ocfs2: ocfs2_try_to_merge_extent() doesn't need struct inode.
[safe/jmp/linux-2.6] / fs / ocfs2 / alloc.c
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * alloc.c
5  *
6  * Extent allocs and frees
7  *
8  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public
12  * License as published by the Free Software Foundation; either
13  * version 2 of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public
21  * License along with this program; if not, write to the
22  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23  * Boston, MA 021110-1307, USA.
24  */
25
26 #include <linux/fs.h>
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/swap.h>
31 #include <linux/quotaops.h>
32
33 #define MLOG_MASK_PREFIX ML_DISK_ALLOC
34 #include <cluster/masklog.h>
35
36 #include "ocfs2.h"
37
38 #include "alloc.h"
39 #include "aops.h"
40 #include "blockcheck.h"
41 #include "dlmglue.h"
42 #include "extent_map.h"
43 #include "inode.h"
44 #include "journal.h"
45 #include "localalloc.h"
46 #include "suballoc.h"
47 #include "sysfile.h"
48 #include "file.h"
49 #include "super.h"
50 #include "uptodate.h"
51 #include "xattr.h"
52
53 #include "buffer_head_io.h"
54
55
56 /*
57  * Operations for a specific extent tree type.
58  *
59  * To implement an on-disk btree (extent tree) type in ocfs2, add
60  * an ocfs2_extent_tree_operations structure and the matching
61  * ocfs2_init_<thingy>_extent_tree() function.  That's pretty much it
62  * for the allocation portion of the extent tree.
63  */
64 struct ocfs2_extent_tree_operations {
65         /*
66          * last_eb_blk is the block number of the right most leaf extent
67          * block.  Most on-disk structures containing an extent tree store
68          * this value for fast access.  The ->eo_set_last_eb_blk() and
69          * ->eo_get_last_eb_blk() operations access this value.  They are
70          *  both required.
71          */
72         void (*eo_set_last_eb_blk)(struct ocfs2_extent_tree *et,
73                                    u64 blkno);
74         u64 (*eo_get_last_eb_blk)(struct ocfs2_extent_tree *et);
75
76         /*
77          * The on-disk structure usually keeps track of how many total
78          * clusters are stored in this extent tree.  This function updates
79          * that value.  new_clusters is the delta, and must be
80          * added to the total.  Required.
81          */
82         void (*eo_update_clusters)(struct ocfs2_extent_tree *et,
83                                    u32 new_clusters);
84
85         /*
86          * If ->eo_insert_check() exists, it is called before rec is
87          * inserted into the extent tree.  It is optional.
88          */
89         int (*eo_insert_check)(struct ocfs2_extent_tree *et,
90                                struct ocfs2_extent_rec *rec);
91         int (*eo_sanity_check)(struct ocfs2_extent_tree *et);
92
93         /*
94          * --------------------------------------------------------------
95          * The remaining are internal to ocfs2_extent_tree and don't have
96          * accessor functions
97          */
98
99         /*
100          * ->eo_fill_root_el() takes et->et_object and sets et->et_root_el.
101          * It is required.
102          */
103         void (*eo_fill_root_el)(struct ocfs2_extent_tree *et);
104
105         /*
106          * ->eo_fill_max_leaf_clusters sets et->et_max_leaf_clusters if
107          * it exists.  If it does not, et->et_max_leaf_clusters is set
108          * to 0 (unlimited).  Optional.
109          */
110         void (*eo_fill_max_leaf_clusters)(struct ocfs2_extent_tree *et);
111 };
112
113
114 /*
115  * Pre-declare ocfs2_dinode_et_ops so we can use it as a sanity check
116  * in the methods.
117  */
118 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et);
119 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et,
120                                          u64 blkno);
121 static void ocfs2_dinode_update_clusters(struct ocfs2_extent_tree *et,
122                                          u32 clusters);
123 static int ocfs2_dinode_insert_check(struct ocfs2_extent_tree *et,
124                                      struct ocfs2_extent_rec *rec);
125 static int ocfs2_dinode_sanity_check(struct ocfs2_extent_tree *et);
126 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et);
127 static struct ocfs2_extent_tree_operations ocfs2_dinode_et_ops = {
128         .eo_set_last_eb_blk     = ocfs2_dinode_set_last_eb_blk,
129         .eo_get_last_eb_blk     = ocfs2_dinode_get_last_eb_blk,
130         .eo_update_clusters     = ocfs2_dinode_update_clusters,
131         .eo_insert_check        = ocfs2_dinode_insert_check,
132         .eo_sanity_check        = ocfs2_dinode_sanity_check,
133         .eo_fill_root_el        = ocfs2_dinode_fill_root_el,
134 };
135
136 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et,
137                                          u64 blkno)
138 {
139         struct ocfs2_dinode *di = et->et_object;
140
141         BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
142         di->i_last_eb_blk = cpu_to_le64(blkno);
143 }
144
145 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et)
146 {
147         struct ocfs2_dinode *di = et->et_object;
148
149         BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
150         return le64_to_cpu(di->i_last_eb_blk);
151 }
152
153 static void ocfs2_dinode_update_clusters(struct ocfs2_extent_tree *et,
154                                          u32 clusters)
155 {
156         struct ocfs2_inode_info *oi = cache_info_to_inode(et->et_ci);
157         struct ocfs2_dinode *di = et->et_object;
158
159         le32_add_cpu(&di->i_clusters, clusters);
160         spin_lock(&oi->ip_lock);
161         oi->ip_clusters = le32_to_cpu(di->i_clusters);
162         spin_unlock(&oi->ip_lock);
163 }
164
165 static int ocfs2_dinode_insert_check(struct ocfs2_extent_tree *et,
166                                      struct ocfs2_extent_rec *rec)
167 {
168         struct ocfs2_inode_info *oi = cache_info_to_inode(et->et_ci);
169         struct ocfs2_super *osb = OCFS2_SB(oi->vfs_inode.i_sb);
170
171         BUG_ON(oi->ip_dyn_features & OCFS2_INLINE_DATA_FL);
172         mlog_bug_on_msg(!ocfs2_sparse_alloc(osb) &&
173                         (oi->ip_clusters != le32_to_cpu(rec->e_cpos)),
174                         "Device %s, asking for sparse allocation: inode %llu, "
175                         "cpos %u, clusters %u\n",
176                         osb->dev_str,
177                         (unsigned long long)oi->ip_blkno,
178                         rec->e_cpos, oi->ip_clusters);
179
180         return 0;
181 }
182
183 static int ocfs2_dinode_sanity_check(struct ocfs2_extent_tree *et)
184 {
185         struct ocfs2_dinode *di = et->et_object;
186
187         BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
188         BUG_ON(!OCFS2_IS_VALID_DINODE(di));
189
190         return 0;
191 }
192
193 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et)
194 {
195         struct ocfs2_dinode *di = et->et_object;
196
197         et->et_root_el = &di->id2.i_list;
198 }
199
200
201 static void ocfs2_xattr_value_fill_root_el(struct ocfs2_extent_tree *et)
202 {
203         struct ocfs2_xattr_value_buf *vb = et->et_object;
204
205         et->et_root_el = &vb->vb_xv->xr_list;
206 }
207
208 static void ocfs2_xattr_value_set_last_eb_blk(struct ocfs2_extent_tree *et,
209                                               u64 blkno)
210 {
211         struct ocfs2_xattr_value_buf *vb = et->et_object;
212
213         vb->vb_xv->xr_last_eb_blk = cpu_to_le64(blkno);
214 }
215
216 static u64 ocfs2_xattr_value_get_last_eb_blk(struct ocfs2_extent_tree *et)
217 {
218         struct ocfs2_xattr_value_buf *vb = et->et_object;
219
220         return le64_to_cpu(vb->vb_xv->xr_last_eb_blk);
221 }
222
223 static void ocfs2_xattr_value_update_clusters(struct ocfs2_extent_tree *et,
224                                               u32 clusters)
225 {
226         struct ocfs2_xattr_value_buf *vb = et->et_object;
227
228         le32_add_cpu(&vb->vb_xv->xr_clusters, clusters);
