ocfs2: ocfs2_grow_branch() and ocfs2_append_rec_to_path() lose struct inode.
[safe/jmp/linux-2.6] / fs / ocfs2 / alloc.c
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * alloc.c
5  *
6  * Extent allocs and frees
7  *
8  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public
12  * License as published by the Free Software Foundation; either
13  * version 2 of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public
21  * License along with this program; if not, write to the
22  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23  * Boston, MA 021110-1307, USA.
24  */
25
26 #include <linux/fs.h>
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/swap.h>
31 #include <linux/quotaops.h>
32
33 #define MLOG_MASK_PREFIX ML_DISK_ALLOC
34 #include <cluster/masklog.h>
35
36 #include "ocfs2.h"
37
38 #include "alloc.h"
39 #include "aops.h"
40 #include "blockcheck.h"
41 #include "dlmglue.h"
42 #include "extent_map.h"
43 #include "inode.h"
44 #include "journal.h"
45 #include "localalloc.h"
46 #include "suballoc.h"
47 #include "sysfile.h"
48 #include "file.h"
49 #include "super.h"
50 #include "uptodate.h"
51 #include "xattr.h"
52
53 #include "buffer_head_io.h"
54
55
56 /*
57  * Operations for a specific extent tree type.
58  *
59  * To implement an on-disk btree (extent tree) type in ocfs2, add
60  * an ocfs2_extent_tree_operations structure and the matching
61  * ocfs2_init_<thingy>_extent_tree() function.  That's pretty much it
62  * for the allocation portion of the extent tree.
63  */
64 struct ocfs2_extent_tree_operations {
65         /*
66          * last_eb_blk is the block number of the right most leaf extent
67          * block.  Most on-disk structures containing an extent tree store
68          * this value for fast access.  The ->eo_set_last_eb_blk() and
69          * ->eo_get_last_eb_blk() operations access this value.  They are
70          *  both required.
71          */
72         void (*eo_set_last_eb_blk)(struct ocfs2_extent_tree *et,
73                                    u64 blkno);
74         u64 (*eo_get_last_eb_blk)(struct ocfs2_extent_tree *et);
75
76         /*
77          * The on-disk structure usually keeps track of how many total
78          * clusters are stored in this extent tree.  This function updates
79          * that value.  new_clusters is the delta, and must be
80          * added to the total.  Required.
81          */
82         void (*eo_update_clusters)(struct ocfs2_extent_tree *et,
83                                    u32 new_clusters);
84
85         /*
86          * If ->eo_insert_check() exists, it is called before rec is
87          * inserted into the extent tree.  It is optional.
88          */
89         int (*eo_insert_check)(struct ocfs2_extent_tree *et,
90                                struct ocfs2_extent_rec *rec);
91         int (*eo_sanity_check)(struct ocfs2_extent_tree *et);
92
93         /*
94          * --------------------------------------------------------------
95          * The remaining are internal to ocfs2_extent_tree and don't have
96          * accessor functions
97          */
98
99         /*
100          * ->eo_fill_root_el() takes et->et_object and sets et->et_root_el.
101          * It is required.
102          */
103         void (*eo_fill_root_el)(struct ocfs2_extent_tree *et);
104
105         /*
106          * ->eo_fill_max_leaf_clusters sets et->et_max_leaf_clusters if
107          * it exists.  If it does not, et->et_max_leaf_clusters is set
108          * to 0 (unlimited).  Optional.
109          */
110         void (*eo_fill_max_leaf_clusters)(struct ocfs2_extent_tree *et);
111 };
112
113
114 /*
115  * Pre-declare ocfs2_dinode_et_ops so we can use it as a sanity check
116  * in the methods.
117  */
118 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et);
119 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et,
120                                          u64 blkno);
121 static void ocfs2_dinode_update_clusters(struct ocfs2_extent_tree *et,
122                                          u32 clusters);
123 static int ocfs2_dinode_insert_check(struct ocfs2_extent_tree *et,
124                                      struct ocfs2_extent_rec *rec);
125 static int ocfs2_dinode_sanity_check(struct ocfs2_extent_tree *et);
126 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et);
127 static struct ocfs2_extent_tree_operations ocfs2_dinode_et_ops = {
128         .eo_set_last_eb_blk     = ocfs2_dinode_set_last_eb_blk,
129         .eo_get_last_eb_blk     = ocfs2_dinode_get_last_eb_blk,
130         .eo_update_clusters     = ocfs2_dinode_update_clusters,
131         .eo_insert_check        = ocfs2_dinode_insert_check,
132         .eo_sanity_check        = ocfs2_dinode_sanity_check,
133         .eo_fill_root_el        = ocfs2_dinode_fill_root_el,
134 };
135
136 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et,
137                                          u64 blkno)
138 {
139         struct ocfs2_dinode *di = et->et_object;
140
141         BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
142         di->i_last_eb_blk = cpu_to_le64(blkno);
143 }
144
145 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et)
146 {
147         struct ocfs2_dinode *di = et->et_object;
148
149         BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
150         return le64_to_cpu(di->i_last_eb_blk);
151 }
152
153 static void ocfs2_dinode_update_clusters(struct ocfs2_extent_tree *et,
154                                          u32 clusters)
155 {
156         struct ocfs2_inode_info *oi = cache_info_to_inode(et->et_ci);
157         struct ocfs2_dinode *di = et->et_object;
158
159         le32_add_cpu(&di->i_clusters, clusters);
160         spin_lock(&oi->ip_lock);
161         oi->ip_clusters = le32_to_cpu(di->i_clusters);
162         spin_unlock(&oi->ip_lock);
163 }
164
165 static int ocfs2_dinode_insert_check(struct ocfs2_extent_tree *et,
166                                      struct ocfs2_extent_rec *rec)
167 {
168         struct ocfs2_inode_info *oi = cache_info_to_inode(et->et_ci);
169         struct ocfs2_super *osb = OCFS2_SB(oi->vfs_inode.i_sb);
170
171         BUG_ON(oi->ip_dyn_features & OCFS2_INLINE_DATA_FL);
172         mlog_bug_on_msg(!ocfs2_sparse_alloc(osb) &&
173                         (oi->ip_clusters != le32_to_cpu(rec->e_cpos)),
174                         "Device %s, asking for sparse allocation: inode %llu, "
175                         "cpos %u, clusters %u\n",
176                         osb->dev_str,
177                         (unsigned long long)oi->ip_blkno,
178                         rec->e_cpos, oi->ip_clusters);
179
180         return 0;
181 }
182
183 static int ocfs2_dinode_sanity_check(struct ocfs2_extent_tree *et)
184 {
185         struct ocfs2_dinode *di = et->et_object;
186
187         BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
188         BUG_ON(!OCFS2_IS_VALID_DINODE(di));
189
190         return 0;
191 }
192
193 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et)
194 {
195         struct ocfs2_dinode *di = et->et_object;
196
197         et->et_root_el = &di->id2.i_list;
198 }
199
200
201 static void ocfs2_xattr_value_fill_root_el(struct ocfs2_extent_tree *et)
202 {
203         struct ocfs2_xattr_value_buf *vb = et->et_object;
204
205         et->et_root_el = &vb->vb_xv->xr_list;
206 }
207
208 static void ocfs2_xattr_value_set_last_eb_blk(struct ocfs2_extent_tree *et,
209                                               u64 blkno)
210 {
211         struct ocfs2_xattr_value_buf *vb = et->et_object;
212
213         vb->vb_xv->xr_last_eb_blk = cpu_to_le64(blkno);
214 }
215
216 static u64 ocfs2_xattr_value_get_last_eb_blk(struct ocfs2_extent_tree *et)
217 {
218         struct ocfs2_xattr_value_buf *vb = et->et_object;
219
220         return le64_to_cpu(vb->vb_xv->xr_last_eb_blk);
221 }
222
223 static void ocfs2_xattr_value_update_clusters(struct ocfs2_extent_tree *et,
224                                               u32 clusters)
225 {
226         struct ocfs2_xattr_value_buf *vb = et->et_object;
227
228         le32_add_cpu(&vb->vb_xv->xr_clusters, clusters);
229 }
230
231 static struct ocfs2_extent_tree_operations ocfs2_xattr_value_et_ops = {
232         .eo_set_last_eb_blk     = ocfs2_xattr_value_set_last_eb_blk,
233         .eo_get_last_eb_blk     = ocfs2_xattr_value_get_last_eb_blk,
234         .eo_update_clusters     = ocfs2_xattr_value_update_clusters,
235         .eo_fill_root_el        = ocfs2_xattr_value_fill_root_el,
236 };
237
238 static void ocfs2_xattr_tree_fill_root_el(struct ocfs2_extent_tree *et)
239 {
240         struct ocfs2_xattr_block *xb = et->et_object;
241
242         et->et_root_el = &xb->xb_attrs.xb_root.xt_list;
243 }
244
245 static void ocfs2_xattr_tree_fill_max_leaf_clusters(struct ocfs2_extent_tree *et)
246 {
247         struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
248         et->et_max_leaf_clusters =
249                 ocfs2_clusters_for_bytes(sb, OCFS2_MAX_XATTR_TREE_LEAF_SIZE);
250 }
251
252 static void ocfs2_xattr_tree_set_last_eb_blk(struct ocfs2_extent_tree *et,
253                                              u64 blkno)
254 {
255         struct ocfs2_xattr_block *xb = et->et_object;
256         struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root;
257
258         xt->xt_last_eb_blk = cpu_to_le64(blkno);
259 }
260
261 static u64 ocfs2_xattr_tree_get_last_eb_blk(struct ocfs2_extent_tree *et)
262 {
263         struct ocfs2_xattr_block *xb = et->et_object;
264         struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root;
265
266         return le64_to_cpu(xt->xt_last_eb_blk);
267 }
268
269 static void ocfs2_xattr_tree_update_clusters(struct ocfs2_extent_tree *et,
270                                              u32 clusters)
271 {
272         struct ocfs2_xattr_block *xb = et->et_object;
273
274         le32_add_cpu(&xb->xb_attrs.xb_root.xt_clusters, clusters);
275 }
276
277 static struct ocfs2_extent_tree_operations ocfs2_xattr_tree_et_ops = {
278         .eo_set_last_eb_blk     = ocfs2_xattr_tree_set_last_eb_blk,
279         .eo_get_last_eb_blk     = ocfs2_xattr_tree_get_last_eb_blk,
280         .eo_update_clusters     = ocfs2_xattr_tree_update_clusters,
281         .eo_fill_root_el        = ocfs2_xattr_tree_fill_root_el,
282         .eo_fill_max_leaf_clusters = ocfs2_xattr_tree_fill_max_leaf_clusters,
283 };
284
285 static void ocfs2_dx_root_set_last_eb_blk(struct ocfs2_extent_tree *et,
286                                           u64 blkno)
287 {
288         struct ocfs2_dx_root_block *dx_root = et->et_object;
289
290         dx_root->dr_last_eb_blk = cpu_to_le64(blkno);
291 }
292
293 static u64 ocfs2_dx_root_get_last_eb_blk(struct ocfs2_extent_tree *et)
294 {
295         struct ocfs2_dx_root_block *dx_root = et->et_object;
296
297         return le64_to_cpu(dx_root->dr_last_eb_blk);
298 }
299
300 static void ocfs2_dx_root_update_clusters(struct ocfs2_extent_tree *et,
301                                           u32 clusters)
302 {
303         struct ocfs2_dx_root_block *dx_root = et->et_object;
304
305         le32_add_cpu(&dx_root->dr_clusters, clusters);
306 }
307
308 static int ocfs2_dx_root_sanity_check(struct ocfs2_extent_tree *et)
309 {
310         struct ocfs2_dx_root_block *dx_root = et->et_object;
311
312         BUG_ON(!OCFS2_IS_VALID_DX_ROOT(dx_root));
313
314         return 0;
315 }
316
317 static void ocfs2_dx_root_fill_root_el(struct ocfs2_extent_tree *et)
318 {
319         struct ocfs2_dx_root_block *dx_root = et->et_object;
320
321         et->et_root_el = &dx_root->dr_list;
322 }
323
324 static struct ocfs2_extent_tree_operations ocfs2_dx_root_et_ops = {
325         .eo_set_last_eb_blk     = ocfs2_dx_root_set_last_eb_blk,
326         .eo_get_last_eb_blk     = ocfs2_dx_root_get_last_eb_blk,
327         .eo_update_clusters     = ocfs2_dx_root_update_clusters,
328         .eo_sanity_check        = ocfs2_dx_root_sanity_check,
329         .eo_fill_root_el        = ocfs2_dx_root_fill_root_el,
330 };
331
332 static void __ocfs2_init_extent_tree(struct ocfs2_extent_tree *et,
333                                      struct inode *inode,
334                                      struct buffer_head *bh,
335                                      ocfs2_journal_access_func access,
336                                      void *obj,
337                                      struct ocfs2_extent_tree_operations *ops)
338 {
339         et->et_ops = ops;
340         et->et_root_bh = bh;
341         et->et_ci = INODE_CACHE(inode);
342         et->et_root_journal_access = access;
343         if (!obj)
344                 obj = (void *)bh->b_data;
345         et->et_object = obj;
346
347         et->et_ops->eo_fill_root_el(et);
348         if (!et->et_ops->eo_fill_max_leaf_clusters)
349                 et->et_max_leaf_clusters = 0;
350         else
351                 et->et_ops->eo_fill_max_leaf_clusters(et);
352 }
353
354 void ocfs2_init_dinode_extent_tree(struct ocfs2_extent_tree *et,
355                                    struct inode *inode,
356                                    struct buffer_head *bh)
357 {
358         __ocfs2_init_extent_tree(et, inode, bh, ocfs2_journal_access_di,
359                                  NULL, &ocfs2_dinode_et_ops);
360 }
361
362 void ocfs2_init_xattr_tree_extent_tree(struct ocfs2_extent_tree *et,
363                                        struct inode *inode,
364                                        struct buffer_head *bh)
365 {
366         __ocfs2_init_extent_tree(et, inode, bh, ocfs2_journal_access_xb,
367                                  NULL, &ocfs2_xattr_tree_et_ops);
368 }
369
370 void ocfs2_init_xattr_value_extent_tree(struct ocfs2_extent_tree *et,
371                                         struct inode *inode,
372                                         struct ocfs2_xattr_value_buf *vb)
373 {
374         __ocfs2_init_extent_tree(et, inode, vb->vb_bh, vb->vb_access, vb,
375                                  &ocfs2_xattr_value_et_ops);
376 }
377
378 void ocfs2_init_dx_root_extent_tree(struct ocfs2_extent_tree *et,
379                                     struct inode *inode,
380                                     struct buffer_head *bh)
381 {
382         __ocfs2_init_extent_tree(et, inode, bh, ocfs2_journal_access_dr,
383                                  NULL, &ocfs2_dx_root_et_ops);
384 }
385
386 static inline void ocfs2_et_set_last_eb_blk(struct ocfs2_extent_tree *et,
387                                             u64 new_last_eb_blk)
388 {
389         et->et_ops->eo_set_last_eb_blk(et, new_last_eb_blk);
390 }
391
392 static inline u64 ocfs2_et_get_last_eb_blk(struct ocfs2_extent_tree *et)
393 {
394         return et->et_ops->eo_get_last_eb_blk(et);
395 }
396
397 static inline void ocfs2_et_update_clusters(struct ocfs2_extent_tree *et,
398                                             u32 clusters)
399 {
400         et->et_ops->eo_update_clusters(et, clusters);
401 }
402
403 static inline int ocfs2_et_root_journal_access(handle_t *handle,
404                                                struct ocfs2_extent_tree *et,
405                                                int type)
406 {
407         return et->et_root_journal_access(handle, et->et_ci, et->et_root_bh,
408                                           type);
409 }
410
411 static inline int ocfs2_et_insert_check(struct ocfs2_extent_tree *et,
412                                         struct ocfs2_extent_rec *rec)
413 {
414         int ret = 0;
415
416         if (et->et_ops->eo_insert_check)
417                 ret = et->et_ops->eo_insert_check(et, rec);
418         return ret;
419 }
420
421 static inline int ocfs2_et_sanity_check(struct ocfs2_extent_tree *et)
422 {
423         int ret = 0;
424
425         if (et->et_ops->eo_sanity_check)
426                 ret = et->et_ops->eo_sanity_check(et);
427         return ret;
428 }
429
430 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc);
431 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
432                                          struct ocfs2_extent_block *eb);
433
434 /*
435  * Structures which describe a path through a btree, and functions to
436  * manipulate them.
437  *
438  * The idea here is to be as generic as possible with the tree
439  * manipulation code.
440  */
441 struct ocfs2_path_item {
442         struct buffer_head              *bh;
443         struct ocfs2_extent_list        *el;
444 };
445
446 #define OCFS2_MAX_PATH_DEPTH    5
447
448 struct ocfs2_path {
449         int                             p_tree_depth;
450         ocfs2_journal_access_func       p_root_access;
451         struct ocfs2_path_item          p_node[OCFS2_MAX_PATH_DEPTH];
452 };
453
454 #define path_root_bh(_path) ((_path)->p_node[0].bh)
455 #define path_root_el(_path) ((_path)->p_node[0].el)
456 #define path_root_access(_path)((_path)->p_root_access)
457 #define path_leaf_bh(_path) ((_path)->p_node[(_path)->p_tree_depth].bh)
458 #define path_leaf_el(_path) ((_path)->p_node[(_path)->p_tree_depth].el)
459 #define path_num_items(_path) ((_path)->p_tree_depth + 1)
460
461 static int ocfs2_find_path(struct ocfs2_caching_info *ci,
462                            struct ocfs2_path *path, u32 cpos);
463 static void ocfs2_adjust_rightmost_records(handle_t *handle,
464                                            struct ocfs2_extent_tree *et,
465                                            struct ocfs2_path *path,
466                                            struct ocfs2_extent_rec *insert_rec);
467 /*
468  * Reset the actual path elements so that we can re-use the structure
469  * to build another path. Generally, this involves freeing the buffer
470  * heads.
471  */
472 static void ocfs2_reinit_path(struct ocfs2_path *path, int keep_root)
473 {
474         int i, start = 0, depth = 0;
475         struct ocfs2_path_item *node;
476
477         if (keep_root)
478                 start = 1;
479
480         for(i = start; i < path_num_items(path); i++) {
481                 node = &path->p_node[i];
482
483                 brelse(node->bh);
484                 node->bh = NULL;
485                 node->el = NULL;
486         }
487
488         /*
489          * Tree depth may change during truncate, or insert. If we're
490          * keeping the root extent list, then make sure that our path
491          * structure reflects the proper depth.
492          */
493         if (keep_root)
494                 depth = le16_to_cpu(path_root_el(path)->l_tree_depth);
495         else
496                 path_root_access(path) = NULL;
497
498         path->p_tree_depth = depth;
499 }
500
501 static void ocfs2_free_path(struct ocfs2_path *path)
502 {
503         if (path) {
504                 ocfs2_reinit_path(path, 0);
505                 kfree(path);
506         }
507 }
508
509 /*
510  * All the elements of src into dest. After this call, src could be freed
511  * without affecting dest.
512  *
513  * Both paths should have the same root. Any non-root elements of dest
514  * will be freed.
515  */
516 static void ocfs2_cp_path(struct ocfs2_path *dest, struct ocfs2_path *src)
517 {
518         int i;
519
520         BUG_ON(path_root_bh(dest) != path_root_bh(src));
521         BUG_ON(path_root_el(dest) != path_root_el(src));
522         BUG_ON(path_root_access(dest) != path_root_access(src));
523
524         ocfs2_reinit_path(dest, 1);
525
526         for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
527                 dest->p_node[i].bh = src->p_node[i].bh;
528                 dest->p_node[i].el = src->p_node[i].el;
529
530                 if (dest->p_node[i].bh)
531                         get_bh(dest->p_node[i].bh);
532         }
533 }
534
535 /*
536  * Make the *dest path the same as src and re-initialize src path to
537  * have a root only.
538  */
539 static void ocfs2_mv_path(struct ocfs2_path *dest, struct ocfs2_path *src)
540 {
541         int i;
542
543         BUG_ON(path_root_bh(dest) != path_root_bh(src));
544         BUG_ON(path_root_access(dest) != path_root_access(src));
545
546         for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
547                 brelse(dest->p_node[i].bh);
548
549                 dest->p_node[i].bh = src->p_node[i].bh;
550                 dest->p_node[i].el = src->p_node[i].el;
551
552                 src->p_node[i].bh = NULL;
553                 src->p_node[i].el = NULL;
554         }
555 }
556
557 /*
558  * Insert an extent block at given index.
559  *
560  * This will not take an additional reference on eb_bh.
561  */
562 static inline void ocfs2_path_insert_eb(struct ocfs2_path *path, int index,
563                                         struct buffer_head *eb_bh)
564 {
565         struct ocfs2_extent_block *eb = (struct ocfs2_extent_block *)eb_bh->b_data;
566
567         /*
568          * Right now, no root bh is an extent block, so this helps
569          * catch code errors with dinode trees. The assertion can be
570          * safely removed if we ever need to insert extent block
571          * structures at the root.
572          */
573         BUG_ON(index == 0);
574
575         path->p_node[index].bh = eb_bh;
576         path->p_node[index].el = &eb->h_list;
577 }
578
579 static struct ocfs2_path *ocfs2_new_path(struct buffer_head *root_bh,
580                                          struct ocfs2_extent_list *root_el,
581                                          ocfs2_journal_access_func access)
582 {
583         struct ocfs2_path *path;
584
585         BUG_ON(le16_to_cpu(root_el->l_tree_depth) >= OCFS2_MAX_PATH_DEPTH);
586
587         path = kzalloc(sizeof(*path), GFP_NOFS);
588         if (path) {
589                 path->p_tree_depth = le16_to_cpu(root_el->l_tree_depth);
590                 get_bh(root_bh);
591                 path_root_bh(path) = root_bh;
592                 path_root_el(path) = root_el;
593                 path_root_access(path) = access;
594         }
595
596         return path;
597 }
598
599 static struct ocfs2_path *ocfs2_new_path_from_path(struct ocfs2_path *path)
600 {
601         return ocfs2_new_path(path_root_bh(path), path_root_el(path),
602                               path_root_access(path));
603 }
604
605 static struct ocfs2_path *ocfs2_new_path_from_et(struct ocfs2_extent_tree *et)
606 {
607         return ocfs2_new_path(et->et_root_bh, et->et_root_el,
608                               et->et_root_journal_access);
609 }
610
611 /*
612  * Journal the buffer at depth idx.  All idx>0 are extent_blocks,
613  * otherwise it's the root_access function.
614  *
615  * I don't like the way this function's name looks next to
616  * ocfs2_journal_access_path(), but I don't have a better one.
617  */
618 static int ocfs2_path_bh_journal_access(handle_t *handle,
619                                         struct ocfs2_caching_info *ci,
620                                         struct ocfs2_path *path,
621                                         int idx)
622 {
623         ocfs2_journal_access_func access = path_root_access(path);
624
625         if (!access)
626                 access = ocfs2_journal_access;
627
628         if (idx)
629                 access = ocfs2_journal_access_eb;
630
631         return access(handle, ci, path->p_node[idx].bh,
632                       OCFS2_JOURNAL_ACCESS_WRITE);
633 }
634
635 /*
636  * Convenience function to journal all components in a path.
637  */
638 static int ocfs2_journal_access_path(struct ocfs2_caching_info *ci,
639                                      handle_t *handle,
640                                      struct ocfs2_path *path)
641 {
642         int i, ret = 0;
643
644         if (!path)
645                 goto out;
646
647         for(i = 0; i < path_num_items(path); i++) {
648                 ret = ocfs2_path_bh_journal_access(handle, ci, path, i);
649                 if (ret < 0) {
650                         mlog_errno(ret);
651                         goto out;
652                 }
653         }
654
655 out:
656         return ret;
657 }
658
659 /*
660  * Return the index of the extent record which contains cluster #v_cluster.
661  * -1 is returned if it was not found.
662  *
663  * Should work fine on interior and exterior nodes.
664  */
665 int ocfs2_search_extent_list(struct ocfs2_extent_list *el, u32 v_cluster)
666 {
667         int ret = -1;
668         int i;
669         struct ocfs2_extent_rec *rec;
670         u32 rec_end, rec_start, clusters;
671
672         for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
673                 rec = &el->l_recs[i];
674
675                 rec_start = le32_to_cpu(rec->e_cpos);
676                 clusters = ocfs2_rec_clusters(el, rec);
677
678                 rec_end = rec_start + clusters;
679
680                 if (v_cluster >= rec_start && v_cluster < rec_end) {
681                         ret = i;
682                         break;
683                 }
684         }
685
686         return ret;
687 }
688
689 enum ocfs2_contig_type {
690         CONTIG_NONE = 0,
691         CONTIG_LEFT,
692         CONTIG_RIGHT,
693         CONTIG_LEFTRIGHT,
694 };
695
696
697 /*
698  * NOTE: ocfs2_block_extent_contig(), ocfs2_extents_adjacent() and
699  * ocfs2_extent_contig only work properly against leaf nodes!
700  */
701 static int ocfs2_block_extent_contig(struct super_block *sb,
702                                      struct ocfs2_extent_rec *ext,
703                                      u64 blkno)
704 {
705         u64 blk_end = le64_to_cpu(ext->e_blkno);
706
707         blk_end += ocfs2_clusters_to_blocks(sb,
708                                     le16_to_cpu(ext->e_leaf_clusters));
709
710         return blkno == blk_end;
711 }
712
713 static int ocfs2_extents_adjacent(struct ocfs2_extent_rec *left,
714                                   struct ocfs2_extent_rec *right)
715 {
716         u32 left_range;
717
718         left_range = le32_to_cpu(left->e_cpos) +
719                 le16_to_cpu(left->e_leaf_clusters);
720
721         return (left_range == le32_to_cpu(right->e_cpos));
722 }
723
724 static enum ocfs2_contig_type
725         ocfs2_extent_contig(struct inode *inode,
726                             struct ocfs2_extent_rec *ext,
727                             struct ocfs2_extent_rec *insert_rec)
728 {
729         u64 blkno = le64_to_cpu(insert_rec->e_blkno);
730
731         /*
732          * Refuse to coalesce extent records with different flag
733          * fields - we don't want to mix unwritten extents with user
734          * data.
735          */
736         if (ext->e_flags != insert_rec->e_flags)
737                 return CONTIG_NONE;
738
739         if (ocfs2_extents_adjacent(ext, insert_rec) &&
740             ocfs2_block_extent_contig(inode->i_sb, ext, blkno))
741                         return CONTIG_RIGHT;
742
743         blkno = le64_to_cpu(ext->e_blkno);
744         if (ocfs2_extents_adjacent(insert_rec, ext) &&
745             ocfs2_block_extent_contig(inode->i_sb, insert_rec, blkno))
746                 return CONTIG_LEFT;
747
748         return CONTIG_NONE;
749 }
750
751 /*
752  * NOTE: We can have pretty much any combination of contiguousness and
753  * appending.
754  *
755  * The usefulness of APPEND_TAIL is more in that it lets us know that
756  * we'll have to update the path to that leaf.
757  */
758 enum ocfs2_append_type {
759         APPEND_NONE = 0,
760         APPEND_TAIL,
761 };
762
763 enum ocfs2_split_type {
764         SPLIT_NONE = 0,
765         SPLIT_LEFT,
766         SPLIT_RIGHT,
767 };
768
769 struct ocfs2_insert_type {
770         enum ocfs2_split_type   ins_split;
771         enum ocfs2_append_type  ins_appending;
772         enum ocfs2_contig_type  ins_contig;
773         int                     ins_contig_index;
774         int                     ins_tree_depth;
775 };
776
777 struct ocfs2_merge_ctxt {
778         enum ocfs2_contig_type  c_contig_type;
779         int                     c_has_empty_extent;
780         int                     c_split_covers_rec;
781 };
782
783 static int ocfs2_validate_extent_block(struct super_block *sb,
784                                        struct buffer_head *bh)
785 {
786         int rc;
787         struct ocfs2_extent_block *eb =
788                 (struct ocfs2_extent_block *)bh->b_data;
789
790         mlog(0, "Validating extent block %llu\n",
791              (unsigned long long)bh->b_blocknr);
792
793         BUG_ON(!buffer_uptodate(bh));
794
795         /*
796          * If the ecc fails, we return the error but otherwise
797          * leave the filesystem running.  We know any error is
798          * local to this block.
799          */
800         rc = ocfs2_validate_meta_ecc(sb, bh->b_data, &eb->h_check);
801         if (rc) {
802                 mlog(ML_ERROR, "Checksum failed for extent block %llu\n",
803                      (unsigned long long)bh->b_blocknr);
804                 return rc;
805         }
806
807         /*
808          * Errors after here are fatal.
809          */
810
811         if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
812                 ocfs2_error(sb,
813                             "Extent block #%llu has bad signature %.*s",
814                             (unsigned long long)bh->b_blocknr, 7,
815                             eb->h_signature);
816                 return -EINVAL;
817         }
818
819         if (le64_to_cpu(eb->h_blkno) != bh->b_blocknr) {
820                 ocfs2_error(sb,
821                             "Extent block #%llu has an invalid h_blkno "
822                             "of %llu",
823                             (unsigned long long)bh->b_blocknr,
824                             (unsigned long long)le64_to_cpu(eb->h_blkno));
825                 return -EINVAL;
826         }
827
828         if (le32_to_cpu(eb->h_fs_generation) != OCFS2_SB(sb)->fs_generation) {
829                 ocfs2_error(sb,
830                             "Extent block #%llu has an invalid "
831                             "h_fs_generation of #%u",
832                             (unsigned long long)bh->b_blocknr,
833                             le32_to_cpu(eb->h_fs_generation));
834                 return -EINVAL;
835         }
836
837         return 0;
838 }
839
840 int ocfs2_read_extent_block(struct ocfs2_caching_info *ci, u64 eb_blkno,
841                             struct buffer_head **bh)
842 {
843         int rc;
844         struct buffer_head *tmp = *bh;
845
846         rc = ocfs2_read_block(ci, eb_blkno, &tmp,
847                               ocfs2_validate_extent_block);
848
849         /* If ocfs2_read_block() got us a new bh, pass it up. */
850         if (!rc && !*bh)
851                 *bh = tmp;
852
853         return rc;
854 }
855
856
857 /*
858  * How many free extents have we got before we need more meta data?
859  */
860 int ocfs2_num_free_extents(struct ocfs2_super *osb,
861                            struct ocfs2_extent_tree *et)
862 {
863         int retval;
864         struct ocfs2_extent_list *el = NULL;
865         struct ocfs2_extent_block *eb;
866         struct buffer_head *eb_bh = NULL;
867         u64 last_eb_blk = 0;
868
869         mlog_entry_void();
870
871         el = et->et_root_el;
872         last_eb_blk = ocfs2_et_get_last_eb_blk(et);
873
874         if (last_eb_blk) {
875                 retval = ocfs2_read_extent_block(et->et_ci, last_eb_blk,
876                                                  &eb_bh);
877                 if (retval < 0) {
878                         mlog_errno(retval);
879                         goto bail;
880                 }
881                 eb = (struct ocfs2_extent_block *) eb_bh->b_data;
882                 el = &eb->h_list;
883         }
884
885         BUG_ON(el->l_tree_depth != 0);
886
887         retval = le16_to_cpu(el->l_count) - le16_to_cpu(el->l_next_free_rec);
888 bail:
889         brelse(eb_bh);
890
891         mlog_exit(retval);
892         return retval;
893 }
894
895 /* expects array to already be allocated
896  *
897  * sets h_signature, h_blkno, h_suballoc_bit, h_suballoc_slot, and
898  * l_count for you
899  */
900 static int ocfs2_create_new_meta_bhs(handle_t *handle,
901                                      struct ocfs2_extent_tree *et,
902                                      int wanted,
903                                      struct ocfs2_alloc_context *meta_ac,
904                                      struct buffer_head *bhs[])
905 {
906         int count, status, i;
907         u16 suballoc_bit_start;
908         u32 num_got;
909         u64 first_blkno;
910         struct ocfs2_super *osb =
911                 OCFS2_SB(ocfs2_metadata_cache_get_super(et->et_ci));
912         struct ocfs2_extent_block *eb;
913
914         mlog_entry_void();
915
916         count = 0;
917         while (count < wanted) {
918                 status = ocfs2_claim_metadata(osb,
919                                               handle,
920                                               meta_ac,
921                                               wanted - count,
922                                               &suballoc_bit_start,
923                                               &num_got,
924                                               &first_blkno);
925                 if (status < 0) {
926                         mlog_errno(status);
927                         goto bail;
928                 }
929
930                 for(i = count;  i < (num_got + count); i++) {
931                         bhs[i] = sb_getblk(osb->sb, first_blkno);
932                         if (bhs[i] == NULL) {
933                                 status = -EIO;
934                                 mlog_errno(status);
935                                 goto bail;
936                         }
937                         ocfs2_set_new_buffer_uptodate(et->et_ci, bhs[i]);
938
939                         status = ocfs2_journal_access_eb(handle, et->et_ci,
940                                                          bhs[i],
941                                                          OCFS2_JOURNAL_ACCESS_CREATE);
942                         if (status < 0) {
943                                 mlog_errno(status);
944                                 goto bail;
945                         }
946
947                         memset(bhs[i]->b_data, 0, osb->sb->s_blocksize);
948                         eb = (struct ocfs2_extent_block *) bhs[i]->b_data;
949                         /* Ok, setup the minimal stuff here. */
950                         strcpy(eb->h_signature, OCFS2_EXTENT_BLOCK_SIGNATURE);
951                         eb->h_blkno = cpu_to_le64(first_blkno);
952                         eb->h_fs_generation = cpu_to_le32(osb->fs_generation);
953                         eb->h_suballoc_slot = cpu_to_le16(osb->slot_num);
954                         eb->h_suballoc_bit = cpu_to_le16(suballoc_bit_start);
955                         eb->h_list.l_count =
956                                 cpu_to_le16(ocfs2_extent_recs_per_eb(osb->sb));
957
958                         suballoc_bit_start++;
959                         first_blkno++;
960
961                         /* We'll also be dirtied by the caller, so
962                          * this isn't absolutely necessary. */
963                         status = ocfs2_journal_dirty(handle, bhs[i]);
964                         if (status < 0) {
965                                 mlog_errno(status);
966                                 goto bail;
967                         }
968                 }
969
970                 count += num_got;
971         }
972
973         status = 0;
974 bail:
975         if (status < 0) {
976                 for(i = 0; i < wanted; i++) {
977                         brelse(bhs[i]);
978                         bhs[i] = NULL;
979                 }
980         }
981         mlog_exit(status);
982         return status;
983 }
984
985 /*
986  * Helper function for ocfs2_add_branch() and ocfs2_shift_tree_depth().
