2392                                 path_leaf_bh(right_path),
2393                                 "Inode %lu: error during insert of %u "
2394                                 "(left path cpos %u) results in two identical "
2395                                 "paths ending at %llu\n",
2396                                 inode->i_ino, insert_cpos, cpos,
2397                                 (unsigned long long)
2398                                 path_leaf_bh(left_path)->b_blocknr);
2399
2400                 if (split == SPLIT_NONE &&
2401                     ocfs2_rotate_requires_path_adjustment(left_path,
2402                                                           insert_cpos)) {
2403
2404                         /*
2405                          * We've rotated the tree as much as we
2406                          * should. The rest is up to
2407                          * ocfs2_insert_path() to complete, after the
2408                          * record insertion. We indicate this
2409                          * situation by returning the left path.
2410                          *
2411                          * The reason we don't adjust the records here
2412                          * before the record insert is that an error
2413                          * later might break the rule where a parent
2414                          * record e_cpos will reflect the actual
2415                          * e_cpos of the 1st nonempty record of the
2416                          * child list.
2417                          */
2418                         *ret_left_path = left_path;
2419                         goto out_ret_path;
2420                 }
2421
2422                 start = ocfs2_find_subtree_root(inode, left_path, right_path);
2423
2424                 mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n",
2425                      start,
2426                      (unsigned long long) right_path->p_node[start].bh->b_blocknr,
2427                      right_path->p_tree_depth);
2428
2429                 ret = ocfs2_extend_rotate_transaction(handle, start,
2430                                                       orig_credits, right_path);
2431                 if (ret) {
2432                         mlog_errno(ret);
2433                         goto out;
2434                 }
2435
2436                 ret = ocfs2_rotate_subtree_right(inode, handle, left_path,
2437                                                  right_path, start);
2438                 if (ret) {
2439                         mlog_errno(ret);
2440                         goto out;
2441                 }
2442
2443                 if (split != SPLIT_NONE &&
2444                     ocfs2_leftmost_rec_contains(path_leaf_el(right_path),
2445                                                 insert_cpos)) {
2446                         /*
2447                          * A rotate moves the rightmost left leaf
2448                          * record over to the leftmost right leaf
2449                          * slot. If we're doing an extent split
2450                          * instead of a real insert, then we have to
2451                          * check that the extent to be split wasn't
2452                          * just moved over. If it was, then we can
2453                          * exit here, passing left_path back -
2454                          * ocfs2_split_extent() is smart enough to
2455                          * search both leaves.
2456                          */
2457                         *ret_left_path = left_path;
2458                         goto out_ret_path;
2459                 }
2460
2461                 /*
2462                  * There is no need to re-read the next right path
2463                  * as we know that it'll be our current left
2464                  * path. Optimize by copying values instead.
2465                  */
2466                 ocfs2_mv_path(right_path, left_path);
2467
2468                 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path,
2469                                                     &cpos);
2470                 if (ret) {
2471                         mlog_errno(ret);
2472                         goto out;
2473                 }
2474         }
2475
2476 out:
2477         ocfs2_free_path(left_path);
2478
2479 out_ret_path:
2480         return ret;
2481 }
2482
2483 static int ocfs2_update_edge_lengths(struct inode *inode, handle_t *handle,
2484                                      int subtree_index, struct ocfs2_path *path)
2485 {
2486         int i, idx, ret;
2487         struct ocfs2_extent_rec *rec;
2488         struct ocfs2_extent_list *el;
2489         struct ocfs2_extent_block *eb;
2490         u32 range;
2491
2492         /*
2493          * In normal tree rotation process, we will never touch the
2494          * tree branch above subtree_index and ocfs2_extend_rotate_transaction
2495          * doesn't reserve the credits for them either.
2496          *
2497          * But we do have a special case here which will update the rightmost
2498          * records for all the bh in the path.
2499          * So we have to allocate extra credits and access them.
2500          */
2501         ret = ocfs2_extend_trans(handle,
2502                                  handle->h_buffer_credits + subtree_index);
2503         if (ret) {
2504                 mlog_errno(ret);
2505                 goto out;
2506         }
2507
2508         ret = ocfs2_journal_access_path(INODE_CACHE(inode), handle, path);
2509         if (ret) {
2510                 mlog_errno(ret);
2511                 goto out;
2512         }
2513
2514         /* Path should always be rightmost. */
2515         eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
2516         BUG_ON(eb->h_next_leaf_blk != 0ULL);
2517
2518         el = &eb->h_list;
2519         BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0);
2520         idx = le16_to_cpu(el->l_next_free_rec) - 1;
2521         rec = &el->l_recs[idx];
2522         range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
2523
2524         for (i = 0; i < path->p_tree_depth; i++) {
2525                 el = path->p_node[i].el;
2526                 idx = le16_to_cpu(el->l_next_free_rec) - 1;
2527                 rec = &el->l_recs[idx];
2528
2529                 rec->e_int_clusters = cpu_to_le32(range);
2530                 le32_add_cpu(&rec->e_int_clusters, -le32_to_cpu(rec->e_cpos));
2531
2532                 ocfs2_journal_dirty(handle, path->p_node[i].bh);
2533         }
2534 out:
2535         return ret;
2536 }
2537
2538 static void ocfs2_unlink_path(struct inode *inode, handle_t *handle,
2539                               struct ocfs2_cached_dealloc_ctxt *dealloc,
2540                               struct ocfs2_path *path, int unlink_start)
2541 {
2542         int ret, i;
2543         struct ocfs2_extent_block *eb;
2544         struct ocfs2_extent_list *el;
2545         struct buffer_head *bh;
2546
2547         for(i = unlink_start; i < path_num_items(path); i++) {
2548                 bh = path->p_node[i].bh;
2549
2550                 eb = (struct ocfs2_extent_block *)bh->b_data;
2551                 /*
2552                  * Not all nodes might have had their final count
2553                  * decremented by the caller - handle this here.
2554                  */
2555                 el = &eb->h_list;
2556                 if (le16_to_cpu(el->l_next_free_rec) > 1) {
2557                         mlog(ML_ERROR,
2558                              "Inode %llu, attempted to remove extent block "
2559                              "%llu with %u records\n",
2560                              (unsigned long long)OCFS2_I(inode)->ip_blkno,
2561                              (unsigned long long)le64_to_cpu(eb->h_blkno),
2562                              le16_to_cpu(el->l_next_free_rec));
2563
2564                         ocfs2_journal_dirty(handle, bh);
2565                         ocfs2_remove_from_cache(INODE_CACHE(inode), bh);
2566                         continue;
2567                 }
2568
2569                 el->l_next_free_rec = 0;
2570                 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2571
2572                 ocfs2_journal_dirty(handle, bh);
2573
2574                 ret = ocfs2_cache_extent_block_free(dealloc, eb);
2575                 if (ret)
2576                         mlog_errno(ret);
2577
2578                 ocfs2_remove_from_cache(INODE_CACHE(inode), bh);
2579         }
2580 }
2581
2582 static void ocfs2_unlink_subtree(struct inode *inode, handle_t *handle,
2583                                  struct ocfs2_path *left_path,
2584                                  struct ocfs2_path *right_path,
2585                                  int subtree_index,
2586                                  struct ocfs2_cached_dealloc_ctxt *dealloc)
2587 {
2588         int i;
2589         struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
2590         struct ocfs2_extent_list *root_el = left_path->p_node[subtree_index].el;
2591         struct ocfs2_extent_list *el;
2592         struct ocfs2_extent_block *eb;
2593
2594         el = path_leaf_el(left_path);
2595
2596         eb = (struct ocfs2_extent_block *)right_path->p_node[subtree_index + 1].bh->b_data;
2597
2598         for(i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++)
2599                 if (root_el->l_recs[i].e_blkno == eb->h_blkno)
2600                         break;
2601
2602         BUG_ON(i >= le16_to_cpu(root_el->l_next_free_rec));
2603
2604         memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
2605         le16_add_cpu(&root_el->l_next_free_rec, -1);
2606
2607         eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2608         eb->h_next_leaf_blk = 0;
2609
2610         ocfs2_journal_dirty(handle, root_bh);
2611         ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2612
2613         ocfs2_unlink_path(inode, handle, dealloc, right_path,
2614                           subtree_index + 1);
2615 }
2616
2617 static int ocfs2_rotate_subtree_left(struct inode *inode, handle_t *handle,
2618                                      struct ocfs2_path *left_path,
2619                                      struct ocfs2_path *right_path,
2620                                      int subtree_index,
2621                                      struct ocfs2_cached_dealloc_ctxt *dealloc,
2622                                      int *deleted,
2623                                      struct ocfs2_extent_tree *et)
2624 {
2625         int ret, i, del_right_subtree = 0, right_has_empty = 0;
2626         struct buffer_head *root_bh, *et_root_bh = path_root_bh(right_path);
2627         struct ocfs2_extent_list *right_leaf_el, *left_leaf_el;
2628         struct ocfs2_extent_block *eb;
2629
2630         *deleted = 0;
2631
2632         right_leaf_el = path_leaf_el(right_path);
2633         left_leaf_el = path_leaf_el(left_path);
2634         root_bh = left_path->p_node[subtree_index].bh;
2635         BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
2636
2637         if (!ocfs2_is_empty_extent(&left_leaf_el->l_recs[0]))
2638                 return 0;
2639
2640         eb = (struct ocfs2_extent_block *)path_leaf_bh(right_path)->b_data;
2641         if (ocfs2_is_empty_extent(&right_leaf_el->l_recs[0])) {
2642                 /*
2643                  * It's legal for us to proceed if the right leaf is
2644                  * the rightmost one and it has an empty extent. There
2645                  * are two cases to handle - whether the leaf will be
2646                  * empty after removal or not. If the leaf isn't empty
2647                  * then just remove the empty extent up front. The
2648                  * next block will handle empty leaves by flagging
2649                  * them for unlink.
2650                  *
2651                  * Non rightmost leaves will throw -EAGAIN and the
2652                  * caller can manually move the subtree and retry.
2653                  */
2654
2655                 if (eb->h_next_leaf_blk != 0ULL)
2656                         return -EAGAIN;
2657
2658                 if (le16_to_cpu(right_leaf_el->l_next_free_rec) > 1) {
2659                         ret = ocfs2_journal_access_eb(handle, INODE_CACHE(inode),
2660                                                       path_leaf_bh(right_path),
2661                                                       OCFS2_JOURNAL_ACCESS_WRITE);
2662                         if (ret) {
2663                                 mlog_errno(ret);
2664                                 goto out;
2665                         }
2666
2667                         ocfs2_remove_empty_extent(right_leaf_el);
2668                 } else
2669                         right_has_empty = 1;
2670         }
2671
2672         if (eb->h_next_leaf_blk == 0ULL &&
2673             le16_to_cpu(right_leaf_el->l_next_free_rec) == 1) {
2674                 /*
2675                  * We have to update i_last_eb_blk during the meta
2676                  * data delete.
2677                  */
2678                 ret = ocfs2_et_root_journal_access(handle, et,
2679                                                    OCFS2_JOURNAL_ACCESS_WRITE);
2680                 if (ret) {
2681                         mlog_errno(ret);
2682                         goto out;
2683                 }
2684
2685                 del_right_subtree = 1;
2686         }
2687
2688         /*
2689          * Getting here with an empty extent in the right path implies
2690          * that it's the rightmost path and will be deleted.
2691          */
2692         BUG_ON(right_has_empty && !del_right_subtree);
2693
2694         ret = ocfs2_path_bh_journal_access(handle, INODE_CACHE(inode), right_path,
2695                                            subtree_index);
2696         if (ret) {
2697                 mlog_errno(ret);
2698                 goto out;
2699         }
2700
2701         for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
2702                 ret = ocfs2_path_bh_journal_access(handle, INODE_CACHE(inode),
2703                                                    right_path, i);
2704                 if (ret) {
2705                         mlog_errno(ret);
2706                         goto out;
2707                 }
2708
2709                 ret = ocfs2_path_bh_journal_access(handle, INODE_CACHE(inode),
2710                                                    left_path, i);
2711                 if (ret) {
2712                         mlog_errno(ret);
2713                         goto out;
2714                 }
2715         }
2716
2717         if (!right_has_empty) {
2718                 /*
2719                  * Only do this if we're moving a real
2720                  * record. Otherwise, the action is delayed until
2721                  * after removal of the right path in which case we
2722                  * can do a simple shift to remove the empty extent.
2723                  */
2724                 ocfs2_rotate_leaf(left_leaf_el, &right_leaf_el->l_recs[0]);
2725                 memset(&right_leaf_el->l_recs[0], 0,
2726                        sizeof(struct ocfs2_extent_rec));
2727         }
2728         if (eb->h_next_leaf_blk == 0ULL) {
2729                 /*
2730                  * Move recs over to get rid of empty extent, decrease
2731                  * next_free. This is allowed to remove the last
2732                  * extent in our leaf (setting l_next_free_rec to
2733                  * zero) - the delete code below won't care.
2734                  */
2735                 ocfs2_remove_empty_extent(right_leaf_el);
2736         }
2737
2738         ret = ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2739         if (ret)
2740                 mlog_errno(ret);
2741         ret = ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
2742         if (ret)
2743                 mlog_errno(ret);
2744
2745         if (del_right_subtree) {
2746                 ocfs2_unlink_subtree(inode, handle, left_path, right_path,
2747                                      subtree_index, dealloc);
2748                 ret = ocfs2_update_edge_lengths(inode, handle, subtree_index,
2749                                                 left_path);
2750                 if (ret) {
2751                         mlog_errno(ret);
2752                         goto out;
2753                 }
2754
2755                 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2756                 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
2757
2758                 /*
2759                  * Removal of the extent in the left leaf was skipped
2760                  * above so we could delete the right path
2761                  * 1st.
2762                  */
2763                 if (right_has_empty)
2764                         ocfs2_remove_empty_extent(left_leaf_el);
2765
2766                 ret = ocfs2_journal_dirty(handle, et_root_bh);
2767                 if (ret)
2768                         mlog_errno(ret);
2769
2770                 *deleted = 1;
2771         } else
2772                 ocfs2_complete_edge_insert(inode, handle, left_path, right_path,
2773                                            subtree_index);
2774
2775 out:
2776         return ret;
2777 }
2778
2779 /*
2780  * Given a full path, determine what cpos value would return us a path
2781  * containing the leaf immediately to the right of the current one.
2782  *
2783  * Will return zero if the path passed in is already the rightmost path.
2784  *
2785  * This looks similar, but is subtly different to
2786  * ocfs2_find_cpos_for_left_leaf().
2787  */
2788 static int ocfs2_find_cpos_for_right_leaf(struct super_block *sb,
2789                                           struct ocfs2_path *path, u32 *cpos)
2790 {
2791         int i, j, ret = 0;
2792         u64 blkno;
2793         struct ocfs2_extent_list *el;
2794
2795         *cpos = 0;
2796
2797         if (path->p_tree_depth == 0)
2798                 return 0;
2799
2800         blkno = path_leaf_bh(path)->b_blocknr;
2801
2802         /* Start at the tree node just above the leaf and work our way up. */
2803         i = path->p_tree_depth - 1;
2804         while (i >= 0) {
2805                 int next_free;
2806
2807                 el = path->p_node[i].el;
2808
2809                 /*
2810                  * Find the extent record just after the one in our
2811                  * path.
2812                  */
2813                 next_free = le16_to_cpu(el->l_next_free_rec);
2814                 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
2815                         if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
2816                                 if (j == (next_free - 1)) {
2817                                         if (i == 0) {
2818                                                 /*
2819                                                  * We've determined that the
2820                                                  * path specified is already
2821                                                  * the rightmost one - return a
2822                                                  * cpos of zero.
2823                                                  */
2824                                                 goto out;
2825                                         }
2826                                         /*
2827                                          * The rightmost record points to our
2828                                          * leaf - we need to travel up the
2829                                          * tree one level.
2830                                          */
2831                                         goto next_node;
2832                                 }
2833
2834                                 *cpos = le32_to_cpu(el->l_recs[j + 1].e_cpos);
2835                                 goto out;
2836                         }
2837                 }
2838
2839                 /*
2840                  * If we got here, we never found a valid node where
2841                  * the tree indicated one should be.
2842                  */
2843                 ocfs2_error(sb,
2844                             "Invalid extent tree at extent block %llu\n",
2845                             (unsigned long long)blkno);
2846                 ret = -EROFS;
2847                 goto out;
2848
2849 next_node:
2850                 blkno = path->p_node[i].bh->b_blocknr;
2851                 i--;
2852         }
2853
2854 out:
2855         return ret;
2856 }
2857
2858 static int ocfs2_rotate_rightmost_leaf_left(struct inode *inode,
2859                                             handle_t *handle,
2860                                             struct ocfs2_path *path)
2861 {
2862         int ret;
2863         struct buffer_head *bh = path_leaf_bh(path);
2864         struct ocfs2_extent_list *el = path_leaf_el(path);
2865
2866         if (!ocfs2_is_empty_extent(&el->l_recs[0]))
2867                 return 0;
2868
2869         ret = ocfs2_path_bh_journal_access(handle, INODE_CACHE(inode), path,
2870                                            path_num_items(path) - 1);
2871         if (ret) {
2872                 mlog_errno(ret);
2873                 goto out;
2874         }
2875
2876         ocfs2_remove_empty_extent(el);
2877
2878         ret = ocfs2_journal_dirty(handle, bh);
2879         if (ret)
2880                 mlog_errno(ret);
2881
2882 out:
2883         return ret;
2884 }
2885
2886 static int __ocfs2_rotate_tree_left(struct inode *inode,
2887                                     handle_t *handle, int orig_credits,
2888                                     struct ocfs2_path *path,
2889                                     struct ocfs2_cached_dealloc_ctxt *dealloc,
2890                                     struct ocfs2_path **empty_extent_path,
2891                                     struct ocfs2_extent_tree *et)
2892 {
2893         int ret, subtree_root, deleted;
2894         u32 right_cpos;
2895         struct ocfs2_path *left_path = NULL;
2896         struct ocfs2_path *right_path = NULL;
2897
2898         BUG_ON(!ocfs2_is_empty_extent(&(path_leaf_el(path)->l_recs[0])));
2899
2900         *empty_extent_path = NULL;
2901
2902         ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, path,
2903                                              &right_cpos);
2904         if (ret) {
2905                 mlog_errno(ret);
2906                 goto out;
2907         }
2908
2909         left_path = ocfs2_new_path_from_path(path);
2910         if (!left_path) {
2911                 ret = -ENOMEM;
2912                 mlog_errno(ret);
2913                 goto out;
2914         }
2915
2916         ocfs2_cp_path(left_path, path);
2917
2918         right_path = ocfs2_new_path_from_path(path);
2919         if (!right_path) {
2920                 ret = -ENOMEM;
2921                 mlog_errno(ret);
2922                 goto out;
2923         }
2924
2925         while (right_cpos) {
2926                 ret = ocfs2_find_path(et->et_ci, right_path, right_cpos);
2927                 if (ret) {
2928                         mlog_errno(ret);
2929                         goto out;
2930                 }
2931
2932                 subtree_root = ocfs2_find_subtree_root(inode, left_path,
2933                                                        right_path);
2934
2935                 mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n",
2936                      subtree_root,
2937                      (unsigned long long)
2938                      right_path->p_node[subtree_root].bh->b_blocknr,
2939                      right_path->p_tree_depth);
2940
2941                 ret = ocfs2_extend_rotate_transaction(handle, subtree_root,
2942                                                       orig_credits, left_path);
2943                 if (ret) {
2944                         mlog_errno(ret);
2945                         goto out;
2946                 }
2947
2948                 /*
2949                  * Caller might still want to make changes to the
2950                  * tree root, so re-add it to the journal here.
2951                  */
2952                 ret = ocfs2_path_bh_journal_access(handle, INODE_CACHE(inode),
2953                                                    left_path, 0);
2954                 if (ret) {
2955                         mlog_errno(ret);
2956                         goto out;
2957                 }
2958
2959                 ret = ocfs2_rotate_subtree_left(inode, handle, left_path,
2960                                                 right_path, subtree_root,
2961                                                 dealloc, &deleted, et);
2962                 if (ret == -EAGAIN) {
2963                         /*
2964                          * The rotation has to temporarily stop due to
2965                          * the right subtree having an empty
2966                          * extent. Pass it back to the caller for a
2967                          * fixup.
2968                          */
2969                         *empty_extent_path = right_path;
2970                         right_path = NULL;
2971                         goto out;
2972                 }
2973                 if (ret) {
2974                         mlog_errno(ret);
2975                         goto out;
2976                 }
2977
2978                 /*
2979                  * The subtree rotate might have removed records on
2980                  * the rightmost edge. If so, then rotation is
2981                  * complete.
2982                  */
2983                 if (deleted)
2984                         break;
2985
2986                 ocfs2_mv_path(left_path, right_path);
2987
2988                 ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, left_path,
2989                                                      &right_cpos);
2990                 if (ret) {
2991                         mlog_errno(ret);
2992                         goto out;
2993                 }
2994         }
2995
2996 out:
2997         ocfs2_free_path(right_path);
2998         ocfs2_free_path(left_path);
2999
3000         return ret;
3001 }
3002
3003 static int ocfs2_remove_rightmost_path(struct inode *inode, handle_t *handle,
3004                                 struct ocfs2_path *path,
3005                                 struct ocfs2_cached_dealloc_ctxt *dealloc,
3006                                 struct ocfs2_extent_tree *et)
3007 {
3008         int ret, subtree_index;
3009         u32 cpos;
3010         struct ocfs2_path *left_path = NULL;
3011         struct ocfs2_extent_block *eb;
3012         struct ocfs2_extent_list *el;
3013
3014
3015         ret = ocfs2_et_sanity_check(inode, et);
3016         if (ret)
3017                 goto out;
3018         /*
3019          * There's two ways we handle this depending on
3020          * whether path is the only existing one.
3021          */
3022         ret = ocfs2_extend_rotate_transaction(handle, 0,
3023                                               handle->h_buffer_credits,
3024                                               path);
3025         if (ret) {
3026                 mlog_errno(ret);
3027                 goto out;
3028         }
3029
3030         ret = ocfs2_journal_access_path(et->et_ci, handle, path);
3031         if (ret) {
3032                 mlog_errno(ret);
3033                 goto out;
3034         }
3035
3036         ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci),
3037                                             path, &cpos);
3038         if (ret) {
3039                 mlog_errno(ret);
3040                 goto out;
3041         }
3042
3043         if (cpos) {
3044                 /*
3045                  * We have a path to the left of this one - it needs
3046                  * an update too.
3047                  */
3048                 left_path = ocfs2_new_path_from_path(path);
3049                 if (!left_path) {
3050                         ret = -ENOMEM;
3051                         mlog_errno(ret);
3052                         goto out;
3053                 }
3054
3055                 ret = ocfs2_find_path(et->et_ci, left_path, cpos);
3056                 if (ret) {
3057                         mlog_errno(ret);
3058                         goto out;
3059                 }
3060
3061                 ret = ocfs2_journal_access_path(et->et_ci, handle, left_path);
3062                 if (ret) {
3063                         mlog_errno(ret);
3064                         goto out;
3065                 }
3066
3067                 subtree_index = ocfs2_find_subtree_root(inode, left_path, path);
3068
3069                 ocfs2_unlink_subtree(inode, handle, left_path, path,
3070                                      subtree_index, dealloc);
3071                 ret = ocfs2_update_edge_lengths(inode, handle, subtree_index,
3072                                                 left_path);
3073                 if (ret) {
3074                         mlog_errno(ret);
3075                         goto out;
3076                 }
3077
3078                 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
3079                 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
3080         } else {
3081                 /*
3082                  * 'path' is also the leftmost path which
3083                  * means it must be the only one. This gets
3084                  * handled differently because we want to
3085                  * revert the inode back to having extents
3086                  * in-line.