229 }
230
231 static struct ocfs2_extent_tree_operations ocfs2_xattr_value_et_ops = {
232         .eo_set_last_eb_blk     = ocfs2_xattr_value_set_last_eb_blk,
233         .eo_get_last_eb_blk     = ocfs2_xattr_value_get_last_eb_blk,
234         .eo_update_clusters     = ocfs2_xattr_value_update_clusters,
235         .eo_fill_root_el        = ocfs2_xattr_value_fill_root_el,
236 };
237
238 static void ocfs2_xattr_tree_fill_root_el(struct ocfs2_extent_tree *et)
239 {
240         struct ocfs2_xattr_block *xb = et->et_object;
241
242         et->et_root_el = &xb->xb_attrs.xb_root.xt_list;
243 }
244
245 static void ocfs2_xattr_tree_fill_max_leaf_clusters(struct ocfs2_extent_tree *et)
246 {
247         struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
248         et->et_max_leaf_clusters =
249                 ocfs2_clusters_for_bytes(sb, OCFS2_MAX_XATTR_TREE_LEAF_SIZE);
250 }
251
252 static void ocfs2_xattr_tree_set_last_eb_blk(struct ocfs2_extent_tree *et,
253                                              u64 blkno)
254 {
255         struct ocfs2_xattr_block *xb = et->et_object;
256         struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root;
257
258         xt->xt_last_eb_blk = cpu_to_le64(blkno);
259 }
260
261 static u64 ocfs2_xattr_tree_get_last_eb_blk(struct ocfs2_extent_tree *et)
262 {
263         struct ocfs2_xattr_block *xb = et->et_object;
264         struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root;
265
266         return le64_to_cpu(xt->xt_last_eb_blk);
267 }
268
269 static void ocfs2_xattr_tree_update_clusters(struct ocfs2_extent_tree *et,
270                                              u32 clusters)
271 {
272         struct ocfs2_xattr_block *xb = et->et_object;
273
274         le32_add_cpu(&xb->xb_attrs.xb_root.xt_clusters, clusters);
275 }
276
277 static struct ocfs2_extent_tree_operations ocfs2_xattr_tree_et_ops = {
278         .eo_set_last_eb_blk     = ocfs2_xattr_tree_set_last_eb_blk,
279         .eo_get_last_eb_blk     = ocfs2_xattr_tree_get_last_eb_blk,
280         .eo_update_clusters     = ocfs2_xattr_tree_update_clusters,
281         .eo_fill_root_el        = ocfs2_xattr_tree_fill_root_el,
282         .eo_fill_max_leaf_clusters = ocfs2_xattr_tree_fill_max_leaf_clusters,
283 };
284
285 static void ocfs2_dx_root_set_last_eb_blk(struct ocfs2_extent_tree *et,
286                                           u64 blkno)
287 {
288         struct ocfs2_dx_root_block *dx_root = et->et_object;
289
290         dx_root->dr_last_eb_blk = cpu_to_le64(blkno);
291 }
292
293 static u64 ocfs2_dx_root_get_last_eb_blk(struct ocfs2_extent_tree *et)
294 {
295         struct ocfs2_dx_root_block *dx_root = et->et_object;
296
297         return le64_to_cpu(dx_root->dr_last_eb_blk);
298 }
299
300 static void ocfs2_dx_root_update_clusters(struct ocfs2_extent_tree *et,
301                                           u32 clusters)
302 {
303         struct ocfs2_dx_root_block *dx_root = et->et_object;
304
305         le32_add_cpu(&dx_root->dr_clusters, clusters);
306 }
307
308 static int ocfs2_dx_root_sanity_check(struct ocfs2_extent_tree *et)
309 {
310         struct ocfs2_dx_root_block *dx_root = et->et_object;
311
312         BUG_ON(!OCFS2_IS_VALID_DX_ROOT(dx_root));
313
314         return 0;
315 }
316
317 static void ocfs2_dx_root_fill_root_el(struct ocfs2_extent_tree *et)
318 {
319         struct ocfs2_dx_root_block *dx_root = et->et_object;
320
321         et->et_root_el = &dx_root->dr_list;
322 }
323
324 static struct ocfs2_extent_tree_operations ocfs2_dx_root_et_ops = {
325         .eo_set_last_eb_blk     = ocfs2_dx_root_set_last_eb_blk,
326         .eo_get_last_eb_blk     = ocfs2_dx_root_get_last_eb_blk,
327         .eo_update_clusters     = ocfs2_dx_root_update_clusters,
328         .eo_sanity_check        = ocfs2_dx_root_sanity_check,
329         .eo_fill_root_el        = ocfs2_dx_root_fill_root_el,
330 };
331
332 static void __ocfs2_init_extent_tree(struct ocfs2_extent_tree *et,
333                                      struct inode *inode,
334                                      struct buffer_head *bh,
335                                      ocfs2_journal_access_func access,
336                                      void *obj,
337                                      struct ocfs2_extent_tree_operations *ops)
338 {
339         et->et_ops = ops;
340         et->et_root_bh = bh;
341         et->et_ci = INODE_CACHE(inode);
342         et->et_root_journal_access = access;
343         if (!obj)
344                 obj = (void *)bh->b_data;
345         et->et_object = obj;
346
347         et->et_ops->eo_fill_root_el(et);
348         if (!et->et_ops->eo_fill_max_leaf_clusters)
349                 et->et_max_leaf_clusters = 0;
350         else
351                 et->et_ops->eo_fill_max_leaf_clusters(et);
352 }
353
354 void ocfs2_init_dinode_extent_tree(struct ocfs2_extent_tree *et,
355                                    struct inode *inode,
356                                    struct buffer_head *bh)
357 {
358         __ocfs2_init_extent_tree(et, inode, bh, ocfs2_journal_access_di,
359                                  NULL, &ocfs2_dinode_et_ops);
360 }
361
362 void ocfs2_init_xattr_tree_extent_tree(struct ocfs2_extent_tree *et,
363                                        struct inode *inode,
364                                        struct buffer_head *bh)
365 {
366         __ocfs2_init_extent_tree(et, inode, bh, ocfs2_journal_access_xb,
367                                  NULL, &ocfs2_xattr_tree_et_ops);
368 }
369
370 void ocfs2_init_xattr_value_extent_tree(struct ocfs2_extent_tree *et,
371                                         struct inode *inode,
372                                         struct ocfs2_xattr_value_buf *vb)
373 {
374         __ocfs2_init_extent_tree(et, inode, vb->vb_bh, vb->vb_access, vb,
375                                  &ocfs2_xattr_value_et_ops);
376 }
377
378 void ocfs2_init_dx_root_extent_tree(struct ocfs2_extent_tree *et,
379                                     struct inode *inode,
380                                     struct buffer_head *bh)
381 {
382         __ocfs2_init_extent_tree(et, inode, bh, ocfs2_journal_access_dr,
383                                  NULL, &ocfs2_dx_root_et_ops);
384 }
385
386 static inline void ocfs2_et_set_last_eb_blk(struct ocfs2_extent_tree *et,
387                                             u64 new_last_eb_blk)
388 {
389         et->et_ops->eo_set_last_eb_blk(et, new_last_eb_blk);
390 }
391
392 static inline u64 ocfs2_et_get_last_eb_blk(struct ocfs2_extent_tree *et)
393 {
394         return et->et_ops->eo_get_last_eb_blk(et);
395 }
396
397 static inline void ocfs2_et_update_clusters(struct ocfs2_extent_tree *et,
398                                             u32 clusters)
399 {
400         et->et_ops->eo_update_clusters(et, clusters);
401 }
402
403 static inline int ocfs2_et_root_journal_access(handle_t *handle,
404                                                struct ocfs2_extent_tree *et,
405                                                int type)
406 {
407         return et->et_root_journal_access(handle, et->et_ci, et->et_root_bh,
408                                           type);
409 }
410
411 static inline int ocfs2_et_insert_check(struct ocfs2_extent_tree *et,
412                                         struct ocfs2_extent_rec *rec)
413 {
414         int ret = 0;
415
416         if (et->et_ops->eo_insert_check)
417                 ret = et->et_ops->eo_insert_check(et, rec);
418         return ret;
419 }
420
421 static inline int ocfs2_et_sanity_check(struct ocfs2_extent_tree *et)
422 {
423         int ret = 0;
424
425         if (et->et_ops->eo_sanity_check)
426                 ret = et->et_ops->eo_sanity_check(et);
427         return ret;
428 }
429
430 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc);
431 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
432                                          struct ocfs2_extent_block *eb);
433
434 /*
435  * Structures which describe a path through a btree, and functions to
436  * manipulate them.