987  *
988  * Returns the sum of the rightmost extent rec logical offset and
989  * cluster count.
990  *
991  * ocfs2_add_branch() uses this to determine what logical cluster
992  * value should be populated into the leftmost new branch records.
993  *
994  * ocfs2_shift_tree_depth() uses this to determine the # clusters
995  * value for the new topmost tree record.
996  */
997 static inline u32 ocfs2_sum_rightmost_rec(struct ocfs2_extent_list  *el)
998 {
999         int i;
1000
1001         i = le16_to_cpu(el->l_next_free_rec) - 1;
1002
1003         return le32_to_cpu(el->l_recs[i].e_cpos) +
1004                 ocfs2_rec_clusters(el, &el->l_recs[i]);
1005 }
1006
1007 /*
1008  * Change range of the branches in the right most path according to the leaf
1009  * extent block's rightmost record.
1010  */
1011 static int ocfs2_adjust_rightmost_branch(handle_t *handle,
1012                                          struct ocfs2_extent_tree *et)
1013 {
1014         int status;
1015         struct ocfs2_path *path = NULL;
1016         struct ocfs2_extent_list *el;
1017         struct ocfs2_extent_rec *rec;
1018
1019         path = ocfs2_new_path_from_et(et);
1020         if (!path) {
1021                 status = -ENOMEM;
1022                 return status;
1023         }
1024
1025         status = ocfs2_find_path(et->et_ci, path, UINT_MAX);
1026         if (status < 0) {
1027                 mlog_errno(status);
1028                 goto out;
1029         }
1030
1031         status = ocfs2_extend_trans(handle, path_num_items(path) +
1032                                     handle->h_buffer_credits);
1033         if (status < 0) {
1034                 mlog_errno(status);
1035                 goto out;
1036         }
1037
1038         status = ocfs2_journal_access_path(et->et_ci, handle, path);
1039         if (status < 0) {
1040                 mlog_errno(status);
1041                 goto out;
1042         }
1043
1044         el = path_leaf_el(path);
1045         rec = &el->l_recs[le32_to_cpu(el->l_next_free_rec) - 1];
1046
1047         ocfs2_adjust_rightmost_records(handle, et, path, rec);
1048
1049 out:
1050         ocfs2_free_path(path);
1051         return status;
1052 }
1053
1054 /*
1055  * Add an entire tree branch to our inode. eb_bh is the extent block
1056  * to start at, if we don't want to start the branch at the root
1057  * structure.
1058  *
1059  * last_eb_bh is required as we have to update it's next_leaf pointer
1060  * for the new last extent block.
1061  *
1062  * the new branch will be 'empty' in the sense that every block will
1063  * contain a single record with cluster count == 0.
1064  */
1065 static int ocfs2_add_branch(handle_t *handle,
1066                             struct ocfs2_extent_tree *et,
1067                             struct buffer_head *eb_bh,
1068                             struct buffer_head **last_eb_bh,
1069                             struct ocfs2_alloc_context *meta_ac)
1070 {
1071         int status, new_blocks, i;
1072         u64 next_blkno, new_last_eb_blk;
1073         struct buffer_head *bh;
1074         struct buffer_head **new_eb_bhs = NULL;
1075         struct ocfs2_extent_block *eb;
1076         struct ocfs2_extent_list  *eb_el;
1077         struct ocfs2_extent_list  *el;
1078         u32 new_cpos, root_end;
1079
1080         mlog_entry_void();
1081
1082         BUG_ON(!last_eb_bh || !*last_eb_bh);
1083
1084         if (eb_bh) {
1085                 eb = (struct ocfs2_extent_block *) eb_bh->b_data;
1086                 el = &eb->h_list;
1087         } else
1088                 el = et->et_root_el;
1089
1090         /* we never add a branch to a leaf. */
1091         BUG_ON(!el->l_tree_depth);
1092
1093         new_blocks = le16_to_cpu(el->l_tree_depth);
1094
1095         eb = (struct ocfs2_extent_block *)(*last_eb_bh)->b_data;
1096         new_cpos = ocfs2_sum_rightmost_rec(&eb->h_list);
1097         root_end = ocfs2_sum_rightmost_rec(et->et_root_el);
1098
1099         /*
1100          * If there is a gap before the root end and the real end
1101          * of the righmost leaf block, we need to remove the gap
1102          * between new_cpos and root_end first so that the tree
1103          * is consistent after we add a new branch(it will start
1104          * from new_cpos).
1105          */
1106         if (root_end > new_cpos) {
1107                 mlog(0, "adjust the cluster end from %u to %u\n",
1108                      root_end, new_cpos);
1109                 status = ocfs2_adjust_rightmost_branch(handle, et);
1110                 if (status) {
1111                         mlog_errno(status);
1112                         goto bail;
1113                 }
1114         }
1115
1116         /* allocate the number of new eb blocks we need */
1117         new_eb_bhs = kcalloc(new_blocks, sizeof(struct buffer_head *),
1118                              GFP_KERNEL);
1119         if (!new_eb_bhs) {
1120                 status = -ENOMEM;
1121                 mlog_errno(status);
1122                 goto bail;
1123         }
1124
1125         status = ocfs2_create_new_meta_bhs(handle, et, new_blocks,
1126                                            meta_ac, new_eb_bhs);
1127         if (status < 0) {
1128                 mlog_errno(status);
1129                 goto bail;
1130         }
1131
1132         /* Note: new_eb_bhs[new_blocks - 1] is the guy which will be
1133          * linked with the rest of the tree.
1134          * conversly, new_eb_bhs[0] is the new bottommost leaf.
1135          *
1136          * when we leave the loop, new_last_eb_blk will point to the
1137          * newest leaf, and next_blkno will point to the topmost extent
1138          * block. */
1139         next_blkno = new_last_eb_blk = 0;
1140         for(i = 0; i < new_blocks; i++) {
1141                 bh = new_eb_bhs[i];
1142                 eb = (struct ocfs2_extent_block *) bh->b_data;
1143                 /* ocfs2_create_new_meta_bhs() should create it right! */
1144                 BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb));
1145                 eb_el = &eb->h_list;
1146
1147                 status = ocfs2_journal_access_eb(handle, et->et_ci, bh,
1148                                                  OCFS2_JOURNAL_ACCESS_CREATE);
1149                 if (status < 0) {
1150                         mlog_errno(status);
1151                         goto bail;
1152                 }
1153
1154                 eb->h_next_leaf_blk = 0;
1155                 eb_el->l_tree_depth = cpu_to_le16(i);
1156                 eb_el->l_next_free_rec = cpu_to_le16(1);
1157                 /*
1158                  * This actually counts as an empty extent as
1159                  * c_clusters == 0
1160                  */
1161                 eb_el->l_recs[0].e_cpos = cpu_to_le32(new_cpos);
1162                 eb_el->l_recs[0].e_blkno = cpu_to_le64(next_blkno);
1163                 /*
1164                  * eb_el isn't always an interior node, but even leaf
1165                  * nodes want a zero'd flags and reserved field so
1166                  * this gets the whole 32 bits regardless of use.
1167                  */
1168                 eb_el->l_recs[0].e_int_clusters = cpu_to_le32(0);
1169                 if (!eb_el->l_tree_depth)
1170                         new_last_eb_blk = le64_to_cpu(eb->h_blkno);
1171
1172                 status = ocfs2_journal_dirty(handle, bh);
1173                 if (status < 0) {
1174                         mlog_errno(status);
1175                         goto bail;
1176                 }
1177
1178                 next_blkno = le64_to_cpu(eb->h_blkno);
1179         }
1180
1181         /* This is a bit hairy. We want to update up to three blocks
1182          * here without leaving any of them in an inconsistent state
1183          * in case of error. We don't have to worry about
1184          * journal_dirty erroring as it won't unless we've aborted the
1185          * handle (in which case we would never be here) so reserving
1186          * the write with journal_access is all we need to do. */
1187         status = ocfs2_journal_access_eb(handle, et->et_ci, *last_eb_bh,
1188                                          OCFS2_JOURNAL_ACCESS_WRITE);
1189         if (status < 0) {
1190                 mlog_errno(status);
1191                 goto bail;
1192         }
1193         status = ocfs2_et_root_journal_access(handle, et,
1194                                               OCFS2_JOURNAL_ACCESS_WRITE);
1195         if (status < 0) {
1196                 mlog_errno(status);
1197                 goto bail;
1198         }
1199         if (eb_bh) {
1200                 status = ocfs2_journal_access_eb(handle, et->et_ci, eb_bh,
1201                                                  OCFS2_JOURNAL_ACCESS_WRITE);
1202                 if (status < 0) {
1203                         mlog_errno(status);
1204                         goto bail;
1205                 }
1206         }
1207
1208         /* Link the new branch into the rest of the tree (el will
1209          * either be on the root_bh, or the extent block passed in. */
1210         i = le16_to_cpu(el->l_next_free_rec);
1211         el->l_recs[i].e_blkno = cpu_to_le64(next_blkno);
1212         el->l_recs[i].e_cpos = cpu_to_le32(new_cpos);
1213         el->l_recs[i].e_int_clusters = 0;
1214         le16_add_cpu(&el->l_next_free_rec, 1);
1215
1216         /* fe needs a new last extent block pointer, as does the
1217          * next_leaf on the previously last-extent-block. */
1218         ocfs2_et_set_last_eb_blk(et, new_last_eb_blk);
1219
1220         eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
1221         eb->h_next_leaf_blk = cpu_to_le64(new_last_eb_blk);
1222
1223         status = ocfs2_journal_dirty(handle, *last_eb_bh);
1224         if (status < 0)
1225                 mlog_errno(status);
1226         status = ocfs2_journal_dirty(handle, et->et_root_bh);
1227         if (status < 0)
1228                 mlog_errno(status);
1229         if (eb_bh) {
1230                 status = ocfs2_journal_dirty(handle, eb_bh);
1231                 if (status < 0)
1232                         mlog_errno(status);
1233         }
1234
1235         /*
1236          * Some callers want to track the rightmost leaf so pass it
1237          * back here.
1238          */
1239         brelse(*last_eb_bh);
1240         get_bh(new_eb_bhs[0]);
1241         *last_eb_bh = new_eb_bhs[0];
1242
1243         status = 0;
1244 bail:
1245         if (new_eb_bhs) {
1246                 for (i = 0; i < new_blocks; i++)
1247                         brelse(new_eb_bhs[i]);
1248                 kfree(new_eb_bhs);
1249         }
1250
1251         mlog_exit(status);
1252         return status;
1253 }
1254
1255 /*
1256  * adds another level to the allocation tree.
1257  * returns back the new extent block so you can add a branch to it
1258  * after this call.
1259  */
1260 static int ocfs2_shift_tree_depth(handle_t *handle,
1261                                   struct ocfs2_extent_tree *et,
1262                                   struct ocfs2_alloc_context *meta_ac,
1263                                   struct buffer_head **ret_new_eb_bh)
1264 {
1265         int status, i;
1266         u32 new_clusters;
1267         struct buffer_head *new_eb_bh = NULL;
1268         struct ocfs2_extent_block *eb;
1269         struct ocfs2_extent_list  *root_el;
1270         struct ocfs2_extent_list  *eb_el;
1271
1272         mlog_entry_void();
1273
1274         status = ocfs2_create_new_meta_bhs(handle, et, 1, meta_ac,
1275                                            &new_eb_bh);
1276         if (status < 0) {
1277                 mlog_errno(status);
1278                 goto bail;
1279         }
1280
1281         eb = (struct ocfs2_extent_block *) new_eb_bh->b_data;
1282         /* ocfs2_create_new_meta_bhs() should create it right! */
1283         BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb));
1284
1285         eb_el = &eb->h_list;
1286         root_el = et->et_root_el;
1287
1288         status = ocfs2_journal_access_eb(handle, et->et_ci, new_eb_bh,
1289                                          OCFS2_JOURNAL_ACCESS_CREATE);
1290         if (status < 0) {
1291                 mlog_errno(status);
1292                 goto bail;
1293         }
1294
1295         /* copy the root extent list data into the new extent block */
1296         eb_el->l_tree_depth = root_el->l_tree_depth;
1297         eb_el->l_next_free_rec = root_el->l_next_free_rec;
1298         for (i = 0; i < le16_to_cpu(root_el->l_next_free_rec); i++)
1299                 eb_el->l_recs[i] = root_el->l_recs[i];
1300
1301         status = ocfs2_journal_dirty(handle, new_eb_bh);
1302         if (status < 0) {
1303                 mlog_errno(status);
1304                 goto bail;
1305         }
1306
1307         status = ocfs2_et_root_journal_access(handle, et,
1308                                               OCFS2_JOURNAL_ACCESS_WRITE);
1309         if (status < 0) {
1310                 mlog_errno(status);
1311                 goto bail;
1312         }
1313
1314         new_clusters = ocfs2_sum_rightmost_rec(eb_el);
1315
1316         /* update root_bh now */
1317         le16_add_cpu(&root_el->l_tree_depth, 1);
1318         root_el->l_recs[0].e_cpos = 0;
1319         root_el->l_recs[0].e_blkno = eb->h_blkno;
1320         root_el->l_recs[0].e_int_clusters = cpu_to_le32(new_clusters);
1321         for (i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++)
1322                 memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
1323         root_el->l_next_free_rec = cpu_to_le16(1);
1324
1325         /* If this is our 1st tree depth shift, then last_eb_blk
1326          * becomes the allocated extent block */
1327         if (root_el->l_tree_depth == cpu_to_le16(1))
1328                 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
1329
1330         status = ocfs2_journal_dirty(handle, et->et_root_bh);
1331         if (status < 0) {
1332                 mlog_errno(status);
1333                 goto bail;
1334         }
1335
1336         *ret_new_eb_bh = new_eb_bh;
1337         new_eb_bh = NULL;
1338         status = 0;
1339 bail:
1340         brelse(new_eb_bh);
1341
1342         mlog_exit(status);
1343         return status;
1344 }
1345
1346 /*
1347  * Should only be called when there is no space left in any of the
1348  * leaf nodes. What we want to do is find the lowest tree depth
1349  * non-leaf extent block with room for new records. There are three
1350  * valid results of this search:
1351  *
1352  * 1) a lowest extent block is found, then we pass it back in
1353  *    *lowest_eb_bh and return '0'
1354  *
1355  * 2) the search fails to find anything, but the root_el has room. We
1356  *    pass NULL back in *lowest_eb_bh, but still return '0'
1357  *
1358  * 3) the search fails to find anything AND the root_el is full, in
1359  *    which case we return > 0
1360  *
1361  * return status < 0 indicates an error.
1362  */
1363 static int ocfs2_find_branch_target(struct ocfs2_extent_tree *et,
1364                                     struct buffer_head **target_bh)
1365 {
1366         int status = 0, i;
1367         u64 blkno;
1368         struct ocfs2_extent_block *eb;
1369         struct ocfs2_extent_list  *el;
1370         struct buffer_head *bh = NULL;
1371         struct buffer_head *lowest_bh = NULL;
1372
1373         mlog_entry_void();
1374
1375         *target_bh = NULL;
1376
1377         el = et->et_root_el;
1378
1379         while(le16_to_cpu(el->l_tree_depth) > 1) {
1380                 if (le16_to_cpu(el->l_next_free_rec) == 0) {
1381                         ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
1382                                     "Owner %llu has empty "
1383                                     "extent list (next_free_rec == 0)",
1384                                     (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci));
1385                         status = -EIO;
1386                         goto bail;
1387                 }
1388                 i = le16_to_cpu(el->l_next_free_rec) - 1;
1389                 blkno = le64_to_cpu(el->l_recs[i].e_blkno);
1390                 if (!blkno) {
1391                         ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
1392                                     "Owner %llu has extent "
1393                                     "list where extent # %d has no physical "
1394                                     "block start",
1395                                     (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), i);
1396                         status = -EIO;
1397                         goto bail;
1398                 }
1399
1400                 brelse(bh);
1401                 bh = NULL;
1402
1403                 status = ocfs2_read_extent_block(et->et_ci, blkno, &bh);
1404                 if (status < 0) {
1405                         mlog_errno(status);
1406                         goto bail;
1407                 }
1408
1409                 eb = (struct ocfs2_extent_block *) bh->b_data;
1410                 el = &eb->h_list;
1411
1412                 if (le16_to_cpu(el->l_next_free_rec) <
1413                     le16_to_cpu(el->l_count)) {
1414                         brelse(lowest_bh);
1415                         lowest_bh = bh;
1416                         get_bh(lowest_bh);
1417                 }
1418         }
1419
1420         /* If we didn't find one and the fe doesn't have any room,
1421          * then return '1' */
1422         el = et->et_root_el;
1423         if (!lowest_bh && (el->l_next_free_rec == el->l_count))
1424                 status = 1;
1425
1426         *target_bh = lowest_bh;
1427 bail:
1428         brelse(bh);
1429
1430         mlog_exit(status);
1431         return status;
1432 }
1433
1434 /*
1435  * Grow a b-tree so that it has more records.
1436  *
1437  * We might shift the tree depth in which case existing paths should
1438  * be considered invalid.
1439  *
1440  * Tree depth after the grow is returned via *final_depth.
1441  *
1442  * *last_eb_bh will be updated by ocfs2_add_branch().
1443  */
1444 static int ocfs2_grow_tree(handle_t *handle, struct ocfs2_extent_tree *et,
1445                            int *final_depth, struct buffer_head **last_eb_bh,
1446                            struct ocfs2_alloc_context *meta_ac)
1447 {
1448         int ret, shift;
1449         struct ocfs2_extent_list *el = et->et_root_el;
1450         int depth = le16_to_cpu(el->l_tree_depth);
1451         struct buffer_head *bh = NULL;
1452
1453         BUG_ON(meta_ac == NULL);
1454
1455         shift = ocfs2_find_branch_target(et, &bh);
1456         if (shift < 0) {
1457                 ret = shift;
1458                 mlog_errno(ret);
1459                 goto out;
1460         }
1461
1462         /* We traveled all the way to the bottom of the allocation tree
1463          * and didn't find room for any more extents - we need to add
1464          * another tree level */
1465         if (shift) {
1466                 BUG_ON(bh);
1467                 mlog(0, "need to shift tree depth (current = %d)\n", depth);
1468
1469                 /* ocfs2_shift_tree_depth will return us a buffer with
1470                  * the new extent block (so we can pass that to
1471                  * ocfs2_add_branch). */
1472                 ret = ocfs2_shift_tree_depth(handle, et, meta_ac, &bh);
1473                 if (ret < 0) {
1474                         mlog_errno(ret);
1475                         goto out;
1476                 }
1477                 depth++;
1478                 if (depth == 1) {
1479                         /*
1480                          * Special case: we have room now if we shifted from
1481                          * tree_depth 0, so no more work needs to be done.
1482                          *
1483                          * We won't be calling add_branch, so pass
1484                          * back *last_eb_bh as the new leaf. At depth
1485                          * zero, it should always be null so there's
1486                          * no reason to brelse.
1487                          */
1488                         BUG_ON(*last_eb_bh);
1489                         get_bh(bh);
1490                         *last_eb_bh = bh;
1491                         goto out;
1492                 }
1493         }
1494
1495         /* call ocfs2_add_branch to add the final part of the tree with
1496          * the new data. */
1497         mlog(0, "add branch. bh = %p\n", bh);
1498         ret = ocfs2_add_branch(handle, et, bh, last_eb_bh,
1499                                meta_ac);
1500         if (ret < 0) {
1501                 mlog_errno(ret);
1502                 goto out;
1503         }
1504
1505 out:
1506         if (final_depth)
1507                 *final_depth = depth;
1508         brelse(bh);
1509         return ret;
1510 }
1511
1512 /*
1513  * This function will discard the rightmost extent record.
1514  */
1515 static void ocfs2_shift_records_right(struct ocfs2_extent_list *el)
1516 {
1517         int next_free = le16_to_cpu(el->l_next_free_rec);
1518         int count = le16_to_cpu(el->l_count);
1519         unsigned int num_bytes;
1520
1521         BUG_ON(!next_free);
1522         /* This will cause us to go off the end of our extent list. */
1523         BUG_ON(next_free >= count);
1524
1525         num_bytes = sizeof(struct ocfs2_extent_rec) * next_free;
1526
1527         memmove(&el->l_recs[1], &el->l_recs[0], num_bytes);
1528 }
1529
1530 static void ocfs2_rotate_leaf(struct ocfs2_extent_list *el,
1531                               struct ocfs2_extent_rec *insert_rec)
1532 {
1533         int i, insert_index, next_free, has_empty, num_bytes;
1534         u32 insert_cpos = le32_to_cpu(insert_rec->e_cpos);
1535         struct ocfs2_extent_rec *rec;
1536
1537         next_free = le16_to_cpu(el->l_next_free_rec);
1538         has_empty = ocfs2_is_empty_extent(&el->l_recs[0]);
1539
1540         BUG_ON(!next_free);
1541
1542         /* The tree code before us didn't allow enough room in the leaf. */
1543         BUG_ON(el->l_next_free_rec == el->l_count && !has_empty);
1544
1545         /*
1546          * The easiest way to approach this is to just remove the
1547          * empty extent and temporarily decrement next_free.
1548          */
1549         if (has_empty) {
1550                 /*
1551                  * If next_free was 1 (only an empty extent), this
1552                  * loop won't execute, which is fine. We still want
1553                  * the decrement above to happen.
1554                  */
1555                 for(i = 0; i < (next_free - 1); i++)
1556                         el->l_recs[i] = el->l_recs[i+1];
1557
1558                 next_free--;
1559         }
1560
1561         /*
1562          * Figure out what the new record index should be.
1563          */
1564         for(i = 0; i < next_free; i++) {
1565                 rec = &el->l_recs[i];
1566
1567                 if (insert_cpos < le32_to_cpu(rec->e_cpos))
1568                         break;
1569         }
1570         insert_index = i;
1571
1572         mlog(0, "ins %u: index %d, has_empty %d, next_free %d, count %d\n",
1573              insert_cpos, insert_index, has_empty, next_free, le16_to_cpu(el->l_count));
1574
1575         BUG_ON(insert_index < 0);
1576         BUG_ON(insert_index >= le16_to_cpu(el->l_count));
1577         BUG_ON(insert_index > next_free);
1578
1579         /*
1580          * No need to memmove if we're just adding to the tail.
1581          */
1582         if (insert_index != next_free) {
1583                 BUG_ON(next_free >= le16_to_cpu(el->l_count));
1584
1585                 num_bytes = next_free - insert_index;
1586                 num_bytes *= sizeof(struct ocfs2_extent_rec);
1587                 memmove(&el->l_recs[insert_index + 1],
1588                         &el->l_recs[insert_index],
1589                         num_bytes);
1590         }
1591
1592         /*
1593          * Either we had an empty extent, and need to re-increment or
1594          * there was no empty extent on a non full rightmost leaf node,
1595          * in which case we still need to increment.
1596          */
1597         next_free++;
1598         el->l_next_free_rec = cpu_to_le16(next_free);
1599         /*
1600          * Make sure none of the math above just messed up our tree.
1601          */
1602         BUG_ON(le16_to_cpu(el->l_next_free_rec) > le16_to_cpu(el->l_count));
1603
1604         el->l_recs[insert_index] = *insert_rec;
1605
1606 }
1607
1608 static void ocfs2_remove_empty_extent(struct ocfs2_extent_list *el)
1609 {
1610         int size, num_recs = le16_to_cpu(el->l_next_free_rec);
1611
1612         BUG_ON(num_recs == 0);
1613
1614         if (ocfs2_is_empty_extent(&el->l_recs[0])) {
1615                 num_recs--;
1616                 size = num_recs * sizeof(struct ocfs2_extent_rec);
1617                 memmove(&el->l_recs[0], &el->l_recs[1], size);
1618                 memset(&el->l_recs[num_recs], 0,
1619                        sizeof(struct ocfs2_extent_rec));
1620                 el->l_next_free_rec = cpu_to_le16(num_recs);
1621         }
1622 }
1623
1624 /*
1625  * Create an empty extent record .
1626  *
1627  * l_next_free_rec may be updated.
1628  *
1629  * If an empty extent already exists do nothing.
1630  */
1631 static void ocfs2_create_empty_extent(struct ocfs2_extent_list *el)
1632 {
1633         int next_free = le16_to_cpu(el->l_next_free_rec);
1634
1635         BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
1636
1637         if (next_free == 0)
1638                 goto set_and_inc;
1639
1640         if (ocfs2_is_empty_extent(&el->l_recs[0]))
1641                 return;
1642
1643         mlog_bug_on_msg(el->l_count == el->l_next_free_rec,
1644                         "Asked to create an empty extent in a full list:\n"
1645                         "count = %u, tree depth = %u",
1646                         le16_to_cpu(el->l_count),
1647                         le16_to_cpu(el->l_tree_depth));
1648
1649         ocfs2_shift_records_right(el);
1650
1651 set_and_inc:
1652         le16_add_cpu(&el->l_next_free_rec, 1);
1653         memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
1654 }
1655
1656 /*
1657  * For a rotation which involves two leaf nodes, the "root node" is
1658  * the lowest level tree node which contains a path to both leafs. This
1659  * resulting set of information can be used to form a complete "subtree"
1660  *
1661  * This function is passed two full paths from the dinode down to a
1662  * pair of adjacent leaves. It's task is to figure out which path
1663  * index contains the subtree root - this can be the root index itself
1664  * in a worst-case rotation.
1665  *
1666  * The array index of the subtree root is passed back.
1667  */
1668 static int ocfs2_find_subtree_root(struct ocfs2_extent_tree *et,
1669                                    struct ocfs2_path *left,
1670                                    struct ocfs2_path *right)
1671 {
1672         int i = 0;
1673
1674         /*
1675          * Check that the caller passed in two paths from the same tree.
1676          */
1677         BUG_ON(path_root_bh(left) != path_root_bh(right));
1678
1679         do {
1680                 i++;
1681
1682                 /*
1683                  * The caller didn't pass two adjacent paths.
1684                  */
1685                 mlog_bug_on_msg(i > left->p_tree_depth,
1686                                 "Owner %llu, left depth %u, right depth %u\n"
1687                                 "left leaf blk %llu, right leaf blk %llu\n",
1688                                 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
1689                                 left->p_tree_depth, right->p_tree_depth,
1690                                 (unsigned long long)path_leaf_bh(left)->b_blocknr,
1691                                 (unsigned long long)path_leaf_bh(right)->b_blocknr);
1692         } while (left->p_node[i].bh->b_blocknr ==
1693                  right->p_node[i].bh->b_blocknr);
1694
1695         return i - 1;
1696 }
1697
1698 typedef void (path_insert_t)(void *, struct buffer_head *);
1699
1700 /*
1701  * Traverse a btree path in search of cpos, starting at root_el.
1702  *
1703  * This code can be called with a cpos larger than the tree, in which
1704  * case it will return the rightmost path.
1705  */
1706 static int __ocfs2_find_path(struct ocfs2_caching_info *ci,
1707                              struct ocfs2_extent_list *root_el, u32 cpos,
1708                              path_insert_t *func, void *data)
1709 {
1710         int i, ret = 0;
1711         u32 range;
1712         u64 blkno;
1713         struct buffer_head *bh = NULL;
1714         struct ocfs2_extent_block *eb;
1715         struct ocfs2_extent_list *el;
1716         struct ocfs2_extent_rec *rec;
1717
1718         el = root_el;
1719         while (el->l_tree_depth) {
1720                 if (le16_to_cpu(el->l_next_free_rec) == 0) {
1721                         ocfs2_error(ocfs2_metadata_cache_get_super(ci),
1722                                     "Owner %llu has empty extent list at "
1723                                     "depth %u\n",
1724                                     (unsigned long long)ocfs2_metadata_cache_owner(ci),
1725                                     le16_to_cpu(el->l_tree_depth));
1726                         ret = -EROFS;
1727                         goto out;
1728
1729                 }
1730
1731                 for(i = 0; i < le16_to_cpu(el->l_next_free_rec) - 1; i++) {
1732                         rec = &el->l_recs[i];
1733
1734                         /*
1735                          * In the case that cpos is off the allocation
1736                          * tree, this should just wind up returning the
1737                          * rightmost record.
1738                          */
1739                         range = le32_to_cpu(rec->e_cpos) +
1740                                 ocfs2_rec_clusters(el, rec);
1741                         if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
1742                             break;
1743                 }
1744
1745                 blkno = le64_to_cpu(el->l_recs[i].e_blkno);
1746                 if (blkno == 0) {
1747                         ocfs2_error(ocfs2_metadata_cache_get_super(ci),
1748                                     "Owner %llu has bad blkno in extent list "
1749                                     "at depth %u (index %d)\n",
1750                                     (unsigned long long)ocfs2_metadata_cache_owner(ci),
1751                                     le16_to_cpu(el->l_tree_depth), i);
1752                         ret = -EROFS;
1753                         goto out;
1754                 }
1755
1756                 brelse(bh);
1757                 bh = NULL;
1758                 ret = ocfs2_read_extent_block(ci, blkno, &bh);
1759                 if (ret) {
1760                         mlog_errno(ret);
1761                         goto out;
1762                 }
1763
1764                 eb = (struct ocfs2_extent_block *) bh->b_data;
1765                 el = &eb->h_list;
1766
1767                 if (le16_to_cpu(el->l_next_free_rec) >
1768                     le16_to_cpu(el->l_count)) {
1769                         ocfs2_error(ocfs2_metadata_cache_get_super(ci),
1770                                     "Owner %llu has bad count in extent list "
1771                                     "at block %llu (next free=%u, count=%u)\n",
1772                                     (unsigned long long)ocfs2_metadata_cache_owner(ci),
1773                                     (unsigned long long)bh->b_blocknr,
1774                                     le16_to_cpu(el->l_next_free_rec),
1775                                     le16_to_cpu(el->l_count));
1776                         ret = -EROFS;
1777                         goto out;
1778                 }
1779
1780                 if (func)
1781                         func(data, bh);
1782         }
1783
1784 out:
1785         /*
1786          * Catch any trailing bh that the loop didn't handle.
1787          */
1788         brelse(bh);
1789
1790         return ret;
1791 }
1792
1793 /*
1794  * Given an initialized path (that is, it has a valid root extent
1795  * list), this function will traverse the btree in search of the path
1796  * which would contain cpos.
1797  *
1798  * The path traveled is recorded in the path structure.
1799  *
1800  * Note that this will not do any comparisons on leaf node extent
1801  * records, so it will work fine in the case that we just added a tree
1802  * branch.
1803  */
1804 struct find_path_data {
1805         int index;
1806         struct ocfs2_path *path;
1807 };
1808 static void find_path_ins(void *data, struct buffer_head *bh)
1809 {
1810         struct find_path_data *fp = data;
1811
1812         get_bh(bh);
1813         ocfs2_path_insert_eb(fp->path, fp->index, bh);
1814         fp->index++;
1815 }
1816 static int ocfs2_find_path(struct ocfs2_caching_info *ci,
1817                            struct ocfs2_path *path, u32 cpos)
1818 {
1819         struct find_path_data data;
1820
1821         data.index = 1;
1822         data.path = path;
1823         return __ocfs2_find_path(ci, path_root_el(path), cpos,
1824                                  find_path_ins, &data);
1825 }
1826
1827 static void find_leaf_ins(void *data, struct buffer_head *bh)
1828 {
1829         struct ocfs2_extent_block *eb =(struct ocfs2_extent_block *)bh->b_data;
1830         struct ocfs2_extent_list *el = &eb->h_list;
1831         struct buffer_head **ret = data;
1832
1833         /* We want to retain only the leaf block. */
1834         if (le16_to_cpu(el->l_tree_depth) == 0) {
1835                 get_bh(bh);
1836                 *ret = bh;
1837         }
1838 }
1839 /*
1840  * Find the leaf block in the tree which would contain cpos. No
1841  * checking of the actual leaf is done.
1842  *
1843  * Some paths want to call this instead of allocating a path structure
1844  * and calling ocfs2_find_path().
1845  *
1846  * This function doesn't handle non btree extent lists.
1847  */
1848 int ocfs2_find_leaf(struct ocfs2_caching_info *ci,
1849                     struct ocfs2_extent_list *root_el, u32 cpos,
1850                     struct buffer_head **leaf_bh)
1851 {
1852         int ret;
1853         struct buffer_head *bh = NULL;
1854
1855         ret = __ocfs2_find_path(ci, root_el, cpos, find_leaf_ins, &bh);
1856         if (ret) {
1857                 mlog_errno(ret);
1858                 goto out;
1859         }
1860
1861         *leaf_bh = bh;
1862 out:
1863         return ret;
1864 }
1865
1866 /*
1867  * Adjust the adjacent records (left_rec, right_rec) involved in a rotation.
1868  *
1869  * Basically, we've moved stuff around at the bottom of the tree and
1870  * we need to fix up the extent records above the changes to reflect
1871  * the new changes.
1872  *
1873  * left_rec: the record on the left.
1874  * left_child_el: is the child list pointed to by left_rec
1875  * right_rec: the record to the right of left_rec
1876  * right_child_el: is the child list pointed to by right_rec
1877  *
1878  * By definition, this only works on interior nodes.