3087                  */
3088                 ocfs2_unlink_path(inode, handle, dealloc, path, 1);
3089
3090                 el = et->et_root_el;
3091                 el->l_tree_depth = 0;
3092                 el->l_next_free_rec = 0;
3093                 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
3094
3095                 ocfs2_et_set_last_eb_blk(et, 0);
3096         }
3097
3098         ocfs2_journal_dirty(handle, path_root_bh(path));
3099
3100 out:
3101         ocfs2_free_path(left_path);
3102         return ret;
3103 }
3104
3105 /*
3106  * Left rotation of btree records.
3107  *
3108  * In many ways, this is (unsurprisingly) the opposite of right
3109  * rotation. We start at some non-rightmost path containing an empty
3110  * extent in the leaf block. The code works its way to the rightmost
3111  * path by rotating records to the left in every subtree.
3112  *
3113  * This is used by any code which reduces the number of extent records
3114  * in a leaf. After removal, an empty record should be placed in the
3115  * leftmost list position.
3116  *
3117  * This won't handle a length update of the rightmost path records if
3118  * the rightmost tree leaf record is removed so the caller is
3119  * responsible for detecting and correcting that.
3120  */
3121 static int ocfs2_rotate_tree_left(struct inode *inode, handle_t *handle,
3122                                   struct ocfs2_path *path,
3123                                   struct ocfs2_cached_dealloc_ctxt *dealloc,
3124                                   struct ocfs2_extent_tree *et)
3125 {
3126         int ret, orig_credits = handle->h_buffer_credits;
3127         struct ocfs2_path *tmp_path = NULL, *restart_path = NULL;
3128         struct ocfs2_extent_block *eb;
3129         struct ocfs2_extent_list *el;
3130
3131         el = path_leaf_el(path);
3132         if (!ocfs2_is_empty_extent(&el->l_recs[0]))
3133                 return 0;
3134
3135         if (path->p_tree_depth == 0) {
3136 rightmost_no_delete:
3137                 /*
3138                  * Inline extents. This is trivially handled, so do
3139                  * it up front.
3140                  */
3141                 ret = ocfs2_rotate_rightmost_leaf_left(inode, handle,
3142                                                        path);
3143                 if (ret)
3144                         mlog_errno(ret);
3145                 goto out;
3146         }
3147
3148         /*
3149          * Handle rightmost branch now. There's several cases:
3150          *  1) simple rotation leaving records in there. That's trivial.
3151          *  2) rotation requiring a branch delete - there's no more
3152          *     records left. Two cases of this:
3153          *     a) There are branches to the left.
3154          *     b) This is also the leftmost (the only) branch.
3155          *
3156          *  1) is handled via ocfs2_rotate_rightmost_leaf_left()
3157          *  2a) we need the left branch so that we can update it with the unlink
3158          *  2b) we need to bring the inode back to inline extents.
3159          */
3160
3161         eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
3162         el = &eb->h_list;
3163         if (eb->h_next_leaf_blk == 0) {
3164                 /*
3165                  * This gets a bit tricky if we're going to delete the
3166                  * rightmost path. Get the other cases out of the way
3167                  * 1st.
3168                  */
3169                 if (le16_to_cpu(el->l_next_free_rec) > 1)
3170                         goto rightmost_no_delete;
3171
3172                 if (le16_to_cpu(el->l_next_free_rec) == 0) {
3173                         ret = -EIO;
3174                         ocfs2_error(inode->i_sb,
3175                                     "Inode %llu has empty extent block at %llu",
3176                                     (unsigned long long)OCFS2_I(inode)->ip_blkno,
3177                                     (unsigned long long)le64_to_cpu(eb->h_blkno));
3178                         goto out;
3179                 }
3180
3181                 /*
3182                  * XXX: The caller can not trust "path" any more after
3183                  * this as it will have been deleted. What do we do?
3184                  *
3185                  * In theory the rotate-for-merge code will never get
3186                  * here because it'll always ask for a rotate in a
3187                  * nonempty list.
3188                  */
3189
3190                 ret = ocfs2_remove_rightmost_path(inode, handle, path,
3191                                                   dealloc, et);
3192                 if (ret)
3193                         mlog_errno(ret);
3194                 goto out;
3195         }
3196
3197         /*
3198          * Now we can loop, remembering the path we get from -EAGAIN
3199          * and restarting from there.
3200          */
3201 try_rotate:
3202         ret = __ocfs2_rotate_tree_left(inode, handle, orig_credits, path,
3203                                        dealloc, &restart_path, et);
3204         if (ret && ret != -EAGAIN) {
3205                 mlog_errno(ret);
3206                 goto out;
3207         }
3208
3209         while (ret == -EAGAIN) {
3210                 tmp_path = restart_path;
3211                 restart_path = NULL;
3212
3213                 ret = __ocfs2_rotate_tree_left(inode, handle, orig_credits,
3214                                                tmp_path, dealloc,
3215                                                &restart_path, et);
3216                 if (ret && ret != -EAGAIN) {
3217                         mlog_errno(ret);
3218                         goto out;
3219                 }
3220
3221                 ocfs2_free_path(tmp_path);
3222                 tmp_path = NULL;
3223
3224                 if (ret == 0)
3225                         goto try_rotate;
3226         }
3227
3228 out:
3229         ocfs2_free_path(tmp_path);
3230         ocfs2_free_path(restart_path);
3231         return ret;
3232 }
3233
3234 static void ocfs2_cleanup_merge(struct ocfs2_extent_list *el,
3235                                 int index)
3236 {
3237         struct ocfs2_extent_rec *rec = &el->l_recs[index];
3238         unsigned int size;
3239
3240         if (rec->e_leaf_clusters == 0) {
3241                 /*
3242                  * We consumed all of the merged-from record. An empty
3243                  * extent cannot exist anywhere but the 1st array
3244                  * position, so move things over if the merged-from
3245                  * record doesn't occupy that position.
3246                  *
3247                  * This creates a new empty extent so the caller
3248                  * should be smart enough to have removed any existing
3249                  * ones.
3250                  */
3251                 if (index > 0) {
3252                         BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
3253                         size = index * sizeof(struct ocfs2_extent_rec);
3254                         memmove(&el->l_recs[1], &el->l_recs[0], size);
3255                 }
3256
3257                 /*
3258                  * Always memset - the caller doesn't check whether it
3259                  * created an empty extent, so there could be junk in
3260                  * the other fields.
3261                  */
3262                 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
3263         }
3264 }
3265
3266 static int ocfs2_get_right_path(struct inode *inode,
3267                                 struct ocfs2_path *left_path,
3268                                 struct ocfs2_path **ret_right_path)
3269 {
3270         int ret;
3271         u32 right_cpos;
3272         struct ocfs2_path *right_path = NULL;
3273         struct ocfs2_extent_list *left_el;
3274
3275         *ret_right_path = NULL;
3276
3277         /* This function shouldn't be called for non-trees. */
3278         BUG_ON(left_path->p_tree_depth == 0);
3279
3280         left_el = path_leaf_el(left_path);
3281         BUG_ON(left_el->l_next_free_rec != left_el->l_count);
3282
3283         ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, left_path,
3284                                              &right_cpos);
3285         if (ret) {
3286                 mlog_errno(ret);
3287                 goto out;
3288         }
3289
3290         /* This function shouldn't be called for the rightmost leaf. */
3291         BUG_ON(right_cpos == 0);
3292
3293         right_path = ocfs2_new_path_from_path(left_path);
3294         if (!right_path) {
3295                 ret = -ENOMEM;
3296                 mlog_errno(ret);
3297                 goto out;
3298         }
3299
3300         ret = ocfs2_find_path(INODE_CACHE(inode), right_path, right_cpos);
3301         if (ret) {
3302                 mlog_errno(ret);
3303                 goto out;
3304         }
3305
3306         *ret_right_path = right_path;
3307 out:
3308         if (ret)
3309                 ocfs2_free_path(right_path);
3310         return ret;
3311 }
3312
3313 /*
3314  * Remove split_rec clusters from the record at index and merge them
3315  * onto the beginning of the record "next" to it.
3316  * For index < l_count - 1, the next means the extent rec at index + 1.
3317  * For index == l_count - 1, the "next" means the 1st extent rec of the
3318  * next extent block.
3319  */
3320 static int ocfs2_merge_rec_right(struct inode *inode,
3321                                  struct ocfs2_path *left_path,
3322                                  handle_t *handle,
3323                                  struct ocfs2_extent_rec *split_rec,
3324                                  int index)
3325 {
3326         int ret, next_free, i;
3327         unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
3328         struct ocfs2_extent_rec *left_rec;
3329         struct ocfs2_extent_rec *right_rec;
3330         struct ocfs2_extent_list *right_el;
3331         struct ocfs2_path *right_path = NULL;
3332         int subtree_index = 0;
3333         struct ocfs2_extent_list *el = path_leaf_el(left_path);
3334         struct buffer_head *bh = path_leaf_bh(left_path);
3335         struct buffer_head *root_bh = NULL;
3336
3337         BUG_ON(index >= le16_to_cpu(el->l_next_free_rec));
3338         left_rec = &el->l_recs[index];
3339
3340         if (index == le16_to_cpu(el->l_next_free_rec) - 1 &&
3341             le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count)) {
3342                 /* we meet with a cross extent block merge. */
3343                 ret = ocfs2_get_right_path(inode, left_path, &right_path);
3344                 if (ret) {
3345                         mlog_errno(ret);
3346                         goto out;
3347                 }
3348
3349                 right_el = path_leaf_el(right_path);
3350                 next_free = le16_to_cpu(right_el->l_next_free_rec);
3351                 BUG_ON(next_free <= 0);
3352                 right_rec = &right_el->l_recs[0];
3353                 if (ocfs2_is_empty_extent(right_rec)) {
3354                         BUG_ON(next_free <= 1);
3355                         right_rec = &right_el->l_recs[1];
3356                 }
3357
3358                 BUG_ON(le32_to_cpu(left_rec->e_cpos) +
3359                        le16_to_cpu(left_rec->e_leaf_clusters) !=
3360                        le32_to_cpu(right_rec->e_cpos));
3361
3362                 subtree_index = ocfs2_find_subtree_root(inode,
3363                                                         left_path, right_path);
3364
3365                 ret = ocfs2_extend_rotate_transaction(handle, subtree_index,
3366                                                       handle->h_buffer_credits,
3367                                                       right_path);
3368                 if (ret) {
3369                         mlog_errno(ret);
3370                         goto out;
3371                 }
3372
3373                 root_bh = left_path->p_node[subtree_index].bh;
3374                 BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
3375
3376                 ret = ocfs2_path_bh_journal_access(handle, INODE_CACHE(inode), right_path,
3377                                                    subtree_index);
3378                 if (ret) {
3379                         mlog_errno(ret);
3380                         goto out;
3381                 }
3382
3383                 for (i = subtree_index + 1;
3384                      i < path_num_items(right_path); i++) {
3385                         ret = ocfs2_path_bh_journal_access(handle, INODE_CACHE(inode),
3386                                                            right_path, i);
3387                         if (ret) {
3388                                 mlog_errno(ret);
3389                                 goto out;
3390                         }
3391
3392                         ret = ocfs2_path_bh_journal_access(handle, INODE_CACHE(inode),
3393                                                            left_path, i);
3394                         if (ret) {
3395                                 mlog_errno(ret);
3396                                 goto out;
3397                         }
3398                 }
3399
3400         } else {
3401                 BUG_ON(index == le16_to_cpu(el->l_next_free_rec) - 1);
3402                 right_rec = &el->l_recs[index + 1];
3403         }
3404
3405         ret = ocfs2_path_bh_journal_access(handle, INODE_CACHE(inode), left_path,
3406                                            path_num_items(left_path) - 1);
3407         if (ret) {
3408                 mlog_errno(ret);
3409                 goto out;
3410         }
3411
3412         le16_add_cpu(&left_rec->e_leaf_clusters, -split_clusters);
3413
3414         le32_add_cpu(&right_rec->e_cpos, -split_clusters);
3415         le64_add_cpu(&right_rec->e_blkno,
3416                      -ocfs2_clusters_to_blocks(inode->i_sb, split_clusters));
3417         le16_add_cpu(&right_rec->e_leaf_clusters, split_clusters);
3418
3419         ocfs2_cleanup_merge(el, index);
3420
3421         ret = ocfs2_journal_dirty(handle, bh);
3422         if (ret)
3423                 mlog_errno(ret);
3424
3425         if (right_path) {
3426                 ret = ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
3427                 if (ret)
3428                         mlog_errno(ret);
3429
3430                 ocfs2_complete_edge_insert(inode, handle, left_path,
3431                                            right_path, subtree_index);
3432         }
3433 out:
3434         if (right_path)
3435                 ocfs2_free_path(right_path);
3436         return ret;
3437 }
3438
3439 static int ocfs2_get_left_path(struct inode *inode,
3440                                struct ocfs2_path *right_path,
3441                                struct ocfs2_path **ret_left_path)
3442 {
3443         int ret;
3444         u32 left_cpos;
3445         struct ocfs2_path *left_path = NULL;
3446
3447         *ret_left_path = NULL;
3448
3449         /* This function shouldn't be called for non-trees. */
3450         BUG_ON(right_path->p_tree_depth == 0);
3451
3452         ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb,
3453                                             right_path, &left_cpos);
3454         if (ret) {
3455                 mlog_errno(ret);
3456                 goto out;
3457         }
3458
3459         /* This function shouldn't be called for the leftmost leaf. */
3460         BUG_ON(left_cpos == 0);
3461
3462         left_path = ocfs2_new_path_from_path(right_path);
3463         if (!left_path) {
3464                 ret = -ENOMEM;
3465                 mlog_errno(ret);
3466                 goto out;
3467         }
3468
3469         ret = ocfs2_find_path(INODE_CACHE(inode), left_path, left_cpos);
3470         if (ret) {
3471                 mlog_errno(ret);
3472                 goto out;
3473         }
3474
3475         *ret_left_path = left_path;
3476 out:
3477         if (ret)
3478                 ocfs2_free_path(left_path);
3479         return ret;
3480 }
3481
3482 /*
3483  * Remove split_rec clusters from the record at index and merge them
3484  * onto the tail of the record "before" it.
3485  * For index > 0, the "before" means the extent rec at index - 1.
3486  *
3487  * For index == 0, the "before" means the last record of the previous
3488  * extent block. And there is also a situation that we may need to
3489  * remove the rightmost leaf extent block in the right_path and change
3490  * the right path to indicate the new rightmost path.
3491  */
3492 static int ocfs2_merge_rec_left(struct inode *inode,
3493                                 struct ocfs2_path *right_path,
3494                                 handle_t *handle,
3495                                 struct ocfs2_extent_rec *split_rec,
3496                                 struct ocfs2_cached_dealloc_ctxt *dealloc,
3497                                 struct ocfs2_extent_tree *et,
3498                                 int index)
3499 {
3500         int ret, i, subtree_index = 0, has_empty_extent = 0;
3501         unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
3502         struct ocfs2_extent_rec *left_rec;
3503         struct ocfs2_extent_rec *right_rec;
3504         struct ocfs2_extent_list *el = path_leaf_el(right_path);
3505         struct buffer_head *bh = path_leaf_bh(right_path);
3506         struct buffer_head *root_bh = NULL;
3507         struct ocfs2_path *left_path = NULL;
3508         struct ocfs2_extent_list *left_el;
3509
3510         BUG_ON(index < 0);
3511
3512         right_rec = &el->l_recs[index];
3513         if (index == 0) {
3514                 /* we meet with a cross extent block merge. */
3515                 ret = ocfs2_get_left_path(inode, right_path, &left_path);
3516                 if (ret) {
3517                         mlog_errno(ret);
3518                         goto out;
3519                 }
3520
3521                 left_el = path_leaf_el(left_path);
3522                 BUG_ON(le16_to_cpu(left_el->l_next_free_rec) !=
3523                        le16_to_cpu(left_el->l_count));
3524
3525                 left_rec = &left_el->l_recs[
3526                                 le16_to_cpu(left_el->l_next_free_rec) - 1];
3527                 BUG_ON(le32_to_cpu(left_rec->e_cpos) +
3528                        le16_to_cpu(left_rec->e_leaf_clusters) !=
3529                        le32_to_cpu(split_rec->e_cpos));
3530
3531                 subtree_index = ocfs2_find_subtree_root(inode,
3532                                                         left_path, right_path);
3533
3534                 ret = ocfs2_extend_rotate_transaction(handle, subtree_index,
3535                                                       handle->h_buffer_credits,
3536                                                       left_path);
3537                 if (ret) {
3538                         mlog_errno(ret);
3539                         goto out;
3540                 }
3541
3542                 root_bh = left_path->p_node[subtree_index].bh;
3543                 BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
3544
3545                 ret = ocfs2_path_bh_journal_access(handle, INODE_CACHE(inode), right_path,
3546                                                    subtree_index);
3547                 if (ret) {
3548                         mlog_errno(ret);
3549                         goto out;
3550                 }
3551
3552                 for (i = subtree_index + 1;
3553                      i < path_num_items(right_path); i++) {
3554                         ret = ocfs2_path_bh_journal_access(handle, INODE_CACHE(inode),
3555                                                            right_path, i);
3556                         if (ret) {
3557                                 mlog_errno(ret);
3558                                 goto out;
3559                         }
3560
3561                         ret = ocfs2_path_bh_journal_access(handle, INODE_CACHE(inode),
3562                                                            left_path, i);
3563                         if (ret) {
3564                                 mlog_errno(ret);
3565                                 goto out;
3566                         }
3567                 }
3568         } else {
3569                 left_rec = &el->l_recs[index - 1];
3570                 if (ocfs2_is_empty_extent(&el->l_recs[0]))
3571                         has_empty_extent = 1;
3572         }
3573
3574         ret = ocfs2_path_bh_journal_access(handle, INODE_CACHE(inode), right_path,
3575                                            path_num_items(right_path) - 1);
3576         if (ret) {
3577                 mlog_errno(ret);
3578                 goto out;
3579         }
3580
3581         if (has_empty_extent && index == 1) {
3582                 /*
3583                  * The easy case - we can just plop the record right in.
3584                  */
3585                 *left_rec = *split_rec;
3586
3587                 has_empty_extent = 0;
3588         } else
3589                 le16_add_cpu(&left_rec->e_leaf_clusters, split_clusters);
3590
3591         le32_add_cpu(&right_rec->e_cpos, split_clusters);
3592         le64_add_cpu(&right_rec->e_blkno,
3593                      ocfs2_clusters_to_blocks(inode->i_sb, split_clusters));
3594         le16_add_cpu(&right_rec->e_leaf_clusters, -split_clusters);
3595
3596         ocfs2_cleanup_merge(el, index);
3597
3598         ret = ocfs2_journal_dirty(handle, bh);
3599         if (ret)
3600                 mlog_errno(ret);
3601
3602         if (left_path) {
3603                 ret = ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
3604                 if (ret)
3605                         mlog_errno(ret);
3606
3607                 /*
3608                  * In the situation that the right_rec is empty and the extent
3609                  * block is empty also,  ocfs2_complete_edge_insert can't handle
3610                  * it and we need to delete the right extent block.
3611                  */
3612                 if (le16_to_cpu(right_rec->e_leaf_clusters) == 0 &&
3613                     le16_to_cpu(el->l_next_free_rec) == 1) {
3614
3615                         ret = ocfs2_remove_rightmost_path(inode, handle,
3616                                                           right_path,
3617                                                           dealloc, et);
3618                         if (ret) {
3619                                 mlog_errno(ret);
3620                                 goto out;
3621                         }
3622
3623                         /* Now the rightmost extent block has been deleted.
3624                          * So we use the new rightmost path.
3625                          */
3626                         ocfs2_mv_path(right_path, left_path);
3627                         left_path = NULL;
3628                 } else
3629                         ocfs2_complete_edge_insert(inode, handle, left_path,
3630                                                    right_path, subtree_index);
3631         }
3632 out:
3633         if (left_path)
3634                 ocfs2_free_path(left_path);
3635         return ret;
3636 }
3637
3638 static int ocfs2_try_to_merge_extent(struct inode *inode,
3639                                      handle_t *handle,
3640                                      struct ocfs2_path *path,
3641                                      int split_index,
3642                                      struct ocfs2_extent_rec *split_rec,
3643                                      struct ocfs2_cached_dealloc_ctxt *dealloc,
3644                                      struct ocfs2_merge_ctxt *ctxt,
3645                                      struct ocfs2_extent_tree *et)
3646
3647 {
3648         int ret = 0;
3649         struct ocfs2_extent_list *el = path_leaf_el(path);
3650         struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
3651
3652         BUG_ON(ctxt->c_contig_type == CONTIG_NONE);
3653
3654         if (ctxt->c_split_covers_rec && ctxt->c_has_empty_extent) {
3655                 /*
3656                  * The merge code will need to create an empty
3657                  * extent to take the place of the newly
3658                  * emptied slot. Remove any pre-existing empty
3659                  * extents - having more than one in a leaf is
3660                  * illegal.
3661                  */
3662                 ret = ocfs2_rotate_tree_left(inode, handle, path,
3663                                              dealloc, et);
3664                 if (ret) {
3665                         mlog_errno(ret);
3666                         goto out;
3667                 }
3668                 split_index--;
3669                 rec = &el->l_recs[split_index];
3670         }
3671
3672         if (ctxt->c_contig_type == CONTIG_LEFTRIGHT) {
3673                 /*
3674                  * Left-right contig implies this.
3675                  */
3676                 BUG_ON(!ctxt->c_split_covers_rec);
3677
3678                 /*
3679                  * Since the leftright insert always covers the entire
3680                  * extent, this call will delete the insert record
3681                  * entirely, resulting in an empty extent record added to
3682                  * the extent block.
3683                  *
3684                  * Since the adding of an empty extent shifts
3685                  * everything back to the right, there's no need to
3686                  * update split_index here.
3687                  *
3688                  * When the split_index is zero, we need to merge it to the
3689                  * prevoius extent block. It is more efficient and easier
3690                  * if we do merge_right first and merge_left later.
3691                  */
3692                 ret = ocfs2_merge_rec_right(inode, path,
3693                                             handle, split_rec,
3694                                             split_index);
3695                 if (ret) {
3696                         mlog_errno(ret);
3697                         goto out;
3698                 }
3699
3700                 /*
3701                  * We can only get this from logic error above.
3702                  */
3703                 BUG_ON(!ocfs2_is_empty_extent(&el->l_recs[0]));
3704
3705                 /* The merge left us with an empty extent, remove it. */
3706                 ret = ocfs2_rotate_tree_left(inode, handle, path,
3707                                              dealloc, et);
3708                 if (ret) {
3709                         mlog_errno(ret);
3710                         goto out;
3711                 }
3712
3713                 rec = &el->l_recs[split_index];
3714
3715                 /*
3716                  * Note that we don't pass split_rec here on purpose -
3717                  * we've merged it into the rec already.
3718                  */
3719                 ret = ocfs2_merge_rec_left(inode, path,
3720                                            handle, rec,
3721                                            dealloc, et,
3722                                            split_index);
3723
3724                 if (ret) {
3725                         mlog_errno(ret);
3726                         goto out;
3727                 }
3728
3729                 ret = ocfs2_rotate_tree_left(inode, handle, path,
3730                                              dealloc, et);
3731                 /*
3732                  * Error from this last rotate is not critical, so
3733                  * print but don't bubble it up.