437  *
438  * The idea here is to be as generic as possible with the tree
439  * manipulation code.
440  */
441 struct ocfs2_path_item {
442         struct buffer_head              *bh;
443         struct ocfs2_extent_list        *el;
444 };
445
446 #define OCFS2_MAX_PATH_DEPTH    5
447
448 struct ocfs2_path {
449         int                             p_tree_depth;
450         ocfs2_journal_access_func       p_root_access;
451         struct ocfs2_path_item          p_node[OCFS2_MAX_PATH_DEPTH];
452 };
453
454 #define path_root_bh(_path) ((_path)->p_node[0].bh)
455 #define path_root_el(_path) ((_path)->p_node[0].el)
456 #define path_root_access(_path)((_path)->p_root_access)
457 #define path_leaf_bh(_path) ((_path)->p_node[(_path)->p_tree_depth].bh)
458 #define path_leaf_el(_path) ((_path)->p_node[(_path)->p_tree_depth].el)
459 #define path_num_items(_path) ((_path)->p_tree_depth + 1)
460
461 static int ocfs2_find_path(struct ocfs2_caching_info *ci,
462                            struct ocfs2_path *path, u32 cpos);
463 static void ocfs2_adjust_rightmost_records(struct inode *inode,
464                                            handle_t *handle,
465                                            struct ocfs2_path *path,
466                                            struct ocfs2_extent_rec *insert_rec);
467 /*
468  * Reset the actual path elements so that we can re-use the structure
469  * to build another path. Generally, this involves freeing the buffer
470  * heads.
471  */
472 static void ocfs2_reinit_path(struct ocfs2_path *path, int keep_root)
473 {
474         int i, start = 0, depth = 0;
475         struct ocfs2_path_item *node;
476
477         if (keep_root)
478                 start = 1;
479
480         for(i = start; i < path_num_items(path); i++) {
481                 node = &path->p_node[i];
482
483                 brelse(node->bh);
484                 node->bh = NULL;
485                 node->el = NULL;
486         }
487
488         /*
489          * Tree depth may change during truncate, or insert. If we're
490          * keeping the root extent list, then make sure that our path
491          * structure reflects the proper depth.
492          */
493         if (keep_root)
494                 depth = le16_to_cpu(path_root_el(path)->l_tree_depth);
495         else
496                 path_root_access(path) = NULL;
497
498         path->p_tree_depth = depth;
499 }
500
501 static void ocfs2_free_path(struct ocfs2_path *path)
502 {
503         if (path) {
504                 ocfs2_reinit_path(path, 0);
505                 kfree(path);
506         }
507 }
508
509 /*
510  * All the elements of src into dest. After this call, src could be freed
511  * without affecting dest.
512  *
513  * Both paths should have the same root. Any non-root elements of dest
514  * will be freed.
515  */
516 static void ocfs2_cp_path(struct ocfs2_path *dest, struct ocfs2_path *src)
517 {
518         int i;
519
520         BUG_ON(path_root_bh(dest) != path_root_bh(src));
521         BUG_ON(path_root_el(dest) != path_root_el(src));
522         BUG_ON(path_root_access(dest) != path_root_access(src));
523
524         ocfs2_reinit_path(dest, 1);
525
526         for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
527                 dest->p_node[i].bh = src->p_node[i].bh;
528                 dest->p_node[i].el = src->p_node[i].el;
529
530                 if (dest->p_node[i].bh)
531                         get_bh(dest->p_node[i].bh);
532         }
533 }
534
535 /*
536  * Make the *dest path the same as src and re-initialize src path to
537  * have a root only.
538  */
539 static void ocfs2_mv_path(struct ocfs2_path *dest, struct ocfs2_path *src)
540 {
541         int i;
542
543         BUG_ON(path_root_bh(dest) != path_root_bh(src));
544         BUG_ON(path_root_access(dest) != path_root_access(src));
545
546         for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
547                 brelse(dest->p_node[i].bh);
548
549                 dest->p_node[i].bh = src->p_node[i].bh;
550                 dest->p_node[i].el = src->p_node[i].el;
551
552                 src->p_node[i].bh = NULL;
553                 src->p_node[i].el = NULL;
554         }
555 }
556
557 /*
558  * Insert an extent block at given index.
559  *
560  * This will not take an additional reference on eb_bh.
561  */
562 static inline void ocfs2_path_insert_eb(struct ocfs2_path *path, int index,
563                                         struct buffer_head *eb_bh)
564 {
565         struct ocfs2_extent_block *eb = (struct ocfs2_extent_block *)eb_bh->b_data;
566
567         /*
568          * Right now, no root bh is an extent block, so this helps
569          * catch code errors with dinode trees. The assertion can be
570          * safely removed if we ever need to insert extent block
571          * structures at the root.
