ocfs2: Optionally limit extent size in ocfs2_insert_extent()
[safe/jmp/linux-2.6] / fs / ocfs2 / alloc.c
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * alloc.c
5  *
6  * Extent allocs and frees
7  *
8  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public
12  * License as published by the Free Software Foundation; either
13  * version 2 of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public
21  * License along with this program; if not, write to the
22  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23  * Boston, MA 021110-1307, USA.
24  */
25
26 #include <linux/fs.h>
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/swap.h>
31
32 #define MLOG_MASK_PREFIX ML_DISK_ALLOC
33 #include <cluster/masklog.h>
34
35 #include "ocfs2.h"
36
37 #include "alloc.h"
38 #include "aops.h"
39 #include "dlmglue.h"
40 #include "extent_map.h"
41 #include "inode.h"
42 #include "journal.h"
43 #include "localalloc.h"
44 #include "suballoc.h"
45 #include "sysfile.h"
46 #include "file.h"
47 #include "super.h"
48 #include "uptodate.h"
49
50 #include "buffer_head_io.h"
51
52 /*
53  * ocfs2_extent_tree and ocfs2_extent_tree_operations are used to abstract
54  * the b-tree operations in ocfs2. Now all the b-tree operations are not
55  * limited to ocfs2_dinode only. Any data which need to allocate clusters
56  * to store can use b-tree. And it only needs to implement its ocfs2_extent_tree
57  * and operation.
58  *
59  * ocfs2_extent_tree contains info for the root of the b-tree, it must have a
60  * root ocfs2_extent_list and a root_bh so that they can be used in the b-tree
61  * functions.
62  * ocfs2_extent_tree_operations abstract the normal operations we do for
63  * the root of extent b-tree.
64  */
65 struct ocfs2_extent_tree;
66
67 struct ocfs2_extent_tree_operations {
68         void (*set_last_eb_blk) (struct ocfs2_extent_tree *et, u64 blkno);
69         u64 (*get_last_eb_blk) (struct ocfs2_extent_tree *et);
70         void (*update_clusters) (struct inode *inode,
71                                  struct ocfs2_extent_tree *et,
72                                  u32 new_clusters);
73         int (*sanity_check) (struct inode *inode, struct ocfs2_extent_tree *et);
74 };
75
76 struct ocfs2_extent_tree {
77         enum ocfs2_extent_tree_type type;
78         struct ocfs2_extent_tree_operations *eops;
79         struct buffer_head *root_bh;
80         struct ocfs2_extent_list *root_el;
81         void *private;
82         unsigned int max_leaf_clusters;
83 };
84
85 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et,
86                                          u64 blkno)
87 {
88         struct ocfs2_dinode *di = (struct ocfs2_dinode *)et->root_bh->b_data;
89
90         BUG_ON(et->type != OCFS2_DINODE_EXTENT);
91         di->i_last_eb_blk = cpu_to_le64(blkno);
92 }
93
94 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et)
95 {
96         struct ocfs2_dinode *di = (struct ocfs2_dinode *)et->root_bh->b_data;
97
98         BUG_ON(et->type != OCFS2_DINODE_EXTENT);
99         return le64_to_cpu(di->i_last_eb_blk);
100 }
101
102 static void ocfs2_dinode_update_clusters(struct inode *inode,
103                                          struct ocfs2_extent_tree *et,
104                                          u32 clusters)
105 {
106         struct ocfs2_dinode *di =
107                         (struct ocfs2_dinode *)et->root_bh->b_data;
108
109         le32_add_cpu(&di->i_clusters, clusters);
110         spin_lock(&OCFS2_I(inode)->ip_lock);
111         OCFS2_I(inode)->ip_clusters = le32_to_cpu(di->i_clusters);
112         spin_unlock(&OCFS2_I(inode)->ip_lock);
113 }
114
115 static int ocfs2_dinode_sanity_check(struct inode *inode,
116                                      struct ocfs2_extent_tree *et)
117 {
118         int ret = 0;
119         struct ocfs2_dinode *di;
120
121         BUG_ON(et->type != OCFS2_DINODE_EXTENT);
122
123         di = (struct ocfs2_dinode *)et->root_bh->b_data;
124         if (!OCFS2_IS_VALID_DINODE(di)) {
125                 ret = -EIO;
126                 ocfs2_error(inode->i_sb,
127                         "Inode %llu has invalid path root",
128                         (unsigned long long)OCFS2_I(inode)->ip_blkno);
129         }
130
131         return ret;
132 }
133
134 static struct ocfs2_extent_tree_operations ocfs2_dinode_et_ops = {
135         .set_last_eb_blk        = ocfs2_dinode_set_last_eb_blk,
136         .get_last_eb_blk        = ocfs2_dinode_get_last_eb_blk,
137         .update_clusters        = ocfs2_dinode_update_clusters,
138         .sanity_check           = ocfs2_dinode_sanity_check,
139 };
140
141 static void ocfs2_xattr_value_set_last_eb_blk(struct ocfs2_extent_tree *et,
142                                               u64 blkno)
143 {
144         struct ocfs2_xattr_value_root *xv =
145                 (struct ocfs2_xattr_value_root *)et->private;
146
147         xv->xr_last_eb_blk = cpu_to_le64(blkno);
148 }
149
150 static u64 ocfs2_xattr_value_get_last_eb_blk(struct ocfs2_extent_tree *et)
151 {
152         struct ocfs2_xattr_value_root *xv =
153                 (struct ocfs2_xattr_value_root *) et->private;
154
155         return le64_to_cpu(xv->xr_last_eb_blk);
156 }
157
158 static void ocfs2_xattr_value_update_clusters(struct inode *inode,
159                                               struct ocfs2_extent_tree *et,
160                                               u32 clusters)
161 {
162         struct ocfs2_xattr_value_root *xv =
163                 (struct ocfs2_xattr_value_root *)et->private;
164
165         le32_add_cpu(&xv->xr_clusters, clusters);
166 }
167
168 static int ocfs2_xattr_value_sanity_check(struct inode *inode,
169                                           struct ocfs2_extent_tree *et)
170 {
171         return 0;
172 }
173
174 static struct ocfs2_extent_tree_operations ocfs2_xattr_et_ops = {
175         .set_last_eb_blk        = ocfs2_xattr_value_set_last_eb_blk,
176         .get_last_eb_blk        = ocfs2_xattr_value_get_last_eb_blk,
177         .update_clusters        = ocfs2_xattr_value_update_clusters,
178         .sanity_check           = ocfs2_xattr_value_sanity_check,
179 };
180
181 static void ocfs2_xattr_tree_set_last_eb_blk(struct ocfs2_extent_tree *et,
182                                              u64 blkno)
183 {
184         struct ocfs2_xattr_block *xb =
185                 (struct ocfs2_xattr_block *) et->root_bh->b_data;
186         struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root;
187
188         xt->xt_last_eb_blk = cpu_to_le64(blkno);
189 }
190
191 static u64 ocfs2_xattr_tree_get_last_eb_blk(struct ocfs2_extent_tree *et)
192 {
193         struct ocfs2_xattr_block *xb =
194                 (struct ocfs2_xattr_block *) et->root_bh->b_data;
195         struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root;
196
197         return le64_to_cpu(xt->xt_last_eb_blk);
198 }
199
200 static void ocfs2_xattr_tree_update_clusters(struct inode *inode,
201                                              struct ocfs2_extent_tree *et,
202                                              u32 clusters)
203 {
204         struct ocfs2_xattr_block *xb =
205                         (struct ocfs2_xattr_block *)et->root_bh->b_data;
206
207         le32_add_cpu(&xb->xb_attrs.xb_root.xt_clusters, clusters);
208 }
209
210 static int ocfs2_xattr_tree_sanity_check(struct inode *inode,
211                                          struct ocfs2_extent_tree *et)
212 {
213         return 0;
214 }
215
216 static struct ocfs2_extent_tree_operations ocfs2_xattr_tree_et_ops = {
217         .set_last_eb_blk        = ocfs2_xattr_tree_set_last_eb_blk,
218         .get_last_eb_blk        = ocfs2_xattr_tree_get_last_eb_blk,
219         .update_clusters        = ocfs2_xattr_tree_update_clusters,
220         .sanity_check           = ocfs2_xattr_tree_sanity_check,
221 };
222
223 static struct ocfs2_extent_tree*
224          ocfs2_new_extent_tree(struct inode *inode,
225                                struct buffer_head *bh,
226                                enum ocfs2_extent_tree_type et_type,
227                                void *private)
228 {
229         struct ocfs2_extent_tree *et;
230
231         et = kzalloc(sizeof(*et), GFP_NOFS);
232         if (!et)
233                 return NULL;
234
235         et->type = et_type;
236         get_bh(bh);
237         et->root_bh = bh;
238         et->private = private;
239
240         if (et_type == OCFS2_DINODE_EXTENT) {
241                 et->root_el = &((struct ocfs2_dinode *)bh->b_data)->id2.i_list;
242                 et->eops = &ocfs2_dinode_et_ops;
243         } else if (et_type == OCFS2_XATTR_VALUE_EXTENT) {
244                 struct ocfs2_xattr_value_root *xv =
245                         (struct ocfs2_xattr_value_root *) private;
246                 et->root_el = &xv->xr_list;
247                 et->eops = &ocfs2_xattr_et_ops;
248         } else if (et_type == OCFS2_XATTR_TREE_EXTENT) {
249                 struct ocfs2_xattr_block *xb =
250                         (struct ocfs2_xattr_block *)bh->b_data;
251                 et->root_el = &xb->xb_attrs.xb_root.xt_list;
252                 et->eops = &ocfs2_xattr_tree_et_ops;
253                 et->max_leaf_clusters = ocfs2_clusters_for_bytes(inode->i_sb,
254                                                 OCFS2_MAX_XATTR_TREE_LEAF_SIZE);
255         }
256
257         return et;
258 }
259
260 static void ocfs2_free_extent_tree(struct ocfs2_extent_tree *et)
261 {
262         if (et) {
263                 brelse(et->root_bh);
264                 kfree(et);
265         }
266 }
267
268 static inline void ocfs2_set_last_eb_blk(struct ocfs2_extent_tree *et,
269                                          u64 new_last_eb_blk)
270 {
271         et->eops->set_last_eb_blk(et, new_last_eb_blk);
272 }
273
274 static inline u64 ocfs2_get_last_eb_blk(struct ocfs2_extent_tree *et)
275 {
276         return et->eops->get_last_eb_blk(et);
277 }
278
279 static inline void ocfs2_update_clusters(struct inode *inode,
280                                          struct ocfs2_extent_tree *et,
281                                          u32 clusters)
282 {
283         et->eops->update_clusters(inode, et, clusters);
284 }
285
286 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc);
287 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
288                                          struct ocfs2_extent_block *eb);
289
290 /*
291  * Structures which describe a path through a btree, and functions to
292  * manipulate them.
293  *
294  * The idea here is to be as generic as possible with the tree
295  * manipulation code.
296  */
297 struct ocfs2_path_item {
298         struct buffer_head              *bh;
299         struct ocfs2_extent_list        *el;
300 };
301
302 #define OCFS2_MAX_PATH_DEPTH    5
303
304 struct ocfs2_path {
305         int                     p_tree_depth;
306         struct ocfs2_path_item  p_node[OCFS2_MAX_PATH_DEPTH];
307 };
308
309 #define path_root_bh(_path) ((_path)->p_node[0].bh)
310 #define path_root_el(_path) ((_path)->p_node[0].el)
311 #define path_leaf_bh(_path) ((_path)->p_node[(_path)->p_tree_depth].bh)
312 #define path_leaf_el(_path) ((_path)->p_node[(_path)->p_tree_depth].el)
313 #define path_num_items(_path) ((_path)->p_tree_depth + 1)
314
315 /*
316  * Reset the actual path elements so that we can re-use the structure
317  * to build another path. Generally, this involves freeing the buffer
318  * heads.
319  */
320 static void ocfs2_reinit_path(struct ocfs2_path *path, int keep_root)
321 {
322         int i, start = 0, depth = 0;
323         struct ocfs2_path_item *node;
324
325         if (keep_root)
326                 start = 1;
327
328         for(i = start; i < path_num_items(path); i++) {
329                 node = &path->p_node[i];
330
331                 brelse(node->bh);
332                 node->bh = NULL;
333                 node->el = NULL;
334         }
335
336         /*
337          * Tree depth may change during truncate, or insert. If we're
338          * keeping the root extent list, then make sure that our path
339          * structure reflects the proper depth.
340          */
341         if (keep_root)
342                 depth = le16_to_cpu(path_root_el(path)->l_tree_depth);
343
344         path->p_tree_depth = depth;
345 }
346
347 static void ocfs2_free_path(struct ocfs2_path *path)
348 {
349         if (path) {
350                 ocfs2_reinit_path(path, 0);
351                 kfree(path);
352         }
353 }
354
355 /*
356  * All the elements of src into dest. After this call, src could be freed
357  * without affecting dest.
358  *
359  * Both paths should have the same root. Any non-root elements of dest
360  * will be freed.
361  */
362 static void ocfs2_cp_path(struct ocfs2_path *dest, struct ocfs2_path *src)
363 {
364         int i;
365
366         BUG_ON(path_root_bh(dest) != path_root_bh(src));
367         BUG_ON(path_root_el(dest) != path_root_el(src));
368
369         ocfs2_reinit_path(dest, 1);
370
371         for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
372                 dest->p_node[i].bh = src->p_node[i].bh;
373                 dest->p_node[i].el = src->p_node[i].el;
374
375                 if (dest->p_node[i].bh)
376                         get_bh(dest->p_node[i].bh);
377         }
378 }
379
380 /*
381  * Make the *dest path the same as src and re-initialize src path to
382  * have a root only.
383  */
384 static void ocfs2_mv_path(struct ocfs2_path *dest, struct ocfs2_path *src)
385 {
386         int i;
387
388         BUG_ON(path_root_bh(dest) != path_root_bh(src));
389
390         for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
391                 brelse(dest->p_node[i].bh);
392
393                 dest->p_node[i].bh = src->p_node[i].bh;
394                 dest->p_node[i].el = src->p_node[i].el;
395
396                 src->p_node[i].bh = NULL;
397                 src->p_node[i].el = NULL;
398         }
399 }
400
401 /*
402  * Insert an extent block at given index.
403  *
404  * This will not take an additional reference on eb_bh.
405  */
406 static inline void ocfs2_path_insert_eb(struct ocfs2_path *path, int index,
407                                         struct buffer_head *eb_bh)
408 {
409         struct ocfs2_extent_block *eb = (struct ocfs2_extent_block *)eb_bh->b_data;
410
411         /*
412          * Right now, no root bh is an extent block, so this helps
413          * catch code errors with dinode trees. The assertion can be
414          * safely removed if we ever need to insert extent block
415          * structures at the root.
416          */
417         BUG_ON(index == 0);
418
419         path->p_node[index].bh = eb_bh;
420         path->p_node[index].el = &eb->h_list;
421 }
422
423 static struct ocfs2_path *ocfs2_new_path(struct buffer_head *root_bh,
424                                          struct ocfs2_extent_list *root_el)
425 {
426         struct ocfs2_path *path;
427
428         BUG_ON(le16_to_cpu(root_el->l_tree_depth) >= OCFS2_MAX_PATH_DEPTH);
429
430         path = kzalloc(sizeof(*path), GFP_NOFS);
431         if (path) {
432                 path->p_tree_depth = le16_to_cpu(root_el->l_tree_depth);
433                 get_bh(root_bh);
434                 path_root_bh(path) = root_bh;
435                 path_root_el(path) = root_el;
436         }
437
438         return path;
439 }
440
441 /*
442  * Convenience function to journal all components in a path.
443  */
444 static int ocfs2_journal_access_path(struct inode *inode, handle_t *handle,
445                                      struct ocfs2_path *path)
446 {
447         int i, ret = 0;
448
449         if (!path)
450                 goto out;
451
452         for(i = 0; i < path_num_items(path); i++) {
453                 ret = ocfs2_journal_access(handle, inode, path->p_node[i].bh,
454                                            OCFS2_JOURNAL_ACCESS_WRITE);
455                 if (ret < 0) {
456                         mlog_errno(ret);
457                         goto out;
458                 }
459         }
460
461 out:
462         return ret;
463 }
464
465 /*
466  * Return the index of the extent record which contains cluster #v_cluster.
467  * -1 is returned if it was not found.
468  *
469  * Should work fine on interior and exterior nodes.
470  */
471 int ocfs2_search_extent_list(struct ocfs2_extent_list *el, u32 v_cluster)
472 {
473         int ret = -1;
474         int i;
475         struct ocfs2_extent_rec *rec;
476         u32 rec_end, rec_start, clusters;
477
478         for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
479                 rec = &el->l_recs[i];
480
481                 rec_start = le32_to_cpu(rec->e_cpos);
482                 clusters = ocfs2_rec_clusters(el, rec);
483
484                 rec_end = rec_start + clusters;
485
486                 if (v_cluster >= rec_start && v_cluster < rec_end) {
487                         ret = i;
488                         break;
489                 }
490         }
491
492         return ret;
493 }
494
495 enum ocfs2_contig_type {
496         CONTIG_NONE = 0,
497         CONTIG_LEFT,
498         CONTIG_RIGHT,
499         CONTIG_LEFTRIGHT,
500 };
501
502
503 /*
504  * NOTE: ocfs2_block_extent_contig(), ocfs2_extents_adjacent() and
505  * ocfs2_extent_contig only work properly against leaf nodes!
506  */
507 static int ocfs2_block_extent_contig(struct super_block *sb,
508                                      struct ocfs2_extent_rec *ext,
509                                      u64 blkno)
510 {
511         u64 blk_end = le64_to_cpu(ext->e_blkno);
512
513         blk_end += ocfs2_clusters_to_blocks(sb,
514                                     le16_to_cpu(ext->e_leaf_clusters));
515
516         return blkno == blk_end;
517 }
518
519 static int ocfs2_extents_adjacent(struct ocfs2_extent_rec *left,
520                                   struct ocfs2_extent_rec *right)
521 {
522         u32 left_range;
523
524         left_range = le32_to_cpu(left->e_cpos) +
525                 le16_to_cpu(left->e_leaf_clusters);
526
527         return (left_range == le32_to_cpu(right->e_cpos));
528 }
529
530 static enum ocfs2_contig_type
531         ocfs2_extent_contig(struct inode *inode,
532                             struct ocfs2_extent_rec *ext,
533                             struct ocfs2_extent_rec *insert_rec)
534 {
535         u64 blkno = le64_to_cpu(insert_rec->e_blkno);
536
537         /*
538          * Refuse to coalesce extent records with different flag
539          * fields - we don't want to mix unwritten extents with user
540          * data.
541          */
542         if (ext->e_flags != insert_rec->e_flags)
543                 return CONTIG_NONE;
544
545         if (ocfs2_extents_adjacent(ext, insert_rec) &&
546             ocfs2_block_extent_contig(inode->i_sb, ext, blkno))
547                         return CONTIG_RIGHT;
548
549         blkno = le64_to_cpu(ext->e_blkno);
550         if (ocfs2_extents_adjacent(insert_rec, ext) &&
551             ocfs2_block_extent_contig(inode->i_sb, insert_rec, blkno))
552                 return CONTIG_LEFT;
553
554         return CONTIG_NONE;
555 }
556
557 /*
558  * NOTE: We can have pretty much any combination of contiguousness and
559  * appending.
560  *
561  * The usefulness of APPEND_TAIL is more in that it lets us know that
562  * we'll have to update the path to that leaf.
563  */
564 enum ocfs2_append_type {
565         APPEND_NONE = 0,
566         APPEND_TAIL,
567 };
568
569 enum ocfs2_split_type {
570         SPLIT_NONE = 0,
571         SPLIT_LEFT,
572         SPLIT_RIGHT,
573 };
574
575 struct ocfs2_insert_type {
576         enum ocfs2_split_type   ins_split;
577         enum ocfs2_append_type  ins_appending;
578         enum ocfs2_contig_type  ins_contig;
579         int                     ins_contig_index;
580         int                     ins_tree_depth;
581 };
582
583 struct ocfs2_merge_ctxt {
584         enum ocfs2_contig_type  c_contig_type;
585         int                     c_has_empty_extent;
586         int                     c_split_covers_rec;
587 };
588
589 /*
590  * How many free extents have we got before we need more meta data?
591  */
592 int ocfs2_num_free_extents(struct ocfs2_super *osb,
593                            struct inode *inode,
594                            struct buffer_head *root_bh,
595                            enum ocfs2_extent_tree_type type,
596                            void *private)
597 {
598         int retval;
599         struct ocfs2_extent_list *el = NULL;
600         struct ocfs2_extent_block *eb;
601         struct buffer_head *eb_bh = NULL;
602         u64 last_eb_blk = 0;
603
604         mlog_entry_void();
605
606         if (type == OCFS2_DINODE_EXTENT) {
607                 struct ocfs2_dinode *fe =
608                                 (struct ocfs2_dinode *)root_bh->b_data;
609                 if (!OCFS2_IS_VALID_DINODE(fe)) {
610                         OCFS2_RO_ON_INVALID_DINODE(inode->i_sb, fe);
611                         retval = -EIO;
612                         goto bail;
613                 }
614
615                 if (fe->i_last_eb_blk)
616                         last_eb_blk = le64_to_cpu(fe->i_last_eb_blk);
617                 el = &fe->id2.i_list;
618         } else if (type == OCFS2_XATTR_VALUE_EXTENT) {
619                 struct ocfs2_xattr_value_root *xv =
620                         (struct ocfs2_xattr_value_root *) private;
621
622                 last_eb_blk = le64_to_cpu(xv->xr_last_eb_blk);
623                 el = &xv->xr_list;
624         } else if (type == OCFS2_XATTR_TREE_EXTENT) {
625                 struct ocfs2_xattr_block *xb =
626                         (struct ocfs2_xattr_block *)root_bh->b_data;
627
628                 last_eb_blk = le64_to_cpu(xb->xb_attrs.xb_root.xt_last_eb_blk);
629                 el = &xb->xb_attrs.xb_root.xt_list;
630         }
631
632         if (last_eb_blk) {
633                 retval = ocfs2_read_block(osb, last_eb_blk,
634                                           &eb_bh, OCFS2_BH_CACHED, inode);
635                 if (retval < 0) {
636                         mlog_errno(retval);
637                         goto bail;
638                 }
639                 eb = (struct ocfs2_extent_block *) eb_bh->b_data;
640                 el = &eb->h_list;
641         }
642
643         BUG_ON(el->l_tree_depth != 0);
644
645         retval = le16_to_cpu(el->l_count) - le16_to_cpu(el->l_next_free_rec);
646 bail:
647         if (eb_bh)
648                 brelse(eb_bh);
649
650         mlog_exit(retval);
651         return retval;
652 }
653
654 /* expects array to already be allocated
655  *
656  * sets h_signature, h_blkno, h_suballoc_bit, h_suballoc_slot, and
657  * l_count for you
658  */
659 static int ocfs2_create_new_meta_bhs(struct ocfs2_super *osb,
660                                      handle_t *handle,
661                                      struct inode *inode,
662                                      int wanted,
663                                      struct ocfs2_alloc_context *meta_ac,
664                                      struct buffer_head *bhs[])
665 {
666         int count, status, i;
667         u16 suballoc_bit_start;
668         u32 num_got;
669         u64 first_blkno;
670         struct ocfs2_extent_block *eb;
671
672         mlog_entry_void();
673
674         count = 0;
675         while (count < wanted) {
676                 status = ocfs2_claim_metadata(osb,
677                                               handle,
678                                               meta_ac,
679                                               wanted - count,
680                                               &suballoc_bit_start,
681                                               &num_got,
682                                               &first_blkno);
683                 if (status < 0) {
684                         mlog_errno(status);
685                         goto bail;
686                 }
687
688                 for(i = count;  i < (num_got + count); i++) {
689                         bhs[i] = sb_getblk(osb->sb, first_blkno);
690                         if (bhs[i] == NULL) {
691                                 status = -EIO;
692                                 mlog_errno(status);
693                                 goto bail;
694                         }
695                         ocfs2_set_new_buffer_uptodate(inode, bhs[i]);
696
697                         status = ocfs2_journal_access(handle, inode, bhs[i],
698                                                       OCFS2_JOURNAL_ACCESS_CREATE);
699                         if (status < 0) {
700                                 mlog_errno(status);
701                                 goto bail;
702                         }
703
704                         memset(bhs[i]->b_data, 0, osb->sb->s_blocksize);
705                         eb = (struct ocfs2_extent_block *) bhs[i]->b_data;
706                         /* Ok, setup the minimal stuff here. */
707                         strcpy(eb->h_signature, OCFS2_EXTENT_BLOCK_SIGNATURE);
708                         eb->h_blkno = cpu_to_le64(first_blkno);
709                         eb->h_fs_generation = cpu_to_le32(osb->fs_generation);
710                         eb->h_suballoc_slot = cpu_to_le16(osb->slot_num);
711                         eb->h_suballoc_bit = cpu_to_le16(suballoc_bit_start);
712                         eb->h_list.l_count =
713                                 cpu_to_le16(ocfs2_extent_recs_per_eb(osb->sb));
714
715                         suballoc_bit_start++;
716                         first_blkno++;
717
718                         /* We'll also be dirtied by the caller, so
719                          * this isn't absolutely necessary. */
720                         status = ocfs2_journal_dirty(handle, bhs[i]);
721                         if (status < 0) {
722                                 mlog_errno(status);
723                                 goto bail;
724                         }
725                 }
726
727                 count += num_got;
728         }
729
730         status = 0;
731 bail:
732         if (status < 0) {
733                 for(i = 0; i < wanted; i++) {
734                         if (bhs[i])
735                                 brelse(bhs[i]);
736                         bhs[i] = NULL;
737                 }
738         }
739         mlog_exit(status);
740         return status;
741 }
742
743 /*
744  * Helper function for ocfs2_add_branch() and ocfs2_shift_tree_depth().
745  *
746  * Returns the sum of the rightmost extent rec logical offset and
747  * cluster count.
748  *
749  * ocfs2_add_branch() uses this to determine what logical cluster
750  * value should be populated into the leftmost new branch records.
751  *
752  * ocfs2_shift_tree_depth() uses this to determine the # clusters
753  * value for the new topmost tree record.
754  */
755 static inline u32 ocfs2_sum_rightmost_rec(struct ocfs2_extent_list  *el)
756 {
757         int i;
758
759         i = le16_to_cpu(el->l_next_free_rec) - 1;
760
761         return le32_to_cpu(el->l_recs[i].e_cpos) +
762                 ocfs2_rec_clusters(el, &el->l_recs[i]);
763 }
764
765 /*
766  * Add an entire tree branch to our inode. eb_bh is the extent block
767  * to start at, if we don't want to start the branch at the dinode
768  * structure.
769  *
770  * last_eb_bh is required as we have to update it's next_leaf pointer
771  * for the new last extent block.
772  *
773  * the new branch will be 'empty' in the sense that every block will
774  * contain a single record with cluster count == 0.
775  */
776 static int ocfs2_add_branch(struct ocfs2_super *osb,
777                             handle_t *handle,
778                             struct inode *inode,
779                             struct ocfs2_extent_tree *et,
780                             struct buffer_head *eb_bh,
781                             struct buffer_head **last_eb_bh,
782                             struct ocfs2_alloc_context *meta_ac)
783 {
784         int status, new_blocks, i;
785         u64 next_blkno, new_last_eb_blk;
786         struct buffer_head *bh;
787         struct buffer_head **new_eb_bhs = NULL;
788         struct ocfs2_extent_block *eb;
789         struct ocfs2_extent_list  *eb_el;
790         struct ocfs2_extent_list  *el;
791         u32 new_cpos;
792
793         mlog_entry_void();
794
795         BUG_ON(!last_eb_bh || !*last_eb_bh);
796
797         if (eb_bh) {
798                 eb = (struct ocfs2_extent_block *) eb_bh->b_data;
799                 el = &eb->h_list;
800         } else
801                 el = et->root_el;
802
803         /* we never add a branch to a leaf. */
804         BUG_ON(!el->l_tree_depth);
805
806         new_blocks = le16_to_cpu(el->l_tree_depth);
807
808         /* allocate the number of new eb blocks we need */
809         new_eb_bhs = kcalloc(new_blocks, sizeof(struct buffer_head *),
810                              GFP_KERNEL);
811         if (!new_eb_bhs) {
812                 status = -ENOMEM;
813                 mlog_errno(status);
814                 goto bail;
815         }
816
817         status = ocfs2_create_new_meta_bhs(osb, handle, inode, new_blocks,
818                                            meta_ac, new_eb_bhs);
819         if (status < 0) {
820                 mlog_errno(status);
821                 goto bail;
822         }
823
824         eb = (struct ocfs2_extent_block *)(*last_eb_bh)->b_data;
825         new_cpos = ocfs2_sum_rightmost_rec(&eb->h_list);
826
827         /* Note: new_eb_bhs[new_blocks - 1] is the guy which will be
828          * linked with the rest of the tree.
829          * conversly, new_eb_bhs[0] is the new bottommost leaf.
830          *
831          * when we leave the loop, new_last_eb_blk will point to the
832          * newest leaf, and next_blkno will point to the topmost extent
833          * block. */
834         next_blkno = new_last_eb_blk = 0;
835         for(i = 0; i < new_blocks; i++) {
836                 bh = new_eb_bhs[i];
837                 eb = (struct ocfs2_extent_block *) bh->b_data;
838                 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
839                         OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
840                         status = -EIO;
841                         goto bail;
842                 }
843                 eb_el = &eb->h_list;
844
845                 status = ocfs2_journal_access(handle, inode, bh,
846                                               OCFS2_JOURNAL_ACCESS_CREATE);
847                 if (status < 0) {
848                         mlog_errno(status);
849                         goto bail;
850                 }
851
852                 eb->h_next_leaf_blk = 0;
853                 eb_el->l_tree_depth = cpu_to_le16(i);
854                 eb_el->l_next_free_rec = cpu_to_le16(1);
855                 /*
856                  * This actually counts as an empty extent as
857                  * c_clusters == 0
858                  */
859                 eb_el->l_recs[0].e_cpos = cpu_to_le32(new_cpos);
860                 eb_el->l_recs[0].e_blkno = cpu_to_le64(next_blkno);
861                 /*
862                  * eb_el isn't always an interior node, but even leaf
863                  * nodes want a zero'd flags and reserved field so
864                  * this gets the whole 32 bits regardless of use.
865                  */
866                 eb_el->l_recs[0].e_int_clusters = cpu_to_le32(0);
867                 if (!eb_el->l_tree_depth)
868                         new_last_eb_blk = le64_to_cpu(eb->h_blkno);
869
870                 status = ocfs2_journal_dirty(handle, bh);
871                 if (status < 0) {
872                         mlog_errno(status);
873                         goto bail;
874                 }
875
876                 next_blkno = le64_to_cpu(eb->h_blkno);
877         }
878
879         /* This is a bit hairy. We want to update up to three blocks
880          * here without leaving any of them in an inconsistent state
881          * in case of error. We don't have to worry about
882          * journal_dirty erroring as it won't unless we've aborted the
883          * handle (in which case we would never be here) so reserving
884          * the write with journal_access is all we need to do. */
885         status = ocfs2_journal_access(handle, inode, *last_eb_bh,
886                                       OCFS2_JOURNAL_ACCESS_WRITE);
887         if (status < 0) {
888                 mlog_errno(status);
889                 goto bail;
890         }
891         status = ocfs2_journal_access(handle, inode, et->root_bh,
892                                       OCFS2_JOURNAL_ACCESS_WRITE);
893         if (status < 0) {
894                 mlog_errno(status);
895                 goto bail;
896         }
897         if (eb_bh) {
898                 status = ocfs2_journal_access(handle, inode, eb_bh,
899                                               OCFS2_JOURNAL_ACCESS_WRITE);
900                 if (status < 0) {
901                         mlog_errno(status);
902                         goto bail;
903                 }
904         }
905
906         /* Link the new branch into the rest of the tree (el will
907          * either be on the root_bh, or the extent block passed in. */
908         i = le16_to_cpu(el->l_next_free_rec);
909         el->l_recs[i].e_blkno = cpu_to_le64(next_blkno);
910         el->l_recs[i].e_cpos = cpu_to_le32(new_cpos);
911         el->l_recs[i].e_int_clusters = 0;
912         le16_add_cpu(&el->l_next_free_rec, 1);
913
914         /* fe needs a new last extent block pointer, as does the
915          * next_leaf on the previously last-extent-block. */
916         ocfs2_set_last_eb_blk(et, new_last_eb_blk);
917
918         eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
919         eb->h_next_leaf_blk = cpu_to_le64(new_last_eb_blk);
920
921         status = ocfs2_journal_dirty(handle, *last_eb_bh);
922         if (status < 0)
923                 mlog_errno(status);
924         status = ocfs2_journal_dirty(handle, et->root_bh);
925         if (status < 0)
926                 mlog_errno(status);
927         if (eb_bh) {
928                 status = ocfs2_journal_dirty(handle, eb_bh);
929                 if (status < 0)
930                         mlog_errno(status);
931         }
932
933         /*
934          * Some callers want to track the rightmost leaf so pass it
935          * back here.