1879  */
1880 static void ocfs2_adjust_adjacent_records(struct ocfs2_extent_rec *left_rec,
1881                                   struct ocfs2_extent_list *left_child_el,
1882                                   struct ocfs2_extent_rec *right_rec,
1883                                   struct ocfs2_extent_list *right_child_el)
1884 {
1885         u32 left_clusters, right_end;
1886
1887         /*
1888          * Interior nodes never have holes. Their cpos is the cpos of
1889          * the leftmost record in their child list. Their cluster
1890          * count covers the full theoretical range of their child list
1891          * - the range between their cpos and the cpos of the record
1892          * immediately to their right.
1893          */
1894         left_clusters = le32_to_cpu(right_child_el->l_recs[0].e_cpos);
1895         if (!ocfs2_rec_clusters(right_child_el, &right_child_el->l_recs[0])) {
1896                 BUG_ON(right_child_el->l_tree_depth);
1897                 BUG_ON(le16_to_cpu(right_child_el->l_next_free_rec) <= 1);
1898                 left_clusters = le32_to_cpu(right_child_el->l_recs[1].e_cpos);
1899         }
1900         left_clusters -= le32_to_cpu(left_rec->e_cpos);
1901         left_rec->e_int_clusters = cpu_to_le32(left_clusters);
1902
1903         /*
1904          * Calculate the rightmost cluster count boundary before
1905          * moving cpos - we will need to adjust clusters after
1906          * updating e_cpos to keep the same highest cluster count.
1907          */
1908         right_end = le32_to_cpu(right_rec->e_cpos);
1909         right_end += le32_to_cpu(right_rec->e_int_clusters);
1910
1911         right_rec->e_cpos = left_rec->e_cpos;
1912         le32_add_cpu(&right_rec->e_cpos, left_clusters);
1913
1914         right_end -= le32_to_cpu(right_rec->e_cpos);
1915         right_rec->e_int_clusters = cpu_to_le32(right_end);
1916 }
1917
1918 /*
1919  * Adjust the adjacent root node records involved in a
1920  * rotation. left_el_blkno is passed in as a key so that we can easily
1921  * find it's index in the root list.
1922  */
1923 static void ocfs2_adjust_root_records(struct ocfs2_extent_list *root_el,
1924                                       struct ocfs2_extent_list *left_el,
1925                                       struct ocfs2_extent_list *right_el,
1926                                       u64 left_el_blkno)
1927 {
1928         int i;
1929
1930         BUG_ON(le16_to_cpu(root_el->l_tree_depth) <=
1931                le16_to_cpu(left_el->l_tree_depth));
1932
1933         for(i = 0; i < le16_to_cpu(root_el->l_next_free_rec) - 1; i++) {
1934                 if (le64_to_cpu(root_el->l_recs[i].e_blkno) == left_el_blkno)
1935                         break;
1936         }
1937
1938         /*
1939          * The path walking code should have never returned a root and
1940          * two paths which are not adjacent.
1941          */
1942         BUG_ON(i >= (le16_to_cpu(root_el->l_next_free_rec) - 1));
1943
1944         ocfs2_adjust_adjacent_records(&root_el->l_recs[i], left_el,
1945                                       &root_el->l_recs[i + 1], right_el);
1946 }
1947
1948 /*
1949  * We've changed a leaf block (in right_path) and need to reflect that
1950  * change back up the subtree.
1951  *
1952  * This happens in multiple places:
1953  *   - When we've moved an extent record from the left path leaf to the right
1954  *     path leaf to make room for an empty extent in the left path leaf.
1955  *   - When our insert into the right path leaf is at the leftmost edge
1956  *     and requires an update of the path immediately to it's left. This
1957  *     can occur at the end of some types of rotation and appending inserts.
1958  *   - When we've adjusted the last extent record in the left path leaf and the
1959  *     1st extent record in the right path leaf during cross extent block merge.
1960  */
1961 static void ocfs2_complete_edge_insert(handle_t *handle,
1962                                        struct ocfs2_path *left_path,
1963                                        struct ocfs2_path *right_path,
1964                                        int subtree_index)
1965 {
1966         int ret, i, idx;
1967         struct ocfs2_extent_list *el, *left_el, *right_el;
1968         struct ocfs2_extent_rec *left_rec, *right_rec;
1969         struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
1970
1971         /*
1972          * Update the counts and position values within all the
1973          * interior nodes to reflect the leaf rotation we just did.
1974          *
1975          * The root node is handled below the loop.
1976          *
1977          * We begin the loop with right_el and left_el pointing to the
1978          * leaf lists and work our way up.
1979          *
1980          * NOTE: within this loop, left_el and right_el always refer
1981          * to the *child* lists.
1982          */
1983         left_el = path_leaf_el(left_path);
1984         right_el = path_leaf_el(right_path);
1985         for(i = left_path->p_tree_depth - 1; i > subtree_index; i--) {
1986                 mlog(0, "Adjust records at index %u\n", i);
1987
1988                 /*
1989                  * One nice property of knowing that all of these
1990                  * nodes are below the root is that we only deal with
1991                  * the leftmost right node record and the rightmost
1992                  * left node record.
1993                  */
1994                 el = left_path->p_node[i].el;
1995                 idx = le16_to_cpu(left_el->l_next_free_rec) - 1;
1996                 left_rec = &el->l_recs[idx];
1997
1998                 el = right_path->p_node[i].el;
1999                 right_rec = &el->l_recs[0];
2000
2001                 ocfs2_adjust_adjacent_records(left_rec, left_el, right_rec,
2002                                               right_el);
2003
2004                 ret = ocfs2_journal_dirty(handle, left_path->p_node[i].bh);
2005                 if (ret)
2006                         mlog_errno(ret);
2007
2008                 ret = ocfs2_journal_dirty(handle, right_path->p_node[i].bh);
2009                 if (ret)
2010                         mlog_errno(ret);
2011
2012                 /*
2013                  * Setup our list pointers now so that the current
2014                  * parents become children in the next iteration.
2015                  */
2016                 left_el = left_path->p_node[i].el;
2017                 right_el = right_path->p_node[i].el;
2018         }
2019
2020         /*
2021          * At the root node, adjust the two adjacent records which
2022          * begin our path to the leaves.
2023          */
2024
2025         el = left_path->p_node[subtree_index].el;
2026         left_el = left_path->p_node[subtree_index + 1].el;
2027         right_el = right_path->p_node[subtree_index + 1].el;
2028
2029         ocfs2_adjust_root_records(el, left_el, right_el,
2030                                   left_path->p_node[subtree_index + 1].bh->b_blocknr);
2031
2032         root_bh = left_path->p_node[subtree_index].bh;
2033
2034         ret = ocfs2_journal_dirty(handle, root_bh);
2035         if (ret)
2036                 mlog_errno(ret);
2037 }
2038
2039 static int ocfs2_rotate_subtree_right(handle_t *handle,
2040                                       struct ocfs2_extent_tree *et,
2041                                       struct ocfs2_path *left_path,
2042                                       struct ocfs2_path *right_path,
2043                                       int subtree_index)
2044 {
2045         int ret, i;
2046         struct buffer_head *right_leaf_bh;
2047         struct buffer_head *left_leaf_bh = NULL;
2048         struct buffer_head *root_bh;
2049         struct ocfs2_extent_list *right_el, *left_el;
2050         struct ocfs2_extent_rec move_rec;
2051
2052         left_leaf_bh = path_leaf_bh(left_path);
2053         left_el = path_leaf_el(left_path);
2054
2055         if (left_el->l_next_free_rec != left_el->l_count) {
2056                 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
2057                             "Inode %llu has non-full interior leaf node %llu"
2058                             "(next free = %u)",
2059                             (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2060                             (unsigned long long)left_leaf_bh->b_blocknr,
2061                             le16_to_cpu(left_el->l_next_free_rec));
2062                 return -EROFS;
2063         }
2064
2065         /*
2066          * This extent block may already have an empty record, so we
2067          * return early if so.
2068          */
2069         if (ocfs2_is_empty_extent(&left_el->l_recs[0]))
2070                 return 0;
2071
2072         root_bh = left_path->p_node[subtree_index].bh;
2073         BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
2074
2075         ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
2076                                            subtree_index);
2077         if (ret) {
2078                 mlog_errno(ret);
2079                 goto out;
2080         }
2081
2082         for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
2083                 ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2084                                                    right_path, i);
2085                 if (ret) {
2086                         mlog_errno(ret);
2087                         goto out;
2088                 }
2089
2090                 ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2091                                                    left_path, i);
2092                 if (ret) {
2093                         mlog_errno(ret);
2094                         goto out;
2095                 }
2096         }
2097
2098         right_leaf_bh = path_leaf_bh(right_path);
2099         right_el = path_leaf_el(right_path);
2100
2101         /* This is a code error, not a disk corruption. */
2102         mlog_bug_on_msg(!right_el->l_next_free_rec, "Inode %llu: Rotate fails "
2103                         "because rightmost leaf block %llu is empty\n",
2104                         (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2105                         (unsigned long long)right_leaf_bh->b_blocknr);
2106
2107         ocfs2_create_empty_extent(right_el);
2108
2109         ret = ocfs2_journal_dirty(handle, right_leaf_bh);
2110         if (ret) {
2111                 mlog_errno(ret);
2112                 goto out;
2113         }
2114
2115         /* Do the copy now. */
2116         i = le16_to_cpu(left_el->l_next_free_rec) - 1;
2117         move_rec = left_el->l_recs[i];
2118         right_el->l_recs[0] = move_rec;
2119
2120         /*
2121          * Clear out the record we just copied and shift everything
2122          * over, leaving an empty extent in the left leaf.
2123          *
2124          * We temporarily subtract from next_free_rec so that the
2125          * shift will lose the tail record (which is now defunct).
2126          */
2127         le16_add_cpu(&left_el->l_next_free_rec, -1);
2128         ocfs2_shift_records_right(left_el);
2129         memset(&left_el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2130         le16_add_cpu(&left_el->l_next_free_rec, 1);
2131
2132         ret = ocfs2_journal_dirty(handle, left_leaf_bh);
2133         if (ret) {
2134                 mlog_errno(ret);
2135                 goto out;
2136         }
2137
2138         ocfs2_complete_edge_insert(handle, left_path, right_path,
2139                                    subtree_index);
2140
2141 out:
2142         return ret;
2143 }
2144
2145 /*
2146  * Given a full path, determine what cpos value would return us a path
2147  * containing the leaf immediately to the left of the current one.
2148  *
2149  * Will return zero if the path passed in is already the leftmost path.
2150  */
2151 static int ocfs2_find_cpos_for_left_leaf(struct super_block *sb,
2152                                          struct ocfs2_path *path, u32 *cpos)
2153 {
2154         int i, j, ret = 0;
2155         u64 blkno;
2156         struct ocfs2_extent_list *el;
2157
2158         BUG_ON(path->p_tree_depth == 0);
2159
2160         *cpos = 0;
2161
2162         blkno = path_leaf_bh(path)->b_blocknr;
2163
2164         /* Start at the tree node just above the leaf and work our way up. */
2165         i = path->p_tree_depth - 1;
2166         while (i >= 0) {
2167                 el = path->p_node[i].el;
2168
2169                 /*
2170                  * Find the extent record just before the one in our
2171                  * path.
2172                  */
2173                 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
2174                         if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
2175                                 if (j == 0) {
2176                                         if (i == 0) {
2177                                                 /*
2178                                                  * We've determined that the
2179                                                  * path specified is already
2180                                                  * the leftmost one - return a
2181                                                  * cpos of zero.
2182                                                  */
2183                                                 goto out;
2184                                         }
2185                                         /*
2186                                          * The leftmost record points to our
2187                                          * leaf - we need to travel up the
2188                                          * tree one level.
2189                                          */
2190                                         goto next_node;
2191                                 }
2192
2193                                 *cpos = le32_to_cpu(el->l_recs[j - 1].e_cpos);
2194                                 *cpos = *cpos + ocfs2_rec_clusters(el,
2195                                                            &el->l_recs[j - 1]);
2196                                 *cpos = *cpos - 1;
2197                                 goto out;
2198                         }
2199                 }
2200
2201                 /*
2202                  * If we got here, we never found a valid node where
2203                  * the tree indicated one should be.
2204                  */
2205                 ocfs2_error(sb,
2206                             "Invalid extent tree at extent block %llu\n",
2207                             (unsigned long long)blkno);
2208                 ret = -EROFS;
2209                 goto out;
2210
2211 next_node:
2212                 blkno = path->p_node[i].bh->b_blocknr;
2213                 i--;
2214         }
2215
2216 out:
2217         return ret;
2218 }
2219
2220 /*
2221  * Extend the transaction by enough credits to complete the rotation,
2222  * and still leave at least the original number of credits allocated
2223  * to this transaction.
2224  */
2225 static int ocfs2_extend_rotate_transaction(handle_t *handle, int subtree_depth,
2226                                            int op_credits,
2227                                            struct ocfs2_path *path)
2228 {
2229         int credits = (path->p_tree_depth - subtree_depth) * 2 + 1 + op_credits;
2230
2231         if (handle->h_buffer_credits < credits)
2232                 return ocfs2_extend_trans(handle, credits);
2233
2234         return 0;
2235 }
2236
2237 /*
2238  * Trap the case where we're inserting into the theoretical range past
2239  * the _actual_ left leaf range. Otherwise, we'll rotate a record
2240  * whose cpos is less than ours into the right leaf.
2241  *
2242  * It's only necessary to look at the rightmost record of the left
2243  * leaf because the logic that calls us should ensure that the
2244  * theoretical ranges in the path components above the leaves are
2245  * correct.
2246  */
2247 static int ocfs2_rotate_requires_path_adjustment(struct ocfs2_path *left_path,
2248                                                  u32 insert_cpos)
2249 {
2250         struct ocfs2_extent_list *left_el;
2251         struct ocfs2_extent_rec *rec;
2252         int next_free;
2253
2254         left_el = path_leaf_el(left_path);
2255         next_free = le16_to_cpu(left_el->l_next_free_rec);
2256         rec = &left_el->l_recs[next_free - 1];
2257
2258         if (insert_cpos > le32_to_cpu(rec->e_cpos))
2259                 return 1;
2260         return 0;
2261 }
2262
2263 static int ocfs2_leftmost_rec_contains(struct ocfs2_extent_list *el, u32 cpos)
2264 {
2265         int next_free = le16_to_cpu(el->l_next_free_rec);
2266         unsigned int range;
2267         struct ocfs2_extent_rec *rec;
2268
2269         if (next_free == 0)
2270                 return 0;
2271
2272         rec = &el->l_recs[0];
2273         if (ocfs2_is_empty_extent(rec)) {
2274                 /* Empty list. */
2275                 if (next_free == 1)
2276                         return 0;
2277                 rec = &el->l_recs[1];
2278         }
2279
2280         range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
2281         if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
2282                 return 1;
2283         return 0;
2284 }
2285
2286 /*
2287  * Rotate all the records in a btree right one record, starting at insert_cpos.
2288  *
2289  * The path to the rightmost leaf should be passed in.
2290  *
2291  * The array is assumed to be large enough to hold an entire path (tree depth).
2292  *
2293  * Upon succesful return from this function:
2294  *
2295  * - The 'right_path' array will contain a path to the leaf block
2296  *   whose range contains e_cpos.
2297  * - That leaf block will have a single empty extent in list index 0.
2298  * - In the case that the rotation requires a post-insert update,
2299  *   *ret_left_path will contain a valid path which can be passed to
2300  *   ocfs2_insert_path().
2301  */
2302 static int ocfs2_rotate_tree_right(handle_t *handle,
2303                                    struct ocfs2_extent_tree *et,
2304                                    enum ocfs2_split_type split,
2305                                    u32 insert_cpos,
2306                                    struct ocfs2_path *right_path,
2307                                    struct ocfs2_path **ret_left_path)
2308 {
2309         int ret, start, orig_credits = handle->h_buffer_credits;
2310         u32 cpos;
2311         struct ocfs2_path *left_path = NULL;
2312         struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
2313
2314         *ret_left_path = NULL;
2315
2316         left_path = ocfs2_new_path_from_path(right_path);
2317         if (!left_path) {
2318                 ret = -ENOMEM;
2319                 mlog_errno(ret);
2320                 goto out;
2321         }
2322
2323         ret = ocfs2_find_cpos_for_left_leaf(sb, right_path, &cpos);
2324         if (ret) {
2325                 mlog_errno(ret);
2326                 goto out;
2327         }
2328
2329         mlog(0, "Insert: %u, first left path cpos: %u\n", insert_cpos, cpos);
2330
2331         /*
2332          * What we want to do here is:
2333          *
2334          * 1) Start with the rightmost path.
2335          *
2336          * 2) Determine a path to the leaf block directly to the left
2337          *    of that leaf.
2338          *
2339          * 3) Determine the 'subtree root' - the lowest level tree node
2340          *    which contains a path to both leaves.
2341          *
2342          * 4) Rotate the subtree.
2343          *
2344          * 5) Find the next subtree by considering the left path to be
2345          *    the new right path.
2346          *
2347          * The check at the top of this while loop also accepts
2348          * insert_cpos == cpos because cpos is only a _theoretical_
2349          * value to get us the left path - insert_cpos might very well
2350          * be filling that hole.
2351          *
2352          * Stop at a cpos of '0' because we either started at the
2353          * leftmost branch (i.e., a tree with one branch and a
2354          * rotation inside of it), or we've gone as far as we can in
2355          * rotating subtrees.
2356          */
2357         while (cpos && insert_cpos <= cpos) {
2358                 mlog(0, "Rotating a tree: ins. cpos: %u, left path cpos: %u\n",
2359                      insert_cpos, cpos);
2360
2361                 ret = ocfs2_find_path(et->et_ci, left_path, cpos);
2362                 if (ret) {
2363                         mlog_errno(ret);
2364                         goto out;
2365                 }
2366
2367                 mlog_bug_on_msg(path_leaf_bh(left_path) ==
2368                                 path_leaf_bh(right_path),
2369                                 "Owner %llu: error during insert of %u "
2370                                 "(left path cpos %u) results in two identical "
2371                                 "paths ending at %llu\n",
2372                                 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2373                                 insert_cpos, cpos,
2374                                 (unsigned long long)
2375                                 path_leaf_bh(left_path)->b_blocknr);
2376
2377                 if (split == SPLIT_NONE &&
2378                     ocfs2_rotate_requires_path_adjustment(left_path,
2379                                                           insert_cpos)) {
2380
2381                         /*
2382                          * We've rotated the tree as much as we
2383                          * should. The rest is up to
2384                          * ocfs2_insert_path() to complete, after the
2385                          * record insertion. We indicate this
2386                          * situation by returning the left path.
2387                          *
2388                          * The reason we don't adjust the records here
2389                          * before the record insert is that an error
2390                          * later might break the rule where a parent
2391                          * record e_cpos will reflect the actual
2392                          * e_cpos of the 1st nonempty record of the
2393                          * child list.
2394                          */
2395                         *ret_left_path = left_path;
2396                         goto out_ret_path;
2397                 }
2398
2399                 start = ocfs2_find_subtree_root(et, left_path, right_path);
2400
2401                 mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n",
2402                      start,
2403                      (unsigned long long) right_path->p_node[start].bh->b_blocknr,
2404                      right_path->p_tree_depth);
2405
2406                 ret = ocfs2_extend_rotate_transaction(handle, start,
2407                                                       orig_credits, right_path);
2408                 if (ret) {
2409                         mlog_errno(ret);
2410                         goto out;
2411                 }
2412
2413                 ret = ocfs2_rotate_subtree_right(handle, et, left_path,
2414                                                  right_path, start);
2415                 if (ret) {
2416                         mlog_errno(ret);
2417                         goto out;
2418                 }
2419
2420                 if (split != SPLIT_NONE &&
2421                     ocfs2_leftmost_rec_contains(path_leaf_el(right_path),
2422                                                 insert_cpos)) {
2423                         /*
2424                          * A rotate moves the rightmost left leaf
2425                          * record over to the leftmost right leaf
2426                          * slot. If we're doing an extent split
2427                          * instead of a real insert, then we have to
2428                          * check that the extent to be split wasn't
2429                          * just moved over. If it was, then we can
2430                          * exit here, passing left_path back -
2431                          * ocfs2_split_extent() is smart enough to
2432                          * search both leaves.
2433                          */
2434                         *ret_left_path = left_path;
2435                         goto out_ret_path;
2436                 }
2437
2438                 /*
2439                  * There is no need to re-read the next right path
2440                  * as we know that it'll be our current left
2441                  * path. Optimize by copying values instead.
2442                  */
2443                 ocfs2_mv_path(right_path, left_path);
2444
2445                 ret = ocfs2_find_cpos_for_left_leaf(sb, right_path, &cpos);
2446                 if (ret) {
2447                         mlog_errno(ret);
2448                         goto out;
2449                 }
2450         }
2451
2452 out:
2453         ocfs2_free_path(left_path);
2454
2455 out_ret_path:
2456         return ret;
2457 }
2458
2459 static int ocfs2_update_edge_lengths(handle_t *handle,
2460                                      struct ocfs2_extent_tree *et,
2461                                      int subtree_index, struct ocfs2_path *path)
2462 {
2463         int i, idx, ret;
2464         struct ocfs2_extent_rec *rec;
2465         struct ocfs2_extent_list *el;
2466         struct ocfs2_extent_block *eb;
2467         u32 range;
2468
2469         /*
2470          * In normal tree rotation process, we will never touch the
2471          * tree branch above subtree_index and ocfs2_extend_rotate_transaction
2472          * doesn't reserve the credits for them either.
2473          *
2474          * But we do have a special case here which will update the rightmost
2475          * records for all the bh in the path.
2476          * So we have to allocate extra credits and access them.
2477          */
2478         ret = ocfs2_extend_trans(handle,
2479                                  handle->h_buffer_credits + subtree_index);
2480         if (ret) {
2481                 mlog_errno(ret);
2482                 goto out;
2483         }
2484
2485         ret = ocfs2_journal_access_path(et->et_ci, handle, path);
2486         if (ret) {
2487                 mlog_errno(ret);
2488                 goto out;
2489         }
2490
2491         /* Path should always be rightmost. */
2492         eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
2493         BUG_ON(eb->h_next_leaf_blk != 0ULL);
2494
2495         el = &eb->h_list;
2496         BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0);
2497         idx = le16_to_cpu(el->l_next_free_rec) - 1;
2498         rec = &el->l_recs[idx];
2499         range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
2500
2501         for (i = 0; i < path->p_tree_depth; i++) {
2502                 el = path->p_node[i].el;
2503                 idx = le16_to_cpu(el->l_next_free_rec) - 1;
2504                 rec = &el->l_recs[idx];
2505
2506                 rec->e_int_clusters = cpu_to_le32(range);
2507                 le32_add_cpu(&rec->e_int_clusters, -le32_to_cpu(rec->e_cpos));
2508
2509                 ocfs2_journal_dirty(handle, path->p_node[i].bh);
2510         }
2511 out:
2512         return ret;
2513 }
2514
2515 static void ocfs2_unlink_path(handle_t *handle,
2516                               struct ocfs2_extent_tree *et,
2517                               struct ocfs2_cached_dealloc_ctxt *dealloc,
2518                               struct ocfs2_path *path, int unlink_start)
2519 {
2520         int ret, i;
2521         struct ocfs2_extent_block *eb;
2522         struct ocfs2_extent_list *el;
2523         struct buffer_head *bh;
2524
2525         for(i = unlink_start; i < path_num_items(path); i++) {
2526                 bh = path->p_node[i].bh;
2527
2528                 eb = (struct ocfs2_extent_block *)bh->b_data;
2529                 /*
2530                  * Not all nodes might have had their final count
2531                  * decremented by the caller - handle this here.
2532                  */
2533                 el = &eb->h_list;
2534                 if (le16_to_cpu(el->l_next_free_rec) > 1) {
2535                         mlog(ML_ERROR,
2536                              "Inode %llu, attempted to remove extent block "
2537                              "%llu with %u records\n",
2538                              (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2539                              (unsigned long long)le64_to_cpu(eb->h_blkno),
2540                              le16_to_cpu(el->l_next_free_rec));
2541
2542                         ocfs2_journal_dirty(handle, bh);
2543                         ocfs2_remove_from_cache(et->et_ci, bh);
2544                         continue;
2545                 }
2546
2547                 el->l_next_free_rec = 0;
2548                 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2549
2550                 ocfs2_journal_dirty(handle, bh);
2551
2552                 ret = ocfs2_cache_extent_block_free(dealloc, eb);
2553                 if (ret)
2554                         mlog_errno(ret);
2555
2556                 ocfs2_remove_from_cache(et->et_ci, bh);
2557         }
2558 }
2559
2560 static void ocfs2_unlink_subtree(handle_t *handle,
2561                                  struct ocfs2_extent_tree *et,
2562                                  struct ocfs2_path *left_path,
2563                                  struct ocfs2_path *right_path,
2564                                  int subtree_index,
2565                                  struct ocfs2_cached_dealloc_ctxt *dealloc)
2566 {
2567         int i;
2568         struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
2569         struct ocfs2_extent_list *root_el = left_path->p_node[subtree_index].el;
2570         struct ocfs2_extent_list *el;
2571         struct ocfs2_extent_block *eb;
2572
2573         el = path_leaf_el(left_path);
2574
2575         eb = (struct ocfs2_extent_block *)right_path->p_node[subtree_index + 1].bh->b_data;
2576
2577         for(i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++)
2578                 if (root_el->l_recs[i].e_blkno == eb->h_blkno)
2579                         break;
2580
2581         BUG_ON(i >= le16_to_cpu(root_el->l_next_free_rec));
2582
2583         memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
2584         le16_add_cpu(&root_el->l_next_free_rec, -1);
2585
2586         eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2587         eb->h_next_leaf_blk = 0;
2588
2589         ocfs2_journal_dirty(handle, root_bh);
2590         ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2591
2592         ocfs2_unlink_path(handle, et, dealloc, right_path,
2593                           subtree_index + 1);
2594 }
2595
2596 static int ocfs2_rotate_subtree_left(handle_t *handle,
2597                                      struct ocfs2_extent_tree *et,
2598                                      struct ocfs2_path *left_path,
2599                                      struct ocfs2_path *right_path,
2600                                      int subtree_index,
2601                                      struct ocfs2_cached_dealloc_ctxt *dealloc,
2602                                      int *deleted)
2603 {
2604         int ret, i, del_right_subtree = 0, right_has_empty = 0;
2605         struct buffer_head *root_bh, *et_root_bh = path_root_bh(right_path);
2606         struct ocfs2_extent_list *right_leaf_el, *left_leaf_el;
2607         struct ocfs2_extent_block *eb;
2608
2609         *deleted = 0;
2610
2611         right_leaf_el = path_leaf_el(right_path);
2612         left_leaf_el = path_leaf_el(left_path);
2613         root_bh = left_path->p_node[subtree_index].bh;
2614         BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
2615
2616         if (!ocfs2_is_empty_extent(&left_leaf_el->l_recs[0]))
2617                 return 0;
2618
2619         eb = (struct ocfs2_extent_block *)path_leaf_bh(right_path)->b_data;
2620         if (ocfs2_is_empty_extent(&right_leaf_el->l_recs[0])) {
2621                 /*
2622                  * It's legal for us to proceed if the right leaf is
2623                  * the rightmost one and it has an empty extent. There
2624                  * are two cases to handle - whether the leaf will be
2625                  * empty after removal or not. If the leaf isn't empty
2626                  * then just remove the empty extent up front. The
2627                  * next block will handle empty leaves by flagging
2628                  * them for unlink.
2629                  *
2630                  * Non rightmost leaves will throw -EAGAIN and the
2631                  * caller can manually move the subtree and retry.
2632                  */
2633
2634                 if (eb->h_next_leaf_blk != 0ULL)
2635                         return -EAGAIN;
2636
2637                 if (le16_to_cpu(right_leaf_el->l_next_free_rec) > 1) {
2638                         ret = ocfs2_journal_access_eb(handle, et->et_ci,
2639                                                       path_leaf_bh(right_path),
2640                                                       OCFS2_JOURNAL_ACCESS_WRITE);
2641                         if (ret) {
2642                                 mlog_errno(ret);
2643                                 goto out;
2644                         }
2645
2646                         ocfs2_remove_empty_extent(right_leaf_el);
2647                 } else
2648                         right_has_empty = 1;
2649         }
2650
2651         if (eb->h_next_leaf_blk == 0ULL &&
2652             le16_to_cpu(right_leaf_el->l_next_free_rec) == 1) {
2653                 /*
2654                  * We have to update i_last_eb_blk during the meta
2655                  * data delete.
2656                  */
2657                 ret = ocfs2_et_root_journal_access(handle, et,
2658                                                    OCFS2_JOURNAL_ACCESS_WRITE);
2659                 if (ret) {
2660                         mlog_errno(ret);
2661                         goto out;
2662                 }
2663
2664                 del_right_subtree = 1;
2665         }
2666
2667         /*
2668          * Getting here with an empty extent in the right path implies
2669          * that it's the rightmost path and will be deleted.
2670          */
2671         BUG_ON(right_has_empty && !del_right_subtree);
2672
2673         ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
2674                                            subtree_index);
2675         if (ret) {
2676                 mlog_errno(ret);
2677                 goto out;
2678         }
2679
2680         for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
2681                 ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2682                                                    right_path, i);
2683                 if (ret) {
2684                         mlog_errno(ret);
2685                         goto out;
2686                 }
2687
2688                 ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2689                                                    left_path, i);
2690                 if (ret) {
2691                         mlog_errno(ret);
2692                         goto out;
2693                 }
2694         }
2695
2696         if (!right_has_empty) {
2697                 /*
2698                  * Only do this if we're moving a real
2699                  * record. Otherwise, the action is delayed until
2700                  * after removal of the right path in which case we
2701                  * can do a simple shift to remove the empty extent.
2702                  */
2703                 ocfs2_rotate_leaf(left_leaf_el, &right_leaf_el->l_recs[0]);
2704                 memset(&right_leaf_el->l_recs[0], 0,
2705                        sizeof(struct ocfs2_extent_rec));
2706         }
2707         if (eb->h_next_leaf_blk == 0ULL) {
2708                 /*
2709                  * Move recs over to get rid of empty extent, decrease
2710                  * next_free. This is allowed to remove the last
2711                  * extent in our leaf (setting l_next_free_rec to
2712                  * zero) - the delete code below won't care.
2713                  */
2714                 ocfs2_remove_empty_extent(right_leaf_el);
2715         }
2716
2717         ret = ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2718         if (ret)
2719                 mlog_errno(ret);
2720         ret = ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
2721         if (ret)
2722                 mlog_errno(ret);
2723
2724         if (del_right_subtree) {
2725                 ocfs2_unlink_subtree(handle, et, left_path, right_path,
2726                                      subtree_index, dealloc);
2727                 ret = ocfs2_update_edge_lengths(handle, et, subtree_index,
2728                                                 left_path);
2729                 if (ret) {
2730                         mlog_errno(ret);
2731                         goto out;
2732                 }
2733
2734                 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2735                 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
2736
2737                 /*
2738                  * Removal of the extent in the left leaf was skipped
2739                  * above so we could delete the right path
2740                  * 1st.
2741                  */
2742                 if (right_has_empty)
2743                         ocfs2_remove_empty_extent(left_leaf_el);
2744
2745                 ret = ocfs2_journal_dirty(handle, et_root_bh);
2746                 if (ret)
2747                         mlog_errno(ret);
2748
2749                 *deleted = 1;
2750         } else
2751                 ocfs2_complete_edge_insert(handle, left_path, right_path,
2752                                            subtree_index);
2753
2754 out:
2755         return ret;
2756 }
2757
2758 /*
2759  * Given a full path, determine what cpos value would return us a path
2760  * containing the leaf immediately to the right of the current one.
2761  *
2762  * Will return zero if the path passed in is already the rightmost path.
2763  *
2764  * This looks similar, but is subtly different to
2765  * ocfs2_find_cpos_for_left_leaf().
2766  */
2767 static int ocfs2_find_cpos_for_right_leaf(struct super_block *sb,
2768                                           struct ocfs2_path *path, u32 *cpos)
2769 {
2770         int i, j, ret = 0;
2771         u64 blkno;
2772         struct ocfs2_extent_list *el;
2773
2774         *cpos = 0;
2775
2776         if (path->p_tree_depth == 0)
2777                 return 0;
2778
2779         blkno = path_leaf_bh(path)->b_blocknr;
2780
2781         /* Start at the tree node just above the leaf and work our way up. */
2782         i = path->p_tree_depth - 1;
2783         while (i >= 0) {
2784                 int next_free;
2785
2786                 el = path->p_node[i].el;
2787
2788                 /*
2789                  * Find the extent record just after the one in our
2790                  * path.
2791                  */
2792                 next_free = le16_to_cpu(el->l_next_free_rec);
2793                 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
2794                         if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
2795                                 if (j == (next_free - 1)) {
2796                                         if (i == 0) {
2797                                                 /*
2798                                                  * We've determined that the
2799                                                  * path specified is already
2800                                                  * the rightmost one - return a
2801                                                  * cpos of zero.
2802                                                  */
2803                                                 goto out;
2804                                         }
2805                                         /*
2806                                          * The rightmost record points to our
2807                                          * leaf - we need to travel up the
2808                                          * tree one level.
2809                                          */
2810                                         goto next_node;
2811                                 }
2812
2813                                 *cpos = le32_to_cpu(el->l_recs[j + 1].e_cpos);
2814                                 goto out;
2815                         }
2816                 }
2817
2818                 /*
2819                  * If we got here, we never found a valid node where
2820                  * the tree indicated one should be.