572          */
573         BUG_ON(index == 0);
574
575         path->p_node[index].bh = eb_bh;
576         path->p_node[index].el = &eb->h_list;
577 }
578
579 static struct ocfs2_path *ocfs2_new_path(struct buffer_head *root_bh,
580                                          struct ocfs2_extent_list *root_el,
581                                          ocfs2_journal_access_func access)
582 {
583         struct ocfs2_path *path;
584
585         BUG_ON(le16_to_cpu(root_el->l_tree_depth) >= OCFS2_MAX_PATH_DEPTH);
586
587         path = kzalloc(sizeof(*path), GFP_NOFS);
588         if (path) {
589                 path->p_tree_depth = le16_to_cpu(root_el->l_tree_depth);
590                 get_bh(root_bh);
591                 path_root_bh(path) = root_bh;
592                 path_root_el(path) = root_el;
593                 path_root_access(path) = access;
594         }
595
596         return path;
597 }
598
599 static struct ocfs2_path *ocfs2_new_path_from_path(struct ocfs2_path *path)
600 {
601         return ocfs2_new_path(path_root_bh(path), path_root_el(path),
602                               path_root_access(path));
603 }
604
605 static struct ocfs2_path *ocfs2_new_path_from_et(struct ocfs2_extent_tree *et)
606 {
607         return ocfs2_new_path(et->et_root_bh, et->et_root_el,
608                               et->et_root_journal_access);
609 }
610
611 /*
612  * Journal the buffer at depth idx.  All idx>0 are extent_blocks,
613  * otherwise it's the root_access function.
614  *
615  * I don't like the way this function's name looks next to
616  * ocfs2_journal_access_path(), but I don't have a better one.
617  */
618 static int ocfs2_path_bh_journal_access(handle_t *handle,
619                                         struct ocfs2_caching_info *ci,
620                                         struct ocfs2_path *path,
621                                         int idx)
622 {
623         ocfs2_journal_access_func access = path_root_access(path);
624
625         if (!access)
626                 access = ocfs2_journal_access;
627
628         if (idx)
629                 access = ocfs2_journal_access_eb;
630
631         return access(handle, ci, path->p_node[idx].bh,
632                       OCFS2_JOURNAL_ACCESS_WRITE);
633 }
634
635 /*
636  * Convenience function to journal all components in a path.
637  */
638 static int ocfs2_journal_access_path(struct ocfs2_caching_info *ci,
639                                      handle_t *handle,
640                                      struct ocfs2_path *path)
641 {
642         int i, ret = 0;
643
644         if (!path)
645                 goto out;
646
647         for(i = 0; i < path_num_items(path); i++) {
648                 ret = ocfs2_path_bh_journal_access(handle, ci, path, i);
649                 if (ret < 0) {
650                         mlog_errno(ret);
651                         goto out;
652                 }
653         }
654
655 out:
656         return ret;
657 }
658
659 /*
660  * Return the index of the extent record which contains cluster #v_cluster.
661  * -1 is returned if it was not found.
662  *
663  * Should work fine on interior and exterior nodes.
664  */
665 int ocfs2_search_extent_list(struct ocfs2_extent_list *el, u32 v_cluster)
666 {
667         int ret = -1;
668         int i;
669         struct ocfs2_extent_rec *rec;
670         u32 rec_end, rec_start, clusters;
671
672         for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
673                 rec = &el->l_recs[i];
674
675                 rec_start = le32_to_cpu(rec->e_cpos);
676                 clusters = ocfs2_rec_clusters(el, rec);
677
678                 rec_end = rec_start + clusters;
679
680                 if (v_cluster >= rec_start && v_cluster < rec_end) {
681                         ret = i;
682                         break;
683                 }
684         }
685
686         return ret;
687 }
688
689 enum ocfs2_contig_type {
690         CONTIG_NONE = 0,
691         CONTIG_LEFT,
692         CONTIG_RIGHT,
693         CONTIG_LEFTRIGHT,
694 };
695
696
697 /*
698  * NOTE: ocfs2_block_extent_contig(), ocfs2_extents_adjacent() and
699  * ocfs2_extent_contig only work properly against leaf nodes!
700  */
701 static int ocfs2_block_extent_contig(struct super_block *sb,
702                                      struct ocfs2_extent_rec *ext,
703                                      u64 blkno)
704 {
705         u64 blk_end = le64_to_cpu(ext->e_blkno);
706
707         blk_end += ocfs2_clusters_to_blocks(sb,
708                                     le16_to_cpu(ext->e_leaf_clusters));
709
710         return blkno == blk_end;
711 }
712
713 static int ocfs2_extents_adjacent(struct ocfs2_extent_rec *left,
714                                   struct ocfs2_extent_rec *right)
715 {
716         u32 left_range;
717
718         left_range = le32_to_cpu(left->e_cpos) +
719                 le16_to_cpu(left->e_leaf_clusters);
720
721         return (left_range == le32_to_cpu(right->e_cpos));
722 }
723
724 static enum ocfs2_contig_type
725         ocfs2_extent_contig(struct inode *inode,
726                             struct ocfs2_extent_rec *ext,
727                             struct ocfs2_extent_rec *insert_rec)
728 {
729         u64 blkno = le64_to_cpu(insert_rec->e_blkno);
730
731         /*
732          * Refuse to coalesce extent records with different flag
733          * fields - we don't want to mix unwritten extents with user
734          * data.
735          */
736         if (ext->e_flags != insert_rec->e_flags)
737                 return CONTIG_NONE;
738
739         if (ocfs2_extents_adjacent(ext, insert_rec) &&
740             ocfs2_block_extent_contig(inode->i_sb, ext, blkno))
741                         return CONTIG_RIGHT;
742
743         blkno = le64_to_cpu(ext->e_blkno);
744         if (ocfs2_extents_adjacent(insert_rec, ext) &&
745             ocfs2_block_extent_contig(inode->i_sb, insert_rec, blkno))
746                 return CONTIG_LEFT;
747
748         return CONTIG_NONE;
749 }
750
751 /*
752  * NOTE: We can have pretty much any combination of contiguousness and
753  * appending.
754  *
755  * The usefulness of APPEND_TAIL is more in that it lets us know that
756  * we'll have to update the path to that leaf.
757  */
758 enum ocfs2_append_type {
759         APPEND_NONE = 0,
760         APPEND_TAIL,
761 };
762
763 enum ocfs2_split_type {
764         SPLIT_NONE = 0,
765         SPLIT_LEFT,
766         SPLIT_RIGHT,
767 };
768
769 struct ocfs2_insert_type {
770         enum ocfs2_split_type   ins_split;
771         enum ocfs2_append_type  ins_appending;
772         enum ocfs2_contig_type  ins_contig;
773         int                     ins_contig_index;
774         int                     ins_tree_depth;
775 };
776
777 struct ocfs2_merge_ctxt {
778         enum ocfs2_contig_type  c_contig_type;
779         int                     c_has_empty_extent;
780         int                     c_split_covers_rec;
781 };
782
783 static int ocfs2_validate_extent_block(struct super_block *sb,
784                                        struct buffer_head *bh)
785 {
786         int rc;
787         struct ocfs2_extent_block *eb =
788                 (struct ocfs2_extent_block *)bh->b_data;
789
790         mlog(0, "Validating extent block %llu\n",
791              (unsigned long long)bh->b_blocknr);
792
793         BUG_ON(!buffer_uptodate(bh));
794
795         /*
796          * If the ecc fails, we return the error but otherwise
797          * leave the filesystem running.  We know any error is
798          * local to this block.
799          */
800         rc = ocfs2_validate_meta_ecc(sb, bh->b_data, &eb->h_check);
801         if (rc) {
802                 mlog(ML_ERROR, "Checksum failed for extent block %llu\n",
803                      (unsigned long long)bh->b_blocknr);
804                 return rc;
805         }
806
807         /*
808          * Errors after here are fatal.