3734                  */
3735                 if (ret)
3736                         mlog_errno(ret);
3737                 ret = 0;
3738         } else {
3739                 /*
3740                  * Merge a record to the left or right.
3741                  *
3742                  * 'contig_type' is relative to the existing record,
3743                  * so for example, if we're "right contig", it's to
3744                  * the record on the left (hence the left merge).
3745                  */
3746                 if (ctxt->c_contig_type == CONTIG_RIGHT) {
3747                         ret = ocfs2_merge_rec_left(inode,
3748                                                    path,
3749                                                    handle, split_rec,
3750                                                    dealloc, et,
3751                                                    split_index);
3752                         if (ret) {
3753                                 mlog_errno(ret);
3754                                 goto out;
3755                         }
3756                 } else {
3757                         ret = ocfs2_merge_rec_right(inode,
3758                                                     path,
3759                                                     handle, split_rec,
3760                                                     split_index);
3761                         if (ret) {
3762                                 mlog_errno(ret);
3763                                 goto out;
3764                         }
3765                 }
3766
3767                 if (ctxt->c_split_covers_rec) {
3768                         /*
3769                          * The merge may have left an empty extent in
3770                          * our leaf. Try to rotate it away.
3771                          */
3772                         ret = ocfs2_rotate_tree_left(inode, handle, path,
3773                                                      dealloc, et);
3774                         if (ret)
3775                                 mlog_errno(ret);
3776                         ret = 0;
3777                 }
3778         }
3779
3780 out:
3781         return ret;
3782 }
3783
3784 static void ocfs2_subtract_from_rec(struct super_block *sb,
3785                                     enum ocfs2_split_type split,
3786                                     struct ocfs2_extent_rec *rec,
3787                                     struct ocfs2_extent_rec *split_rec)
3788 {
3789         u64 len_blocks;
3790
3791         len_blocks = ocfs2_clusters_to_blocks(sb,
3792                                 le16_to_cpu(split_rec->e_leaf_clusters));
3793
3794         if (split == SPLIT_LEFT) {
3795                 /*
3796                  * Region is on the left edge of the existing
3797                  * record.
3798                  */
3799                 le32_add_cpu(&rec->e_cpos,
3800                              le16_to_cpu(split_rec->e_leaf_clusters));
3801                 le64_add_cpu(&rec->e_blkno, len_blocks);
3802                 le16_add_cpu(&rec->e_leaf_clusters,
3803                              -le16_to_cpu(split_rec->e_leaf_clusters));
3804         } else {
3805                 /*
3806                  * Region is on the right edge of the existing
3807                  * record.
3808                  */
3809                 le16_add_cpu(&rec->e_leaf_clusters,
3810                              -le16_to_cpu(split_rec->e_leaf_clusters));
3811         }
3812 }
3813
3814 /*
3815  * Do the final bits of extent record insertion at the target leaf
3816  * list. If this leaf is part of an allocation tree, it is assumed
3817  * that the tree above has been prepared.
3818  */
3819 static void ocfs2_insert_at_leaf(struct ocfs2_extent_rec *insert_rec,
3820                                  struct ocfs2_extent_list *el,
3821                                  struct ocfs2_insert_type *insert,
3822                                  struct inode *inode)
3823 {
3824         int i = insert->ins_contig_index;
3825         unsigned int range;
3826         struct ocfs2_extent_rec *rec;
3827
3828         BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
3829
3830         if (insert->ins_split != SPLIT_NONE) {
3831                 i = ocfs2_search_extent_list(el, le32_to_cpu(insert_rec->e_cpos));
3832                 BUG_ON(i == -1);
3833                 rec = &el->l_recs[i];
3834                 ocfs2_subtract_from_rec(inode->i_sb, insert->ins_split, rec,
3835                                         insert_rec);
3836                 goto rotate;
3837         }
3838
3839         /*
3840          * Contiguous insert - either left or right.
3841          */
3842         if (insert->ins_contig != CONTIG_NONE) {
3843                 rec = &el->l_recs[i];
3844                 if (insert->ins_contig == CONTIG_LEFT) {
3845                         rec->e_blkno = insert_rec->e_blkno;
3846                         rec->e_cpos = insert_rec->e_cpos;
3847                 }
3848                 le16_add_cpu(&rec->e_leaf_clusters,
3849                              le16_to_cpu(insert_rec->e_leaf_clusters));
3850                 return;
3851         }
3852
3853         /*
3854          * Handle insert into an empty leaf.
3855          */
3856         if (le16_to_cpu(el->l_next_free_rec) == 0 ||
3857             ((le16_to_cpu(el->l_next_free_rec) == 1) &&
3858              ocfs2_is_empty_extent(&el->l_recs[0]))) {
3859                 el->l_recs[0] = *insert_rec;
3860                 el->l_next_free_rec = cpu_to_le16(1);
3861                 return;
3862         }
3863
3864         /*
3865          * Appending insert.
3866          */
3867         if (insert->ins_appending == APPEND_TAIL) {
3868                 i = le16_to_cpu(el->l_next_free_rec) - 1;
3869                 rec = &el->l_recs[i];
3870                 range = le32_to_cpu(rec->e_cpos)
3871                         + le16_to_cpu(rec->e_leaf_clusters);
3872                 BUG_ON(le32_to_cpu(insert_rec->e_cpos) < range);
3873
3874                 mlog_bug_on_msg(le16_to_cpu(el->l_next_free_rec) >=
3875                                 le16_to_cpu(el->l_count),
3876                                 "inode %lu, depth %u, count %u, next free %u, "
3877                                 "rec.cpos %u, rec.clusters %u, "
3878                                 "insert.cpos %u, insert.clusters %u\n",
3879                                 inode->i_ino,
3880                                 le16_to_cpu(el->l_tree_depth),
3881                                 le16_to_cpu(el->l_count),
3882                                 le16_to_cpu(el->l_next_free_rec),
3883                                 le32_to_cpu(el->l_recs[i].e_cpos),
3884                                 le16_to_cpu(el->l_recs[i].e_leaf_clusters),
3885                                 le32_to_cpu(insert_rec->e_cpos),
3886                                 le16_to_cpu(insert_rec->e_leaf_clusters));
3887                 i++;
3888                 el->l_recs[i] = *insert_rec;
3889                 le16_add_cpu(&el->l_next_free_rec, 1);
3890                 return;
3891         }
3892
3893 rotate:
3894         /*
3895          * Ok, we have to rotate.
3896          *
3897          * At this point, it is safe to assume that inserting into an
3898          * empty leaf and appending to a leaf have both been handled
3899          * above.
3900          *
3901          * This leaf needs to have space, either by the empty 1st
3902          * extent record, or by virtue of an l_next_rec < l_count.
3903          */
3904         ocfs2_rotate_leaf(el, insert_rec);
3905 }
3906
3907 static void ocfs2_adjust_rightmost_records(struct inode *inode,
3908                                            handle_t *handle,
3909                                            struct ocfs2_path *path,
3910                                            struct ocfs2_extent_rec *insert_rec)
3911 {
3912         int ret, i, next_free;
3913         struct buffer_head *bh;
3914         struct ocfs2_extent_list *el;
3915         struct ocfs2_extent_rec *rec;
3916
3917         /*
3918          * Update everything except the leaf block.
3919          */
3920         for (i = 0; i < path->p_tree_depth; i++) {
3921                 bh = path->p_node[i].bh;
3922                 el = path->p_node[i].el;
3923
3924                 next_free = le16_to_cpu(el->l_next_free_rec);
3925                 if (next_free == 0) {
3926                         ocfs2_error(inode->i_sb,
3927                                     "Dinode %llu has a bad extent list",
3928                                     (unsigned long long)OCFS2_I(inode)->ip_blkno);
3929                         ret = -EIO;
3930                         return;
3931                 }
3932
3933                 rec = &el->l_recs[next_free - 1];
3934
3935                 rec->e_int_clusters = insert_rec->e_cpos;
3936                 le32_add_cpu(&rec->e_int_clusters,
3937                              le16_to_cpu(insert_rec->e_leaf_clusters));
3938                 le32_add_cpu(&rec->e_int_clusters,
3939                              -le32_to_cpu(rec->e_cpos));
3940
3941                 ret = ocfs2_journal_dirty(handle, bh);
3942                 if (ret)
3943                         mlog_errno(ret);
3944
3945         }
3946 }
3947
3948 static int ocfs2_append_rec_to_path(struct inode *inode, handle_t *handle,
3949                                     struct ocfs2_extent_rec *insert_rec,
3950                                     struct ocfs2_path *right_path,
3951                                     struct ocfs2_path **ret_left_path)
3952 {
3953         int ret, next_free;
3954         struct ocfs2_extent_list *el;
3955         struct ocfs2_path *left_path = NULL;
3956
3957         *ret_left_path = NULL;
3958
3959         /*
3960          * This shouldn't happen for non-trees. The extent rec cluster
3961          * count manipulation below only works for interior nodes.
3962          */
3963         BUG_ON(right_path->p_tree_depth == 0);
3964
3965         /*
3966          * If our appending insert is at the leftmost edge of a leaf,
3967          * then we might need to update the rightmost records of the
3968          * neighboring path.
3969          */
3970         el = path_leaf_el(right_path);
3971         next_free = le16_to_cpu(el->l_next_free_rec);
3972         if (next_free == 0 ||
3973             (next_free == 1 && ocfs2_is_empty_extent(&el->l_recs[0]))) {
3974                 u32 left_cpos;
3975
3976                 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path,
3977                                                     &left_cpos);
3978                 if (ret) {
3979                         mlog_errno(ret);
3980                         goto out;
3981                 }
3982
3983                 mlog(0, "Append may need a left path update. cpos: %u, "
3984                      "left_cpos: %u\n", le32_to_cpu(insert_rec->e_cpos),
3985                      left_cpos);
3986
3987                 /*
3988                  * No need to worry if the append is already in the
3989                  * leftmost leaf.
3990                  */
3991                 if (left_cpos) {
3992                         left_path = ocfs2_new_path_from_path(right_path);
3993                         if (!left_path) {
3994                                 ret = -ENOMEM;
3995                                 mlog_errno(ret);
3996                                 goto out;
3997                         }
3998
3999                         ret = ocfs2_find_path(INODE_CACHE(inode), left_path,
4000                                               left_cpos);
4001                         if (ret) {
4002                                 mlog_errno(ret);
4003                                 goto out;
4004                         }
4005
4006                         /*
4007                          * ocfs2_insert_path() will pass the left_path to the
4008                          * journal for us.
4009                          */
4010                 }
4011         }
4012
4013         ret = ocfs2_journal_access_path(INODE_CACHE(inode), handle, right_path);
4014         if (ret) {
4015                 mlog_errno(ret);
4016                 goto out;
4017         }
4018
4019         ocfs2_adjust_rightmost_records(inode, handle, right_path, insert_rec);
4020
4021         *ret_left_path = left_path;
4022         ret = 0;
4023 out:
4024         if (ret != 0)
4025                 ocfs2_free_path(left_path);
4026
4027         return ret;
4028 }
4029
4030 static void ocfs2_split_record(struct inode *inode,
4031                                struct ocfs2_path *left_path,
4032                                struct ocfs2_path *right_path,
4033                                struct ocfs2_extent_rec *split_rec,
4034                                enum ocfs2_split_type split)
4035 {
4036         int index;
4037         u32 cpos = le32_to_cpu(split_rec->e_cpos);
4038         struct ocfs2_extent_list *left_el = NULL, *right_el, *insert_el, *el;
4039         struct ocfs2_extent_rec *rec, *tmprec;
4040
4041         right_el = path_leaf_el(right_path);
4042         if (left_path)
4043                 left_el = path_leaf_el(left_path);
4044
4045         el = right_el;
4046         insert_el = right_el;
4047         index = ocfs2_search_extent_list(el, cpos);
4048         if (index != -1) {
4049                 if (index == 0 && left_path) {
4050                         BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
4051
4052                         /*
4053                          * This typically means that the record
4054                          * started in the left path but moved to the
4055                          * right as a result of rotation. We either
4056                          * move the existing record to the left, or we
4057                          * do the later insert there.
4058                          *
4059                          * In this case, the left path should always
4060                          * exist as the rotate code will have passed
4061                          * it back for a post-insert update.
4062                          */
4063
4064                         if (split == SPLIT_LEFT) {
4065                                 /*
4066                                  * It's a left split. Since we know
4067                                  * that the rotate code gave us an
4068                                  * empty extent in the left path, we
4069                                  * can just do the insert there.
4070                                  */
4071                                 insert_el = left_el;
4072                         } else {
4073                                 /*
4074                                  * Right split - we have to move the
4075                                  * existing record over to the left
4076                                  * leaf. The insert will be into the
4077                                  * newly created empty extent in the
4078                                  * right leaf.
4079                                  */
4080                                 tmprec = &right_el->l_recs[index];
4081                                 ocfs2_rotate_leaf(left_el, tmprec);
4082                                 el = left_el;
4083
4084                                 memset(tmprec, 0, sizeof(*tmprec));
4085                                 index = ocfs2_search_extent_list(left_el, cpos);
4086                                 BUG_ON(index == -1);
4087                         }
4088                 }
4089         } else {
4090                 BUG_ON(!left_path);
4091                 BUG_ON(!ocfs2_is_empty_extent(&left_el->l_recs[0]));
4092                 /*
4093                  * Left path is easy - we can just allow the insert to
4094                  * happen.
4095                  */
4096                 el = left_el;
4097                 insert_el = left_el;
4098                 index = ocfs2_search_extent_list(el, cpos);
4099                 BUG_ON(index == -1);
4100         }
4101
4102         rec = &el->l_recs[index];
4103         ocfs2_subtract_from_rec(inode->i_sb, split, rec, split_rec);
4104         ocfs2_rotate_leaf(insert_el, split_rec);
4105 }
4106
4107 /*
4108  * This function only does inserts on an allocation b-tree. For tree
4109  * depth = 0, ocfs2_insert_at_leaf() is called directly.
4110  *
4111  * right_path is the path we want to do the actual insert
4112  * in. left_path should only be passed in if we need to update that
4113  * portion of the tree after an edge insert.
4114  */
4115 static int ocfs2_insert_path(struct inode *inode,
4116                              handle_t *handle,
4117                              struct ocfs2_path *left_path,
4118                              struct ocfs2_path *right_path,
4119                              struct ocfs2_extent_rec *insert_rec,
4120                              struct ocfs2_insert_type *insert)
4121 {
4122         int ret, subtree_index;
4123         struct buffer_head *leaf_bh = path_leaf_bh(right_path);
4124
4125         if (left_path) {
4126                 int credits = handle->h_buffer_credits;
4127
4128                 /*
4129                  * There's a chance that left_path got passed back to
4130                  * us without being accounted for in the
4131                  * journal. Extend our transaction here to be sure we
4132                  * can change those blocks.
4133                  */
4134                 credits += left_path->p_tree_depth;
4135
4136                 ret = ocfs2_extend_trans(handle, credits);
4137                 if (ret < 0) {
4138                         mlog_errno(ret);
4139                         goto out;
4140                 }
4141
4142                 ret = ocfs2_journal_access_path(INODE_CACHE(inode), handle, left_path);
4143                 if (ret < 0) {
4144                         mlog_errno(ret);
4145                         goto out;
4146                 }
4147         }
4148
4149         /*
4150          * Pass both paths to the journal. The majority of inserts
4151          * will be touching all components anyway.
4152          */
4153         ret = ocfs2_journal_access_path(INODE_CACHE(inode), handle, right_path);
4154         if (ret < 0) {
4155                 mlog_errno(ret);
4156                 goto out;
4157         }
4158
4159         if (insert->ins_split != SPLIT_NONE) {
4160                 /*
4161                  * We could call ocfs2_insert_at_leaf() for some types
4162                  * of splits, but it's easier to just let one separate
4163                  * function sort it all out.
4164                  */
4165                 ocfs2_split_record(inode, left_path, right_path,
4166                                    insert_rec, insert->ins_split);
4167
4168                 /*
4169                  * Split might have modified either leaf and we don't
4170                  * have a guarantee that the later edge insert will
4171                  * dirty this for us.
4172                  */
4173                 if (left_path)
4174                         ret = ocfs2_journal_dirty(handle,
4175                                                   path_leaf_bh(left_path));
4176                         if (ret)
4177                                 mlog_errno(ret);
4178         } else
4179                 ocfs2_insert_at_leaf(insert_rec, path_leaf_el(right_path),
4180                                      insert, inode);
4181
4182         ret = ocfs2_journal_dirty(handle, leaf_bh);
4183         if (ret)
4184                 mlog_errno(ret);
4185
4186         if (left_path) {
4187                 /*
4188                  * The rotate code has indicated that we need to fix
4189                  * up portions of the tree after the insert.
4190                  *
4191                  * XXX: Should we extend the transaction here?
4192                  */
4193                 subtree_index = ocfs2_find_subtree_root(inode, left_path,
4194                                                         right_path);
4195                 ocfs2_complete_edge_insert(inode, handle, left_path,
4196                                            right_path, subtree_index);
4197         }
4198
4199         ret = 0;
4200 out:
4201         return ret;
4202 }
4203
4204 static int ocfs2_do_insert_extent(struct inode *inode,
4205                                   handle_t *handle,
4206                                   struct ocfs2_extent_tree *et,
4207                                   struct ocfs2_extent_rec *insert_rec,
4208                                   struct ocfs2_insert_type *type)
4209 {
4210         int ret, rotate = 0;
4211         u32 cpos;
4212         struct ocfs2_path *right_path = NULL;
4213         struct ocfs2_path *left_path = NULL;
4214         struct ocfs2_extent_list *el;
4215
4216         el = et->et_root_el;
4217
4218         ret = ocfs2_et_root_journal_access(handle, et,
4219                                            OCFS2_JOURNAL_ACCESS_WRITE);
4220         if (ret) {
4221                 mlog_errno(ret);
4222                 goto out;
4223         }
4224
4225         if (le16_to_cpu(el->l_tree_depth) == 0) {
4226                 ocfs2_insert_at_leaf(insert_rec, el, type, inode);
4227                 goto out_update_clusters;
4228         }
4229
4230         right_path = ocfs2_new_path_from_et(et);
4231         if (!right_path) {
4232                 ret = -ENOMEM;
4233                 mlog_errno(ret);
4234                 goto out;
4235         }
4236
4237         /*
4238          * Determine the path to start with. Rotations need the
4239          * rightmost path, everything else can go directly to the
4240          * target leaf.
4241          */
4242         cpos = le32_to_cpu(insert_rec->e_cpos);
4243         if (type->ins_appending == APPEND_NONE &&
4244             type->ins_contig == CONTIG_NONE) {
4245                 rotate = 1;
4246                 cpos = UINT_MAX;
4247         }
4248
4249         ret = ocfs2_find_path(et->et_ci, right_path, cpos);
4250         if (ret) {
4251                 mlog_errno(ret);
4252                 goto out;
4253         }
4254
4255         /*
4256          * Rotations and appends need special treatment - they modify
4257          * parts of the tree's above them.
4258          *
4259          * Both might pass back a path immediate to the left of the
4260          * one being inserted to. This will be cause
4261          * ocfs2_insert_path() to modify the rightmost records of
4262          * left_path to account for an edge insert.
4263          *
4264          * XXX: When modifying this code, keep in mind that an insert
4265          * can wind up skipping both of these two special cases...
4266          */
4267         if (rotate) {
4268                 ret = ocfs2_rotate_tree_right(inode, handle, type->ins_split,
4269                                               le32_to_cpu(insert_rec->e_cpos),
4270                                               right_path, &left_path);
4271                 if (ret) {
4272                         mlog_errno(ret);
4273                         goto out;
4274                 }
4275
4276                 /*
4277                  * ocfs2_rotate_tree_right() might have extended the
4278                  * transaction without re-journaling our tree root.
4279                  */
4280                 ret = ocfs2_et_root_journal_access(handle, et,
4281                                                    OCFS2_JOURNAL_ACCESS_WRITE);
4282                 if (ret) {
4283                         mlog_errno(ret);
4284                         goto out;
4285                 }
4286         } else if (type->ins_appending == APPEND_TAIL
4287                    && type->ins_contig != CONTIG_LEFT) {
4288                 ret = ocfs2_append_rec_to_path(inode, handle, insert_rec,
4289                                                right_path, &left_path);
4290                 if (ret) {
4291                         mlog_errno(ret);
4292                         goto out;
4293                 }
4294         }
4295
4296         ret = ocfs2_insert_path(inode, handle, left_path, right_path,
4297                                 insert_rec, type);
4298         if (ret) {
4299                 mlog_errno(ret);
4300                 goto out;
4301         }
4302
4303 out_update_clusters:
4304         if (type->ins_split == SPLIT_NONE)
4305                 ocfs2_et_update_clusters(inode, et,
4306                                          le16_to_cpu(insert_rec->e_leaf_clusters));
4307
4308         ret = ocfs2_journal_dirty(handle, et->et_root_bh);
4309         if (ret)
4310                 mlog_errno(ret);
4311
4312 out:
4313         ocfs2_free_path(left_path);
4314         ocfs2_free_path(right_path);
4315
4316         return ret;
4317 }
4318
4319 static enum ocfs2_contig_type
4320 ocfs2_figure_merge_contig_type(struct inode *inode, struct ocfs2_path *path,
4321                                struct ocfs2_extent_list *el, int index,
4322                                struct ocfs2_extent_rec *split_rec)
4323 {
4324         int status;
4325         enum ocfs2_contig_type ret = CONTIG_NONE;
4326         u32 left_cpos, right_cpos;
4327         struct ocfs2_extent_rec *rec = NULL;
4328         struct ocfs2_extent_list *new_el;
4329         struct ocfs2_path *left_path = NULL, *right_path = NULL;
4330         struct buffer_head *bh;
4331         struct ocfs2_extent_block *eb;
4332
4333         if (index > 0) {
4334                 rec = &el->l_recs[index - 1];
4335         } else if (path->p_tree_depth > 0) {
4336                 status = ocfs2_find_cpos_for_left_leaf(inode->i_sb,
4337                                                        path, &left_cpos);
4338                 if (status)
4339                         goto out;
4340
4341                 if (left_cpos != 0) {
4342                         left_path = ocfs2_new_path_from_path(path);
4343                         if (!left_path)
4344                                 goto out;
4345
4346                         status = ocfs2_find_path(INODE_CACHE(inode),
4347                                                  left_path, left_cpos);
4348                         if (status)
4349                                 goto out;
4350
4351                         new_el = path_leaf_el(left_path);
4352
4353                         if (le16_to_cpu(new_el->l_next_free_rec) !=
4354                             le16_to_cpu(new_el->l_count)) {
4355                                 bh = path_leaf_bh(left_path);
4356                                 eb = (struct ocfs2_extent_block *)bh->b_data;
4357                                 ocfs2_error(inode->i_sb,
4358                                             "Extent block #%llu has an "
4359                                             "invalid l_next_free_rec of "
4360                                             "%d.  It should have "
4361                                             "matched the l_count of %d",
4362                                             (unsigned long long)le64_to_cpu(eb->h_blkno),
4363                                             le16_to_cpu(new_el->l_next_free_rec),
4364                                             le16_to_cpu(new_el->l_count));
4365                                 status = -EINVAL;
4366                                 goto out;
4367                         }
4368                         rec = &new_el->l_recs[
4369                                 le16_to_cpu(new_el->l_next_free_rec) - 1];
4370                 }
4371         }
4372
4373         /*
4374          * We're careful to check for an empty extent record here -
4375          * the merge code will know what to do if it sees one.