936          */
937         brelse(*last_eb_bh);
938         get_bh(new_eb_bhs[0]);
939         *last_eb_bh = new_eb_bhs[0];
940
941         status = 0;
942 bail:
943         if (new_eb_bhs) {
944                 for (i = 0; i < new_blocks; i++)
945                         if (new_eb_bhs[i])
946                                 brelse(new_eb_bhs[i]);
947                 kfree(new_eb_bhs);
948         }
949
950         mlog_exit(status);
951         return status;
952 }
953
954 /*
955  * adds another level to the allocation tree.
956  * returns back the new extent block so you can add a branch to it
957  * after this call.
958  */
959 static int ocfs2_shift_tree_depth(struct ocfs2_super *osb,
960                                   handle_t *handle,
961                                   struct inode *inode,
962                                   struct ocfs2_extent_tree *et,
963                                   struct ocfs2_alloc_context *meta_ac,
964                                   struct buffer_head **ret_new_eb_bh)
965 {
966         int status, i;
967         u32 new_clusters;
968         struct buffer_head *new_eb_bh = NULL;
969         struct ocfs2_extent_block *eb;
970         struct ocfs2_extent_list  *root_el;
971         struct ocfs2_extent_list  *eb_el;
972
973         mlog_entry_void();
974
975         status = ocfs2_create_new_meta_bhs(osb, handle, inode, 1, meta_ac,
976                                            &new_eb_bh);
977         if (status < 0) {
978                 mlog_errno(status);
979                 goto bail;
980         }
981
982         eb = (struct ocfs2_extent_block *) new_eb_bh->b_data;
983         if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
984                 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
985                 status = -EIO;
986                 goto bail;
987         }
988
989         eb_el = &eb->h_list;
990         root_el = et->root_el;
991
992         status = ocfs2_journal_access(handle, inode, new_eb_bh,
993                                       OCFS2_JOURNAL_ACCESS_CREATE);
994         if (status < 0) {
995                 mlog_errno(status);
996                 goto bail;
997         }
998
999         /* copy the root extent list data into the new extent block */
1000         eb_el->l_tree_depth = root_el->l_tree_depth;
1001         eb_el->l_next_free_rec = root_el->l_next_free_rec;
1002         for (i = 0; i < le16_to_cpu(root_el->l_next_free_rec); i++)
1003                 eb_el->l_recs[i] = root_el->l_recs[i];
1004
1005         status = ocfs2_journal_dirty(handle, new_eb_bh);
1006         if (status < 0) {
1007                 mlog_errno(status);
1008                 goto bail;
1009         }
1010
1011         status = ocfs2_journal_access(handle, inode, et->root_bh,
1012                                       OCFS2_JOURNAL_ACCESS_WRITE);
1013         if (status < 0) {
1014                 mlog_errno(status);
1015                 goto bail;
1016         }
1017
1018         new_clusters = ocfs2_sum_rightmost_rec(eb_el);
1019
1020         /* update root_bh now */
1021         le16_add_cpu(&root_el->l_tree_depth, 1);
1022         root_el->l_recs[0].e_cpos = 0;
1023         root_el->l_recs[0].e_blkno = eb->h_blkno;
1024         root_el->l_recs[0].e_int_clusters = cpu_to_le32(new_clusters);
1025         for (i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++)
1026                 memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
1027         root_el->l_next_free_rec = cpu_to_le16(1);
1028
1029         /* If this is our 1st tree depth shift, then last_eb_blk
1030          * becomes the allocated extent block */
1031         if (root_el->l_tree_depth == cpu_to_le16(1))
1032                 ocfs2_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
1033
1034         status = ocfs2_journal_dirty(handle, et->root_bh);
1035         if (status < 0) {
1036                 mlog_errno(status);
1037                 goto bail;
1038         }
1039
1040         *ret_new_eb_bh = new_eb_bh;
1041         new_eb_bh = NULL;
1042         status = 0;
1043 bail:
1044         if (new_eb_bh)
1045                 brelse(new_eb_bh);
1046
1047         mlog_exit(status);
1048         return status;
1049 }
1050
1051 /*
1052  * Should only be called when there is no space left in any of the
1053  * leaf nodes. What we want to do is find the lowest tree depth
1054  * non-leaf extent block with room for new records. There are three
1055  * valid results of this search:
1056  *
1057  * 1) a lowest extent block is found, then we pass it back in
1058  *    *lowest_eb_bh and return '0'
1059  *
1060  * 2) the search fails to find anything, but the root_el has room. We
1061  *    pass NULL back in *lowest_eb_bh, but still return '0'
1062  *
1063  * 3) the search fails to find anything AND the root_el is full, in
1064  *    which case we return > 0
1065  *
1066  * return status < 0 indicates an error.
1067  */
1068 static int ocfs2_find_branch_target(struct ocfs2_super *osb,
1069                                     struct inode *inode,
1070                                     struct ocfs2_extent_tree *et,
1071                                     struct buffer_head **target_bh)
1072 {
1073         int status = 0, i;
1074         u64 blkno;
1075         struct ocfs2_extent_block *eb;
1076         struct ocfs2_extent_list  *el;
1077         struct buffer_head *bh = NULL;
1078         struct buffer_head *lowest_bh = NULL;
1079
1080         mlog_entry_void();
1081
1082         *target_bh = NULL;
1083
1084         el = et->root_el;
1085
1086         while(le16_to_cpu(el->l_tree_depth) > 1) {
1087                 if (le16_to_cpu(el->l_next_free_rec) == 0) {
1088                         ocfs2_error(inode->i_sb, "Dinode %llu has empty "
1089                                     "extent list (next_free_rec == 0)",
1090                                     (unsigned long long)OCFS2_I(inode)->ip_blkno);
1091                         status = -EIO;
1092                         goto bail;
1093                 }
1094                 i = le16_to_cpu(el->l_next_free_rec) - 1;
1095                 blkno = le64_to_cpu(el->l_recs[i].e_blkno);
1096                 if (!blkno) {
1097                         ocfs2_error(inode->i_sb, "Dinode %llu has extent "
1098                                     "list where extent # %d has no physical "
1099                                     "block start",
1100                                     (unsigned long long)OCFS2_I(inode)->ip_blkno, i);
1101                         status = -EIO;
1102                         goto bail;
1103                 }
1104
1105                 if (bh) {
1106                         brelse(bh);
1107                         bh = NULL;
1108                 }
1109
1110                 status = ocfs2_read_block(osb, blkno, &bh, OCFS2_BH_CACHED,
1111                                           inode);
1112                 if (status < 0) {
1113                         mlog_errno(status);
1114                         goto bail;
1115                 }
1116
1117                 eb = (struct ocfs2_extent_block *) bh->b_data;
1118                 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
1119                         OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
1120                         status = -EIO;
1121                         goto bail;
1122                 }
1123                 el = &eb->h_list;
1124
1125                 if (le16_to_cpu(el->l_next_free_rec) <
1126                     le16_to_cpu(el->l_count)) {
1127                         if (lowest_bh)
1128                                 brelse(lowest_bh);
1129                         lowest_bh = bh;
1130                         get_bh(lowest_bh);
1131                 }
1132         }
1133
1134         /* If we didn't find one and the fe doesn't have any room,
1135          * then return '1' */
1136         el = et->root_el;
1137         if (!lowest_bh && (el->l_next_free_rec == el->l_count))
1138                 status = 1;
1139
1140         *target_bh = lowest_bh;
1141 bail:
1142         if (bh)
1143                 brelse(bh);
1144
1145         mlog_exit(status);
1146         return status;
1147 }
1148
1149 /*
1150  * Grow a b-tree so that it has more records.
1151  *
1152  * We might shift the tree depth in which case existing paths should
1153  * be considered invalid.
1154  *
1155  * Tree depth after the grow is returned via *final_depth.
1156  *
1157  * *last_eb_bh will be updated by ocfs2_add_branch().
1158  */
1159 static int ocfs2_grow_tree(struct inode *inode, handle_t *handle,
1160                            struct ocfs2_extent_tree *et, int *final_depth,
1161                            struct buffer_head **last_eb_bh,
1162                            struct ocfs2_alloc_context *meta_ac)
1163 {
1164         int ret, shift;
1165         struct ocfs2_extent_list *el = et->root_el;
1166         int depth = le16_to_cpu(el->l_tree_depth);
1167         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1168         struct buffer_head *bh = NULL;
1169
1170         BUG_ON(meta_ac == NULL);
1171
1172         shift = ocfs2_find_branch_target(osb, inode, et, &bh);
1173         if (shift < 0) {
1174                 ret = shift;
1175                 mlog_errno(ret);
1176                 goto out;
1177         }
1178
1179         /* We traveled all the way to the bottom of the allocation tree
1180          * and didn't find room for any more extents - we need to add
1181          * another tree level */
1182         if (shift) {
1183                 BUG_ON(bh);
1184                 mlog(0, "need to shift tree depth (current = %d)\n", depth);
1185
1186                 /* ocfs2_shift_tree_depth will return us a buffer with
1187                  * the new extent block (so we can pass that to
1188                  * ocfs2_add_branch). */
1189                 ret = ocfs2_shift_tree_depth(osb, handle, inode, et,
1190                                              meta_ac, &bh);
1191                 if (ret < 0) {
1192                         mlog_errno(ret);
1193                         goto out;
1194                 }
1195                 depth++;
1196                 if (depth == 1) {
1197                         /*
1198                          * Special case: we have room now if we shifted from
1199                          * tree_depth 0, so no more work needs to be done.
1200                          *
1201                          * We won't be calling add_branch, so pass
1202                          * back *last_eb_bh as the new leaf. At depth
1203                          * zero, it should always be null so there's
1204                          * no reason to brelse.
1205                          */
1206                         BUG_ON(*last_eb_bh);
1207                         get_bh(bh);
1208                         *last_eb_bh = bh;
1209                         goto out;
1210                 }
1211         }
1212
1213         /* call ocfs2_add_branch to add the final part of the tree with
1214          * the new data. */
1215         mlog(0, "add branch. bh = %p\n", bh);
1216         ret = ocfs2_add_branch(osb, handle, inode, et, bh, last_eb_bh,
1217                                meta_ac);
1218         if (ret < 0) {
1219                 mlog_errno(ret);
1220                 goto out;
1221         }
1222
1223 out:
1224         if (final_depth)
1225                 *final_depth = depth;
1226         brelse(bh);
1227         return ret;
1228 }
1229
1230 /*
1231  * This function will discard the rightmost extent record.
1232  */
1233 static void ocfs2_shift_records_right(struct ocfs2_extent_list *el)
1234 {
1235         int next_free = le16_to_cpu(el->l_next_free_rec);
1236         int count = le16_to_cpu(el->l_count);
1237         unsigned int num_bytes;
1238
1239         BUG_ON(!next_free);
1240         /* This will cause us to go off the end of our extent list. */
1241         BUG_ON(next_free >= count);
1242
1243         num_bytes = sizeof(struct ocfs2_extent_rec) * next_free;
1244
1245         memmove(&el->l_recs[1], &el->l_recs[0], num_bytes);
1246 }
1247
1248 static void ocfs2_rotate_leaf(struct ocfs2_extent_list *el,
1249                               struct ocfs2_extent_rec *insert_rec)
1250 {
1251         int i, insert_index, next_free, has_empty, num_bytes;
1252         u32 insert_cpos = le32_to_cpu(insert_rec->e_cpos);
1253         struct ocfs2_extent_rec *rec;
1254
1255         next_free = le16_to_cpu(el->l_next_free_rec);
1256         has_empty = ocfs2_is_empty_extent(&el->l_recs[0]);
1257
1258         BUG_ON(!next_free);
1259
1260         /* The tree code before us didn't allow enough room in the leaf. */
1261         BUG_ON(el->l_next_free_rec == el->l_count && !has_empty);
1262
1263         /*
1264          * The easiest way to approach this is to just remove the
1265          * empty extent and temporarily decrement next_free.
1266          */
1267         if (has_empty) {
1268                 /*
1269                  * If next_free was 1 (only an empty extent), this
1270                  * loop won't execute, which is fine. We still want
1271                  * the decrement above to happen.
1272                  */
1273                 for(i = 0; i < (next_free - 1); i++)
1274                         el->l_recs[i] = el->l_recs[i+1];
1275
1276                 next_free--;
1277         }
1278
1279         /*
1280          * Figure out what the new record index should be.
1281          */
1282         for(i = 0; i < next_free; i++) {
1283                 rec = &el->l_recs[i];
1284
1285                 if (insert_cpos < le32_to_cpu(rec->e_cpos))
1286                         break;
1287         }
1288         insert_index = i;
1289
1290         mlog(0, "ins %u: index %d, has_empty %d, next_free %d, count %d\n",
1291              insert_cpos, insert_index, has_empty, next_free, le16_to_cpu(el->l_count));
1292
1293         BUG_ON(insert_index < 0);
1294         BUG_ON(insert_index >= le16_to_cpu(el->l_count));
1295         BUG_ON(insert_index > next_free);
1296
1297         /*
1298          * No need to memmove if we're just adding to the tail.
1299          */
1300         if (insert_index != next_free) {
1301                 BUG_ON(next_free >= le16_to_cpu(el->l_count));
1302
1303                 num_bytes = next_free - insert_index;
1304                 num_bytes *= sizeof(struct ocfs2_extent_rec);
1305                 memmove(&el->l_recs[insert_index + 1],
1306                         &el->l_recs[insert_index],
1307                         num_bytes);
1308         }
1309
1310         /*
1311          * Either we had an empty extent, and need to re-increment or
1312          * there was no empty extent on a non full rightmost leaf node,
1313          * in which case we still need to increment.
1314          */
1315         next_free++;
1316         el->l_next_free_rec = cpu_to_le16(next_free);
1317         /*
1318          * Make sure none of the math above just messed up our tree.
1319          */
1320         BUG_ON(le16_to_cpu(el->l_next_free_rec) > le16_to_cpu(el->l_count));
1321
1322         el->l_recs[insert_index] = *insert_rec;
1323
1324 }
1325
1326 static void ocfs2_remove_empty_extent(struct ocfs2_extent_list *el)
1327 {
1328         int size, num_recs = le16_to_cpu(el->l_next_free_rec);
1329
1330         BUG_ON(num_recs == 0);
1331
1332         if (ocfs2_is_empty_extent(&el->l_recs[0])) {
1333                 num_recs--;
1334                 size = num_recs * sizeof(struct ocfs2_extent_rec);
1335                 memmove(&el->l_recs[0], &el->l_recs[1], size);
1336                 memset(&el->l_recs[num_recs], 0,
1337                        sizeof(struct ocfs2_extent_rec));
1338                 el->l_next_free_rec = cpu_to_le16(num_recs);
1339         }
1340 }
1341
1342 /*
1343  * Create an empty extent record .
1344  *
1345  * l_next_free_rec may be updated.
1346  *
1347  * If an empty extent already exists do nothing.
1348  */
1349 static void ocfs2_create_empty_extent(struct ocfs2_extent_list *el)
1350 {
1351         int next_free = le16_to_cpu(el->l_next_free_rec);
1352
1353         BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
1354
1355         if (next_free == 0)
1356                 goto set_and_inc;
1357
1358         if (ocfs2_is_empty_extent(&el->l_recs[0]))
1359                 return;
1360
1361         mlog_bug_on_msg(el->l_count == el->l_next_free_rec,
1362                         "Asked to create an empty extent in a full list:\n"
1363                         "count = %u, tree depth = %u",
1364                         le16_to_cpu(el->l_count),
1365                         le16_to_cpu(el->l_tree_depth));
1366
1367         ocfs2_shift_records_right(el);
1368
1369 set_and_inc:
1370         le16_add_cpu(&el->l_next_free_rec, 1);
1371         memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
1372 }
1373
1374 /*
1375  * For a rotation which involves two leaf nodes, the "root node" is
1376  * the lowest level tree node which contains a path to both leafs. This
1377  * resulting set of information can be used to form a complete "subtree"
1378  *
1379  * This function is passed two full paths from the dinode down to a
1380  * pair of adjacent leaves. It's task is to figure out which path
1381  * index contains the subtree root - this can be the root index itself
1382  * in a worst-case rotation.
1383  *
1384  * The array index of the subtree root is passed back.
1385  */
1386 static int ocfs2_find_subtree_root(struct inode *inode,
1387                                    struct ocfs2_path *left,
1388                                    struct ocfs2_path *right)
1389 {
1390         int i = 0;
1391
1392         /*
1393          * Check that the caller passed in two paths from the same tree.
1394          */
1395         BUG_ON(path_root_bh(left) != path_root_bh(right));
1396
1397         do {
1398                 i++;
1399
1400                 /*
1401                  * The caller didn't pass two adjacent paths.
1402                  */
1403                 mlog_bug_on_msg(i > left->p_tree_depth,
1404                                 "Inode %lu, left depth %u, right depth %u\n"
1405                                 "left leaf blk %llu, right leaf blk %llu\n",
1406                                 inode->i_ino, left->p_tree_depth,
1407                                 right->p_tree_depth,
1408                                 (unsigned long long)path_leaf_bh(left)->b_blocknr,
1409                                 (unsigned long long)path_leaf_bh(right)->b_blocknr);
1410         } while (left->p_node[i].bh->b_blocknr ==
1411                  right->p_node[i].bh->b_blocknr);
1412
1413         return i - 1;
1414 }
1415
1416 typedef void (path_insert_t)(void *, struct buffer_head *);
1417
1418 /*
1419  * Traverse a btree path in search of cpos, starting at root_el.
1420  *
1421  * This code can be called with a cpos larger than the tree, in which
1422  * case it will return the rightmost path.
1423  */
1424 static int __ocfs2_find_path(struct inode *inode,
1425                              struct ocfs2_extent_list *root_el, u32 cpos,
1426                              path_insert_t *func, void *data)
1427 {
1428         int i, ret = 0;
1429         u32 range;
1430         u64 blkno;
1431         struct buffer_head *bh = NULL;
1432         struct ocfs2_extent_block *eb;
1433         struct ocfs2_extent_list *el;
1434         struct ocfs2_extent_rec *rec;
1435         struct ocfs2_inode_info *oi = OCFS2_I(inode);
1436
1437         el = root_el;
1438         while (el->l_tree_depth) {
1439                 if (le16_to_cpu(el->l_next_free_rec) == 0) {
1440                         ocfs2_error(inode->i_sb,
1441                                     "Inode %llu has empty extent list at "
1442                                     "depth %u\n",
1443                                     (unsigned long long)oi->ip_blkno,
1444                                     le16_to_cpu(el->l_tree_depth));
1445                         ret = -EROFS;
1446                         goto out;
1447
1448                 }
1449
1450                 for(i = 0; i < le16_to_cpu(el->l_next_free_rec) - 1; i++) {
1451                         rec = &el->l_recs[i];
1452
1453                         /*
1454                          * In the case that cpos is off the allocation
1455                          * tree, this should just wind up returning the
1456                          * rightmost record.
1457                          */
1458                         range = le32_to_cpu(rec->e_cpos) +
1459                                 ocfs2_rec_clusters(el, rec);
1460                         if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
1461                             break;
1462                 }
1463
1464                 blkno = le64_to_cpu(el->l_recs[i].e_blkno);
1465                 if (blkno == 0) {
1466                         ocfs2_error(inode->i_sb,
1467                                     "Inode %llu has bad blkno in extent list "
1468                                     "at depth %u (index %d)\n",
1469                                     (unsigned long long)oi->ip_blkno,
1470                                     le16_to_cpu(el->l_tree_depth), i);
1471                         ret = -EROFS;
1472                         goto out;
1473                 }
1474
1475                 brelse(bh);
1476                 bh = NULL;
1477                 ret = ocfs2_read_block(OCFS2_SB(inode->i_sb), blkno,
1478                                        &bh, OCFS2_BH_CACHED, inode);
1479                 if (ret) {
1480                         mlog_errno(ret);
1481                         goto out;
1482                 }
1483
1484                 eb = (struct ocfs2_extent_block *) bh->b_data;
1485                 el = &eb->h_list;
1486                 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
1487                         OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
1488                         ret = -EIO;
1489                         goto out;
1490                 }
1491
1492                 if (le16_to_cpu(el->l_next_free_rec) >
1493                     le16_to_cpu(el->l_count)) {
1494                         ocfs2_error(inode->i_sb,
1495                                     "Inode %llu has bad count in extent list "
1496                                     "at block %llu (next free=%u, count=%u)\n",
1497                                     (unsigned long long)oi->ip_blkno,
1498                                     (unsigned long long)bh->b_blocknr,
1499                                     le16_to_cpu(el->l_next_free_rec),
1500                                     le16_to_cpu(el->l_count));
1501                         ret = -EROFS;
1502                         goto out;
1503                 }
1504
1505                 if (func)
1506                         func(data, bh);
1507         }
1508
1509 out:
1510         /*
1511          * Catch any trailing bh that the loop didn't handle.
1512          */
1513         brelse(bh);
1514
1515         return ret;
1516 }
1517
1518 /*
1519  * Given an initialized path (that is, it has a valid root extent
1520  * list), this function will traverse the btree in search of the path
1521  * which would contain cpos.
1522  *
1523  * The path traveled is recorded in the path structure.
1524  *
1525  * Note that this will not do any comparisons on leaf node extent
1526  * records, so it will work fine in the case that we just added a tree
1527  * branch.
1528  */
1529 struct find_path_data {
1530         int index;
1531         struct ocfs2_path *path;
1532 };
1533 static void find_path_ins(void *data, struct buffer_head *bh)
1534 {
1535         struct find_path_data *fp = data;
1536
1537         get_bh(bh);
1538         ocfs2_path_insert_eb(fp->path, fp->index, bh);
1539         fp->index++;
1540 }
1541 static int ocfs2_find_path(struct inode *inode, struct ocfs2_path *path,
1542                            u32 cpos)
1543 {
1544         struct find_path_data data;
1545
1546         data.index = 1;
1547         data.path = path;
1548         return __ocfs2_find_path(inode, path_root_el(path), cpos,
1549                                  find_path_ins, &data);
1550 }
1551
1552 static void find_leaf_ins(void *data, struct buffer_head *bh)
1553 {
1554         struct ocfs2_extent_block *eb =(struct ocfs2_extent_block *)bh->b_data;
1555         struct ocfs2_extent_list *el = &eb->h_list;
1556         struct buffer_head **ret = data;
1557
1558         /* We want to retain only the leaf block. */
1559         if (le16_to_cpu(el->l_tree_depth) == 0) {
1560                 get_bh(bh);
1561                 *ret = bh;
1562         }
1563 }
1564 /*
1565  * Find the leaf block in the tree which would contain cpos. No
1566  * checking of the actual leaf is done.
1567  *
1568  * Some paths want to call this instead of allocating a path structure
1569  * and calling ocfs2_find_path().
1570  *
1571  * This function doesn't handle non btree extent lists.
1572  */
1573 int ocfs2_find_leaf(struct inode *inode, struct ocfs2_extent_list *root_el,
1574                     u32 cpos, struct buffer_head **leaf_bh)
1575 {
1576         int ret;
1577         struct buffer_head *bh = NULL;
1578
1579         ret = __ocfs2_find_path(inode, root_el, cpos, find_leaf_ins, &bh);
1580         if (ret) {
1581                 mlog_errno(ret);
1582                 goto out;
1583         }
1584
1585         *leaf_bh = bh;
1586 out:
1587         return ret;
1588 }
1589
1590 /*
1591  * Adjust the adjacent records (left_rec, right_rec) involved in a rotation.
1592  *
1593  * Basically, we've moved stuff around at the bottom of the tree and
1594  * we need to fix up the extent records above the changes to reflect
1595  * the new changes.
1596  *
1597  * left_rec: the record on the left.
1598  * left_child_el: is the child list pointed to by left_rec
1599  * right_rec: the record to the right of left_rec
1600  * right_child_el: is the child list pointed to by right_rec
1601  *
1602  * By definition, this only works on interior nodes.
1603  */
1604 static void ocfs2_adjust_adjacent_records(struct ocfs2_extent_rec *left_rec,
1605                                   struct ocfs2_extent_list *left_child_el,
1606                                   struct ocfs2_extent_rec *right_rec,
1607                                   struct ocfs2_extent_list *right_child_el)
1608 {
1609         u32 left_clusters, right_end;
1610
1611         /*
1612          * Interior nodes never have holes. Their cpos is the cpos of
1613          * the leftmost record in their child list. Their cluster
1614          * count covers the full theoretical range of their child list
1615          * - the range between their cpos and the cpos of the record
1616          * immediately to their right.
1617          */
1618         left_clusters = le32_to_cpu(right_child_el->l_recs[0].e_cpos);
1619         if (ocfs2_is_empty_extent(&right_child_el->l_recs[0])) {
1620                 BUG_ON(le16_to_cpu(right_child_el->l_next_free_rec) <= 1);
1621                 left_clusters = le32_to_cpu(right_child_el->l_recs[1].e_cpos);
1622         }
1623         left_clusters -= le32_to_cpu(left_rec->e_cpos);
1624         left_rec->e_int_clusters = cpu_to_le32(left_clusters);
1625
1626         /*
1627          * Calculate the rightmost cluster count boundary before
1628          * moving cpos - we will need to adjust clusters after
1629          * updating e_cpos to keep the same highest cluster count.
1630          */
1631         right_end = le32_to_cpu(right_rec->e_cpos);
1632         right_end += le32_to_cpu(right_rec->e_int_clusters);
1633
1634         right_rec->e_cpos = left_rec->e_cpos;
1635         le32_add_cpu(&right_rec->e_cpos, left_clusters);
1636
1637         right_end -= le32_to_cpu(right_rec->e_cpos);
1638         right_rec->e_int_clusters = cpu_to_le32(right_end);
1639 }
1640
1641 /*
1642  * Adjust the adjacent root node records involved in a
1643  * rotation. left_el_blkno is passed in as a key so that we can easily
1644  * find it's index in the root list.
1645  */
1646 static void ocfs2_adjust_root_records(struct ocfs2_extent_list *root_el,
1647                                       struct ocfs2_extent_list *left_el,
1648                                       struct ocfs2_extent_list *right_el,
1649                                       u64 left_el_blkno)
1650 {
1651         int i;
1652
1653         BUG_ON(le16_to_cpu(root_el->l_tree_depth) <=
1654                le16_to_cpu(left_el->l_tree_depth));
1655
1656         for(i = 0; i < le16_to_cpu(root_el->l_next_free_rec) - 1; i++) {
1657                 if (le64_to_cpu(root_el->l_recs[i].e_blkno) == left_el_blkno)
1658                         break;
1659         }
1660
1661         /*
1662          * The path walking code should have never returned a root and
1663          * two paths which are not adjacent.
1664          */
1665         BUG_ON(i >= (le16_to_cpu(root_el->l_next_free_rec) - 1));
1666
1667         ocfs2_adjust_adjacent_records(&root_el->l_recs[i], left_el,
1668                                       &root_el->l_recs[i + 1], right_el);
1669 }
1670
1671 /*
1672  * We've changed a leaf block (in right_path) and need to reflect that
1673  * change back up the subtree.
1674  *
1675  * This happens in multiple places:
1676  *   - When we've moved an extent record from the left path leaf to the right
1677  *     path leaf to make room for an empty extent in the left path leaf.
1678  *   - When our insert into the right path leaf is at the leftmost edge
1679  *     and requires an update of the path immediately to it's left. This
1680  *     can occur at the end of some types of rotation and appending inserts.
1681  *   - When we've adjusted the last extent record in the left path leaf and the
1682  *     1st extent record in the right path leaf during cross extent block merge.
1683  */
1684 static void ocfs2_complete_edge_insert(struct inode *inode, handle_t *handle,
1685                                        struct ocfs2_path *left_path,
1686                                        struct ocfs2_path *right_path,
1687                                        int subtree_index)
1688 {
1689         int ret, i, idx;
1690         struct ocfs2_extent_list *el, *left_el, *right_el;
1691         struct ocfs2_extent_rec *left_rec, *right_rec;
1692         struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
1693
1694         /*
1695          * Update the counts and position values within all the
1696          * interior nodes to reflect the leaf rotation we just did.
1697          *
1698          * The root node is handled below the loop.
1699          *
1700          * We begin the loop with right_el and left_el pointing to the
1701          * leaf lists and work our way up.
1702          *
1703          * NOTE: within this loop, left_el and right_el always refer
1704          * to the *child* lists.
1705          */
1706         left_el = path_leaf_el(left_path);
1707         right_el = path_leaf_el(right_path);
1708         for(i = left_path->p_tree_depth - 1; i > subtree_index; i--) {
1709                 mlog(0, "Adjust records at index %u\n", i);
1710
1711                 /*
1712                  * One nice property of knowing that all of these
1713                  * nodes are below the root is that we only deal with
1714                  * the leftmost right node record and the rightmost
1715                  * left node record.
1716                  */
1717                 el = left_path->p_node[i].el;
1718                 idx = le16_to_cpu(left_el->l_next_free_rec) - 1;
1719                 left_rec = &el->l_recs[idx];
1720
1721                 el = right_path->p_node[i].el;
1722                 right_rec = &el->l_recs[0];
1723
1724                 ocfs2_adjust_adjacent_records(left_rec, left_el, right_rec,
1725                                               right_el);
1726
1727                 ret = ocfs2_journal_dirty(handle, left_path->p_node[i].bh);
1728                 if (ret)
1729                         mlog_errno(ret);
1730
1731                 ret = ocfs2_journal_dirty(handle, right_path->p_node[i].bh);
1732                 if (ret)
1733                         mlog_errno(ret);
1734
1735                 /*
1736                  * Setup our list pointers now so that the current
1737                  * parents become children in the next iteration.
1738                  */
1739                 left_el = left_path->p_node[i].el;
1740                 right_el = right_path->p_node[i].el;
1741         }
1742
1743         /*
1744          * At the root node, adjust the two adjacent records which
1745          * begin our path to the leaves.
1746          */
1747
1748         el = left_path->p_node[subtree_index].el;
1749         left_el = left_path->p_node[subtree_index + 1].el;
1750         right_el = right_path->p_node[subtree_index + 1].el;
1751
1752         ocfs2_adjust_root_records(el, left_el, right_el,
1753                                   left_path->p_node[subtree_index + 1].bh->b_blocknr);
1754
1755         root_bh = left_path->p_node[subtree_index].bh;
1756
1757         ret = ocfs2_journal_dirty(handle, root_bh);
1758         if (ret)
1759                 mlog_errno(ret);
1760 }
1761
1762 static int ocfs2_rotate_subtree_right(struct inode *inode,
1763                                       handle_t *handle,
1764                                       struct ocfs2_path *left_path,
1765                                       struct ocfs2_path *right_path,
1766                                       int subtree_index)
1767 {
1768         int ret, i;
1769         struct buffer_head *right_leaf_bh;
1770         struct buffer_head *left_leaf_bh = NULL;
1771         struct buffer_head *root_bh;
1772         struct ocfs2_extent_list *right_el, *left_el;
1773         struct ocfs2_extent_rec move_rec;
1774
1775         left_leaf_bh = path_leaf_bh(left_path);
1776         left_el = path_leaf_el(left_path);
1777
1778         if (left_el->l_next_free_rec != left_el->l_count) {
1779                 ocfs2_error(inode->i_sb,
1780                             "Inode %llu has non-full interior leaf node %llu"
1781                             "(next free = %u)",
1782                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
1783                             (unsigned long long)left_leaf_bh->b_blocknr,
1784                             le16_to_cpu(left_el->l_next_free_rec));
1785                 return -EROFS;
1786         }
1787
1788         /*
1789          * This extent block may already have an empty record, so we
1790          * return early if so.