809          */
810
811         if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
812                 ocfs2_error(sb,
813                             "Extent block #%llu has bad signature %.*s",
814                             (unsigned long long)bh->b_blocknr, 7,
815                             eb->h_signature);
816                 return -EINVAL;
817         }
818
819         if (le64_to_cpu(eb->h_blkno) != bh->b_blocknr) {
820                 ocfs2_error(sb,
821                             "Extent block #%llu has an invalid h_blkno "
822                             "of %llu",
823                             (unsigned long long)bh->b_blocknr,
824                             (unsigned long long)le64_to_cpu(eb->h_blkno));
825                 return -EINVAL;
826         }
827
828         if (le32_to_cpu(eb->h_fs_generation) != OCFS2_SB(sb)->fs_generation) {
829                 ocfs2_error(sb,
830                             "Extent block #%llu has an invalid "
831                             "h_fs_generation of #%u",
832                             (unsigned long long)bh->b_blocknr,
833                             le32_to_cpu(eb->h_fs_generation));
834                 return -EINVAL;
835         }
836
837         return 0;
838 }
839
840 int ocfs2_read_extent_block(struct ocfs2_caching_info *ci, u64 eb_blkno,
841                             struct buffer_head **bh)
842 {
843         int rc;
844         struct buffer_head *tmp = *bh;
845
846         rc = ocfs2_read_block(ci, eb_blkno, &tmp,
847                               ocfs2_validate_extent_block);
848
849         /* If ocfs2_read_block() got us a new bh, pass it up. */
850         if (!rc && !*bh)
851                 *bh = tmp;
852
853         return rc;
854 }
855
856
857 /*
858  * How many free extents have we got before we need more meta data?
859  */
860 int ocfs2_num_free_extents(struct ocfs2_super *osb,
861                            struct ocfs2_extent_tree *et)
862 {
863         int retval;
864         struct ocfs2_extent_list *el = NULL;
865         struct ocfs2_extent_block *eb;
866         struct buffer_head *eb_bh = NULL;
867         u64 last_eb_blk = 0;
868
869         mlog_entry_void();
870
871         el = et->et_root_el;
872         last_eb_blk = ocfs2_et_get_last_eb_blk(et);
873
874         if (last_eb_blk) {
875                 retval = ocfs2_read_extent_block(et->et_ci, last_eb_blk,
876                                                  &eb_bh);
877                 if (retval < 0) {
878                         mlog_errno(retval);
879                         goto bail;
880                 }
881                 eb = (struct ocfs2_extent_block *) eb_bh->b_data;
882                 el = &eb->h_list;
883         }
884
885         BUG_ON(el->l_tree_depth != 0);
886
887         retval = le16_to_cpu(el->l_count) - le16_to_cpu(el->l_next_free_rec);
888 bail:
889         brelse(eb_bh);
890
891         mlog_exit(retval);
892         return retval;
893 }
894
895 /* expects array to already be allocated
896  *
897  * sets h_signature, h_blkno, h_suballoc_bit, h_suballoc_slot, and
898  * l_count for you
899  */
900 static int ocfs2_create_new_meta_bhs(handle_t *handle,
901                                      struct ocfs2_extent_tree *et,
902                                      int wanted,
903                                      struct ocfs2_alloc_context *meta_ac,
904                                      struct buffer_head *bhs[])
905 {
906         int count, status, i;
907         u16 suballoc_bit_start;
908         u32 num_got;
909         u64 first_blkno;
910         struct ocfs2_super *osb =
911                 OCFS2_SB(ocfs2_metadata_cache_get_super(et->et_ci));
912         struct ocfs2_extent_block *eb;
913
914         mlog_entry_void();
915
916         count = 0;
917         while (count < wanted) {
918                 status = ocfs2_claim_metadata(osb,
919                                               handle,
920                                               meta_ac,
921                                               wanted - count,
922                                               &suballoc_bit_start,
923                                               &num_got,
924                                               &first_blkno);
925                 if (status < 0) {
926                         mlog_errno(status);
927                         goto bail;
928                 }
929
930                 for(i = count;  i < (num_got + count); i++) {
931                         bhs[i] = sb_getblk(osb->sb, first_blkno);
932                         if (bhs[i] == NULL) {
933                                 status = -EIO;
934                                 mlog_errno(status);
935                                 goto bail;
936                         }
937                         ocfs2_set_new_buffer_uptodate(et->et_ci, bhs[i]);
938
939                         status = ocfs2_journal_access_eb(handle, et->et_ci,
940                                                          bhs[i],
941                                                          OCFS2_JOURNAL_ACCESS_CREATE);
942                         if (status < 0) {
943                                 mlog_errno(status);
944                                 goto bail;
945                         }
946
947                         memset(bhs[i]->b_data, 0, osb->sb->s_blocksize);
948                         eb = (struct ocfs2_extent_block *) bhs[i]->b_data;
949                         /* Ok, setup the minimal stuff here. */
950                         strcpy(eb->h_signature, OCFS2_EXTENT_BLOCK_SIGNATURE);
951                         eb->h_blkno = cpu_to_le64(first_blkno);
952                         eb->h_fs_generation = cpu_to_le32(osb->fs_generation);
953                         eb->h_suballoc_slot = cpu_to_le16(osb->slot_num);
954                         eb->h_suballoc_bit = cpu_to_le16(suballoc_bit_start);
955                         eb->h_list.l_count =
956                                 cpu_to_le16(ocfs2_extent_recs_per_eb(osb->sb));
957
958                         suballoc_bit_start++;
959                         first_blkno++;
960
961                         /* We'll also be dirtied by the caller, so
962                          * this isn't absolutely necessary. */
963                         status = ocfs2_journal_dirty(handle, bhs[i]);
964                         if (status < 0) {
965                                 mlog_errno(status);
966                                 goto bail;
967                         }
968                 }
969
970                 count += num_got;
971         }
972
973         status = 0;
974 bail:
975         if (status < 0) {
976                 for(i = 0; i < wanted; i++) {
977                         brelse(bhs[i]);
978                         bhs[i] = NULL;
979                 }
980         }
981         mlog_exit(status);
982         return status;
983 }
984
985 /*
986  * Helper function for ocfs2_add_branch() and ocfs2_shift_tree_depth().
987  *
988  * Returns the sum of the rightmost extent rec logical offset and
989  * cluster count.
990  *
991  * ocfs2_add_branch() uses this to determine what logical cluster
992  * value should be populated into the leftmost new branch records.
993  *
994  * ocfs2_shift_tree_depth() uses this to determine the # clusters
995  * value for the new topmost tree record.
996  */
997 static inline u32 ocfs2_sum_rightmost_rec(struct ocfs2_extent_list  *el)
998 {
999         int i;
1000
1001         i = le16_to_cpu(el->l_next_free_rec) - 1;
1002
1003         return le32_to_cpu(el->l_recs[i].e_cpos) +
1004                 ocfs2_rec_clusters(el, &el->l_recs[i]);
1005 }
1006
1007 /*
1008  * Change range of the branches in the right most path according to the leaf
1009  * extent block's rightmost record.