4376          */
4377         if (rec) {
4378                 if (index == 1 && ocfs2_is_empty_extent(rec)) {
4379                         if (split_rec->e_cpos == el->l_recs[index].e_cpos)
4380                                 ret = CONTIG_RIGHT;
4381                 } else {
4382                         ret = ocfs2_extent_contig(inode, rec, split_rec);
4383                 }
4384         }
4385
4386         rec = NULL;
4387         if (index < (le16_to_cpu(el->l_next_free_rec) - 1))
4388                 rec = &el->l_recs[index + 1];
4389         else if (le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count) &&
4390                  path->p_tree_depth > 0) {
4391                 status = ocfs2_find_cpos_for_right_leaf(inode->i_sb,
4392                                                         path, &right_cpos);
4393                 if (status)
4394                         goto out;
4395
4396                 if (right_cpos == 0)
4397                         goto out;
4398
4399                 right_path = ocfs2_new_path_from_path(path);
4400                 if (!right_path)
4401                         goto out;
4402
4403                 status = ocfs2_find_path(INODE_CACHE(inode), right_path, right_cpos);
4404                 if (status)
4405                         goto out;
4406
4407                 new_el = path_leaf_el(right_path);
4408                 rec = &new_el->l_recs[0];
4409                 if (ocfs2_is_empty_extent(rec)) {
4410                         if (le16_to_cpu(new_el->l_next_free_rec) <= 1) {
4411                                 bh = path_leaf_bh(right_path);
4412                                 eb = (struct ocfs2_extent_block *)bh->b_data;
4413                                 ocfs2_error(inode->i_sb,
4414                                             "Extent block #%llu has an "
4415                                             "invalid l_next_free_rec of %d",
4416                                             (unsigned long long)le64_to_cpu(eb->h_blkno),
4417                                             le16_to_cpu(new_el->l_next_free_rec));
4418                                 status = -EINVAL;
4419                                 goto out;
4420                         }
4421                         rec = &new_el->l_recs[1];
4422                 }
4423         }
4424
4425         if (rec) {
4426                 enum ocfs2_contig_type contig_type;
4427
4428                 contig_type = ocfs2_extent_contig(inode, rec, split_rec);
4429
4430                 if (contig_type == CONTIG_LEFT && ret == CONTIG_RIGHT)
4431                         ret = CONTIG_LEFTRIGHT;
4432                 else if (ret == CONTIG_NONE)
4433                         ret = contig_type;
4434         }
4435
4436 out:
4437         if (left_path)
4438                 ocfs2_free_path(left_path);
4439         if (right_path)
4440                 ocfs2_free_path(right_path);
4441
4442         return ret;
4443 }
4444
4445 static void ocfs2_figure_contig_type(struct inode *inode,
4446                                      struct ocfs2_insert_type *insert,
4447                                      struct ocfs2_extent_list *el,
4448                                      struct ocfs2_extent_rec *insert_rec,
4449                                      struct ocfs2_extent_tree *et)
4450 {
4451         int i;
4452         enum ocfs2_contig_type contig_type = CONTIG_NONE;
4453
4454         BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
4455
4456         for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
4457                 contig_type = ocfs2_extent_contig(inode, &el->l_recs[i],
4458                                                   insert_rec);
4459                 if (contig_type != CONTIG_NONE) {
4460                         insert->ins_contig_index = i;
4461                         break;
4462                 }
4463         }
4464         insert->ins_contig = contig_type;
4465
4466         if (insert->ins_contig != CONTIG_NONE) {
4467                 struct ocfs2_extent_rec *rec =
4468                                 &el->l_recs[insert->ins_contig_index];
4469                 unsigned int len = le16_to_cpu(rec->e_leaf_clusters) +
4470                                    le16_to_cpu(insert_rec->e_leaf_clusters);
4471
4472                 /*
4473                  * Caller might want us to limit the size of extents, don't
4474                  * calculate contiguousness if we might exceed that limit.
4475                  */
4476                 if (et->et_max_leaf_clusters &&
4477                     (len > et->et_max_leaf_clusters))
4478                         insert->ins_contig = CONTIG_NONE;
4479         }
4480 }
4481
4482 /*
4483  * This should only be called against the righmost leaf extent list.
4484  *
4485  * ocfs2_figure_appending_type() will figure out whether we'll have to
4486  * insert at the tail of the rightmost leaf.
4487  *
4488  * This should also work against the root extent list for tree's with 0
4489  * depth. If we consider the root extent list to be the rightmost leaf node
4490  * then the logic here makes sense.
4491  */
4492 static void ocfs2_figure_appending_type(struct ocfs2_insert_type *insert,
4493                                         struct ocfs2_extent_list *el,
4494                                         struct ocfs2_extent_rec *insert_rec)
4495 {
4496         int i;
4497         u32 cpos = le32_to_cpu(insert_rec->e_cpos);
4498         struct ocfs2_extent_rec *rec;
4499
4500         insert->ins_appending = APPEND_NONE;
4501
4502         BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
4503
4504         if (!el->l_next_free_rec)
4505                 goto set_tail_append;
4506
4507         if (ocfs2_is_empty_extent(&el->l_recs[0])) {
4508                 /* Were all records empty? */
4509                 if (le16_to_cpu(el->l_next_free_rec) == 1)
4510                         goto set_tail_append;
4511         }
4512
4513         i = le16_to_cpu(el->l_next_free_rec) - 1;
4514         rec = &el->l_recs[i];
4515
4516         if (cpos >=
4517             (le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)))
4518                 goto set_tail_append;
4519
4520         return;
4521
4522 set_tail_append:
4523         insert->ins_appending = APPEND_TAIL;
4524 }
4525
4526 /*
4527  * Helper function called at the begining of an insert.
4528  *
4529  * This computes a few things that are commonly used in the process of
4530  * inserting into the btree:
4531  *   - Whether the new extent is contiguous with an existing one.
4532  *   - The current tree depth.
4533  *   - Whether the insert is an appending one.
4534  *   - The total # of free records in the tree.
4535  *
4536  * All of the information is stored on the ocfs2_insert_type
4537  * structure.
4538  */
4539 static int ocfs2_figure_insert_type(struct inode *inode,
4540                                     struct ocfs2_extent_tree *et,
4541                                     struct buffer_head **last_eb_bh,
4542                                     struct ocfs2_extent_rec *insert_rec,
4543                                     int *free_records,
4544                                     struct ocfs2_insert_type *insert)
4545 {
4546         int ret;
4547         struct ocfs2_extent_block *eb;
4548         struct ocfs2_extent_list *el;
4549         struct ocfs2_path *path = NULL;
4550         struct buffer_head *bh = NULL;
4551
4552         insert->ins_split = SPLIT_NONE;
4553
4554         el = et->et_root_el;
4555         insert->ins_tree_depth = le16_to_cpu(el->l_tree_depth);
4556
4557         if (el->l_tree_depth) {
4558                 /*
4559                  * If we have tree depth, we read in the
4560                  * rightmost extent block ahead of time as
4561                  * ocfs2_figure_insert_type() and ocfs2_add_branch()
4562                  * may want it later.
4563                  */
4564                 ret = ocfs2_read_extent_block(et->et_ci,
4565                                               ocfs2_et_get_last_eb_blk(et),
4566                                               &bh);
4567                 if (ret) {
4568                         mlog_exit(ret);
4569                         goto out;
4570                 }
4571                 eb = (struct ocfs2_extent_block *) bh->b_data;
4572                 el = &eb->h_list;
4573         }
4574
4575         /*
4576          * Unless we have a contiguous insert, we'll need to know if
4577          * there is room left in our allocation tree for another
4578          * extent record.
4579          *
4580          * XXX: This test is simplistic, we can search for empty
4581          * extent records too.
4582          */
4583         *free_records = le16_to_cpu(el->l_count) -
4584                 le16_to_cpu(el->l_next_free_rec);
4585
4586         if (!insert->ins_tree_depth) {
4587                 ocfs2_figure_contig_type(inode, insert, el, insert_rec, et);
4588                 ocfs2_figure_appending_type(insert, el, insert_rec);
4589                 return 0;
4590         }
4591
4592         path = ocfs2_new_path_from_et(et);
4593         if (!path) {
4594                 ret = -ENOMEM;
4595                 mlog_errno(ret);
4596                 goto out;
4597         }
4598
4599         /*
4600          * In the case that we're inserting past what the tree
4601          * currently accounts for, ocfs2_find_path() will return for
4602          * us the rightmost tree path. This is accounted for below in
4603          * the appending code.
4604          */
4605         ret = ocfs2_find_path(et->et_ci, path, le32_to_cpu(insert_rec->e_cpos));
4606         if (ret) {
4607                 mlog_errno(ret);
4608                 goto out;
4609         }
4610
4611         el = path_leaf_el(path);
4612
4613         /*
4614          * Now that we have the path, there's two things we want to determine:
4615          * 1) Contiguousness (also set contig_index if this is so)
4616          *
4617          * 2) Are we doing an append? We can trivially break this up
4618          *     into two types of appends: simple record append, or a
4619          *     rotate inside the tail leaf.
4620          */
4621         ocfs2_figure_contig_type(inode, insert, el, insert_rec, et);
4622
4623         /*
4624          * The insert code isn't quite ready to deal with all cases of
4625          * left contiguousness. Specifically, if it's an insert into
4626          * the 1st record in a leaf, it will require the adjustment of
4627          * cluster count on the last record of the path directly to it's
4628          * left. For now, just catch that case and fool the layers
4629          * above us. This works just fine for tree_depth == 0, which
4630          * is why we allow that above.
4631          */
4632         if (insert->ins_contig == CONTIG_LEFT &&
4633             insert->ins_contig_index == 0)
4634                 insert->ins_contig = CONTIG_NONE;
4635
4636         /*
4637          * Ok, so we can simply compare against last_eb to figure out
4638          * whether the path doesn't exist. This will only happen in
4639          * the case that we're doing a tail append, so maybe we can
4640          * take advantage of that information somehow.
4641          */
4642         if (ocfs2_et_get_last_eb_blk(et) ==
4643             path_leaf_bh(path)->b_blocknr) {
4644                 /*
4645                  * Ok, ocfs2_find_path() returned us the rightmost
4646                  * tree path. This might be an appending insert. There are
4647                  * two cases:
4648                  *    1) We're doing a true append at the tail:
4649                  *      -This might even be off the end of the leaf
4650                  *    2) We're "appending" by rotating in the tail
4651                  */
4652                 ocfs2_figure_appending_type(insert, el, insert_rec);
4653         }
4654
4655 out:
4656         ocfs2_free_path(path);
4657
4658         if (ret == 0)
4659                 *last_eb_bh = bh;
4660         else
4661                 brelse(bh);
4662         return ret;
4663 }
4664
4665 /*
4666  * Insert an extent into an inode btree.
4667  *
4668  * The caller needs to update fe->i_clusters
4669  */
4670 int ocfs2_insert_extent(struct ocfs2_super *osb,
4671                         handle_t *handle,
4672                         struct inode *inode,
4673                         struct ocfs2_extent_tree *et,
4674                         u32 cpos,
4675                         u64 start_blk,
4676                         u32 new_clusters,
4677                         u8 flags,
4678                         struct ocfs2_alloc_context *meta_ac)
4679 {
4680         int status;
4681         int uninitialized_var(free_records);
4682         struct buffer_head *last_eb_bh = NULL;
4683         struct ocfs2_insert_type insert = {0, };
4684         struct ocfs2_extent_rec rec;
4685
4686         mlog(0, "add %u clusters at position %u to inode %llu\n",
4687              new_clusters, cpos, (unsigned long long)OCFS2_I(inode)->ip_blkno);
4688
4689         memset(&rec, 0, sizeof(rec));
4690         rec.e_cpos = cpu_to_le32(cpos);
4691         rec.e_blkno = cpu_to_le64(start_blk);
4692         rec.e_leaf_clusters = cpu_to_le16(new_clusters);
4693         rec.e_flags = flags;
4694         status = ocfs2_et_insert_check(inode, et, &rec);
4695         if (status) {
4696                 mlog_errno(status);
4697                 goto bail;
4698         }
4699
4700         status = ocfs2_figure_insert_type(inode, et, &last_eb_bh, &rec,
4701                                           &free_records, &insert);
4702         if (status < 0) {
4703                 mlog_errno(status);
4704                 goto bail;
4705         }
4706
4707         mlog(0, "Insert.appending: %u, Insert.Contig: %u, "
4708              "Insert.contig_index: %d, Insert.free_records: %d, "
4709              "Insert.tree_depth: %d\n",
4710              insert.ins_appending, insert.ins_contig, insert.ins_contig_index,
4711              free_records, insert.ins_tree_depth);
4712
4713         if (insert.ins_contig == CONTIG_NONE && free_records == 0) {
4714                 status = ocfs2_grow_tree(inode, handle, et,
4715                                          &insert.ins_tree_depth, &last_eb_bh,
4716                                          meta_ac);
4717                 if (status) {
4718                         mlog_errno(status);
4719                         goto bail;
4720                 }
4721         }
4722
4723         /* Finally, we can add clusters. This might rotate the tree for us. */
4724         status = ocfs2_do_insert_extent(inode, handle, et, &rec, &insert);
4725         if (status < 0)
4726                 mlog_errno(status);
4727         else if (et->et_ops == &ocfs2_dinode_et_ops)
4728                 ocfs2_extent_map_insert_rec(inode, &rec);
4729
4730 bail:
4731         brelse(last_eb_bh);
4732
4733         mlog_exit(status);
4734         return status;
4735 }
4736
4737 /*
4738  * Allcate and add clusters into the extent b-tree.
4739  * The new clusters(clusters_to_add) will be inserted at logical_offset.
4740  * The extent b-tree's root is specified by et, and
4741  * it is not limited to the file storage. Any extent tree can use this
4742  * function if it implements the proper ocfs2_extent_tree.
4743  */
4744 int ocfs2_add_clusters_in_btree(struct ocfs2_super *osb,
4745                                 struct inode *inode,
4746                                 u32 *logical_offset,
4747                                 u32 clusters_to_add,
4748                                 int mark_unwritten,
4749                                 struct ocfs2_extent_tree *et,
4750                                 handle_t *handle,
4751                                 struct ocfs2_alloc_context *data_ac,
4752                                 struct ocfs2_alloc_context *meta_ac,
4753                                 enum ocfs2_alloc_restarted *reason_ret)
4754 {
4755         int status = 0;
4756         int free_extents;
4757         enum ocfs2_alloc_restarted reason = RESTART_NONE;
4758         u32 bit_off, num_bits;
4759         u64 block;
4760         u8 flags = 0;
4761
4762         BUG_ON(!clusters_to_add);
4763
4764         if (mark_unwritten)
4765                 flags = OCFS2_EXT_UNWRITTEN;
4766
4767         free_extents = ocfs2_num_free_extents(osb, et);
4768         if (free_extents < 0) {
4769                 status = free_extents;
4770                 mlog_errno(status);
4771                 goto leave;
4772         }
4773
4774         /* there are two cases which could cause us to EAGAIN in the
4775          * we-need-more-metadata case:
4776          * 1) we haven't reserved *any*
4777          * 2) we are so fragmented, we've needed to add metadata too
4778          *    many times. */
4779         if (!free_extents && !meta_ac) {
4780                 mlog(0, "we haven't reserved any metadata!\n");
4781                 status = -EAGAIN;
4782                 reason = RESTART_META;
4783                 goto leave;
4784         } else if ((!free_extents)
4785                    && (ocfs2_alloc_context_bits_left(meta_ac)
4786                        < ocfs2_extend_meta_needed(et->et_root_el))) {
4787                 mlog(0, "filesystem is really fragmented...\n");
4788                 status = -EAGAIN;
4789                 reason = RESTART_META;
4790                 goto leave;
4791         }
4792
4793         status = __ocfs2_claim_clusters(osb, handle, data_ac, 1,
4794                                         clusters_to_add, &bit_off, &num_bits);
4795         if (status < 0) {
4796                 if (status != -ENOSPC)
4797                         mlog_errno(status);
4798                 goto leave;
4799         }
4800
4801         BUG_ON(num_bits > clusters_to_add);
4802
4803         /* reserve our write early -- insert_extent may update the tree root */
4804         status = ocfs2_et_root_journal_access(handle, et,
4805                                               OCFS2_JOURNAL_ACCESS_WRITE);
4806         if (status < 0) {
4807                 mlog_errno(status);
4808                 goto leave;
4809         }
4810
4811         block = ocfs2_clusters_to_blocks(osb->sb, bit_off);
4812         mlog(0, "Allocating %u clusters at block %u for inode %llu\n",
4813              num_bits, bit_off, (unsigned long long)OCFS2_I(inode)->ip_blkno);
4814         status = ocfs2_insert_extent(osb, handle, inode, et,
4815                                      *logical_offset, block,
4816                                      num_bits, flags, meta_ac);
4817         if (status < 0) {
4818                 mlog_errno(status);
4819                 goto leave;
4820         }
4821
4822         status = ocfs2_journal_dirty(handle, et->et_root_bh);
4823         if (status < 0) {
4824                 mlog_errno(status);
4825                 goto leave;
4826         }
4827
4828         clusters_to_add -= num_bits;
4829         *logical_offset += num_bits;
4830
4831         if (clusters_to_add) {
4832                 mlog(0, "need to alloc once more, wanted = %u\n",
4833                      clusters_to_add);
4834                 status = -EAGAIN;
4835                 reason = RESTART_TRANS;
4836         }
4837
4838 leave:
4839         mlog_exit(status);
4840         if (reason_ret)
4841                 *reason_ret = reason;
4842         return status;
4843 }
4844
4845 static void ocfs2_make_right_split_rec(struct super_block *sb,
4846                                        struct ocfs2_extent_rec *split_rec,
4847                                        u32 cpos,
4848                                        struct ocfs2_extent_rec *rec)
4849 {
4850         u32 rec_cpos = le32_to_cpu(rec->e_cpos);
4851         u32 rec_range = rec_cpos + le16_to_cpu(rec->e_leaf_clusters);
4852
4853         memset(split_rec, 0, sizeof(struct ocfs2_extent_rec));
4854
4855         split_rec->e_cpos = cpu_to_le32(cpos);
4856         split_rec->e_leaf_clusters = cpu_to_le16(rec_range - cpos);
4857
4858         split_rec->e_blkno = rec->e_blkno;
4859         le64_add_cpu(&split_rec->e_blkno,
4860                      ocfs2_clusters_to_blocks(sb, cpos - rec_cpos));
4861
4862         split_rec->e_flags = rec->e_flags;
4863 }
4864
4865 static int ocfs2_split_and_insert(struct inode *inode,
4866                                   handle_t *handle,
4867                                   struct ocfs2_path *path,
4868                                   struct ocfs2_extent_tree *et,
4869                                   struct buffer_head **last_eb_bh,
4870                                   int split_index,
4871                                   struct ocfs2_extent_rec *orig_split_rec,
4872                                   struct ocfs2_alloc_context *meta_ac)
4873 {
4874         int ret = 0, depth;
4875         unsigned int insert_range, rec_range, do_leftright = 0;
4876         struct ocfs2_extent_rec tmprec;
4877         struct ocfs2_extent_list *rightmost_el;
4878         struct ocfs2_extent_rec rec;
4879         struct ocfs2_extent_rec split_rec = *orig_split_rec;
4880         struct ocfs2_insert_type insert;
4881         struct ocfs2_extent_block *eb;
4882
4883 leftright:
4884         /*
4885          * Store a copy of the record on the stack - it might move
4886          * around as the tree is manipulated below.
4887          */
4888         rec = path_leaf_el(path)->l_recs[split_index];
4889
4890         rightmost_el = et->et_root_el;
4891
4892         depth = le16_to_cpu(rightmost_el->l_tree_depth);
4893         if (depth) {
4894                 BUG_ON(!(*last_eb_bh));
4895                 eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
4896                 rightmost_el = &eb->h_list;
4897         }
4898
4899         if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
4900             le16_to_cpu(rightmost_el->l_count)) {
4901                 ret = ocfs2_grow_tree(inode, handle, et,
4902                                       &depth, last_eb_bh, meta_ac);
4903                 if (ret) {
4904                         mlog_errno(ret);
4905                         goto out;
4906                 }
4907         }
4908
4909         memset(&insert, 0, sizeof(struct ocfs2_insert_type));
4910         insert.ins_appending = APPEND_NONE;
4911         insert.ins_contig = CONTIG_NONE;
4912         insert.ins_tree_depth = depth;
4913
4914         insert_range = le32_to_cpu(split_rec.e_cpos) +
4915                 le16_to_cpu(split_rec.e_leaf_clusters);
4916         rec_range = le32_to_cpu(rec.e_cpos) +
4917                 le16_to_cpu(rec.e_leaf_clusters);
4918
4919         if (split_rec.e_cpos == rec.e_cpos) {
4920                 insert.ins_split = SPLIT_LEFT;
4921         } else if (insert_range == rec_range) {
4922                 insert.ins_split = SPLIT_RIGHT;
4923         } else {
4924                 /*
4925                  * Left/right split. We fake this as a right split
4926                  * first and then make a second pass as a left split.
4927                  */
4928                 insert.ins_split = SPLIT_RIGHT;
4929
4930                 ocfs2_make_right_split_rec(inode->i_sb, &tmprec, insert_range,
4931                                            &rec);
4932
4933                 split_rec = tmprec;
4934
4935                 BUG_ON(do_leftright);
4936                 do_leftright = 1;
4937         }
4938
4939         ret = ocfs2_do_insert_extent(inode, handle, et, &split_rec, &insert);
4940         if (ret) {
4941                 mlog_errno(ret);
4942                 goto out;
4943         }
4944
4945         if (do_leftright == 1) {
4946                 u32 cpos;
4947                 struct ocfs2_extent_list *el;
4948
4949                 do_leftright++;
4950                 split_rec = *orig_split_rec;
4951
4952                 ocfs2_reinit_path(path, 1);
4953
4954                 cpos = le32_to_cpu(split_rec.e_cpos);
4955                 ret = ocfs2_find_path(et->et_ci, path, cpos);
4956                 if (ret) {
4957                         mlog_errno(ret);
4958                         goto out;
4959                 }
4960
4961                 el = path_leaf_el(path);
4962                 split_index = ocfs2_search_extent_list(el, cpos);
4963                 goto leftright;
4964         }
4965 out:
4966
4967         return ret;
4968 }
4969
4970 static int ocfs2_replace_extent_rec(struct inode *inode,
4971                                     handle_t *handle,
4972                                     struct ocfs2_path *path,
4973                                     struct ocfs2_extent_list *el,
4974                                     int split_index,
4975                                     struct ocfs2_extent_rec *split_rec)
4976 {
4977         int ret;
4978
4979         ret = ocfs2_path_bh_journal_access(handle, INODE_CACHE(inode), path,
4980                                            path_num_items(path) - 1);
4981         if (ret) {
4982                 mlog_errno(ret);
4983                 goto out;
4984         }
4985
4986         el->l_recs[split_index] = *split_rec;
4987
4988         ocfs2_journal_dirty(handle, path_leaf_bh(path));
4989 out:
4990         return ret;
4991 }
4992
4993 /*
4994  * Mark part or all of the extent record at split_index in the leaf
4995  * pointed to by path as written. This removes the unwritten
4996  * extent flag.
4997  *
4998  * Care is taken to handle contiguousness so as to not grow the tree.