1791          */
1792         if (ocfs2_is_empty_extent(&left_el->l_recs[0]))
1793                 return 0;
1794
1795         root_bh = left_path->p_node[subtree_index].bh;
1796         BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
1797
1798         ret = ocfs2_journal_access(handle, inode, root_bh,
1799                                    OCFS2_JOURNAL_ACCESS_WRITE);
1800         if (ret) {
1801                 mlog_errno(ret);
1802                 goto out;
1803         }
1804
1805         for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
1806                 ret = ocfs2_journal_access(handle, inode,
1807                                            right_path->p_node[i].bh,
1808                                            OCFS2_JOURNAL_ACCESS_WRITE);
1809                 if (ret) {
1810                         mlog_errno(ret);
1811                         goto out;
1812                 }
1813
1814                 ret = ocfs2_journal_access(handle, inode,
1815                                            left_path->p_node[i].bh,
1816                                            OCFS2_JOURNAL_ACCESS_WRITE);
1817                 if (ret) {
1818                         mlog_errno(ret);
1819                         goto out;
1820                 }
1821         }
1822
1823         right_leaf_bh = path_leaf_bh(right_path);
1824         right_el = path_leaf_el(right_path);
1825
1826         /* This is a code error, not a disk corruption. */
1827         mlog_bug_on_msg(!right_el->l_next_free_rec, "Inode %llu: Rotate fails "
1828                         "because rightmost leaf block %llu is empty\n",
1829                         (unsigned long long)OCFS2_I(inode)->ip_blkno,
1830                         (unsigned long long)right_leaf_bh->b_blocknr);
1831
1832         ocfs2_create_empty_extent(right_el);
1833
1834         ret = ocfs2_journal_dirty(handle, right_leaf_bh);
1835         if (ret) {
1836                 mlog_errno(ret);
1837                 goto out;
1838         }
1839
1840         /* Do the copy now. */
1841         i = le16_to_cpu(left_el->l_next_free_rec) - 1;
1842         move_rec = left_el->l_recs[i];
1843         right_el->l_recs[0] = move_rec;
1844
1845         /*
1846          * Clear out the record we just copied and shift everything
1847          * over, leaving an empty extent in the left leaf.
1848          *
1849          * We temporarily subtract from next_free_rec so that the
1850          * shift will lose the tail record (which is now defunct).
1851          */
1852         le16_add_cpu(&left_el->l_next_free_rec, -1);
1853         ocfs2_shift_records_right(left_el);
1854         memset(&left_el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
1855         le16_add_cpu(&left_el->l_next_free_rec, 1);
1856
1857         ret = ocfs2_journal_dirty(handle, left_leaf_bh);
1858         if (ret) {
1859                 mlog_errno(ret);
1860                 goto out;
1861         }
1862
1863         ocfs2_complete_edge_insert(inode, handle, left_path, right_path,
1864                                 subtree_index);
1865
1866 out:
1867         return ret;
1868 }
1869
1870 /*
1871  * Given a full path, determine what cpos value would return us a path
1872  * containing the leaf immediately to the left of the current one.
1873  *
1874  * Will return zero if the path passed in is already the leftmost path.
1875  */
1876 static int ocfs2_find_cpos_for_left_leaf(struct super_block *sb,
1877                                          struct ocfs2_path *path, u32 *cpos)
1878 {
1879         int i, j, ret = 0;
1880         u64 blkno;
1881         struct ocfs2_extent_list *el;
1882
1883         BUG_ON(path->p_tree_depth == 0);
1884
1885         *cpos = 0;
1886
1887         blkno = path_leaf_bh(path)->b_blocknr;
1888
1889         /* Start at the tree node just above the leaf and work our way up. */
1890         i = path->p_tree_depth - 1;
1891         while (i >= 0) {
1892                 el = path->p_node[i].el;
1893
1894                 /*
1895                  * Find the extent record just before the one in our
1896                  * path.
1897                  */
1898                 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
1899                         if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
1900                                 if (j == 0) {
1901                                         if (i == 0) {
1902                                                 /*
1903                                                  * We've determined that the
1904                                                  * path specified is already
1905                                                  * the leftmost one - return a
1906                                                  * cpos of zero.
1907                                                  */
1908                                                 goto out;
1909                                         }
1910                                         /*
1911                                          * The leftmost record points to our
1912                                          * leaf - we need to travel up the
1913                                          * tree one level.
1914                                          */
1915                                         goto next_node;
1916                                 }
1917
1918                                 *cpos = le32_to_cpu(el->l_recs[j - 1].e_cpos);
1919                                 *cpos = *cpos + ocfs2_rec_clusters(el,
1920                                                            &el->l_recs[j - 1]);
1921                                 *cpos = *cpos - 1;
1922                                 goto out;
1923                         }
1924                 }
1925
1926                 /*
1927                  * If we got here, we never found a valid node where
1928                  * the tree indicated one should be.
1929                  */
1930                 ocfs2_error(sb,
1931                             "Invalid extent tree at extent block %llu\n",
1932                             (unsigned long long)blkno);
1933                 ret = -EROFS;
1934                 goto out;
1935
1936 next_node:
1937                 blkno = path->p_node[i].bh->b_blocknr;
1938                 i--;
1939         }
1940
1941 out:
1942         return ret;
1943 }
1944
1945 /*
1946  * Extend the transaction by enough credits to complete the rotation,
1947  * and still leave at least the original number of credits allocated
1948  * to this transaction.
1949  */
1950 static int ocfs2_extend_rotate_transaction(handle_t *handle, int subtree_depth,
1951                                            int op_credits,
1952                                            struct ocfs2_path *path)
1953 {
1954         int credits = (path->p_tree_depth - subtree_depth) * 2 + 1 + op_credits;
1955
1956         if (handle->h_buffer_credits < credits)
1957                 return ocfs2_extend_trans(handle, credits);
1958
1959         return 0;
1960 }
1961
1962 /*
1963  * Trap the case where we're inserting into the theoretical range past
1964  * the _actual_ left leaf range. Otherwise, we'll rotate a record
1965  * whose cpos is less than ours into the right leaf.
1966  *
1967  * It's only necessary to look at the rightmost record of the left
1968  * leaf because the logic that calls us should ensure that the
1969  * theoretical ranges in the path components above the leaves are
1970  * correct.
1971  */
1972 static int ocfs2_rotate_requires_path_adjustment(struct ocfs2_path *left_path,
1973                                                  u32 insert_cpos)
1974 {
1975         struct ocfs2_extent_list *left_el;
1976         struct ocfs2_extent_rec *rec;
1977         int next_free;
1978
1979         left_el = path_leaf_el(left_path);
1980         next_free = le16_to_cpu(left_el->l_next_free_rec);
1981         rec = &left_el->l_recs[next_free - 1];
1982
1983         if (insert_cpos > le32_to_cpu(rec->e_cpos))
1984                 return 1;
1985         return 0;
1986 }
1987
1988 static int ocfs2_leftmost_rec_contains(struct ocfs2_extent_list *el, u32 cpos)
1989 {
1990         int next_free = le16_to_cpu(el->l_next_free_rec);
1991         unsigned int range;
1992         struct ocfs2_extent_rec *rec;
1993
1994         if (next_free == 0)
1995                 return 0;
1996
1997         rec = &el->l_recs[0];
1998         if (ocfs2_is_empty_extent(rec)) {
1999                 /* Empty list. */
2000                 if (next_free == 1)
2001                         return 0;
2002                 rec = &el->l_recs[1];
2003         }
2004
2005         range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
2006         if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
2007                 return 1;
2008         return 0;
2009 }
2010
2011 /*
2012  * Rotate all the records in a btree right one record, starting at insert_cpos.
2013  *
2014  * The path to the rightmost leaf should be passed in.
2015  *
2016  * The array is assumed to be large enough to hold an entire path (tree depth).
2017  *
2018  * Upon succesful return from this function:
2019  *
2020  * - The 'right_path' array will contain a path to the leaf block
2021  *   whose range contains e_cpos.
2022  * - That leaf block will have a single empty extent in list index 0.
2023  * - In the case that the rotation requires a post-insert update,
2024  *   *ret_left_path will contain a valid path which can be passed to
2025  *   ocfs2_insert_path().
2026  */
2027 static int ocfs2_rotate_tree_right(struct inode *inode,
2028                                    handle_t *handle,
2029                                    enum ocfs2_split_type split,
2030                                    u32 insert_cpos,
2031                                    struct ocfs2_path *right_path,
2032                                    struct ocfs2_path **ret_left_path)
2033 {
2034         int ret, start, orig_credits = handle->h_buffer_credits;
2035         u32 cpos;
2036         struct ocfs2_path *left_path = NULL;
2037
2038         *ret_left_path = NULL;
2039
2040         left_path = ocfs2_new_path(path_root_bh(right_path),
2041                                    path_root_el(right_path));
2042         if (!left_path) {
2043                 ret = -ENOMEM;
2044                 mlog_errno(ret);
2045                 goto out;
2046         }
2047
2048         ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path, &cpos);
2049         if (ret) {
2050                 mlog_errno(ret);
2051                 goto out;
2052         }
2053
2054         mlog(0, "Insert: %u, first left path cpos: %u\n", insert_cpos, cpos);
2055
2056         /*
2057          * What we want to do here is:
2058          *
2059          * 1) Start with the rightmost path.
2060          *
2061          * 2) Determine a path to the leaf block directly to the left
2062          *    of that leaf.
2063          *
2064          * 3) Determine the 'subtree root' - the lowest level tree node
2065          *    which contains a path to both leaves.
2066          *
2067          * 4) Rotate the subtree.
2068          *
2069          * 5) Find the next subtree by considering the left path to be
2070          *    the new right path.
2071          *
2072          * The check at the top of this while loop also accepts
2073          * insert_cpos == cpos because cpos is only a _theoretical_
2074          * value to get us the left path - insert_cpos might very well
2075          * be filling that hole.
2076          *
2077          * Stop at a cpos of '0' because we either started at the
2078          * leftmost branch (i.e., a tree with one branch and a
2079          * rotation inside of it), or we've gone as far as we can in
2080          * rotating subtrees.
2081          */
2082         while (cpos && insert_cpos <= cpos) {
2083                 mlog(0, "Rotating a tree: ins. cpos: %u, left path cpos: %u\n",
2084                      insert_cpos, cpos);
2085
2086                 ret = ocfs2_find_path(inode, left_path, cpos);
2087                 if (ret) {
2088                         mlog_errno(ret);
2089                         goto out;
2090                 }
2091
2092                 mlog_bug_on_msg(path_leaf_bh(left_path) ==
2093                                 path_leaf_bh(right_path),
2094                                 "Inode %lu: error during insert of %u "
2095                                 "(left path cpos %u) results in two identical "
2096                                 "paths ending at %llu\n",
2097                                 inode->i_ino, insert_cpos, cpos,
2098                                 (unsigned long long)
2099                                 path_leaf_bh(left_path)->b_blocknr);
2100
2101                 if (split == SPLIT_NONE &&
2102                     ocfs2_rotate_requires_path_adjustment(left_path,
2103                                                           insert_cpos)) {
2104
2105                         /*
2106                          * We've rotated the tree as much as we
2107                          * should. The rest is up to
2108                          * ocfs2_insert_path() to complete, after the
2109                          * record insertion. We indicate this
2110                          * situation by returning the left path.
2111                          *
2112                          * The reason we don't adjust the records here
2113                          * before the record insert is that an error
2114                          * later might break the rule where a parent
2115                          * record e_cpos will reflect the actual
2116                          * e_cpos of the 1st nonempty record of the
2117                          * child list.
2118                          */
2119                         *ret_left_path = left_path;
2120                         goto out_ret_path;
2121                 }
2122
2123                 start = ocfs2_find_subtree_root(inode, left_path, right_path);
2124
2125                 mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n",
2126                      start,
2127                      (unsigned long long) right_path->p_node[start].bh->b_blocknr,
2128                      right_path->p_tree_depth);
2129
2130                 ret = ocfs2_extend_rotate_transaction(handle, start,
2131                                                       orig_credits, right_path);
2132                 if (ret) {
2133                         mlog_errno(ret);
2134                         goto out;
2135                 }
2136
2137                 ret = ocfs2_rotate_subtree_right(inode, handle, left_path,
2138                                                  right_path, start);
2139                 if (ret) {
2140                         mlog_errno(ret);
2141                         goto out;
2142                 }
2143
2144                 if (split != SPLIT_NONE &&
2145                     ocfs2_leftmost_rec_contains(path_leaf_el(right_path),
2146                                                 insert_cpos)) {
2147                         /*
2148                          * A rotate moves the rightmost left leaf
2149                          * record over to the leftmost right leaf
2150                          * slot. If we're doing an extent split
2151                          * instead of a real insert, then we have to
2152                          * check that the extent to be split wasn't
2153                          * just moved over. If it was, then we can
2154                          * exit here, passing left_path back -
2155                          * ocfs2_split_extent() is smart enough to
2156                          * search both leaves.
2157                          */
2158                         *ret_left_path = left_path;
2159                         goto out_ret_path;
2160                 }
2161
2162                 /*
2163                  * There is no need to re-read the next right path
2164                  * as we know that it'll be our current left
2165                  * path. Optimize by copying values instead.
2166                  */
2167                 ocfs2_mv_path(right_path, left_path);
2168
2169                 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path,
2170                                                     &cpos);
2171                 if (ret) {
2172                         mlog_errno(ret);
2173                         goto out;
2174                 }
2175         }
2176
2177 out:
2178         ocfs2_free_path(left_path);
2179
2180 out_ret_path:
2181         return ret;
2182 }
2183
2184 static void ocfs2_update_edge_lengths(struct inode *inode, handle_t *handle,
2185                                       struct ocfs2_path *path)
2186 {
2187         int i, idx;
2188         struct ocfs2_extent_rec *rec;
2189         struct ocfs2_extent_list *el;
2190         struct ocfs2_extent_block *eb;
2191         u32 range;
2192
2193         /* Path should always be rightmost. */
2194         eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
2195         BUG_ON(eb->h_next_leaf_blk != 0ULL);
2196
2197         el = &eb->h_list;
2198         BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0);
2199         idx = le16_to_cpu(el->l_next_free_rec) - 1;
2200         rec = &el->l_recs[idx];
2201         range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
2202
2203         for (i = 0; i < path->p_tree_depth; i++) {
2204                 el = path->p_node[i].el;
2205                 idx = le16_to_cpu(el->l_next_free_rec) - 1;
2206                 rec = &el->l_recs[idx];
2207
2208                 rec->e_int_clusters = cpu_to_le32(range);
2209                 le32_add_cpu(&rec->e_int_clusters, -le32_to_cpu(rec->e_cpos));
2210
2211                 ocfs2_journal_dirty(handle, path->p_node[i].bh);
2212         }
2213 }
2214
2215 static void ocfs2_unlink_path(struct inode *inode, handle_t *handle,
2216                               struct ocfs2_cached_dealloc_ctxt *dealloc,
2217                               struct ocfs2_path *path, int unlink_start)
2218 {
2219         int ret, i;
2220         struct ocfs2_extent_block *eb;
2221         struct ocfs2_extent_list *el;
2222         struct buffer_head *bh;
2223
2224         for(i = unlink_start; i < path_num_items(path); i++) {
2225                 bh = path->p_node[i].bh;
2226
2227                 eb = (struct ocfs2_extent_block *)bh->b_data;
2228                 /*
2229                  * Not all nodes might have had their final count
2230                  * decremented by the caller - handle this here.
2231                  */
2232                 el = &eb->h_list;
2233                 if (le16_to_cpu(el->l_next_free_rec) > 1) {
2234                         mlog(ML_ERROR,
2235                              "Inode %llu, attempted to remove extent block "
2236                              "%llu with %u records\n",
2237                              (unsigned long long)OCFS2_I(inode)->ip_blkno,
2238                              (unsigned long long)le64_to_cpu(eb->h_blkno),
2239                              le16_to_cpu(el->l_next_free_rec));
2240
2241                         ocfs2_journal_dirty(handle, bh);
2242                         ocfs2_remove_from_cache(inode, bh);
2243                         continue;
2244                 }
2245
2246                 el->l_next_free_rec = 0;
2247                 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2248
2249                 ocfs2_journal_dirty(handle, bh);
2250
2251                 ret = ocfs2_cache_extent_block_free(dealloc, eb);
2252                 if (ret)
2253                         mlog_errno(ret);
2254
2255                 ocfs2_remove_from_cache(inode, bh);
2256         }
2257 }
2258
2259 static void ocfs2_unlink_subtree(struct inode *inode, handle_t *handle,
2260                                  struct ocfs2_path *left_path,
2261                                  struct ocfs2_path *right_path,
2262                                  int subtree_index,
2263                                  struct ocfs2_cached_dealloc_ctxt *dealloc)
2264 {
2265         int i;
2266         struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
2267         struct ocfs2_extent_list *root_el = left_path->p_node[subtree_index].el;
2268         struct ocfs2_extent_list *el;
2269         struct ocfs2_extent_block *eb;
2270
2271         el = path_leaf_el(left_path);
2272
2273         eb = (struct ocfs2_extent_block *)right_path->p_node[subtree_index + 1].bh->b_data;
2274
2275         for(i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++)
2276                 if (root_el->l_recs[i].e_blkno == eb->h_blkno)
2277                         break;
2278
2279         BUG_ON(i >= le16_to_cpu(root_el->l_next_free_rec));
2280
2281         memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
2282         le16_add_cpu(&root_el->l_next_free_rec, -1);
2283
2284         eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2285         eb->h_next_leaf_blk = 0;
2286
2287         ocfs2_journal_dirty(handle, root_bh);
2288         ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2289
2290         ocfs2_unlink_path(inode, handle, dealloc, right_path,
2291                           subtree_index + 1);
2292 }
2293
2294 static int ocfs2_rotate_subtree_left(struct inode *inode, handle_t *handle,
2295                                      struct ocfs2_path *left_path,
2296                                      struct ocfs2_path *right_path,
2297                                      int subtree_index,
2298                                      struct ocfs2_cached_dealloc_ctxt *dealloc,
2299                                      int *deleted,
2300                                      struct ocfs2_extent_tree *et)
2301 {
2302         int ret, i, del_right_subtree = 0, right_has_empty = 0;
2303         struct buffer_head *root_bh, *et_root_bh = path_root_bh(right_path);
2304         struct ocfs2_extent_list *right_leaf_el, *left_leaf_el;
2305         struct ocfs2_extent_block *eb;
2306
2307         *deleted = 0;
2308
2309         right_leaf_el = path_leaf_el(right_path);
2310         left_leaf_el = path_leaf_el(left_path);
2311         root_bh = left_path->p_node[subtree_index].bh;
2312         BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
2313
2314         if (!ocfs2_is_empty_extent(&left_leaf_el->l_recs[0]))
2315                 return 0;
2316
2317         eb = (struct ocfs2_extent_block *)path_leaf_bh(right_path)->b_data;
2318         if (ocfs2_is_empty_extent(&right_leaf_el->l_recs[0])) {
2319                 /*
2320                  * It's legal for us to proceed if the right leaf is
2321                  * the rightmost one and it has an empty extent. There
2322                  * are two cases to handle - whether the leaf will be
2323                  * empty after removal or not. If the leaf isn't empty
2324                  * then just remove the empty extent up front. The
2325                  * next block will handle empty leaves by flagging
2326                  * them for unlink.
2327                  *
2328                  * Non rightmost leaves will throw -EAGAIN and the
2329                  * caller can manually move the subtree and retry.
2330                  */
2331
2332                 if (eb->h_next_leaf_blk != 0ULL)
2333                         return -EAGAIN;
2334
2335                 if (le16_to_cpu(right_leaf_el->l_next_free_rec) > 1) {
2336                         ret = ocfs2_journal_access(handle, inode,
2337                                                    path_leaf_bh(right_path),
2338                                                    OCFS2_JOURNAL_ACCESS_WRITE);
2339                         if (ret) {
2340                                 mlog_errno(ret);
2341                                 goto out;
2342                         }
2343
2344                         ocfs2_remove_empty_extent(right_leaf_el);
2345                 } else
2346                         right_has_empty = 1;
2347         }
2348
2349         if (eb->h_next_leaf_blk == 0ULL &&
2350             le16_to_cpu(right_leaf_el->l_next_free_rec) == 1) {
2351                 /*
2352                  * We have to update i_last_eb_blk during the meta
2353                  * data delete.
2354                  */
2355                 ret = ocfs2_journal_access(handle, inode, et_root_bh,
2356                                            OCFS2_JOURNAL_ACCESS_WRITE);
2357                 if (ret) {
2358                         mlog_errno(ret);
2359                         goto out;
2360                 }
2361
2362                 del_right_subtree = 1;
2363         }
2364
2365         /*
2366          * Getting here with an empty extent in the right path implies
2367          * that it's the rightmost path and will be deleted.
2368          */
2369         BUG_ON(right_has_empty && !del_right_subtree);
2370
2371         ret = ocfs2_journal_access(handle, inode, root_bh,
2372                                    OCFS2_JOURNAL_ACCESS_WRITE);
2373         if (ret) {
2374                 mlog_errno(ret);
2375                 goto out;
2376         }
2377
2378         for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
2379                 ret = ocfs2_journal_access(handle, inode,
2380                                            right_path->p_node[i].bh,
2381                                            OCFS2_JOURNAL_ACCESS_WRITE);
2382                 if (ret) {
2383                         mlog_errno(ret);
2384                         goto out;
2385                 }
2386
2387                 ret = ocfs2_journal_access(handle, inode,
2388                                            left_path->p_node[i].bh,
2389                                            OCFS2_JOURNAL_ACCESS_WRITE);
2390                 if (ret) {
2391                         mlog_errno(ret);
2392                         goto out;
2393                 }
2394         }
2395
2396         if (!right_has_empty) {
2397                 /*
2398                  * Only do this if we're moving a real
2399                  * record. Otherwise, the action is delayed until
2400                  * after removal of the right path in which case we
2401                  * can do a simple shift to remove the empty extent.
2402                  */
2403                 ocfs2_rotate_leaf(left_leaf_el, &right_leaf_el->l_recs[0]);
2404                 memset(&right_leaf_el->l_recs[0], 0,
2405                        sizeof(struct ocfs2_extent_rec));
2406         }
2407         if (eb->h_next_leaf_blk == 0ULL) {
2408                 /*
2409                  * Move recs over to get rid of empty extent, decrease
2410                  * next_free. This is allowed to remove the last
2411                  * extent in our leaf (setting l_next_free_rec to
2412                  * zero) - the delete code below won't care.
2413                  */
2414                 ocfs2_remove_empty_extent(right_leaf_el);
2415         }
2416
2417         ret = ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2418         if (ret)
2419                 mlog_errno(ret);
2420         ret = ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
2421         if (ret)
2422                 mlog_errno(ret);
2423
2424         if (del_right_subtree) {
2425                 ocfs2_unlink_subtree(inode, handle, left_path, right_path,
2426                                      subtree_index, dealloc);
2427                 ocfs2_update_edge_lengths(inode, handle, left_path);
2428
2429                 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2430                 ocfs2_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
2431
2432                 /*
2433                  * Removal of the extent in the left leaf was skipped
2434                  * above so we could delete the right path
2435                  * 1st.
2436                  */
2437                 if (right_has_empty)
2438                         ocfs2_remove_empty_extent(left_leaf_el);
2439
2440                 ret = ocfs2_journal_dirty(handle, et_root_bh);
2441                 if (ret)
2442                         mlog_errno(ret);
2443
2444                 *deleted = 1;
2445         } else
2446                 ocfs2_complete_edge_insert(inode, handle, left_path, right_path,
2447                                            subtree_index);
2448
2449 out:
2450         return ret;
2451 }
2452
2453 /*
2454  * Given a full path, determine what cpos value would return us a path
2455  * containing the leaf immediately to the right of the current one.
2456  *
2457  * Will return zero if the path passed in is already the rightmost path.
2458  *
2459  * This looks similar, but is subtly different to
2460  * ocfs2_find_cpos_for_left_leaf().
2461  */
2462 static int ocfs2_find_cpos_for_right_leaf(struct super_block *sb,
2463                                           struct ocfs2_path *path, u32 *cpos)
2464 {
2465         int i, j, ret = 0;
2466         u64 blkno;
2467         struct ocfs2_extent_list *el;
2468
2469         *cpos = 0;
2470
2471         if (path->p_tree_depth == 0)
2472                 return 0;
2473
2474         blkno = path_leaf_bh(path)->b_blocknr;
2475
2476         /* Start at the tree node just above the leaf and work our way up. */
2477         i = path->p_tree_depth - 1;
2478         while (i >= 0) {
2479                 int next_free;
2480
2481                 el = path->p_node[i].el;
2482
2483                 /*
2484                  * Find the extent record just after the one in our
2485                  * path.
2486                  */
2487                 next_free = le16_to_cpu(el->l_next_free_rec);
2488                 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
2489                         if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
2490                                 if (j == (next_free - 1)) {
2491                                         if (i == 0) {
2492                                                 /*
2493                                                  * We've determined that the
2494                                                  * path specified is already
2495                                                  * the rightmost one - return a
2496                                                  * cpos of zero.
2497                                                  */
2498                                                 goto out;
2499                                         }
2500                                         /*
2501                                          * The rightmost record points to our
2502                                          * leaf - we need to travel up the
2503                                          * tree one level.
2504                                          */
2505                                         goto next_node;
2506                                 }
2507
2508                                 *cpos = le32_to_cpu(el->l_recs[j + 1].e_cpos);
2509                                 goto out;
2510                         }
2511                 }
2512
2513                 /*
2514                  * If we got here, we never found a valid node where
2515                  * the tree indicated one should be.
2516                  */
2517                 ocfs2_error(sb,
2518                             "Invalid extent tree at extent block %llu\n",
2519                             (unsigned long long)blkno);
2520                 ret = -EROFS;
2521                 goto out;
2522
2523 next_node:
2524                 blkno = path->p_node[i].bh->b_blocknr;
2525                 i--;
2526         }
2527
2528 out:
2529         return ret;
2530 }
2531
2532 static int ocfs2_rotate_rightmost_leaf_left(struct inode *inode,
2533                                             handle_t *handle,
2534                                             struct buffer_head *bh,
2535                                             struct ocfs2_extent_list *el)
2536 {
2537         int ret;
2538
2539         if (!ocfs2_is_empty_extent(&el->l_recs[0]))
2540                 return 0;
2541
2542         ret = ocfs2_journal_access(handle, inode, bh,
2543                                    OCFS2_JOURNAL_ACCESS_WRITE);
2544         if (ret) {
2545                 mlog_errno(ret);
2546                 goto out;
2547         }
2548
2549         ocfs2_remove_empty_extent(el);
2550
2551         ret = ocfs2_journal_dirty(handle, bh);
2552         if (ret)
2553                 mlog_errno(ret);
2554
2555 out:
2556         return ret;
2557 }
2558
2559 static int __ocfs2_rotate_tree_left(struct inode *inode,
2560                                     handle_t *handle, int orig_credits,
2561                                     struct ocfs2_path *path,
2562                                     struct ocfs2_cached_dealloc_ctxt *dealloc,
2563                                     struct ocfs2_path **empty_extent_path,
2564                                     struct ocfs2_extent_tree *et)
2565 {
2566         int ret, subtree_root, deleted;
2567         u32 right_cpos;
2568         struct ocfs2_path *left_path = NULL;
2569         struct ocfs2_path *right_path = NULL;
2570
2571         BUG_ON(!ocfs2_is_empty_extent(&(path_leaf_el(path)->l_recs[0])));
2572
2573         *empty_extent_path = NULL;
2574
2575         ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, path,
2576                                              &right_cpos);
2577         if (ret) {
2578                 mlog_errno(ret);
2579                 goto out;
2580         }
2581
2582         left_path = ocfs2_new_path(path_root_bh(path),
2583                                    path_root_el(path));
2584         if (!left_path) {
2585                 ret = -ENOMEM;
2586                 mlog_errno(ret);
2587                 goto out;
2588         }
2589
2590         ocfs2_cp_path(left_path, path);
2591
2592         right_path = ocfs2_new_path(path_root_bh(path),
2593                                     path_root_el(path));
2594         if (!right_path) {
2595                 ret = -ENOMEM;
2596                 mlog_errno(ret);
2597                 goto out;
2598         }
2599
2600         while (right_cpos) {
2601                 ret = ocfs2_find_path(inode, right_path, right_cpos);
2602                 if (ret) {
2603                         mlog_errno(ret);
2604                         goto out;
2605                 }
2606
2607                 subtree_root = ocfs2_find_subtree_root(inode, left_path,
2608                                                        right_path);
2609
2610                 mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n",
2611                      subtree_root,
2612                      (unsigned long long)
2613                      right_path->p_node[subtree_root].bh->b_blocknr,
2614                      right_path->p_tree_depth);
2615
2616                 ret = ocfs2_extend_rotate_transaction(handle, subtree_root,
2617                                                       orig_credits, left_path);
2618                 if (ret) {
2619                         mlog_errno(ret);
2620                         goto out;
2621                 }
2622
2623                 /*
2624                  * Caller might still want to make changes to the
2625                  * tree root, so re-add it to the journal here.
2626                  */
2627                 ret = ocfs2_journal_access(handle, inode,
2628                                            path_root_bh(left_path),
2629                                            OCFS2_JOURNAL_ACCESS_WRITE);
2630                 if (ret) {
2631                         mlog_errno(ret);
2632                         goto out;
2633                 }
2634
2635                 ret = ocfs2_rotate_subtree_left(inode, handle, left_path,
2636                                                 right_path, subtree_root,
2637                                                 dealloc, &deleted, et);
2638                 if (ret == -EAGAIN) {
2639                         /*
2640                          * The rotation has to temporarily stop due to
2641                          * the right subtree having an empty
2642                          * extent. Pass it back to the caller for a
2643                          * fixup.
2644                          */
2645                         *empty_extent_path = right_path;
2646                         right_path = NULL;
2647                         goto out;
2648                 }
2649                 if (ret) {
2650                         mlog_errno(ret);
2651                         goto out;
2652                 }
2653
2654                 /*
2655                  * The subtree rotate might have removed records on
2656                  * the rightmost edge. If so, then rotation is
2657                  * complete.
2658                  */
2659                 if (deleted)
2660                         break;
2661
2662                 ocfs2_mv_path(left_path, right_path);
2663
2664                 ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, left_path,
2665                                                      &right_cpos);
2666                 if (ret) {
2667                         mlog_errno(ret);
2668                         goto out;
2669                 }
2670         }
2671
2672 out:
2673         ocfs2_free_path(right_path);
2674         ocfs2_free_path(left_path);
2675
2676         return ret;
2677 }
2678
2679 static int ocfs2_remove_rightmost_path(struct inode *inode, handle_t *handle,
2680                                 struct ocfs2_path *path,
2681                                 struct ocfs2_cached_dealloc_ctxt *dealloc,
2682                                 struct ocfs2_extent_tree *et)
2683 {
2684         int ret, subtree_index;
2685         u32 cpos;
2686         struct ocfs2_path *left_path = NULL;
2687         struct ocfs2_extent_block *eb;
2688         struct ocfs2_extent_list *el;
2689
2690
2691         ret = et->eops->sanity_check(inode, et);
2692         if (ret)
2693                 goto out;
2694         /*
2695          * There's two ways we handle this depending on
2696          * whether path is the only existing one.
2697          */
2698         ret = ocfs2_extend_rotate_transaction(handle, 0,
2699                                               handle->h_buffer_credits,
2700                                               path);
2701         if (ret) {
2702                 mlog_errno(ret);
2703                 goto out;
2704         }
2705
2706         ret = ocfs2_journal_access_path(inode, handle, path);
2707         if (ret) {
2708                 mlog_errno(ret);
2709                 goto out;
2710         }
2711
2712         ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, &cpos);
2713         if (ret) {
2714                 mlog_errno(ret);
2715                 goto out;
2716         }
2717
2718         if (cpos) {
2719                 /*
2720                  * We have a path to the left of this one - it needs
2721                  * an update too.
2722                  */
2723                 left_path = ocfs2_new_path(path_root_bh(path),
2724                                            path_root_el(path));
2725                 if (!left_path) {
2726                         ret = -ENOMEM;
2727                         mlog_errno(ret);
2728                         goto out;
2729                 }
2730
2731                 ret = ocfs2_find_path(inode, left_path, cpos);
2732                 if (ret) {
2733                         mlog_errno(ret);
2734                         goto out;
2735                 }
2736
2737                 ret = ocfs2_journal_access_path(inode, handle, left_path);
2738                 if (ret) {
2739                         mlog_errno(ret);
2740                         goto out;
2741                 }
2742
2743                 subtree_index = ocfs2_find_subtree_root(inode, left_path, path);
2744
2745                 ocfs2_unlink_subtree(inode, handle, left_path, path,
2746                                      subtree_index, dealloc);
2747                 ocfs2_update_edge_lengths(inode, handle, left_path);
2748
2749                 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2750                 ocfs2_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
2751         } else {
2752                 /*
2753                  * 'path' is also the leftmost path which
2754                  * means it must be the only one. This gets
2755                  * handled differently because we want to
2756                  * revert the inode back to having extents
2757                  * in-line.