1010  */
1011 static int ocfs2_adjust_rightmost_branch(handle_t *handle,
1012                                          struct inode *inode,
1013                                          struct ocfs2_extent_tree *et)
1014 {
1015         int status;
1016         struct ocfs2_path *path = NULL;
1017         struct ocfs2_extent_list *el;
1018         struct ocfs2_extent_rec *rec;
1019
1020         path = ocfs2_new_path_from_et(et);
1021         if (!path) {
1022                 status = -ENOMEM;
1023                 return status;
1024         }
1025
1026         status = ocfs2_find_path(et->et_ci, path, UINT_MAX);
1027         if (status < 0) {
1028                 mlog_errno(status);
1029                 goto out;
1030         }
1031
1032         status = ocfs2_extend_trans(handle, path_num_items(path) +
1033                                     handle->h_buffer_credits);
1034         if (status < 0) {
1035                 mlog_errno(status);
1036                 goto out;
1037         }
1038
1039         status = ocfs2_journal_access_path(INODE_CACHE(inode), handle, path);
1040         if (status < 0) {
1041                 mlog_errno(status);
1042                 goto out;
1043         }
1044
1045         el = path_leaf_el(path);
1046         rec = &el->l_recs[le32_to_cpu(el->l_next_free_rec) - 1];
1047
1048         ocfs2_adjust_rightmost_records(inode, handle, path, rec);
1049
1050 out:
1051         ocfs2_free_path(path);
1052         return status;
1053 }
1054
1055 /*
1056  * Add an entire tree branch to our inode. eb_bh is the extent block
1057  * to start at, if we don't want to start the branch at the dinode
1058  * structure.
1059  *
1060  * last_eb_bh is required as we have to update it's next_leaf pointer
1061  * for the new last extent block.
1062  *
1063  * the new branch will be 'empty' in the sense that every block will
1064  * contain a single record with cluster count == 0.
1065  */
1066 static int ocfs2_add_branch(struct ocfs2_super *osb,
1067                             handle_t *handle,
1068                             struct inode *inode,
1069                             struct ocfs2_extent_tree *et,
1070                             struct buffer_head *eb_bh,
1071                             struct buffer_head **last_eb_bh,
1072                             struct ocfs2_alloc_context *meta_ac)
1073 {
1074         int status, new_blocks, i;
1075         u64 next_blkno, new_last_eb_blk;
1076         struct buffer_head *bh;
1077         struct buffer_head **new_eb_bhs = NULL;
1078         struct ocfs2_extent_block *eb;
1079         struct ocfs2_extent_list  *eb_el;
1080         struct ocfs2_extent_list  *el;
1081         u32 new_cpos, root_end;
1082
1083         mlog_entry_void();
1084
1085         BUG_ON(!last_eb_bh || !*last_eb_bh);
1086
1087         if (eb_bh) {
1088                 eb = (struct ocfs2_extent_block *) eb_bh->b_data;
1089                 el = &eb->h_list;
1090         } else
1091                 el = et->et_root_el;
1092
1093         /* we never add a branch to a leaf. */
1094         BUG_ON(!el->l_tree_depth);
1095
1096         new_blocks = le16_to_cpu(el->l_tree_depth);
1097
1098         eb = (struct ocfs2_extent_block *)(*last_eb_bh)->b_data;
1099         new_cpos = ocfs2_sum_rightmost_rec(&eb->h_list);
1100         root_end = ocfs2_sum_rightmost_rec(et->et_root_el);
1101
1102         /*
1103          * If there is a gap before the root end and the real end
1104          * of the righmost leaf block, we need to remove the gap
1105          * between new_cpos and root_end first so that the tree
1106          * is consistent after we add a new branch(it will start
1107          * from new_cpos).
1108          */
1109         if (root_end > new_cpos) {
1110                 mlog(0, "adjust the cluster end from %u to %u\n",
1111                      root_end, new_cpos);
1112                 status = ocfs2_adjust_rightmost_branch(handle, inode, et);
1113                 if (status) {
1114                         mlog_errno(status);
1115                         goto bail;
1116                 }
1117         }
1118
1119         /* allocate the number of new eb blocks we need */
1120         new_eb_bhs = kcalloc(new_blocks, sizeof(struct buffer_head *),
1121                              GFP_KERNEL);
1122         if (!new_eb_bhs) {
1123                 status = -ENOMEM;
1124                 mlog_errno(status);
1125                 goto bail;
1126         }
1127
1128         status = ocfs2_create_new_meta_bhs(handle, et, new_blocks,
1129                                            meta_ac, new_eb_bhs);
1130         if (status < 0) {
1131                 mlog_errno(status);
1132                 goto bail;
1133         }
1134
1135         /* Note: new_eb_bhs[new_blocks - 1] is the guy which will be
1136          * linked with the rest of the tree.
1137          * conversly, new_eb_bhs[0] is the new bottommost leaf.
1138          *
1139          * when we leave the loop, new_last_eb_blk will point to the
1140          * newest leaf, and next_blkno will point to the topmost extent
1141          * block. */
1142         next_blkno = new_last_eb_blk = 0;
1143         for(i = 0; i < new_blocks; i++) {
1144                 bh = new_eb_bhs[i];
1145                 eb = (struct ocfs2_extent_block *) bh->b_data;
1146                 /* ocfs2_create_new_meta_bhs() should create it right! */
1147                 BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb));
1148                 eb_el = &eb->h_list;
1149
1150                 status = ocfs2_journal_access_eb(handle, INODE_CACHE(inode), bh,
1151                                                  OCFS2_JOURNAL_ACCESS_CREATE);
1152                 if (status < 0) {
1153                         mlog_errno(status);
1154                         goto bail;
1155                 }
1156
1157                 eb->h_next_leaf_blk = 0;
1158                 eb_el->l_tree_depth = cpu_to_le16(i);
1159                 eb_el->l_next_free_rec = cpu_to_le16(1);
1160                 /*
1161                  * This actually counts as an empty extent as
1162                  * c_clusters == 0
1163                  */
1164                 eb_el->l_recs[0].e_cpos = cpu_to_le32(new_cpos);
1165                 eb_el->l_recs[0].e_blkno = cpu_to_le64(next_blkno);
1166                 /*
1167                  * eb_el isn't always an interior node, but even leaf
1168                  * nodes want a zero'd flags and reserved field so
1169                  * this gets the whole 32 bits regardless of use.