2821                  */
2822                 ocfs2_error(sb,
2823                             "Invalid extent tree at extent block %llu\n",
2824                             (unsigned long long)blkno);
2825                 ret = -EROFS;
2826                 goto out;
2827
2828 next_node:
2829                 blkno = path->p_node[i].bh->b_blocknr;
2830                 i--;
2831         }
2832
2833 out:
2834         return ret;
2835 }
2836
2837 static int ocfs2_rotate_rightmost_leaf_left(handle_t *handle,
2838                                             struct ocfs2_extent_tree *et,
2839                                             struct ocfs2_path *path)
2840 {
2841         int ret;
2842         struct buffer_head *bh = path_leaf_bh(path);
2843         struct ocfs2_extent_list *el = path_leaf_el(path);
2844
2845         if (!ocfs2_is_empty_extent(&el->l_recs[0]))
2846                 return 0;
2847
2848         ret = ocfs2_path_bh_journal_access(handle, et->et_ci, path,
2849                                            path_num_items(path) - 1);
2850         if (ret) {
2851                 mlog_errno(ret);
2852                 goto out;
2853         }
2854
2855         ocfs2_remove_empty_extent(el);
2856
2857         ret = ocfs2_journal_dirty(handle, bh);
2858         if (ret)
2859                 mlog_errno(ret);
2860
2861 out:
2862         return ret;
2863 }
2864
2865 static int __ocfs2_rotate_tree_left(handle_t *handle,
2866                                     struct ocfs2_extent_tree *et,
2867                                     int orig_credits,
2868                                     struct ocfs2_path *path,
2869                                     struct ocfs2_cached_dealloc_ctxt *dealloc,
2870                                     struct ocfs2_path **empty_extent_path)
2871 {
2872         int ret, subtree_root, deleted;
2873         u32 right_cpos;
2874         struct ocfs2_path *left_path = NULL;
2875         struct ocfs2_path *right_path = NULL;
2876         struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
2877
2878         BUG_ON(!ocfs2_is_empty_extent(&(path_leaf_el(path)->l_recs[0])));
2879
2880         *empty_extent_path = NULL;
2881
2882         ret = ocfs2_find_cpos_for_right_leaf(sb, path, &right_cpos);
2883         if (ret) {
2884                 mlog_errno(ret);
2885                 goto out;
2886         }
2887
2888         left_path = ocfs2_new_path_from_path(path);
2889         if (!left_path) {
2890                 ret = -ENOMEM;
2891                 mlog_errno(ret);
2892                 goto out;
2893         }
2894
2895         ocfs2_cp_path(left_path, path);
2896
2897         right_path = ocfs2_new_path_from_path(path);
2898         if (!right_path) {
2899                 ret = -ENOMEM;
2900                 mlog_errno(ret);
2901                 goto out;
2902         }
2903
2904         while (right_cpos) {
2905                 ret = ocfs2_find_path(et->et_ci, right_path, right_cpos);
2906                 if (ret) {
2907                         mlog_errno(ret);
2908                         goto out;
2909                 }
2910
2911                 subtree_root = ocfs2_find_subtree_root(et, left_path,
2912                                                        right_path);
2913
2914                 mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n",
2915                      subtree_root,
2916                      (unsigned long long)
2917                      right_path->p_node[subtree_root].bh->b_blocknr,
2918                      right_path->p_tree_depth);
2919
2920                 ret = ocfs2_extend_rotate_transaction(handle, subtree_root,
2921                                                       orig_credits, left_path);
2922                 if (ret) {
2923                         mlog_errno(ret);
2924                         goto out;
2925                 }
2926
2927                 /*
2928                  * Caller might still want to make changes to the
2929                  * tree root, so re-add it to the journal here.
2930                  */
2931                 ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2932                                                    left_path, 0);
2933                 if (ret) {
2934                         mlog_errno(ret);
2935                         goto out;
2936                 }
2937
2938                 ret = ocfs2_rotate_subtree_left(handle, et, left_path,
2939                                                 right_path, subtree_root,
2940                                                 dealloc, &deleted);
2941                 if (ret == -EAGAIN) {
2942                         /*
2943                          * The rotation has to temporarily stop due to
2944                          * the right subtree having an empty
2945                          * extent. Pass it back to the caller for a
2946                          * fixup.
2947                          */
2948                         *empty_extent_path = right_path;
2949                         right_path = NULL;
2950                         goto out;
2951                 }
2952                 if (ret) {
2953                         mlog_errno(ret);
2954                         goto out;
2955                 }
2956
2957                 /*
2958                  * The subtree rotate might have removed records on
2959                  * the rightmost edge. If so, then rotation is
2960                  * complete.
2961                  */
2962                 if (deleted)
2963                         break;
2964
2965                 ocfs2_mv_path(left_path, right_path);
2966
2967                 ret = ocfs2_find_cpos_for_right_leaf(sb, left_path,
2968                                                      &right_cpos);
2969                 if (ret) {
2970                         mlog_errno(ret);
2971                         goto out;
2972                 }
2973         }
2974
2975 out:
2976         ocfs2_free_path(right_path);
2977         ocfs2_free_path(left_path);
2978
2979         return ret;
2980 }
2981
2982 static int ocfs2_remove_rightmost_path(handle_t *handle,
2983                                 struct ocfs2_extent_tree *et,
2984                                 struct ocfs2_path *path,
2985                                 struct ocfs2_cached_dealloc_ctxt *dealloc)
2986 {
2987         int ret, subtree_index;
2988         u32 cpos;
2989         struct ocfs2_path *left_path = NULL;
2990         struct ocfs2_extent_block *eb;
2991         struct ocfs2_extent_list *el;
2992
2993
2994         ret = ocfs2_et_sanity_check(et);
2995         if (ret)
2996                 goto out;
2997         /*
2998          * There's two ways we handle this depending on
2999          * whether path is the only existing one.
3000          */
3001         ret = ocfs2_extend_rotate_transaction(handle, 0,
3002                                               handle->h_buffer_credits,
3003                                               path);
3004         if (ret) {
3005                 mlog_errno(ret);
3006                 goto out;
3007         }
3008
3009         ret = ocfs2_journal_access_path(et->et_ci, handle, path);
3010         if (ret) {
3011                 mlog_errno(ret);
3012                 goto out;
3013         }
3014
3015         ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci),
3016                                             path, &cpos);
3017         if (ret) {
3018                 mlog_errno(ret);
3019                 goto out;
3020         }
3021
3022         if (cpos) {
3023                 /*
3024                  * We have a path to the left of this one - it needs
3025                  * an update too.
3026                  */
3027                 left_path = ocfs2_new_path_from_path(path);
3028                 if (!left_path) {
3029                         ret = -ENOMEM;
3030                         mlog_errno(ret);
3031                         goto out;
3032                 }
3033
3034                 ret = ocfs2_find_path(et->et_ci, left_path, cpos);
3035                 if (ret) {
3036                         mlog_errno(ret);
3037                         goto out;
3038                 }
3039
3040                 ret = ocfs2_journal_access_path(et->et_ci, handle, left_path);
3041                 if (ret) {
3042                         mlog_errno(ret);
3043                         goto out;
3044                 }
3045
3046                 subtree_index = ocfs2_find_subtree_root(et, left_path, path);
3047
3048                 ocfs2_unlink_subtree(handle, et, left_path, path,
3049                                      subtree_index, dealloc);
3050                 ret = ocfs2_update_edge_lengths(handle, et, subtree_index,
3051                                                 left_path);
3052                 if (ret) {
3053                         mlog_errno(ret);
3054                         goto out;
3055                 }
3056
3057                 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
3058                 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
3059         } else {
3060                 /*
3061                  * 'path' is also the leftmost path which
3062                  * means it must be the only one. This gets
3063                  * handled differently because we want to
3064                  * revert the root back to having extents
3065                  * in-line.
3066                  */
3067                 ocfs2_unlink_path(handle, et, dealloc, path, 1);
3068
3069                 el = et->et_root_el;
3070                 el->l_tree_depth = 0;
3071                 el->l_next_free_rec = 0;
3072                 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
3073
3074                 ocfs2_et_set_last_eb_blk(et, 0);
3075         }
3076
3077         ocfs2_journal_dirty(handle, path_root_bh(path));
3078
3079 out:
3080         ocfs2_free_path(left_path);
3081         return ret;
3082 }
3083
3084 /*
3085  * Left rotation of btree records.
3086  *
3087  * In many ways, this is (unsurprisingly) the opposite of right
3088  * rotation. We start at some non-rightmost path containing an empty
3089  * extent in the leaf block. The code works its way to the rightmost
3090  * path by rotating records to the left in every subtree.
3091  *
3092  * This is used by any code which reduces the number of extent records
3093  * in a leaf. After removal, an empty record should be placed in the
3094  * leftmost list position.
3095  *
3096  * This won't handle a length update of the rightmost path records if
3097  * the rightmost tree leaf record is removed so the caller is
3098  * responsible for detecting and correcting that.
3099  */
3100 static int ocfs2_rotate_tree_left(handle_t *handle,
3101                                   struct ocfs2_extent_tree *et,
3102                                   struct ocfs2_path *path,
3103                                   struct ocfs2_cached_dealloc_ctxt *dealloc)
3104 {
3105         int ret, orig_credits = handle->h_buffer_credits;
3106         struct ocfs2_path *tmp_path = NULL, *restart_path = NULL;
3107         struct ocfs2_extent_block *eb;
3108         struct ocfs2_extent_list *el;
3109
3110         el = path_leaf_el(path);
3111         if (!ocfs2_is_empty_extent(&el->l_recs[0]))
3112                 return 0;
3113
3114         if (path->p_tree_depth == 0) {
3115 rightmost_no_delete:
3116                 /*
3117                  * Inline extents. This is trivially handled, so do
3118                  * it up front.
3119                  */
3120                 ret = ocfs2_rotate_rightmost_leaf_left(handle, et, path);
3121                 if (ret)
3122                         mlog_errno(ret);
3123                 goto out;
3124         }
3125
3126         /*
3127          * Handle rightmost branch now. There's several cases:
3128          *  1) simple rotation leaving records in there. That's trivial.
3129          *  2) rotation requiring a branch delete - there's no more
3130          *     records left. Two cases of this:
3131          *     a) There are branches to the left.
3132          *     b) This is also the leftmost (the only) branch.
3133          *
3134          *  1) is handled via ocfs2_rotate_rightmost_leaf_left()
3135          *  2a) we need the left branch so that we can update it with the unlink
3136          *  2b) we need to bring the root back to inline extents.
3137          */
3138
3139         eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
3140         el = &eb->h_list;
3141         if (eb->h_next_leaf_blk == 0) {
3142                 /*
3143                  * This gets a bit tricky if we're going to delete the
3144                  * rightmost path. Get the other cases out of the way
3145                  * 1st.
3146                  */
3147                 if (le16_to_cpu(el->l_next_free_rec) > 1)
3148                         goto rightmost_no_delete;
3149
3150                 if (le16_to_cpu(el->l_next_free_rec) == 0) {
3151                         ret = -EIO;
3152                         ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
3153                                     "Owner %llu has empty extent block at %llu",
3154                                     (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
3155                                     (unsigned long long)le64_to_cpu(eb->h_blkno));
3156                         goto out;
3157                 }
3158
3159                 /*
3160                  * XXX: The caller can not trust "path" any more after
3161                  * this as it will have been deleted. What do we do?
3162                  *
3163                  * In theory the rotate-for-merge code will never get
3164                  * here because it'll always ask for a rotate in a
3165                  * nonempty list.
3166                  */
3167
3168                 ret = ocfs2_remove_rightmost_path(handle, et, path,
3169                                                   dealloc);
3170                 if (ret)
3171                         mlog_errno(ret);
3172                 goto out;
3173         }
3174
3175         /*
3176          * Now we can loop, remembering the path we get from -EAGAIN
3177          * and restarting from there.
3178          */
3179 try_rotate:
3180         ret = __ocfs2_rotate_tree_left(handle, et, orig_credits, path,
3181                                        dealloc, &restart_path);
3182         if (ret && ret != -EAGAIN) {
3183                 mlog_errno(ret);
3184                 goto out;
3185         }
3186
3187         while (ret == -EAGAIN) {
3188                 tmp_path = restart_path;
3189                 restart_path = NULL;
3190
3191                 ret = __ocfs2_rotate_tree_left(handle, et, orig_credits,
3192                                                tmp_path, dealloc,
3193                                                &restart_path);
3194                 if (ret && ret != -EAGAIN) {
3195                         mlog_errno(ret);
3196                         goto out;
3197                 }
3198
3199                 ocfs2_free_path(tmp_path);
3200                 tmp_path = NULL;
3201
3202                 if (ret == 0)
3203                         goto try_rotate;
3204         }
3205
3206 out:
3207         ocfs2_free_path(tmp_path);
3208         ocfs2_free_path(restart_path);
3209         return ret;
3210 }
3211
3212 static void ocfs2_cleanup_merge(struct ocfs2_extent_list *el,
3213                                 int index)
3214 {
3215         struct ocfs2_extent_rec *rec = &el->l_recs[index];
3216         unsigned int size;
3217
3218         if (rec->e_leaf_clusters == 0) {
3219                 /*
3220                  * We consumed all of the merged-from record. An empty
3221                  * extent cannot exist anywhere but the 1st array
3222                  * position, so move things over if the merged-from
3223                  * record doesn't occupy that position.
3224                  *
3225                  * This creates a new empty extent so the caller
3226                  * should be smart enough to have removed any existing
3227                  * ones.
3228                  */
3229                 if (index > 0) {
3230                         BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
3231                         size = index * sizeof(struct ocfs2_extent_rec);
3232                         memmove(&el->l_recs[1], &el->l_recs[0], size);
3233                 }
3234
3235                 /*
3236                  * Always memset - the caller doesn't check whether it
3237                  * created an empty extent, so there could be junk in
3238                  * the other fields.
3239                  */
3240                 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
3241         }
3242 }
3243
3244 static int ocfs2_get_right_path(struct ocfs2_extent_tree *et,
3245                                 struct ocfs2_path *left_path,
3246                                 struct ocfs2_path **ret_right_path)
3247 {
3248         int ret;
3249         u32 right_cpos;
3250         struct ocfs2_path *right_path = NULL;
3251         struct ocfs2_extent_list *left_el;
3252
3253         *ret_right_path = NULL;
3254
3255         /* This function shouldn't be called for non-trees. */
3256         BUG_ON(left_path->p_tree_depth == 0);
3257
3258         left_el = path_leaf_el(left_path);
3259         BUG_ON(left_el->l_next_free_rec != left_el->l_count);
3260
3261         ret = ocfs2_find_cpos_for_right_leaf(ocfs2_metadata_cache_get_super(et->et_ci),
3262                                              left_path, &right_cpos);
3263         if (ret) {
3264                 mlog_errno(ret);
3265                 goto out;
3266         }
3267
3268         /* This function shouldn't be called for the rightmost leaf. */
3269         BUG_ON(right_cpos == 0);
3270
3271         right_path = ocfs2_new_path_from_path(left_path);
3272         if (!right_path) {
3273                 ret = -ENOMEM;
3274                 mlog_errno(ret);
3275                 goto out;
3276         }
3277
3278         ret = ocfs2_find_path(et->et_ci, right_path, right_cpos);
3279         if (ret) {
3280                 mlog_errno(ret);
3281                 goto out;
3282         }
3283
3284         *ret_right_path = right_path;
3285 out:
3286         if (ret)
3287                 ocfs2_free_path(right_path);
3288         return ret;
3289 }
3290
3291 /*
3292  * Remove split_rec clusters from the record at index and merge them
3293  * onto the beginning of the record "next" to it.
3294  * For index < l_count - 1, the next means the extent rec at index + 1.
3295  * For index == l_count - 1, the "next" means the 1st extent rec of the
3296  * next extent block.
3297  */
3298 static int ocfs2_merge_rec_right(struct ocfs2_path *left_path,
3299                                  handle_t *handle,
3300                                  struct ocfs2_extent_tree *et,
3301                                  struct ocfs2_extent_rec *split_rec,
3302                                  int index)
3303 {
3304         int ret, next_free, i;
3305         unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
3306         struct ocfs2_extent_rec *left_rec;
3307         struct ocfs2_extent_rec *right_rec;
3308         struct ocfs2_extent_list *right_el;
3309         struct ocfs2_path *right_path = NULL;
3310         int subtree_index = 0;
3311         struct ocfs2_extent_list *el = path_leaf_el(left_path);
3312         struct buffer_head *bh = path_leaf_bh(left_path);
3313         struct buffer_head *root_bh = NULL;
3314
3315         BUG_ON(index >= le16_to_cpu(el->l_next_free_rec));
3316         left_rec = &el->l_recs[index];
3317
3318         if (index == le16_to_cpu(el->l_next_free_rec) - 1 &&
3319             le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count)) {
3320                 /* we meet with a cross extent block merge. */
3321                 ret = ocfs2_get_right_path(et, left_path, &right_path);
3322                 if (ret) {
3323                         mlog_errno(ret);
3324                         goto out;
3325                 }
3326
3327                 right_el = path_leaf_el(right_path);
3328                 next_free = le16_to_cpu(right_el->l_next_free_rec);
3329                 BUG_ON(next_free <= 0);
3330                 right_rec = &right_el->l_recs[0];
3331                 if (ocfs2_is_empty_extent(right_rec)) {
3332                         BUG_ON(next_free <= 1);
3333                         right_rec = &right_el->l_recs[1];
3334                 }
3335
3336                 BUG_ON(le32_to_cpu(left_rec->e_cpos) +
3337                        le16_to_cpu(left_rec->e_leaf_clusters) !=
3338                        le32_to_cpu(right_rec->e_cpos));
3339
3340                 subtree_index = ocfs2_find_subtree_root(et, left_path,
3341                                                         right_path);
3342
3343                 ret = ocfs2_extend_rotate_transaction(handle, subtree_index,
3344                                                       handle->h_buffer_credits,
3345                                                       right_path);
3346                 if (ret) {
3347                         mlog_errno(ret);
3348                         goto out;
3349                 }
3350
3351                 root_bh = left_path->p_node[subtree_index].bh;
3352                 BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
3353
3354                 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
3355                                                    subtree_index);
3356                 if (ret) {
3357                         mlog_errno(ret);
3358                         goto out;
3359                 }
3360
3361                 for (i = subtree_index + 1;
3362                      i < path_num_items(right_path); i++) {
3363                         ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
3364                                                            right_path, i);
3365                         if (ret) {
3366                                 mlog_errno(ret);
3367                                 goto out;
3368                         }
3369
3370                         ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
3371                                                            left_path, i);
3372                         if (ret) {
3373                                 mlog_errno(ret);
3374                                 goto out;
3375                         }
3376                 }
3377
3378         } else {
3379                 BUG_ON(index == le16_to_cpu(el->l_next_free_rec) - 1);
3380                 right_rec = &el->l_recs[index + 1];
3381         }
3382
3383         ret = ocfs2_path_bh_journal_access(handle, et->et_ci, left_path,
3384                                            path_num_items(left_path) - 1);
3385         if (ret) {
3386                 mlog_errno(ret);
3387                 goto out;
3388         }
3389
3390         le16_add_cpu(&left_rec->e_leaf_clusters, -split_clusters);
3391
3392         le32_add_cpu(&right_rec->e_cpos, -split_clusters);
3393         le64_add_cpu(&right_rec->e_blkno,
3394                      -ocfs2_clusters_to_blocks(ocfs2_metadata_cache_get_super(et->et_ci),
3395                                                split_clusters));
3396         le16_add_cpu(&right_rec->e_leaf_clusters, split_clusters);
3397
3398         ocfs2_cleanup_merge(el, index);
3399
3400         ret = ocfs2_journal_dirty(handle, bh);
3401         if (ret)
3402                 mlog_errno(ret);
3403
3404         if (right_path) {
3405                 ret = ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
3406                 if (ret)
3407                         mlog_errno(ret);
3408
3409                 ocfs2_complete_edge_insert(handle, left_path, right_path,
3410                                            subtree_index);
3411         }
3412 out:
3413         if (right_path)
3414                 ocfs2_free_path(right_path);
3415         return ret;
3416 }
3417
3418 static int ocfs2_get_left_path(struct ocfs2_extent_tree *et,
3419                                struct ocfs2_path *right_path,
3420                                struct ocfs2_path **ret_left_path)
3421 {
3422         int ret;
3423         u32 left_cpos;
3424         struct ocfs2_path *left_path = NULL;
3425
3426         *ret_left_path = NULL;
3427
3428         /* This function shouldn't be called for non-trees. */
3429         BUG_ON(right_path->p_tree_depth == 0);
3430
3431         ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci),
3432                                             right_path, &left_cpos);
3433         if (ret) {
3434                 mlog_errno(ret);
3435                 goto out;
3436         }
3437
3438         /* This function shouldn't be called for the leftmost leaf. */
3439         BUG_ON(left_cpos == 0);
3440
3441         left_path = ocfs2_new_path_from_path(right_path);
3442         if (!left_path) {
3443                 ret = -ENOMEM;
3444                 mlog_errno(ret);
3445                 goto out;
3446         }
3447
3448         ret = ocfs2_find_path(et->et_ci, left_path, left_cpos);
3449         if (ret) {
3450                 mlog_errno(ret);
3451                 goto out;
3452         }
3453
3454         *ret_left_path = left_path;
3455 out:
3456         if (ret)
3457                 ocfs2_free_path(left_path);
3458         return ret;
3459 }
3460
3461 /*
3462  * Remove split_rec clusters from the record at index and merge them
3463  * onto the tail of the record "before" it.
3464  * For index > 0, the "before" means the extent rec at index - 1.
3465  *
3466  * For index == 0, the "before" means the last record of the previous
3467  * extent block. And there is also a situation that we may need to
3468  * remove the rightmost leaf extent block in the right_path and change
3469  * the right path to indicate the new rightmost path.
3470  */
3471 static int ocfs2_merge_rec_left(struct ocfs2_path *right_path,
3472                                 handle_t *handle,
3473                                 struct ocfs2_extent_tree *et,
3474                                 struct ocfs2_extent_rec *split_rec,
3475                                 struct ocfs2_cached_dealloc_ctxt *dealloc,
3476                                 int index)
3477 {
3478         int ret, i, subtree_index = 0, has_empty_extent = 0;
3479         unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
3480         struct ocfs2_extent_rec *left_rec;
3481         struct ocfs2_extent_rec *right_rec;
3482         struct ocfs2_extent_list *el = path_leaf_el(right_path);
3483         struct buffer_head *bh = path_leaf_bh(right_path);
3484         struct buffer_head *root_bh = NULL;
3485         struct ocfs2_path *left_path = NULL;
3486         struct ocfs2_extent_list *left_el;
3487
3488         BUG_ON(index < 0);
3489
3490         right_rec = &el->l_recs[index];
3491         if (index == 0) {
3492                 /* we meet with a cross extent block merge. */
3493                 ret = ocfs2_get_left_path(et, right_path, &left_path);
3494                 if (ret) {
3495                         mlog_errno(ret);
3496                         goto out;
3497                 }
3498
3499                 left_el = path_leaf_el(left_path);
3500                 BUG_ON(le16_to_cpu(left_el->l_next_free_rec) !=
3501                        le16_to_cpu(left_el->l_count));
3502
3503                 left_rec = &left_el->l_recs[
3504                                 le16_to_cpu(left_el->l_next_free_rec) - 1];
3505                 BUG_ON(le32_to_cpu(left_rec->e_cpos) +
3506                        le16_to_cpu(left_rec->e_leaf_clusters) !=
3507                        le32_to_cpu(split_rec->e_cpos));
3508
3509                 subtree_index = ocfs2_find_subtree_root(et, left_path,
3510                                                         right_path);
3511
3512                 ret = ocfs2_extend_rotate_transaction(handle, subtree_index,
3513                                                       handle->h_buffer_credits,
3514                                                       left_path);
3515                 if (ret) {
3516                         mlog_errno(ret);
3517                         goto out;
3518                 }
3519
3520                 root_bh = left_path->p_node[subtree_index].bh;
3521                 BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
3522
3523                 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
3524                                                    subtree_index);
3525                 if (ret) {
3526                         mlog_errno(ret);
3527                         goto out;
3528                 }
3529
3530                 for (i = subtree_index + 1;
3531                      i < path_num_items(right_path); i++) {
3532                         ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
3533                                                            right_path, i);
3534                         if (ret) {
3535                                 mlog_errno(ret);
3536                                 goto out;
3537                         }
3538
3539                         ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
3540                                                            left_path, i);
3541                         if (ret) {
3542                                 mlog_errno(ret);
3543                                 goto out;
3544                         }
3545                 }
3546         } else {
3547                 left_rec = &el->l_recs[index - 1];
3548                 if (ocfs2_is_empty_extent(&el->l_recs[0]))
3549                         has_empty_extent = 1;
3550         }
3551
3552         ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
3553                                            path_num_items(right_path) - 1);
3554         if (ret) {
3555                 mlog_errno(ret);
3556                 goto out;
3557         }
3558
3559         if (has_empty_extent && index == 1) {
3560                 /*
3561                  * The easy case - we can just plop the record right in.
3562                  */
3563                 *left_rec = *split_rec;
3564
3565                 has_empty_extent = 0;
3566         } else
3567                 le16_add_cpu(&left_rec->e_leaf_clusters, split_clusters);
3568
3569         le32_add_cpu(&right_rec->e_cpos, split_clusters);
3570         le64_add_cpu(&right_rec->e_blkno,
3571                      ocfs2_clusters_to_blocks(ocfs2_metadata_cache_get_super(et->et_ci),
3572                                               split_clusters));
3573         le16_add_cpu(&right_rec->e_leaf_clusters, -split_clusters);
3574
3575         ocfs2_cleanup_merge(el, index);
3576
3577         ret = ocfs2_journal_dirty(handle, bh);
3578         if (ret)
3579                 mlog_errno(ret);
3580
3581         if (left_path) {
3582                 ret = ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
3583                 if (ret)
3584                         mlog_errno(ret);
3585
3586                 /*
3587                  * In the situation that the right_rec is empty and the extent
3588                  * block is empty also,  ocfs2_complete_edge_insert can't handle
3589                  * it and we need to delete the right extent block.
3590                  */
3591                 if (le16_to_cpu(right_rec->e_leaf_clusters) == 0 &&
3592                     le16_to_cpu(el->l_next_free_rec) == 1) {
3593
3594                         ret = ocfs2_remove_rightmost_path(handle, et,
3595                                                           right_path,
3596                                                           dealloc);
3597                         if (ret) {
3598                                 mlog_errno(ret);
3599                                 goto out;
3600                         }
3601
3602                         /* Now the rightmost extent block has been deleted.
3603                          * So we use the new rightmost path.
3604                          */
3605                         ocfs2_mv_path(right_path, left_path);
3606                         left_path = NULL;
3607                 } else
3608                         ocfs2_complete_edge_insert(handle, left_path,
3609                                                    right_path, subtree_index);
3610         }
3611 out:
3612         if (left_path)
3613                 ocfs2_free_path(left_path);
3614         return ret;
3615 }
3616
3617 static int ocfs2_try_to_merge_extent(handle_t *handle,
3618                                      struct ocfs2_extent_tree *et,
3619                                      struct ocfs2_path *path,
3620                                      int split_index,
3621                                      struct ocfs2_extent_rec *split_rec,
3622                                      struct ocfs2_cached_dealloc_ctxt *dealloc,
3623                                      struct ocfs2_merge_ctxt *ctxt)
3624 {
3625         int ret = 0;
3626         struct ocfs2_extent_list *el = path_leaf_el(path);
3627         struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
3628
3629         BUG_ON(ctxt->c_contig_type == CONTIG_NONE);
3630
3631         if (ctxt->c_split_covers_rec && ctxt->c_has_empty_extent) {
3632                 /*
3633                  * The merge code will need to create an empty
3634                  * extent to take the place of the newly
3635                  * emptied slot. Remove any pre-existing empty
3636                  * extents - having more than one in a leaf is
3637                  * illegal.
3638                  */
3639                 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
3640                 if (ret) {
3641                         mlog_errno(ret);
3642                         goto out;
3643                 }
3644                 split_index--;
3645                 rec = &el->l_recs[split_index];
3646         }
3647
3648         if (ctxt->c_contig_type == CONTIG_LEFTRIGHT) {
3649                 /*
3650                  * Left-right contig implies this.
3651                  */
3652                 BUG_ON(!ctxt->c_split_covers_rec);
3653
3654                 /*
3655                  * Since the leftright insert always covers the entire
3656                  * extent, this call will delete the insert record
3657                  * entirely, resulting in an empty extent record added to
3658                  * the extent block.
3659                  *
3660                  * Since the adding of an empty extent shifts
3661                  * everything back to the right, there's no need to
3662                  * update split_index here.
3663                  *
3664                  * When the split_index is zero, we need to merge it to the
3665                  * prevoius extent block. It is more efficient and easier
3666                  * if we do merge_right first and merge_left later.
3667                  */
3668                 ret = ocfs2_merge_rec_right(path, handle, et, split_rec,
3669                                             split_index);
3670                 if (ret) {
3671                         mlog_errno(ret);
3672                         goto out;
3673                 }
3674
3675                 /*
3676                  * We can only get this from logic error above.
3677                  */
3678                 BUG_ON(!ocfs2_is_empty_extent(&el->l_recs[0]));
3679
3680                 /* The merge left us with an empty extent, remove it. */
3681                 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
3682                 if (ret) {
3683                         mlog_errno(ret);
3684                         goto out;
3685                 }
3686
3687                 rec = &el->l_recs[split_index];
3688
3689                 /*
3690                  * Note that we don't pass split_rec here on purpose -
3691                  * we've merged it into the rec already.
3692                  */
3693                 ret = ocfs2_merge_rec_left(path, handle, et, rec,
3694                                            dealloc, split_index);
3695
3696                 if (ret) {
3697                         mlog_errno(ret);
3698                         goto out;
3699                 }
3700
3701                 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
3702                 /*
3703                  * Error from this last rotate is not critical, so
3704                  * print but don't bubble it up.
3705                  */
3706                 if (ret)
3707                         mlog_errno(ret);
3708                 ret = 0;
3709         } else {
3710                 /*
3711                  * Merge a record to the left or right.
3712                  *
3713                  * 'contig_type' is relative to the existing record,
3714                  * so for example, if we're "right contig", it's to
3715                  * the record on the left (hence the left merge).
3716                  */
3717                 if (ctxt->c_contig_type == CONTIG_RIGHT) {
3718                         ret = ocfs2_merge_rec_left(path, handle, et,
3719                                                    split_rec, dealloc,
3720                                                    split_index);
3721                         if (ret) {
3722                                 mlog_errno(ret);
3723                                 goto out;
3724                         }
3725                 } else {
3726                         ret = ocfs2_merge_rec_right(path, handle,
3727                                                     et, split_rec,
3728                                                     split_index);
3729                         if (ret) {
3730                                 mlog_errno(ret);
3731                                 goto out;
3732                         }
3733                 }
3734
3735                 if (ctxt->c_split_covers_rec) {
3736                         /*
3737                          * The merge may have left an empty extent in
3738                          * our leaf. Try to rotate it away.
3739                          */
3740                         ret = ocfs2_rotate_tree_left(handle, et, path,
3741                                                      dealloc);
3742                         if (ret)
3743                                 mlog_errno(ret);
3744                         ret = 0;
3745                 }
3746         }
3747
3748 out:
3749         return ret;
3750 }
3751
3752 static void ocfs2_subtract_from_rec(struct super_block *sb,
3753                                     enum ocfs2_split_type split,
3754                                     struct ocfs2_extent_rec *rec,
3755                                     struct ocfs2_extent_rec *split_rec)
3756 {
3757         u64 len_blocks;
3758
3759         len_blocks = ocfs2_clusters_to_blocks(sb,
3760                                 le16_to_cpu(split_rec->e_leaf_clusters));
3761
3762         if (split == SPLIT_LEFT) {
3763                 /*
3764                  * Region is on the left edge of the existing
3765                  * record.
3766                  */
3767                 le32_add_cpu(&rec->e_cpos,
3768                              le16_to_cpu(split_rec->e_leaf_clusters));
3769                 le64_add_cpu(&rec->e_blkno, len_blocks);
3770                 le16_add_cpu(&rec->e_leaf_clusters,
3771                              -le16_to_cpu(split_rec->e_leaf_clusters));
3772         } else {
3773                 /*
3774                  * Region is on the right edge of the existing
3775                  * record.
3776                  */
3777                 le16_add_cpu(&rec->e_leaf_clusters,
3778                              -le16_to_cpu(split_rec->e_leaf_clusters));
3779         }
3780 }
3781
3782 /*
3783  * Do the final bits of extent record insertion at the target leaf
3784  * list. If this leaf is part of an allocation tree, it is assumed
3785  * that the tree above has been prepared.
3786  */
3787 static void ocfs2_insert_at_leaf(struct ocfs2_extent_rec *insert_rec,
3788                                  struct ocfs2_extent_list *el,
3789                                  struct ocfs2_insert_type *insert,
3790                                  struct inode *inode)
3791 {
3792         int i = insert->ins_contig_index;
3793         unsigned int range;
3794         struct ocfs2_extent_rec *rec;
3795
3796         BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
3797
3798         if (insert->ins_split != SPLIT_NONE) {
3799                 i = ocfs2_search_extent_list(el, le32_to_cpu(insert_rec->e_cpos));
3800                 BUG_ON(i == -1);
3801                 rec = &el->l_recs[i];
3802                 ocfs2_subtract_from_rec(inode->i_sb, insert->ins_split, rec,
3803                                         insert_rec);
3804                 goto rotate;
3805         }
3806
3807         /*
3808          * Contiguous insert - either left or right.
3809          */
3810         if (insert->ins_contig != CONTIG_NONE) {
3811                 rec = &el->l_recs[i];
3812                 if (insert->ins_contig == CONTIG_LEFT) {
3813                         rec->e_blkno = insert_rec->e_blkno;
3814                         rec->e_cpos = insert_rec->e_cpos;
3815                 }
3816                 le16_add_cpu(&rec->e_leaf_clusters,
3817                              le16_to_cpu(insert_rec->e_leaf_clusters));
3818                 return;
3819         }
3820
3821         /*
3822          * Handle insert into an empty leaf.