2758                  */
2759                 ocfs2_unlink_path(inode, handle, dealloc, path, 1);
2760
2761                 el = et->root_el;
2762                 el->l_tree_depth = 0;
2763                 el->l_next_free_rec = 0;
2764                 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2765
2766                 ocfs2_set_last_eb_blk(et, 0);
2767         }
2768
2769         ocfs2_journal_dirty(handle, path_root_bh(path));
2770
2771 out:
2772         ocfs2_free_path(left_path);
2773         return ret;
2774 }
2775
2776 /*
2777  * Left rotation of btree records.
2778  *
2779  * In many ways, this is (unsurprisingly) the opposite of right
2780  * rotation. We start at some non-rightmost path containing an empty
2781  * extent in the leaf block. The code works its way to the rightmost
2782  * path by rotating records to the left in every subtree.
2783  *
2784  * This is used by any code which reduces the number of extent records
2785  * in a leaf. After removal, an empty record should be placed in the
2786  * leftmost list position.
2787  *
2788  * This won't handle a length update of the rightmost path records if
2789  * the rightmost tree leaf record is removed so the caller is
2790  * responsible for detecting and correcting that.
2791  */
2792 static int ocfs2_rotate_tree_left(struct inode *inode, handle_t *handle,
2793                                   struct ocfs2_path *path,
2794                                   struct ocfs2_cached_dealloc_ctxt *dealloc,
2795                                   struct ocfs2_extent_tree *et)
2796 {
2797         int ret, orig_credits = handle->h_buffer_credits;
2798         struct ocfs2_path *tmp_path = NULL, *restart_path = NULL;
2799         struct ocfs2_extent_block *eb;
2800         struct ocfs2_extent_list *el;
2801
2802         el = path_leaf_el(path);
2803         if (!ocfs2_is_empty_extent(&el->l_recs[0]))
2804                 return 0;
2805
2806         if (path->p_tree_depth == 0) {
2807 rightmost_no_delete:
2808                 /*
2809                  * Inline extents. This is trivially handled, so do
2810                  * it up front.
2811                  */
2812                 ret = ocfs2_rotate_rightmost_leaf_left(inode, handle,
2813                                                        path_leaf_bh(path),
2814                                                        path_leaf_el(path));
2815                 if (ret)
2816                         mlog_errno(ret);
2817                 goto out;
2818         }
2819
2820         /*
2821          * Handle rightmost branch now. There's several cases:
2822          *  1) simple rotation leaving records in there. That's trivial.
2823          *  2) rotation requiring a branch delete - there's no more
2824          *     records left. Two cases of this:
2825          *     a) There are branches to the left.
2826          *     b) This is also the leftmost (the only) branch.
2827          *
2828          *  1) is handled via ocfs2_rotate_rightmost_leaf_left()
2829          *  2a) we need the left branch so that we can update it with the unlink
2830          *  2b) we need to bring the inode back to inline extents.
2831          */
2832
2833         eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
2834         el = &eb->h_list;
2835         if (eb->h_next_leaf_blk == 0) {
2836                 /*
2837                  * This gets a bit tricky if we're going to delete the
2838                  * rightmost path. Get the other cases out of the way
2839                  * 1st.
2840                  */
2841                 if (le16_to_cpu(el->l_next_free_rec) > 1)
2842                         goto rightmost_no_delete;
2843
2844                 if (le16_to_cpu(el->l_next_free_rec) == 0) {
2845                         ret = -EIO;
2846                         ocfs2_error(inode->i_sb,
2847                                     "Inode %llu has empty extent block at %llu",
2848                                     (unsigned long long)OCFS2_I(inode)->ip_blkno,
2849                                     (unsigned long long)le64_to_cpu(eb->h_blkno));
2850                         goto out;
2851                 }
2852
2853                 /*
2854                  * XXX: The caller can not trust "path" any more after
2855                  * this as it will have been deleted. What do we do?
2856                  *
2857                  * In theory the rotate-for-merge code will never get
2858                  * here because it'll always ask for a rotate in a
2859                  * nonempty list.
2860                  */
2861
2862                 ret = ocfs2_remove_rightmost_path(inode, handle, path,
2863                                                   dealloc, et);
2864                 if (ret)
2865                         mlog_errno(ret);
2866                 goto out;
2867         }
2868
2869         /*
2870          * Now we can loop, remembering the path we get from -EAGAIN
2871          * and restarting from there.
2872          */
2873 try_rotate:
2874         ret = __ocfs2_rotate_tree_left(inode, handle, orig_credits, path,
2875                                        dealloc, &restart_path, et);
2876         if (ret && ret != -EAGAIN) {
2877                 mlog_errno(ret);
2878                 goto out;
2879         }
2880
2881         while (ret == -EAGAIN) {
2882                 tmp_path = restart_path;
2883                 restart_path = NULL;
2884
2885                 ret = __ocfs2_rotate_tree_left(inode, handle, orig_credits,
2886                                                tmp_path, dealloc,
2887                                                &restart_path, et);
2888                 if (ret && ret != -EAGAIN) {
2889                         mlog_errno(ret);
2890                         goto out;
2891                 }
2892
2893                 ocfs2_free_path(tmp_path);
2894                 tmp_path = NULL;
2895
2896                 if (ret == 0)
2897                         goto try_rotate;
2898         }
2899
2900 out:
2901         ocfs2_free_path(tmp_path);
2902         ocfs2_free_path(restart_path);
2903         return ret;
2904 }
2905
2906 static void ocfs2_cleanup_merge(struct ocfs2_extent_list *el,
2907                                 int index)
2908 {
2909         struct ocfs2_extent_rec *rec = &el->l_recs[index];
2910         unsigned int size;
2911
2912         if (rec->e_leaf_clusters == 0) {
2913                 /*
2914                  * We consumed all of the merged-from record. An empty
2915                  * extent cannot exist anywhere but the 1st array
2916                  * position, so move things over if the merged-from
2917                  * record doesn't occupy that position.
2918                  *
2919                  * This creates a new empty extent so the caller
2920                  * should be smart enough to have removed any existing
2921                  * ones.
2922                  */
2923                 if (index > 0) {
2924                         BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
2925                         size = index * sizeof(struct ocfs2_extent_rec);
2926                         memmove(&el->l_recs[1], &el->l_recs[0], size);
2927                 }
2928
2929                 /*
2930                  * Always memset - the caller doesn't check whether it
2931                  * created an empty extent, so there could be junk in
2932                  * the other fields.
2933                  */
2934                 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2935         }
2936 }
2937
2938 static int ocfs2_get_right_path(struct inode *inode,
2939                                 struct ocfs2_path *left_path,
2940                                 struct ocfs2_path **ret_right_path)
2941 {
2942         int ret;
2943         u32 right_cpos;
2944         struct ocfs2_path *right_path = NULL;
2945         struct ocfs2_extent_list *left_el;
2946
2947         *ret_right_path = NULL;
2948
2949         /* This function shouldn't be called for non-trees. */
2950         BUG_ON(left_path->p_tree_depth == 0);
2951
2952         left_el = path_leaf_el(left_path);
2953         BUG_ON(left_el->l_next_free_rec != left_el->l_count);
2954
2955         ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, left_path,
2956                                              &right_cpos);
2957         if (ret) {
2958                 mlog_errno(ret);
2959                 goto out;
2960         }
2961
2962         /* This function shouldn't be called for the rightmost leaf. */
2963         BUG_ON(right_cpos == 0);
2964
2965         right_path = ocfs2_new_path(path_root_bh(left_path),
2966                                     path_root_el(left_path));
2967         if (!right_path) {
2968                 ret = -ENOMEM;
2969                 mlog_errno(ret);
2970                 goto out;
2971         }
2972
2973         ret = ocfs2_find_path(inode, right_path, right_cpos);
2974         if (ret) {
2975                 mlog_errno(ret);
2976                 goto out;
2977         }
2978
2979         *ret_right_path = right_path;
2980 out:
2981         if (ret)
2982                 ocfs2_free_path(right_path);
2983         return ret;
2984 }
2985
2986 /*
2987  * Remove split_rec clusters from the record at index and merge them
2988  * onto the beginning of the record "next" to it.
2989  * For index < l_count - 1, the next means the extent rec at index + 1.
2990  * For index == l_count - 1, the "next" means the 1st extent rec of the
2991  * next extent block.
2992  */
2993 static int ocfs2_merge_rec_right(struct inode *inode,
2994                                  struct ocfs2_path *left_path,
2995                                  handle_t *handle,
2996                                  struct ocfs2_extent_rec *split_rec,
2997                                  int index)
2998 {
2999         int ret, next_free, i;
3000         unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
3001         struct ocfs2_extent_rec *left_rec;
3002         struct ocfs2_extent_rec *right_rec;
3003         struct ocfs2_extent_list *right_el;
3004         struct ocfs2_path *right_path = NULL;
3005         int subtree_index = 0;
3006         struct ocfs2_extent_list *el = path_leaf_el(left_path);
3007         struct buffer_head *bh = path_leaf_bh(left_path);
3008         struct buffer_head *root_bh = NULL;
3009
3010         BUG_ON(index >= le16_to_cpu(el->l_next_free_rec));
3011         left_rec = &el->l_recs[index];
3012
3013         if (index == le16_to_cpu(el->l_next_free_rec) - 1 &&
3014             le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count)) {
3015                 /* we meet with a cross extent block merge. */
3016                 ret = ocfs2_get_right_path(inode, left_path, &right_path);
3017                 if (ret) {
3018                         mlog_errno(ret);
3019                         goto out;
3020                 }
3021
3022                 right_el = path_leaf_el(right_path);
3023                 next_free = le16_to_cpu(right_el->l_next_free_rec);
3024                 BUG_ON(next_free <= 0);
3025                 right_rec = &right_el->l_recs[0];
3026                 if (ocfs2_is_empty_extent(right_rec)) {
3027                         BUG_ON(next_free <= 1);
3028                         right_rec = &right_el->l_recs[1];
3029                 }
3030
3031                 BUG_ON(le32_to_cpu(left_rec->e_cpos) +
3032                        le16_to_cpu(left_rec->e_leaf_clusters) !=
3033                        le32_to_cpu(right_rec->e_cpos));
3034
3035                 subtree_index = ocfs2_find_subtree_root(inode,
3036                                                         left_path, right_path);
3037
3038                 ret = ocfs2_extend_rotate_transaction(handle, subtree_index,
3039                                                       handle->h_buffer_credits,
3040                                                       right_path);
3041                 if (ret) {
3042                         mlog_errno(ret);
3043                         goto out;
3044                 }
3045
3046                 root_bh = left_path->p_node[subtree_index].bh;
3047                 BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
3048
3049                 ret = ocfs2_journal_access(handle, inode, root_bh,
3050                                            OCFS2_JOURNAL_ACCESS_WRITE);
3051                 if (ret) {
3052                         mlog_errno(ret);
3053                         goto out;
3054                 }
3055
3056                 for (i = subtree_index + 1;
3057                      i < path_num_items(right_path); i++) {
3058                         ret = ocfs2_journal_access(handle, inode,
3059                                                    right_path->p_node[i].bh,
3060                                                    OCFS2_JOURNAL_ACCESS_WRITE);
3061                         if (ret) {
3062                                 mlog_errno(ret);
3063                                 goto out;
3064                         }
3065
3066                         ret = ocfs2_journal_access(handle, inode,
3067                                                    left_path->p_node[i].bh,
3068                                                    OCFS2_JOURNAL_ACCESS_WRITE);
3069                         if (ret) {
3070                                 mlog_errno(ret);
3071                                 goto out;
3072                         }
3073                 }
3074
3075         } else {
3076                 BUG_ON(index == le16_to_cpu(el->l_next_free_rec) - 1);
3077                 right_rec = &el->l_recs[index + 1];
3078         }
3079
3080         ret = ocfs2_journal_access(handle, inode, bh,
3081                                    OCFS2_JOURNAL_ACCESS_WRITE);
3082         if (ret) {
3083                 mlog_errno(ret);
3084                 goto out;
3085         }
3086
3087         le16_add_cpu(&left_rec->e_leaf_clusters, -split_clusters);
3088
3089         le32_add_cpu(&right_rec->e_cpos, -split_clusters);
3090         le64_add_cpu(&right_rec->e_blkno,
3091                      -ocfs2_clusters_to_blocks(inode->i_sb, split_clusters));
3092         le16_add_cpu(&right_rec->e_leaf_clusters, split_clusters);
3093
3094         ocfs2_cleanup_merge(el, index);
3095
3096         ret = ocfs2_journal_dirty(handle, bh);
3097         if (ret)
3098                 mlog_errno(ret);
3099
3100         if (right_path) {
3101                 ret = ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
3102                 if (ret)
3103                         mlog_errno(ret);
3104
3105                 ocfs2_complete_edge_insert(inode, handle, left_path,
3106                                            right_path, subtree_index);
3107         }
3108 out:
3109         if (right_path)
3110                 ocfs2_free_path(right_path);
3111         return ret;
3112 }
3113
3114 static int ocfs2_get_left_path(struct inode *inode,
3115                                struct ocfs2_path *right_path,
3116                                struct ocfs2_path **ret_left_path)
3117 {
3118         int ret;
3119         u32 left_cpos;
3120         struct ocfs2_path *left_path = NULL;
3121
3122         *ret_left_path = NULL;
3123
3124         /* This function shouldn't be called for non-trees. */
3125         BUG_ON(right_path->p_tree_depth == 0);
3126
3127         ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb,
3128                                             right_path, &left_cpos);
3129         if (ret) {
3130                 mlog_errno(ret);
3131                 goto out;
3132         }
3133
3134         /* This function shouldn't be called for the leftmost leaf. */
3135         BUG_ON(left_cpos == 0);
3136
3137         left_path = ocfs2_new_path(path_root_bh(right_path),
3138                                    path_root_el(right_path));
3139         if (!left_path) {
3140                 ret = -ENOMEM;
3141                 mlog_errno(ret);
3142                 goto out;
3143         }
3144
3145         ret = ocfs2_find_path(inode, left_path, left_cpos);
3146         if (ret) {
3147                 mlog_errno(ret);
3148                 goto out;
3149         }
3150
3151         *ret_left_path = left_path;
3152 out:
3153         if (ret)
3154                 ocfs2_free_path(left_path);
3155         return ret;
3156 }
3157
3158 /*
3159  * Remove split_rec clusters from the record at index and merge them
3160  * onto the tail of the record "before" it.
3161  * For index > 0, the "before" means the extent rec at index - 1.
3162  *
3163  * For index == 0, the "before" means the last record of the previous
3164  * extent block. And there is also a situation that we may need to
3165  * remove the rightmost leaf extent block in the right_path and change
3166  * the right path to indicate the new rightmost path.
3167  */
3168 static int ocfs2_merge_rec_left(struct inode *inode,
3169                                 struct ocfs2_path *right_path,
3170                                 handle_t *handle,
3171                                 struct ocfs2_extent_rec *split_rec,
3172                                 struct ocfs2_cached_dealloc_ctxt *dealloc,
3173                                 struct ocfs2_extent_tree *et,
3174                                 int index)
3175 {
3176         int ret, i, subtree_index = 0, has_empty_extent = 0;
3177         unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
3178         struct ocfs2_extent_rec *left_rec;
3179         struct ocfs2_extent_rec *right_rec;
3180         struct ocfs2_extent_list *el = path_leaf_el(right_path);
3181         struct buffer_head *bh = path_leaf_bh(right_path);
3182         struct buffer_head *root_bh = NULL;
3183         struct ocfs2_path *left_path = NULL;
3184         struct ocfs2_extent_list *left_el;
3185
3186         BUG_ON(index < 0);
3187
3188         right_rec = &el->l_recs[index];
3189         if (index == 0) {
3190                 /* we meet with a cross extent block merge. */
3191                 ret = ocfs2_get_left_path(inode, right_path, &left_path);
3192                 if (ret) {
3193                         mlog_errno(ret);
3194                         goto out;
3195                 }
3196
3197                 left_el = path_leaf_el(left_path);
3198                 BUG_ON(le16_to_cpu(left_el->l_next_free_rec) !=
3199                        le16_to_cpu(left_el->l_count));
3200
3201                 left_rec = &left_el->l_recs[
3202                                 le16_to_cpu(left_el->l_next_free_rec) - 1];
3203                 BUG_ON(le32_to_cpu(left_rec->e_cpos) +
3204                        le16_to_cpu(left_rec->e_leaf_clusters) !=
3205                        le32_to_cpu(split_rec->e_cpos));
3206
3207                 subtree_index = ocfs2_find_subtree_root(inode,
3208                                                         left_path, right_path);
3209
3210                 ret = ocfs2_extend_rotate_transaction(handle, subtree_index,
3211                                                       handle->h_buffer_credits,
3212                                                       left_path);
3213                 if (ret) {
3214                         mlog_errno(ret);
3215                         goto out;
3216                 }
3217
3218                 root_bh = left_path->p_node[subtree_index].bh;
3219                 BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
3220
3221                 ret = ocfs2_journal_access(handle, inode, root_bh,
3222                                            OCFS2_JOURNAL_ACCESS_WRITE);
3223                 if (ret) {
3224                         mlog_errno(ret);
3225                         goto out;
3226                 }
3227
3228                 for (i = subtree_index + 1;
3229                      i < path_num_items(right_path); i++) {
3230                         ret = ocfs2_journal_access(handle, inode,
3231                                                    right_path->p_node[i].bh,
3232                                                    OCFS2_JOURNAL_ACCESS_WRITE);
3233                         if (ret) {
3234                                 mlog_errno(ret);
3235                                 goto out;
3236                         }
3237
3238                         ret = ocfs2_journal_access(handle, inode,
3239                                                    left_path->p_node[i].bh,
3240                                                    OCFS2_JOURNAL_ACCESS_WRITE);
3241                         if (ret) {
3242                                 mlog_errno(ret);
3243                                 goto out;
3244                         }
3245                 }
3246         } else {
3247                 left_rec = &el->l_recs[index - 1];
3248                 if (ocfs2_is_empty_extent(&el->l_recs[0]))
3249                         has_empty_extent = 1;
3250         }
3251
3252         ret = ocfs2_journal_access(handle, inode, bh,
3253                                    OCFS2_JOURNAL_ACCESS_WRITE);
3254         if (ret) {
3255                 mlog_errno(ret);
3256                 goto out;
3257         }
3258
3259         if (has_empty_extent && index == 1) {
3260                 /*
3261                  * The easy case - we can just plop the record right in.
3262                  */
3263                 *left_rec = *split_rec;
3264
3265                 has_empty_extent = 0;
3266         } else
3267                 le16_add_cpu(&left_rec->e_leaf_clusters, split_clusters);
3268
3269         le32_add_cpu(&right_rec->e_cpos, split_clusters);
3270         le64_add_cpu(&right_rec->e_blkno,
3271                      ocfs2_clusters_to_blocks(inode->i_sb, split_clusters));
3272         le16_add_cpu(&right_rec->e_leaf_clusters, -split_clusters);
3273
3274         ocfs2_cleanup_merge(el, index);
3275
3276         ret = ocfs2_journal_dirty(handle, bh);
3277         if (ret)
3278                 mlog_errno(ret);
3279
3280         if (left_path) {
3281                 ret = ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
3282                 if (ret)
3283                         mlog_errno(ret);
3284
3285                 /*
3286                  * In the situation that the right_rec is empty and the extent
3287                  * block is empty also,  ocfs2_complete_edge_insert can't handle
3288                  * it and we need to delete the right extent block.
3289                  */
3290                 if (le16_to_cpu(right_rec->e_leaf_clusters) == 0 &&
3291                     le16_to_cpu(el->l_next_free_rec) == 1) {
3292
3293                         ret = ocfs2_remove_rightmost_path(inode, handle,
3294                                                           right_path,
3295                                                           dealloc, et);
3296                         if (ret) {
3297                                 mlog_errno(ret);
3298                                 goto out;
3299                         }
3300
3301                         /* Now the rightmost extent block has been deleted.
3302                          * So we use the new rightmost path.
3303                          */
3304                         ocfs2_mv_path(right_path, left_path);
3305                         left_path = NULL;
3306                 } else
3307                         ocfs2_complete_edge_insert(inode, handle, left_path,
3308                                                    right_path, subtree_index);
3309         }
3310 out:
3311         if (left_path)
3312                 ocfs2_free_path(left_path);
3313         return ret;
3314 }
3315
3316 static int ocfs2_try_to_merge_extent(struct inode *inode,
3317                                      handle_t *handle,
3318                                      struct ocfs2_path *path,
3319                                      int split_index,
3320                                      struct ocfs2_extent_rec *split_rec,
3321                                      struct ocfs2_cached_dealloc_ctxt *dealloc,
3322                                      struct ocfs2_merge_ctxt *ctxt,
3323                                      struct ocfs2_extent_tree *et)
3324
3325 {
3326         int ret = 0;
3327         struct ocfs2_extent_list *el = path_leaf_el(path);
3328         struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
3329
3330         BUG_ON(ctxt->c_contig_type == CONTIG_NONE);
3331
3332         if (ctxt->c_split_covers_rec && ctxt->c_has_empty_extent) {
3333                 /*
3334                  * The merge code will need to create an empty
3335                  * extent to take the place of the newly
3336                  * emptied slot. Remove any pre-existing empty
3337                  * extents - having more than one in a leaf is
3338                  * illegal.
3339                  */
3340                 ret = ocfs2_rotate_tree_left(inode, handle, path,
3341                                              dealloc, et);
3342                 if (ret) {
3343                         mlog_errno(ret);
3344                         goto out;
3345                 }
3346                 split_index--;
3347                 rec = &el->l_recs[split_index];
3348         }
3349
3350         if (ctxt->c_contig_type == CONTIG_LEFTRIGHT) {
3351                 /*
3352                  * Left-right contig implies this.
3353                  */
3354                 BUG_ON(!ctxt->c_split_covers_rec);
3355
3356                 /*
3357                  * Since the leftright insert always covers the entire
3358                  * extent, this call will delete the insert record
3359                  * entirely, resulting in an empty extent record added to
3360                  * the extent block.
3361                  *
3362                  * Since the adding of an empty extent shifts
3363                  * everything back to the right, there's no need to
3364                  * update split_index here.
3365                  *
3366                  * When the split_index is zero, we need to merge it to the
3367                  * prevoius extent block. It is more efficient and easier
3368                  * if we do merge_right first and merge_left later.
3369                  */
3370                 ret = ocfs2_merge_rec_right(inode, path,
3371                                             handle, split_rec,
3372                                             split_index);
3373                 if (ret) {
3374                         mlog_errno(ret);
3375                         goto out;
3376                 }
3377
3378                 /*
3379                  * We can only get this from logic error above.
3380                  */
3381                 BUG_ON(!ocfs2_is_empty_extent(&el->l_recs[0]));
3382
3383                 /* The merge left us with an empty extent, remove it. */
3384                 ret = ocfs2_rotate_tree_left(inode, handle, path,
3385                                              dealloc, et);
3386                 if (ret) {
3387                         mlog_errno(ret);
3388                         goto out;
3389                 }
3390
3391                 rec = &el->l_recs[split_index];
3392
3393                 /*
3394                  * Note that we don't pass split_rec here on purpose -
3395                  * we've merged it into the rec already.
3396                  */
3397                 ret = ocfs2_merge_rec_left(inode, path,
3398                                            handle, rec,
3399                                            dealloc, et,
3400                                            split_index);
3401
3402                 if (ret) {
3403                         mlog_errno(ret);
3404                         goto out;
3405                 }
3406
3407                 ret = ocfs2_rotate_tree_left(inode, handle, path,
3408                                              dealloc, et);
3409                 /*
3410                  * Error from this last rotate is not critical, so
3411                  * print but don't bubble it up.
3412                  */
3413                 if (ret)
3414                         mlog_errno(ret);
3415                 ret = 0;
3416         } else {
3417                 /*
3418                  * Merge a record to the left or right.
3419                  *
3420                  * 'contig_type' is relative to the existing record,
3421                  * so for example, if we're "right contig", it's to
3422                  * the record on the left (hence the left merge).
3423                  */
3424                 if (ctxt->c_contig_type == CONTIG_RIGHT) {
3425                         ret = ocfs2_merge_rec_left(inode,
3426                                                    path,
3427                                                    handle, split_rec,
3428                                                    dealloc, et,
3429                                                    split_index);
3430                         if (ret) {
3431                                 mlog_errno(ret);
3432                                 goto out;
3433                         }
3434                 } else {
3435                         ret = ocfs2_merge_rec_right(inode,
3436                                                     path,
3437                                                     handle, split_rec,
3438                                                     split_index);
3439                         if (ret) {
3440                                 mlog_errno(ret);
3441                                 goto out;
3442                         }
3443                 }
3444
3445                 if (ctxt->c_split_covers_rec) {
3446                         /*
3447                          * The merge may have left an empty extent in
3448                          * our leaf. Try to rotate it away.
3449                          */
3450                         ret = ocfs2_rotate_tree_left(inode, handle, path,
3451                                                      dealloc, et);
3452                         if (ret)
3453                                 mlog_errno(ret);
3454                         ret = 0;
3455                 }
3456         }
3457
3458 out:
3459         return ret;
3460 }
3461
3462 static void ocfs2_subtract_from_rec(struct super_block *sb,
3463                                     enum ocfs2_split_type split,
3464                                     struct ocfs2_extent_rec *rec,
3465                                     struct ocfs2_extent_rec *split_rec)
3466 {
3467         u64 len_blocks;
3468
3469         len_blocks = ocfs2_clusters_to_blocks(sb,
3470                                 le16_to_cpu(split_rec->e_leaf_clusters));
3471
3472         if (split == SPLIT_LEFT) {
3473                 /*
3474                  * Region is on the left edge of the existing
3475                  * record.
3476                  */
3477                 le32_add_cpu(&rec->e_cpos,
3478                              le16_to_cpu(split_rec->e_leaf_clusters));
3479                 le64_add_cpu(&rec->e_blkno, len_blocks);
3480                 le16_add_cpu(&rec->e_leaf_clusters,
3481                              -le16_to_cpu(split_rec->e_leaf_clusters));
3482         } else {
3483                 /*
3484                  * Region is on the right edge of the existing
3485                  * record.
3486                  */
3487                 le16_add_cpu(&rec->e_leaf_clusters,
3488                              -le16_to_cpu(split_rec->e_leaf_clusters));
3489         }
3490 }
3491
3492 /*
3493  * Do the final bits of extent record insertion at the target leaf
3494  * list. If this leaf is part of an allocation tree, it is assumed
3495  * that the tree above has been prepared.
3496  */
3497 static void ocfs2_insert_at_leaf(struct ocfs2_extent_rec *insert_rec,
3498                                  struct ocfs2_extent_list *el,
3499                                  struct ocfs2_insert_type *insert,
3500                                  struct inode *inode)
3501 {
3502         int i = insert->ins_contig_index;
3503         unsigned int range;
3504         struct ocfs2_extent_rec *rec;
3505
3506         BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
3507
3508         if (insert->ins_split != SPLIT_NONE) {
3509                 i = ocfs2_search_extent_list(el, le32_to_cpu(insert_rec->e_cpos));
3510                 BUG_ON(i == -1);
3511                 rec = &el->l_recs[i];
3512                 ocfs2_subtract_from_rec(inode->i_sb, insert->ins_split, rec,
3513                                         insert_rec);
3514                 goto rotate;
3515         }
3516
3517         /*
3518          * Contiguous insert - either left or right.
3519          */
3520         if (insert->ins_contig != CONTIG_NONE) {
3521                 rec = &el->l_recs[i];
3522                 if (insert->ins_contig == CONTIG_LEFT) {
3523                         rec->e_blkno = insert_rec->e_blkno;
3524                         rec->e_cpos = insert_rec->e_cpos;
3525                 }
3526                 le16_add_cpu(&rec->e_leaf_clusters,
3527                              le16_to_cpu(insert_rec->e_leaf_clusters));
3528                 return;
3529         }
3530
3531         /*
3532          * Handle insert into an empty leaf.
3533          */
3534         if (le16_to_cpu(el->l_next_free_rec) == 0 ||
3535             ((le16_to_cpu(el->l_next_free_rec) == 1) &&
3536              ocfs2_is_empty_extent(&el->l_recs[0]))) {
3537                 el->l_recs[0] = *insert_rec;
3538                 el->l_next_free_rec = cpu_to_le16(1);
3539                 return;
3540         }
3541
3542         /*
3543          * Appending insert.
3544          */
3545         if (insert->ins_appending == APPEND_TAIL) {
3546                 i = le16_to_cpu(el->l_next_free_rec) - 1;
3547                 rec = &el->l_recs[i];
3548                 range = le32_to_cpu(rec->e_cpos)
3549                         + le16_to_cpu(rec->e_leaf_clusters);
3550                 BUG_ON(le32_to_cpu(insert_rec->e_cpos) < range);
3551
3552                 mlog_bug_on_msg(le16_to_cpu(el->l_next_free_rec) >=
3553                                 le16_to_cpu(el->l_count),
3554                                 "inode %lu, depth %u, count %u, next free %u, "
3555                                 "rec.cpos %u, rec.clusters %u, "
3556                                 "insert.cpos %u, insert.clusters %u\n",
3557                                 inode->i_ino,
3558                                 le16_to_cpu(el->l_tree_depth),
3559                                 le16_to_cpu(el->l_count),
3560                                 le16_to_cpu(el->l_next_free_rec),
3561                                 le32_to_cpu(el->l_recs[i].e_cpos),
3562                                 le16_to_cpu(el->l_recs[i].e_leaf_clusters),
3563                                 le32_to_cpu(insert_rec->e_cpos),
3564                                 le16_to_cpu(insert_rec->e_leaf_clusters));
3565                 i++;
3566                 el->l_recs[i] = *insert_rec;
3567                 le16_add_cpu(&el->l_next_free_rec, 1);
3568                 return;
3569         }
3570
3571 rotate:
3572         /*
3573          * Ok, we have to rotate.
3574          *
3575          * At this point, it is safe to assume that inserting into an
3576          * empty leaf and appending to a leaf have both been handled
3577          * above.
3578          *
3579          * This leaf needs to have space, either by the empty 1st
3580          * extent record, or by virtue of an l_next_rec < l_count.
3581          */
3582         ocfs2_rotate_leaf(el, insert_rec);
3583 }
3584
3585 static void ocfs2_adjust_rightmost_records(struct inode *inode,
3586                                            handle_t *handle,
3587                                            struct ocfs2_path *path,
3588                                            struct ocfs2_extent_rec *insert_rec)
3589 {
3590         int ret, i, next_free;
3591         struct buffer_head *bh;
3592         struct ocfs2_extent_list *el;
3593         struct ocfs2_extent_rec *rec;
3594
3595         /*
3596          * Update everything except the leaf block.
3597          */
3598         for (i = 0; i < path->p_tree_depth; i++) {
3599                 bh = path->p_node[i].bh;
3600                 el = path->p_node[i].el;
3601
3602                 next_free = le16_to_cpu(el->l_next_free_rec);
3603                 if (next_free == 0) {
3604                         ocfs2_error(inode->i_sb,
3605                                     "Dinode %llu has a bad extent list",
3606                                     (unsigned long long)OCFS2_I(inode)->ip_blkno);
3607                         ret = -EIO;
3608                         return;
3609                 }
3610
3611                 rec = &el->l_recs[next_free - 1];
3612
3613                 rec->e_int_clusters = insert_rec->e_cpos;
3614                 le32_add_cpu(&rec->e_int_clusters,
3615                              le16_to_cpu(insert_rec->e_leaf_clusters));
3616                 le32_add_cpu(&rec->e_int_clusters,
3617                              -le32_to_cpu(rec->e_cpos));
3618
3619                 ret = ocfs2_journal_dirty(handle, bh);
3620                 if (ret)
3621                         mlog_errno(ret);
3622
3623         }
3624 }
3625
3626 static int ocfs2_append_rec_to_path(struct inode *inode, handle_t *handle,
3627                                     struct ocfs2_extent_rec *insert_rec,
3628                                     struct ocfs2_path *right_path,
3629                                     struct ocfs2_path **ret_left_path)
3630 {
3631         int ret, next_free;
3632         struct ocfs2_extent_list *el;
3633         struct ocfs2_path *left_path = NULL;
3634
3635         *ret_left_path = NULL;
3636
3637         /*
3638          * This shouldn't happen for non-trees. The extent rec cluster
3639          * count manipulation below only works for interior nodes.