1170                  */
1171                 eb_el->l_recs[0].e_int_clusters = cpu_to_le32(0);
1172                 if (!eb_el->l_tree_depth)
1173                         new_last_eb_blk = le64_to_cpu(eb->h_blkno);
1174
1175                 status = ocfs2_journal_dirty(handle, bh);
1176                 if (status < 0) {
1177                         mlog_errno(status);
1178                         goto bail;
1179                 }
1180
1181                 next_blkno = le64_to_cpu(eb->h_blkno);
1182         }
1183
1184         /* This is a bit hairy. We want to update up to three blocks
1185          * here without leaving any of them in an inconsistent state
1186          * in case of error. We don't have to worry about
1187          * journal_dirty erroring as it won't unless we've aborted the
1188          * handle (in which case we would never be here) so reserving
1189          * the write with journal_access is all we need to do. */
1190         status = ocfs2_journal_access_eb(handle, INODE_CACHE(inode), *last_eb_bh,
1191                                          OCFS2_JOURNAL_ACCESS_WRITE);
1192         if (status < 0) {
1193                 mlog_errno(status);
1194                 goto bail;
1195         }
1196         status = ocfs2_et_root_journal_access(handle, et,
1197                                               OCFS2_JOURNAL_ACCESS_WRITE);
1198         if (status < 0) {
1199                 mlog_errno(status);
1200                 goto bail;
1201         }
1202         if (eb_bh) {
1203                 status = ocfs2_journal_access_eb(handle, INODE_CACHE(inode), eb_bh,
1204                                                  OCFS2_JOURNAL_ACCESS_WRITE);
1205                 if (status < 0) {
1206                         mlog_errno(status);
1207                         goto bail;
1208                 }
1209         }
1210
1211         /* Link the new branch into the rest of the tree (el will
1212          * either be on the root_bh, or the extent block passed in. */
1213         i = le16_to_cpu(el->l_next_free_rec);
1214         el->l_recs[i].e_blkno = cpu_to_le64(next_blkno);
1215         el->l_recs[i].e_cpos = cpu_to_le32(new_cpos);
1216         el->l_recs[i].e_int_clusters = 0;
1217         le16_add_cpu(&el->l_next_free_rec, 1);
1218
1219         /* fe needs a new last extent block pointer, as does the
1220          * next_leaf on the previously last-extent-block. */
1221         ocfs2_et_set_last_eb_blk(et, new_last_eb_blk);
1222
1223         eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
1224         eb->h_next_leaf_blk = cpu_to_le64(new_last_eb_blk);
1225
1226         status = ocfs2_journal_dirty(handle, *last_eb_bh);
1227         if (status < 0)
1228                 mlog_errno(status);
1229         status = ocfs2_journal_dirty(handle, et->et_root_bh);
1230         if (status < 0)
1231                 mlog_errno(status);
1232         if (eb_bh) {
1233                 status = ocfs2_journal_dirty(handle, eb_bh);
1234                 if (status < 0)
1235                         mlog_errno(status);
1236         }
1237
1238         /*
1239          * Some callers want to track the rightmost leaf so pass it
1240          * back here.
1241          */
1242         brelse(*last_eb_bh);
1243         get_bh(new_eb_bhs[0]);
1244         *last_eb_bh = new_eb_bhs[0];
1245
1246         status = 0;
1247 bail:
1248         if (new_eb_bhs) {
1249                 for (i = 0; i < new_blocks; i++)
1250                         brelse(new_eb_bhs[i]);
1251                 kfree(new_eb_bhs);
1252         }
1253
1254         mlog_exit(status);
1255         return status;
1256 }
1257
1258 /*
1259  * adds another level to the allocation tree.
1260  * returns back the new extent block so you can add a branch to it
1261  * after this call.
1262  */
1263 static int ocfs2_shift_tree_depth(struct ocfs2_super *osb,
1264                                   handle_t *handle,
1265                                   struct inode *inode,
1266                                   struct ocfs2_extent_tree *et,
1267                                   struct ocfs2_alloc_context *meta_ac,
1268                                   struct buffer_head **ret_new_eb_bh)
1269 {
1270         int status, i;
1271         u32 new_clusters;
1272         struct buffer_head *new_eb_bh = NULL;
1273         struct ocfs2_extent_block *eb;
1274         struct ocfs2_extent_list  *root_el;
1275         struct ocfs2_extent_list  *eb_el;
1276
1277         mlog_entry_void();
1278
1279         status = ocfs2_create_new_meta_bhs(handle, et, 1, meta_ac,
1280                                            &new_eb_bh);
1281         if (status < 0) {
1282                 mlog_errno(status);
1283                 goto bail;
1284         }
1285
1286         eb = (struct ocfs2_extent_block *) new_eb_bh->b_data;
1287         /* ocfs2_create_new_meta_bhs() should create it right! */
1288         BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb));
1289
1290         eb_el = &eb->h_list;
1291         root_el = et->et_root_el;
1292
1293         status = ocfs2_journal_access_eb(handle, INODE_CACHE(inode), new_eb_bh,
1294                                          OCFS2_JOURNAL_ACCESS_CREATE);
1295         if (status < 0) {
1296                 mlog_errno(status);
1297                 goto bail;
1298         }
1299
1300         /* copy the root extent list data into the new extent block */
1301         eb_el->l_tree_depth = root_el->l_tree_depth;
1302         eb_el->l_next_free_rec = root_el->l_next_free_rec;
1303         for (i = 0; i < le16_to_cpu(root_el->l_next_free_rec); i++)
1304                 eb_el->l_recs[i] = root_el->l_recs[i];
1305
1306         status = ocfs2_journal_dirty(handle, new_eb_bh);
1307         if (status < 0) {
1308                 mlog_errno(status);
1309                 goto bail;
1310         }
1311
1312         status = ocfs2_et_root_journal_access(handle, et,
1313                                               OCFS2_JOURNAL_ACCESS_WRITE);
1314         if (status < 0) {
1315                 mlog_errno(status);
1316                 goto bail;
1317         }
1318
1319         new_clusters = ocfs2_sum_rightmost_rec(eb_el);
1320
1321         /* update root_bh now */
1322         le16_add_cpu(&root_el->l_tree_depth, 1);
1323         root_el->l_recs[0].e_cpos = 0;
1324         root_el->l_recs[0].e_blkno = eb->h_blkno;
1325         root_el->l_recs[0].e_int_clusters = cpu_to_le32(new_clusters);
1326         for (i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++)
1327                 memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
1328         root_el->l_next_free_rec = cpu_to_le16(1);
1329
1330         /* If this is our 1st tree depth shift, then last_eb_blk
1331          * becomes the allocated extent block */
1332         if (root_el->l_tree_depth == cpu_to_le16(1))
1333                 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
1334
1335         status = ocfs2_journal_dirty(handle, et->et_root_bh);
1336         if (status < 0) {
1337                 mlog_errno(status);
1338                 goto bail;
1339         }
1340
1341         *ret_new_eb_bh = new_eb_bh;
1342         new_eb_bh = NULL;
1343         status = 0;
1344 bail:
1345         brelse(new_eb_bh);
1346
1347         mlog_exit(status);
1348         return status;
1349 }
1350
1351 /*
1352  * Should only be called when there is no space left in any of the
1353  * leaf nodes. What we want to do is find the lowest tree depth
1354  * non-leaf extent block with room for new records. There are three
1355  * valid results of this search:
1356  *
1357  * 1) a lowest extent block is found, then we pass it back in
1358  *    *lowest_eb_bh and return '0'
1359  *
1360  * 2) the search fails to find anything, but the root_el has room. We
1361  *    pass NULL back in *lowest_eb_bh, but still return '0'
1362  *
1363  * 3) the search fails to find anything AND the root_el is full, in
1364  *    which case we return > 0
1365  *
1366  * return status < 0 indicates an error.