4999  *
5000  * meta_ac is not strictly necessary - we only truly need it if growth
5001  * of the tree is required. All other cases will degrade into a less
5002  * optimal tree layout.
5003  *
5004  * last_eb_bh should be the rightmost leaf block for any extent
5005  * btree. Since a split may grow the tree or a merge might shrink it,
5006  * the caller cannot trust the contents of that buffer after this call.
5007  *
5008  * This code is optimized for readability - several passes might be
5009  * made over certain portions of the tree. All of those blocks will
5010  * have been brought into cache (and pinned via the journal), so the
5011  * extra overhead is not expressed in terms of disk reads.
5012  */
5013 static int __ocfs2_mark_extent_written(struct inode *inode,
5014                                        struct ocfs2_extent_tree *et,
5015                                        handle_t *handle,
5016                                        struct ocfs2_path *path,
5017                                        int split_index,
5018                                        struct ocfs2_extent_rec *split_rec,
5019                                        struct ocfs2_alloc_context *meta_ac,
5020                                        struct ocfs2_cached_dealloc_ctxt *dealloc)
5021 {
5022         int ret = 0;
5023         struct ocfs2_extent_list *el = path_leaf_el(path);
5024         struct buffer_head *last_eb_bh = NULL;
5025         struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
5026         struct ocfs2_merge_ctxt ctxt;
5027         struct ocfs2_extent_list *rightmost_el;
5028
5029         if (!(rec->e_flags & OCFS2_EXT_UNWRITTEN)) {
5030                 ret = -EIO;
5031                 mlog_errno(ret);
5032                 goto out;
5033         }
5034
5035         if (le32_to_cpu(rec->e_cpos) > le32_to_cpu(split_rec->e_cpos) ||
5036             ((le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)) <
5037              (le32_to_cpu(split_rec->e_cpos) + le16_to_cpu(split_rec->e_leaf_clusters)))) {
5038                 ret = -EIO;
5039                 mlog_errno(ret);
5040                 goto out;
5041         }
5042
5043         ctxt.c_contig_type = ocfs2_figure_merge_contig_type(inode, path, el,
5044                                                             split_index,
5045                                                             split_rec);
5046
5047         /*
5048          * The core merge / split code wants to know how much room is
5049          * left in this inodes allocation tree, so we pass the
5050          * rightmost extent list.
5051          */
5052         if (path->p_tree_depth) {
5053                 struct ocfs2_extent_block *eb;
5054
5055                 ret = ocfs2_read_extent_block(et->et_ci,
5056                                               ocfs2_et_get_last_eb_blk(et),
5057                                               &last_eb_bh);
5058                 if (ret) {
5059                         mlog_exit(ret);
5060                         goto out;
5061                 }
5062
5063                 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
5064                 rightmost_el = &eb->h_list;
5065         } else
5066                 rightmost_el = path_root_el(path);
5067
5068         if (rec->e_cpos == split_rec->e_cpos &&
5069             rec->e_leaf_clusters == split_rec->e_leaf_clusters)
5070                 ctxt.c_split_covers_rec = 1;
5071         else
5072                 ctxt.c_split_covers_rec = 0;
5073
5074         ctxt.c_has_empty_extent = ocfs2_is_empty_extent(&el->l_recs[0]);
5075
5076         mlog(0, "index: %d, contig: %u, has_empty: %u, split_covers: %u\n",
5077              split_index, ctxt.c_contig_type, ctxt.c_has_empty_extent,
5078              ctxt.c_split_covers_rec);
5079
5080         if (ctxt.c_contig_type == CONTIG_NONE) {
5081                 if (ctxt.c_split_covers_rec)
5082                         ret = ocfs2_replace_extent_rec(inode, handle,
5083                                                        path, el,
5084                                                        split_index, split_rec);
5085                 else
5086                         ret = ocfs2_split_and_insert(inode, handle, path, et,
5087                                                      &last_eb_bh, split_index,
5088                                                      split_rec, meta_ac);
5089                 if (ret)
5090                         mlog_errno(ret);
5091         } else {
5092                 ret = ocfs2_try_to_merge_extent(inode, handle, path,
5093                                                 split_index, split_rec,
5094                                                 dealloc, &ctxt, et);
5095                 if (ret)
5096                         mlog_errno(ret);
5097         }
5098
5099 out:
5100         brelse(last_eb_bh);
5101         return ret;
5102 }
5103
5104 /*
5105  * Mark the already-existing extent at cpos as written for len clusters.
5106  *
5107  * If the existing extent is larger than the request, initiate a
5108  * split. An attempt will be made at merging with adjacent extents.
5109  *
5110  * The caller is responsible for passing down meta_ac if we'll need it.
5111  */
5112 int ocfs2_mark_extent_written(struct inode *inode,
5113                               struct ocfs2_extent_tree *et,
5114                               handle_t *handle, u32 cpos, u32 len, u32 phys,
5115                               struct ocfs2_alloc_context *meta_ac,
5116                               struct ocfs2_cached_dealloc_ctxt *dealloc)
5117 {
5118         int ret, index;
5119         u64 start_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys);
5120         struct ocfs2_extent_rec split_rec;
5121         struct ocfs2_path *left_path = NULL;
5122         struct ocfs2_extent_list *el;
5123
5124         mlog(0, "Inode %lu cpos %u, len %u, phys %u (%llu)\n",
5125              inode->i_ino, cpos, len, phys, (unsigned long long)start_blkno);
5126
5127         if (!ocfs2_writes_unwritten_extents(OCFS2_SB(inode->i_sb))) {
5128                 ocfs2_error(inode->i_sb, "Inode %llu has unwritten extents "
5129                             "that are being written to, but the feature bit "
5130                             "is not set in the super block.",
5131                             (unsigned long long)OCFS2_I(inode)->ip_blkno);
5132                 ret = -EROFS;
5133                 goto out;
5134         }
5135
5136         /*
5137          * XXX: This should be fixed up so that we just re-insert the
5138          * next extent records.
5139          *
5140          * XXX: This is a hack on the extent tree, maybe it should be
5141          * an op?
5142          */
5143         if (et->et_ops == &ocfs2_dinode_et_ops)
5144                 ocfs2_extent_map_trunc(inode, 0);
5145
5146         left_path = ocfs2_new_path_from_et(et);
5147         if (!left_path) {
5148                 ret = -ENOMEM;
5149                 mlog_errno(ret);
5150                 goto out;
5151         }
5152
5153         ret = ocfs2_find_path(et->et_ci, left_path, cpos);
5154         if (ret) {
5155                 mlog_errno(ret);
5156                 goto out;
5157         }
5158         el = path_leaf_el(left_path);
5159
5160         index = ocfs2_search_extent_list(el, cpos);
5161         if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
5162                 ocfs2_error(inode->i_sb,
5163                             "Inode %llu has an extent at cpos %u which can no "
5164                             "longer be found.\n",
5165                             (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
5166                 ret = -EROFS;
5167                 goto out;
5168         }
5169
5170         memset(&split_rec, 0, sizeof(struct ocfs2_extent_rec));
5171         split_rec.e_cpos = cpu_to_le32(cpos);
5172         split_rec.e_leaf_clusters = cpu_to_le16(len);
5173         split_rec.e_blkno = cpu_to_le64(start_blkno);
5174         split_rec.e_flags = path_leaf_el(left_path)->l_recs[index].e_flags;
5175         split_rec.e_flags &= ~OCFS2_EXT_UNWRITTEN;
5176
5177         ret = __ocfs2_mark_extent_written(inode, et, handle, left_path,
5178                                           index, &split_rec, meta_ac,
5179                                           dealloc);
5180         if (ret)
5181                 mlog_errno(ret);
5182
5183 out:
5184         ocfs2_free_path(left_path);
5185         return ret;
5186 }
5187
5188 static int ocfs2_split_tree(struct inode *inode, struct ocfs2_extent_tree *et,
5189                             handle_t *handle, struct ocfs2_path *path,
5190                             int index, u32 new_range,
5191                             struct ocfs2_alloc_context *meta_ac)
5192 {
5193         int ret, depth, credits = handle->h_buffer_credits;
5194         struct buffer_head *last_eb_bh = NULL;
5195         struct ocfs2_extent_block *eb;
5196         struct ocfs2_extent_list *rightmost_el, *el;
5197         struct ocfs2_extent_rec split_rec;
5198         struct ocfs2_extent_rec *rec;
5199         struct ocfs2_insert_type insert;
5200
5201         /*
5202          * Setup the record to split before we grow the tree.
5203          */
5204         el = path_leaf_el(path);
5205         rec = &el->l_recs[index];
5206         ocfs2_make_right_split_rec(inode->i_sb, &split_rec, new_range, rec);
5207
5208         depth = path->p_tree_depth;
5209         if (depth > 0) {
5210                 ret = ocfs2_read_extent_block(et->et_ci,
5211                                               ocfs2_et_get_last_eb_blk(et),
5212                                               &last_eb_bh);
5213                 if (ret < 0) {
5214                         mlog_errno(ret);
5215                         goto out;
5216                 }
5217
5218                 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
5219                 rightmost_el = &eb->h_list;
5220         } else
5221                 rightmost_el = path_leaf_el(path);
5222
5223         credits += path->p_tree_depth +
5224                    ocfs2_extend_meta_needed(et->et_root_el);
5225         ret = ocfs2_extend_trans(handle, credits);
5226         if (ret) {
5227                 mlog_errno(ret);
5228                 goto out;
5229         }
5230
5231         if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
5232             le16_to_cpu(rightmost_el->l_count)) {
5233                 ret = ocfs2_grow_tree(inode, handle, et, &depth, &last_eb_bh,
5234                                       meta_ac);
5235                 if (ret) {
5236                         mlog_errno(ret);
5237                         goto out;
5238                 }
5239         }
5240
5241         memset(&insert, 0, sizeof(struct ocfs2_insert_type));
5242         insert.ins_appending = APPEND_NONE;
5243         insert.ins_contig = CONTIG_NONE;
5244         insert.ins_split = SPLIT_RIGHT;
5245         insert.ins_tree_depth = depth;
5246
5247         ret = ocfs2_do_insert_extent(inode, handle, et, &split_rec, &insert);
5248         if (ret)
5249                 mlog_errno(ret);
5250
5251 out:
5252         brelse(last_eb_bh);
5253         return ret;
5254 }
5255
5256 static int ocfs2_truncate_rec(struct inode *inode, handle_t *handle,
5257                               struct ocfs2_path *path, int index,
5258                               struct ocfs2_cached_dealloc_ctxt *dealloc,
5259                               u32 cpos, u32 len,
5260                               struct ocfs2_extent_tree *et)
5261 {
5262         int ret;
5263         u32 left_cpos, rec_range, trunc_range;
5264         int wants_rotate = 0, is_rightmost_tree_rec = 0;
5265         struct super_block *sb = inode->i_sb;
5266         struct ocfs2_path *left_path = NULL;
5267         struct ocfs2_extent_list *el = path_leaf_el(path);
5268         struct ocfs2_extent_rec *rec;
5269         struct ocfs2_extent_block *eb;
5270
5271         if (ocfs2_is_empty_extent(&el->l_recs[0]) && index > 0) {
5272                 ret = ocfs2_rotate_tree_left(inode, handle, path, dealloc, et);
5273                 if (ret) {
5274                         mlog_errno(ret);
5275                         goto out;
5276                 }
5277
5278                 index--;
5279         }
5280
5281         if (index == (le16_to_cpu(el->l_next_free_rec) - 1) &&
5282             path->p_tree_depth) {
5283                 /*
5284                  * Check whether this is the rightmost tree record. If
5285                  * we remove all of this record or part of its right
5286                  * edge then an update of the record lengths above it
5287                  * will be required.
5288                  */
5289                 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
5290                 if (eb->h_next_leaf_blk == 0)
5291                         is_rightmost_tree_rec = 1;
5292         }
5293
5294         rec = &el->l_recs[index];
5295         if (index == 0 && path->p_tree_depth &&
5296             le32_to_cpu(rec->e_cpos) == cpos) {
5297                 /*
5298                  * Changing the leftmost offset (via partial or whole
5299                  * record truncate) of an interior (or rightmost) path
5300                  * means we have to update the subtree that is formed
5301                  * by this leaf and the one to it's left.
5302                  *
5303                  * There are two cases we can skip:
5304                  *   1) Path is the leftmost one in our inode tree.
5305                  *   2) The leaf is rightmost and will be empty after
5306                  *      we remove the extent record - the rotate code
5307                  *      knows how to update the newly formed edge.
5308                  */
5309
5310                 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path,
5311                                                     &left_cpos);
5312                 if (ret) {
5313                         mlog_errno(ret);
5314                         goto out;
5315                 }
5316
5317                 if (left_cpos && le16_to_cpu(el->l_next_free_rec) > 1) {
5318                         left_path = ocfs2_new_path_from_path(path);
5319                         if (!left_path) {
5320                                 ret = -ENOMEM;
5321                                 mlog_errno(ret);
5322                                 goto out;
5323                         }
5324
5325                         ret = ocfs2_find_path(et->et_ci, left_path,
5326                                               left_cpos);
5327                         if (ret) {
5328                                 mlog_errno(ret);
5329                                 goto out;
5330                         }
5331                 }
5332         }
5333
5334         ret = ocfs2_extend_rotate_transaction(handle, 0,
5335                                               handle->h_buffer_credits,
5336                                               path);
5337         if (ret) {
5338                 mlog_errno(ret);
5339                 goto out;
5340         }
5341
5342         ret = ocfs2_journal_access_path(et->et_ci, handle, path);
5343         if (ret) {
5344                 mlog_errno(ret);
5345                 goto out;
5346         }
5347
5348         ret = ocfs2_journal_access_path(et->et_ci, handle, left_path);
5349         if (ret) {
5350                 mlog_errno(ret);
5351                 goto out;
5352         }
5353
5354         rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
5355         trunc_range = cpos + len;
5356
5357         if (le32_to_cpu(rec->e_cpos) == cpos && rec_range == trunc_range) {
5358                 int next_free;
5359
5360                 memset(rec, 0, sizeof(*rec));
5361                 ocfs2_cleanup_merge(el, index);
5362                 wants_rotate = 1;
5363
5364                 next_free = le16_to_cpu(el->l_next_free_rec);
5365                 if (is_rightmost_tree_rec && next_free > 1) {
5366                         /*
5367                          * We skip the edge update if this path will
5368                          * be deleted by the rotate code.
5369                          */
5370                         rec = &el->l_recs[next_free - 1];
5371                         ocfs2_adjust_rightmost_records(inode, handle, path,
5372                                                        rec);
5373                 }
5374         } else if (le32_to_cpu(rec->e_cpos) == cpos) {
5375                 /* Remove leftmost portion of the record. */
5376                 le32_add_cpu(&rec->e_cpos, len);
5377                 le64_add_cpu(&rec->e_blkno, ocfs2_clusters_to_blocks(sb, len));
5378                 le16_add_cpu(&rec->e_leaf_clusters, -len);
5379         } else if (rec_range == trunc_range) {
5380                 /* Remove rightmost portion of the record */
5381                 le16_add_cpu(&rec->e_leaf_clusters, -len);
5382                 if (is_rightmost_tree_rec)
5383                         ocfs2_adjust_rightmost_records(inode, handle, path, rec);
5384         } else {
5385                 /* Caller should have trapped this. */
5386                 mlog(ML_ERROR, "Inode %llu: Invalid record truncate: (%u, %u) "
5387                      "(%u, %u)\n", (unsigned long long)OCFS2_I(inode)->ip_blkno,
5388                      le32_to_cpu(rec->e_cpos),
5389                      le16_to_cpu(rec->e_leaf_clusters), cpos, len);
5390                 BUG();
5391         }
5392
5393         if (left_path) {
5394                 int subtree_index;
5395
5396                 subtree_index = ocfs2_find_subtree_root(inode, left_path, path);
5397                 ocfs2_complete_edge_insert(inode, handle, left_path, path,
5398                                            subtree_index);
5399         }
5400
5401         ocfs2_journal_dirty(handle, path_leaf_bh(path));
5402
5403         ret = ocfs2_rotate_tree_left(inode, handle, path, dealloc, et);
5404         if (ret) {
5405                 mlog_errno(ret);
5406                 goto out;
5407         }
5408
5409 out:
5410         ocfs2_free_path(left_path);
5411         return ret;
5412 }
5413
5414 int ocfs2_remove_extent(struct inode *inode,
5415                         struct ocfs2_extent_tree *et,
5416                         u32 cpos, u32 len, handle_t *handle,
5417                         struct ocfs2_alloc_context *meta_ac,
5418                         struct ocfs2_cached_dealloc_ctxt *dealloc)
5419 {
5420         int ret, index;
5421         u32 rec_range, trunc_range;
5422         struct ocfs2_extent_rec *rec;
5423         struct ocfs2_extent_list *el;
5424         struct ocfs2_path *path = NULL;
5425
5426         ocfs2_extent_map_trunc(inode, 0);
5427
5428         path = ocfs2_new_path_from_et(et);
5429         if (!path) {
5430                 ret = -ENOMEM;
5431                 mlog_errno(ret);
5432                 goto out;
5433         }
5434
5435         ret = ocfs2_find_path(et->et_ci, path, cpos);
5436         if (ret) {
5437                 mlog_errno(ret);
5438                 goto out;
5439         }
5440
5441         el = path_leaf_el(path);
5442         index = ocfs2_search_extent_list(el, cpos);
5443         if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
5444                 ocfs2_error(inode->i_sb,
5445                             "Inode %llu has an extent at cpos %u which can no "
5446                             "longer be found.\n",
5447                             (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
5448                 ret = -EROFS;
5449                 goto out;
5450         }
5451
5452         /*
5453          * We have 3 cases of extent removal:
5454          *   1) Range covers the entire extent rec
5455          *   2) Range begins or ends on one edge of the extent rec
5456          *   3) Range is in the middle of the extent rec (no shared edges)
5457          *
5458          * For case 1 we remove the extent rec and left rotate to
5459          * fill the hole.
5460          *
5461          * For case 2 we just shrink the existing extent rec, with a
5462          * tree update if the shrinking edge is also the edge of an
5463          * extent block.
5464          *
5465          * For case 3 we do a right split to turn the extent rec into
5466          * something case 2 can handle.
5467          */
5468         rec = &el->l_recs[index];
5469         rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
5470         trunc_range = cpos + len;
5471
5472         BUG_ON(cpos < le32_to_cpu(rec->e_cpos) || trunc_range > rec_range);
5473
5474         mlog(0, "Inode %llu, remove (cpos %u, len %u). Existing index %d "
5475              "(cpos %u, len %u)\n",
5476              (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos, len, index,
5477              le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec));
5478
5479         if (le32_to_cpu(rec->e_cpos) == cpos || rec_range == trunc_range) {
5480                 ret = ocfs2_truncate_rec(inode, handle, path, index, dealloc,
5481                                          cpos, len, et);
5482                 if (ret) {
5483                         mlog_errno(ret);
5484                         goto out;
5485                 }
5486         } else {
5487                 ret = ocfs2_split_tree(inode, et, handle, path, index,
5488                                        trunc_range, meta_ac);
5489                 if (ret) {
5490                         mlog_errno(ret);
5491                         goto out;
5492                 }
5493
5494                 /*
5495                  * The split could have manipulated the tree enough to
5496                  * move the record location, so we have to look for it again.
5497                  */
5498                 ocfs2_reinit_path(path, 1);
5499
5500                 ret = ocfs2_find_path(et->et_ci, path, cpos);
5501                 if (ret) {
5502                         mlog_errno(ret);
5503                         goto out;
5504                 }
5505
5506                 el = path_leaf_el(path);
5507                 index = ocfs2_search_extent_list(el, cpos);
5508                 if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
5509                         ocfs2_error(inode->i_sb,
5510                                     "Inode %llu: split at cpos %u lost record.",
5511                                     (unsigned long long)OCFS2_I(inode)->ip_blkno,
5512                                     cpos);
5513                         ret = -EROFS;
5514                         goto out;
5515                 }
5516
5517                 /*
5518                  * Double check our values here. If anything is fishy,
5519                  * it's easier to catch it at the top level.