3640          */
3641         BUG_ON(right_path->p_tree_depth == 0);
3642
3643         /*
3644          * If our appending insert is at the leftmost edge of a leaf,
3645          * then we might need to update the rightmost records of the
3646          * neighboring path.
3647          */
3648         el = path_leaf_el(right_path);
3649         next_free = le16_to_cpu(el->l_next_free_rec);
3650         if (next_free == 0 ||
3651             (next_free == 1 && ocfs2_is_empty_extent(&el->l_recs[0]))) {
3652                 u32 left_cpos;
3653
3654                 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path,
3655                                                     &left_cpos);
3656                 if (ret) {
3657                         mlog_errno(ret);
3658                         goto out;
3659                 }
3660
3661                 mlog(0, "Append may need a left path update. cpos: %u, "
3662                      "left_cpos: %u\n", le32_to_cpu(insert_rec->e_cpos),
3663                      left_cpos);
3664
3665                 /*
3666                  * No need to worry if the append is already in the
3667                  * leftmost leaf.
3668                  */
3669                 if (left_cpos) {
3670                         left_path = ocfs2_new_path(path_root_bh(right_path),
3671                                                    path_root_el(right_path));
3672                         if (!left_path) {
3673                                 ret = -ENOMEM;
3674                                 mlog_errno(ret);
3675                                 goto out;
3676                         }
3677
3678                         ret = ocfs2_find_path(inode, left_path, left_cpos);
3679                         if (ret) {
3680                                 mlog_errno(ret);
3681                                 goto out;
3682                         }
3683
3684                         /*
3685                          * ocfs2_insert_path() will pass the left_path to the
3686                          * journal for us.
3687                          */
3688                 }
3689         }
3690
3691         ret = ocfs2_journal_access_path(inode, handle, right_path);
3692         if (ret) {
3693                 mlog_errno(ret);
3694                 goto out;
3695         }
3696
3697         ocfs2_adjust_rightmost_records(inode, handle, right_path, insert_rec);
3698
3699         *ret_left_path = left_path;
3700         ret = 0;
3701 out:
3702         if (ret != 0)
3703                 ocfs2_free_path(left_path);
3704
3705         return ret;
3706 }
3707
3708 static void ocfs2_split_record(struct inode *inode,
3709                                struct ocfs2_path *left_path,
3710                                struct ocfs2_path *right_path,
3711                                struct ocfs2_extent_rec *split_rec,
3712                                enum ocfs2_split_type split)
3713 {
3714         int index;
3715         u32 cpos = le32_to_cpu(split_rec->e_cpos);
3716         struct ocfs2_extent_list *left_el = NULL, *right_el, *insert_el, *el;
3717         struct ocfs2_extent_rec *rec, *tmprec;
3718
3719         right_el = path_leaf_el(right_path);;
3720         if (left_path)
3721                 left_el = path_leaf_el(left_path);
3722
3723         el = right_el;
3724         insert_el = right_el;
3725         index = ocfs2_search_extent_list(el, cpos);
3726         if (index != -1) {
3727                 if (index == 0 && left_path) {
3728                         BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
3729
3730                         /*
3731                          * This typically means that the record
3732                          * started in the left path but moved to the
3733                          * right as a result of rotation. We either
3734                          * move the existing record to the left, or we
3735                          * do the later insert there.
3736                          *
3737                          * In this case, the left path should always
3738                          * exist as the rotate code will have passed
3739                          * it back for a post-insert update.
3740                          */
3741
3742                         if (split == SPLIT_LEFT) {
3743                                 /*
3744                                  * It's a left split. Since we know
3745                                  * that the rotate code gave us an
3746                                  * empty extent in the left path, we
3747                                  * can just do the insert there.
3748                                  */
3749                                 insert_el = left_el;
3750                         } else {
3751                                 /*
3752                                  * Right split - we have to move the
3753                                  * existing record over to the left
3754                                  * leaf. The insert will be into the
3755                                  * newly created empty extent in the
3756                                  * right leaf.
3757                                  */
3758                                 tmprec = &right_el->l_recs[index];
3759                                 ocfs2_rotate_leaf(left_el, tmprec);
3760                                 el = left_el;
3761
3762                                 memset(tmprec, 0, sizeof(*tmprec));
3763                                 index = ocfs2_search_extent_list(left_el, cpos);
3764                                 BUG_ON(index == -1);
3765                         }
3766                 }
3767         } else {
3768                 BUG_ON(!left_path);
3769                 BUG_ON(!ocfs2_is_empty_extent(&left_el->l_recs[0]));
3770                 /*
3771                  * Left path is easy - we can just allow the insert to
3772                  * happen.
3773                  */
3774                 el = left_el;
3775                 insert_el = left_el;
3776                 index = ocfs2_search_extent_list(el, cpos);
3777                 BUG_ON(index == -1);
3778         }
3779
3780         rec = &el->l_recs[index];
3781         ocfs2_subtract_from_rec(inode->i_sb, split, rec, split_rec);
3782         ocfs2_rotate_leaf(insert_el, split_rec);
3783 }
3784
3785 /*
3786  * This function only does inserts on an allocation b-tree. For tree
3787  * depth = 0, ocfs2_insert_at_leaf() is called directly.
3788  *
3789  * right_path is the path we want to do the actual insert
3790  * in. left_path should only be passed in if we need to update that
3791  * portion of the tree after an edge insert.
3792  */
3793 static int ocfs2_insert_path(struct inode *inode,
3794                              handle_t *handle,
3795                              struct ocfs2_path *left_path,
3796                              struct ocfs2_path *right_path,
3797                              struct ocfs2_extent_rec *insert_rec,
3798                              struct ocfs2_insert_type *insert)
3799 {
3800         int ret, subtree_index;
3801         struct buffer_head *leaf_bh = path_leaf_bh(right_path);
3802
3803         if (left_path) {
3804                 int credits = handle->h_buffer_credits;
3805
3806                 /*
3807                  * There's a chance that left_path got passed back to
3808                  * us without being accounted for in the
3809                  * journal. Extend our transaction here to be sure we
3810                  * can change those blocks.
3811                  */
3812                 credits += left_path->p_tree_depth;
3813
3814                 ret = ocfs2_extend_trans(handle, credits);
3815                 if (ret < 0) {
3816                         mlog_errno(ret);
3817                         goto out;
3818                 }
3819
3820                 ret = ocfs2_journal_access_path(inode, handle, left_path);
3821                 if (ret < 0) {
3822                         mlog_errno(ret);
3823                         goto out;
3824                 }
3825         }
3826
3827         /*
3828          * Pass both paths to the journal. The majority of inserts
3829          * will be touching all components anyway.
3830          */
3831         ret = ocfs2_journal_access_path(inode, handle, right_path);
3832         if (ret < 0) {
3833                 mlog_errno(ret);
3834                 goto out;
3835         }
3836
3837         if (insert->ins_split != SPLIT_NONE) {
3838                 /*
3839                  * We could call ocfs2_insert_at_leaf() for some types
3840                  * of splits, but it's easier to just let one separate
3841                  * function sort it all out.
3842                  */
3843                 ocfs2_split_record(inode, left_path, right_path,
3844                                    insert_rec, insert->ins_split);
3845
3846                 /*
3847                  * Split might have modified either leaf and we don't
3848                  * have a guarantee that the later edge insert will
3849                  * dirty this for us.
3850                  */
3851                 if (left_path)
3852                         ret = ocfs2_journal_dirty(handle,
3853                                                   path_leaf_bh(left_path));
3854                         if (ret)
3855                                 mlog_errno(ret);
3856         } else
3857                 ocfs2_insert_at_leaf(insert_rec, path_leaf_el(right_path),
3858                                      insert, inode);
3859
3860         ret = ocfs2_journal_dirty(handle, leaf_bh);
3861         if (ret)
3862                 mlog_errno(ret);
3863
3864         if (left_path) {
3865                 /*
3866                  * The rotate code has indicated that we need to fix
3867                  * up portions of the tree after the insert.
3868                  *
3869                  * XXX: Should we extend the transaction here?
3870                  */
3871                 subtree_index = ocfs2_find_subtree_root(inode, left_path,
3872                                                         right_path);
3873                 ocfs2_complete_edge_insert(inode, handle, left_path,
3874                                            right_path, subtree_index);
3875         }
3876
3877         ret = 0;
3878 out:
3879         return ret;
3880 }
3881
3882 static int ocfs2_do_insert_extent(struct inode *inode,
3883                                   handle_t *handle,
3884                                   struct ocfs2_extent_tree *et,
3885                                   struct ocfs2_extent_rec *insert_rec,
3886                                   struct ocfs2_insert_type *type)
3887 {
3888         int ret, rotate = 0;
3889         u32 cpos;
3890         struct ocfs2_path *right_path = NULL;
3891         struct ocfs2_path *left_path = NULL;
3892         struct ocfs2_extent_list *el;
3893
3894         el = et->root_el;
3895
3896         ret = ocfs2_journal_access(handle, inode, et->root_bh,
3897                                    OCFS2_JOURNAL_ACCESS_WRITE);
3898         if (ret) {
3899                 mlog_errno(ret);
3900                 goto out;
3901         }
3902
3903         if (le16_to_cpu(el->l_tree_depth) == 0) {
3904                 ocfs2_insert_at_leaf(insert_rec, el, type, inode);
3905                 goto out_update_clusters;
3906         }
3907
3908         right_path = ocfs2_new_path(et->root_bh, et->root_el);
3909         if (!right_path) {
3910                 ret = -ENOMEM;
3911                 mlog_errno(ret);
3912                 goto out;
3913         }
3914
3915         /*
3916          * Determine the path to start with. Rotations need the
3917          * rightmost path, everything else can go directly to the
3918          * target leaf.
3919          */
3920         cpos = le32_to_cpu(insert_rec->e_cpos);
3921         if (type->ins_appending == APPEND_NONE &&
3922             type->ins_contig == CONTIG_NONE) {
3923                 rotate = 1;
3924                 cpos = UINT_MAX;
3925         }
3926
3927         ret = ocfs2_find_path(inode, right_path, cpos);
3928         if (ret) {
3929                 mlog_errno(ret);
3930                 goto out;
3931         }
3932
3933         /*
3934          * Rotations and appends need special treatment - they modify
3935          * parts of the tree's above them.
3936          *
3937          * Both might pass back a path immediate to the left of the
3938          * one being inserted to. This will be cause
3939          * ocfs2_insert_path() to modify the rightmost records of
3940          * left_path to account for an edge insert.
3941          *
3942          * XXX: When modifying this code, keep in mind that an insert
3943          * can wind up skipping both of these two special cases...
3944          */
3945         if (rotate) {
3946                 ret = ocfs2_rotate_tree_right(inode, handle, type->ins_split,
3947                                               le32_to_cpu(insert_rec->e_cpos),
3948                                               right_path, &left_path);
3949                 if (ret) {
3950                         mlog_errno(ret);
3951                         goto out;
3952                 }
3953
3954                 /*
3955                  * ocfs2_rotate_tree_right() might have extended the
3956                  * transaction without re-journaling our tree root.
3957                  */
3958                 ret = ocfs2_journal_access(handle, inode, et->root_bh,
3959                                            OCFS2_JOURNAL_ACCESS_WRITE);
3960                 if (ret) {
3961                         mlog_errno(ret);
3962                         goto out;
3963                 }
3964         } else if (type->ins_appending == APPEND_TAIL
3965                    && type->ins_contig != CONTIG_LEFT) {
3966                 ret = ocfs2_append_rec_to_path(inode, handle, insert_rec,
3967                                                right_path, &left_path);
3968                 if (ret) {
3969                         mlog_errno(ret);
3970                         goto out;
3971                 }
3972         }
3973
3974         ret = ocfs2_insert_path(inode, handle, left_path, right_path,
3975                                 insert_rec, type);
3976         if (ret) {
3977                 mlog_errno(ret);
3978                 goto out;
3979         }
3980
3981 out_update_clusters:
3982         if (type->ins_split == SPLIT_NONE)
3983                 ocfs2_update_clusters(inode, et,
3984                                       le16_to_cpu(insert_rec->e_leaf_clusters));
3985
3986         ret = ocfs2_journal_dirty(handle, et->root_bh);
3987         if (ret)
3988                 mlog_errno(ret);
3989
3990 out:
3991         ocfs2_free_path(left_path);
3992         ocfs2_free_path(right_path);
3993
3994         return ret;
3995 }
3996
3997 static enum ocfs2_contig_type
3998 ocfs2_figure_merge_contig_type(struct inode *inode, struct ocfs2_path *path,
3999                                struct ocfs2_extent_list *el, int index,
4000                                struct ocfs2_extent_rec *split_rec)
4001 {
4002         int status;
4003         enum ocfs2_contig_type ret = CONTIG_NONE;
4004         u32 left_cpos, right_cpos;
4005         struct ocfs2_extent_rec *rec = NULL;
4006         struct ocfs2_extent_list *new_el;
4007         struct ocfs2_path *left_path = NULL, *right_path = NULL;
4008         struct buffer_head *bh;
4009         struct ocfs2_extent_block *eb;
4010
4011         if (index > 0) {
4012                 rec = &el->l_recs[index - 1];
4013         } else if (path->p_tree_depth > 0) {
4014                 status = ocfs2_find_cpos_for_left_leaf(inode->i_sb,
4015                                                        path, &left_cpos);
4016                 if (status)
4017                         goto out;
4018
4019                 if (left_cpos != 0) {
4020                         left_path = ocfs2_new_path(path_root_bh(path),
4021                                                    path_root_el(path));
4022                         if (!left_path)
4023                                 goto out;
4024
4025                         status = ocfs2_find_path(inode, left_path, left_cpos);
4026                         if (status)
4027                                 goto out;
4028
4029                         new_el = path_leaf_el(left_path);
4030
4031                         if (le16_to_cpu(new_el->l_next_free_rec) !=
4032                             le16_to_cpu(new_el->l_count)) {
4033                                 bh = path_leaf_bh(left_path);
4034                                 eb = (struct ocfs2_extent_block *)bh->b_data;
4035                                 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb,
4036                                                                  eb);
4037                                 goto out;
4038                         }
4039                         rec = &new_el->l_recs[
4040                                 le16_to_cpu(new_el->l_next_free_rec) - 1];
4041                 }
4042         }
4043
4044         /*
4045          * We're careful to check for an empty extent record here -
4046          * the merge code will know what to do if it sees one.
4047          */
4048         if (rec) {
4049                 if (index == 1 && ocfs2_is_empty_extent(rec)) {
4050                         if (split_rec->e_cpos == el->l_recs[index].e_cpos)
4051                                 ret = CONTIG_RIGHT;
4052                 } else {
4053                         ret = ocfs2_extent_contig(inode, rec, split_rec);
4054                 }
4055         }
4056
4057         rec = NULL;
4058         if (index < (le16_to_cpu(el->l_next_free_rec) - 1))
4059                 rec = &el->l_recs[index + 1];
4060         else if (le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count) &&
4061                  path->p_tree_depth > 0) {
4062                 status = ocfs2_find_cpos_for_right_leaf(inode->i_sb,
4063                                                         path, &right_cpos);
4064                 if (status)
4065                         goto out;
4066
4067                 if (right_cpos == 0)
4068                         goto out;
4069
4070                 right_path = ocfs2_new_path(path_root_bh(path),
4071                                             path_root_el(path));
4072                 if (!right_path)
4073                         goto out;
4074
4075                 status = ocfs2_find_path(inode, right_path, right_cpos);
4076                 if (status)
4077                         goto out;
4078
4079                 new_el = path_leaf_el(right_path);
4080                 rec = &new_el->l_recs[0];
4081                 if (ocfs2_is_empty_extent(rec)) {
4082                         if (le16_to_cpu(new_el->l_next_free_rec) <= 1) {
4083                                 bh = path_leaf_bh(right_path);
4084                                 eb = (struct ocfs2_extent_block *)bh->b_data;
4085                                 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb,
4086                                                                  eb);
4087                                 goto out;
4088                         }
4089                         rec = &new_el->l_recs[1];
4090                 }
4091         }
4092
4093         if (rec) {
4094                 enum ocfs2_contig_type contig_type;
4095
4096                 contig_type = ocfs2_extent_contig(inode, rec, split_rec);
4097
4098                 if (contig_type == CONTIG_LEFT && ret == CONTIG_RIGHT)
4099                         ret = CONTIG_LEFTRIGHT;
4100                 else if (ret == CONTIG_NONE)
4101                         ret = contig_type;
4102         }
4103
4104 out:
4105         if (left_path)
4106                 ocfs2_free_path(left_path);
4107         if (right_path)
4108                 ocfs2_free_path(right_path);
4109
4110         return ret;
4111 }
4112
4113 static void ocfs2_figure_contig_type(struct inode *inode,
4114                                      struct ocfs2_insert_type *insert,
4115                                      struct ocfs2_extent_list *el,
4116                                      struct ocfs2_extent_rec *insert_rec,
4117                                      struct ocfs2_extent_tree *et)
4118 {
4119         int i;
4120         enum ocfs2_contig_type contig_type = CONTIG_NONE;
4121
4122         BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
4123
4124         for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
4125                 contig_type = ocfs2_extent_contig(inode, &el->l_recs[i],
4126                                                   insert_rec);
4127                 if (contig_type != CONTIG_NONE) {
4128                         insert->ins_contig_index = i;
4129                         break;
4130                 }
4131         }
4132         insert->ins_contig = contig_type;
4133
4134         if (insert->ins_contig != CONTIG_NONE) {
4135                 struct ocfs2_extent_rec *rec =
4136                                 &el->l_recs[insert->ins_contig_index];
4137                 unsigned int len = le16_to_cpu(rec->e_leaf_clusters) +
4138                                    le16_to_cpu(insert_rec->e_leaf_clusters);
4139
4140                 /*
4141                  * Caller might want us to limit the size of extents, don't
4142                  * calculate contiguousness if we might exceed that limit.
4143                  */
4144                 if (et->max_leaf_clusters && len > et->max_leaf_clusters)
4145                         insert->ins_contig = CONTIG_NONE;
4146         }
4147 }
4148
4149 /*
4150  * This should only be called against the righmost leaf extent list.
4151  *
4152  * ocfs2_figure_appending_type() will figure out whether we'll have to
4153  * insert at the tail of the rightmost leaf.
4154  *
4155  * This should also work against the root extent list for tree's with 0
4156  * depth. If we consider the root extent list to be the rightmost leaf node
4157  * then the logic here makes sense.
4158  */
4159 static void ocfs2_figure_appending_type(struct ocfs2_insert_type *insert,
4160                                         struct ocfs2_extent_list *el,
4161                                         struct ocfs2_extent_rec *insert_rec)
4162 {
4163         int i;
4164         u32 cpos = le32_to_cpu(insert_rec->e_cpos);
4165         struct ocfs2_extent_rec *rec;
4166
4167         insert->ins_appending = APPEND_NONE;
4168
4169         BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
4170
4171         if (!el->l_next_free_rec)
4172                 goto set_tail_append;
4173
4174         if (ocfs2_is_empty_extent(&el->l_recs[0])) {
4175                 /* Were all records empty? */
4176                 if (le16_to_cpu(el->l_next_free_rec) == 1)
4177                         goto set_tail_append;
4178         }
4179
4180         i = le16_to_cpu(el->l_next_free_rec) - 1;
4181         rec = &el->l_recs[i];
4182
4183         if (cpos >=
4184             (le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)))
4185                 goto set_tail_append;
4186
4187         return;
4188
4189 set_tail_append:
4190         insert->ins_appending = APPEND_TAIL;
4191 }
4192
4193 /*
4194  * Helper function called at the begining of an insert.
4195  *
4196  * This computes a few things that are commonly used in the process of
4197  * inserting into the btree:
4198  *   - Whether the new extent is contiguous with an existing one.
4199  *   - The current tree depth.
4200  *   - Whether the insert is an appending one.
4201  *   - The total # of free records in the tree.
4202  *
4203  * All of the information is stored on the ocfs2_insert_type
4204  * structure.
4205  */
4206 static int ocfs2_figure_insert_type(struct inode *inode,
4207                                     struct ocfs2_extent_tree *et,
4208                                     struct buffer_head **last_eb_bh,
4209                                     struct ocfs2_extent_rec *insert_rec,
4210                                     int *free_records,
4211                                     struct ocfs2_insert_type *insert)
4212 {
4213         int ret;
4214         struct ocfs2_extent_block *eb;
4215         struct ocfs2_extent_list *el;
4216         struct ocfs2_path *path = NULL;
4217         struct buffer_head *bh = NULL;
4218
4219         insert->ins_split = SPLIT_NONE;
4220
4221         el = et->root_el;
4222         insert->ins_tree_depth = le16_to_cpu(el->l_tree_depth);
4223
4224         if (el->l_tree_depth) {
4225                 /*
4226                  * If we have tree depth, we read in the
4227                  * rightmost extent block ahead of time as
4228                  * ocfs2_figure_insert_type() and ocfs2_add_branch()
4229                  * may want it later.
4230                  */
4231                 ret = ocfs2_read_block(OCFS2_SB(inode->i_sb),
4232                                        ocfs2_get_last_eb_blk(et), &bh,
4233                                        OCFS2_BH_CACHED, inode);
4234                 if (ret) {
4235                         mlog_exit(ret);
4236                         goto out;
4237                 }
4238                 eb = (struct ocfs2_extent_block *) bh->b_data;
4239                 el = &eb->h_list;
4240         }
4241
4242         /*
4243          * Unless we have a contiguous insert, we'll need to know if
4244          * there is room left in our allocation tree for another
4245          * extent record.
4246          *
4247          * XXX: This test is simplistic, we can search for empty
4248          * extent records too.
4249          */
4250         *free_records = le16_to_cpu(el->l_count) -
4251                 le16_to_cpu(el->l_next_free_rec);
4252
4253         if (!insert->ins_tree_depth) {
4254                 ocfs2_figure_contig_type(inode, insert, el, insert_rec, et);
4255                 ocfs2_figure_appending_type(insert, el, insert_rec);
4256                 return 0;
4257         }
4258
4259         path = ocfs2_new_path(et->root_bh, et->root_el);
4260         if (!path) {
4261                 ret = -ENOMEM;
4262                 mlog_errno(ret);
4263                 goto out;
4264         }
4265
4266         /*
4267          * In the case that we're inserting past what the tree
4268          * currently accounts for, ocfs2_find_path() will return for
4269          * us the rightmost tree path. This is accounted for below in
4270          * the appending code.
4271          */
4272         ret = ocfs2_find_path(inode, path, le32_to_cpu(insert_rec->e_cpos));
4273         if (ret) {
4274                 mlog_errno(ret);
4275                 goto out;
4276         }
4277
4278         el = path_leaf_el(path);
4279
4280         /*
4281          * Now that we have the path, there's two things we want to determine:
4282          * 1) Contiguousness (also set contig_index if this is so)
4283          *
4284          * 2) Are we doing an append? We can trivially break this up
4285          *     into two types of appends: simple record append, or a
4286          *     rotate inside the tail leaf.
4287          */
4288         ocfs2_figure_contig_type(inode, insert, el, insert_rec, et);
4289
4290         /*
4291          * The insert code isn't quite ready to deal with all cases of
4292          * left contiguousness. Specifically, if it's an insert into
4293          * the 1st record in a leaf, it will require the adjustment of
4294          * cluster count on the last record of the path directly to it's
4295          * left. For now, just catch that case and fool the layers
4296          * above us. This works just fine for tree_depth == 0, which
4297          * is why we allow that above.
4298          */
4299         if (insert->ins_contig == CONTIG_LEFT &&
4300             insert->ins_contig_index == 0)
4301                 insert->ins_contig = CONTIG_NONE;
4302
4303         /*
4304          * Ok, so we can simply compare against last_eb to figure out
4305          * whether the path doesn't exist. This will only happen in
4306          * the case that we're doing a tail append, so maybe we can
4307          * take advantage of that information somehow.
4308          */
4309         if (ocfs2_get_last_eb_blk(et) ==
4310             path_leaf_bh(path)->b_blocknr) {
4311                 /*
4312                  * Ok, ocfs2_find_path() returned us the rightmost
4313                  * tree path. This might be an appending insert. There are
4314                  * two cases:
4315                  *    1) We're doing a true append at the tail:
4316                  *      -This might even be off the end of the leaf
4317                  *    2) We're "appending" by rotating in the tail
4318                  */
4319                 ocfs2_figure_appending_type(insert, el, insert_rec);
4320         }
4321
4322 out:
4323         ocfs2_free_path(path);
4324
4325         if (ret == 0)
4326                 *last_eb_bh = bh;
4327         else
4328                 brelse(bh);
4329         return ret;
4330 }
4331
4332 /*
4333  * Insert an extent into an inode btree.
4334  *
4335  * The caller needs to update fe->i_clusters
4336  */
4337 static int ocfs2_insert_extent(struct ocfs2_super *osb,
4338                                handle_t *handle,
4339                                struct inode *inode,
4340                                struct buffer_head *root_bh,
4341                                u32 cpos,
4342                                u64 start_blk,
4343                                u32 new_clusters,
4344                                u8 flags,
4345                                struct ocfs2_alloc_context *meta_ac,
4346                                struct ocfs2_extent_tree *et)
4347 {
4348         int status;
4349         int uninitialized_var(free_records);
4350         struct buffer_head *last_eb_bh = NULL;
4351         struct ocfs2_insert_type insert = {0, };
4352         struct ocfs2_extent_rec rec;
4353
4354         BUG_ON(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL);
4355
4356         mlog(0, "add %u clusters at position %u to inode %llu\n",
4357              new_clusters, cpos, (unsigned long long)OCFS2_I(inode)->ip_blkno);
4358
4359         mlog_bug_on_msg(!ocfs2_sparse_alloc(osb) &&
4360                         (OCFS2_I(inode)->ip_clusters != cpos),
4361                         "Device %s, asking for sparse allocation: inode %llu, "
4362                         "cpos %u, clusters %u\n",
4363                         osb->dev_str,
4364                         (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos,
4365                         OCFS2_I(inode)->ip_clusters);
4366
4367         memset(&rec, 0, sizeof(rec));
4368         rec.e_cpos = cpu_to_le32(cpos);
4369         rec.e_blkno = cpu_to_le64(start_blk);
4370         rec.e_leaf_clusters = cpu_to_le16(new_clusters);
4371         rec.e_flags = flags;
4372
4373         status = ocfs2_figure_insert_type(inode, et, &last_eb_bh, &rec,
4374                                           &free_records, &insert);
4375         if (status < 0) {
4376                 mlog_errno(status);
4377                 goto bail;
4378         }
4379
4380         mlog(0, "Insert.appending: %u, Insert.Contig: %u, "
4381              "Insert.contig_index: %d, Insert.free_records: %d, "
4382              "Insert.tree_depth: %d\n",
4383              insert.ins_appending, insert.ins_contig, insert.ins_contig_index,
4384              free_records, insert.ins_tree_depth);
4385
4386         if (insert.ins_contig == CONTIG_NONE && free_records == 0) {
4387                 status = ocfs2_grow_tree(inode, handle, et,
4388                                          &insert.ins_tree_depth, &last_eb_bh,
4389                                          meta_ac);
4390                 if (status) {
4391                         mlog_errno(status);
4392                         goto bail;
4393                 }
4394         }
4395
4396         /* Finally, we can add clusters. This might rotate the tree for us. */
4397         status = ocfs2_do_insert_extent(inode, handle, et, &rec, &insert);
4398         if (status < 0)
4399                 mlog_errno(status);
4400         else if (et->type == OCFS2_DINODE_EXTENT)
4401                 ocfs2_extent_map_insert_rec(inode, &rec);
4402
4403 bail:
4404         if (last_eb_bh)
4405                 brelse(last_eb_bh);
4406
4407         mlog_exit(status);
4408         return status;
4409 }
4410
4411 int ocfs2_dinode_insert_extent(struct ocfs2_super *osb,
4412                                handle_t *handle,
4413                                struct inode *inode,
4414                                struct buffer_head *root_bh,
4415                                u32 cpos,
4416                                u64 start_blk,
4417                                u32 new_clusters,
4418                                u8 flags,
4419                                struct ocfs2_alloc_context *meta_ac)
4420 {
4421         int status;
4422         struct ocfs2_extent_tree *et = NULL;
4423
4424         et = ocfs2_new_extent_tree(inode, root_bh, OCFS2_DINODE_EXTENT, NULL);
4425         if (!et) {
4426                 status = -ENOMEM;
4427                 mlog_errno(status);
4428                 goto bail;
4429         }
4430
4431         status = ocfs2_insert_extent(osb, handle, inode, root_bh,
4432                                      cpos, start_blk, new_clusters,
4433                                      flags, meta_ac, et);
4434
4435         if (et)
4436                 ocfs2_free_extent_tree(et);
4437 bail:
4438         return status;
4439 }
4440
4441 int ocfs2_xattr_value_insert_extent(struct ocfs2_super *osb,
4442                                     handle_t *handle,
4443                                     struct inode *inode,
4444                                     struct buffer_head *root_bh,
4445                                     u32 cpos,
4446                                     u64 start_blk,
4447                                     u32 new_clusters,
4448                                     u8 flags,
4449                                     struct ocfs2_alloc_context *meta_ac,
4450                                     void *private)
4451 {
4452         int status;
4453         struct ocfs2_extent_tree *et = NULL;
4454
4455         et = ocfs2_new_extent_tree(inode, root_bh,
4456                                    OCFS2_XATTR_VALUE_EXTENT, private);
4457         if (!et) {
4458                 status = -ENOMEM;
4459                 mlog_errno(status);
4460                 goto bail;
4461         }
4462
4463         status = ocfs2_insert_extent(osb, handle, inode, root_bh,
4464                                      cpos, start_blk, new_clusters,
4465                                      flags, meta_ac, et);
4466
4467         if (et)
4468                 ocfs2_free_extent_tree(et);
4469 bail:
4470         return status;
4471 }
4472
4473 int ocfs2_xattr_tree_insert_extent(struct ocfs2_super *osb,
4474                                    handle_t *handle,
4475                                    struct inode *inode,
4476                                    struct buffer_head *root_bh,
4477                                    u32 cpos,
4478                                    u64 start_blk,
4479                                    u32 new_clusters,
4480                                    u8 flags,
4481                                    struct ocfs2_alloc_context *meta_ac)
4482 {
4483         int status;
4484         struct ocfs2_extent_tree *et = NULL;
4485
4486         et = ocfs2_new_extent_tree(inode, root_bh, OCFS2_XATTR_TREE_EXTENT,
4487                                    NULL);
4488         if (!et) {
4489                 status = -ENOMEM;
4490                 mlog_errno(status);
4491                 goto bail;
4492         }
4493
4494         status = ocfs2_insert_extent(osb, handle, inode, root_bh,
4495                                      cpos, start_blk, new_clusters,
4496                                      flags, meta_ac, et);
4497
4498         if (et)
4499                 ocfs2_free_extent_tree(et);
4500 bail:
4501         return status;
4502 }
4503
4504 /*
4505  * Allcate and add clusters into the extent b-tree.
4506  * The new clusters(clusters_to_add) will be inserted at logical_offset.
4507  * The extent b-tree's root is root_el and it should be in root_bh, and
4508  * it is not limited to the file storage. Any extent tree can use this
4509  * function if it implements the proper ocfs2_extent_tree.