3823          */
3824         if (le16_to_cpu(el->l_next_free_rec) == 0 ||
3825             ((le16_to_cpu(el->l_next_free_rec) == 1) &&
3826              ocfs2_is_empty_extent(&el->l_recs[0]))) {
3827                 el->l_recs[0] = *insert_rec;
3828                 el->l_next_free_rec = cpu_to_le16(1);
3829                 return;
3830         }
3831
3832         /*
3833          * Appending insert.
3834          */
3835         if (insert->ins_appending == APPEND_TAIL) {
3836                 i = le16_to_cpu(el->l_next_free_rec) - 1;
3837                 rec = &el->l_recs[i];
3838                 range = le32_to_cpu(rec->e_cpos)
3839                         + le16_to_cpu(rec->e_leaf_clusters);
3840                 BUG_ON(le32_to_cpu(insert_rec->e_cpos) < range);
3841
3842                 mlog_bug_on_msg(le16_to_cpu(el->l_next_free_rec) >=
3843                                 le16_to_cpu(el->l_count),
3844                                 "inode %lu, depth %u, count %u, next free %u, "
3845                                 "rec.cpos %u, rec.clusters %u, "
3846                                 "insert.cpos %u, insert.clusters %u\n",
3847                                 inode->i_ino,
3848                                 le16_to_cpu(el->l_tree_depth),
3849                                 le16_to_cpu(el->l_count),
3850                                 le16_to_cpu(el->l_next_free_rec),
3851                                 le32_to_cpu(el->l_recs[i].e_cpos),
3852                                 le16_to_cpu(el->l_recs[i].e_leaf_clusters),
3853                                 le32_to_cpu(insert_rec->e_cpos),
3854                                 le16_to_cpu(insert_rec->e_leaf_clusters));
3855                 i++;
3856                 el->l_recs[i] = *insert_rec;
3857                 le16_add_cpu(&el->l_next_free_rec, 1);
3858                 return;
3859         }
3860
3861 rotate:
3862         /*
3863          * Ok, we have to rotate.
3864          *
3865          * At this point, it is safe to assume that inserting into an
3866          * empty leaf and appending to a leaf have both been handled
3867          * above.
3868          *
3869          * This leaf needs to have space, either by the empty 1st
3870          * extent record, or by virtue of an l_next_rec < l_count.
3871          */
3872         ocfs2_rotate_leaf(el, insert_rec);
3873 }
3874
3875 static void ocfs2_adjust_rightmost_records(handle_t *handle,
3876                                            struct ocfs2_extent_tree *et,
3877                                            struct ocfs2_path *path,
3878                                            struct ocfs2_extent_rec *insert_rec)
3879 {
3880         int ret, i, next_free;
3881         struct buffer_head *bh;
3882         struct ocfs2_extent_list *el;
3883         struct ocfs2_extent_rec *rec;
3884
3885         /*
3886          * Update everything except the leaf block.
3887          */
3888         for (i = 0; i < path->p_tree_depth; i++) {
3889                 bh = path->p_node[i].bh;
3890                 el = path->p_node[i].el;
3891
3892                 next_free = le16_to_cpu(el->l_next_free_rec);
3893                 if (next_free == 0) {
3894                         ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
3895                                     "Owner %llu has a bad extent list",
3896                                     (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci));
3897                         ret = -EIO;
3898                         return;
3899                 }
3900
3901                 rec = &el->l_recs[next_free - 1];
3902
3903                 rec->e_int_clusters = insert_rec->e_cpos;
3904                 le32_add_cpu(&rec->e_int_clusters,
3905                              le16_to_cpu(insert_rec->e_leaf_clusters));
3906                 le32_add_cpu(&rec->e_int_clusters,
3907                              -le32_to_cpu(rec->e_cpos));
3908
3909                 ret = ocfs2_journal_dirty(handle, bh);
3910                 if (ret)
3911                         mlog_errno(ret);
3912
3913         }
3914 }
3915
3916 static int ocfs2_append_rec_to_path(handle_t *handle,
3917                                     struct ocfs2_extent_tree *et,
3918                                     struct ocfs2_extent_rec *insert_rec,
3919                                     struct ocfs2_path *right_path,
3920                                     struct ocfs2_path **ret_left_path)
3921 {
3922         int ret, next_free;
3923         struct ocfs2_extent_list *el;
3924         struct ocfs2_path *left_path = NULL;
3925
3926         *ret_left_path = NULL;
3927
3928         /*
3929          * This shouldn't happen for non-trees. The extent rec cluster
3930          * count manipulation below only works for interior nodes.
3931          */
3932         BUG_ON(right_path->p_tree_depth == 0);
3933
3934         /*
3935          * If our appending insert is at the leftmost edge of a leaf,
3936          * then we might need to update the rightmost records of the
3937          * neighboring path.
3938          */
3939         el = path_leaf_el(right_path);
3940         next_free = le16_to_cpu(el->l_next_free_rec);
3941         if (next_free == 0 ||
3942             (next_free == 1 && ocfs2_is_empty_extent(&el->l_recs[0]))) {
3943                 u32 left_cpos;
3944
3945                 ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci),
3946                                                     right_path, &left_cpos);
3947                 if (ret) {
3948                         mlog_errno(ret);
3949                         goto out;
3950                 }
3951
3952                 mlog(0, "Append may need a left path update. cpos: %u, "
3953                      "left_cpos: %u\n", le32_to_cpu(insert_rec->e_cpos),
3954                      left_cpos);
3955
3956                 /*
3957                  * No need to worry if the append is already in the
3958                  * leftmost leaf.
3959                  */
3960                 if (left_cpos) {
3961                         left_path = ocfs2_new_path_from_path(right_path);
3962                         if (!left_path) {
3963                                 ret = -ENOMEM;
3964                                 mlog_errno(ret);
3965                                 goto out;
3966                         }
3967
3968                         ret = ocfs2_find_path(et->et_ci, left_path,
3969                                               left_cpos);
3970                         if (ret) {
3971                                 mlog_errno(ret);
3972                                 goto out;
3973                         }
3974
3975                         /*
3976                          * ocfs2_insert_path() will pass the left_path to the
3977                          * journal for us.
3978                          */
3979                 }
3980         }
3981
3982         ret = ocfs2_journal_access_path(et->et_ci, handle, right_path);
3983         if (ret) {
3984                 mlog_errno(ret);
3985                 goto out;
3986         }
3987
3988         ocfs2_adjust_rightmost_records(handle, et, right_path, insert_rec);
3989
3990         *ret_left_path = left_path;
3991         ret = 0;
3992 out:
3993         if (ret != 0)
3994                 ocfs2_free_path(left_path);
3995
3996         return ret;
3997 }
3998
3999 static void ocfs2_split_record(struct inode *inode,
4000                                struct ocfs2_path *left_path,
4001                                struct ocfs2_path *right_path,
4002                                struct ocfs2_extent_rec *split_rec,
4003                                enum ocfs2_split_type split)
4004 {
4005         int index;
4006         u32 cpos = le32_to_cpu(split_rec->e_cpos);
4007         struct ocfs2_extent_list *left_el = NULL, *right_el, *insert_el, *el;
4008         struct ocfs2_extent_rec *rec, *tmprec;
4009
4010         right_el = path_leaf_el(right_path);
4011         if (left_path)
4012                 left_el = path_leaf_el(left_path);
4013
4014         el = right_el;
4015         insert_el = right_el;
4016         index = ocfs2_search_extent_list(el, cpos);
4017         if (index != -1) {
4018                 if (index == 0 && left_path) {
4019                         BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
4020
4021                         /*
4022                          * This typically means that the record
4023                          * started in the left path but moved to the
4024                          * right as a result of rotation. We either
4025                          * move the existing record to the left, or we
4026                          * do the later insert there.
4027                          *
4028                          * In this case, the left path should always
4029                          * exist as the rotate code will have passed
4030                          * it back for a post-insert update.
4031                          */
4032
4033                         if (split == SPLIT_LEFT) {
4034                                 /*
4035                                  * It's a left split. Since we know
4036                                  * that the rotate code gave us an
4037                                  * empty extent in the left path, we
4038                                  * can just do the insert there.
4039                                  */
4040                                 insert_el = left_el;
4041                         } else {
4042                                 /*
4043                                  * Right split - we have to move the
4044                                  * existing record over to the left
4045                                  * leaf. The insert will be into the
4046                                  * newly created empty extent in the
4047                                  * right leaf.
4048                                  */
4049                                 tmprec = &right_el->l_recs[index];
4050                                 ocfs2_rotate_leaf(left_el, tmprec);
4051                                 el = left_el;
4052
4053                                 memset(tmprec, 0, sizeof(*tmprec));
4054                                 index = ocfs2_search_extent_list(left_el, cpos);
4055                                 BUG_ON(index == -1);
4056                         }
4057                 }
4058         } else {
4059                 BUG_ON(!left_path);
4060                 BUG_ON(!ocfs2_is_empty_extent(&left_el->l_recs[0]));
4061                 /*
4062                  * Left path is easy - we can just allow the insert to
4063                  * happen.
4064                  */
4065                 el = left_el;
4066                 insert_el = left_el;
4067                 index = ocfs2_search_extent_list(el, cpos);
4068                 BUG_ON(index == -1);
4069         }
4070
4071         rec = &el->l_recs[index];
4072         ocfs2_subtract_from_rec(inode->i_sb, split, rec, split_rec);
4073         ocfs2_rotate_leaf(insert_el, split_rec);
4074 }
4075
4076 /*
4077  * This function only does inserts on an allocation b-tree. For tree
4078  * depth = 0, ocfs2_insert_at_leaf() is called directly.
4079  *
4080  * right_path is the path we want to do the actual insert
4081  * in. left_path should only be passed in if we need to update that
4082  * portion of the tree after an edge insert.
4083  */
4084 static int ocfs2_insert_path(struct inode *inode,
4085                              handle_t *handle,
4086                              struct ocfs2_extent_tree *et,
4087                              struct ocfs2_path *left_path,
4088                              struct ocfs2_path *right_path,
4089                              struct ocfs2_extent_rec *insert_rec,
4090                              struct ocfs2_insert_type *insert)
4091 {
4092         int ret, subtree_index;
4093         struct buffer_head *leaf_bh = path_leaf_bh(right_path);
4094
4095         if (left_path) {
4096                 int credits = handle->h_buffer_credits;
4097
4098                 /*
4099                  * There's a chance that left_path got passed back to
4100                  * us without being accounted for in the
4101                  * journal. Extend our transaction here to be sure we
4102                  * can change those blocks.
4103                  */
4104                 credits += left_path->p_tree_depth;
4105
4106                 ret = ocfs2_extend_trans(handle, credits);
4107                 if (ret < 0) {
4108                         mlog_errno(ret);
4109                         goto out;
4110                 }
4111
4112                 ret = ocfs2_journal_access_path(et->et_ci, handle, left_path);
4113                 if (ret < 0) {
4114                         mlog_errno(ret);
4115                         goto out;
4116                 }
4117         }
4118
4119         /*
4120          * Pass both paths to the journal. The majority of inserts
4121          * will be touching all components anyway.
4122          */
4123         ret = ocfs2_journal_access_path(et->et_ci, handle, right_path);
4124         if (ret < 0) {
4125                 mlog_errno(ret);
4126                 goto out;
4127         }
4128
4129         if (insert->ins_split != SPLIT_NONE) {
4130                 /*
4131                  * We could call ocfs2_insert_at_leaf() for some types
4132                  * of splits, but it's easier to just let one separate
4133                  * function sort it all out.
4134                  */
4135                 ocfs2_split_record(inode, left_path, right_path,
4136                                    insert_rec, insert->ins_split);
4137
4138                 /*
4139                  * Split might have modified either leaf and we don't
4140                  * have a guarantee that the later edge insert will
4141                  * dirty this for us.
4142                  */
4143                 if (left_path)
4144                         ret = ocfs2_journal_dirty(handle,
4145                                                   path_leaf_bh(left_path));
4146                         if (ret)
4147                                 mlog_errno(ret);
4148         } else
4149                 ocfs2_insert_at_leaf(insert_rec, path_leaf_el(right_path),
4150                                      insert, inode);
4151
4152         ret = ocfs2_journal_dirty(handle, leaf_bh);
4153         if (ret)
4154                 mlog_errno(ret);
4155
4156         if (left_path) {
4157                 /*
4158                  * The rotate code has indicated that we need to fix
4159                  * up portions of the tree after the insert.
4160                  *
4161                  * XXX: Should we extend the transaction here?
4162                  */
4163                 subtree_index = ocfs2_find_subtree_root(et, left_path,
4164                                                         right_path);
4165                 ocfs2_complete_edge_insert(handle, left_path, right_path,
4166                                            subtree_index);
4167         }
4168
4169         ret = 0;
4170 out:
4171         return ret;
4172 }
4173
4174 static int ocfs2_do_insert_extent(struct inode *inode,
4175                                   handle_t *handle,
4176                                   struct ocfs2_extent_tree *et,
4177                                   struct ocfs2_extent_rec *insert_rec,
4178                                   struct ocfs2_insert_type *type)
4179 {
4180         int ret, rotate = 0;
4181         u32 cpos;
4182         struct ocfs2_path *right_path = NULL;
4183         struct ocfs2_path *left_path = NULL;
4184         struct ocfs2_extent_list *el;
4185
4186         el = et->et_root_el;
4187
4188         ret = ocfs2_et_root_journal_access(handle, et,
4189                                            OCFS2_JOURNAL_ACCESS_WRITE);
4190         if (ret) {
4191                 mlog_errno(ret);
4192                 goto out;
4193         }
4194
4195         if (le16_to_cpu(el->l_tree_depth) == 0) {
4196                 ocfs2_insert_at_leaf(insert_rec, el, type, inode);
4197                 goto out_update_clusters;
4198         }
4199
4200         right_path = ocfs2_new_path_from_et(et);
4201         if (!right_path) {
4202                 ret = -ENOMEM;
4203                 mlog_errno(ret);
4204                 goto out;
4205         }
4206
4207         /*
4208          * Determine the path to start with. Rotations need the
4209          * rightmost path, everything else can go directly to the
4210          * target leaf.
4211          */
4212         cpos = le32_to_cpu(insert_rec->e_cpos);
4213         if (type->ins_appending == APPEND_NONE &&
4214             type->ins_contig == CONTIG_NONE) {
4215                 rotate = 1;
4216                 cpos = UINT_MAX;
4217         }
4218
4219         ret = ocfs2_find_path(et->et_ci, right_path, cpos);
4220         if (ret) {
4221                 mlog_errno(ret);
4222                 goto out;
4223         }
4224
4225         /*
4226          * Rotations and appends need special treatment - they modify
4227          * parts of the tree's above them.
4228          *
4229          * Both might pass back a path immediate to the left of the
4230          * one being inserted to. This will be cause
4231          * ocfs2_insert_path() to modify the rightmost records of
4232          * left_path to account for an edge insert.
4233          *
4234          * XXX: When modifying this code, keep in mind that an insert
4235          * can wind up skipping both of these two special cases...
4236          */
4237         if (rotate) {
4238                 ret = ocfs2_rotate_tree_right(handle, et, type->ins_split,
4239                                               le32_to_cpu(insert_rec->e_cpos),
4240                                               right_path, &left_path);
4241                 if (ret) {
4242                         mlog_errno(ret);
4243                         goto out;
4244                 }
4245
4246                 /*
4247                  * ocfs2_rotate_tree_right() might have extended the
4248                  * transaction without re-journaling our tree root.
4249                  */
4250                 ret = ocfs2_et_root_journal_access(handle, et,
4251                                                    OCFS2_JOURNAL_ACCESS_WRITE);
4252                 if (ret) {
4253                         mlog_errno(ret);
4254                         goto out;
4255                 }
4256         } else if (type->ins_appending == APPEND_TAIL
4257                    && type->ins_contig != CONTIG_LEFT) {
4258                 ret = ocfs2_append_rec_to_path(handle, et, insert_rec,
4259                                                right_path, &left_path);
4260                 if (ret) {
4261                         mlog_errno(ret);
4262                         goto out;
4263                 }
4264         }
4265
4266         ret = ocfs2_insert_path(inode, handle, et, left_path, right_path,
4267                                 insert_rec, type);
4268         if (ret) {
4269                 mlog_errno(ret);
4270                 goto out;
4271         }
4272
4273 out_update_clusters:
4274         if (type->ins_split == SPLIT_NONE)
4275                 ocfs2_et_update_clusters(et,
4276                                          le16_to_cpu(insert_rec->e_leaf_clusters));
4277
4278         ret = ocfs2_journal_dirty(handle, et->et_root_bh);
4279         if (ret)
4280                 mlog_errno(ret);
4281
4282 out:
4283         ocfs2_free_path(left_path);
4284         ocfs2_free_path(right_path);
4285
4286         return ret;
4287 }
4288
4289 static enum ocfs2_contig_type
4290 ocfs2_figure_merge_contig_type(struct inode *inode, struct ocfs2_path *path,
4291                                struct ocfs2_extent_list *el, int index,
4292                                struct ocfs2_extent_rec *split_rec)
4293 {
4294         int status;
4295         enum ocfs2_contig_type ret = CONTIG_NONE;
4296         u32 left_cpos, right_cpos;
4297         struct ocfs2_extent_rec *rec = NULL;
4298         struct ocfs2_extent_list *new_el;
4299         struct ocfs2_path *left_path = NULL, *right_path = NULL;
4300         struct buffer_head *bh;
4301         struct ocfs2_extent_block *eb;
4302
4303         if (index > 0) {
4304                 rec = &el->l_recs[index - 1];
4305         } else if (path->p_tree_depth > 0) {
4306                 status = ocfs2_find_cpos_for_left_leaf(inode->i_sb,
4307                                                        path, &left_cpos);
4308                 if (status)
4309                         goto out;
4310
4311                 if (left_cpos != 0) {
4312                         left_path = ocfs2_new_path_from_path(path);
4313                         if (!left_path)
4314                                 goto out;
4315
4316                         status = ocfs2_find_path(INODE_CACHE(inode),
4317                                                  left_path, left_cpos);
4318                         if (status)
4319                                 goto out;
4320
4321                         new_el = path_leaf_el(left_path);
4322
4323                         if (le16_to_cpu(new_el->l_next_free_rec) !=
4324                             le16_to_cpu(new_el->l_count)) {
4325                                 bh = path_leaf_bh(left_path);
4326                                 eb = (struct ocfs2_extent_block *)bh->b_data;
4327                                 ocfs2_error(inode->i_sb,
4328                                             "Extent block #%llu has an "
4329                                             "invalid l_next_free_rec of "
4330                                             "%d.  It should have "
4331                                             "matched the l_count of %d",
4332                                             (unsigned long long)le64_to_cpu(eb->h_blkno),
4333                                             le16_to_cpu(new_el->l_next_free_rec),
4334                                             le16_to_cpu(new_el->l_count));
4335                                 status = -EINVAL;
4336                                 goto out;
4337                         }
4338                         rec = &new_el->l_recs[
4339                                 le16_to_cpu(new_el->l_next_free_rec) - 1];
4340                 }
4341         }
4342
4343         /*
4344          * We're careful to check for an empty extent record here -
4345          * the merge code will know what to do if it sees one.
4346          */
4347         if (rec) {
4348                 if (index == 1 && ocfs2_is_empty_extent(rec)) {
4349                         if (split_rec->e_cpos == el->l_recs[index].e_cpos)
4350                                 ret = CONTIG_RIGHT;
4351                 } else {
4352                         ret = ocfs2_extent_contig(inode, rec, split_rec);
4353                 }
4354         }
4355
4356         rec = NULL;
4357         if (index < (le16_to_cpu(el->l_next_free_rec) - 1))
4358                 rec = &el->l_recs[index + 1];
4359         else if (le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count) &&
4360                  path->p_tree_depth > 0) {
4361                 status = ocfs2_find_cpos_for_right_leaf(inode->i_sb,
4362                                                         path, &right_cpos);
4363                 if (status)
4364                         goto out;
4365
4366                 if (right_cpos == 0)
4367                         goto out;
4368
4369                 right_path = ocfs2_new_path_from_path(path);
4370                 if (!right_path)
4371                         goto out;
4372
4373                 status = ocfs2_find_path(INODE_CACHE(inode), right_path, right_cpos);
4374                 if (status)
4375                         goto out;
4376
4377                 new_el = path_leaf_el(right_path);
4378                 rec = &new_el->l_recs[0];
4379                 if (ocfs2_is_empty_extent(rec)) {
4380                         if (le16_to_cpu(new_el->l_next_free_rec) <= 1) {
4381                                 bh = path_leaf_bh(right_path);
4382                                 eb = (struct ocfs2_extent_block *)bh->b_data;
4383                                 ocfs2_error(inode->i_sb,
4384                                             "Extent block #%llu has an "
4385                                             "invalid l_next_free_rec of %d",
4386                                             (unsigned long long)le64_to_cpu(eb->h_blkno),
4387                                             le16_to_cpu(new_el->l_next_free_rec));
4388                                 status = -EINVAL;
4389                                 goto out;
4390                         }
4391                         rec = &new_el->l_recs[1];
4392                 }
4393         }
4394
4395         if (rec) {
4396                 enum ocfs2_contig_type contig_type;
4397
4398                 contig_type = ocfs2_extent_contig(inode, rec, split_rec);
4399
4400                 if (contig_type == CONTIG_LEFT && ret == CONTIG_RIGHT)
4401                         ret = CONTIG_LEFTRIGHT;
4402                 else if (ret == CONTIG_NONE)
4403                         ret = contig_type;
4404         }
4405
4406 out:
4407         if (left_path)
4408                 ocfs2_free_path(left_path);
4409         if (right_path)
4410                 ocfs2_free_path(right_path);
4411
4412         return ret;
4413 }
4414
4415 static void ocfs2_figure_contig_type(struct inode *inode,
4416                                      struct ocfs2_insert_type *insert,
4417                                      struct ocfs2_extent_list *el,
4418                                      struct ocfs2_extent_rec *insert_rec,
4419                                      struct ocfs2_extent_tree *et)
4420 {
4421         int i;
4422         enum ocfs2_contig_type contig_type = CONTIG_NONE;
4423
4424         BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
4425
4426         for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
4427                 contig_type = ocfs2_extent_contig(inode, &el->l_recs[i],
4428                                                   insert_rec);
4429                 if (contig_type != CONTIG_NONE) {
4430                         insert->ins_contig_index = i;
4431                         break;
4432                 }
4433         }
4434         insert->ins_contig = contig_type;
4435
4436         if (insert->ins_contig != CONTIG_NONE) {
4437                 struct ocfs2_extent_rec *rec =
4438                                 &el->l_recs[insert->ins_contig_index];
4439                 unsigned int len = le16_to_cpu(rec->e_leaf_clusters) +
4440                                    le16_to_cpu(insert_rec->e_leaf_clusters);
4441
4442                 /*
4443                  * Caller might want us to limit the size of extents, don't
4444                  * calculate contiguousness if we might exceed that limit.
4445                  */
4446                 if (et->et_max_leaf_clusters &&
4447                     (len > et->et_max_leaf_clusters))
4448                         insert->ins_contig = CONTIG_NONE;
4449         }
4450 }
4451
4452 /*
4453  * This should only be called against the righmost leaf extent list.
4454  *
4455  * ocfs2_figure_appending_type() will figure out whether we'll have to
4456  * insert at the tail of the rightmost leaf.
4457  *
4458  * This should also work against the root extent list for tree's with 0
4459  * depth. If we consider the root extent list to be the rightmost leaf node
4460  * then the logic here makes sense.
4461  */
4462 static void ocfs2_figure_appending_type(struct ocfs2_insert_type *insert,
4463                                         struct ocfs2_extent_list *el,
4464                                         struct ocfs2_extent_rec *insert_rec)
4465 {
4466         int i;
4467         u32 cpos = le32_to_cpu(insert_rec->e_cpos);
4468         struct ocfs2_extent_rec *rec;
4469
4470         insert->ins_appending = APPEND_NONE;
4471
4472         BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
4473
4474         if (!el->l_next_free_rec)
4475                 goto set_tail_append;
4476
4477         if (ocfs2_is_empty_extent(&el->l_recs[0])) {
4478                 /* Were all records empty? */
4479                 if (le16_to_cpu(el->l_next_free_rec) == 1)
4480                         goto set_tail_append;
4481         }
4482
4483         i = le16_to_cpu(el->l_next_free_rec) - 1;
4484         rec = &el->l_recs[i];
4485
4486         if (cpos >=
4487             (le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)))
4488                 goto set_tail_append;
4489
4490         return;
4491
4492 set_tail_append:
4493         insert->ins_appending = APPEND_TAIL;
4494 }
4495
4496 /*
4497  * Helper function called at the begining of an insert.
4498  *
4499  * This computes a few things that are commonly used in the process of
4500  * inserting into the btree:
4501  *   - Whether the new extent is contiguous with an existing one.
4502  *   - The current tree depth.
4503  *   - Whether the insert is an appending one.
4504  *   - The total # of free records in the tree.
4505  *
4506  * All of the information is stored on the ocfs2_insert_type
4507  * structure.
4508  */
4509 static int ocfs2_figure_insert_type(struct inode *inode,
4510                                     struct ocfs2_extent_tree *et,
4511                                     struct buffer_head **last_eb_bh,
4512                                     struct ocfs2_extent_rec *insert_rec,
4513                                     int *free_records,
4514                                     struct ocfs2_insert_type *insert)
4515 {
4516         int ret;
4517         struct ocfs2_extent_block *eb;
4518         struct ocfs2_extent_list *el;
4519         struct ocfs2_path *path = NULL;
4520         struct buffer_head *bh = NULL;
4521
4522         insert->ins_split = SPLIT_NONE;
4523
4524         el = et->et_root_el;
4525         insert->ins_tree_depth = le16_to_cpu(el->l_tree_depth);
4526
4527         if (el->l_tree_depth) {
4528                 /*
4529                  * If we have tree depth, we read in the
4530                  * rightmost extent block ahead of time as
4531                  * ocfs2_figure_insert_type() and ocfs2_add_branch()
4532                  * may want it later.
4533                  */
4534                 ret = ocfs2_read_extent_block(et->et_ci,
4535                                               ocfs2_et_get_last_eb_blk(et),
4536                                               &bh);
4537                 if (ret) {
4538                         mlog_exit(ret);
4539                         goto out;
4540                 }
4541                 eb = (struct ocfs2_extent_block *) bh->b_data;
4542                 el = &eb->h_list;
4543         }
4544
4545         /*
4546          * Unless we have a contiguous insert, we'll need to know if
4547          * there is room left in our allocation tree for another
4548          * extent record.
4549          *
4550          * XXX: This test is simplistic, we can search for empty
4551          * extent records too.
4552          */
4553         *free_records = le16_to_cpu(el->l_count) -
4554                 le16_to_cpu(el->l_next_free_rec);
4555
4556         if (!insert->ins_tree_depth) {
4557                 ocfs2_figure_contig_type(inode, insert, el, insert_rec, et);
4558                 ocfs2_figure_appending_type(insert, el, insert_rec);
4559                 return 0;
4560         }
4561
4562         path = ocfs2_new_path_from_et(et);
4563         if (!path) {
4564                 ret = -ENOMEM;
4565                 mlog_errno(ret);
4566                 goto out;
4567         }
4568
4569         /*
4570          * In the case that we're inserting past what the tree
4571          * currently accounts for, ocfs2_find_path() will return for
4572          * us the rightmost tree path. This is accounted for below in
4573          * the appending code.
4574          */
4575         ret = ocfs2_find_path(et->et_ci, path, le32_to_cpu(insert_rec->e_cpos));
4576         if (ret) {
4577                 mlog_errno(ret);
4578                 goto out;
4579         }
4580
4581         el = path_leaf_el(path);
4582
4583         /*
4584          * Now that we have the path, there's two things we want to determine:
4585          * 1) Contiguousness (also set contig_index if this is so)
4586          *
4587          * 2) Are we doing an append? We can trivially break this up
4588          *     into two types of appends: simple record append, or a
4589          *     rotate inside the tail leaf.
4590          */
4591         ocfs2_figure_contig_type(inode, insert, el, insert_rec, et);
4592
4593         /*
4594          * The insert code isn't quite ready to deal with all cases of
4595          * left contiguousness. Specifically, if it's an insert into
4596          * the 1st record in a leaf, it will require the adjustment of
4597          * cluster count on the last record of the path directly to it's
4598          * left. For now, just catch that case and fool the layers
4599          * above us. This works just fine for tree_depth == 0, which
4600          * is why we allow that above.
4601          */
4602         if (insert->ins_contig == CONTIG_LEFT &&
4603             insert->ins_contig_index == 0)
4604                 insert->ins_contig = CONTIG_NONE;
4605
4606         /*
4607          * Ok, so we can simply compare against last_eb to figure out
4608          * whether the path doesn't exist. This will only happen in
4609          * the case that we're doing a tail append, so maybe we can
4610          * take advantage of that information somehow.
4611          */
4612         if (ocfs2_et_get_last_eb_blk(et) ==
4613             path_leaf_bh(path)->b_blocknr) {
4614                 /*
4615                  * Ok, ocfs2_find_path() returned us the rightmost
4616                  * tree path. This might be an appending insert. There are
4617                  * two cases:
4618                  *    1) We're doing a true append at the tail:
4619                  *      -This might even be off the end of the leaf
4620                  *    2) We're "appending" by rotating in the tail
4621                  */
4622                 ocfs2_figure_appending_type(insert, el, insert_rec);
4623         }
4624
4625 out:
4626         ocfs2_free_path(path);
4627
4628         if (ret == 0)
4629                 *last_eb_bh = bh;
4630         else
4631                 brelse(bh);
4632         return ret;
4633 }
4634
4635 /*
4636  * Insert an extent into an inode btree.
4637  *
4638  * The caller needs to update fe->i_clusters
4639  */
4640 int ocfs2_insert_extent(struct ocfs2_super *osb,
4641                         handle_t *handle,
4642                         struct inode *inode,
4643                         struct ocfs2_extent_tree *et,
4644                         u32 cpos,
4645                         u64 start_blk,
4646                         u32 new_clusters,
4647                         u8 flags,
4648                         struct ocfs2_alloc_context *meta_ac)
4649 {
4650         int status;
4651         int uninitialized_var(free_records);
4652         struct buffer_head *last_eb_bh = NULL;
4653         struct ocfs2_insert_type insert = {0, };
4654         struct ocfs2_extent_rec rec;
4655
4656         mlog(0, "add %u clusters at position %u to inode %llu\n",
4657              new_clusters, cpos, (unsigned long long)OCFS2_I(inode)->ip_blkno);
4658
4659         memset(&rec, 0, sizeof(rec));
4660         rec.e_cpos = cpu_to_le32(cpos);
4661         rec.e_blkno = cpu_to_le64(start_blk);
4662         rec.e_leaf_clusters = cpu_to_le16(new_clusters);
4663         rec.e_flags = flags;
4664         status = ocfs2_et_insert_check(et, &rec);
4665         if (status) {
4666                 mlog_errno(status);
4667                 goto bail;
4668         }
4669
4670         status = ocfs2_figure_insert_type(inode, et, &last_eb_bh, &rec,
4671                                           &free_records, &insert);
4672         if (status < 0) {
4673                 mlog_errno(status);
4674                 goto bail;
4675         }
4676
4677         mlog(0, "Insert.appending: %u, Insert.Contig: %u, "
4678              "Insert.contig_index: %d, Insert.free_records: %d, "
4679              "Insert.tree_depth: %d\n",
4680              insert.ins_appending, insert.ins_contig, insert.ins_contig_index,
4681              free_records, insert.ins_tree_depth);
4682
4683         if (insert.ins_contig == CONTIG_NONE && free_records == 0) {
4684                 status = ocfs2_grow_tree(handle, et,
4685                                          &insert.ins_tree_depth, &last_eb_bh,
4686                                          meta_ac);
4687                 if (status) {
4688                         mlog_errno(status);
4689                         goto bail;
4690                 }
4691         }
4692
4693         /* Finally, we can add clusters. This might rotate the tree for us. */
4694         status = ocfs2_do_insert_extent(inode, handle, et, &rec, &insert);
4695         if (status < 0)
4696                 mlog_errno(status);
4697         else if (et->et_ops == &ocfs2_dinode_et_ops)
4698                 ocfs2_extent_map_insert_rec(inode, &rec);
4699
4700 bail:
4701         brelse(last_eb_bh);
4702
4703         mlog_exit(status);
4704         return status;
4705 }
4706
4707 /*
4708  * Allcate and add clusters into the extent b-tree.
4709  * The new clusters(clusters_to_add) will be inserted at logical_offset.
4710  * The extent b-tree's root is specified by et, and
4711  * it is not limited to the file storage. Any extent tree can use this
4712  * function if it implements the proper ocfs2_extent_tree.