5520                  */
5521                 rec = &el->l_recs[index];
5522                 rec_range = le32_to_cpu(rec->e_cpos) +
5523                         ocfs2_rec_clusters(el, rec);
5524                 if (rec_range != trunc_range) {
5525                         ocfs2_error(inode->i_sb,
5526                                     "Inode %llu: error after split at cpos %u"
5527                                     "trunc len %u, existing record is (%u,%u)",
5528                                     (unsigned long long)OCFS2_I(inode)->ip_blkno,
5529                                     cpos, len, le32_to_cpu(rec->e_cpos),
5530                                     ocfs2_rec_clusters(el, rec));
5531                         ret = -EROFS;
5532                         goto out;
5533                 }
5534
5535                 ret = ocfs2_truncate_rec(inode, handle, path, index, dealloc,
5536                                          cpos, len, et);
5537                 if (ret) {
5538                         mlog_errno(ret);
5539                         goto out;
5540                 }
5541         }
5542
5543 out:
5544         ocfs2_free_path(path);
5545         return ret;
5546 }
5547
5548 int ocfs2_remove_btree_range(struct inode *inode,
5549                              struct ocfs2_extent_tree *et,
5550                              u32 cpos, u32 phys_cpos, u32 len,
5551                              struct ocfs2_cached_dealloc_ctxt *dealloc)
5552 {
5553         int ret;
5554         u64 phys_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys_cpos);
5555         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
5556         struct inode *tl_inode = osb->osb_tl_inode;
5557         handle_t *handle;
5558         struct ocfs2_alloc_context *meta_ac = NULL;
5559
5560         ret = ocfs2_lock_allocators(inode, et, 0, 1, NULL, &meta_ac);
5561         if (ret) {
5562                 mlog_errno(ret);
5563                 return ret;
5564         }
5565
5566         mutex_lock(&tl_inode->i_mutex);
5567
5568         if (ocfs2_truncate_log_needs_flush(osb)) {
5569                 ret = __ocfs2_flush_truncate_log(osb);
5570                 if (ret < 0) {
5571                         mlog_errno(ret);
5572                         goto out;
5573                 }
5574         }
5575
5576         handle = ocfs2_start_trans(osb, ocfs2_remove_extent_credits(osb->sb));
5577         if (IS_ERR(handle)) {
5578                 ret = PTR_ERR(handle);
5579                 mlog_errno(ret);
5580                 goto out;
5581         }
5582
5583         ret = ocfs2_et_root_journal_access(handle, et,
5584                                            OCFS2_JOURNAL_ACCESS_WRITE);
5585         if (ret) {
5586                 mlog_errno(ret);
5587                 goto out;
5588         }
5589
5590         vfs_dq_free_space_nodirty(inode,
5591                                   ocfs2_clusters_to_bytes(inode->i_sb, len));
5592
5593         ret = ocfs2_remove_extent(inode, et, cpos, len, handle, meta_ac,
5594                                   dealloc);
5595         if (ret) {
5596                 mlog_errno(ret);
5597                 goto out_commit;
5598         }
5599
5600         ocfs2_et_update_clusters(inode, et, -len);
5601
5602         ret = ocfs2_journal_dirty(handle, et->et_root_bh);
5603         if (ret) {
5604                 mlog_errno(ret);
5605                 goto out_commit;
5606         }
5607
5608         ret = ocfs2_truncate_log_append(osb, handle, phys_blkno, len);
5609         if (ret)
5610                 mlog_errno(ret);
5611
5612 out_commit:
5613         ocfs2_commit_trans(osb, handle);
5614 out:
5615         mutex_unlock(&tl_inode->i_mutex);
5616
5617         if (meta_ac)
5618                 ocfs2_free_alloc_context(meta_ac);
5619
5620         return ret;
5621 }
5622
5623 int ocfs2_truncate_log_needs_flush(struct ocfs2_super *osb)
5624 {
5625         struct buffer_head *tl_bh = osb->osb_tl_bh;
5626         struct ocfs2_dinode *di;
5627         struct ocfs2_truncate_log *tl;
5628
5629         di = (struct ocfs2_dinode *) tl_bh->b_data;
5630         tl = &di->id2.i_dealloc;
5631
5632         mlog_bug_on_msg(le16_to_cpu(tl->tl_used) > le16_to_cpu(tl->tl_count),
5633                         "slot %d, invalid truncate log parameters: used = "
5634                         "%u, count = %u\n", osb->slot_num,
5635                         le16_to_cpu(tl->tl_used), le16_to_cpu(tl->tl_count));
5636         return le16_to_cpu(tl->tl_used) == le16_to_cpu(tl->tl_count);
5637 }
5638
5639 static int ocfs2_truncate_log_can_coalesce(struct ocfs2_truncate_log *tl,
5640                                            unsigned int new_start)
5641 {
5642         unsigned int tail_index;
5643         unsigned int current_tail;
5644
5645         /* No records, nothing to coalesce */
5646         if (!le16_to_cpu(tl->tl_used))
5647                 return 0;
5648
5649         tail_index = le16_to_cpu(tl->tl_used) - 1;
5650         current_tail = le32_to_cpu(tl->tl_recs[tail_index].t_start);
5651         current_tail += le32_to_cpu(tl->tl_recs[tail_index].t_clusters);
5652
5653         return current_tail == new_start;
5654 }
5655
5656 int ocfs2_truncate_log_append(struct ocfs2_super *osb,
5657                               handle_t *handle,
5658                               u64 start_blk,
5659                               unsigned int num_clusters)
5660 {
5661         int status, index;
5662         unsigned int start_cluster, tl_count;
5663         struct inode *tl_inode = osb->osb_tl_inode;
5664         struct buffer_head *tl_bh = osb->osb_tl_bh;
5665         struct ocfs2_dinode *di;
5666         struct ocfs2_truncate_log *tl;
5667
5668         mlog_entry("start_blk = %llu, num_clusters = %u\n",
5669                    (unsigned long long)start_blk, num_clusters);
5670
5671         BUG_ON(mutex_trylock(&tl_inode->i_mutex));
5672
5673         start_cluster = ocfs2_blocks_to_clusters(osb->sb, start_blk);
5674
5675         di = (struct ocfs2_dinode *) tl_bh->b_data;
5676
5677         /* tl_bh is loaded from ocfs2_truncate_log_init().  It's validated
5678          * by the underlying call to ocfs2_read_inode_block(), so any
5679          * corruption is a code bug */
5680         BUG_ON(!OCFS2_IS_VALID_DINODE(di));
5681
5682         tl = &di->id2.i_dealloc;
5683         tl_count = le16_to_cpu(tl->tl_count);
5684         mlog_bug_on_msg(tl_count > ocfs2_truncate_recs_per_inode(osb->sb) ||
5685                         tl_count == 0,
5686                         "Truncate record count on #%llu invalid "
5687                         "wanted %u, actual %u\n",
5688                         (unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
5689                         ocfs2_truncate_recs_per_inode(osb->sb),
5690                         le16_to_cpu(tl->tl_count));
5691
5692         /* Caller should have known to flush before calling us. */
5693         index = le16_to_cpu(tl->tl_used);
5694         if (index >= tl_count) {
5695                 status = -ENOSPC;
5696                 mlog_errno(status);
5697                 goto bail;
5698         }
5699
5700         status = ocfs2_journal_access_di(handle, INODE_CACHE(tl_inode), tl_bh,
5701                                          OCFS2_JOURNAL_ACCESS_WRITE);
5702         if (status < 0) {
5703                 mlog_errno(status);
5704                 goto bail;
5705         }
5706
5707         mlog(0, "Log truncate of %u clusters starting at cluster %u to "
5708              "%llu (index = %d)\n", num_clusters, start_cluster,
5709              (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, index);
5710
5711         if (ocfs2_truncate_log_can_coalesce(tl, start_cluster)) {
5712                 /*
5713                  * Move index back to the record we are coalescing with.
5714                  * ocfs2_truncate_log_can_coalesce() guarantees nonzero
5715                  */
5716                 index--;
5717
5718                 num_clusters += le32_to_cpu(tl->tl_recs[index].t_clusters);
5719                 mlog(0, "Coalesce with index %u (start = %u, clusters = %u)\n",
5720                      index, le32_to_cpu(tl->tl_recs[index].t_start),
5721                      num_clusters);
5722         } else {
5723                 tl->tl_recs[index].t_start = cpu_to_le32(start_cluster);
5724                 tl->tl_used = cpu_to_le16(index + 1);
5725         }
5726         tl->tl_recs[index].t_clusters = cpu_to_le32(num_clusters);
5727
5728         status = ocfs2_journal_dirty(handle, tl_bh);
5729         if (status < 0) {
5730                 mlog_errno(status);
5731                 goto bail;
5732         }
5733
5734 bail:
5735         mlog_exit(status);
5736         return status;
5737 }
5738
5739 static int ocfs2_replay_truncate_records(struct ocfs2_super *osb,
5740                                          handle_t *handle,
5741                                          struct inode *data_alloc_inode,
5742                                          struct buffer_head *data_alloc_bh)
5743 {
5744         int status = 0;
5745         int i;
5746         unsigned int num_clusters;
5747         u64 start_blk;
5748         struct ocfs2_truncate_rec rec;
5749         struct ocfs2_dinode *di;
5750         struct ocfs2_truncate_log *tl;
5751         struct inode *tl_inode = osb->osb_tl_inode;
5752         struct buffer_head *tl_bh = osb->osb_tl_bh;
5753
5754         mlog_entry_void();
5755
5756         di = (struct ocfs2_dinode *) tl_bh->b_data;
5757         tl = &di->id2.i_dealloc;
5758         i = le16_to_cpu(tl->tl_used) - 1;
5759         while (i >= 0) {
5760                 /* Caller has given us at least enough credits to
5761                  * update the truncate log dinode */
5762                 status = ocfs2_journal_access_di(handle, INODE_CACHE(tl_inode), tl_bh,
5763                                                  OCFS2_JOURNAL_ACCESS_WRITE);
5764                 if (status < 0) {
5765                         mlog_errno(status);
5766                         goto bail;
5767                 }
5768
5769                 tl->tl_used = cpu_to_le16(i);
5770
5771                 status = ocfs2_journal_dirty(handle, tl_bh);
5772                 if (status < 0) {
5773                         mlog_errno(status);
5774                         goto bail;
5775                 }
5776
5777                 /* TODO: Perhaps we can calculate the bulk of the
5778                  * credits up front rather than extending like
5779                  * this. */
5780                 status = ocfs2_extend_trans(handle,
5781                                             OCFS2_TRUNCATE_LOG_FLUSH_ONE_REC);
5782                 if (status < 0) {
5783                         mlog_errno(status);
5784                         goto bail;
5785                 }
5786
5787                 rec = tl->tl_recs[i];
5788                 start_blk = ocfs2_clusters_to_blocks(data_alloc_inode->i_sb,
5789                                                     le32_to_cpu(rec.t_start));
5790                 num_clusters = le32_to_cpu(rec.t_clusters);
5791
5792                 /* if start_blk is not set, we ignore the record as
5793                  * invalid. */
5794                 if (start_blk) {
5795                         mlog(0, "free record %d, start = %u, clusters = %u\n",
5796                              i, le32_to_cpu(rec.t_start), num_clusters);
5797
5798                         status = ocfs2_free_clusters(handle, data_alloc_inode,
5799                                                      data_alloc_bh, start_blk,
5800                                                      num_clusters);
5801                         if (status < 0) {
5802                                 mlog_errno(status);
5803                                 goto bail;
5804                         }
5805                 }
5806                 i--;
5807         }
5808
5809 bail:
5810         mlog_exit(status);
5811         return status;
5812 }
5813
5814 /* Expects you to already be holding tl_inode->i_mutex */
5815 int __ocfs2_flush_truncate_log(struct ocfs2_super *osb)
5816 {
5817         int status;
5818         unsigned int num_to_flush;
5819         handle_t *handle;
5820         struct inode *tl_inode = osb->osb_tl_inode;
5821         struct inode *data_alloc_inode = NULL;
5822         struct buffer_head *tl_bh = osb->osb_tl_bh;
5823         struct buffer_head *data_alloc_bh = NULL;
5824         struct ocfs2_dinode *di;
5825         struct ocfs2_truncate_log *tl;
5826
5827         mlog_entry_void();
5828
5829         BUG_ON(mutex_trylock(&tl_inode->i_mutex));
5830
5831         di = (struct ocfs2_dinode *) tl_bh->b_data;
5832
5833         /* tl_bh is loaded from ocfs2_truncate_log_init().  It's validated
5834          * by the underlying call to ocfs2_read_inode_block(), so any
5835          * corruption is a code bug */
5836         BUG_ON(!OCFS2_IS_VALID_DINODE(di));
5837
5838         tl = &di->id2.i_dealloc;
5839         num_to_flush = le16_to_cpu(tl->tl_used);
5840         mlog(0, "Flush %u records from truncate log #%llu\n",
5841              num_to_flush, (unsigned long long)OCFS2_I(tl_inode)->ip_blkno);
5842         if (!num_to_flush) {
5843                 status = 0;
5844                 goto out;
5845         }
5846
5847         data_alloc_inode = ocfs2_get_system_file_inode(osb,
5848                                                        GLOBAL_BITMAP_SYSTEM_INODE,
5849                                                        OCFS2_INVALID_SLOT);
5850         if (!data_alloc_inode) {
5851                 status = -EINVAL;
5852                 mlog(ML_ERROR, "Could not get bitmap inode!\n");
5853                 goto out;
5854         }
5855
5856         mutex_lock(&data_alloc_inode->i_mutex);
5857
5858         status = ocfs2_inode_lock(data_alloc_inode, &data_alloc_bh, 1);
5859         if (status < 0) {
5860                 mlog_errno(status);
5861                 goto out_mutex;
5862         }
5863
5864         handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
5865         if (IS_ERR(handle)) {
5866                 status = PTR_ERR(handle);
5867                 mlog_errno(status);
5868                 goto out_unlock;
5869         }
5870
5871         status = ocfs2_replay_truncate_records(osb, handle, data_alloc_inode,
5872                                                data_alloc_bh);
5873         if (status < 0)
5874                 mlog_errno(status);
5875
5876         ocfs2_commit_trans(osb, handle);
5877
5878 out_unlock:
5879         brelse(data_alloc_bh);
5880         ocfs2_inode_unlock(data_alloc_inode, 1);
5881
5882 out_mutex:
5883         mutex_unlock(&data_alloc_inode->i_mutex);
5884         iput(data_alloc_inode);
5885
5886 out:
5887         mlog_exit(status);
5888         return status;
5889 }
5890
5891 int ocfs2_flush_truncate_log(struct ocfs2_super *osb)
5892 {
5893         int status;
5894         struct inode *tl_inode = osb->osb_tl_inode;
5895
5896         mutex_lock(&tl_inode->i_mutex);
5897         status = __ocfs2_flush_truncate_log(osb);
5898         mutex_unlock(&tl_inode->i_mutex);
5899
5900         return status;
5901 }
5902
5903 static void ocfs2_truncate_log_worker(struct work_struct *work)
5904 {
5905         int status;
5906         struct ocfs2_super *osb =
5907                 container_of(work, struct ocfs2_super,
5908                              osb_truncate_log_wq.work);
5909
5910         mlog_entry_void();
5911
5912         status = ocfs2_flush_truncate_log(osb);
5913         if (status < 0)
5914                 mlog_errno(status);
5915         else
5916                 ocfs2_init_inode_steal_slot(osb);
5917
5918         mlog_exit(status);
5919 }
5920
5921 #define OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL (2 * HZ)
5922 void ocfs2_schedule_truncate_log_flush(struct ocfs2_super *osb,
5923                                        int cancel)
5924 {
5925         if (osb->osb_tl_inode) {
5926                 /* We want to push off log flushes while truncates are
5927                  * still running. */
5928                 if (cancel)
5929                         cancel_delayed_work(&osb->osb_truncate_log_wq);
5930
5931                 queue_delayed_work(ocfs2_wq, &osb->osb_truncate_log_wq,
5932                                    OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL);
5933         }
5934 }
5935
5936 static int ocfs2_get_truncate_log_info(struct ocfs2_super *osb,
5937                                        int slot_num,
5938                                        struct inode **tl_inode,
5939                                        struct buffer_head **tl_bh)
5940 {
5941         int status;
5942         struct inode *inode = NULL;
5943         struct buffer_head *bh = NULL;
5944
5945         inode = ocfs2_get_system_file_inode(osb,
5946                                            TRUNCATE_LOG_SYSTEM_INODE,
5947                                            slot_num);
5948         if (!inode) {
5949                 status = -EINVAL;
5950                 mlog(ML_ERROR, "Could not get load truncate log inode!\n");
5951                 goto bail;
5952         }
5953
5954         status = ocfs2_read_inode_block(inode, &bh);
5955         if (status < 0) {
5956                 iput(inode);
5957                 mlog_errno(status);
5958                 goto bail;
5959         }
5960
5961         *tl_inode = inode;
5962         *tl_bh    = bh;
5963 bail:
5964         mlog_exit(status);
5965         return status;
5966 }
5967
5968 /* called during the 1st stage of node recovery. we stamp a clean
5969  * truncate log and pass back a copy for processing later. if the
5970  * truncate log does not require processing, a *tl_copy is set to
5971  * NULL. */
5972 int ocfs2_begin_truncate_log_recovery(struct ocfs2_super *osb,
5973                                       int slot_num,
5974                                       struct ocfs2_dinode **tl_copy)
5975 {
5976         int status;
5977         struct inode *tl_inode = NULL;
5978         struct buffer_head *tl_bh = NULL;
5979         struct ocfs2_dinode *di;
5980         struct ocfs2_truncate_log *tl;
5981
5982         *tl_copy = NULL;
5983
5984         mlog(0, "recover truncate log from slot %d\n", slot_num);
5985
5986         status = ocfs2_get_truncate_log_info(osb, slot_num, &tl_inode, &tl_bh);
5987         if (status < 0) {
5988                 mlog_errno(status);
5989                 goto bail;
5990         }
5991
5992         di = (struct ocfs2_dinode *) tl_bh->b_data;
5993
5994         /* tl_bh is loaded from ocfs2_get_truncate_log_info().  It's
5995          * validated by the underlying call to ocfs2_read_inode_block(),
5996          * so any corruption is a code bug */
5997         BUG_ON(!OCFS2_IS_VALID_DINODE(di));
5998
5999         tl = &di->id2.i_dealloc;
6000         if (le16_to_cpu(tl->tl_used)) {
6001                 mlog(0, "We'll have %u logs to recover\n",
6002                      le16_to_cpu(tl->tl_used));
6003
6004                 *tl_copy = kmalloc(tl_bh->b_size, GFP_KERNEL);
6005                 if (!(*tl_copy)) {
6006                         status = -ENOMEM;
6007                         mlog_errno(status);
6008                         goto bail;
6009                 }
6010
6011                 /* Assuming the write-out below goes well, this copy
6012                  * will be passed back to recovery for processing. */
6013                 memcpy(*tl_copy, tl_bh->b_data, tl_bh->b_size);
6014
6015                 /* All we need to do to clear the truncate log is set
6016                  * tl_used. */
6017                 tl->tl_used = 0;
6018
6019                 ocfs2_compute_meta_ecc(osb->sb, tl_bh->b_data, &di->i_check);
6020                 status = ocfs2_write_block(osb, tl_bh, INODE_CACHE(tl_inode));
6021                 if (status < 0) {
6022                         mlog_errno(status);
6023                         goto bail;
6024                 }
6025         }
6026
6027 bail:
6028         if (tl_inode)
6029                 iput(tl_inode);
6030         brelse(tl_bh);
6031
6032         if (status < 0 && (*tl_copy)) {
6033                 kfree(*tl_copy);
6034                 *tl_copy = NULL;
6035         }
6036
6037         mlog_exit(status);
6038         return status;
6039 }
6040
6041 int ocfs2_complete_truncate_log_recovery(struct ocfs2_super *osb,
6042                                          struct ocfs2_dinode *tl_copy)
6043 {
6044         int status = 0;
6045         int i;
6046         unsigned int clusters, num_recs, start_cluster;
6047         u64 start_blk;
6048         handle_t *handle;
6049         struct inode *tl_inode = osb->osb_tl_inode;
6050         struct ocfs2_truncate_log *tl;
6051
6052         mlog_entry_void();
6053
6054         if (OCFS2_I(tl_inode)->ip_blkno == le64_to_cpu(tl_copy->i_blkno)) {
6055                 mlog(ML_ERROR, "Asked to recover my own truncate log!\n");
6056                 return -EINVAL;
6057         }
6058
6059         tl = &tl_copy->id2.i_dealloc;
6060         num_recs = le16_to_cpu(tl->tl_used);
6061         mlog(0, "cleanup %u records from %llu\n", num_recs,
6062              (unsigned long long)le64_to_cpu(tl_copy->i_blkno));
6063
6064         mutex_lock(&tl_inode->i_mutex);
6065         for(i = 0; i < num_recs; i++) {
6066                 if (ocfs2_truncate_log_needs_flush(osb)) {
6067                         status = __ocfs2_flush_truncate_log(osb);
6068                         if (status < 0) {
6069                                 mlog_errno(status);
6070                                 goto bail_up;
6071                         }
6072                 }
6073
6074                 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
6075                 if (IS_ERR(handle)) {
6076                         status = PTR_ERR(handle);
6077                         mlog_errno(status);
6078                         goto bail_up;
6079                 }
6080
6081                 clusters = le32_to_cpu(tl->tl_recs[i].t_clusters);
6082                 start_cluster = le32_to_cpu(tl->tl_recs[i].t_start);
6083                 start_blk = ocfs2_clusters_to_blocks(osb->sb, start_cluster);
6084
6085                 status = ocfs2_truncate_log_append(osb, handle,
6086                                                    start_blk, clusters);
6087                 ocfs2_commit_trans(osb, handle);
6088                 if (status < 0) {
6089                         mlog_errno(status);
6090                         goto bail_up;
6091                 }
6092         }
6093
6094 bail_up:
6095         mutex_unlock(&tl_inode->i_mutex);
6096
6097         mlog_exit(status);
6098         return status;
6099 }
6100
6101 void ocfs2_truncate_log_shutdown(struct ocfs2_super *osb)
6102 {
6103         int status;
6104         struct inode *tl_inode = osb->osb_tl_inode;
6105
6106         mlog_entry_void();
6107
6108         if (tl_inode) {
6109                 cancel_delayed_work(&osb->osb_truncate_log_wq);
6110                 flush_workqueue(ocfs2_wq);
6111
6112                 status = ocfs2_flush_truncate_log(osb);
6113                 if (status < 0)
6114                         mlog_errno(status);
6115
6116                 brelse(osb->osb_tl_bh);
6117                 iput(osb->osb_tl_inode);
6118         }
6119
6120         mlog_exit_void();
6121 }
6122
6123 int ocfs2_truncate_log_init(struct ocfs2_super *osb)
6124 {
6125         int status;
6126         struct inode *tl_inode = NULL;
6127         struct buffer_head *tl_bh = NULL;
6128
6129         mlog_entry_void();
6130
6131         status = ocfs2_get_truncate_log_info(osb,
6132                                              osb->slot_num,
6133                                              &tl_inode,
6134                                              &tl_bh);
6135         if (status < 0)
6136                 mlog_errno(status);
6137
6138         /* ocfs2_truncate_log_shutdown keys on the existence of
6139          * osb->osb_tl_inode so we don't set any of the osb variables
6140          * until we're sure all is well. */
6141         INIT_DELAYED_WORK(&osb->osb_truncate_log_wq,
6142                           ocfs2_truncate_log_worker);
6143         osb->osb_tl_bh    = tl_bh;
6144         osb->osb_tl_inode = tl_inode;
6145
6146         mlog_exit(status);
6147         return status;
6148 }
6149
6150 /*
6151  * Delayed de-allocation of suballocator blocks.
6152  *
6153  * Some sets of block de-allocations might involve multiple suballocator inodes.
6154  *
6155  * The locking for this can get extremely complicated, especially when
6156  * the suballocator inodes to delete from aren't known until deep
6157  * within an unrelated codepath.
6158  *
6159  * ocfs2_extent_block structures are a good example of this - an inode
6160  * btree could have been grown by any number of nodes each allocating
6161  * out of their own suballoc inode.
6162  *
6163  * These structures allow the delay of block de-allocation until a
6164  * later time, when locking of multiple cluster inodes won't cause
6165  * deadlock.
6166  */
6167
6168 /*
6169  * Describe a single bit freed from a suballocator.  For the block
6170  * suballocators, it represents one block.  For the global cluster
6171  * allocator, it represents some clusters and free_bit indicates
6172  * clusters number.