4510  */
4511 int ocfs2_add_clusters_in_btree(struct ocfs2_super *osb,
4512                                 struct inode *inode,
4513                                 u32 *logical_offset,
4514                                 u32 clusters_to_add,
4515                                 int mark_unwritten,
4516                                 struct buffer_head *root_bh,
4517                                 struct ocfs2_extent_list *root_el,
4518                                 handle_t *handle,
4519                                 struct ocfs2_alloc_context *data_ac,
4520                                 struct ocfs2_alloc_context *meta_ac,
4521                                 enum ocfs2_alloc_restarted *reason_ret,
4522                                 enum ocfs2_extent_tree_type type,
4523                                 void *private)
4524 {
4525         int status = 0;
4526         int free_extents;
4527         enum ocfs2_alloc_restarted reason = RESTART_NONE;
4528         u32 bit_off, num_bits;
4529         u64 block;
4530         u8 flags = 0;
4531
4532         BUG_ON(!clusters_to_add);
4533
4534         if (mark_unwritten)
4535                 flags = OCFS2_EXT_UNWRITTEN;
4536
4537         free_extents = ocfs2_num_free_extents(osb, inode, root_bh, type,
4538                                               private);
4539         if (free_extents < 0) {
4540                 status = free_extents;
4541                 mlog_errno(status);
4542                 goto leave;
4543         }
4544
4545         /* there are two cases which could cause us to EAGAIN in the
4546          * we-need-more-metadata case:
4547          * 1) we haven't reserved *any*
4548          * 2) we are so fragmented, we've needed to add metadata too
4549          *    many times. */
4550         if (!free_extents && !meta_ac) {
4551                 mlog(0, "we haven't reserved any metadata!\n");
4552                 status = -EAGAIN;
4553                 reason = RESTART_META;
4554                 goto leave;
4555         } else if ((!free_extents)
4556                    && (ocfs2_alloc_context_bits_left(meta_ac)
4557                        < ocfs2_extend_meta_needed(root_el))) {
4558                 mlog(0, "filesystem is really fragmented...\n");
4559                 status = -EAGAIN;
4560                 reason = RESTART_META;
4561                 goto leave;
4562         }
4563
4564         status = __ocfs2_claim_clusters(osb, handle, data_ac, 1,
4565                                         clusters_to_add, &bit_off, &num_bits);
4566         if (status < 0) {
4567                 if (status != -ENOSPC)
4568                         mlog_errno(status);
4569                 goto leave;
4570         }
4571
4572         BUG_ON(num_bits > clusters_to_add);
4573
4574         /* reserve our write early -- insert_extent may update the inode */
4575         status = ocfs2_journal_access(handle, inode, root_bh,
4576                                       OCFS2_JOURNAL_ACCESS_WRITE);
4577         if (status < 0) {
4578                 mlog_errno(status);
4579                 goto leave;
4580         }
4581
4582         block = ocfs2_clusters_to_blocks(osb->sb, bit_off);
4583         mlog(0, "Allocating %u clusters at block %u for inode %llu\n",
4584              num_bits, bit_off, (unsigned long long)OCFS2_I(inode)->ip_blkno);
4585         if (type == OCFS2_DINODE_EXTENT)
4586                 status = ocfs2_dinode_insert_extent(osb, handle, inode, root_bh,
4587                                                     *logical_offset, block,
4588                                                     num_bits, flags, meta_ac);
4589         else if (type == OCFS2_XATTR_TREE_EXTENT)
4590                 status = ocfs2_xattr_tree_insert_extent(osb, handle,
4591                                                         inode, root_bh,
4592                                                         *logical_offset,
4593                                                         block, num_bits, flags,
4594                                                         meta_ac);
4595         else
4596                 status = ocfs2_xattr_value_insert_extent(osb, handle,
4597                                                          inode, root_bh,
4598                                                          *logical_offset,
4599                                                          block, num_bits, flags,
4600                                                          meta_ac, private);
4601         if (status < 0) {
4602                 mlog_errno(status);
4603                 goto leave;
4604         }
4605
4606         status = ocfs2_journal_dirty(handle, root_bh);
4607         if (status < 0) {
4608                 mlog_errno(status);
4609                 goto leave;
4610         }
4611
4612         clusters_to_add -= num_bits;
4613         *logical_offset += num_bits;
4614
4615         if (clusters_to_add) {
4616                 mlog(0, "need to alloc once more, wanted = %u\n",
4617                      clusters_to_add);
4618                 status = -EAGAIN;
4619                 reason = RESTART_TRANS;
4620         }
4621
4622 leave:
4623         mlog_exit(status);
4624         if (reason_ret)
4625                 *reason_ret = reason;
4626         return status;
4627 }
4628
4629 static void ocfs2_make_right_split_rec(struct super_block *sb,
4630                                        struct ocfs2_extent_rec *split_rec,
4631                                        u32 cpos,
4632                                        struct ocfs2_extent_rec *rec)
4633 {
4634         u32 rec_cpos = le32_to_cpu(rec->e_cpos);
4635         u32 rec_range = rec_cpos + le16_to_cpu(rec->e_leaf_clusters);
4636
4637         memset(split_rec, 0, sizeof(struct ocfs2_extent_rec));
4638
4639         split_rec->e_cpos = cpu_to_le32(cpos);
4640         split_rec->e_leaf_clusters = cpu_to_le16(rec_range - cpos);
4641
4642         split_rec->e_blkno = rec->e_blkno;
4643         le64_add_cpu(&split_rec->e_blkno,
4644                      ocfs2_clusters_to_blocks(sb, cpos - rec_cpos));
4645
4646         split_rec->e_flags = rec->e_flags;
4647 }
4648
4649 static int ocfs2_split_and_insert(struct inode *inode,
4650                                   handle_t *handle,
4651                                   struct ocfs2_path *path,
4652                                   struct ocfs2_extent_tree *et,
4653                                   struct buffer_head **last_eb_bh,
4654                                   int split_index,
4655                                   struct ocfs2_extent_rec *orig_split_rec,
4656                                   struct ocfs2_alloc_context *meta_ac)
4657 {
4658         int ret = 0, depth;
4659         unsigned int insert_range, rec_range, do_leftright = 0;
4660         struct ocfs2_extent_rec tmprec;
4661         struct ocfs2_extent_list *rightmost_el;
4662         struct ocfs2_extent_rec rec;
4663         struct ocfs2_extent_rec split_rec = *orig_split_rec;
4664         struct ocfs2_insert_type insert;
4665         struct ocfs2_extent_block *eb;
4666
4667 leftright:
4668         /*
4669          * Store a copy of the record on the stack - it might move
4670          * around as the tree is manipulated below.
4671          */
4672         rec = path_leaf_el(path)->l_recs[split_index];
4673
4674         rightmost_el = et->root_el;
4675
4676         depth = le16_to_cpu(rightmost_el->l_tree_depth);
4677         if (depth) {
4678                 BUG_ON(!(*last_eb_bh));
4679                 eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
4680                 rightmost_el = &eb->h_list;
4681         }
4682
4683         if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
4684             le16_to_cpu(rightmost_el->l_count)) {
4685                 ret = ocfs2_grow_tree(inode, handle, et,
4686                                       &depth, last_eb_bh, meta_ac);
4687                 if (ret) {
4688                         mlog_errno(ret);
4689                         goto out;
4690                 }
4691         }
4692
4693         memset(&insert, 0, sizeof(struct ocfs2_insert_type));
4694         insert.ins_appending = APPEND_NONE;
4695         insert.ins_contig = CONTIG_NONE;
4696         insert.ins_tree_depth = depth;
4697
4698         insert_range = le32_to_cpu(split_rec.e_cpos) +
4699                 le16_to_cpu(split_rec.e_leaf_clusters);
4700         rec_range = le32_to_cpu(rec.e_cpos) +
4701                 le16_to_cpu(rec.e_leaf_clusters);
4702
4703         if (split_rec.e_cpos == rec.e_cpos) {
4704                 insert.ins_split = SPLIT_LEFT;
4705         } else if (insert_range == rec_range) {
4706                 insert.ins_split = SPLIT_RIGHT;
4707         } else {
4708                 /*
4709                  * Left/right split. We fake this as a right split
4710                  * first and then make a second pass as a left split.
4711                  */
4712                 insert.ins_split = SPLIT_RIGHT;
4713
4714                 ocfs2_make_right_split_rec(inode->i_sb, &tmprec, insert_range,
4715                                            &rec);
4716
4717                 split_rec = tmprec;
4718
4719                 BUG_ON(do_leftright);
4720                 do_leftright = 1;
4721         }
4722
4723         ret = ocfs2_do_insert_extent(inode, handle, et, &split_rec, &insert);
4724         if (ret) {
4725                 mlog_errno(ret);
4726                 goto out;
4727         }
4728
4729         if (do_leftright == 1) {
4730                 u32 cpos;
4731                 struct ocfs2_extent_list *el;
4732
4733                 do_leftright++;
4734                 split_rec = *orig_split_rec;
4735
4736                 ocfs2_reinit_path(path, 1);
4737
4738                 cpos = le32_to_cpu(split_rec.e_cpos);
4739                 ret = ocfs2_find_path(inode, path, cpos);
4740                 if (ret) {
4741                         mlog_errno(ret);
4742                         goto out;
4743                 }
4744
4745                 el = path_leaf_el(path);
4746                 split_index = ocfs2_search_extent_list(el, cpos);
4747                 goto leftright;
4748         }
4749 out:
4750
4751         return ret;
4752 }
4753
4754 /*
4755  * Mark part or all of the extent record at split_index in the leaf
4756  * pointed to by path as written. This removes the unwritten
4757  * extent flag.
4758  *
4759  * Care is taken to handle contiguousness so as to not grow the tree.
4760  *
4761  * meta_ac is not strictly necessary - we only truly need it if growth
4762  * of the tree is required. All other cases will degrade into a less
4763  * optimal tree layout.
4764  *
4765  * last_eb_bh should be the rightmost leaf block for any extent
4766  * btree. Since a split may grow the tree or a merge might shrink it,
4767  * the caller cannot trust the contents of that buffer after this call.
4768  *
4769  * This code is optimized for readability - several passes might be
4770  * made over certain portions of the tree. All of those blocks will
4771  * have been brought into cache (and pinned via the journal), so the
4772  * extra overhead is not expressed in terms of disk reads.
4773  */
4774 static int __ocfs2_mark_extent_written(struct inode *inode,
4775                                        struct ocfs2_extent_tree *et,
4776                                        handle_t *handle,
4777                                        struct ocfs2_path *path,
4778                                        int split_index,
4779                                        struct ocfs2_extent_rec *split_rec,
4780                                        struct ocfs2_alloc_context *meta_ac,
4781                                        struct ocfs2_cached_dealloc_ctxt *dealloc)
4782 {
4783         int ret = 0;
4784         struct ocfs2_extent_list *el = path_leaf_el(path);
4785         struct buffer_head *last_eb_bh = NULL;
4786         struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
4787         struct ocfs2_merge_ctxt ctxt;
4788         struct ocfs2_extent_list *rightmost_el;
4789
4790         if (!(rec->e_flags & OCFS2_EXT_UNWRITTEN)) {
4791                 ret = -EIO;
4792                 mlog_errno(ret);
4793                 goto out;
4794         }
4795
4796         if (le32_to_cpu(rec->e_cpos) > le32_to_cpu(split_rec->e_cpos) ||
4797             ((le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)) <
4798              (le32_to_cpu(split_rec->e_cpos) + le16_to_cpu(split_rec->e_leaf_clusters)))) {
4799                 ret = -EIO;
4800                 mlog_errno(ret);
4801                 goto out;
4802         }
4803
4804         ctxt.c_contig_type = ocfs2_figure_merge_contig_type(inode, path, el,
4805                                                             split_index,
4806                                                             split_rec);
4807
4808         /*
4809          * The core merge / split code wants to know how much room is
4810          * left in this inodes allocation tree, so we pass the
4811          * rightmost extent list.
4812          */
4813         if (path->p_tree_depth) {
4814                 struct ocfs2_extent_block *eb;
4815
4816                 ret = ocfs2_read_block(OCFS2_SB(inode->i_sb),
4817                                        ocfs2_get_last_eb_blk(et),
4818                                        &last_eb_bh, OCFS2_BH_CACHED, inode);
4819                 if (ret) {
4820                         mlog_exit(ret);
4821                         goto out;
4822                 }
4823
4824                 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
4825                 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
4826                         OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
4827                         ret = -EROFS;
4828                         goto out;
4829                 }
4830
4831                 rightmost_el = &eb->h_list;
4832         } else
4833                 rightmost_el = path_root_el(path);
4834
4835         if (rec->e_cpos == split_rec->e_cpos &&
4836             rec->e_leaf_clusters == split_rec->e_leaf_clusters)
4837                 ctxt.c_split_covers_rec = 1;
4838         else
4839                 ctxt.c_split_covers_rec = 0;
4840
4841         ctxt.c_has_empty_extent = ocfs2_is_empty_extent(&el->l_recs[0]);
4842
4843         mlog(0, "index: %d, contig: %u, has_empty: %u, split_covers: %u\n",
4844              split_index, ctxt.c_contig_type, ctxt.c_has_empty_extent,
4845              ctxt.c_split_covers_rec);
4846
4847         if (ctxt.c_contig_type == CONTIG_NONE) {
4848                 if (ctxt.c_split_covers_rec)
4849                         el->l_recs[split_index] = *split_rec;
4850                 else
4851                         ret = ocfs2_split_and_insert(inode, handle, path, et,
4852                                                      &last_eb_bh, split_index,
4853                                                      split_rec, meta_ac);
4854                 if (ret)
4855                         mlog_errno(ret);
4856         } else {
4857                 ret = ocfs2_try_to_merge_extent(inode, handle, path,
4858                                                 split_index, split_rec,
4859                                                 dealloc, &ctxt, et);
4860                 if (ret)
4861                         mlog_errno(ret);
4862         }
4863
4864 out:
4865         brelse(last_eb_bh);
4866         return ret;
4867 }
4868
4869 /*
4870  * Mark the already-existing extent at cpos as written for len clusters.
4871  *
4872  * If the existing extent is larger than the request, initiate a
4873  * split. An attempt will be made at merging with adjacent extents.
4874  *
4875  * The caller is responsible for passing down meta_ac if we'll need it.
4876  */
4877 int ocfs2_mark_extent_written(struct inode *inode, struct buffer_head *root_bh,
4878                               handle_t *handle, u32 cpos, u32 len, u32 phys,
4879                               struct ocfs2_alloc_context *meta_ac,
4880                               struct ocfs2_cached_dealloc_ctxt *dealloc,
4881                               enum ocfs2_extent_tree_type et_type,
4882                               void *private)
4883 {
4884         int ret, index;
4885         u64 start_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys);
4886         struct ocfs2_extent_rec split_rec;
4887         struct ocfs2_path *left_path = NULL;
4888         struct ocfs2_extent_list *el;
4889         struct ocfs2_extent_tree *et = NULL;
4890
4891         mlog(0, "Inode %lu cpos %u, len %u, phys %u (%llu)\n",
4892              inode->i_ino, cpos, len, phys, (unsigned long long)start_blkno);
4893
4894         if (!ocfs2_writes_unwritten_extents(OCFS2_SB(inode->i_sb))) {
4895                 ocfs2_error(inode->i_sb, "Inode %llu has unwritten extents "
4896                             "that are being written to, but the feature bit "
4897                             "is not set in the super block.",
4898                             (unsigned long long)OCFS2_I(inode)->ip_blkno);
4899                 ret = -EROFS;
4900                 goto out;
4901         }
4902
4903         et = ocfs2_new_extent_tree(inode, root_bh, et_type, private);
4904         if (!et) {
4905                 ret = -ENOMEM;
4906                 mlog_errno(ret);
4907                 goto out;
4908         }
4909
4910         /*
4911          * XXX: This should be fixed up so that we just re-insert the
4912          * next extent records.
4913          */
4914         if (et_type == OCFS2_DINODE_EXTENT)
4915                 ocfs2_extent_map_trunc(inode, 0);
4916
4917         left_path = ocfs2_new_path(et->root_bh, et->root_el);
4918         if (!left_path) {
4919                 ret = -ENOMEM;
4920                 mlog_errno(ret);
4921                 goto out;
4922         }
4923
4924         ret = ocfs2_find_path(inode, left_path, cpos);
4925         if (ret) {
4926                 mlog_errno(ret);
4927                 goto out;
4928         }
4929         el = path_leaf_el(left_path);
4930
4931         index = ocfs2_search_extent_list(el, cpos);
4932         if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
4933                 ocfs2_error(inode->i_sb,
4934                             "Inode %llu has an extent at cpos %u which can no "
4935                             "longer be found.\n",
4936                             (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
4937                 ret = -EROFS;
4938                 goto out;
4939         }
4940
4941         memset(&split_rec, 0, sizeof(struct ocfs2_extent_rec));
4942         split_rec.e_cpos = cpu_to_le32(cpos);
4943         split_rec.e_leaf_clusters = cpu_to_le16(len);
4944         split_rec.e_blkno = cpu_to_le64(start_blkno);
4945         split_rec.e_flags = path_leaf_el(left_path)->l_recs[index].e_flags;
4946         split_rec.e_flags &= ~OCFS2_EXT_UNWRITTEN;
4947
4948         ret = __ocfs2_mark_extent_written(inode, et, handle, left_path,
4949                                           index, &split_rec, meta_ac,
4950                                           dealloc);
4951         if (ret)
4952                 mlog_errno(ret);
4953
4954 out:
4955         ocfs2_free_path(left_path);
4956         if (et)
4957                 ocfs2_free_extent_tree(et);
4958         return ret;
4959 }
4960
4961 static int ocfs2_split_tree(struct inode *inode, struct ocfs2_extent_tree *et,
4962                             handle_t *handle, struct ocfs2_path *path,
4963                             int index, u32 new_range,
4964                             struct ocfs2_alloc_context *meta_ac)
4965 {
4966         int ret, depth, credits = handle->h_buffer_credits;
4967         struct buffer_head *last_eb_bh = NULL;
4968         struct ocfs2_extent_block *eb;
4969         struct ocfs2_extent_list *rightmost_el, *el;
4970         struct ocfs2_extent_rec split_rec;
4971         struct ocfs2_extent_rec *rec;
4972         struct ocfs2_insert_type insert;
4973
4974         /*
4975          * Setup the record to split before we grow the tree.
4976          */
4977         el = path_leaf_el(path);
4978         rec = &el->l_recs[index];
4979         ocfs2_make_right_split_rec(inode->i_sb, &split_rec, new_range, rec);
4980
4981         depth = path->p_tree_depth;
4982         if (depth > 0) {
4983                 ret = ocfs2_read_block(OCFS2_SB(inode->i_sb),
4984                                        ocfs2_get_last_eb_blk(et),
4985                                        &last_eb_bh, OCFS2_BH_CACHED, inode);
4986                 if (ret < 0) {
4987                         mlog_errno(ret);
4988                         goto out;
4989                 }
4990
4991                 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
4992                 rightmost_el = &eb->h_list;
4993         } else
4994                 rightmost_el = path_leaf_el(path);
4995
4996         credits += path->p_tree_depth +
4997                    ocfs2_extend_meta_needed(et->root_el);
4998         ret = ocfs2_extend_trans(handle, credits);
4999         if (ret) {
5000                 mlog_errno(ret);
5001                 goto out;
5002         }
5003
5004         if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
5005             le16_to_cpu(rightmost_el->l_count)) {
5006                 ret = ocfs2_grow_tree(inode, handle, et, &depth, &last_eb_bh,
5007                                       meta_ac);
5008                 if (ret) {
5009                         mlog_errno(ret);
5010                         goto out;
5011                 }
5012         }
5013
5014         memset(&insert, 0, sizeof(struct ocfs2_insert_type));
5015         insert.ins_appending = APPEND_NONE;
5016         insert.ins_contig = CONTIG_NONE;
5017         insert.ins_split = SPLIT_RIGHT;
5018         insert.ins_tree_depth = depth;
5019
5020         ret = ocfs2_do_insert_extent(inode, handle, et, &split_rec, &insert);
5021         if (ret)
5022                 mlog_errno(ret);
5023
5024 out:
5025         brelse(last_eb_bh);
5026         return ret;
5027 }
5028
5029 static int ocfs2_truncate_rec(struct inode *inode, handle_t *handle,
5030                               struct ocfs2_path *path, int index,
5031                               struct ocfs2_cached_dealloc_ctxt *dealloc,
5032                               u32 cpos, u32 len,
5033                               struct ocfs2_extent_tree *et)
5034 {
5035         int ret;
5036         u32 left_cpos, rec_range, trunc_range;
5037         int wants_rotate = 0, is_rightmost_tree_rec = 0;
5038         struct super_block *sb = inode->i_sb;
5039         struct ocfs2_path *left_path = NULL;
5040         struct ocfs2_extent_list *el = path_leaf_el(path);
5041         struct ocfs2_extent_rec *rec;
5042         struct ocfs2_extent_block *eb;
5043
5044         if (ocfs2_is_empty_extent(&el->l_recs[0]) && index > 0) {
5045                 ret = ocfs2_rotate_tree_left(inode, handle, path, dealloc, et);
5046                 if (ret) {
5047                         mlog_errno(ret);
5048                         goto out;
5049                 }
5050
5051                 index--;
5052         }
5053
5054         if (index == (le16_to_cpu(el->l_next_free_rec) - 1) &&
5055             path->p_tree_depth) {
5056                 /*
5057                  * Check whether this is the rightmost tree record. If
5058                  * we remove all of this record or part of its right
5059                  * edge then an update of the record lengths above it
5060                  * will be required.
5061                  */
5062                 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
5063                 if (eb->h_next_leaf_blk == 0)
5064                         is_rightmost_tree_rec = 1;
5065         }
5066
5067         rec = &el->l_recs[index];
5068         if (index == 0 && path->p_tree_depth &&
5069             le32_to_cpu(rec->e_cpos) == cpos) {
5070                 /*
5071                  * Changing the leftmost offset (via partial or whole
5072                  * record truncate) of an interior (or rightmost) path
5073                  * means we have to update the subtree that is formed
5074                  * by this leaf and the one to it's left.
5075                  *
5076                  * There are two cases we can skip:
5077                  *   1) Path is the leftmost one in our inode tree.
5078                  *   2) The leaf is rightmost and will be empty after
5079                  *      we remove the extent record - the rotate code
5080                  *      knows how to update the newly formed edge.
5081                  */
5082
5083                 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path,
5084                                                     &left_cpos);
5085                 if (ret) {
5086                         mlog_errno(ret);
5087                         goto out;
5088                 }
5089
5090                 if (left_cpos && le16_to_cpu(el->l_next_free_rec) > 1) {
5091                         left_path = ocfs2_new_path(path_root_bh(path),
5092                                                    path_root_el(path));
5093                         if (!left_path) {
5094                                 ret = -ENOMEM;
5095                                 mlog_errno(ret);
5096                                 goto out;
5097                         }
5098
5099                         ret = ocfs2_find_path(inode, left_path, left_cpos);
5100                         if (ret) {
5101                                 mlog_errno(ret);
5102                                 goto out;
5103                         }
5104                 }
5105         }
5106
5107         ret = ocfs2_extend_rotate_transaction(handle, 0,
5108                                               handle->h_buffer_credits,
5109                                               path);
5110         if (ret) {
5111                 mlog_errno(ret);
5112                 goto out;
5113         }
5114
5115         ret = ocfs2_journal_access_path(inode, handle, path);
5116         if (ret) {
5117                 mlog_errno(ret);
5118                 goto out;
5119         }
5120
5121         ret = ocfs2_journal_access_path(inode, handle, left_path);
5122         if (ret) {
5123                 mlog_errno(ret);
5124                 goto out;
5125         }
5126
5127         rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
5128         trunc_range = cpos + len;
5129
5130         if (le32_to_cpu(rec->e_cpos) == cpos && rec_range == trunc_range) {
5131                 int next_free;
5132
5133                 memset(rec, 0, sizeof(*rec));
5134                 ocfs2_cleanup_merge(el, index);
5135                 wants_rotate = 1;
5136
5137                 next_free = le16_to_cpu(el->l_next_free_rec);
5138                 if (is_rightmost_tree_rec && next_free > 1) {
5139                         /*
5140                          * We skip the edge update if this path will
5141                          * be deleted by the rotate code.
5142                          */
5143                         rec = &el->l_recs[next_free - 1];
5144                         ocfs2_adjust_rightmost_records(inode, handle, path,
5145                                                        rec);
5146                 }
5147         } else if (le32_to_cpu(rec->e_cpos) == cpos) {
5148                 /* Remove leftmost portion of the record. */
5149                 le32_add_cpu(&rec->e_cpos, len);
5150                 le64_add_cpu(&rec->e_blkno, ocfs2_clusters_to_blocks(sb, len));
5151                 le16_add_cpu(&rec->e_leaf_clusters, -len);
5152         } else if (rec_range == trunc_range) {
5153                 /* Remove rightmost portion of the record */
5154                 le16_add_cpu(&rec->e_leaf_clusters, -len);
5155                 if (is_rightmost_tree_rec)
5156                         ocfs2_adjust_rightmost_records(inode, handle, path, rec);
5157         } else {
5158                 /* Caller should have trapped this. */
5159                 mlog(ML_ERROR, "Inode %llu: Invalid record truncate: (%u, %u) "
5160                      "(%u, %u)\n", (unsigned long long)OCFS2_I(inode)->ip_blkno,
5161                      le32_to_cpu(rec->e_cpos),
5162                      le16_to_cpu(rec->e_leaf_clusters), cpos, len);
5163                 BUG();
5164         }
5165
5166         if (left_path) {
5167                 int subtree_index;
5168
5169                 subtree_index = ocfs2_find_subtree_root(inode, left_path, path);
5170                 ocfs2_complete_edge_insert(inode, handle, left_path, path,
5171                                            subtree_index);
5172         }
5173
5174         ocfs2_journal_dirty(handle, path_leaf_bh(path));
5175
5176         ret = ocfs2_rotate_tree_left(inode, handle, path, dealloc, et);
5177         if (ret) {
5178                 mlog_errno(ret);
5179                 goto out;
5180         }
5181
5182 out:
5183         ocfs2_free_path(left_path);
5184         return ret;
5185 }
5186
5187 int ocfs2_remove_extent(struct inode *inode, struct buffer_head *root_bh,
5188                         u32 cpos, u32 len, handle_t *handle,
5189                         struct ocfs2_alloc_context *meta_ac,
5190                         struct ocfs2_cached_dealloc_ctxt *dealloc,
5191                         enum ocfs2_extent_tree_type et_type,
5192                         void *private)
5193 {
5194         int ret, index;
5195         u32 rec_range, trunc_range;
5196         struct ocfs2_extent_rec *rec;
5197         struct ocfs2_extent_list *el;
5198         struct ocfs2_path *path = NULL;
5199         struct ocfs2_extent_tree *et = NULL;
5200
5201         et = ocfs2_new_extent_tree(inode, root_bh, et_type, private);
5202         if (!et) {
5203                 ret = -ENOMEM;
5204                 mlog_errno(ret);
5205                 goto out;
5206         }
5207
5208         ocfs2_extent_map_trunc(inode, 0);
5209
5210         path = ocfs2_new_path(et->root_bh, et->root_el);
5211         if (!path) {
5212                 ret = -ENOMEM;
5213                 mlog_errno(ret);
5214                 goto out;
5215         }
5216
5217         ret = ocfs2_find_path(inode, path, cpos);
5218         if (ret) {
5219                 mlog_errno(ret);
5220                 goto out;
5221         }
5222
5223         el = path_leaf_el(path);
5224         index = ocfs2_search_extent_list(el, cpos);
5225         if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
5226                 ocfs2_error(inode->i_sb,
5227                             "Inode %llu has an extent at cpos %u which can no "
5228                             "longer be found.\n",
5229                             (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
5230                 ret = -EROFS;
5231                 goto out;
5232         }
5233
5234         /*
5235          * We have 3 cases of extent removal:
5236          *   1) Range covers the entire extent rec
5237          *   2) Range begins or ends on one edge of the extent rec
5238          *   3) Range is in the middle of the extent rec (no shared edges)
5239          *
5240          * For case 1 we remove the extent rec and left rotate to
5241          * fill the hole.
5242          *
5243          * For case 2 we just shrink the existing extent rec, with a
5244          * tree update if the shrinking edge is also the edge of an
5245          * extent block.
5246          *
5247          * For case 3 we do a right split to turn the extent rec into
5248          * something case 2 can handle.
5249          */
5250         rec = &el->l_recs[index];
5251         rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
5252         trunc_range = cpos + len;
5253
5254         BUG_ON(cpos < le32_to_cpu(rec->e_cpos) || trunc_range > rec_range);
5255
5256         mlog(0, "Inode %llu, remove (cpos %u, len %u). Existing index %d "
5257              "(cpos %u, len %u)\n",
5258              (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos, len, index,
5259              le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec));
5260
5261         if (le32_to_cpu(rec->e_cpos) == cpos || rec_range == trunc_range) {
5262                 ret = ocfs2_truncate_rec(inode, handle, path, index, dealloc,
5263                                          cpos, len, et);
5264                 if (ret) {
5265                         mlog_errno(ret);
5266                         goto out;
5267                 }
5268         } else {
5269                 ret = ocfs2_split_tree(inode, et, handle, path, index,
5270                                        trunc_range, meta_ac);
5271                 if (ret) {
5272                         mlog_errno(ret);
5273                         goto out;
5274                 }
5275
5276                 /*
5277                  * The split could have manipulated the tree enough to
5278                  * move the record location, so we have to look for it again.
5279                  */
5280                 ocfs2_reinit_path(path, 1);
5281
5282                 ret = ocfs2_find_path(inode, path, cpos);
5283                 if (ret) {
5284                         mlog_errno(ret);
5285                         goto out;
5286                 }
5287
5288                 el = path_leaf_el(path);
5289                 index = ocfs2_search_extent_list(el, cpos);
5290                 if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
5291                         ocfs2_error(inode->i_sb,
5292                                     "Inode %llu: split at cpos %u lost record.",
5293                                     (unsigned long long)OCFS2_I(inode)->ip_blkno,
5294                                     cpos);
5295                         ret = -EROFS;
5296                         goto out;
5297                 }
5298
5299                 /*
5300                  * Double check our values here. If anything is fishy,
5301                  * it's easier to catch it at the top level.
5302                  */
5303                 rec = &el->l_recs[index];
5304                 rec_range = le32_to_cpu(rec->e_cpos) +
5305                         ocfs2_rec_clusters(el, rec);
5306                 if (rec_range != trunc_range) {
5307                         ocfs2_error(inode->i_sb,
5308                                     "Inode %llu: error after split at cpos %u"
5309                                     "trunc len %u, existing record is (%u,%u)",
5310                                     (unsigned long long)OCFS2_I(inode)->ip_blkno,
5311                                     cpos, len, le32_to_cpu(rec->e_cpos),
5312                                     ocfs2_rec_clusters(el, rec));
5313                         ret = -EROFS;
5314                         goto out;
5315                 }
5316
5317                 ret = ocfs2_truncate_rec(inode, handle, path, index, dealloc,
5318                                          cpos, len, et);
5319                 if (ret) {
5320                         mlog_errno(ret);
5321                         goto out;
5322                 }
5323         }
5324
5325 out:
5326         ocfs2_free_path(path);
5327         if (et)
5328                 ocfs2_free_extent_tree(et);
5329         return ret;
5330 }
5331
5332 int ocfs2_truncate_log_needs_flush(struct ocfs2_super *osb)
5333 {
5334         struct buffer_head *tl_bh = osb->osb_tl_bh;
5335         struct ocfs2_dinode *di;
5336         struct ocfs2_truncate_log *tl;
5337
5338         di = (struct ocfs2_dinode *) tl_bh->b_data;
5339         tl = &di->id2.i_dealloc;
5340
5341         mlog_bug_on_msg(le16_to_cpu(tl->tl_used) > le16_to_cpu(tl->tl_count),
5342                         "slot %d, invalid truncate log parameters: used = "
5343                         "%u, count = %u\n", osb->slot_num,
5344                         le16_to_cpu(tl->tl_used), le16_to_cpu(tl->tl_count));
5345         return le16_to_cpu(tl->tl_used) == le16_to_cpu(tl->tl_count);
5346 }
5347
5348 static int ocfs2_truncate_log_can_coalesce(struct ocfs2_truncate_log *tl,
5349                                            unsigned int new_start)
5350 {
5351         unsigned int tail_index;
5352         unsigned int current_tail;
5353
5354         /* No records, nothing to coalesce */
5355         if (!le16_to_cpu(tl->tl_used))
5356                 return 0;
5357
5358         tail_index = le16_to_cpu(tl->tl_used) - 1;
5359         current_tail = le32_to_cpu(tl->tl_recs[tail_index].t_start);
5360         current_tail += le32_to_cpu(tl->tl_recs[tail_index].t_clusters);
5361
5362         return current_tail == new_start;
5363 }
5364
5365 int ocfs2_truncate_log_append(struct ocfs2_super *osb,
5366                               handle_t *handle,
5367                               u64 start_blk,
5368                               unsigned int num_clusters)
5369 {
5370         int status, index;
5371         unsigned int start_cluster, tl_count;
5372         struct inode *tl_inode = osb->osb_tl_inode;
5373         struct buffer_head *tl_bh = osb->osb_tl_bh;
5374         struct ocfs2_dinode *di;
5375         struct ocfs2_truncate_log *tl;
5376
5377         mlog_entry("start_blk = %llu, num_clusters = %u\n",
5378                    (unsigned long long)start_blk, num_clusters);
5379
5380         BUG_ON(mutex_trylock(&tl_inode->i_mutex));
5381
5382         start_cluster = ocfs2_blocks_to_clusters(osb->sb, start_blk);
5383
5384         di = (struct ocfs2_dinode *) tl_bh->b_data;
5385         tl = &di->id2.i_dealloc;
5386         if (!OCFS2_IS_VALID_DINODE(di)) {
5387                 OCFS2_RO_ON_INVALID_DINODE(osb->sb, di);
5388                 status = -EIO;
5389                 goto bail;
5390         }
5391
5392         tl_count = le16_to_cpu(tl->tl_count);
5393         mlog_bug_on_msg(tl_count > ocfs2_truncate_recs_per_inode(osb->sb) ||
5394                         tl_count == 0,
5395                         "Truncate record count on #%llu invalid "
5396                         "wanted %u, actual %u\n",
5397                         (unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
5398                         ocfs2_truncate_recs_per_inode(osb->sb),
5399                         le16_to_cpu(tl->tl_count));
5400
5401         /* Caller should have known to flush before calling us. */
5402         index = le16_to_cpu(tl->tl_used);
5403         if (index >= tl_count) {
5404                 status = -ENOSPC;
5405                 mlog_errno(status);
5406                 goto bail;
5407         }
5408
5409         status = ocfs2_journal_access(handle, tl_inode, tl_bh,
5410                                       OCFS2_JOURNAL_ACCESS_WRITE);
5411         if (status < 0) {
5412                 mlog_errno(status);
5413                 goto bail;
5414         }
5415
5416         mlog(0, "Log truncate of %u clusters starting at cluster %u to "
5417              "%llu (index = %d)\n", num_clusters, start_cluster,
5418              (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, index);
5419
5420         if (ocfs2_truncate_log_can_coalesce(tl, start_cluster)) {
5421                 /*
5422                  * Move index back to the record we are coalescing with.