4713  */
4714 int ocfs2_add_clusters_in_btree(struct ocfs2_super *osb,
4715                                 struct inode *inode,
4716                                 u32 *logical_offset,
4717                                 u32 clusters_to_add,
4718                                 int mark_unwritten,
4719                                 struct ocfs2_extent_tree *et,
4720                                 handle_t *handle,
4721                                 struct ocfs2_alloc_context *data_ac,
4722                                 struct ocfs2_alloc_context *meta_ac,
4723                                 enum ocfs2_alloc_restarted *reason_ret)
4724 {
4725         int status = 0;
4726         int free_extents;
4727         enum ocfs2_alloc_restarted reason = RESTART_NONE;
4728         u32 bit_off, num_bits;
4729         u64 block;
4730         u8 flags = 0;
4731
4732         BUG_ON(!clusters_to_add);
4733
4734         if (mark_unwritten)
4735                 flags = OCFS2_EXT_UNWRITTEN;
4736
4737         free_extents = ocfs2_num_free_extents(osb, et);
4738         if (free_extents < 0) {
4739                 status = free_extents;
4740                 mlog_errno(status);
4741                 goto leave;
4742         }
4743
4744         /* there are two cases which could cause us to EAGAIN in the
4745          * we-need-more-metadata case:
4746          * 1) we haven't reserved *any*
4747          * 2) we are so fragmented, we've needed to add metadata too
4748          *    many times. */
4749         if (!free_extents && !meta_ac) {
4750                 mlog(0, "we haven't reserved any metadata!\n");
4751                 status = -EAGAIN;
4752                 reason = RESTART_META;
4753                 goto leave;
4754         } else if ((!free_extents)
4755                    && (ocfs2_alloc_context_bits_left(meta_ac)
4756                        < ocfs2_extend_meta_needed(et->et_root_el))) {
4757                 mlog(0, "filesystem is really fragmented...\n");
4758                 status = -EAGAIN;
4759                 reason = RESTART_META;
4760                 goto leave;
4761         }
4762
4763         status = __ocfs2_claim_clusters(osb, handle, data_ac, 1,
4764                                         clusters_to_add, &bit_off, &num_bits);
4765         if (status < 0) {
4766                 if (status != -ENOSPC)
4767                         mlog_errno(status);
4768                 goto leave;
4769         }
4770
4771         BUG_ON(num_bits > clusters_to_add);
4772
4773         /* reserve our write early -- insert_extent may update the tree root */
4774         status = ocfs2_et_root_journal_access(handle, et,
4775                                               OCFS2_JOURNAL_ACCESS_WRITE);
4776         if (status < 0) {
4777                 mlog_errno(status);
4778                 goto leave;
4779         }
4780
4781         block = ocfs2_clusters_to_blocks(osb->sb, bit_off);
4782         mlog(0, "Allocating %u clusters at block %u for inode %llu\n",
4783              num_bits, bit_off, (unsigned long long)OCFS2_I(inode)->ip_blkno);
4784         status = ocfs2_insert_extent(osb, handle, inode, et,
4785                                      *logical_offset, block,
4786                                      num_bits, flags, meta_ac);
4787         if (status < 0) {
4788                 mlog_errno(status);
4789                 goto leave;
4790         }
4791
4792         status = ocfs2_journal_dirty(handle, et->et_root_bh);
4793         if (status < 0) {
4794                 mlog_errno(status);
4795                 goto leave;
4796         }
4797
4798         clusters_to_add -= num_bits;
4799         *logical_offset += num_bits;
4800
4801         if (clusters_to_add) {
4802                 mlog(0, "need to alloc once more, wanted = %u\n",
4803                      clusters_to_add);
4804                 status = -EAGAIN;
4805                 reason = RESTART_TRANS;
4806         }
4807
4808 leave:
4809         mlog_exit(status);
4810         if (reason_ret)
4811                 *reason_ret = reason;
4812         return status;
4813 }
4814
4815 static void ocfs2_make_right_split_rec(struct super_block *sb,
4816                                        struct ocfs2_extent_rec *split_rec,
4817                                        u32 cpos,
4818                                        struct ocfs2_extent_rec *rec)
4819 {
4820         u32 rec_cpos = le32_to_cpu(rec->e_cpos);
4821         u32 rec_range = rec_cpos + le16_to_cpu(rec->e_leaf_clusters);
4822
4823         memset(split_rec, 0, sizeof(struct ocfs2_extent_rec));
4824
4825         split_rec->e_cpos = cpu_to_le32(cpos);
4826         split_rec->e_leaf_clusters = cpu_to_le16(rec_range - cpos);
4827
4828         split_rec->e_blkno = rec->e_blkno;
4829         le64_add_cpu(&split_rec->e_blkno,
4830                      ocfs2_clusters_to_blocks(sb, cpos - rec_cpos));
4831
4832         split_rec->e_flags = rec->e_flags;
4833 }
4834
4835 static int ocfs2_split_and_insert(struct inode *inode,
4836                                   handle_t *handle,
4837                                   struct ocfs2_path *path,
4838                                   struct ocfs2_extent_tree *et,
4839                                   struct buffer_head **last_eb_bh,
4840                                   int split_index,
4841                                   struct ocfs2_extent_rec *orig_split_rec,
4842                                   struct ocfs2_alloc_context *meta_ac)
4843 {
4844         int ret = 0, depth;
4845         unsigned int insert_range, rec_range, do_leftright = 0;
4846         struct ocfs2_extent_rec tmprec;
4847         struct ocfs2_extent_list *rightmost_el;
4848         struct ocfs2_extent_rec rec;
4849         struct ocfs2_extent_rec split_rec = *orig_split_rec;
4850         struct ocfs2_insert_type insert;
4851         struct ocfs2_extent_block *eb;
4852
4853 leftright:
4854         /*
4855          * Store a copy of the record on the stack - it might move
4856          * around as the tree is manipulated below.
4857          */
4858         rec = path_leaf_el(path)->l_recs[split_index];
4859
4860         rightmost_el = et->et_root_el;
4861
4862         depth = le16_to_cpu(rightmost_el->l_tree_depth);
4863         if (depth) {
4864                 BUG_ON(!(*last_eb_bh));
4865                 eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
4866                 rightmost_el = &eb->h_list;
4867         }
4868
4869         if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
4870             le16_to_cpu(rightmost_el->l_count)) {
4871                 ret = ocfs2_grow_tree(handle, et,
4872                                       &depth, last_eb_bh, meta_ac);
4873                 if (ret) {
4874                         mlog_errno(ret);
4875                         goto out;
4876                 }
4877         }
4878
4879         memset(&insert, 0, sizeof(struct ocfs2_insert_type));
4880         insert.ins_appending = APPEND_NONE;
4881         insert.ins_contig = CONTIG_NONE;
4882         insert.ins_tree_depth = depth;
4883
4884         insert_range = le32_to_cpu(split_rec.e_cpos) +
4885                 le16_to_cpu(split_rec.e_leaf_clusters);
4886         rec_range = le32_to_cpu(rec.e_cpos) +
4887                 le16_to_cpu(rec.e_leaf_clusters);
4888
4889         if (split_rec.e_cpos == rec.e_cpos) {
4890                 insert.ins_split = SPLIT_LEFT;
4891         } else if (insert_range == rec_range) {
4892                 insert.ins_split = SPLIT_RIGHT;
4893         } else {
4894                 /*
4895                  * Left/right split. We fake this as a right split
4896                  * first and then make a second pass as a left split.
4897                  */
4898                 insert.ins_split = SPLIT_RIGHT;
4899
4900                 ocfs2_make_right_split_rec(inode->i_sb, &tmprec, insert_range,
4901                                            &rec);
4902
4903                 split_rec = tmprec;
4904
4905                 BUG_ON(do_leftright);
4906                 do_leftright = 1;
4907         }
4908
4909         ret = ocfs2_do_insert_extent(inode, handle, et, &split_rec, &insert);
4910         if (ret) {
4911                 mlog_errno(ret);
4912                 goto out;
4913         }
4914
4915         if (do_leftright == 1) {
4916                 u32 cpos;
4917                 struct ocfs2_extent_list *el;
4918
4919                 do_leftright++;
4920                 split_rec = *orig_split_rec;
4921
4922                 ocfs2_reinit_path(path, 1);
4923
4924                 cpos = le32_to_cpu(split_rec.e_cpos);
4925                 ret = ocfs2_find_path(et->et_ci, path, cpos);
4926                 if (ret) {
4927                         mlog_errno(ret);
4928                         goto out;
4929                 }
4930
4931                 el = path_leaf_el(path);
4932                 split_index = ocfs2_search_extent_list(el, cpos);
4933                 goto leftright;
4934         }
4935 out:
4936
4937         return ret;
4938 }
4939
4940 static int ocfs2_replace_extent_rec(struct inode *inode,
4941                                     handle_t *handle,
4942                                     struct ocfs2_path *path,
4943                                     struct ocfs2_extent_list *el,
4944                                     int split_index,
4945                                     struct ocfs2_extent_rec *split_rec)
4946 {
4947         int ret;
4948
4949         ret = ocfs2_path_bh_journal_access(handle, INODE_CACHE(inode), path,
4950                                            path_num_items(path) - 1);
4951         if (ret) {
4952                 mlog_errno(ret);
4953                 goto out;
4954         }
4955
4956         el->l_recs[split_index] = *split_rec;
4957
4958         ocfs2_journal_dirty(handle, path_leaf_bh(path));
4959 out:
4960         return ret;
4961 }
4962
4963 /*
4964  * Mark part or all of the extent record at split_index in the leaf
4965  * pointed to by path as written. This removes the unwritten
4966  * extent flag.
4967  *
4968  * Care is taken to handle contiguousness so as to not grow the tree.
4969  *
4970  * meta_ac is not strictly necessary - we only truly need it if growth
4971  * of the tree is required. All other cases will degrade into a less
4972  * optimal tree layout.
4973  *
4974  * last_eb_bh should be the rightmost leaf block for any extent
4975  * btree. Since a split may grow the tree or a merge might shrink it,
4976  * the caller cannot trust the contents of that buffer after this call.
4977  *
4978  * This code is optimized for readability - several passes might be
4979  * made over certain portions of the tree. All of those blocks will
4980  * have been brought into cache (and pinned via the journal), so the
4981  * extra overhead is not expressed in terms of disk reads.
4982  */
4983 static int __ocfs2_mark_extent_written(struct inode *inode,
4984                                        struct ocfs2_extent_tree *et,
4985                                        handle_t *handle,
4986                                        struct ocfs2_path *path,
4987                                        int split_index,
4988                                        struct ocfs2_extent_rec *split_rec,
4989                                        struct ocfs2_alloc_context *meta_ac,
4990                                        struct ocfs2_cached_dealloc_ctxt *dealloc)
4991 {
4992         int ret = 0;
4993         struct ocfs2_extent_list *el = path_leaf_el(path);
4994         struct buffer_head *last_eb_bh = NULL;
4995         struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
4996         struct ocfs2_merge_ctxt ctxt;
4997         struct ocfs2_extent_list *rightmost_el;
4998
4999         if (!(rec->e_flags & OCFS2_EXT_UNWRITTEN)) {
5000                 ret = -EIO;
5001                 mlog_errno(ret);
5002                 goto out;
5003         }
5004
5005         if (le32_to_cpu(rec->e_cpos) > le32_to_cpu(split_rec->e_cpos) ||
5006             ((le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)) <
5007              (le32_to_cpu(split_rec->e_cpos) + le16_to_cpu(split_rec->e_leaf_clusters)))) {
5008                 ret = -EIO;
5009                 mlog_errno(ret);
5010                 goto out;
5011         }
5012
5013         ctxt.c_contig_type = ocfs2_figure_merge_contig_type(inode, path, el,
5014                                                             split_index,
5015                                                             split_rec);
5016
5017         /*
5018          * The core merge / split code wants to know how much room is
5019          * left in this inodes allocation tree, so we pass the
5020          * rightmost extent list.
5021          */
5022         if (path->p_tree_depth) {
5023                 struct ocfs2_extent_block *eb;
5024
5025                 ret = ocfs2_read_extent_block(et->et_ci,
5026                                               ocfs2_et_get_last_eb_blk(et),
5027                                               &last_eb_bh);
5028                 if (ret) {
5029                         mlog_exit(ret);
5030                         goto out;
5031                 }
5032
5033                 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
5034                 rightmost_el = &eb->h_list;
5035         } else
5036                 rightmost_el = path_root_el(path);
5037
5038         if (rec->e_cpos == split_rec->e_cpos &&
5039             rec->e_leaf_clusters == split_rec->e_leaf_clusters)
5040                 ctxt.c_split_covers_rec = 1;
5041         else
5042                 ctxt.c_split_covers_rec = 0;
5043
5044         ctxt.c_has_empty_extent = ocfs2_is_empty_extent(&el->l_recs[0]);
5045
5046         mlog(0, "index: %d, contig: %u, has_empty: %u, split_covers: %u\n",
5047              split_index, ctxt.c_contig_type, ctxt.c_has_empty_extent,
5048              ctxt.c_split_covers_rec);
5049
5050         if (ctxt.c_contig_type == CONTIG_NONE) {
5051                 if (ctxt.c_split_covers_rec)
5052                         ret = ocfs2_replace_extent_rec(inode, handle,
5053                                                        path, el,
5054                                                        split_index, split_rec);
5055                 else
5056                         ret = ocfs2_split_and_insert(inode, handle, path, et,
5057                                                      &last_eb_bh, split_index,
5058                                                      split_rec, meta_ac);
5059                 if (ret)
5060                         mlog_errno(ret);
5061         } else {
5062                 ret = ocfs2_try_to_merge_extent(handle, et, path,
5063                                                 split_index, split_rec,
5064                                                 dealloc, &ctxt);
5065                 if (ret)
5066                         mlog_errno(ret);
5067         }
5068
5069 out:
5070         brelse(last_eb_bh);
5071         return ret;
5072 }
5073
5074 /*
5075  * Mark the already-existing extent at cpos as written for len clusters.
5076  *
5077  * If the existing extent is larger than the request, initiate a
5078  * split. An attempt will be made at merging with adjacent extents.
5079  *
5080  * The caller is responsible for passing down meta_ac if we'll need it.
5081  */
5082 int ocfs2_mark_extent_written(struct inode *inode,
5083                               struct ocfs2_extent_tree *et,
5084                               handle_t *handle, u32 cpos, u32 len, u32 phys,
5085                               struct ocfs2_alloc_context *meta_ac,
5086                               struct ocfs2_cached_dealloc_ctxt *dealloc)
5087 {
5088         int ret, index;
5089         u64 start_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys);
5090         struct ocfs2_extent_rec split_rec;
5091         struct ocfs2_path *left_path = NULL;
5092         struct ocfs2_extent_list *el;
5093
5094         mlog(0, "Inode %lu cpos %u, len %u, phys %u (%llu)\n",
5095              inode->i_ino, cpos, len, phys, (unsigned long long)start_blkno);
5096
5097         if (!ocfs2_writes_unwritten_extents(OCFS2_SB(inode->i_sb))) {
5098                 ocfs2_error(inode->i_sb, "Inode %llu has unwritten extents "
5099                             "that are being written to, but the feature bit "
5100                             "is not set in the super block.",
5101                             (unsigned long long)OCFS2_I(inode)->ip_blkno);
5102                 ret = -EROFS;
5103                 goto out;
5104         }
5105
5106         /*
5107          * XXX: This should be fixed up so that we just re-insert the
5108          * next extent records.
5109          *
5110          * XXX: This is a hack on the extent tree, maybe it should be
5111          * an op?
5112          */
5113         if (et->et_ops == &ocfs2_dinode_et_ops)
5114                 ocfs2_extent_map_trunc(inode, 0);
5115
5116         left_path = ocfs2_new_path_from_et(et);
5117         if (!left_path) {
5118                 ret = -ENOMEM;
5119                 mlog_errno(ret);
5120                 goto out;
5121         }
5122
5123         ret = ocfs2_find_path(et->et_ci, left_path, cpos);
5124         if (ret) {
5125                 mlog_errno(ret);
5126                 goto out;
5127         }
5128         el = path_leaf_el(left_path);
5129
5130         index = ocfs2_search_extent_list(el, cpos);
5131         if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
5132                 ocfs2_error(inode->i_sb,
5133                             "Inode %llu has an extent at cpos %u which can no "
5134                             "longer be found.\n",
5135                             (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
5136                 ret = -EROFS;
5137                 goto out;
5138         }
5139
5140         memset(&split_rec, 0, sizeof(struct ocfs2_extent_rec));
5141         split_rec.e_cpos = cpu_to_le32(cpos);
5142         split_rec.e_leaf_clusters = cpu_to_le16(len);
5143         split_rec.e_blkno = cpu_to_le64(start_blkno);
5144         split_rec.e_flags = path_leaf_el(left_path)->l_recs[index].e_flags;
5145         split_rec.e_flags &= ~OCFS2_EXT_UNWRITTEN;
5146
5147         ret = __ocfs2_mark_extent_written(inode, et, handle, left_path,
5148                                           index, &split_rec, meta_ac,
5149                                           dealloc);
5150         if (ret)
5151                 mlog_errno(ret);
5152
5153 out:
5154         ocfs2_free_path(left_path);
5155         return ret;
5156 }
5157
5158 static int ocfs2_split_tree(struct inode *inode, struct ocfs2_extent_tree *et,
5159                             handle_t *handle, struct ocfs2_path *path,
5160                             int index, u32 new_range,
5161                             struct ocfs2_alloc_context *meta_ac)
5162 {
5163         int ret, depth, credits = handle->h_buffer_credits;
5164         struct buffer_head *last_eb_bh = NULL;
5165         struct ocfs2_extent_block *eb;
5166         struct ocfs2_extent_list *rightmost_el, *el;
5167         struct ocfs2_extent_rec split_rec;
5168         struct ocfs2_extent_rec *rec;
5169         struct ocfs2_insert_type insert;
5170
5171         /*
5172          * Setup the record to split before we grow the tree.
5173          */
5174         el = path_leaf_el(path);
5175         rec = &el->l_recs[index];
5176         ocfs2_make_right_split_rec(inode->i_sb, &split_rec, new_range, rec);
5177
5178         depth = path->p_tree_depth;
5179         if (depth > 0) {
5180                 ret = ocfs2_read_extent_block(et->et_ci,
5181                                               ocfs2_et_get_last_eb_blk(et),
5182                                               &last_eb_bh);
5183                 if (ret < 0) {
5184                         mlog_errno(ret);
5185                         goto out;
5186                 }
5187
5188                 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
5189                 rightmost_el = &eb->h_list;
5190         } else
5191                 rightmost_el = path_leaf_el(path);
5192
5193         credits += path->p_tree_depth +
5194                    ocfs2_extend_meta_needed(et->et_root_el);
5195         ret = ocfs2_extend_trans(handle, credits);
5196         if (ret) {
5197                 mlog_errno(ret);
5198                 goto out;
5199         }
5200
5201         if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
5202             le16_to_cpu(rightmost_el->l_count)) {
5203                 ret = ocfs2_grow_tree(handle, et, &depth, &last_eb_bh,
5204                                       meta_ac);
5205                 if (ret) {
5206                         mlog_errno(ret);
5207                         goto out;
5208                 }
5209         }
5210
5211         memset(&insert, 0, sizeof(struct ocfs2_insert_type));
5212         insert.ins_appending = APPEND_NONE;
5213         insert.ins_contig = CONTIG_NONE;
5214         insert.ins_split = SPLIT_RIGHT;
5215         insert.ins_tree_depth = depth;
5216
5217         ret = ocfs2_do_insert_extent(inode, handle, et, &split_rec, &insert);
5218         if (ret)
5219                 mlog_errno(ret);
5220
5221 out:
5222         brelse(last_eb_bh);
5223         return ret;
5224 }
5225
5226 static int ocfs2_truncate_rec(struct inode *inode, handle_t *handle,
5227                               struct ocfs2_path *path, int index,
5228                               struct ocfs2_cached_dealloc_ctxt *dealloc,
5229                               u32 cpos, u32 len,
5230                               struct ocfs2_extent_tree *et)
5231 {
5232         int ret;
5233         u32 left_cpos, rec_range, trunc_range;
5234         int wants_rotate = 0, is_rightmost_tree_rec = 0;
5235         struct super_block *sb = inode->i_sb;
5236         struct ocfs2_path *left_path = NULL;
5237         struct ocfs2_extent_list *el = path_leaf_el(path);
5238         struct ocfs2_extent_rec *rec;
5239         struct ocfs2_extent_block *eb;
5240
5241         if (ocfs2_is_empty_extent(&el->l_recs[0]) && index > 0) {
5242                 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
5243                 if (ret) {
5244                         mlog_errno(ret);
5245                         goto out;
5246                 }
5247
5248                 index--;
5249         }
5250
5251         if (index == (le16_to_cpu(el->l_next_free_rec) - 1) &&
5252             path->p_tree_depth) {
5253                 /*
5254                  * Check whether this is the rightmost tree record. If
5255                  * we remove all of this record or part of its right
5256                  * edge then an update of the record lengths above it
5257                  * will be required.
5258                  */
5259                 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
5260                 if (eb->h_next_leaf_blk == 0)
5261                         is_rightmost_tree_rec = 1;
5262         }
5263
5264         rec = &el->l_recs[index];
5265         if (index == 0 && path->p_tree_depth &&
5266             le32_to_cpu(rec->e_cpos) == cpos) {
5267                 /*
5268                  * Changing the leftmost offset (via partial or whole
5269                  * record truncate) of an interior (or rightmost) path
5270                  * means we have to update the subtree that is formed
5271                  * by this leaf and the one to it's left.
5272                  *
5273                  * There are two cases we can skip:
5274                  *   1) Path is the leftmost one in our inode tree.
5275                  *   2) The leaf is rightmost and will be empty after
5276                  *      we remove the extent record - the rotate code
5277                  *      knows how to update the newly formed edge.
5278                  */
5279
5280                 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path,
5281                                                     &left_cpos);
5282                 if (ret) {
5283                         mlog_errno(ret);
5284                         goto out;
5285                 }
5286
5287                 if (left_cpos && le16_to_cpu(el->l_next_free_rec) > 1) {
5288                         left_path = ocfs2_new_path_from_path(path);
5289                         if (!left_path) {
5290                                 ret = -ENOMEM;
5291                                 mlog_errno(ret);
5292                                 goto out;
5293                         }
5294
5295                         ret = ocfs2_find_path(et->et_ci, left_path,
5296                                               left_cpos);
5297                         if (ret) {
5298                                 mlog_errno(ret);
5299                                 goto out;
5300                         }
5301                 }
5302         }
5303
5304         ret = ocfs2_extend_rotate_transaction(handle, 0,
5305                                               handle->h_buffer_credits,
5306                                               path);
5307         if (ret) {
5308                 mlog_errno(ret);
5309                 goto out;
5310         }
5311
5312         ret = ocfs2_journal_access_path(et->et_ci, handle, path);
5313         if (ret) {
5314                 mlog_errno(ret);
5315                 goto out;
5316         }
5317
5318         ret = ocfs2_journal_access_path(et->et_ci, handle, left_path);
5319         if (ret) {
5320                 mlog_errno(ret);
5321                 goto out;
5322         }
5323
5324         rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
5325         trunc_range = cpos + len;
5326
5327         if (le32_to_cpu(rec->e_cpos) == cpos && rec_range == trunc_range) {
5328                 int next_free;
5329
5330                 memset(rec, 0, sizeof(*rec));
5331                 ocfs2_cleanup_merge(el, index);
5332                 wants_rotate = 1;
5333
5334                 next_free = le16_to_cpu(el->l_next_free_rec);
5335                 if (is_rightmost_tree_rec && next_free > 1) {
5336                         /*
5337                          * We skip the edge update if this path will
5338                          * be deleted by the rotate code.
5339                          */
5340                         rec = &el->l_recs[next_free - 1];
5341                         ocfs2_adjust_rightmost_records(handle, et, path,
5342                                                        rec);
5343                 }
5344         } else if (le32_to_cpu(rec->e_cpos) == cpos) {
5345                 /* Remove leftmost portion of the record. */
5346                 le32_add_cpu(&rec->e_cpos, len);
5347                 le64_add_cpu(&rec->e_blkno, ocfs2_clusters_to_blocks(sb, len));
5348                 le16_add_cpu(&rec->e_leaf_clusters, -len);
5349         } else if (rec_range == trunc_range) {
5350                 /* Remove rightmost portion of the record */
5351                 le16_add_cpu(&rec->e_leaf_clusters, -len);
5352                 if (is_rightmost_tree_rec)
5353                         ocfs2_adjust_rightmost_records(handle, et, path, rec);
5354         } else {
5355                 /* Caller should have trapped this. */
5356                 mlog(ML_ERROR, "Inode %llu: Invalid record truncate: (%u, %u) "
5357                      "(%u, %u)\n", (unsigned long long)OCFS2_I(inode)->ip_blkno,
5358                      le32_to_cpu(rec->e_cpos),
5359                      le16_to_cpu(rec->e_leaf_clusters), cpos, len);
5360                 BUG();
5361         }
5362
5363         if (left_path) {
5364                 int subtree_index;
5365
5366                 subtree_index = ocfs2_find_subtree_root(et, left_path, path);
5367                 ocfs2_complete_edge_insert(handle, left_path, path,
5368                                            subtree_index);
5369         }
5370
5371         ocfs2_journal_dirty(handle, path_leaf_bh(path));
5372
5373         ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
5374         if (ret) {
5375                 mlog_errno(ret);
5376                 goto out;
5377         }
5378
5379 out:
5380         ocfs2_free_path(left_path);
5381         return ret;
5382 }
5383
5384 int ocfs2_remove_extent(struct inode *inode,
5385                         struct ocfs2_extent_tree *et,
5386                         u32 cpos, u32 len, handle_t *handle,
5387                         struct ocfs2_alloc_context *meta_ac,
5388                         struct ocfs2_cached_dealloc_ctxt *dealloc)
5389 {
5390         int ret, index;
5391         u32 rec_range, trunc_range;
5392         struct ocfs2_extent_rec *rec;
5393         struct ocfs2_extent_list *el;
5394         struct ocfs2_path *path = NULL;
5395
5396         ocfs2_extent_map_trunc(inode, 0);
5397
5398         path = ocfs2_new_path_from_et(et);
5399         if (!path) {
5400                 ret = -ENOMEM;
5401                 mlog_errno(ret);
5402                 goto out;
5403         }
5404
5405         ret = ocfs2_find_path(et->et_ci, path, cpos);
5406         if (ret) {
5407                 mlog_errno(ret);
5408                 goto out;
5409         }
5410
5411         el = path_leaf_el(path);
5412         index = ocfs2_search_extent_list(el, cpos);
5413         if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
5414                 ocfs2_error(inode->i_sb,
5415                             "Inode %llu has an extent at cpos %u which can no "
5416                             "longer be found.\n",
5417                             (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
5418                 ret = -EROFS;
5419                 goto out;
5420         }
5421
5422         /*
5423          * We have 3 cases of extent removal:
5424          *   1) Range covers the entire extent rec
5425          *   2) Range begins or ends on one edge of the extent rec
5426          *   3) Range is in the middle of the extent rec (no shared edges)
5427          *
5428          * For case 1 we remove the extent rec and left rotate to
5429          * fill the hole.
5430          *
5431          * For case 2 we just shrink the existing extent rec, with a
5432          * tree update if the shrinking edge is also the edge of an
5433          * extent block.
5434          *
5435          * For case 3 we do a right split to turn the extent rec into
5436          * something case 2 can handle.
5437          */
5438         rec = &el->l_recs[index];
5439         rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
5440         trunc_range = cpos + len;
5441
5442         BUG_ON(cpos < le32_to_cpu(rec->e_cpos) || trunc_range > rec_range);
5443
5444         mlog(0, "Inode %llu, remove (cpos %u, len %u). Existing index %d "
5445              "(cpos %u, len %u)\n",
5446              (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos, len, index,
5447              le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec));
5448
5449         if (le32_to_cpu(rec->e_cpos) == cpos || rec_range == trunc_range) {
5450                 ret = ocfs2_truncate_rec(inode, handle, path, index, dealloc,
5451                                          cpos, len, et);
5452                 if (ret) {
5453                         mlog_errno(ret);
5454                         goto out;
5455                 }
5456         } else {
5457                 ret = ocfs2_split_tree(inode, et, handle, path, index,
5458                                        trunc_range, meta_ac);
5459                 if (ret) {
5460                         mlog_errno(ret);
5461                         goto out;
5462                 }
5463
5464                 /*
5465                  * The split could have manipulated the tree enough to
5466                  * move the record location, so we have to look for it again.
5467                  */
5468                 ocfs2_reinit_path(path, 1);
5469
5470                 ret = ocfs2_find_path(et->et_ci, path, cpos);
5471                 if (ret) {
5472                         mlog_errno(ret);
5473                         goto out;
5474                 }
5475
5476                 el = path_leaf_el(path);
5477                 index = ocfs2_search_extent_list(el, cpos);
5478                 if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
5479                         ocfs2_error(inode->i_sb,
5480                                     "Inode %llu: split at cpos %u lost record.",
5481                                     (unsigned long long)OCFS2_I(inode)->ip_blkno,
5482                                     cpos);
5483                         ret = -EROFS;
5484                         goto out;
5485                 }
5486
5487                 /*
5488                  * Double check our values here. If anything is fishy,
5489                  * it's easier to catch it at the top level.
5490                  */
5491                 rec = &el->l_recs[index];
5492                 rec_range = le32_to_cpu(rec->e_cpos) +
5493                         ocfs2_rec_clusters(el, rec);
5494                 if (rec_range != trunc_range) {
5495                         ocfs2_error(inode->i_sb,
5496                                     "Inode %llu: error after split at cpos %u"
5497                                     "trunc len %u, existing record is (%u,%u)",
5498                                     (unsigned long long)OCFS2_I(inode)->ip_blkno,
5499                                     cpos, len, le32_to_cpu(rec->e_cpos),
5500                                     ocfs2_rec_clusters(el, rec));
5501                         ret = -EROFS;
5502                         goto out;
5503                 }
5504
5505                 ret = ocfs2_truncate_rec(inode, handle, path, index, dealloc,
5506                                          cpos, len, et);
5507                 if (ret) {
5508                         mlog_errno(ret);
5509                         goto out;
5510                 }
5511         }
5512
5513 out:
5514         ocfs2_free_path(path);
5515         return ret;
5516 }
5517
5518 int ocfs2_remove_btree_range(struct inode *inode,
5519                              struct ocfs2_extent_tree *et,
5520                              u32 cpos, u32 phys_cpos, u32 len,
5521                              struct ocfs2_cached_dealloc_ctxt *dealloc)
5522 {
5523         int ret;
5524         u64 phys_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys_cpos);
5525         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
5526         struct inode *tl_inode = osb->osb_tl_inode;
5527         handle_t *handle;
5528         struct ocfs2_alloc_context *meta_ac = NULL;
5529
5530         ret = ocfs2_lock_allocators(inode, et, 0, 1, NULL, &meta_ac);
5531         if (ret) {
5532                 mlog_errno(ret);
5533                 return ret;
5534         }
5535
5536         mutex_lock(&tl_inode->i_mutex);
5537
5538         if (ocfs2_truncate_log_needs_flush(osb)) {
5539                 ret = __ocfs2_flush_truncate_log(osb);
5540                 if (ret < 0) {
5541                         mlog_errno(ret);
5542                         goto out;
5543                 }
5544         }
5545
5546         handle = ocfs2_start_trans(osb, ocfs2_remove_extent_credits(osb->sb));
5547         if (IS_ERR(handle)) {
5548                 ret = PTR_ERR(handle);
5549                 mlog_errno(ret);
5550                 goto out;
5551         }
5552
5553         ret = ocfs2_et_root_journal_access(handle, et,
5554                                            OCFS2_JOURNAL_ACCESS_WRITE);
5555         if (ret) {
5556                 mlog_errno(ret);
5557                 goto out;
5558         }
5559
5560         vfs_dq_free_space_nodirty(inode,
5561                                   ocfs2_clusters_to_bytes(inode->i_sb, len));
5562
5563         ret = ocfs2_remove_extent(inode, et, cpos, len, handle, meta_ac,
5564                                   dealloc);
5565         if (ret) {
5566                 mlog_errno(ret);
5567                 goto out_commit;
5568         }
5569
5570         ocfs2_et_update_clusters(et, -len);
5571
5572         ret = ocfs2_journal_dirty(handle, et->et_root_bh);
5573         if (ret) {
5574                 mlog_errno(ret);
5575                 goto out_commit;
5576         }
5577
5578         ret = ocfs2_truncate_log_append(osb, handle, phys_blkno, len);
5579         if (ret)
5580                 mlog_errno(ret);
5581
5582 out_commit:
5583         ocfs2_commit_trans(osb, handle);
5584 out:
5585         mutex_unlock(&tl_inode->i_mutex);
5586
5587         if (meta_ac)
5588                 ocfs2_free_alloc_context(meta_ac);
5589
5590         return ret;
5591 }
5592
5593 int ocfs2_truncate_log_needs_flush(struct ocfs2_super *osb)
5594 {
5595         struct buffer_head *tl_bh = osb->osb_tl_bh;
5596         struct ocfs2_dinode *di;
5597         struct ocfs2_truncate_log *tl;
5598
5599         di = (struct ocfs2_dinode *) tl_bh->b_data;
5600         tl = &di->id2.i_dealloc;
5601
5602         mlog_bug_on_msg(le16_to_cpu(tl->tl_used) > le16_to_cpu(tl->tl_count),
5603                         "slot %d, invalid truncate log parameters: used = "
5604                         "%u, count = %u\n", osb->slot_num,
5605                         le16_to_cpu(tl->tl_used), le16_to_cpu(tl->tl_count));
5606         return le16_to_cpu(tl->tl_used) == le16_to_cpu(tl->tl_count);
5607 }
5608
5609 static int ocfs2_truncate_log_can_coalesce(struct ocfs2_truncate_log *tl,
5610                                            unsigned int new_start)
5611 {
5612         unsigned int tail_index;
5613         unsigned int current_tail;
5614
5615         /* No records, nothing to coalesce */
5616         if (!le16_to_cpu(tl->tl_used))
5617                 return 0;
5618
5619         tail_index = le16_to_cpu(tl->tl_used) - 1;
5620         current_tail = le32_to_cpu(tl->tl_recs[tail_index].t_start);
5621         current_tail += le32_to_cpu(tl->tl_recs[tail_index].t_clusters);
5622
5623         return current_tail == new_start;
5624 }
5625
5626 int ocfs2_truncate_log_append(struct ocfs2_super *osb,
5627                               handle_t *handle,
5628                               u64 start_blk,
5629                               unsigned int num_clusters)
5630 {
5631         int status, index;
5632         unsigned int start_cluster, tl_count;
5633         struct inode *tl_inode = osb->osb_tl_inode;
5634         struct buffer_head *tl_bh = osb->osb_tl_bh;
5635         struct ocfs2_dinode *di;
5636         struct ocfs2_truncate_log *tl;
5637
5638         mlog_entry("start_blk = %llu, num_clusters = %u\n",
5639                    (unsigned long long)start_blk, num_clusters);
5640
5641         BUG_ON(mutex_trylock(&tl_inode->i_mutex));
5642
5643         start_cluster = ocfs2_blocks_to_clusters(osb->sb, start_blk);
5644
5645         di = (struct ocfs2_dinode *) tl_bh->b_data;
5646
5647         /* tl_bh is loaded from ocfs2_truncate_log_init().  It's validated
5648          * by the underlying call to ocfs2_read_inode_block(), so any
5649          * corruption is a code bug */
5650         BUG_ON(!OCFS2_IS_VALID_DINODE(di));
5651
5652         tl = &di->id2.i_dealloc;
5653         tl_count = le16_to_cpu(tl->tl_count);
5654         mlog_bug_on_msg(tl_count > ocfs2_truncate_recs_per_inode(osb->sb) ||
5655                         tl_count == 0,
5656                         "Truncate record count on #%llu invalid "
5657                         "wanted %u, actual %u\n",
5658                         (unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
5659                         ocfs2_truncate_recs_per_inode(osb->sb),
5660                         le16_to_cpu(tl->tl_count));
5661
5662         /* Caller should have known to flush before calling us. */
5663         index = le16_to_cpu(tl->tl_used);
5664         if (index >= tl_count) {
5665                 status = -ENOSPC;
5666                 mlog_errno(status);
5667                 goto bail;
5668         }
5669
5670         status = ocfs2_journal_access_di(handle, INODE_CACHE(tl_inode), tl_bh,
5671                                          OCFS2_JOURNAL_ACCESS_WRITE);
5672         if (status < 0) {
5673                 mlog_errno(status);
5674                 goto bail;
5675         }
5676
5677         mlog(0, "Log truncate of %u clusters starting at cluster %u to "
5678              "%llu (index = %d)\n", num_clusters, start_cluster,
5679              (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, index);
5680
5681         if (ocfs2_truncate_log_can_coalesce(tl, start_cluster)) {
5682                 /*
5683                  * Move index back to the record we are coalescing with.