6173  */
6174 struct ocfs2_cached_block_free {
6175         struct ocfs2_cached_block_free          *free_next;
6176         u64                                     free_blk;
6177         unsigned int                            free_bit;
6178 };
6179
6180 struct ocfs2_per_slot_free_list {
6181         struct ocfs2_per_slot_free_list         *f_next_suballocator;
6182         int                                     f_inode_type;
6183         int                                     f_slot;
6184         struct ocfs2_cached_block_free          *f_first;
6185 };
6186
6187 static int ocfs2_free_cached_blocks(struct ocfs2_super *osb,
6188                                     int sysfile_type,
6189                                     int slot,
6190                                     struct ocfs2_cached_block_free *head)
6191 {
6192         int ret;
6193         u64 bg_blkno;
6194         handle_t *handle;
6195         struct inode *inode;
6196         struct buffer_head *di_bh = NULL;
6197         struct ocfs2_cached_block_free *tmp;
6198
6199         inode = ocfs2_get_system_file_inode(osb, sysfile_type, slot);
6200         if (!inode) {
6201                 ret = -EINVAL;
6202                 mlog_errno(ret);
6203                 goto out;
6204         }
6205
6206         mutex_lock(&inode->i_mutex);
6207
6208         ret = ocfs2_inode_lock(inode, &di_bh, 1);
6209         if (ret) {
6210                 mlog_errno(ret);
6211                 goto out_mutex;
6212         }
6213
6214         handle = ocfs2_start_trans(osb, OCFS2_SUBALLOC_FREE);
6215         if (IS_ERR(handle)) {
6216                 ret = PTR_ERR(handle);
6217                 mlog_errno(ret);
6218                 goto out_unlock;
6219         }
6220
6221         while (head) {
6222                 bg_blkno = ocfs2_which_suballoc_group(head->free_blk,
6223                                                       head->free_bit);
6224                 mlog(0, "Free bit: (bit %u, blkno %llu)\n",
6225                      head->free_bit, (unsigned long long)head->free_blk);
6226
6227                 ret = ocfs2_free_suballoc_bits(handle, inode, di_bh,
6228                                                head->free_bit, bg_blkno, 1);
6229                 if (ret) {
6230                         mlog_errno(ret);
6231                         goto out_journal;
6232                 }
6233
6234                 ret = ocfs2_extend_trans(handle, OCFS2_SUBALLOC_FREE);
6235                 if (ret) {
6236                         mlog_errno(ret);
6237                         goto out_journal;
6238                 }
6239
6240                 tmp = head;
6241                 head = head->free_next;
6242                 kfree(tmp);
6243         }
6244
6245 out_journal:
6246         ocfs2_commit_trans(osb, handle);
6247
6248 out_unlock:
6249         ocfs2_inode_unlock(inode, 1);
6250         brelse(di_bh);
6251 out_mutex:
6252         mutex_unlock(&inode->i_mutex);
6253         iput(inode);
6254 out:
6255         while(head) {
6256                 /* Premature exit may have left some dangling items. */
6257                 tmp = head;
6258                 head = head->free_next;
6259                 kfree(tmp);
6260         }
6261
6262         return ret;
6263 }
6264
6265 int ocfs2_cache_cluster_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt,
6266                                 u64 blkno, unsigned int bit)
6267 {
6268         int ret = 0;
6269         struct ocfs2_cached_block_free *item;
6270
6271         item = kmalloc(sizeof(*item), GFP_NOFS);
6272         if (item == NULL) {
6273                 ret = -ENOMEM;
6274                 mlog_errno(ret);
6275                 return ret;
6276         }
6277
6278         mlog(0, "Insert clusters: (bit %u, blk %llu)\n",
6279              bit, (unsigned long long)blkno);
6280
6281         item->free_blk = blkno;
6282         item->free_bit = bit;
6283         item->free_next = ctxt->c_global_allocator;
6284
6285         ctxt->c_global_allocator = item;
6286         return ret;
6287 }
6288
6289 static int ocfs2_free_cached_clusters(struct ocfs2_super *osb,
6290                                       struct ocfs2_cached_block_free *head)
6291 {
6292         struct ocfs2_cached_block_free *tmp;
6293         struct inode *tl_inode = osb->osb_tl_inode;
6294         handle_t *handle;
6295         int ret = 0;
6296
6297         mutex_lock(&tl_inode->i_mutex);
6298
6299         while (head) {
6300                 if (ocfs2_truncate_log_needs_flush(osb)) {
6301                         ret = __ocfs2_flush_truncate_log(osb);
6302                         if (ret < 0) {
6303                                 mlog_errno(ret);
6304                                 break;
6305                         }
6306                 }
6307
6308                 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
6309                 if (IS_ERR(handle)) {
6310                         ret = PTR_ERR(handle);
6311                         mlog_errno(ret);
6312                         break;
6313                 }
6314
6315                 ret = ocfs2_truncate_log_append(osb, handle, head->free_blk,
6316                                                 head->free_bit);
6317
6318                 ocfs2_commit_trans(osb, handle);
6319                 tmp = head;
6320                 head = head->free_next;
6321                 kfree(tmp);
6322
6323                 if (ret < 0) {
6324                         mlog_errno(ret);
6325                         break;
6326                 }
6327         }
6328
6329         mutex_unlock(&tl_inode->i_mutex);
6330
6331         while (head) {
6332                 /* Premature exit may have left some dangling items. */
6333                 tmp = head;
6334                 head = head->free_next;
6335                 kfree(tmp);
6336         }
6337
6338         return ret;
6339 }
6340
6341 int ocfs2_run_deallocs(struct ocfs2_super *osb,
6342                        struct ocfs2_cached_dealloc_ctxt *ctxt)
6343 {
6344         int ret = 0, ret2;
6345         struct ocfs2_per_slot_free_list *fl;
6346
6347         if (!ctxt)
6348                 return 0;
6349
6350         while (ctxt->c_first_suballocator) {
6351                 fl = ctxt->c_first_suballocator;
6352
6353                 if (fl->f_first) {
6354                         mlog(0, "Free items: (type %u, slot %d)\n",
6355                              fl->f_inode_type, fl->f_slot);
6356                         ret2 = ocfs2_free_cached_blocks(osb,
6357                                                         fl->f_inode_type,
6358                                                         fl->f_slot,
6359                                                         fl->f_first);
6360                         if (ret2)
6361                                 mlog_errno(ret2);
6362                         if (!ret)
6363                                 ret = ret2;
6364                 }
6365
6366                 ctxt->c_first_suballocator = fl->f_next_suballocator;
6367                 kfree(fl);
6368         }
6369
6370         if (ctxt->c_global_allocator) {
6371                 ret2 = ocfs2_free_cached_clusters(osb,
6372                                                   ctxt->c_global_allocator);
6373                 if (ret2)
6374                         mlog_errno(ret2);
6375                 if (!ret)
6376                         ret = ret2;
6377
6378                 ctxt->c_global_allocator = NULL;
6379         }
6380
6381         return ret;
6382 }
6383
6384 static struct ocfs2_per_slot_free_list *
6385 ocfs2_find_per_slot_free_list(int type,
6386                               int slot,
6387                               struct ocfs2_cached_dealloc_ctxt *ctxt)
6388 {
6389         struct ocfs2_per_slot_free_list *fl = ctxt->c_first_suballocator;
6390
6391         while (fl) {
6392                 if (fl->f_inode_type == type && fl->f_slot == slot)
6393                         return fl;
6394
6395                 fl = fl->f_next_suballocator;
6396         }
6397
6398         fl = kmalloc(sizeof(*fl), GFP_NOFS);
6399         if (fl) {
6400                 fl->f_inode_type = type;
6401                 fl->f_slot = slot;
6402                 fl->f_first = NULL;
6403                 fl->f_next_suballocator = ctxt->c_first_suballocator;
6404
6405                 ctxt->c_first_suballocator = fl;
6406         }
6407         return fl;
6408 }
6409
6410 static int ocfs2_cache_block_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt,
6411                                      int type, int slot, u64 blkno,
6412                                      unsigned int bit)
6413 {
6414         int ret;
6415         struct ocfs2_per_slot_free_list *fl;
6416         struct ocfs2_cached_block_free *item;
6417
6418         fl = ocfs2_find_per_slot_free_list(type, slot, ctxt);
6419         if (fl == NULL) {
6420                 ret = -ENOMEM;
6421                 mlog_errno(ret);
6422                 goto out;
6423         }
6424
6425         item = kmalloc(sizeof(*item), GFP_NOFS);
6426         if (item == NULL) {
6427                 ret = -ENOMEM;
6428                 mlog_errno(ret);
6429                 goto out;
6430         }
6431
6432         mlog(0, "Insert: (type %d, slot %u, bit %u, blk %llu)\n",
6433              type, slot, bit, (unsigned long long)blkno);
6434
6435         item->free_blk = blkno;
6436         item->free_bit = bit;
6437         item->free_next = fl->f_first;
6438
6439         fl->f_first = item;
6440
6441         ret = 0;
6442 out:
6443         return ret;
6444 }
6445
6446 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
6447                                          struct ocfs2_extent_block *eb)
6448 {
6449         return ocfs2_cache_block_dealloc(ctxt, EXTENT_ALLOC_SYSTEM_INODE,
6450                                          le16_to_cpu(eb->h_suballoc_slot),
6451                                          le64_to_cpu(eb->h_blkno),
6452                                          le16_to_cpu(eb->h_suballoc_bit));
6453 }
6454
6455 /* This function will figure out whether the currently last extent
6456  * block will be deleted, and if it will, what the new last extent
6457  * block will be so we can update his h_next_leaf_blk field, as well
6458  * as the dinodes i_last_eb_blk */
6459 static int ocfs2_find_new_last_ext_blk(struct inode *inode,
6460                                        unsigned int clusters_to_del,
6461                                        struct ocfs2_path *path,
6462                                        struct buffer_head **new_last_eb)
6463 {
6464         int next_free, ret = 0;
6465         u32 cpos;
6466         struct ocfs2_extent_rec *rec;
6467         struct ocfs2_extent_block *eb;
6468         struct ocfs2_extent_list *el;
6469         struct buffer_head *bh = NULL;
6470
6471         *new_last_eb = NULL;
6472
6473         /* we have no tree, so of course, no last_eb. */
6474         if (!path->p_tree_depth)
6475                 goto out;
6476
6477         /* trunc to zero special case - this makes tree_depth = 0
6478          * regardless of what it is.  */
6479         if (OCFS2_I(inode)->ip_clusters == clusters_to_del)
6480                 goto out;
6481
6482         el = path_leaf_el(path);
6483         BUG_ON(!el->l_next_free_rec);
6484
6485         /*
6486          * Make sure that this extent list will actually be empty
6487          * after we clear away the data. We can shortcut out if
6488          * there's more than one non-empty extent in the
6489          * list. Otherwise, a check of the remaining extent is
6490          * necessary.
6491          */
6492         next_free = le16_to_cpu(el->l_next_free_rec);
6493         rec = NULL;
6494         if (ocfs2_is_empty_extent(&el->l_recs[0])) {
6495                 if (next_free > 2)
6496                         goto out;
6497
6498                 /* We may have a valid extent in index 1, check it. */
6499                 if (next_free == 2)
6500                         rec = &el->l_recs[1];
6501
6502                 /*
6503                  * Fall through - no more nonempty extents, so we want
6504                  * to delete this leaf.
6505                  */
6506         } else {
6507                 if (next_free > 1)
6508                         goto out;
6509
6510                 rec = &el->l_recs[0];
6511         }
6512
6513         if (rec) {
6514                 /*
6515                  * Check it we'll only be trimming off the end of this
6516                  * cluster.
6517                  */
6518                 if (le16_to_cpu(rec->e_leaf_clusters) > clusters_to_del)
6519                         goto out;
6520         }
6521
6522         ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, &cpos);
6523         if (ret) {
6524                 mlog_errno(ret);
6525                 goto out;
6526         }
6527
6528         ret = ocfs2_find_leaf(INODE_CACHE(inode), path_root_el(path), cpos, &bh);
6529         if (ret) {
6530                 mlog_errno(ret);
6531                 goto out;
6532         }
6533
6534         eb = (struct ocfs2_extent_block *) bh->b_data;
6535         el = &eb->h_list;
6536
6537         /* ocfs2_find_leaf() gets the eb from ocfs2_read_extent_block().
6538          * Any corruption is a code bug. */
6539         BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb));
6540
6541         *new_last_eb = bh;
6542         get_bh(*new_last_eb);
6543         mlog(0, "returning block %llu, (cpos: %u)\n",
6544              (unsigned long long)le64_to_cpu(eb->h_blkno), cpos);
6545 out:
6546         brelse(bh);
6547
6548         return ret;
6549 }
6550
6551 /*
6552  * Trim some clusters off the rightmost edge of a tree. Only called
6553  * during truncate.
6554  *
6555  * The caller needs to:
6556  *   - start journaling of each path component.
6557  *   - compute and fully set up any new last ext block
6558  */
6559 static int ocfs2_trim_tree(struct inode *inode, struct ocfs2_path *path,
6560                            handle_t *handle, struct ocfs2_truncate_context *tc,
6561                            u32 clusters_to_del, u64 *delete_start)
6562 {
6563         int ret, i, index = path->p_tree_depth;
6564         u32 new_edge = 0;
6565         u64 deleted_eb = 0;
6566         struct buffer_head *bh;
6567         struct ocfs2_extent_list *el;
6568         struct ocfs2_extent_rec *rec;
6569
6570         *delete_start = 0;
6571
6572         while (index >= 0) {
6573                 bh = path->p_node[index].bh;
6574                 el = path->p_node[index].el;
6575
6576                 mlog(0, "traveling tree (index = %d, block = %llu)\n",
6577                      index,  (unsigned long long)bh->b_blocknr);
6578
6579                 BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0);
6580
6581                 if (index !=
6582                     (path->p_tree_depth - le16_to_cpu(el->l_tree_depth))) {
6583                         ocfs2_error(inode->i_sb,
6584                                     "Inode %lu has invalid ext. block %llu",
6585                                     inode->i_ino,
6586                                     (unsigned long long)bh->b_blocknr);
6587                         ret = -EROFS;
6588                         goto out;
6589                 }
6590
6591 find_tail_record:
6592                 i = le16_to_cpu(el->l_next_free_rec) - 1;
6593                 rec = &el->l_recs[i];
6594
6595                 mlog(0, "Extent list before: record %d: (%u, %u, %llu), "
6596                      "next = %u\n", i, le32_to_cpu(rec->e_cpos),
6597                      ocfs2_rec_clusters(el, rec),
6598                      (unsigned long long)le64_to_cpu(rec->e_blkno),
6599                      le16_to_cpu(el->l_next_free_rec));
6600
6601                 BUG_ON(ocfs2_rec_clusters(el, rec) < clusters_to_del);
6602
6603                 if (le16_to_cpu(el->l_tree_depth) == 0) {
6604                         /*
6605                          * If the leaf block contains a single empty
6606                          * extent and no records, we can just remove
6607                          * the block.
6608                          */
6609                         if (i == 0 && ocfs2_is_empty_extent(rec)) {
6610                                 memset(rec, 0,
6611                                        sizeof(struct ocfs2_extent_rec));
6612                                 el->l_next_free_rec = cpu_to_le16(0);
6613
6614                                 goto delete;
6615                         }
6616
6617                         /*
6618                          * Remove any empty extents by shifting things
6619                          * left. That should make life much easier on
6620                          * the code below. This condition is rare
6621                          * enough that we shouldn't see a performance
6622                          * hit.
6623                          */
6624                         if (ocfs2_is_empty_extent(&el->l_recs[0])) {
6625                                 le16_add_cpu(&el->l_next_free_rec, -1);
6626
6627                                 for(i = 0;
6628                                     i < le16_to_cpu(el->l_next_free_rec); i++)
6629                                         el->l_recs[i] = el->l_recs[i + 1];
6630
6631                                 memset(&el->l_recs[i], 0,
6632                                        sizeof(struct ocfs2_extent_rec));
6633
6634                                 /*
6635                                  * We've modified our extent list. The
6636                                  * simplest way to handle this change
6637                                  * is to being the search from the
6638                                  * start again.
6639                                  */
6640                                 goto find_tail_record;
6641                         }
6642
6643                         le16_add_cpu(&rec->e_leaf_clusters, -clusters_to_del);
6644
6645                         /*
6646                          * We'll use "new_edge" on our way back up the
6647                          * tree to know what our rightmost cpos is.
6648                          */
6649                         new_edge = le16_to_cpu(rec->e_leaf_clusters);
6650                         new_edge += le32_to_cpu(rec->e_cpos);
6651
6652                         /*
6653                          * The caller will use this to delete data blocks.
6654                          */
6655                         *delete_start = le64_to_cpu(rec->e_blkno)
6656                                 + ocfs2_clusters_to_blocks(inode->i_sb,
6657                                         le16_to_cpu(rec->e_leaf_clusters));
6658
6659                         /*
6660                          * If it's now empty, remove this record.
6661                          */
6662                         if (le16_to_cpu(rec->e_leaf_clusters) == 0) {
6663                                 memset(rec, 0,
6664                                        sizeof(struct ocfs2_extent_rec));
6665                                 le16_add_cpu(&el->l_next_free_rec, -1);
6666                         }
6667                 } else {
6668                         if (le64_to_cpu(rec->e_blkno) == deleted_eb) {
6669                                 memset(rec, 0,
6670                                        sizeof(struct ocfs2_extent_rec));
6671                                 le16_add_cpu(&el->l_next_free_rec, -1);
6672
6673                                 goto delete;
6674                         }
6675
6676                         /* Can this actually happen? */
6677                         if (le16_to_cpu(el->l_next_free_rec) == 0)
6678                                 goto delete;
6679
6680                         /*
6681                          * We never actually deleted any clusters
6682                          * because our leaf was empty. There's no
6683                          * reason to adjust the rightmost edge then.
6684                          */
6685                         if (new_edge == 0)
6686                                 goto delete;
6687
6688                         rec->e_int_clusters = cpu_to_le32(new_edge);
6689                         le32_add_cpu(&rec->e_int_clusters,
6690                                      -le32_to_cpu(rec->e_cpos));
6691
6692                          /*
6693                           * A deleted child record should have been
6694                           * caught above.
6695                           */
6696                          BUG_ON(le32_to_cpu(rec->e_int_clusters) == 0);
6697                 }
6698
6699 delete:
6700                 ret = ocfs2_journal_dirty(handle, bh);
6701                 if (ret) {
6702                         mlog_errno(ret);
6703                         goto out;
6704                 }
6705
6706                 mlog(0, "extent list container %llu, after: record %d: "
6707                      "(%u, %u, %llu), next = %u.\n",
6708                      (unsigned long long)bh->b_blocknr, i,
6709                      le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec),
6710                      (unsigned long long)le64_to_cpu(rec->e_blkno),
6711                      le16_to_cpu(el->l_next_free_rec));
6712
6713                 /*
6714                  * We must be careful to only attempt delete of an
6715                  * extent block (and not the root inode block).
6716                  */
6717                 if (index > 0 && le16_to_cpu(el->l_next_free_rec) == 0) {
6718                         struct ocfs2_extent_block *eb =
6719                                 (struct ocfs2_extent_block *)bh->b_data;
6720
6721                         /*
6722                          * Save this for use when processing the
6723                          * parent block.
6724                          */
6725                         deleted_eb = le64_to_cpu(eb->h_blkno);
6726
6727                         mlog(0, "deleting this extent block.\n");
6728
6729                         ocfs2_remove_from_cache(INODE_CACHE(inode), bh);
6730
6731                         BUG_ON(ocfs2_rec_clusters(el, &el->l_recs[0]));
6732                         BUG_ON(le32_to_cpu(el->l_recs[0].e_cpos));
6733                         BUG_ON(le64_to_cpu(el->l_recs[0].e_blkno));
6734
6735                         ret = ocfs2_cache_extent_block_free(&tc->tc_dealloc, eb);
6736                         /* An error here is not fatal. */
6737                         if (ret < 0)
6738                                 mlog_errno(ret);
6739                 } else {
6740                         deleted_eb = 0;
6741                 }
6742
6743                 index--;
6744         }
6745
6746         ret = 0;
6747 out:
6748         return ret;
6749 }
6750
6751 static int ocfs2_do_truncate(struct ocfs2_super *osb,
6752                              unsigned int clusters_to_del,
6753                              struct inode *inode,
6754                              struct buffer_head *fe_bh,
6755                              handle_t *handle,
6756                              struct ocfs2_truncate_context *tc,
6757                              struct ocfs2_path *path)
6758 {
6759         int status;
6760         struct ocfs2_dinode *fe;
6761         struct ocfs2_extent_block *last_eb = NULL;
6762         struct ocfs2_extent_list *el;
6763         struct buffer_head *last_eb_bh = NULL;
6764         u64 delete_blk = 0;
6765
6766         fe = (struct ocfs2_dinode *) fe_bh->b_data;
6767
6768         status = ocfs2_find_new_last_ext_blk(inode, clusters_to_del,
6769                                              path, &last_eb_bh);
6770         if (status < 0) {
6771                 mlog_errno(status);
6772                 goto bail;
6773         }
6774
6775         /*
6776          * Each component will be touched, so we might as well journal
6777          * here to avoid having to handle errors later.
6778          */
6779         status = ocfs2_journal_access_path(INODE_CACHE(inode), handle, path);
6780         if (status < 0) {
6781                 mlog_errno(status);
6782                 goto bail;
6783         }
6784
6785         if (last_eb_bh) {
6786                 status = ocfs2_journal_access_eb(handle, INODE_CACHE(inode), last_eb_bh,
6787                                                  OCFS2_JOURNAL_ACCESS_WRITE);
6788                 if (status < 0) {
6789                         mlog_errno(status);
6790                         goto bail;
6791                 }
6792
6793                 last_eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
6794         }
6795
6796         el = &(fe->id2.i_list);
6797
6798         /*
6799          * Lower levels depend on this never happening, but it's best
6800          * to check it up here before changing the tree.
6801          */
6802         if (el->l_tree_depth && el->l_recs[0].e_int_clusters == 0) {
6803                 ocfs2_error(inode->i_sb,
6804                             "Inode %lu has an empty extent record, depth %u\n",
6805                             inode->i_ino, le16_to_cpu(el->l_tree_depth));
6806                 status = -EROFS;
6807                 goto bail;
6808         }
6809
6810         vfs_dq_free_space_nodirty(inode,
6811                         ocfs2_clusters_to_bytes(osb->sb, clusters_to_del));
6812         spin_lock(&OCFS2_I(inode)->ip_lock);
6813         OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters) -
6814                                       clusters_to_del;
6815         spin_unlock(&OCFS2_I(inode)->ip_lock);
6816         le32_add_cpu(&fe->i_clusters, -clusters_to_del);
6817         inode->i_blocks = ocfs2_inode_sector_count(inode);
6818
6819         status = ocfs2_trim_tree(inode, path, handle, tc,
6820                                  clusters_to_del, &delete_blk);
6821         if (status) {
6822                 mlog_errno(status);
6823                 goto bail;
6824         }
6825
6826         if (le32_to_cpu(fe->i_clusters) == 0) {
6827                 /* trunc to zero is a special case. */
6828                 el->l_tree_depth = 0;
6829                 fe->i_last_eb_blk = 0;
6830         } else if (last_eb)
6831                 fe->i_last_eb_blk = last_eb->h_blkno;
6832
6833         status = ocfs2_journal_dirty(handle, fe_bh);
6834         if (status < 0) {
6835                 mlog_errno(status);
6836                 goto bail;
6837         }
6838
6839         if (last_eb) {
6840                 /* If there will be a new last extent block, then by
6841                  * definition, there cannot be any leaves to the right of
6842                  * him. */
6843                 last_eb->h_next_leaf_blk = 0;
6844                 status = ocfs2_journal_dirty(handle, last_eb_bh);
6845                 if (status < 0) {
6846                         mlog_errno(status);
6847                         goto bail;
6848                 }
6849         }
6850
6851         if (delete_blk) {
6852                 status = ocfs2_truncate_log_append(osb, handle, delete_blk,
6853                                                    clusters_to_del);
6854                 if (status < 0) {
6855                         mlog_errno(status);
6856                         goto bail;
6857                 }
6858         }
6859         status = 0;
6860 bail:
6861         brelse(last_eb_bh);
6862         mlog_exit(status);
6863         return status;
6864 }
6865
6866 static int ocfs2_zero_func(handle_t *handle, struct buffer_head *bh)
6867 {
6868         set_buffer_uptodate(bh);
6869         mark_buffer_dirty(bh);
6870         return 0;
6871 }
6872
6873 static void ocfs2_map_and_dirty_page(struct inode *inode, handle_t *handle,
6874                                      unsigned int from, unsigned int to,
6875                                      struct page *page, int zero, u64 *phys)
6876 {
6877         int ret, partial = 0;
6878
6879         ret = ocfs2_map_page_blocks(page, phys, inode, from, to, 0);
6880         if (ret)
6881                 mlog_errno(ret);
6882
6883         if (zero)
6884                 zero_user_segment(page, from, to);
6885
6886         /*
6887          * Need to set the buffers we zero'd into uptodate
6888          * here if they aren't - ocfs2_map_page_blocks()
6889          * might've skipped some
6890          */
6891         ret = walk_page_buffers(handle, page_buffers(page),
6892                                 from, to, &partial,
6893                                 ocfs2_zero_func);
6894         if (ret < 0)
6895                 mlog_errno(ret);
6896         else if (ocfs2_should_order_data(inode)) {
6897                 ret = ocfs2_jbd2_file_inode(handle, inode);
6898                 if (ret < 0)
6899                         mlog_errno(ret);
6900         }
6901
6902         if (!partial)
6903                 SetPageUptodate(page);
6904
6905         flush_dcache_page(page);
6906 }
6907
6908 static void ocfs2_zero_cluster_pages(struct inode *inode, loff_t start,
6909                                      loff_t end, struct page **pages,
6910                                      int numpages, u64 phys, handle_t *handle)
6911 {
6912         int i;
6913         struct page *page;
6914         unsigned int from, to = PAGE_CACHE_SIZE;
6915         struct super_block *sb = inode->i_sb;
6916
6917         BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb)));
6918
6919         if (numpages == 0)
6920                 goto out;
6921
6922         to = PAGE_CACHE_SIZE;
6923         for(i = 0; i < numpages; i++) {
6924                 page = pages[i];
6925
6926                 from = start & (PAGE_CACHE_SIZE - 1);
6927                 if ((end >> PAGE_CACHE_SHIFT) == page->index)
6928                         to = end & (PAGE_CACHE_SIZE - 1);
6929
6930                 BUG_ON(from > PAGE_CACHE_SIZE);
6931                 BUG_ON(to > PAGE_CACHE_SIZE);
6932
6933                 ocfs2_map_and_dirty_page(inode, handle, from, to, page, 1,
6934                                          &phys);
6935
6936                 start = (page->index + 1) << PAGE_CACHE_SHIFT;
6937         }
6938 out:
6939         if (pages)
6940                 ocfs2_unlock_and_free_pages(pages, numpages);
6941 }
6942
6943 static int ocfs2_grab_eof_pages(struct inode *inode, loff_t start, loff_t end,
6944                                 struct page **pages, int *num)
6945 {
6946         int numpages, ret = 0;
6947         struct super_block *sb = inode->i_sb;
6948         struct address_space *mapping = inode->i_mapping;
6949         unsigned long index;
6950         loff_t last_page_bytes;
6951
6952         BUG_ON(start > end);
6953
6954         BUG_ON(start >> OCFS2_SB(sb)->s_clustersize_bits !=
6955                (end - 1) >> OCFS2_SB(sb)->s_clustersize_bits);
6956
6957         numpages = 0;
6958         last_page_bytes = PAGE_ALIGN(end);
6959         index = start >> PAGE_CACHE_SHIFT;
6960         do {
6961                 pages[numpages] = grab_cache_page(mapping, index);
6962                 if (!pages[numpages]) {
6963                         ret = -ENOMEM;
6964                         mlog_errno(ret);
6965                         goto out;
6966                 }
6967
6968                 numpages++;
6969                 index++;
6970         } while (index < (last_page_bytes >> PAGE_CACHE_SHIFT));
6971
6972 out:
6973         if (ret != 0) {
6974                 if (pages)
6975                         ocfs2_unlock_and_free_pages(pages, numpages);
6976                 numpages = 0;
6977         }
6978
6979         *num = numpages;
6980
6981         return ret;
6982 }
6983
6984 /*
6985  * Zero the area past i_size but still within an allocated
6986  * cluster. This avoids exposing nonzero data on subsequent file
6987  * extends.