5423                  * ocfs2_truncate_log_can_coalesce() guarantees nonzero
5424                  */
5425                 index--;
5426
5427                 num_clusters += le32_to_cpu(tl->tl_recs[index].t_clusters);
5428                 mlog(0, "Coalesce with index %u (start = %u, clusters = %u)\n",
5429                      index, le32_to_cpu(tl->tl_recs[index].t_start),
5430                      num_clusters);
5431         } else {
5432                 tl->tl_recs[index].t_start = cpu_to_le32(start_cluster);
5433                 tl->tl_used = cpu_to_le16(index + 1);
5434         }
5435         tl->tl_recs[index].t_clusters = cpu_to_le32(num_clusters);
5436
5437         status = ocfs2_journal_dirty(handle, tl_bh);
5438         if (status < 0) {
5439                 mlog_errno(status);
5440                 goto bail;
5441         }
5442
5443 bail:
5444         mlog_exit(status);
5445         return status;
5446 }
5447
5448 static int ocfs2_replay_truncate_records(struct ocfs2_super *osb,
5449                                          handle_t *handle,
5450                                          struct inode *data_alloc_inode,
5451                                          struct buffer_head *data_alloc_bh)
5452 {
5453         int status = 0;
5454         int i;
5455         unsigned int num_clusters;
5456         u64 start_blk;
5457         struct ocfs2_truncate_rec rec;
5458         struct ocfs2_dinode *di;
5459         struct ocfs2_truncate_log *tl;
5460         struct inode *tl_inode = osb->osb_tl_inode;
5461         struct buffer_head *tl_bh = osb->osb_tl_bh;
5462
5463         mlog_entry_void();
5464
5465         di = (struct ocfs2_dinode *) tl_bh->b_data;
5466         tl = &di->id2.i_dealloc;
5467         i = le16_to_cpu(tl->tl_used) - 1;
5468         while (i >= 0) {
5469                 /* Caller has given us at least enough credits to
5470                  * update the truncate log dinode */
5471                 status = ocfs2_journal_access(handle, tl_inode, tl_bh,
5472                                               OCFS2_JOURNAL_ACCESS_WRITE);
5473                 if (status < 0) {
5474                         mlog_errno(status);
5475                         goto bail;
5476                 }
5477
5478                 tl->tl_used = cpu_to_le16(i);
5479
5480                 status = ocfs2_journal_dirty(handle, tl_bh);
5481                 if (status < 0) {
5482                         mlog_errno(status);
5483                         goto bail;
5484                 }
5485
5486                 /* TODO: Perhaps we can calculate the bulk of the
5487                  * credits up front rather than extending like
5488                  * this. */
5489                 status = ocfs2_extend_trans(handle,
5490                                             OCFS2_TRUNCATE_LOG_FLUSH_ONE_REC);
5491                 if (status < 0) {
5492                         mlog_errno(status);
5493                         goto bail;
5494                 }
5495
5496                 rec = tl->tl_recs[i];
5497                 start_blk = ocfs2_clusters_to_blocks(data_alloc_inode->i_sb,
5498                                                     le32_to_cpu(rec.t_start));
5499                 num_clusters = le32_to_cpu(rec.t_clusters);
5500
5501                 /* if start_blk is not set, we ignore the record as
5502                  * invalid. */
5503                 if (start_blk) {
5504                         mlog(0, "free record %d, start = %u, clusters = %u\n",
5505                              i, le32_to_cpu(rec.t_start), num_clusters);
5506
5507                         status = ocfs2_free_clusters(handle, data_alloc_inode,
5508                                                      data_alloc_bh, start_blk,
5509                                                      num_clusters);
5510                         if (status < 0) {
5511                                 mlog_errno(status);
5512                                 goto bail;
5513                         }
5514                 }
5515                 i--;
5516         }
5517
5518 bail:
5519         mlog_exit(status);
5520         return status;
5521 }
5522
5523 /* Expects you to already be holding tl_inode->i_mutex */
5524 int __ocfs2_flush_truncate_log(struct ocfs2_super *osb)
5525 {
5526         int status;
5527         unsigned int num_to_flush;
5528         handle_t *handle;
5529         struct inode *tl_inode = osb->osb_tl_inode;
5530         struct inode *data_alloc_inode = NULL;
5531         struct buffer_head *tl_bh = osb->osb_tl_bh;
5532         struct buffer_head *data_alloc_bh = NULL;
5533         struct ocfs2_dinode *di;
5534         struct ocfs2_truncate_log *tl;
5535
5536         mlog_entry_void();
5537
5538         BUG_ON(mutex_trylock(&tl_inode->i_mutex));
5539
5540         di = (struct ocfs2_dinode *) tl_bh->b_data;
5541         tl = &di->id2.i_dealloc;
5542         if (!OCFS2_IS_VALID_DINODE(di)) {
5543                 OCFS2_RO_ON_INVALID_DINODE(osb->sb, di);
5544                 status = -EIO;
5545                 goto out;
5546         }
5547
5548         num_to_flush = le16_to_cpu(tl->tl_used);
5549         mlog(0, "Flush %u records from truncate log #%llu\n",
5550              num_to_flush, (unsigned long long)OCFS2_I(tl_inode)->ip_blkno);
5551         if (!num_to_flush) {
5552                 status = 0;
5553                 goto out;
5554         }
5555
5556         data_alloc_inode = ocfs2_get_system_file_inode(osb,
5557                                                        GLOBAL_BITMAP_SYSTEM_INODE,
5558                                                        OCFS2_INVALID_SLOT);
5559         if (!data_alloc_inode) {
5560                 status = -EINVAL;
5561                 mlog(ML_ERROR, "Could not get bitmap inode!\n");
5562                 goto out;
5563         }
5564
5565         mutex_lock(&data_alloc_inode->i_mutex);
5566
5567         status = ocfs2_inode_lock(data_alloc_inode, &data_alloc_bh, 1);
5568         if (status < 0) {
5569                 mlog_errno(status);
5570                 goto out_mutex;
5571         }
5572
5573         handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
5574         if (IS_ERR(handle)) {
5575                 status = PTR_ERR(handle);
5576                 mlog_errno(status);
5577                 goto out_unlock;
5578         }
5579
5580         status = ocfs2_replay_truncate_records(osb, handle, data_alloc_inode,
5581                                                data_alloc_bh);
5582         if (status < 0)
5583                 mlog_errno(status);
5584
5585         ocfs2_commit_trans(osb, handle);
5586
5587 out_unlock:
5588         brelse(data_alloc_bh);
5589         ocfs2_inode_unlock(data_alloc_inode, 1);
5590
5591 out_mutex:
5592         mutex_unlock(&data_alloc_inode->i_mutex);
5593         iput(data_alloc_inode);
5594
5595 out:
5596         mlog_exit(status);
5597         return status;
5598 }
5599
5600 int ocfs2_flush_truncate_log(struct ocfs2_super *osb)
5601 {
5602         int status;
5603         struct inode *tl_inode = osb->osb_tl_inode;
5604
5605         mutex_lock(&tl_inode->i_mutex);
5606         status = __ocfs2_flush_truncate_log(osb);
5607         mutex_unlock(&tl_inode->i_mutex);
5608
5609         return status;
5610 }
5611
5612 static void ocfs2_truncate_log_worker(struct work_struct *work)
5613 {
5614         int status;
5615         struct ocfs2_super *osb =
5616                 container_of(work, struct ocfs2_super,
5617                              osb_truncate_log_wq.work);
5618
5619         mlog_entry_void();
5620
5621         status = ocfs2_flush_truncate_log(osb);
5622         if (status < 0)
5623                 mlog_errno(status);
5624         else
5625                 ocfs2_init_inode_steal_slot(osb);
5626
5627         mlog_exit(status);
5628 }
5629
5630 #define OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL (2 * HZ)
5631 void ocfs2_schedule_truncate_log_flush(struct ocfs2_super *osb,
5632                                        int cancel)
5633 {
5634         if (osb->osb_tl_inode) {
5635                 /* We want to push off log flushes while truncates are
5636                  * still running. */
5637                 if (cancel)
5638                         cancel_delayed_work(&osb->osb_truncate_log_wq);
5639
5640                 queue_delayed_work(ocfs2_wq, &osb->osb_truncate_log_wq,
5641                                    OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL);
5642         }
5643 }
5644
5645 static int ocfs2_get_truncate_log_info(struct ocfs2_super *osb,
5646                                        int slot_num,
5647                                        struct inode **tl_inode,
5648                                        struct buffer_head **tl_bh)
5649 {
5650         int status;
5651         struct inode *inode = NULL;
5652         struct buffer_head *bh = NULL;
5653
5654         inode = ocfs2_get_system_file_inode(osb,
5655                                            TRUNCATE_LOG_SYSTEM_INODE,
5656                                            slot_num);
5657         if (!inode) {
5658                 status = -EINVAL;
5659                 mlog(ML_ERROR, "Could not get load truncate log inode!\n");
5660                 goto bail;
5661         }
5662
5663         status = ocfs2_read_block(osb, OCFS2_I(inode)->ip_blkno, &bh,
5664                                   OCFS2_BH_CACHED, inode);
5665         if (status < 0) {
5666                 iput(inode);
5667                 mlog_errno(status);
5668                 goto bail;
5669         }
5670
5671         *tl_inode = inode;
5672         *tl_bh    = bh;
5673 bail:
5674         mlog_exit(status);
5675         return status;
5676 }
5677
5678 /* called during the 1st stage of node recovery. we stamp a clean
5679  * truncate log and pass back a copy for processing later. if the
5680  * truncate log does not require processing, a *tl_copy is set to
5681  * NULL. */
5682 int ocfs2_begin_truncate_log_recovery(struct ocfs2_super *osb,
5683                                       int slot_num,
5684                                       struct ocfs2_dinode **tl_copy)
5685 {
5686         int status;
5687         struct inode *tl_inode = NULL;
5688         struct buffer_head *tl_bh = NULL;
5689         struct ocfs2_dinode *di;
5690         struct ocfs2_truncate_log *tl;
5691
5692         *tl_copy = NULL;
5693
5694         mlog(0, "recover truncate log from slot %d\n", slot_num);
5695
5696         status = ocfs2_get_truncate_log_info(osb, slot_num, &tl_inode, &tl_bh);
5697         if (status < 0) {
5698                 mlog_errno(status);
5699                 goto bail;
5700         }
5701
5702         di = (struct ocfs2_dinode *) tl_bh->b_data;
5703         tl = &di->id2.i_dealloc;
5704         if (!OCFS2_IS_VALID_DINODE(di)) {
5705                 OCFS2_RO_ON_INVALID_DINODE(tl_inode->i_sb, di);
5706                 status = -EIO;
5707                 goto bail;
5708         }
5709
5710         if (le16_to_cpu(tl->tl_used)) {
5711                 mlog(0, "We'll have %u logs to recover\n",
5712                      le16_to_cpu(tl->tl_used));
5713
5714                 *tl_copy = kmalloc(tl_bh->b_size, GFP_KERNEL);
5715                 if (!(*tl_copy)) {
5716                         status = -ENOMEM;
5717                         mlog_errno(status);
5718                         goto bail;
5719                 }
5720
5721                 /* Assuming the write-out below goes well, this copy
5722                  * will be passed back to recovery for processing. */
5723                 memcpy(*tl_copy, tl_bh->b_data, tl_bh->b_size);
5724
5725                 /* All we need to do to clear the truncate log is set
5726                  * tl_used. */
5727                 tl->tl_used = 0;
5728
5729                 status = ocfs2_write_block(osb, tl_bh, tl_inode);
5730                 if (status < 0) {
5731                         mlog_errno(status);
5732                         goto bail;
5733                 }
5734         }
5735
5736 bail:
5737         if (tl_inode)
5738                 iput(tl_inode);
5739         if (tl_bh)
5740                 brelse(tl_bh);
5741
5742         if (status < 0 && (*tl_copy)) {
5743                 kfree(*tl_copy);
5744                 *tl_copy = NULL;
5745         }
5746
5747         mlog_exit(status);
5748         return status;
5749 }
5750
5751 int ocfs2_complete_truncate_log_recovery(struct ocfs2_super *osb,
5752                                          struct ocfs2_dinode *tl_copy)
5753 {
5754         int status = 0;
5755         int i;
5756         unsigned int clusters, num_recs, start_cluster;
5757         u64 start_blk;
5758         handle_t *handle;
5759         struct inode *tl_inode = osb->osb_tl_inode;
5760         struct ocfs2_truncate_log *tl;
5761
5762         mlog_entry_void();
5763
5764         if (OCFS2_I(tl_inode)->ip_blkno == le64_to_cpu(tl_copy->i_blkno)) {
5765                 mlog(ML_ERROR, "Asked to recover my own truncate log!\n");
5766                 return -EINVAL;
5767         }
5768
5769         tl = &tl_copy->id2.i_dealloc;
5770         num_recs = le16_to_cpu(tl->tl_used);
5771         mlog(0, "cleanup %u records from %llu\n", num_recs,
5772              (unsigned long long)le64_to_cpu(tl_copy->i_blkno));
5773
5774         mutex_lock(&tl_inode->i_mutex);
5775         for(i = 0; i < num_recs; i++) {
5776                 if (ocfs2_truncate_log_needs_flush(osb)) {
5777                         status = __ocfs2_flush_truncate_log(osb);
5778                         if (status < 0) {
5779                                 mlog_errno(status);
5780                                 goto bail_up;
5781                         }
5782                 }
5783
5784                 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
5785                 if (IS_ERR(handle)) {
5786                         status = PTR_ERR(handle);
5787                         mlog_errno(status);
5788                         goto bail_up;
5789                 }
5790
5791                 clusters = le32_to_cpu(tl->tl_recs[i].t_clusters);
5792                 start_cluster = le32_to_cpu(tl->tl_recs[i].t_start);
5793                 start_blk = ocfs2_clusters_to_blocks(osb->sb, start_cluster);
5794
5795                 status = ocfs2_truncate_log_append(osb, handle,
5796                                                    start_blk, clusters);
5797                 ocfs2_commit_trans(osb, handle);
5798                 if (status < 0) {
5799                         mlog_errno(status);
5800                         goto bail_up;
5801                 }
5802         }
5803
5804 bail_up:
5805         mutex_unlock(&tl_inode->i_mutex);
5806
5807         mlog_exit(status);
5808         return status;
5809 }
5810
5811 void ocfs2_truncate_log_shutdown(struct ocfs2_super *osb)
5812 {
5813         int status;
5814         struct inode *tl_inode = osb->osb_tl_inode;
5815
5816         mlog_entry_void();
5817
5818         if (tl_inode) {
5819                 cancel_delayed_work(&osb->osb_truncate_log_wq);
5820                 flush_workqueue(ocfs2_wq);
5821
5822                 status = ocfs2_flush_truncate_log(osb);
5823                 if (status < 0)
5824                         mlog_errno(status);
5825
5826                 brelse(osb->osb_tl_bh);
5827                 iput(osb->osb_tl_inode);
5828         }
5829
5830         mlog_exit_void();
5831 }
5832
5833 int ocfs2_truncate_log_init(struct ocfs2_super *osb)
5834 {
5835         int status;
5836         struct inode *tl_inode = NULL;
5837         struct buffer_head *tl_bh = NULL;
5838
5839         mlog_entry_void();
5840
5841         status = ocfs2_get_truncate_log_info(osb,
5842                                              osb->slot_num,
5843                                              &tl_inode,
5844                                              &tl_bh);
5845         if (status < 0)
5846                 mlog_errno(status);
5847
5848         /* ocfs2_truncate_log_shutdown keys on the existence of
5849          * osb->osb_tl_inode so we don't set any of the osb variables
5850          * until we're sure all is well. */
5851         INIT_DELAYED_WORK(&osb->osb_truncate_log_wq,
5852                           ocfs2_truncate_log_worker);
5853         osb->osb_tl_bh    = tl_bh;
5854         osb->osb_tl_inode = tl_inode;
5855
5856         mlog_exit(status);
5857         return status;
5858 }
5859
5860 /*
5861  * Delayed de-allocation of suballocator blocks.
5862  *
5863  * Some sets of block de-allocations might involve multiple suballocator inodes.
5864  *
5865  * The locking for this can get extremely complicated, especially when
5866  * the suballocator inodes to delete from aren't known until deep
5867  * within an unrelated codepath.
5868  *
5869  * ocfs2_extent_block structures are a good example of this - an inode
5870  * btree could have been grown by any number of nodes each allocating
5871  * out of their own suballoc inode.
5872  *
5873  * These structures allow the delay of block de-allocation until a
5874  * later time, when locking of multiple cluster inodes won't cause
5875  * deadlock.
5876  */
5877
5878 /*
5879  * Describes a single block free from a suballocator
5880  */
5881 struct ocfs2_cached_block_free {
5882         struct ocfs2_cached_block_free          *free_next;
5883         u64                                     free_blk;
5884         unsigned int                            free_bit;
5885 };
5886
5887 struct ocfs2_per_slot_free_list {
5888         struct ocfs2_per_slot_free_list         *f_next_suballocator;
5889         int                                     f_inode_type;
5890         int                                     f_slot;
5891         struct ocfs2_cached_block_free          *f_first;
5892 };
5893
5894 static int ocfs2_free_cached_items(struct ocfs2_super *osb,
5895                                    int sysfile_type,
5896                                    int slot,
5897                                    struct ocfs2_cached_block_free *head)
5898 {
5899         int ret;
5900         u64 bg_blkno;
5901         handle_t *handle;
5902         struct inode *inode;
5903         struct buffer_head *di_bh = NULL;
5904         struct ocfs2_cached_block_free *tmp;
5905
5906         inode = ocfs2_get_system_file_inode(osb, sysfile_type, slot);
5907         if (!inode) {
5908                 ret = -EINVAL;
5909                 mlog_errno(ret);
5910                 goto out;
5911         }
5912
5913         mutex_lock(&inode->i_mutex);
5914
5915         ret = ocfs2_inode_lock(inode, &di_bh, 1);
5916         if (ret) {
5917                 mlog_errno(ret);
5918                 goto out_mutex;
5919         }
5920
5921         handle = ocfs2_start_trans(osb, OCFS2_SUBALLOC_FREE);
5922         if (IS_ERR(handle)) {
5923                 ret = PTR_ERR(handle);
5924                 mlog_errno(ret);
5925                 goto out_unlock;
5926         }
5927
5928         while (head) {
5929                 bg_blkno = ocfs2_which_suballoc_group(head->free_blk,
5930                                                       head->free_bit);
5931                 mlog(0, "Free bit: (bit %u, blkno %llu)\n",
5932                      head->free_bit, (unsigned long long)head->free_blk);
5933
5934                 ret = ocfs2_free_suballoc_bits(handle, inode, di_bh,
5935                                                head->free_bit, bg_blkno, 1);
5936                 if (ret) {
5937                         mlog_errno(ret);
5938                         goto out_journal;
5939                 }
5940
5941                 ret = ocfs2_extend_trans(handle, OCFS2_SUBALLOC_FREE);
5942                 if (ret) {
5943                         mlog_errno(ret);
5944                         goto out_journal;
5945                 }
5946
5947                 tmp = head;
5948                 head = head->free_next;
5949                 kfree(tmp);
5950         }
5951
5952 out_journal:
5953         ocfs2_commit_trans(osb, handle);
5954
5955 out_unlock:
5956         ocfs2_inode_unlock(inode, 1);
5957         brelse(di_bh);
5958 out_mutex:
5959         mutex_unlock(&inode->i_mutex);
5960         iput(inode);
5961 out:
5962         while(head) {
5963                 /* Premature exit may have left some dangling items. */
5964                 tmp = head;
5965                 head = head->free_next;
5966                 kfree(tmp);
5967         }
5968
5969         return ret;
5970 }
5971
5972 int ocfs2_run_deallocs(struct ocfs2_super *osb,
5973                        struct ocfs2_cached_dealloc_ctxt *ctxt)
5974 {
5975         int ret = 0, ret2;
5976         struct ocfs2_per_slot_free_list *fl;
5977
5978         if (!ctxt)
5979                 return 0;
5980
5981         while (ctxt->c_first_suballocator) {
5982                 fl = ctxt->c_first_suballocator;
5983
5984                 if (fl->f_first) {
5985                         mlog(0, "Free items: (type %u, slot %d)\n",
5986                              fl->f_inode_type, fl->f_slot);
5987                         ret2 = ocfs2_free_cached_items(osb, fl->f_inode_type,
5988                                                        fl->f_slot, fl->f_first);
5989                         if (ret2)
5990                                 mlog_errno(ret2);
5991                         if (!ret)
5992                                 ret = ret2;
5993                 }
5994
5995                 ctxt->c_first_suballocator = fl->f_next_suballocator;
5996                 kfree(fl);
5997         }
5998
5999         return ret;
6000 }
6001
6002 static struct ocfs2_per_slot_free_list *
6003 ocfs2_find_per_slot_free_list(int type,
6004                               int slot,
6005                               struct ocfs2_cached_dealloc_ctxt *ctxt)
6006 {
6007         struct ocfs2_per_slot_free_list *fl = ctxt->c_first_suballocator;
6008
6009         while (fl) {
6010                 if (fl->f_inode_type == type && fl->f_slot == slot)
6011                         return fl;
6012
6013                 fl = fl->f_next_suballocator;
6014         }
6015
6016         fl = kmalloc(sizeof(*fl), GFP_NOFS);
6017         if (fl) {
6018                 fl->f_inode_type = type;
6019                 fl->f_slot = slot;
6020                 fl->f_first = NULL;
6021                 fl->f_next_suballocator = ctxt->c_first_suballocator;
6022
6023                 ctxt->c_first_suballocator = fl;
6024         }
6025         return fl;
6026 }
6027
6028 static int ocfs2_cache_block_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt,
6029                                      int type, int slot, u64 blkno,
6030                                      unsigned int bit)
6031 {
6032         int ret;
6033         struct ocfs2_per_slot_free_list *fl;
6034         struct ocfs2_cached_block_free *item;
6035
6036         fl = ocfs2_find_per_slot_free_list(type, slot, ctxt);
6037         if (fl == NULL) {
6038                 ret = -ENOMEM;
6039                 mlog_errno(ret);
6040                 goto out;
6041         }
6042
6043         item = kmalloc(sizeof(*item), GFP_NOFS);
6044         if (item == NULL) {
6045                 ret = -ENOMEM;
6046                 mlog_errno(ret);
6047                 goto out;
6048         }
6049
6050         mlog(0, "Insert: (type %d, slot %u, bit %u, blk %llu)\n",
6051              type, slot, bit, (unsigned long long)blkno);
6052
6053         item->free_blk = blkno;
6054         item->free_bit = bit;
6055         item->free_next = fl->f_first;
6056
6057         fl->f_first = item;
6058
6059         ret = 0;
6060 out:
6061         return ret;
6062 }
6063
6064 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
6065                                          struct ocfs2_extent_block *eb)
6066 {
6067         return ocfs2_cache_block_dealloc(ctxt, EXTENT_ALLOC_SYSTEM_INODE,
6068                                          le16_to_cpu(eb->h_suballoc_slot),
6069                                          le64_to_cpu(eb->h_blkno),
6070                                          le16_to_cpu(eb->h_suballoc_bit));
6071 }
6072
6073 /* This function will figure out whether the currently last extent
6074  * block will be deleted, and if it will, what the new last extent
6075  * block will be so we can update his h_next_leaf_blk field, as well
6076  * as the dinodes i_last_eb_blk */
6077 static int ocfs2_find_new_last_ext_blk(struct inode *inode,
6078                                        unsigned int clusters_to_del,
6079                                        struct ocfs2_path *path,
6080                                        struct buffer_head **new_last_eb)
6081 {
6082         int next_free, ret = 0;
6083         u32 cpos;
6084         struct ocfs2_extent_rec *rec;
6085         struct ocfs2_extent_block *eb;
6086         struct ocfs2_extent_list *el;
6087         struct buffer_head *bh = NULL;
6088
6089         *new_last_eb = NULL;
6090
6091         /* we have no tree, so of course, no last_eb. */
6092         if (!path->p_tree_depth)
6093                 goto out;
6094
6095         /* trunc to zero special case - this makes tree_depth = 0
6096          * regardless of what it is.  */
6097         if (OCFS2_I(inode)->ip_clusters == clusters_to_del)
6098                 goto out;
6099
6100         el = path_leaf_el(path);
6101         BUG_ON(!el->l_next_free_rec);
6102
6103         /*
6104          * Make sure that this extent list will actually be empty
6105          * after we clear away the data. We can shortcut out if
6106          * there's more than one non-empty extent in the
6107          * list. Otherwise, a check of the remaining extent is
6108          * necessary.
6109          */
6110         next_free = le16_to_cpu(el->l_next_free_rec);
6111         rec = NULL;
6112         if (ocfs2_is_empty_extent(&el->l_recs[0])) {
6113                 if (next_free > 2)
6114                         goto out;
6115
6116                 /* We may have a valid extent in index 1, check it. */
6117                 if (next_free == 2)
6118                         rec = &el->l_recs[1];
6119
6120                 /*
6121                  * Fall through - no more nonempty extents, so we want
6122                  * to delete this leaf.
6123                  */
6124         } else {
6125                 if (next_free > 1)
6126                         goto out;
6127
6128                 rec = &el->l_recs[0];
6129         }
6130
6131         if (rec) {
6132                 /*
6133                  * Check it we'll only be trimming off the end of this
6134                  * cluster.
6135                  */
6136                 if (le16_to_cpu(rec->e_leaf_clusters) > clusters_to_del)
6137                         goto out;
6138         }
6139
6140         ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, &cpos);
6141         if (ret) {
6142                 mlog_errno(ret);
6143                 goto out;
6144         }
6145
6146         ret = ocfs2_find_leaf(inode, path_root_el(path), cpos, &bh);
6147         if (ret) {
6148                 mlog_errno(ret);
6149                 goto out;
6150         }
6151
6152         eb = (struct ocfs2_extent_block *) bh->b_data;
6153         el = &eb->h_list;
6154         if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
6155                 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
6156                 ret = -EROFS;
6157                 goto out;
6158         }
6159
6160         *new_last_eb = bh;
6161         get_bh(*new_last_eb);
6162         mlog(0, "returning block %llu, (cpos: %u)\n",
6163              (unsigned long long)le64_to_cpu(eb->h_blkno), cpos);
6164 out:
6165         brelse(bh);
6166
6167         return ret;
6168 }
6169
6170 /*
6171  * Trim some clusters off the rightmost edge of a tree. Only called
6172  * during truncate.
6173  *
6174  * The caller needs to:
6175  *   - start journaling of each path component.
6176  *   - compute and fully set up any new last ext block
6177  */
6178 static int ocfs2_trim_tree(struct inode *inode, struct ocfs2_path *path,
6179                            handle_t *handle, struct ocfs2_truncate_context *tc,
6180                            u32 clusters_to_del, u64 *delete_start)
6181 {
6182         int ret, i, index = path->p_tree_depth;
6183         u32 new_edge = 0;
6184         u64 deleted_eb = 0;
6185         struct buffer_head *bh;
6186         struct ocfs2_extent_list *el;
6187         struct ocfs2_extent_rec *rec;
6188
6189         *delete_start = 0;
6190
6191         while (index >= 0) {
6192                 bh = path->p_node[index].bh;
6193                 el = path->p_node[index].el;
6194
6195                 mlog(0, "traveling tree (index = %d, block = %llu)\n",
6196                      index,  (unsigned long long)bh->b_blocknr);
6197
6198                 BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0);
6199
6200                 if (index !=
6201                     (path->p_tree_depth - le16_to_cpu(el->l_tree_depth))) {
6202                         ocfs2_error(inode->i_sb,
6203                                     "Inode %lu has invalid ext. block %llu",
6204                                     inode->i_ino,
6205                                     (unsigned long long)bh->b_blocknr);
6206                         ret = -EROFS;
6207                         goto out;
6208                 }
6209
6210 find_tail_record:
6211                 i = le16_to_cpu(el->l_next_free_rec) - 1;
6212                 rec = &el->l_recs[i];
6213
6214                 mlog(0, "Extent list before: record %d: (%u, %u, %llu), "
6215                      "next = %u\n", i, le32_to_cpu(rec->e_cpos),
6216                      ocfs2_rec_clusters(el, rec),
6217                      (unsigned long long)le64_to_cpu(rec->e_blkno),
6218                      le16_to_cpu(el->l_next_free_rec));
6219
6220                 BUG_ON(ocfs2_rec_clusters(el, rec) < clusters_to_del);
6221
6222                 if (le16_to_cpu(el->l_tree_depth) == 0) {
6223                         /*
6224                          * If the leaf block contains a single empty
6225                          * extent and no records, we can just remove
6226                          * the block.
6227                          */
6228                         if (i == 0 && ocfs2_is_empty_extent(rec)) {
6229                                 memset(rec, 0,
6230                                        sizeof(struct ocfs2_extent_rec));
6231                                 el->l_next_free_rec = cpu_to_le16(0);
6232
6233                                 goto delete;
6234                         }
6235
6236                         /*
6237                          * Remove any empty extents by shifting things
6238                          * left. That should make life much easier on
6239                          * the code below. This condition is rare
6240                          * enough that we shouldn't see a performance
6241                          * hit.
6242                          */
6243                         if (ocfs2_is_empty_extent(&el->l_recs[0])) {
6244                                 le16_add_cpu(&el->l_next_free_rec, -1);
6245
6246                                 for(i = 0;
6247                                     i < le16_to_cpu(el->l_next_free_rec); i++)
6248                                         el->l_recs[i] = el->l_recs[i + 1];
6249
6250                                 memset(&el->l_recs[i], 0,
6251                                        sizeof(struct ocfs2_extent_rec));
6252
6253                                 /*
6254                                  * We've modified our extent list. The
6255                                  * simplest way to handle this change
6256                                  * is to being the search from the
6257                                  * start again.
6258                                  */
6259                                 goto find_tail_record;
6260                         }
6261
6262                         le16_add_cpu(&rec->e_leaf_clusters, -clusters_to_del);
6263
6264                         /*
6265                          * We'll use "new_edge" on our way back up the
6266                          * tree to know what our rightmost cpos is.
6267                          */
6268                         new_edge = le16_to_cpu(rec->e_leaf_clusters);
6269                         new_edge += le32_to_cpu(rec->e_cpos);
6270
6271                         /*
6272                          * The caller will use this to delete data blocks.