5684                  * ocfs2_truncate_log_can_coalesce() guarantees nonzero
5685                  */
5686                 index--;
5687
5688                 num_clusters += le32_to_cpu(tl->tl_recs[index].t_clusters);
5689                 mlog(0, "Coalesce with index %u (start = %u, clusters = %u)\n",
5690                      index, le32_to_cpu(tl->tl_recs[index].t_start),
5691                      num_clusters);
5692         } else {
5693                 tl->tl_recs[index].t_start = cpu_to_le32(start_cluster);
5694                 tl->tl_used = cpu_to_le16(index + 1);
5695         }
5696         tl->tl_recs[index].t_clusters = cpu_to_le32(num_clusters);
5697
5698         status = ocfs2_journal_dirty(handle, tl_bh);
5699         if (status < 0) {
5700                 mlog_errno(status);
5701                 goto bail;
5702         }
5703
5704 bail:
5705         mlog_exit(status);
5706         return status;
5707 }
5708
5709 static int ocfs2_replay_truncate_records(struct ocfs2_super *osb,
5710                                          handle_t *handle,
5711                                          struct inode *data_alloc_inode,
5712                                          struct buffer_head *data_alloc_bh)
5713 {
5714         int status = 0;
5715         int i;
5716         unsigned int num_clusters;
5717         u64 start_blk;
5718         struct ocfs2_truncate_rec rec;
5719         struct ocfs2_dinode *di;
5720         struct ocfs2_truncate_log *tl;
5721         struct inode *tl_inode = osb->osb_tl_inode;
5722         struct buffer_head *tl_bh = osb->osb_tl_bh;
5723
5724         mlog_entry_void();
5725
5726         di = (struct ocfs2_dinode *) tl_bh->b_data;
5727         tl = &di->id2.i_dealloc;
5728         i = le16_to_cpu(tl->tl_used) - 1;
5729         while (i >= 0) {
5730                 /* Caller has given us at least enough credits to
5731                  * update the truncate log dinode */
5732                 status = ocfs2_journal_access_di(handle, INODE_CACHE(tl_inode), tl_bh,
5733                                                  OCFS2_JOURNAL_ACCESS_WRITE);
5734                 if (status < 0) {
5735                         mlog_errno(status);
5736                         goto bail;
5737                 }
5738
5739                 tl->tl_used = cpu_to_le16(i);
5740
5741                 status = ocfs2_journal_dirty(handle, tl_bh);
5742                 if (status < 0) {
5743                         mlog_errno(status);
5744                         goto bail;
5745                 }
5746
5747                 /* TODO: Perhaps we can calculate the bulk of the
5748                  * credits up front rather than extending like
5749                  * this. */
5750                 status = ocfs2_extend_trans(handle,
5751                                             OCFS2_TRUNCATE_LOG_FLUSH_ONE_REC);
5752                 if (status < 0) {
5753                         mlog_errno(status);
5754                         goto bail;
5755                 }
5756
5757                 rec = tl->tl_recs[i];
5758                 start_blk = ocfs2_clusters_to_blocks(data_alloc_inode->i_sb,
5759                                                     le32_to_cpu(rec.t_start));
5760                 num_clusters = le32_to_cpu(rec.t_clusters);
5761
5762                 /* if start_blk is not set, we ignore the record as
5763                  * invalid. */
5764                 if (start_blk) {
5765                         mlog(0, "free record %d, start = %u, clusters = %u\n",
5766                              i, le32_to_cpu(rec.t_start), num_clusters);
5767
5768                         status = ocfs2_free_clusters(handle, data_alloc_inode,
5769                                                      data_alloc_bh, start_blk,
5770                                                      num_clusters);
5771                         if (status < 0) {
5772                                 mlog_errno(status);
5773                                 goto bail;
5774                         }
5775                 }
5776                 i--;
5777         }
5778
5779 bail:
5780         mlog_exit(status);
5781         return status;
5782 }
5783
5784 /* Expects you to already be holding tl_inode->i_mutex */
5785 int __ocfs2_flush_truncate_log(struct ocfs2_super *osb)
5786 {
5787         int status;
5788         unsigned int num_to_flush;
5789         handle_t *handle;
5790         struct inode *tl_inode = osb->osb_tl_inode;
5791         struct inode *data_alloc_inode = NULL;
5792         struct buffer_head *tl_bh = osb->osb_tl_bh;
5793         struct buffer_head *data_alloc_bh = NULL;
5794         struct ocfs2_dinode *di;
5795         struct ocfs2_truncate_log *tl;
5796
5797         mlog_entry_void();
5798
5799         BUG_ON(mutex_trylock(&tl_inode->i_mutex));
5800
5801         di = (struct ocfs2_dinode *) tl_bh->b_data;
5802
5803         /* tl_bh is loaded from ocfs2_truncate_log_init().  It's validated
5804          * by the underlying call to ocfs2_read_inode_block(), so any
5805          * corruption is a code bug */
5806         BUG_ON(!OCFS2_IS_VALID_DINODE(di));
5807
5808         tl = &di->id2.i_dealloc;
5809         num_to_flush = le16_to_cpu(tl->tl_used);
5810         mlog(0, "Flush %u records from truncate log #%llu\n",
5811              num_to_flush, (unsigned long long)OCFS2_I(tl_inode)->ip_blkno);
5812         if (!num_to_flush) {
5813                 status = 0;
5814                 goto out;
5815         }
5816
5817         data_alloc_inode = ocfs2_get_system_file_inode(osb,
5818                                                        GLOBAL_BITMAP_SYSTEM_INODE,
5819                                                        OCFS2_INVALID_SLOT);
5820         if (!data_alloc_inode) {
5821                 status = -EINVAL;
5822                 mlog(ML_ERROR, "Could not get bitmap inode!\n");
5823                 goto out;
5824         }
5825
5826         mutex_lock(&data_alloc_inode->i_mutex);
5827
5828         status = ocfs2_inode_lock(data_alloc_inode, &data_alloc_bh, 1);
5829         if (status < 0) {
5830                 mlog_errno(status);
5831                 goto out_mutex;
5832         }
5833
5834         handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
5835         if (IS_ERR(handle)) {
5836                 status = PTR_ERR(handle);
5837                 mlog_errno(status);
5838                 goto out_unlock;
5839         }
5840
5841         status = ocfs2_replay_truncate_records(osb, handle, data_alloc_inode,
5842                                                data_alloc_bh);
5843         if (status < 0)
5844                 mlog_errno(status);
5845
5846         ocfs2_commit_trans(osb, handle);
5847
5848 out_unlock:
5849         brelse(data_alloc_bh);
5850         ocfs2_inode_unlock(data_alloc_inode, 1);
5851
5852 out_mutex:
5853         mutex_unlock(&data_alloc_inode->i_mutex);
5854         iput(data_alloc_inode);
5855
5856 out:
5857         mlog_exit(status);
5858         return status;
5859 }
5860
5861 int ocfs2_flush_truncate_log(struct ocfs2_super *osb)
5862 {
5863         int status;
5864         struct inode *tl_inode = osb->osb_tl_inode;
5865
5866         mutex_lock(&tl_inode->i_mutex);
5867         status = __ocfs2_flush_truncate_log(osb);
5868         mutex_unlock(&tl_inode->i_mutex);
5869
5870         return status;
5871 }
5872
5873 static void ocfs2_truncate_log_worker(struct work_struct *work)
5874 {
5875         int status;
5876         struct ocfs2_super *osb =
5877                 container_of(work, struct ocfs2_super,
5878                              osb_truncate_log_wq.work);
5879
5880         mlog_entry_void();
5881
5882         status = ocfs2_flush_truncate_log(osb);
5883         if (status < 0)
5884                 mlog_errno(status);
5885         else
5886                 ocfs2_init_inode_steal_slot(osb);
5887
5888         mlog_exit(status);
5889 }
5890
5891 #define OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL (2 * HZ)
5892 void ocfs2_schedule_truncate_log_flush(struct ocfs2_super *osb,
5893                                        int cancel)
5894 {
5895         if (osb->osb_tl_inode) {
5896                 /* We want to push off log flushes while truncates are
5897                  * still running. */
5898                 if (cancel)
5899                         cancel_delayed_work(&osb->osb_truncate_log_wq);
5900
5901                 queue_delayed_work(ocfs2_wq, &osb->osb_truncate_log_wq,
5902                                    OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL);
5903         }
5904 }
5905
5906 static int ocfs2_get_truncate_log_info(struct ocfs2_super *osb,
5907                                        int slot_num,
5908                                        struct inode **tl_inode,
5909                                        struct buffer_head **tl_bh)
5910 {
5911         int status;
5912         struct inode *inode = NULL;
5913         struct buffer_head *bh = NULL;
5914
5915         inode = ocfs2_get_system_file_inode(osb,
5916                                            TRUNCATE_LOG_SYSTEM_INODE,
5917                                            slot_num);
5918         if (!inode) {
5919                 status = -EINVAL;
5920                 mlog(ML_ERROR, "Could not get load truncate log inode!\n");
5921                 goto bail;
5922         }
5923
5924         status = ocfs2_read_inode_block(inode, &bh);
5925         if (status < 0) {
5926                 iput(inode);
5927                 mlog_errno(status);
5928                 goto bail;
5929         }
5930
5931         *tl_inode = inode;
5932         *tl_bh    = bh;
5933 bail:
5934         mlog_exit(status);
5935         return status;
5936 }
5937
5938 /* called during the 1st stage of node recovery. we stamp a clean
5939  * truncate log and pass back a copy for processing later. if the
5940  * truncate log does not require processing, a *tl_copy is set to
5941  * NULL. */
5942 int ocfs2_begin_truncate_log_recovery(struct ocfs2_super *osb,
5943                                       int slot_num,
5944                                       struct ocfs2_dinode **tl_copy)
5945 {
5946         int status;
5947         struct inode *tl_inode = NULL;
5948         struct buffer_head *tl_bh = NULL;
5949         struct ocfs2_dinode *di;
5950         struct ocfs2_truncate_log *tl;
5951
5952         *tl_copy = NULL;
5953
5954         mlog(0, "recover truncate log from slot %d\n", slot_num);
5955
5956         status = ocfs2_get_truncate_log_info(osb, slot_num, &tl_inode, &tl_bh);
5957         if (status < 0) {
5958                 mlog_errno(status);
5959                 goto bail;
5960         }
5961
5962         di = (struct ocfs2_dinode *) tl_bh->b_data;
5963
5964         /* tl_bh is loaded from ocfs2_get_truncate_log_info().  It's
5965          * validated by the underlying call to ocfs2_read_inode_block(),
5966          * so any corruption is a code bug */
5967         BUG_ON(!OCFS2_IS_VALID_DINODE(di));
5968
5969         tl = &di->id2.i_dealloc;
5970         if (le16_to_cpu(tl->tl_used)) {
5971                 mlog(0, "We'll have %u logs to recover\n",
5972                      le16_to_cpu(tl->tl_used));
5973
5974                 *tl_copy = kmalloc(tl_bh->b_size, GFP_KERNEL);
5975                 if (!(*tl_copy)) {
5976                         status = -ENOMEM;
5977                         mlog_errno(status);
5978                         goto bail;
5979                 }
5980
5981                 /* Assuming the write-out below goes well, this copy
5982                  * will be passed back to recovery for processing. */
5983                 memcpy(*tl_copy, tl_bh->b_data, tl_bh->b_size);
5984
5985                 /* All we need to do to clear the truncate log is set
5986                  * tl_used. */
5987                 tl->tl_used = 0;
5988
5989                 ocfs2_compute_meta_ecc(osb->sb, tl_bh->b_data, &di->i_check);
5990                 status = ocfs2_write_block(osb, tl_bh, INODE_CACHE(tl_inode));
5991                 if (status < 0) {
5992                         mlog_errno(status);
5993                         goto bail;
5994                 }
5995         }
5996
5997 bail:
5998         if (tl_inode)
5999                 iput(tl_inode);
6000         brelse(tl_bh);
6001
6002         if (status < 0 && (*tl_copy)) {
6003                 kfree(*tl_copy);
6004                 *tl_copy = NULL;
6005         }
6006
6007         mlog_exit(status);
6008         return status;
6009 }
6010
6011 int ocfs2_complete_truncate_log_recovery(struct ocfs2_super *osb,
6012                                          struct ocfs2_dinode *tl_copy)
6013 {
6014         int status = 0;
6015         int i;
6016         unsigned int clusters, num_recs, start_cluster;
6017         u64 start_blk;
6018         handle_t *handle;
6019         struct inode *tl_inode = osb->osb_tl_inode;
6020         struct ocfs2_truncate_log *tl;
6021
6022         mlog_entry_void();
6023
6024         if (OCFS2_I(tl_inode)->ip_blkno == le64_to_cpu(tl_copy->i_blkno)) {
6025                 mlog(ML_ERROR, "Asked to recover my own truncate log!\n");
6026                 return -EINVAL;
6027         }
6028
6029         tl = &tl_copy->id2.i_dealloc;
6030         num_recs = le16_to_cpu(tl->tl_used);
6031         mlog(0, "cleanup %u records from %llu\n", num_recs,
6032              (unsigned long long)le64_to_cpu(tl_copy->i_blkno));
6033
6034         mutex_lock(&tl_inode->i_mutex);
6035         for(i = 0; i < num_recs; i++) {
6036                 if (ocfs2_truncate_log_needs_flush(osb)) {
6037                         status = __ocfs2_flush_truncate_log(osb);
6038                         if (status < 0) {
6039                                 mlog_errno(status);
6040                                 goto bail_up;
6041                         }
6042                 }
6043
6044                 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
6045                 if (IS_ERR(handle)) {
6046                         status = PTR_ERR(handle);
6047                         mlog_errno(status);
6048                         goto bail_up;
6049                 }
6050
6051                 clusters = le32_to_cpu(tl->tl_recs[i].t_clusters);
6052                 start_cluster = le32_to_cpu(tl->tl_recs[i].t_start);
6053                 start_blk = ocfs2_clusters_to_blocks(osb->sb, start_cluster);
6054
6055                 status = ocfs2_truncate_log_append(osb, handle,
6056                                                    start_blk, clusters);
6057                 ocfs2_commit_trans(osb, handle);
6058                 if (status < 0) {
6059                         mlog_errno(status);
6060                         goto bail_up;
6061                 }
6062         }
6063
6064 bail_up:
6065         mutex_unlock(&tl_inode->i_mutex);
6066
6067         mlog_exit(status);
6068         return status;
6069 }
6070
6071 void ocfs2_truncate_log_shutdown(struct ocfs2_super *osb)
6072 {
6073         int status;
6074         struct inode *tl_inode = osb->osb_tl_inode;
6075
6076         mlog_entry_void();
6077
6078         if (tl_inode) {
6079                 cancel_delayed_work(&osb->osb_truncate_log_wq);
6080                 flush_workqueue(ocfs2_wq);
6081
6082                 status = ocfs2_flush_truncate_log(osb);
6083                 if (status < 0)
6084                         mlog_errno(status);
6085
6086                 brelse(osb->osb_tl_bh);
6087                 iput(osb->osb_tl_inode);
6088         }
6089
6090         mlog_exit_void();
6091 }
6092
6093 int ocfs2_truncate_log_init(struct ocfs2_super *osb)
6094 {
6095         int status;
6096         struct inode *tl_inode = NULL;
6097         struct buffer_head *tl_bh = NULL;
6098
6099         mlog_entry_void();
6100
6101         status = ocfs2_get_truncate_log_info(osb,
6102                                              osb->slot_num,
6103                                              &tl_inode,
6104                                              &tl_bh);
6105         if (status < 0)
6106                 mlog_errno(status);
6107
6108         /* ocfs2_truncate_log_shutdown keys on the existence of
6109          * osb->osb_tl_inode so we don't set any of the osb variables
6110          * until we're sure all is well. */
6111         INIT_DELAYED_WORK(&osb->osb_truncate_log_wq,
6112                           ocfs2_truncate_log_worker);
6113         osb->osb_tl_bh    = tl_bh;
6114         osb->osb_tl_inode = tl_inode;
6115
6116         mlog_exit(status);
6117         return status;
6118 }
6119
6120 /*
6121  * Delayed de-allocation of suballocator blocks.
6122  *
6123  * Some sets of block de-allocations might involve multiple suballocator inodes.
6124  *
6125  * The locking for this can get extremely complicated, especially when
6126  * the suballocator inodes to delete from aren't known until deep
6127  * within an unrelated codepath.
6128  *
6129  * ocfs2_extent_block structures are a good example of this - an inode
6130  * btree could have been grown by any number of nodes each allocating
6131  * out of their own suballoc inode.
6132  *
6133  * These structures allow the delay of block de-allocation until a
6134  * later time, when locking of multiple cluster inodes won't cause
6135  * deadlock.
6136  */
6137
6138 /*
6139  * Describe a single bit freed from a suballocator.  For the block
6140  * suballocators, it represents one block.  For the global cluster
6141  * allocator, it represents some clusters and free_bit indicates
6142  * clusters number.
6143  */
6144 struct ocfs2_cached_block_free {
6145         struct ocfs2_cached_block_free          *free_next;
6146         u64                                     free_blk;
6147         unsigned int                            free_bit;
6148 };
6149
6150 struct ocfs2_per_slot_free_list {
6151         struct ocfs2_per_slot_free_list         *f_next_suballocator;
6152         int                                     f_inode_type;
6153         int                                     f_slot;
6154         struct ocfs2_cached_block_free          *f_first;
6155 };
6156
6157 static int ocfs2_free_cached_blocks(struct ocfs2_super *osb,
6158                                     int sysfile_type,
6159                                     int slot,
6160                                     struct ocfs2_cached_block_free *head)
6161 {
6162         int ret;
6163         u64 bg_blkno;
6164         handle_t *handle;
6165         struct inode *inode;
6166         struct buffer_head *di_bh = NULL;
6167         struct ocfs2_cached_block_free *tmp;
6168
6169         inode = ocfs2_get_system_file_inode(osb, sysfile_type, slot);
6170         if (!inode) {
6171                 ret = -EINVAL;
6172                 mlog_errno(ret);
6173                 goto out;
6174         }
6175
6176         mutex_lock(&inode->i_mutex);
6177
6178         ret = ocfs2_inode_lock(inode, &di_bh, 1);
6179         if (ret) {
6180                 mlog_errno(ret);
6181                 goto out_mutex;
6182         }
6183
6184         handle = ocfs2_start_trans(osb, OCFS2_SUBALLOC_FREE);
6185         if (IS_ERR(handle)) {
6186                 ret = PTR_ERR(handle);
6187                 mlog_errno(ret);
6188                 goto out_unlock;
6189         }
6190
6191         while (head) {
6192                 bg_blkno = ocfs2_which_suballoc_group(head->free_blk,
6193                                                       head->free_bit);
6194                 mlog(0, "Free bit: (bit %u, blkno %llu)\n",
6195                      head->free_bit, (unsigned long long)head->free_blk);
6196
6197                 ret = ocfs2_free_suballoc_bits(handle, inode, di_bh,
6198                                                head->free_bit, bg_blkno, 1);
6199                 if (ret) {
6200                         mlog_errno(ret);
6201                         goto out_journal;
6202                 }
6203
6204                 ret = ocfs2_extend_trans(handle, OCFS2_SUBALLOC_FREE);
6205                 if (ret) {
6206                         mlog_errno(ret);
6207                         goto out_journal;
6208                 }
6209
6210                 tmp = head;
6211                 head = head->free_next;
6212                 kfree(tmp);
6213         }
6214
6215 out_journal:
6216         ocfs2_commit_trans(osb, handle);
6217
6218 out_unlock:
6219         ocfs2_inode_unlock(inode, 1);
6220         brelse(di_bh);
6221 out_mutex:
6222         mutex_unlock(&inode->i_mutex);
6223         iput(inode);
6224 out:
6225         while(head) {
6226                 /* Premature exit may have left some dangling items. */
6227                 tmp = head;
6228                 head = head->free_next;
6229                 kfree(tmp);
6230         }
6231
6232         return ret;
6233 }
6234
6235 int ocfs2_cache_cluster_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt,
6236                                 u64 blkno, unsigned int bit)
6237 {
6238         int ret = 0;
6239         struct ocfs2_cached_block_free *item;
6240
6241         item = kmalloc(sizeof(*item), GFP_NOFS);
6242         if (item == NULL) {
6243                 ret = -ENOMEM;
6244                 mlog_errno(ret);
6245                 return ret;
6246         }
6247
6248         mlog(0, "Insert clusters: (bit %u, blk %llu)\n",
6249              bit, (unsigned long long)blkno);
6250
6251         item->free_blk = blkno;
6252         item->free_bit = bit;
6253         item->free_next = ctxt->c_global_allocator;
6254
6255         ctxt->c_global_allocator = item;
6256         return ret;
6257 }
6258
6259 static int ocfs2_free_cached_clusters(struct ocfs2_super *osb,
6260                                       struct ocfs2_cached_block_free *head)
6261 {
6262         struct ocfs2_cached_block_free *tmp;
6263         struct inode *tl_inode = osb->osb_tl_inode;
6264         handle_t *handle;
6265         int ret = 0;
6266
6267         mutex_lock(&tl_inode->i_mutex);
6268
6269         while (head) {
6270                 if (ocfs2_truncate_log_needs_flush(osb)) {
6271                         ret = __ocfs2_flush_truncate_log(osb);
6272                         if (ret < 0) {
6273                                 mlog_errno(ret);
6274                                 break;
6275                         }
6276                 }
6277
6278                 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
6279                 if (IS_ERR(handle)) {
6280                         ret = PTR_ERR(handle);
6281                         mlog_errno(ret);
6282                         break;
6283                 }
6284
6285                 ret = ocfs2_truncate_log_append(osb, handle, head->free_blk,
6286                                                 head->free_bit);
6287
6288                 ocfs2_commit_trans(osb, handle);
6289                 tmp = head;
6290                 head = head->free_next;
6291                 kfree(tmp);
6292
6293                 if (ret < 0) {
6294                         mlog_errno(ret);
6295                         break;
6296                 }
6297         }
6298
6299         mutex_unlock(&tl_inode->i_mutex);
6300
6301         while (head) {
6302                 /* Premature exit may have left some dangling items. */
6303                 tmp = head;
6304                 head = head->free_next;
6305                 kfree(tmp);
6306         }
6307
6308         return ret;
6309 }
6310
6311 int ocfs2_run_deallocs(struct ocfs2_super *osb,
6312                        struct ocfs2_cached_dealloc_ctxt *ctxt)
6313 {
6314         int ret = 0, ret2;
6315         struct ocfs2_per_slot_free_list *fl;
6316
6317         if (!ctxt)
6318                 return 0;
6319
6320         while (ctxt->c_first_suballocator) {
6321                 fl = ctxt->c_first_suballocator;
6322
6323                 if (fl->f_first) {
6324                         mlog(0, "Free items: (type %u, slot %d)\n",
6325                              fl->f_inode_type, fl->f_slot);
6326                         ret2 = ocfs2_free_cached_blocks(osb,
6327                                                         fl->f_inode_type,
6328                                                         fl->f_slot,
6329                                                         fl->f_first);
6330                         if (ret2)
6331                                 mlog_errno(ret2);
6332                         if (!ret)
6333                                 ret = ret2;
6334                 }
6335
6336                 ctxt->c_first_suballocator = fl->f_next_suballocator;
6337                 kfree(fl);
6338         }
6339
6340         if (ctxt->c_global_allocator) {
6341                 ret2 = ocfs2_free_cached_clusters(osb,
6342                                                   ctxt->c_global_allocator);
6343                 if (ret2)
6344                         mlog_errno(ret2);
6345                 if (!ret)
6346                         ret = ret2;
6347
6348                 ctxt->c_global_allocator = NULL;
6349         }
6350
6351         return ret;
6352 }
6353
6354 static struct ocfs2_per_slot_free_list *
6355 ocfs2_find_per_slot_free_list(int type,
6356                               int slot,
6357                               struct ocfs2_cached_dealloc_ctxt *ctxt)
6358 {
6359         struct ocfs2_per_slot_free_list *fl = ctxt->c_first_suballocator;
6360
6361         while (fl) {
6362                 if (fl->f_inode_type == type && fl->f_slot == slot)
6363                         return fl;
6364
6365                 fl = fl->f_next_suballocator;
6366         }
6367
6368         fl = kmalloc(sizeof(*fl), GFP_NOFS);
6369         if (fl) {
6370                 fl->f_inode_type = type;
6371                 fl->f_slot = slot;
6372                 fl->f_first = NULL;
6373                 fl->f_next_suballocator = ctxt->c_first_suballocator;
6374
6375                 ctxt->c_first_suballocator = fl;
6376         }
6377         return fl;
6378 }
6379
6380 static int ocfs2_cache_block_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt,
6381                                      int type, int slot, u64 blkno,
6382                                      unsigned int bit)
6383 {
6384         int ret;
6385         struct ocfs2_per_slot_free_list *fl;
6386         struct ocfs2_cached_block_free *item;
6387
6388         fl = ocfs2_find_per_slot_free_list(type, slot, ctxt);
6389         if (fl == NULL) {
6390                 ret = -ENOMEM;
6391                 mlog_errno(ret);
6392                 goto out;
6393         }
6394
6395         item = kmalloc(sizeof(*item), GFP_NOFS);
6396         if (item == NULL) {
6397                 ret = -ENOMEM;
6398                 mlog_errno(ret);
6399                 goto out;
6400         }
6401
6402         mlog(0, "Insert: (type %d, slot %u, bit %u, blk %llu)\n",
6403              type, slot, bit, (unsigned long long)blkno);
6404
6405         item->free_blk = blkno;
6406         item->free_bit = bit;
6407         item->free_next = fl->f_first;
6408
6409         fl->f_first = item;
6410
6411         ret = 0;
6412 out:
6413         return ret;
6414 }
6415
6416 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
6417                                          struct ocfs2_extent_block *eb)
6418 {
6419         return ocfs2_cache_block_dealloc(ctxt, EXTENT_ALLOC_SYSTEM_INODE,
6420                                          le16_to_cpu(eb->h_suballoc_slot),
6421                                          le64_to_cpu(eb->h_blkno),
6422                                          le16_to_cpu(eb->h_suballoc_bit));
6423 }
6424
6425 /* This function will figure out whether the currently last extent
6426  * block will be deleted, and if it will, what the new last extent
6427  * block will be so we can update his h_next_leaf_blk field, as well
6428  * as the dinodes i_last_eb_blk */
6429 static int ocfs2_find_new_last_ext_blk(struct inode *inode,
6430                                        unsigned int clusters_to_del,
6431                                        struct ocfs2_path *path,
6432                                        struct buffer_head **new_last_eb)
6433 {
6434         int next_free, ret = 0;
6435         u32 cpos;
6436         struct ocfs2_extent_rec *rec;
6437         struct ocfs2_extent_block *eb;
6438         struct ocfs2_extent_list *el;
6439         struct buffer_head *bh = NULL;
6440
6441         *new_last_eb = NULL;
6442
6443         /* we have no tree, so of course, no last_eb. */
6444         if (!path->p_tree_depth)
6445                 goto out;
6446
6447         /* trunc to zero special case - this makes tree_depth = 0
6448          * regardless of what it is.  */
6449         if (OCFS2_I(inode)->ip_clusters == clusters_to_del)
6450                 goto out;
6451
6452         el = path_leaf_el(path);
6453         BUG_ON(!el->l_next_free_rec);
6454
6455         /*
6456          * Make sure that this extent list will actually be empty
6457          * after we clear away the data. We can shortcut out if
6458          * there's more than one non-empty extent in the
6459          * list. Otherwise, a check of the remaining extent is
6460          * necessary.
6461          */
6462         next_free = le16_to_cpu(el->l_next_free_rec);
6463         rec = NULL;
6464         if (ocfs2_is_empty_extent(&el->l_recs[0])) {
6465                 if (next_free > 2)
6466                         goto out;
6467
6468                 /* We may have a valid extent in index 1, check it. */
6469                 if (next_free == 2)
6470                         rec = &el->l_recs[1];
6471
6472                 /*
6473                  * Fall through - no more nonempty extents, so we want
6474                  * to delete this leaf.
6475                  */
6476         } else {
6477                 if (next_free > 1)
6478                         goto out;
6479
6480                 rec = &el->l_recs[0];
6481         }
6482
6483         if (rec) {
6484                 /*
6485                  * Check it we'll only be trimming off the end of this
6486                  * cluster.
6487                  */
6488                 if (le16_to_cpu(rec->e_leaf_clusters) > clusters_to_del)
6489                         goto out;
6490         }
6491
6492         ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, &cpos);
6493         if (ret) {
6494                 mlog_errno(ret);
6495                 goto out;
6496         }
6497
6498         ret = ocfs2_find_leaf(INODE_CACHE(inode), path_root_el(path), cpos, &bh);
6499         if (ret) {
6500                 mlog_errno(ret);
6501                 goto out;
6502         }
6503
6504         eb = (struct ocfs2_extent_block *) bh->b_data;
6505         el = &eb->h_list;
6506
6507         /* ocfs2_find_leaf() gets the eb from ocfs2_read_extent_block().
6508          * Any corruption is a code bug. */
6509         BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb));
6510
6511         *new_last_eb = bh;
6512         get_bh(*new_last_eb);
6513         mlog(0, "returning block %llu, (cpos: %u)\n",
6514              (unsigned long long)le64_to_cpu(eb->h_blkno), cpos);
6515 out:
6516         brelse(bh);
6517
6518         return ret;
6519 }
6520
6521 /*
6522  * Trim some clusters off the rightmost edge of a tree. Only called
6523  * during truncate.
6524  *
6525  * The caller needs to:
6526  *   - start journaling of each path component.
6527  *   - compute and fully set up any new last ext block
6528  */
6529 static int ocfs2_trim_tree(struct inode *inode, struct ocfs2_path *path,
6530                            handle_t *handle, struct ocfs2_truncate_context *tc,
6531                            u32 clusters_to_del, u64 *delete_start)
6532 {
6533         int ret, i, index = path->p_tree_depth;
6534         u32 new_edge = 0;
6535         u64 deleted_eb = 0;
6536         struct buffer_head *bh;
6537         struct ocfs2_extent_list *el;
6538         struct ocfs2_extent_rec *rec;
6539
6540         *delete_start = 0;
6541
6542         while (index >= 0) {
6543                 bh = path->p_node[index].bh;
6544                 el = path->p_node[index].el;
6545
6546                 mlog(0, "traveling tree (index = %d, block = %llu)\n",
6547                      index,  (unsigned long long)bh->b_blocknr);
6548
6549                 BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0);
6550
6551                 if (index !=
6552                     (path->p_tree_depth - le16_to_cpu(el->l_tree_depth))) {
6553                         ocfs2_error(inode->i_sb,
6554                                     "Inode %lu has invalid ext. block %llu",
6555                                     inode->i_ino,
6556                                     (unsigned long long)bh->b_blocknr);
6557                         ret = -EROFS;
6558                         goto out;
6559                 }
6560
6561 find_tail_record:
6562                 i = le16_to_cpu(el->l_next_free_rec) - 1;
6563                 rec = &el->l_recs[i];
6564
6565                 mlog(0, "Extent list before: record %d: (%u, %u, %llu), "
6566                      "next = %u\n", i, le32_to_cpu(rec->e_cpos),
6567                      ocfs2_rec_clusters(el, rec),
6568                      (unsigned long long)le64_to_cpu(rec->e_blkno),
6569                      le16_to_cpu(el->l_next_free_rec));
6570
6571                 BUG_ON(ocfs2_rec_clusters(el, rec) < clusters_to_del);
6572
6573                 if (le16_to_cpu(el->l_tree_depth) == 0) {
6574                         /*
6575                          * If the leaf block contains a single empty
6576                          * extent and no records, we can just remove
6577                          * the block.
6578                          */
6579                         if (i == 0 && ocfs2_is_empty_extent(rec)) {
6580                                 memset(rec, 0,
6581                                        sizeof(struct ocfs2_extent_rec));
6582                                 el->l_next_free_rec = cpu_to_le16(0);
6583
6584                                 goto delete;
6585                         }
6586
6587                         /*
6588                          * Remove any empty extents by shifting things
6589                          * left. That should make life much easier on
6590                          * the code below. This condition is rare
6591                          * enough that we shouldn't see a performance
6592                          * hit.