6988  *
6989  * We need to call this before i_size is updated on the inode because
6990  * otherwise block_write_full_page() will skip writeout of pages past
6991  * i_size. The new_i_size parameter is passed for this reason.
6992  */
6993 int ocfs2_zero_range_for_truncate(struct inode *inode, handle_t *handle,
6994                                   u64 range_start, u64 range_end)
6995 {
6996         int ret = 0, numpages;
6997         struct page **pages = NULL;
6998         u64 phys;
6999         unsigned int ext_flags;
7000         struct super_block *sb = inode->i_sb;
7001
7002         /*
7003          * File systems which don't support sparse files zero on every
7004          * extend.
7005          */
7006         if (!ocfs2_sparse_alloc(OCFS2_SB(sb)))
7007                 return 0;
7008
7009         pages = kcalloc(ocfs2_pages_per_cluster(sb),
7010                         sizeof(struct page *), GFP_NOFS);
7011         if (pages == NULL) {
7012                 ret = -ENOMEM;
7013                 mlog_errno(ret);
7014                 goto out;
7015         }
7016
7017         if (range_start == range_end)
7018                 goto out;
7019
7020         ret = ocfs2_extent_map_get_blocks(inode,
7021                                           range_start >> sb->s_blocksize_bits,
7022                                           &phys, NULL, &ext_flags);
7023         if (ret) {
7024                 mlog_errno(ret);
7025                 goto out;
7026         }
7027
7028         /*
7029          * Tail is a hole, or is marked unwritten. In either case, we
7030          * can count on read and write to return/push zero's.
7031          */
7032         if (phys == 0 || ext_flags & OCFS2_EXT_UNWRITTEN)
7033                 goto out;
7034
7035         ret = ocfs2_grab_eof_pages(inode, range_start, range_end, pages,
7036                                    &numpages);
7037         if (ret) {
7038                 mlog_errno(ret);
7039                 goto out;
7040         }
7041
7042         ocfs2_zero_cluster_pages(inode, range_start, range_end, pages,
7043                                  numpages, phys, handle);
7044
7045         /*
7046          * Initiate writeout of the pages we zero'd here. We don't
7047          * wait on them - the truncate_inode_pages() call later will
7048          * do that for us.
7049          */
7050         ret = do_sync_mapping_range(inode->i_mapping, range_start,
7051                                     range_end - 1, SYNC_FILE_RANGE_WRITE);
7052         if (ret)
7053                 mlog_errno(ret);
7054
7055 out:
7056         if (pages)
7057                 kfree(pages);
7058
7059         return ret;
7060 }
7061
7062 static void ocfs2_zero_dinode_id2_with_xattr(struct inode *inode,
7063                                              struct ocfs2_dinode *di)
7064 {
7065         unsigned int blocksize = 1 << inode->i_sb->s_blocksize_bits;
7066         unsigned int xattrsize = le16_to_cpu(di->i_xattr_inline_size);
7067
7068         if (le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_XATTR_FL)
7069                 memset(&di->id2, 0, blocksize -
7070                                     offsetof(struct ocfs2_dinode, id2) -
7071                                     xattrsize);
7072         else
7073                 memset(&di->id2, 0, blocksize -
7074                                     offsetof(struct ocfs2_dinode, id2));
7075 }
7076
7077 void ocfs2_dinode_new_extent_list(struct inode *inode,
7078                                   struct ocfs2_dinode *di)
7079 {
7080         ocfs2_zero_dinode_id2_with_xattr(inode, di);
7081         di->id2.i_list.l_tree_depth = 0;
7082         di->id2.i_list.l_next_free_rec = 0;
7083         di->id2.i_list.l_count = cpu_to_le16(
7084                 ocfs2_extent_recs_per_inode_with_xattr(inode->i_sb, di));
7085 }
7086
7087 void ocfs2_set_inode_data_inline(struct inode *inode, struct ocfs2_dinode *di)
7088 {
7089         struct ocfs2_inode_info *oi = OCFS2_I(inode);
7090         struct ocfs2_inline_data *idata = &di->id2.i_data;
7091
7092         spin_lock(&oi->ip_lock);
7093         oi->ip_dyn_features |= OCFS2_INLINE_DATA_FL;
7094         di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
7095         spin_unlock(&oi->ip_lock);
7096
7097         /*
7098          * We clear the entire i_data structure here so that all
7099          * fields can be properly initialized.
7100          */
7101         ocfs2_zero_dinode_id2_with_xattr(inode, di);
7102
7103         idata->id_count = cpu_to_le16(
7104                         ocfs2_max_inline_data_with_xattr(inode->i_sb, di));
7105 }
7106
7107 int ocfs2_convert_inline_data_to_extents(struct inode *inode,
7108                                          struct buffer_head *di_bh)
7109 {
7110         int ret, i, has_data, num_pages = 0;
7111         handle_t *handle;
7112         u64 uninitialized_var(block);
7113         struct ocfs2_inode_info *oi = OCFS2_I(inode);
7114         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
7115         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
7116         struct ocfs2_alloc_context *data_ac = NULL;
7117         struct page **pages = NULL;
7118         loff_t end = osb->s_clustersize;
7119         struct ocfs2_extent_tree et;
7120         int did_quota = 0;
7121
7122         has_data = i_size_read(inode) ? 1 : 0;
7123
7124         if (has_data) {
7125                 pages = kcalloc(ocfs2_pages_per_cluster(osb->sb),
7126                                 sizeof(struct page *), GFP_NOFS);
7127                 if (pages == NULL) {
7128                         ret = -ENOMEM;
7129                         mlog_errno(ret);
7130                         goto out;
7131                 }
7132
7133                 ret = ocfs2_reserve_clusters(osb, 1, &data_ac);
7134                 if (ret) {
7135                         mlog_errno(ret);
7136                         goto out;
7137                 }
7138         }
7139
7140         handle = ocfs2_start_trans(osb,
7141                                    ocfs2_inline_to_extents_credits(osb->sb));
7142         if (IS_ERR(handle)) {
7143                 ret = PTR_ERR(handle);
7144                 mlog_errno(ret);
7145                 goto out_unlock;
7146         }
7147
7148         ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
7149                                       OCFS2_JOURNAL_ACCESS_WRITE);
7150         if (ret) {
7151                 mlog_errno(ret);
7152                 goto out_commit;
7153         }
7154
7155         if (has_data) {
7156                 u32 bit_off, num;
7157                 unsigned int page_end;
7158                 u64 phys;
7159
7160                 if (vfs_dq_alloc_space_nodirty(inode,
7161                                        ocfs2_clusters_to_bytes(osb->sb, 1))) {
7162                         ret = -EDQUOT;
7163                         goto out_commit;
7164                 }
7165                 did_quota = 1;
7166
7167                 ret = ocfs2_claim_clusters(osb, handle, data_ac, 1, &bit_off,
7168                                            &num);
7169                 if (ret) {
7170                         mlog_errno(ret);
7171                         goto out_commit;
7172                 }
7173
7174                 /*
7175                  * Save two copies, one for insert, and one that can
7176                  * be changed by ocfs2_map_and_dirty_page() below.
7177                  */
7178                 block = phys = ocfs2_clusters_to_blocks(inode->i_sb, bit_off);
7179
7180                 /*
7181                  * Non sparse file systems zero on extend, so no need
7182                  * to do that now.
7183                  */
7184                 if (!ocfs2_sparse_alloc(osb) &&
7185                     PAGE_CACHE_SIZE < osb->s_clustersize)
7186                         end = PAGE_CACHE_SIZE;
7187
7188                 ret = ocfs2_grab_eof_pages(inode, 0, end, pages, &num_pages);
7189                 if (ret) {
7190                         mlog_errno(ret);
7191                         goto out_commit;
7192                 }
7193
7194                 /*
7195                  * This should populate the 1st page for us and mark
7196                  * it up to date.
7197                  */
7198                 ret = ocfs2_read_inline_data(inode, pages[0], di_bh);
7199                 if (ret) {
7200                         mlog_errno(ret);
7201                         goto out_commit;
7202                 }
7203
7204                 page_end = PAGE_CACHE_SIZE;
7205                 if (PAGE_CACHE_SIZE > osb->s_clustersize)
7206                         page_end = osb->s_clustersize;
7207
7208                 for (i = 0; i < num_pages; i++)
7209                         ocfs2_map_and_dirty_page(inode, handle, 0, page_end,
7210                                                  pages[i], i > 0, &phys);
7211         }
7212
7213         spin_lock(&oi->ip_lock);
7214         oi->ip_dyn_features &= ~OCFS2_INLINE_DATA_FL;
7215         di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
7216         spin_unlock(&oi->ip_lock);
7217
7218         ocfs2_dinode_new_extent_list(inode, di);
7219
7220         ocfs2_journal_dirty(handle, di_bh);
7221
7222         if (has_data) {
7223                 /*
7224                  * An error at this point should be extremely rare. If
7225                  * this proves to be false, we could always re-build
7226                  * the in-inode data from our pages.
7227                  */
7228                 ocfs2_init_dinode_extent_tree(&et, inode, di_bh);
7229                 ret = ocfs2_insert_extent(osb, handle, inode, &et,
7230                                           0, block, 1, 0, NULL);
7231                 if (ret) {
7232                         mlog_errno(ret);
7233                         goto out_commit;
7234                 }
7235
7236                 inode->i_blocks = ocfs2_inode_sector_count(inode);
7237         }
7238
7239 out_commit:
7240         if (ret < 0 && did_quota)
7241                 vfs_dq_free_space_nodirty(inode,
7242                                           ocfs2_clusters_to_bytes(osb->sb, 1));
7243
7244         ocfs2_commit_trans(osb, handle);
7245
7246 out_unlock:
7247         if (data_ac)
7248                 ocfs2_free_alloc_context(data_ac);
7249
7250 out:
7251         if (pages) {
7252                 ocfs2_unlock_and_free_pages(pages, num_pages);
7253                 kfree(pages);
7254         }
7255
7256         return ret;
7257 }
7258
7259 /*
7260  * It is expected, that by the time you call this function,
7261  * inode->i_size and fe->i_size have been adjusted.
7262  *
7263  * WARNING: This will kfree the truncate context
7264  */
7265 int ocfs2_commit_truncate(struct ocfs2_super *osb,
7266                           struct inode *inode,
7267                           struct buffer_head *fe_bh,
7268                           struct ocfs2_truncate_context *tc)
7269 {
7270         int status, i, credits, tl_sem = 0;
7271         u32 clusters_to_del, new_highest_cpos, range;
7272         struct ocfs2_extent_list *el;
7273         handle_t *handle = NULL;
7274         struct inode *tl_inode = osb->osb_tl_inode;
7275         struct ocfs2_path *path = NULL;
7276         struct ocfs2_dinode *di = (struct ocfs2_dinode *)fe_bh->b_data;
7277
7278         mlog_entry_void();
7279
7280         new_highest_cpos = ocfs2_clusters_for_bytes(osb->sb,
7281                                                      i_size_read(inode));
7282
7283         path = ocfs2_new_path(fe_bh, &di->id2.i_list,
7284                               ocfs2_journal_access_di);
7285         if (!path) {
7286                 status = -ENOMEM;
7287                 mlog_errno(status);
7288                 goto bail;
7289         }
7290
7291         ocfs2_extent_map_trunc(inode, new_highest_cpos);
7292
7293 start:
7294         /*
7295          * Check that we still have allocation to delete.
7296          */
7297         if (OCFS2_I(inode)->ip_clusters == 0) {
7298                 status = 0;
7299                 goto bail;
7300         }
7301
7302         /*
7303          * Truncate always works against the rightmost tree branch.
7304          */
7305         status = ocfs2_find_path(INODE_CACHE(inode), path, UINT_MAX);
7306         if (status) {
7307                 mlog_errno(status);
7308                 goto bail;
7309         }
7310
7311         mlog(0, "inode->ip_clusters = %u, tree_depth = %u\n",
7312              OCFS2_I(inode)->ip_clusters, path->p_tree_depth);
7313
7314         /*
7315          * By now, el will point to the extent list on the bottom most
7316          * portion of this tree. Only the tail record is considered in
7317          * each pass.
7318          *
7319          * We handle the following cases, in order:
7320          * - empty extent: delete the remaining branch
7321          * - remove the entire record
7322          * - remove a partial record
7323          * - no record needs to be removed (truncate has completed)
7324          */
7325         el = path_leaf_el(path);
7326         if (le16_to_cpu(el->l_next_free_rec) == 0) {
7327                 ocfs2_error(inode->i_sb,
7328                             "Inode %llu has empty extent block at %llu\n",
7329                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
7330                             (unsigned long long)path_leaf_bh(path)->b_blocknr);
7331                 status = -EROFS;
7332                 goto bail;
7333         }
7334
7335         i = le16_to_cpu(el->l_next_free_rec) - 1;
7336         range = le32_to_cpu(el->l_recs[i].e_cpos) +
7337                 ocfs2_rec_clusters(el, &el->l_recs[i]);
7338         if (i == 0 && ocfs2_is_empty_extent(&el->l_recs[i])) {
7339                 clusters_to_del = 0;
7340         } else if (le32_to_cpu(el->l_recs[i].e_cpos) >= new_highest_cpos) {
7341                 clusters_to_del = ocfs2_rec_clusters(el, &el->l_recs[i]);
7342         } else if (range > new_highest_cpos) {
7343                 clusters_to_del = (ocfs2_rec_clusters(el, &el->l_recs[i]) +
7344                                    le32_to_cpu(el->l_recs[i].e_cpos)) -
7345                                   new_highest_cpos;
7346         } else {
7347                 status = 0;
7348                 goto bail;
7349         }
7350
7351         mlog(0, "clusters_to_del = %u in this pass, tail blk=%llu\n",
7352              clusters_to_del, (unsigned long long)path_leaf_bh(path)->b_blocknr);
7353
7354         mutex_lock(&tl_inode->i_mutex);
7355         tl_sem = 1;
7356         /* ocfs2_truncate_log_needs_flush guarantees us at least one
7357          * record is free for use. If there isn't any, we flush to get
7358          * an empty truncate log.  */
7359         if (ocfs2_truncate_log_needs_flush(osb)) {
7360                 status = __ocfs2_flush_truncate_log(osb);
7361                 if (status < 0) {
7362                         mlog_errno(status);
7363                         goto bail;
7364                 }
7365         }
7366
7367         credits = ocfs2_calc_tree_trunc_credits(osb->sb, clusters_to_del,
7368                                                 (struct ocfs2_dinode *)fe_bh->b_data,
7369                                                 el);
7370         handle = ocfs2_start_trans(osb, credits);
7371         if (IS_ERR(handle)) {
7372                 status = PTR_ERR(handle);
7373                 handle = NULL;
7374                 mlog_errno(status);
7375                 goto bail;
7376         }
7377
7378         status = ocfs2_do_truncate(osb, clusters_to_del, inode, fe_bh, handle,
7379                                    tc, path);
7380         if (status < 0) {
7381                 mlog_errno(status);
7382                 goto bail;
7383         }
7384
7385         mutex_unlock(&tl_inode->i_mutex);
7386         tl_sem = 0;
7387
7388         ocfs2_commit_trans(osb, handle);
7389         handle = NULL;
7390
7391         ocfs2_reinit_path(path, 1);
7392
7393         /*
7394          * The check above will catch the case where we've truncated
7395          * away all allocation.
7396          */
7397         goto start;
7398
7399 bail:
7400
7401         ocfs2_schedule_truncate_log_flush(osb, 1);
7402
7403         if (tl_sem)
7404                 mutex_unlock(&tl_inode->i_mutex);
7405
7406         if (handle)
7407                 ocfs2_commit_trans(osb, handle);
7408
7409         ocfs2_run_deallocs(osb, &tc->tc_dealloc);
7410
7411         ocfs2_free_path(path);
7412
7413         /* This will drop the ext_alloc cluster lock for us */
7414         ocfs2_free_truncate_context(tc);
7415
7416         mlog_exit(status);
7417         return status;
7418 }
7419
7420 /*
7421  * Expects the inode to already be locked.
7422  */
7423 int ocfs2_prepare_truncate(struct ocfs2_super *osb,
7424                            struct inode *inode,
7425                            struct buffer_head *fe_bh,
7426                            struct ocfs2_truncate_context **tc)
7427 {
7428         int status;
7429         unsigned int new_i_clusters;
7430         struct ocfs2_dinode *fe;
7431         struct ocfs2_extent_block *eb;
7432         struct buffer_head *last_eb_bh = NULL;
7433
7434         mlog_entry_void();
7435
7436         *tc = NULL;
7437
7438         new_i_clusters = ocfs2_clusters_for_bytes(osb->sb,
7439                                                   i_size_read(inode));
7440         fe = (struct ocfs2_dinode *) fe_bh->b_data;
7441
7442         mlog(0, "fe->i_clusters = %u, new_i_clusters = %u, fe->i_size ="
7443              "%llu\n", le32_to_cpu(fe->i_clusters), new_i_clusters,
7444              (unsigned long long)le64_to_cpu(fe->i_size));
7445
7446         *tc = kzalloc(sizeof(struct ocfs2_truncate_context), GFP_KERNEL);
7447         if (!(*tc)) {
7448                 status = -ENOMEM;
7449                 mlog_errno(status);
7450                 goto bail;
7451         }
7452         ocfs2_init_dealloc_ctxt(&(*tc)->tc_dealloc);
7453
7454         if (fe->id2.i_list.l_tree_depth) {
7455                 status = ocfs2_read_extent_block(INODE_CACHE(inode),
7456                                                  le64_to_cpu(fe->i_last_eb_blk),
7457                                                  &last_eb_bh);
7458                 if (status < 0) {
7459                         mlog_errno(status);
7460                         goto bail;
7461                 }
7462                 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
7463         }
7464
7465         (*tc)->tc_last_eb_bh = last_eb_bh;
7466
7467         status = 0;
7468 bail:
7469         if (status < 0) {
7470                 if (*tc)
7471                         ocfs2_free_truncate_context(*tc);
7472                 *tc = NULL;
7473         }
7474         mlog_exit_void();
7475         return status;
7476 }
7477
7478 /*
7479  * 'start' is inclusive, 'end' is not.
7480  */
7481 int ocfs2_truncate_inline(struct inode *inode, struct buffer_head *di_bh,
7482                           unsigned int start, unsigned int end, int trunc)
7483 {
7484         int ret;
7485         unsigned int numbytes;
7486         handle_t *handle;
7487         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
7488         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
7489         struct ocfs2_inline_data *idata = &di->id2.i_data;
7490
7491         if (end > i_size_read(inode))
7492                 end = i_size_read(inode);
7493
7494         BUG_ON(start >= end);
7495
7496         if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) ||
7497             !(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL) ||
7498             !ocfs2_supports_inline_data(osb)) {
7499                 ocfs2_error(inode->i_sb,
7500                             "Inline data flags for inode %llu don't agree! "
7501                             "Disk: 0x%x, Memory: 0x%x, Superblock: 0x%x\n",
7502                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
7503                             le16_to_cpu(di->i_dyn_features),
7504                             OCFS2_I(inode)->ip_dyn_features,
7505                             osb->s_feature_incompat);
7506                 ret = -EROFS;
7507                 goto out;
7508         }
7509
7510         handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
7511         if (IS_ERR(handle)) {
7512                 ret = PTR_ERR(handle);
7513                 mlog_errno(ret);
7514                 goto out;
7515         }
7516
7517         ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
7518                                       OCFS2_JOURNAL_ACCESS_WRITE);
7519         if (ret) {
7520                 mlog_errno(ret);
7521                 goto out_commit;
7522         }
7523
7524         numbytes = end - start;
7525         memset(idata->id_data + start, 0, numbytes);
7526
7527         /*
7528          * No need to worry about the data page here - it's been
7529          * truncated already and inline data doesn't need it for
7530          * pushing zero's to disk, so we'll let readpage pick it up
7531          * later.
7532          */
7533         if (trunc) {
7534                 i_size_write(inode, start);
7535                 di->i_size = cpu_to_le64(start);
7536         }
7537
7538         inode->i_blocks = ocfs2_inode_sector_count(inode);
7539         inode->i_ctime = inode->i_mtime = CURRENT_TIME;
7540
7541         di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec);
7542         di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
7543
7544         ocfs2_journal_dirty(handle, di_bh);
7545
7546 out_commit:
7547         ocfs2_commit_trans(osb, handle);
7548
7549 out:
7550         return ret;
7551 }
7552
7553 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc)
7554 {
7555         /*
7556          * The caller is responsible for completing deallocation
7557          * before freeing the context.
7558          */
7559         if (tc->tc_dealloc.c_first_suballocator != NULL)
7560                 mlog(ML_NOTICE,
7561                      "Truncate completion has non-empty dealloc context\n");
7562
7563         brelse(tc->tc_last_eb_bh);
7564
7565         kfree(tc);
7566 }