6273                          */
6274                         *delete_start = le64_to_cpu(rec->e_blkno)
6275                                 + ocfs2_clusters_to_blocks(inode->i_sb,
6276                                         le16_to_cpu(rec->e_leaf_clusters));
6277
6278                         /*
6279                          * If it's now empty, remove this record.
6280                          */
6281                         if (le16_to_cpu(rec->e_leaf_clusters) == 0) {
6282                                 memset(rec, 0,
6283                                        sizeof(struct ocfs2_extent_rec));
6284                                 le16_add_cpu(&el->l_next_free_rec, -1);
6285                         }
6286                 } else {
6287                         if (le64_to_cpu(rec->e_blkno) == deleted_eb) {
6288                                 memset(rec, 0,
6289                                        sizeof(struct ocfs2_extent_rec));
6290                                 le16_add_cpu(&el->l_next_free_rec, -1);
6291
6292                                 goto delete;
6293                         }
6294
6295                         /* Can this actually happen? */
6296                         if (le16_to_cpu(el->l_next_free_rec) == 0)
6297                                 goto delete;
6298
6299                         /*
6300                          * We never actually deleted any clusters
6301                          * because our leaf was empty. There's no
6302                          * reason to adjust the rightmost edge then.
6303                          */
6304                         if (new_edge == 0)
6305                                 goto delete;
6306
6307                         rec->e_int_clusters = cpu_to_le32(new_edge);
6308                         le32_add_cpu(&rec->e_int_clusters,
6309                                      -le32_to_cpu(rec->e_cpos));
6310
6311                          /*
6312                           * A deleted child record should have been
6313                           * caught above.
6314                           */
6315                          BUG_ON(le32_to_cpu(rec->e_int_clusters) == 0);
6316                 }
6317
6318 delete:
6319                 ret = ocfs2_journal_dirty(handle, bh);
6320                 if (ret) {
6321                         mlog_errno(ret);
6322                         goto out;
6323                 }
6324
6325                 mlog(0, "extent list container %llu, after: record %d: "
6326                      "(%u, %u, %llu), next = %u.\n",
6327                      (unsigned long long)bh->b_blocknr, i,
6328                      le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec),
6329                      (unsigned long long)le64_to_cpu(rec->e_blkno),
6330                      le16_to_cpu(el->l_next_free_rec));
6331
6332                 /*
6333                  * We must be careful to only attempt delete of an
6334                  * extent block (and not the root inode block).
6335                  */
6336                 if (index > 0 && le16_to_cpu(el->l_next_free_rec) == 0) {
6337                         struct ocfs2_extent_block *eb =
6338                                 (struct ocfs2_extent_block *)bh->b_data;
6339
6340                         /*
6341                          * Save this for use when processing the
6342                          * parent block.
6343                          */
6344                         deleted_eb = le64_to_cpu(eb->h_blkno);
6345
6346                         mlog(0, "deleting this extent block.\n");
6347
6348                         ocfs2_remove_from_cache(inode, bh);
6349
6350                         BUG_ON(ocfs2_rec_clusters(el, &el->l_recs[0]));
6351                         BUG_ON(le32_to_cpu(el->l_recs[0].e_cpos));
6352                         BUG_ON(le64_to_cpu(el->l_recs[0].e_blkno));
6353
6354                         ret = ocfs2_cache_extent_block_free(&tc->tc_dealloc, eb);
6355                         /* An error here is not fatal. */
6356                         if (ret < 0)
6357                                 mlog_errno(ret);
6358                 } else {
6359                         deleted_eb = 0;
6360                 }
6361
6362                 index--;
6363         }
6364
6365         ret = 0;
6366 out:
6367         return ret;
6368 }
6369
6370 static int ocfs2_do_truncate(struct ocfs2_super *osb,
6371                              unsigned int clusters_to_del,
6372                              struct inode *inode,
6373                              struct buffer_head *fe_bh,
6374                              handle_t *handle,
6375                              struct ocfs2_truncate_context *tc,
6376                              struct ocfs2_path *path)
6377 {
6378         int status;
6379         struct ocfs2_dinode *fe;
6380         struct ocfs2_extent_block *last_eb = NULL;
6381         struct ocfs2_extent_list *el;
6382         struct buffer_head *last_eb_bh = NULL;
6383         u64 delete_blk = 0;
6384
6385         fe = (struct ocfs2_dinode *) fe_bh->b_data;
6386
6387         status = ocfs2_find_new_last_ext_blk(inode, clusters_to_del,
6388                                              path, &last_eb_bh);
6389         if (status < 0) {
6390                 mlog_errno(status);
6391                 goto bail;
6392         }
6393
6394         /*
6395          * Each component will be touched, so we might as well journal
6396          * here to avoid having to handle errors later.
6397          */
6398         status = ocfs2_journal_access_path(inode, handle, path);
6399         if (status < 0) {
6400                 mlog_errno(status);
6401                 goto bail;
6402         }
6403
6404         if (last_eb_bh) {
6405                 status = ocfs2_journal_access(handle, inode, last_eb_bh,
6406                                               OCFS2_JOURNAL_ACCESS_WRITE);
6407                 if (status < 0) {
6408                         mlog_errno(status);
6409                         goto bail;
6410                 }
6411
6412                 last_eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
6413         }
6414
6415         el = &(fe->id2.i_list);
6416
6417         /*
6418          * Lower levels depend on this never happening, but it's best
6419          * to check it up here before changing the tree.
6420          */
6421         if (el->l_tree_depth && el->l_recs[0].e_int_clusters == 0) {
6422                 ocfs2_error(inode->i_sb,
6423                             "Inode %lu has an empty extent record, depth %u\n",
6424                             inode->i_ino, le16_to_cpu(el->l_tree_depth));
6425                 status = -EROFS;
6426                 goto bail;
6427         }
6428
6429         spin_lock(&OCFS2_I(inode)->ip_lock);
6430         OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters) -
6431                                       clusters_to_del;
6432         spin_unlock(&OCFS2_I(inode)->ip_lock);
6433         le32_add_cpu(&fe->i_clusters, -clusters_to_del);
6434         inode->i_blocks = ocfs2_inode_sector_count(inode);
6435
6436         status = ocfs2_trim_tree(inode, path, handle, tc,
6437                                  clusters_to_del, &delete_blk);
6438         if (status) {
6439                 mlog_errno(status);
6440                 goto bail;
6441         }
6442
6443         if (le32_to_cpu(fe->i_clusters) == 0) {
6444                 /* trunc to zero is a special case. */
6445                 el->l_tree_depth = 0;
6446                 fe->i_last_eb_blk = 0;
6447         } else if (last_eb)
6448                 fe->i_last_eb_blk = last_eb->h_blkno;
6449
6450         status = ocfs2_journal_dirty(handle, fe_bh);
6451         if (status < 0) {
6452                 mlog_errno(status);
6453                 goto bail;
6454         }
6455
6456         if (last_eb) {
6457                 /* If there will be a new last extent block, then by
6458                  * definition, there cannot be any leaves to the right of
6459                  * him. */
6460                 last_eb->h_next_leaf_blk = 0;
6461                 status = ocfs2_journal_dirty(handle, last_eb_bh);
6462                 if (status < 0) {
6463                         mlog_errno(status);
6464                         goto bail;
6465                 }
6466         }
6467
6468         if (delete_blk) {
6469                 status = ocfs2_truncate_log_append(osb, handle, delete_blk,
6470                                                    clusters_to_del);
6471                 if (status < 0) {
6472                         mlog_errno(status);
6473                         goto bail;
6474                 }
6475         }
6476         status = 0;
6477 bail:
6478
6479         mlog_exit(status);
6480         return status;
6481 }
6482
6483 static int ocfs2_writeback_zero_func(handle_t *handle, struct buffer_head *bh)
6484 {
6485         set_buffer_uptodate(bh);
6486         mark_buffer_dirty(bh);
6487         return 0;
6488 }
6489
6490 static int ocfs2_ordered_zero_func(handle_t *handle, struct buffer_head *bh)
6491 {
6492         set_buffer_uptodate(bh);
6493         mark_buffer_dirty(bh);
6494         return ocfs2_journal_dirty_data(handle, bh);
6495 }
6496
6497 static void ocfs2_map_and_dirty_page(struct inode *inode, handle_t *handle,
6498                                      unsigned int from, unsigned int to,
6499                                      struct page *page, int zero, u64 *phys)
6500 {
6501         int ret, partial = 0;
6502
6503         ret = ocfs2_map_page_blocks(page, phys, inode, from, to, 0);
6504         if (ret)
6505                 mlog_errno(ret);
6506
6507         if (zero)
6508                 zero_user_segment(page, from, to);
6509
6510         /*
6511          * Need to set the buffers we zero'd into uptodate
6512          * here if they aren't - ocfs2_map_page_blocks()
6513          * might've skipped some
6514          */
6515         if (ocfs2_should_order_data(inode)) {
6516                 ret = walk_page_buffers(handle,
6517                                         page_buffers(page),
6518                                         from, to, &partial,
6519                                         ocfs2_ordered_zero_func);
6520                 if (ret < 0)
6521                         mlog_errno(ret);
6522         } else {
6523                 ret = walk_page_buffers(handle, page_buffers(page),
6524                                         from, to, &partial,
6525                                         ocfs2_writeback_zero_func);
6526                 if (ret < 0)
6527                         mlog_errno(ret);
6528         }
6529
6530         if (!partial)
6531                 SetPageUptodate(page);
6532
6533         flush_dcache_page(page);
6534 }
6535
6536 static void ocfs2_zero_cluster_pages(struct inode *inode, loff_t start,
6537                                      loff_t end, struct page **pages,
6538                                      int numpages, u64 phys, handle_t *handle)
6539 {
6540         int i;
6541         struct page *page;
6542         unsigned int from, to = PAGE_CACHE_SIZE;
6543         struct super_block *sb = inode->i_sb;
6544
6545         BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb)));
6546
6547         if (numpages == 0)
6548                 goto out;
6549
6550         to = PAGE_CACHE_SIZE;
6551         for(i = 0; i < numpages; i++) {
6552                 page = pages[i];
6553
6554                 from = start & (PAGE_CACHE_SIZE - 1);
6555                 if ((end >> PAGE_CACHE_SHIFT) == page->index)
6556                         to = end & (PAGE_CACHE_SIZE - 1);
6557
6558                 BUG_ON(from > PAGE_CACHE_SIZE);
6559                 BUG_ON(to > PAGE_CACHE_SIZE);
6560
6561                 ocfs2_map_and_dirty_page(inode, handle, from, to, page, 1,
6562                                          &phys);
6563
6564                 start = (page->index + 1) << PAGE_CACHE_SHIFT;
6565         }
6566 out:
6567         if (pages)
6568                 ocfs2_unlock_and_free_pages(pages, numpages);
6569 }
6570
6571 static int ocfs2_grab_eof_pages(struct inode *inode, loff_t start, loff_t end,
6572                                 struct page **pages, int *num)
6573 {
6574         int numpages, ret = 0;
6575         struct super_block *sb = inode->i_sb;
6576         struct address_space *mapping = inode->i_mapping;
6577         unsigned long index;
6578         loff_t last_page_bytes;
6579
6580         BUG_ON(start > end);
6581
6582         BUG_ON(start >> OCFS2_SB(sb)->s_clustersize_bits !=
6583                (end - 1) >> OCFS2_SB(sb)->s_clustersize_bits);
6584
6585         numpages = 0;
6586         last_page_bytes = PAGE_ALIGN(end);
6587         index = start >> PAGE_CACHE_SHIFT;
6588         do {
6589                 pages[numpages] = grab_cache_page(mapping, index);
6590                 if (!pages[numpages]) {
6591                         ret = -ENOMEM;
6592                         mlog_errno(ret);
6593                         goto out;
6594                 }
6595
6596                 numpages++;
6597                 index++;
6598         } while (index < (last_page_bytes >> PAGE_CACHE_SHIFT));
6599
6600 out:
6601         if (ret != 0) {
6602                 if (pages)
6603                         ocfs2_unlock_and_free_pages(pages, numpages);
6604                 numpages = 0;
6605         }
6606
6607         *num = numpages;
6608
6609         return ret;
6610 }
6611
6612 /*
6613  * Zero the area past i_size but still within an allocated
6614  * cluster. This avoids exposing nonzero data on subsequent file
6615  * extends.
6616  *
6617  * We need to call this before i_size is updated on the inode because
6618  * otherwise block_write_full_page() will skip writeout of pages past
6619  * i_size. The new_i_size parameter is passed for this reason.
6620  */
6621 int ocfs2_zero_range_for_truncate(struct inode *inode, handle_t *handle,
6622                                   u64 range_start, u64 range_end)
6623 {
6624         int ret = 0, numpages;
6625         struct page **pages = NULL;
6626         u64 phys;
6627         unsigned int ext_flags;
6628         struct super_block *sb = inode->i_sb;
6629
6630         /*
6631          * File systems which don't support sparse files zero on every
6632          * extend.
6633          */
6634         if (!ocfs2_sparse_alloc(OCFS2_SB(sb)))
6635                 return 0;
6636
6637         pages = kcalloc(ocfs2_pages_per_cluster(sb),
6638                         sizeof(struct page *), GFP_NOFS);
6639         if (pages == NULL) {
6640                 ret = -ENOMEM;
6641                 mlog_errno(ret);
6642                 goto out;
6643         }
6644
6645         if (range_start == range_end)
6646                 goto out;
6647
6648         ret = ocfs2_extent_map_get_blocks(inode,
6649                                           range_start >> sb->s_blocksize_bits,
6650                                           &phys, NULL, &ext_flags);
6651         if (ret) {
6652                 mlog_errno(ret);
6653                 goto out;
6654         }
6655
6656         /*
6657          * Tail is a hole, or is marked unwritten. In either case, we
6658          * can count on read and write to return/push zero's.
6659          */
6660         if (phys == 0 || ext_flags & OCFS2_EXT_UNWRITTEN)
6661                 goto out;
6662
6663         ret = ocfs2_grab_eof_pages(inode, range_start, range_end, pages,
6664                                    &numpages);
6665         if (ret) {
6666                 mlog_errno(ret);
6667                 goto out;
6668         }
6669
6670         ocfs2_zero_cluster_pages(inode, range_start, range_end, pages,
6671                                  numpages, phys, handle);
6672
6673         /*
6674          * Initiate writeout of the pages we zero'd here. We don't
6675          * wait on them - the truncate_inode_pages() call later will
6676          * do that for us.
6677          */
6678         ret = do_sync_mapping_range(inode->i_mapping, range_start,
6679                                     range_end - 1, SYNC_FILE_RANGE_WRITE);
6680         if (ret)
6681                 mlog_errno(ret);
6682
6683 out:
6684         if (pages)
6685                 kfree(pages);
6686
6687         return ret;
6688 }
6689
6690 static void ocfs2_zero_dinode_id2_with_xattr(struct inode *inode,
6691                                              struct ocfs2_dinode *di)
6692 {
6693         unsigned int blocksize = 1 << inode->i_sb->s_blocksize_bits;
6694         unsigned int xattrsize = le16_to_cpu(di->i_xattr_inline_size);
6695
6696         if (le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_XATTR_FL)
6697                 memset(&di->id2, 0, blocksize -
6698                                     offsetof(struct ocfs2_dinode, id2) -
6699                                     xattrsize);
6700         else
6701                 memset(&di->id2, 0, blocksize -
6702                                     offsetof(struct ocfs2_dinode, id2));
6703 }
6704
6705 void ocfs2_dinode_new_extent_list(struct inode *inode,
6706                                   struct ocfs2_dinode *di)
6707 {
6708         ocfs2_zero_dinode_id2_with_xattr(inode, di);
6709         di->id2.i_list.l_tree_depth = 0;
6710         di->id2.i_list.l_next_free_rec = 0;
6711         di->id2.i_list.l_count = cpu_to_le16(
6712                 ocfs2_extent_recs_per_inode_with_xattr(inode->i_sb, di));
6713 }
6714
6715 void ocfs2_set_inode_data_inline(struct inode *inode, struct ocfs2_dinode *di)
6716 {
6717         struct ocfs2_inode_info *oi = OCFS2_I(inode);
6718         struct ocfs2_inline_data *idata = &di->id2.i_data;
6719
6720         spin_lock(&oi->ip_lock);
6721         oi->ip_dyn_features |= OCFS2_INLINE_DATA_FL;
6722         di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
6723         spin_unlock(&oi->ip_lock);
6724
6725         /*
6726          * We clear the entire i_data structure here so that all
6727          * fields can be properly initialized.
6728          */
6729         ocfs2_zero_dinode_id2_with_xattr(inode, di);
6730
6731         idata->id_count = cpu_to_le16(
6732                         ocfs2_max_inline_data_with_xattr(inode->i_sb, di));
6733 }
6734
6735 int ocfs2_convert_inline_data_to_extents(struct inode *inode,
6736                                          struct buffer_head *di_bh)
6737 {
6738         int ret, i, has_data, num_pages = 0;
6739         handle_t *handle;
6740         u64 uninitialized_var(block);
6741         struct ocfs2_inode_info *oi = OCFS2_I(inode);
6742         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
6743         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
6744         struct ocfs2_alloc_context *data_ac = NULL;
6745         struct page **pages = NULL;
6746         loff_t end = osb->s_clustersize;
6747
6748         has_data = i_size_read(inode) ? 1 : 0;
6749
6750         if (has_data) {
6751                 pages = kcalloc(ocfs2_pages_per_cluster(osb->sb),
6752                                 sizeof(struct page *), GFP_NOFS);
6753                 if (pages == NULL) {
6754                         ret = -ENOMEM;
6755                         mlog_errno(ret);
6756                         goto out;
6757                 }
6758
6759                 ret = ocfs2_reserve_clusters(osb, 1, &data_ac);
6760                 if (ret) {
6761                         mlog_errno(ret);
6762                         goto out;
6763                 }
6764         }
6765
6766         handle = ocfs2_start_trans(osb, OCFS2_INLINE_TO_EXTENTS_CREDITS);
6767         if (IS_ERR(handle)) {
6768                 ret = PTR_ERR(handle);
6769                 mlog_errno(ret);
6770                 goto out_unlock;
6771         }
6772
6773         ret = ocfs2_journal_access(handle, inode, di_bh,
6774                                    OCFS2_JOURNAL_ACCESS_WRITE);
6775         if (ret) {
6776                 mlog_errno(ret);
6777                 goto out_commit;
6778         }
6779
6780         if (has_data) {
6781                 u32 bit_off, num;
6782                 unsigned int page_end;
6783                 u64 phys;
6784
6785                 ret = ocfs2_claim_clusters(osb, handle, data_ac, 1, &bit_off,
6786                                            &num);
6787                 if (ret) {
6788                         mlog_errno(ret);
6789                         goto out_commit;
6790                 }
6791
6792                 /*
6793                  * Save two copies, one for insert, and one that can
6794                  * be changed by ocfs2_map_and_dirty_page() below.
6795                  */
6796                 block = phys = ocfs2_clusters_to_blocks(inode->i_sb, bit_off);
6797
6798                 /*
6799                  * Non sparse file systems zero on extend, so no need
6800                  * to do that now.
6801                  */
6802                 if (!ocfs2_sparse_alloc(osb) &&
6803                     PAGE_CACHE_SIZE < osb->s_clustersize)
6804                         end = PAGE_CACHE_SIZE;
6805
6806                 ret = ocfs2_grab_eof_pages(inode, 0, end, pages, &num_pages);
6807                 if (ret) {
6808                         mlog_errno(ret);
6809                         goto out_commit;
6810                 }
6811
6812                 /*
6813                  * This should populate the 1st page for us and mark
6814                  * it up to date.
6815                  */
6816                 ret = ocfs2_read_inline_data(inode, pages[0], di_bh);
6817                 if (ret) {
6818                         mlog_errno(ret);
6819                         goto out_commit;
6820                 }
6821
6822                 page_end = PAGE_CACHE_SIZE;
6823                 if (PAGE_CACHE_SIZE > osb->s_clustersize)
6824                         page_end = osb->s_clustersize;
6825
6826                 for (i = 0; i < num_pages; i++)
6827                         ocfs2_map_and_dirty_page(inode, handle, 0, page_end,
6828                                                  pages[i], i > 0, &phys);
6829         }
6830
6831         spin_lock(&oi->ip_lock);
6832         oi->ip_dyn_features &= ~OCFS2_INLINE_DATA_FL;
6833         di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
6834         spin_unlock(&oi->ip_lock);
6835
6836         ocfs2_dinode_new_extent_list(inode, di);
6837
6838         ocfs2_journal_dirty(handle, di_bh);
6839
6840         if (has_data) {
6841                 /*
6842                  * An error at this point should be extremely rare. If
6843                  * this proves to be false, we could always re-build
6844                  * the in-inode data from our pages.
6845                  */
6846                 ret = ocfs2_dinode_insert_extent(osb, handle, inode, di_bh,
6847                                                  0, block, 1, 0, NULL);
6848                 if (ret) {
6849                         mlog_errno(ret);
6850                         goto out_commit;
6851                 }
6852
6853                 inode->i_blocks = ocfs2_inode_sector_count(inode);
6854         }
6855
6856 out_commit:
6857         ocfs2_commit_trans(osb, handle);
6858
6859 out_unlock:
6860         if (data_ac)
6861                 ocfs2_free_alloc_context(data_ac);
6862
6863 out:
6864         if (pages) {
6865                 ocfs2_unlock_and_free_pages(pages, num_pages);
6866                 kfree(pages);
6867         }
6868
6869         return ret;
6870 }
6871
6872 /*
6873  * It is expected, that by the time you call this function,
6874  * inode->i_size and fe->i_size have been adjusted.
6875  *
6876  * WARNING: This will kfree the truncate context
6877  */
6878 int ocfs2_commit_truncate(struct ocfs2_super *osb,
6879                           struct inode *inode,
6880                           struct buffer_head *fe_bh,
6881                           struct ocfs2_truncate_context *tc)
6882 {
6883         int status, i, credits, tl_sem = 0;
6884         u32 clusters_to_del, new_highest_cpos, range;
6885         struct ocfs2_extent_list *el;
6886         handle_t *handle = NULL;
6887         struct inode *tl_inode = osb->osb_tl_inode;
6888         struct ocfs2_path *path = NULL;
6889         struct ocfs2_dinode *di = (struct ocfs2_dinode *)fe_bh->b_data;
6890
6891         mlog_entry_void();
6892
6893         new_highest_cpos = ocfs2_clusters_for_bytes(osb->sb,
6894                                                      i_size_read(inode));
6895
6896         path = ocfs2_new_path(fe_bh, &di->id2.i_list);
6897         if (!path) {
6898                 status = -ENOMEM;
6899                 mlog_errno(status);
6900                 goto bail;
6901         }
6902
6903         ocfs2_extent_map_trunc(inode, new_highest_cpos);
6904
6905 start:
6906         /*
6907          * Check that we still have allocation to delete.
6908          */
6909         if (OCFS2_I(inode)->ip_clusters == 0) {
6910                 status = 0;
6911                 goto bail;
6912         }
6913
6914         /*
6915          * Truncate always works against the rightmost tree branch.
6916          */
6917         status = ocfs2_find_path(inode, path, UINT_MAX);
6918         if (status) {
6919                 mlog_errno(status);
6920                 goto bail;
6921         }
6922
6923         mlog(0, "inode->ip_clusters = %u, tree_depth = %u\n",
6924              OCFS2_I(inode)->ip_clusters, path->p_tree_depth);
6925
6926         /*
6927          * By now, el will point to the extent list on the bottom most
6928          * portion of this tree. Only the tail record is considered in
6929          * each pass.
6930          *
6931          * We handle the following cases, in order:
6932          * - empty extent: delete the remaining branch
6933          * - remove the entire record
6934          * - remove a partial record
6935          * - no record needs to be removed (truncate has completed)
6936          */
6937         el = path_leaf_el(path);
6938         if (le16_to_cpu(el->l_next_free_rec) == 0) {
6939                 ocfs2_error(inode->i_sb,
6940                             "Inode %llu has empty extent block at %llu\n",
6941                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
6942                             (unsigned long long)path_leaf_bh(path)->b_blocknr);
6943                 status = -EROFS;
6944                 goto bail;
6945         }
6946
6947         i = le16_to_cpu(el->l_next_free_rec) - 1;
6948         range = le32_to_cpu(el->l_recs[i].e_cpos) +
6949                 ocfs2_rec_clusters(el, &el->l_recs[i]);
6950         if (i == 0 && ocfs2_is_empty_extent(&el->l_recs[i])) {
6951                 clusters_to_del = 0;
6952         } else if (le32_to_cpu(el->l_recs[i].e_cpos) >= new_highest_cpos) {
6953                 clusters_to_del = ocfs2_rec_clusters(el, &el->l_recs[i]);
6954         } else if (range > new_highest_cpos) {
6955                 clusters_to_del = (ocfs2_rec_clusters(el, &el->l_recs[i]) +
6956                                    le32_to_cpu(el->l_recs[i].e_cpos)) -
6957                                   new_highest_cpos;
6958         } else {
6959                 status = 0;
6960                 goto bail;
6961         }
6962
6963         mlog(0, "clusters_to_del = %u in this pass, tail blk=%llu\n",
6964              clusters_to_del, (unsigned long long)path_leaf_bh(path)->b_blocknr);
6965
6966         mutex_lock(&tl_inode->i_mutex);
6967         tl_sem = 1;
6968         /* ocfs2_truncate_log_needs_flush guarantees us at least one
6969          * record is free for use. If there isn't any, we flush to get
6970          * an empty truncate log.  */
6971         if (ocfs2_truncate_log_needs_flush(osb)) {
6972                 status = __ocfs2_flush_truncate_log(osb);
6973                 if (status < 0) {
6974                         mlog_errno(status);
6975                         goto bail;
6976                 }
6977         }
6978
6979         credits = ocfs2_calc_tree_trunc_credits(osb->sb, clusters_to_del,
6980                                                 (struct ocfs2_dinode *)fe_bh->b_data,
6981                                                 el);
6982         handle = ocfs2_start_trans(osb, credits);
6983         if (IS_ERR(handle)) {
6984                 status = PTR_ERR(handle);
6985                 handle = NULL;
6986                 mlog_errno(status);
6987                 goto bail;
6988         }
6989
6990         status = ocfs2_do_truncate(osb, clusters_to_del, inode, fe_bh, handle,
6991                                    tc, path);
6992         if (status < 0) {
6993                 mlog_errno(status);
6994                 goto bail;
6995         }
6996
6997         mutex_unlock(&tl_inode->i_mutex);
6998         tl_sem = 0;
6999
7000         ocfs2_commit_trans(osb, handle);
7001         handle = NULL;
7002
7003         ocfs2_reinit_path(path, 1);
7004
7005         /*
7006          * The check above will catch the case where we've truncated
7007          * away all allocation.
7008          */
7009         goto start;
7010
7011 bail:
7012
7013         ocfs2_schedule_truncate_log_flush(osb, 1);
7014
7015         if (tl_sem)
7016                 mutex_unlock(&tl_inode->i_mutex);
7017
7018         if (handle)
7019                 ocfs2_commit_trans(osb, handle);
7020
7021         ocfs2_run_deallocs(osb, &tc->tc_dealloc);
7022
7023         ocfs2_free_path(path);
7024
7025         /* This will drop the ext_alloc cluster lock for us */
7026         ocfs2_free_truncate_context(tc);
7027
7028         mlog_exit(status);
7029         return status;
7030 }
7031
7032 /*
7033  * Expects the inode to already be locked.
7034  */
7035 int ocfs2_prepare_truncate(struct ocfs2_super *osb,
7036                            struct inode *inode,
7037                            struct buffer_head *fe_bh,
7038                            struct ocfs2_truncate_context **tc)
7039 {
7040         int status;
7041         unsigned int new_i_clusters;
7042         struct ocfs2_dinode *fe;
7043         struct ocfs2_extent_block *eb;
7044         struct buffer_head *last_eb_bh = NULL;
7045
7046         mlog_entry_void();
7047
7048         *tc = NULL;
7049
7050         new_i_clusters = ocfs2_clusters_for_bytes(osb->sb,
7051                                                   i_size_read(inode));
7052         fe = (struct ocfs2_dinode *) fe_bh->b_data;
7053
7054         mlog(0, "fe->i_clusters = %u, new_i_clusters = %u, fe->i_size ="
7055              "%llu\n", le32_to_cpu(fe->i_clusters), new_i_clusters,
7056              (unsigned long long)le64_to_cpu(fe->i_size));
7057
7058         *tc = kzalloc(sizeof(struct ocfs2_truncate_context), GFP_KERNEL);
7059         if (!(*tc)) {
7060                 status = -ENOMEM;
7061                 mlog_errno(status);
7062                 goto bail;
7063         }
7064         ocfs2_init_dealloc_ctxt(&(*tc)->tc_dealloc);
7065
7066         if (fe->id2.i_list.l_tree_depth) {
7067                 status = ocfs2_read_block(osb, le64_to_cpu(fe->i_last_eb_blk),
7068                                           &last_eb_bh, OCFS2_BH_CACHED, inode);
7069                 if (status < 0) {
7070                         mlog_errno(status);
7071                         goto bail;
7072                 }
7073                 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
7074                 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
7075                         OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
7076
7077                         brelse(last_eb_bh);
7078                         status = -EIO;
7079                         goto bail;
7080                 }
7081         }
7082
7083         (*tc)->tc_last_eb_bh = last_eb_bh;
7084
7085         status = 0;
7086 bail:
7087         if (status < 0) {
7088                 if (*tc)
7089                         ocfs2_free_truncate_context(*tc);
7090                 *tc = NULL;
7091         }
7092         mlog_exit_void();
7093         return status;
7094 }
7095
7096 /*
7097  * 'start' is inclusive, 'end' is not.
7098  */
7099 int ocfs2_truncate_inline(struct inode *inode, struct buffer_head *di_bh,
7100                           unsigned int start, unsigned int end, int trunc)
7101 {
7102         int ret;
7103         unsigned int numbytes;
7104         handle_t *handle;
7105         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
7106         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
7107         struct ocfs2_inline_data *idata = &di->id2.i_data;
7108
7109         if (end > i_size_read(inode))
7110                 end = i_size_read(inode);
7111
7112         BUG_ON(start >= end);
7113
7114         if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) ||
7115             !(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL) ||
7116             !ocfs2_supports_inline_data(osb)) {
7117                 ocfs2_error(inode->i_sb,
7118                             "Inline data flags for inode %llu don't agree! "
7119                             "Disk: 0x%x, Memory: 0x%x, Superblock: 0x%x\n",
7120                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
7121                             le16_to_cpu(di->i_dyn_features),
7122                             OCFS2_I(inode)->ip_dyn_features,
7123                             osb->s_feature_incompat);
7124                 ret = -EROFS;
7125                 goto out;
7126         }
7127
7128         handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
7129         if (IS_ERR(handle)) {
7130                 ret = PTR_ERR(handle);
7131                 mlog_errno(ret);
7132                 goto out;
7133         }
7134
7135         ret = ocfs2_journal_access(handle, inode, di_bh,
7136                                    OCFS2_JOURNAL_ACCESS_WRITE);
7137         if (ret) {
7138                 mlog_errno(ret);
7139                 goto out_commit;
7140         }
7141
7142         numbytes = end - start;
7143         memset(idata->id_data + start, 0, numbytes);
7144
7145         /*
7146          * No need to worry about the data page here - it's been
7147          * truncated already and inline data doesn't need it for
7148          * pushing zero's to disk, so we'll let readpage pick it up
7149          * later.
7150          */
7151         if (trunc) {
7152                 i_size_write(inode, start);
7153                 di->i_size = cpu_to_le64(start);
7154         }
7155
7156         inode->i_blocks = ocfs2_inode_sector_count(inode);
7157         inode->i_ctime = inode->i_mtime = CURRENT_TIME;
7158
7159         di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec);
7160         di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
7161
7162         ocfs2_journal_dirty(handle, di_bh);
7163
7164 out_commit:
7165         ocfs2_commit_trans(osb, handle);
7166
7167 out:
7168         return ret;
7169 }
7170
7171 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc)
7172 {
7173         /*
7174          * The caller is responsible for completing deallocation
7175          * before freeing the context.
7176          */
7177         if (tc->tc_dealloc.c_first_suballocator != NULL)
7178                 mlog(ML_NOTICE,
7179                      "Truncate completion has non-empty dealloc context\n");
7180
7181         if (tc->tc_last_eb_bh)
7182                 brelse(tc->tc_last_eb_bh);
7183
7184         kfree(tc);
7185 }