6593                          */
6594                         if (ocfs2_is_empty_extent(&el->l_recs[0])) {
6595                                 le16_add_cpu(&el->l_next_free_rec, -1);
6596
6597                                 for(i = 0;
6598                                     i < le16_to_cpu(el->l_next_free_rec); i++)
6599                                         el->l_recs[i] = el->l_recs[i + 1];
6600
6601                                 memset(&el->l_recs[i], 0,
6602                                        sizeof(struct ocfs2_extent_rec));
6603
6604                                 /*
6605                                  * We've modified our extent list. The
6606                                  * simplest way to handle this change
6607                                  * is to being the search from the
6608                                  * start again.
6609                                  */
6610                                 goto find_tail_record;
6611                         }
6612
6613                         le16_add_cpu(&rec->e_leaf_clusters, -clusters_to_del);
6614
6615                         /*
6616                          * We'll use "new_edge" on our way back up the
6617                          * tree to know what our rightmost cpos is.
6618                          */
6619                         new_edge = le16_to_cpu(rec->e_leaf_clusters);
6620                         new_edge += le32_to_cpu(rec->e_cpos);
6621
6622                         /*
6623                          * The caller will use this to delete data blocks.
6624                          */
6625                         *delete_start = le64_to_cpu(rec->e_blkno)
6626                                 + ocfs2_clusters_to_blocks(inode->i_sb,
6627                                         le16_to_cpu(rec->e_leaf_clusters));
6628
6629                         /*
6630                          * If it's now empty, remove this record.
6631                          */
6632                         if (le16_to_cpu(rec->e_leaf_clusters) == 0) {
6633                                 memset(rec, 0,
6634                                        sizeof(struct ocfs2_extent_rec));
6635                                 le16_add_cpu(&el->l_next_free_rec, -1);
6636                         }
6637                 } else {
6638                         if (le64_to_cpu(rec->e_blkno) == deleted_eb) {
6639                                 memset(rec, 0,
6640                                        sizeof(struct ocfs2_extent_rec));
6641                                 le16_add_cpu(&el->l_next_free_rec, -1);
6642
6643                                 goto delete;
6644                         }
6645
6646                         /* Can this actually happen? */
6647                         if (le16_to_cpu(el->l_next_free_rec) == 0)
6648                                 goto delete;
6649
6650                         /*
6651                          * We never actually deleted any clusters
6652                          * because our leaf was empty. There's no
6653                          * reason to adjust the rightmost edge then.
6654                          */
6655                         if (new_edge == 0)
6656                                 goto delete;
6657
6658                         rec->e_int_clusters = cpu_to_le32(new_edge);
6659                         le32_add_cpu(&rec->e_int_clusters,
6660                                      -le32_to_cpu(rec->e_cpos));
6661
6662                          /*
6663                           * A deleted child record should have been
6664                           * caught above.
6665                           */
6666                          BUG_ON(le32_to_cpu(rec->e_int_clusters) == 0);
6667                 }
6668
6669 delete:
6670                 ret = ocfs2_journal_dirty(handle, bh);
6671                 if (ret) {
6672                         mlog_errno(ret);
6673                         goto out;
6674                 }
6675
6676                 mlog(0, "extent list container %llu, after: record %d: "
6677                      "(%u, %u, %llu), next = %u.\n",
6678                      (unsigned long long)bh->b_blocknr, i,
6679                      le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec),
6680                      (unsigned long long)le64_to_cpu(rec->e_blkno),
6681                      le16_to_cpu(el->l_next_free_rec));
6682
6683                 /*
6684                  * We must be careful to only attempt delete of an
6685                  * extent block (and not the root inode block).
6686                  */
6687                 if (index > 0 && le16_to_cpu(el->l_next_free_rec) == 0) {
6688                         struct ocfs2_extent_block *eb =
6689                                 (struct ocfs2_extent_block *)bh->b_data;
6690
6691                         /*
6692                          * Save this for use when processing the
6693                          * parent block.
6694                          */
6695                         deleted_eb = le64_to_cpu(eb->h_blkno);
6696
6697                         mlog(0, "deleting this extent block.\n");
6698
6699                         ocfs2_remove_from_cache(INODE_CACHE(inode), bh);
6700
6701                         BUG_ON(ocfs2_rec_clusters(el, &el->l_recs[0]));
6702                         BUG_ON(le32_to_cpu(el->l_recs[0].e_cpos));
6703                         BUG_ON(le64_to_cpu(el->l_recs[0].e_blkno));
6704
6705                         ret = ocfs2_cache_extent_block_free(&tc->tc_dealloc, eb);
6706                         /* An error here is not fatal. */
6707                         if (ret < 0)
6708                                 mlog_errno(ret);
6709                 } else {
6710                         deleted_eb = 0;
6711                 }
6712
6713                 index--;
6714         }
6715
6716         ret = 0;
6717 out:
6718         return ret;
6719 }
6720
6721 static int ocfs2_do_truncate(struct ocfs2_super *osb,
6722                              unsigned int clusters_to_del,
6723                              struct inode *inode,
6724                              struct buffer_head *fe_bh,
6725                              handle_t *handle,
6726                              struct ocfs2_truncate_context *tc,
6727                              struct ocfs2_path *path)
6728 {
6729         int status;
6730         struct ocfs2_dinode *fe;
6731         struct ocfs2_extent_block *last_eb = NULL;
6732         struct ocfs2_extent_list *el;
6733         struct buffer_head *last_eb_bh = NULL;
6734         u64 delete_blk = 0;
6735
6736         fe = (struct ocfs2_dinode *) fe_bh->b_data;
6737
6738         status = ocfs2_find_new_last_ext_blk(inode, clusters_to_del,
6739                                              path, &last_eb_bh);
6740         if (status < 0) {
6741                 mlog_errno(status);
6742                 goto bail;
6743         }
6744
6745         /*
6746          * Each component will be touched, so we might as well journal
6747          * here to avoid having to handle errors later.
6748          */
6749         status = ocfs2_journal_access_path(INODE_CACHE(inode), handle, path);
6750         if (status < 0) {
6751                 mlog_errno(status);
6752                 goto bail;
6753         }
6754
6755         if (last_eb_bh) {
6756                 status = ocfs2_journal_access_eb(handle, INODE_CACHE(inode), last_eb_bh,
6757                                                  OCFS2_JOURNAL_ACCESS_WRITE);
6758                 if (status < 0) {
6759                         mlog_errno(status);
6760                         goto bail;
6761                 }
6762
6763                 last_eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
6764         }
6765
6766         el = &(fe->id2.i_list);
6767
6768         /*
6769          * Lower levels depend on this never happening, but it's best
6770          * to check it up here before changing the tree.
6771          */
6772         if (el->l_tree_depth && el->l_recs[0].e_int_clusters == 0) {
6773                 ocfs2_error(inode->i_sb,
6774                             "Inode %lu has an empty extent record, depth %u\n",
6775                             inode->i_ino, le16_to_cpu(el->l_tree_depth));
6776                 status = -EROFS;
6777                 goto bail;
6778         }
6779
6780         vfs_dq_free_space_nodirty(inode,
6781                         ocfs2_clusters_to_bytes(osb->sb, clusters_to_del));
6782         spin_lock(&OCFS2_I(inode)->ip_lock);
6783         OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters) -
6784                                       clusters_to_del;
6785         spin_unlock(&OCFS2_I(inode)->ip_lock);
6786         le32_add_cpu(&fe->i_clusters, -clusters_to_del);
6787         inode->i_blocks = ocfs2_inode_sector_count(inode);
6788
6789         status = ocfs2_trim_tree(inode, path, handle, tc,
6790                                  clusters_to_del, &delete_blk);
6791         if (status) {
6792                 mlog_errno(status);
6793                 goto bail;
6794         }
6795
6796         if (le32_to_cpu(fe->i_clusters) == 0) {
6797                 /* trunc to zero is a special case. */
6798                 el->l_tree_depth = 0;
6799                 fe->i_last_eb_blk = 0;
6800         } else if (last_eb)
6801                 fe->i_last_eb_blk = last_eb->h_blkno;
6802
6803         status = ocfs2_journal_dirty(handle, fe_bh);
6804         if (status < 0) {
6805                 mlog_errno(status);
6806                 goto bail;
6807         }
6808
6809         if (last_eb) {
6810                 /* If there will be a new last extent block, then by
6811                  * definition, there cannot be any leaves to the right of
6812                  * him. */
6813                 last_eb->h_next_leaf_blk = 0;
6814                 status = ocfs2_journal_dirty(handle, last_eb_bh);
6815                 if (status < 0) {
6816                         mlog_errno(status);
6817                         goto bail;
6818                 }
6819         }
6820
6821         if (delete_blk) {
6822                 status = ocfs2_truncate_log_append(osb, handle, delete_blk,
6823                                                    clusters_to_del);
6824                 if (status < 0) {
6825                         mlog_errno(status);
6826                         goto bail;
6827                 }
6828         }
6829         status = 0;
6830 bail:
6831         brelse(last_eb_bh);
6832         mlog_exit(status);
6833         return status;
6834 }
6835
6836 static int ocfs2_zero_func(handle_t *handle, struct buffer_head *bh)
6837 {
6838         set_buffer_uptodate(bh);
6839         mark_buffer_dirty(bh);
6840         return 0;
6841 }
6842
6843 static void ocfs2_map_and_dirty_page(struct inode *inode, handle_t *handle,
6844                                      unsigned int from, unsigned int to,
6845                                      struct page *page, int zero, u64 *phys)
6846 {
6847         int ret, partial = 0;
6848
6849         ret = ocfs2_map_page_blocks(page, phys, inode, from, to, 0);
6850         if (ret)
6851                 mlog_errno(ret);
6852
6853         if (zero)
6854                 zero_user_segment(page, from, to);
6855
6856         /*
6857          * Need to set the buffers we zero'd into uptodate
6858          * here if they aren't - ocfs2_map_page_blocks()
6859          * might've skipped some
6860          */
6861         ret = walk_page_buffers(handle, page_buffers(page),
6862                                 from, to, &partial,
6863                                 ocfs2_zero_func);
6864         if (ret < 0)
6865                 mlog_errno(ret);
6866         else if (ocfs2_should_order_data(inode)) {
6867                 ret = ocfs2_jbd2_file_inode(handle, inode);
6868                 if (ret < 0)
6869                         mlog_errno(ret);
6870         }
6871
6872         if (!partial)
6873                 SetPageUptodate(page);
6874
6875         flush_dcache_page(page);
6876 }
6877
6878 static void ocfs2_zero_cluster_pages(struct inode *inode, loff_t start,
6879                                      loff_t end, struct page **pages,
6880                                      int numpages, u64 phys, handle_t *handle)
6881 {
6882         int i;
6883         struct page *page;
6884         unsigned int from, to = PAGE_CACHE_SIZE;
6885         struct super_block *sb = inode->i_sb;
6886
6887         BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb)));
6888
6889         if (numpages == 0)
6890                 goto out;
6891
6892         to = PAGE_CACHE_SIZE;
6893         for(i = 0; i < numpages; i++) {
6894                 page = pages[i];
6895
6896                 from = start & (PAGE_CACHE_SIZE - 1);
6897                 if ((end >> PAGE_CACHE_SHIFT) == page->index)
6898                         to = end & (PAGE_CACHE_SIZE - 1);
6899
6900                 BUG_ON(from > PAGE_CACHE_SIZE);
6901                 BUG_ON(to > PAGE_CACHE_SIZE);
6902
6903                 ocfs2_map_and_dirty_page(inode, handle, from, to, page, 1,
6904                                          &phys);
6905
6906                 start = (page->index + 1) << PAGE_CACHE_SHIFT;
6907         }
6908 out:
6909         if (pages)
6910                 ocfs2_unlock_and_free_pages(pages, numpages);
6911 }
6912
6913 static int ocfs2_grab_eof_pages(struct inode *inode, loff_t start, loff_t end,
6914                                 struct page **pages, int *num)
6915 {
6916         int numpages, ret = 0;
6917         struct super_block *sb = inode->i_sb;
6918         struct address_space *mapping = inode->i_mapping;
6919         unsigned long index;
6920         loff_t last_page_bytes;
6921
6922         BUG_ON(start > end);
6923
6924         BUG_ON(start >> OCFS2_SB(sb)->s_clustersize_bits !=
6925                (end - 1) >> OCFS2_SB(sb)->s_clustersize_bits);
6926
6927         numpages = 0;
6928         last_page_bytes = PAGE_ALIGN(end);
6929         index = start >> PAGE_CACHE_SHIFT;
6930         do {
6931                 pages[numpages] = grab_cache_page(mapping, index);
6932                 if (!pages[numpages]) {
6933                         ret = -ENOMEM;
6934                         mlog_errno(ret);
6935                         goto out;
6936                 }
6937
6938                 numpages++;
6939                 index++;
6940         } while (index < (last_page_bytes >> PAGE_CACHE_SHIFT));
6941
6942 out:
6943         if (ret != 0) {
6944                 if (pages)
6945                         ocfs2_unlock_and_free_pages(pages, numpages);
6946                 numpages = 0;
6947         }
6948
6949         *num = numpages;
6950
6951         return ret;
6952 }
6953
6954 /*
6955  * Zero the area past i_size but still within an allocated
6956  * cluster. This avoids exposing nonzero data on subsequent file
6957  * extends.
6958  *
6959  * We need to call this before i_size is updated on the inode because
6960  * otherwise block_write_full_page() will skip writeout of pages past
6961  * i_size. The new_i_size parameter is passed for this reason.
6962  */
6963 int ocfs2_zero_range_for_truncate(struct inode *inode, handle_t *handle,
6964                                   u64 range_start, u64 range_end)
6965 {
6966         int ret = 0, numpages;
6967         struct page **pages = NULL;
6968         u64 phys;
6969         unsigned int ext_flags;
6970         struct super_block *sb = inode->i_sb;
6971
6972         /*
6973          * File systems which don't support sparse files zero on every
6974          * extend.
6975          */
6976         if (!ocfs2_sparse_alloc(OCFS2_SB(sb)))
6977                 return 0;
6978
6979         pages = kcalloc(ocfs2_pages_per_cluster(sb),
6980                         sizeof(struct page *), GFP_NOFS);
6981         if (pages == NULL) {
6982                 ret = -ENOMEM;
6983                 mlog_errno(ret);
6984                 goto out;
6985         }
6986
6987         if (range_start == range_end)
6988                 goto out;
6989
6990         ret = ocfs2_extent_map_get_blocks(inode,
6991                                           range_start >> sb->s_blocksize_bits,
6992                                           &phys, NULL, &ext_flags);
6993         if (ret) {
6994                 mlog_errno(ret);
6995                 goto out;
6996         }
6997
6998         /*
6999          * Tail is a hole, or is marked unwritten. In either case, we
7000          * can count on read and write to return/push zero's.
7001          */
7002         if (phys == 0 || ext_flags & OCFS2_EXT_UNWRITTEN)
7003                 goto out;
7004
7005         ret = ocfs2_grab_eof_pages(inode, range_start, range_end, pages,
7006                                    &numpages);
7007         if (ret) {
7008                 mlog_errno(ret);
7009                 goto out;
7010         }
7011
7012         ocfs2_zero_cluster_pages(inode, range_start, range_end, pages,
7013                                  numpages, phys, handle);
7014
7015         /*
7016          * Initiate writeout of the pages we zero'd here. We don't
7017          * wait on them - the truncate_inode_pages() call later will
7018          * do that for us.
7019          */
7020         ret = do_sync_mapping_range(inode->i_mapping, range_start,
7021                                     range_end - 1, SYNC_FILE_RANGE_WRITE);
7022         if (ret)
7023                 mlog_errno(ret);
7024
7025 out:
7026         if (pages)
7027                 kfree(pages);
7028
7029         return ret;
7030 }
7031
7032 static void ocfs2_zero_dinode_id2_with_xattr(struct inode *inode,
7033                                              struct ocfs2_dinode *di)
7034 {
7035         unsigned int blocksize = 1 << inode->i_sb->s_blocksize_bits;
7036         unsigned int xattrsize = le16_to_cpu(di->i_xattr_inline_size);
7037
7038         if (le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_XATTR_FL)
7039                 memset(&di->id2, 0, blocksize -
7040                                     offsetof(struct ocfs2_dinode, id2) -
7041                                     xattrsize);
7042         else
7043                 memset(&di->id2, 0, blocksize -
7044                                     offsetof(struct ocfs2_dinode, id2));
7045 }
7046
7047 void ocfs2_dinode_new_extent_list(struct inode *inode,
7048                                   struct ocfs2_dinode *di)
7049 {
7050         ocfs2_zero_dinode_id2_with_xattr(inode, di);
7051         di->id2.i_list.l_tree_depth = 0;
7052         di->id2.i_list.l_next_free_rec = 0;
7053         di->id2.i_list.l_count = cpu_to_le16(
7054                 ocfs2_extent_recs_per_inode_with_xattr(inode->i_sb, di));
7055 }
7056
7057 void ocfs2_set_inode_data_inline(struct inode *inode, struct ocfs2_dinode *di)
7058 {
7059         struct ocfs2_inode_info *oi = OCFS2_I(inode);
7060         struct ocfs2_inline_data *idata = &di->id2.i_data;
7061
7062         spin_lock(&oi->ip_lock);
7063         oi->ip_dyn_features |= OCFS2_INLINE_DATA_FL;
7064         di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
7065         spin_unlock(&oi->ip_lock);
7066
7067         /*
7068          * We clear the entire i_data structure here so that all
7069          * fields can be properly initialized.
7070          */
7071         ocfs2_zero_dinode_id2_with_xattr(inode, di);
7072
7073         idata->id_count = cpu_to_le16(
7074                         ocfs2_max_inline_data_with_xattr(inode->i_sb, di));
7075 }
7076
7077 int ocfs2_convert_inline_data_to_extents(struct inode *inode,
7078                                          struct buffer_head *di_bh)
7079 {
7080         int ret, i, has_data, num_pages = 0;
7081         handle_t *handle;
7082         u64 uninitialized_var(block);
7083         struct ocfs2_inode_info *oi = OCFS2_I(inode);
7084         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
7085         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
7086         struct ocfs2_alloc_context *data_ac = NULL;
7087         struct page **pages = NULL;
7088         loff_t end = osb->s_clustersize;
7089         struct ocfs2_extent_tree et;
7090         int did_quota = 0;
7091
7092         has_data = i_size_read(inode) ? 1 : 0;
7093
7094         if (has_data) {
7095                 pages = kcalloc(ocfs2_pages_per_cluster(osb->sb),
7096                                 sizeof(struct page *), GFP_NOFS);
7097                 if (pages == NULL) {
7098                         ret = -ENOMEM;
7099                         mlog_errno(ret);
7100                         goto out;
7101                 }
7102
7103                 ret = ocfs2_reserve_clusters(osb, 1, &data_ac);
7104                 if (ret) {
7105                         mlog_errno(ret);
7106                         goto out;
7107                 }
7108         }
7109
7110         handle = ocfs2_start_trans(osb,
7111                                    ocfs2_inline_to_extents_credits(osb->sb));
7112         if (IS_ERR(handle)) {
7113                 ret = PTR_ERR(handle);
7114                 mlog_errno(ret);
7115                 goto out_unlock;
7116         }
7117
7118         ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
7119                                       OCFS2_JOURNAL_ACCESS_WRITE);
7120         if (ret) {
7121                 mlog_errno(ret);
7122                 goto out_commit;
7123         }
7124
7125         if (has_data) {
7126                 u32 bit_off, num;
7127                 unsigned int page_end;
7128                 u64 phys;
7129
7130                 if (vfs_dq_alloc_space_nodirty(inode,
7131                                        ocfs2_clusters_to_bytes(osb->sb, 1))) {
7132                         ret = -EDQUOT;
7133                         goto out_commit;
7134                 }
7135                 did_quota = 1;
7136
7137                 ret = ocfs2_claim_clusters(osb, handle, data_ac, 1, &bit_off,
7138                                            &num);
7139                 if (ret) {
7140                         mlog_errno(ret);
7141                         goto out_commit;
7142                 }
7143
7144                 /*
7145                  * Save two copies, one for insert, and one that can
7146                  * be changed by ocfs2_map_and_dirty_page() below.
7147                  */
7148                 block = phys = ocfs2_clusters_to_blocks(inode->i_sb, bit_off);
7149
7150                 /*
7151                  * Non sparse file systems zero on extend, so no need
7152                  * to do that now.
7153                  */
7154                 if (!ocfs2_sparse_alloc(osb) &&
7155                     PAGE_CACHE_SIZE < osb->s_clustersize)
7156                         end = PAGE_CACHE_SIZE;
7157
7158                 ret = ocfs2_grab_eof_pages(inode, 0, end, pages, &num_pages);
7159                 if (ret) {
7160                         mlog_errno(ret);
7161                         goto out_commit;
7162                 }
7163
7164                 /*
7165                  * This should populate the 1st page for us and mark
7166                  * it up to date.
7167                  */
7168                 ret = ocfs2_read_inline_data(inode, pages[0], di_bh);
7169                 if (ret) {
7170                         mlog_errno(ret);
7171                         goto out_commit;
7172                 }
7173
7174                 page_end = PAGE_CACHE_SIZE;
7175                 if (PAGE_CACHE_SIZE > osb->s_clustersize)
7176                         page_end = osb->s_clustersize;
7177
7178                 for (i = 0; i < num_pages; i++)
7179                         ocfs2_map_and_dirty_page(inode, handle, 0, page_end,
7180                                                  pages[i], i > 0, &phys);
7181         }
7182
7183         spin_lock(&oi->ip_lock);
7184         oi->ip_dyn_features &= ~OCFS2_INLINE_DATA_FL;
7185         di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
7186         spin_unlock(&oi->ip_lock);
7187
7188         ocfs2_dinode_new_extent_list(inode, di);
7189
7190         ocfs2_journal_dirty(handle, di_bh);
7191
7192         if (has_data) {
7193                 /*
7194                  * An error at this point should be extremely rare. If
7195                  * this proves to be false, we could always re-build
7196                  * the in-inode data from our pages.
7197                  */
7198                 ocfs2_init_dinode_extent_tree(&et, inode, di_bh);
7199                 ret = ocfs2_insert_extent(osb, handle, inode, &et,
7200                                           0, block, 1, 0, NULL);
7201                 if (ret) {
7202                         mlog_errno(ret);
7203                         goto out_commit;
7204                 }
7205
7206                 inode->i_blocks = ocfs2_inode_sector_count(inode);
7207         }
7208
7209 out_commit:
7210         if (ret < 0 && did_quota)
7211                 vfs_dq_free_space_nodirty(inode,
7212                                           ocfs2_clusters_to_bytes(osb->sb, 1));
7213
7214         ocfs2_commit_trans(osb, handle);
7215
7216 out_unlock:
7217         if (data_ac)
7218                 ocfs2_free_alloc_context(data_ac);
7219
7220 out:
7221         if (pages) {
7222                 ocfs2_unlock_and_free_pages(pages, num_pages);
7223                 kfree(pages);
7224         }
7225
7226         return ret;
7227 }
7228
7229 /*
7230  * It is expected, that by the time you call this function,
7231  * inode->i_size and fe->i_size have been adjusted.
7232  *
7233  * WARNING: This will kfree the truncate context
7234  */
7235 int ocfs2_commit_truncate(struct ocfs2_super *osb,
7236                           struct inode *inode,
7237                           struct buffer_head *fe_bh,
7238                           struct ocfs2_truncate_context *tc)
7239 {
7240         int status, i, credits, tl_sem = 0;
7241         u32 clusters_to_del, new_highest_cpos, range;
7242         struct ocfs2_extent_list *el;
7243         handle_t *handle = NULL;
7244         struct inode *tl_inode = osb->osb_tl_inode;
7245         struct ocfs2_path *path = NULL;
7246         struct ocfs2_dinode *di = (struct ocfs2_dinode *)fe_bh->b_data;
7247
7248         mlog_entry_void();
7249
7250         new_highest_cpos = ocfs2_clusters_for_bytes(osb->sb,
7251                                                      i_size_read(inode));
7252
7253         path = ocfs2_new_path(fe_bh, &di->id2.i_list,
7254                               ocfs2_journal_access_di);
7255         if (!path) {
7256                 status = -ENOMEM;
7257                 mlog_errno(status);
7258                 goto bail;
7259         }
7260
7261         ocfs2_extent_map_trunc(inode, new_highest_cpos);
7262
7263 start:
7264         /*
7265          * Check that we still have allocation to delete.
7266          */
7267         if (OCFS2_I(inode)->ip_clusters == 0) {
7268                 status = 0;
7269                 goto bail;
7270         }
7271
7272         /*
7273          * Truncate always works against the rightmost tree branch.
7274          */
7275         status = ocfs2_find_path(INODE_CACHE(inode), path, UINT_MAX);
7276         if (status) {
7277                 mlog_errno(status);
7278                 goto bail;
7279         }
7280
7281         mlog(0, "inode->ip_clusters = %u, tree_depth = %u\n",
7282              OCFS2_I(inode)->ip_clusters, path->p_tree_depth);
7283
7284         /*
7285          * By now, el will point to the extent list on the bottom most
7286          * portion of this tree. Only the tail record is considered in
7287          * each pass.
7288          *
7289          * We handle the following cases, in order:
7290          * - empty extent: delete the remaining branch
7291          * - remove the entire record
7292          * - remove a partial record
7293          * - no record needs to be removed (truncate has completed)
7294          */
7295         el = path_leaf_el(path);
7296         if (le16_to_cpu(el->l_next_free_rec) == 0) {
7297                 ocfs2_error(inode->i_sb,
7298                             "Inode %llu has empty extent block at %llu\n",
7299                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
7300                             (unsigned long long)path_leaf_bh(path)->b_blocknr);
7301                 status = -EROFS;
7302                 goto bail;
7303         }
7304
7305         i = le16_to_cpu(el->l_next_free_rec) - 1;
7306         range = le32_to_cpu(el->l_recs[i].e_cpos) +
7307                 ocfs2_rec_clusters(el, &el->l_recs[i]);
7308         if (i == 0 && ocfs2_is_empty_extent(&el->l_recs[i])) {
7309                 clusters_to_del = 0;
7310         } else if (le32_to_cpu(el->l_recs[i].e_cpos) >= new_highest_cpos) {
7311                 clusters_to_del = ocfs2_rec_clusters(el, &el->l_recs[i]);
7312         } else if (range > new_highest_cpos) {
7313                 clusters_to_del = (ocfs2_rec_clusters(el, &el->l_recs[i]) +
7314                                    le32_to_cpu(el->l_recs[i].e_cpos)) -
7315                                   new_highest_cpos;
7316         } else {
7317                 status = 0;
7318                 goto bail;
7319         }
7320
7321         mlog(0, "clusters_to_del = %u in this pass, tail blk=%llu\n",
7322              clusters_to_del, (unsigned long long)path_leaf_bh(path)->b_blocknr);
7323
7324         mutex_lock(&tl_inode->i_mutex);
7325         tl_sem = 1;
7326         /* ocfs2_truncate_log_needs_flush guarantees us at least one
7327          * record is free for use. If there isn't any, we flush to get
7328          * an empty truncate log.  */
7329         if (ocfs2_truncate_log_needs_flush(osb)) {
7330                 status = __ocfs2_flush_truncate_log(osb);
7331                 if (status < 0) {
7332                         mlog_errno(status);
7333                         goto bail;
7334                 }
7335         }
7336
7337         credits = ocfs2_calc_tree_trunc_credits(osb->sb, clusters_to_del,
7338                                                 (struct ocfs2_dinode *)fe_bh->b_data,
7339                                                 el);
7340         handle = ocfs2_start_trans(osb, credits);
7341         if (IS_ERR(handle)) {
7342                 status = PTR_ERR(handle);
7343                 handle = NULL;
7344                 mlog_errno(status);
7345                 goto bail;
7346         }
7347
7348         status = ocfs2_do_truncate(osb, clusters_to_del, inode, fe_bh, handle,
7349                                    tc, path);
7350         if (status < 0) {
7351                 mlog_errno(status);
7352                 goto bail;
7353         }
7354
7355         mutex_unlock(&tl_inode->i_mutex);
7356         tl_sem = 0;
7357
7358         ocfs2_commit_trans(osb, handle);
7359         handle = NULL;
7360
7361         ocfs2_reinit_path(path, 1);
7362
7363         /*
7364          * The check above will catch the case where we've truncated
7365          * away all allocation.
7366          */
7367         goto start;
7368
7369 bail:
7370
7371         ocfs2_schedule_truncate_log_flush(osb, 1);
7372
7373         if (tl_sem)
7374                 mutex_unlock(&tl_inode->i_mutex);
7375
7376         if (handle)
7377                 ocfs2_commit_trans(osb, handle);
7378
7379         ocfs2_run_deallocs(osb, &tc->tc_dealloc);
7380
7381         ocfs2_free_path(path);
7382
7383         /* This will drop the ext_alloc cluster lock for us */
7384         ocfs2_free_truncate_context(tc);
7385
7386         mlog_exit(status);
7387         return status;
7388 }
7389
7390 /*
7391  * Expects the inode to already be locked.
7392  */
7393 int ocfs2_prepare_truncate(struct ocfs2_super *osb,
7394                            struct inode *inode,
7395                            struct buffer_head *fe_bh,
7396                            struct ocfs2_truncate_context **tc)
7397 {
7398         int status;
7399         unsigned int new_i_clusters;
7400         struct ocfs2_dinode *fe;
7401         struct ocfs2_extent_block *eb;
7402         struct buffer_head *last_eb_bh = NULL;
7403
7404         mlog_entry_void();
7405
7406         *tc = NULL;
7407
7408         new_i_clusters = ocfs2_clusters_for_bytes(osb->sb,
7409                                                   i_size_read(inode));
7410         fe = (struct ocfs2_dinode *) fe_bh->b_data;
7411
7412         mlog(0, "fe->i_clusters = %u, new_i_clusters = %u, fe->i_size ="
7413              "%llu\n", le32_to_cpu(fe->i_clusters), new_i_clusters,
7414              (unsigned long long)le64_to_cpu(fe->i_size));
7415
7416         *tc = kzalloc(sizeof(struct ocfs2_truncate_context), GFP_KERNEL);
7417         if (!(*tc)) {
7418                 status = -ENOMEM;
7419                 mlog_errno(status);
7420                 goto bail;
7421         }
7422         ocfs2_init_dealloc_ctxt(&(*tc)->tc_dealloc);
7423
7424         if (fe->id2.i_list.l_tree_depth) {
7425                 status = ocfs2_read_extent_block(INODE_CACHE(inode),
7426                                                  le64_to_cpu(fe->i_last_eb_blk),
7427                                                  &last_eb_bh);
7428                 if (status < 0) {
7429                         mlog_errno(status);
7430                         goto bail;
7431                 }
7432                 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
7433         }
7434
7435         (*tc)->tc_last_eb_bh = last_eb_bh;
7436
7437         status = 0;
7438 bail:
7439         if (status < 0) {
7440                 if (*tc)
7441                         ocfs2_free_truncate_context(*tc);
7442                 *tc = NULL;
7443         }
7444         mlog_exit_void();
7445         return status;
7446 }
7447
7448 /*
7449  * 'start' is inclusive, 'end' is not.
7450  */
7451 int ocfs2_truncate_inline(struct inode *inode, struct buffer_head *di_bh,
7452                           unsigned int start, unsigned int end, int trunc)
7453 {
7454         int ret;
7455         unsigned int numbytes;
7456         handle_t *handle;
7457         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
7458         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
7459         struct ocfs2_inline_data *idata = &di->id2.i_data;
7460
7461         if (end > i_size_read(inode))
7462                 end = i_size_read(inode);
7463
7464         BUG_ON(start >= end);
7465
7466         if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) ||
7467             !(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL) ||
7468             !ocfs2_supports_inline_data(osb)) {
7469                 ocfs2_error(inode->i_sb,
7470                             "Inline data flags for inode %llu don't agree! "
7471                             "Disk: 0x%x, Memory: 0x%x, Superblock: 0x%x\n",
7472                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
7473                             le16_to_cpu(di->i_dyn_features),
7474                             OCFS2_I(inode)->ip_dyn_features,
7475                             osb->s_feature_incompat);
7476                 ret = -EROFS;
7477                 goto out;
7478         }
7479
7480         handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
7481         if (IS_ERR(handle)) {
7482                 ret = PTR_ERR(handle);
7483                 mlog_errno(ret);
7484                 goto out;
7485         }
7486
7487         ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
7488                                       OCFS2_JOURNAL_ACCESS_WRITE);
7489         if (ret) {
7490                 mlog_errno(ret);
7491                 goto out_commit;
7492         }
7493
7494         numbytes = end - start;
7495         memset(idata->id_data + start, 0, numbytes);
7496
7497         /*
7498          * No need to worry about the data page here - it's been
7499          * truncated already and inline data doesn't need it for
7500          * pushing zero's to disk, so we'll let readpage pick it up
7501          * later.
7502          */
7503         if (trunc) {
7504                 i_size_write(inode, start);
7505                 di->i_size = cpu_to_le64(start);
7506         }
7507
7508         inode->i_blocks = ocfs2_inode_sector_count(inode);
7509         inode->i_ctime = inode->i_mtime = CURRENT_TIME;
7510
7511         di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec);
7512         di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
7513
7514         ocfs2_journal_dirty(handle, di_bh);
7515
7516 out_commit:
7517         ocfs2_commit_trans(osb, handle);
7518
7519 out:
7520         return ret;
7521 }
7522
7523 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc)
7524 {
7525         /*
7526          * The caller is responsible for completing deallocation
7527          * before freeing the context.
7528          */
7529         if (tc->tc_dealloc.c_first_suballocator != NULL)
7530                 mlog(ML_NOTICE,
7531                      "Truncate completion has non-empty dealloc context\n");
7532
7533         brelse(tc->tc_last_eb_bh);
7534
7535         kfree(tc);
7536 }