1367  */
1368 static int ocfs2_find_branch_target(struct ocfs2_super *osb,
1369                                     struct ocfs2_extent_tree *et,
1370                                     struct buffer_head **target_bh)
1371 {
1372         int status = 0, i;
1373         u64 blkno;
1374         struct ocfs2_extent_block *eb;
1375         struct ocfs2_extent_list  *el;
1376         struct buffer_head *bh = NULL;
1377         struct buffer_head *lowest_bh = NULL;
1378
1379         mlog_entry_void();
1380
1381         *target_bh = NULL;
1382
1383         el = et->et_root_el;
1384
1385         while(le16_to_cpu(el->l_tree_depth) > 1) {
1386                 if (le16_to_cpu(el->l_next_free_rec) == 0) {
1387                         ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
1388                                     "Owner %llu has empty "
1389                                     "extent list (next_free_rec == 0)",
1390                                     (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci));
1391                         status = -EIO;
1392                         goto bail;
1393                 }
1394                 i = le16_to_cpu(el->l_next_free_rec) - 1;
1395                 blkno = le64_to_cpu(el->l_recs[i].e_blkno);
1396                 if (!blkno) {
1397                         ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
1398                                     "Owner %llu has extent "
1399                                     "list where extent # %d has no physical "
1400                                     "block start",
1401                                     (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), i);
1402                         status = -EIO;
1403                         goto bail;
1404                 }
1405
1406                 brelse(bh);
1407                 bh = NULL;
1408
1409                 status = ocfs2_read_extent_block(et->et_ci, blkno, &bh);
1410                 if (status < 0) {
1411                         mlog_errno(status);
1412                         goto bail;
1413                 }
1414
1415                 eb = (struct ocfs2_extent_block *) bh->b_data;
1416                 el = &eb->h_list;
1417
1418                 if (le16_to_cpu(el->l_next_free_rec) <
1419                     le16_to_cpu(el->l_count)) {
1420                         brelse(lowest_bh);
1421                         lowest_bh = bh;
1422                         get_bh(lowest_bh);
1423                 }
1424         }
1425
1426         /* If we didn't find one and the fe doesn't have any room,
1427          * then return '1' */
1428         el = et->et_root_el;
1429         if (!lowest_bh && (el->l_next_free_rec == el->l_count))
1430                 status = 1;
1431
1432         *target_bh = lowest_bh;
1433 bail:
1434         brelse(bh);
1435
1436         mlog_exit(status);
1437         return status;
1438 }
1439
1440 /*
1441  * Grow a b-tree so that it has more records.
1442  *
1443  * We might shift the tree depth in which case existing paths should
1444  * be considered invalid.
1445  *
1446  * Tree depth after the grow is returned via *final_depth.
1447  *
1448  * *last_eb_bh will be updated by ocfs2_add_branch().
1449  */
1450 static int ocfs2_grow_tree(struct inode *inode, handle_t *handle,
1451                            struct ocfs2_extent_tree *et, int *final_depth,
1452                            struct buffer_head **last_eb_bh,
1453                            struct ocfs2_alloc_context *meta_ac)
1454 {
1455         int ret, shift;
1456         struct ocfs2_extent_list *el = et->et_root_el;
1457         int depth = le16_to_cpu(el->l_tree_depth);
1458         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1459         struct buffer_head *bh = NULL;
1460
1461         BUG_ON(meta_ac == NULL);
1462
1463         shift = ocfs2_find_branch_target(osb, et, &bh);
1464         if (shift < 0) {
1465                 ret = shift;
1466                 mlog_errno(ret);
1467                 goto out;
1468         }
1469
1470         /* We traveled all the way to the bottom of the allocation tree
1471          * and didn't find room for any more extents - we need to add
1472          * another tree level */
1473         if (shift) {
1474                 BUG_ON(bh);
1475                 mlog(0, "need to shift tree depth (current = %d)\n", depth);
1476
1477                 /* ocfs2_shift_tree_depth will return us a buffer with
1478                  * the new extent block (so we can pass that to
1479                  * ocfs2_add_branch). */
1480                 ret = ocfs2_shift_tree_depth(osb, handle, inode, et,
1481                                              meta_ac, &bh);
1482                 if (ret < 0) {
1483                         mlog_errno(ret);
1484                         goto out;
1485                 }
1486                 depth++;
1487                 if (depth == 1) {
1488                         /*
1489                          * Special case: we have room now if we shifted from
1490                          * tree_depth 0, so no more work needs to be done.
1491                          *
1492                          * We won't be calling add_branch, so pass
1493                          * back *last_eb_bh as the new leaf. At depth
1494                          * zero, it should always be null so there's
1495                          * no reason to brelse.
1496                          */
1497                         BUG_ON(*last_eb_bh);
1498                         get_bh(bh);
1499                         *last_eb_bh = bh;
1500                         goto out;
1501                 }
1502         }
1503
1504         /* call ocfs2_add_branch to add the final part of the tree with
1505          * the new data. */
1506         mlog(0, "add branch. bh = %p\n", bh);
1507         ret = ocfs2_add_branch(osb, handle, inode, et, bh, last_eb_bh,
1508                                meta_ac);
1509         if (ret < 0) {
1510                 mlog_errno(ret);
1511                 goto out;
1512         }
1513
1514 out:
1515         if (final_depth)
1516                 *final_depth = depth;
1517         brelse(bh);
1518         return ret;
1519 }
1520
1521 /*
1522  * This function will discard the rightmost extent record.
1523  */
1524 static void ocfs2_shift_records_right(struct ocfs2_extent_list *el)
1525 {
1526         int next_free = le16_to_cpu(el->l_next_free_rec);
1527         int count = le16_to_cpu(el->l_count);
1528         unsigned int num_bytes;
1529
1530         BUG_ON(!next_free);
1531         /* This will cause us to go off the end of our extent list. */
1532         BUG_ON(next_free >= count);
1533
1534         num_bytes = sizeof(struct ocfs2_extent_rec) * next_free;
1535
1536         memmove(&el->l_recs[1], &el->l_recs[0], num_bytes);
1537 }
1538
1539 static void ocfs2_rotate_leaf(struct ocfs2_extent_list *el,
1540                               struct ocfs2_extent_rec *insert_rec)
1541 {
1542         int i, insert_index, next_free, has_empty, num_bytes;
1543         u32 insert_cpos = le32_to_cpu(insert_rec->e_cpos);
1544         struct ocfs2_extent_rec *rec;
1545
1546         next_free = le16_to_cpu(el->l_next_free_rec);
1547         has_empty = ocfs2_is_empty_extent(&el->l_recs[0]);
1548
1549         BUG_ON(!next_free);
1550
1551         /* The tree code before us didn't allow enough room in the leaf. */
1552         BUG_ON(el->l_next_free_rec == el->l_count && !has_empty);
1553
1554         /*
1555          * The easiest way to approach this is to just remove the
1556          * empty extent and temporarily decrement next_free.
1557          */
1558         if (has_empty) {
1559                 /*
1560                  * If next_free was 1 (only an empty extent), this
1561                  * loop won't execute, which is fine. We still want
1562                  * the decrement above to happen.
1563                  */
1564                 for(i = 0; i < (next_free - 1); i++)
1565                         el->l_recs[i] = el->l_recs[i+1];
1566
1567                 next_free--;
1568         }
1569
1570         /*
1571          * Figure out what the new record index should be.
1572          */
1573         for(i = 0; i < next_free; i++) {
1574                 rec = &el->l_recs[i];
1575
1576                 if (insert_cpos < le32_to_cpu(rec->e_cpos))
1577                         break;
1578         }
1579         insert_index = i;
1580
1581         mlog(0, "ins %u: index %d, has_empty %d, next_free %d, count %d\n",
1582              insert_cpos, insert_index, has_empty, next_free, le16_to_cpu(el->l_count));
1583
1584         BUG_ON(insert_index < 0);
1585         BUG_ON(insert_index >= le16_to_cpu(el->l_count));
1586         BUG_ON(insert_index > next_free);
1587
1588         /*
1589          * No need to memmove if we're just adding to the tail.
1590          */
1591         if (insert_index != next_free) {
1592                 BUG_ON(next_free >= le16_to_cpu(el->l_count));
1593
1594                 num_bytes = next_free - insert_index;
1595                 num_bytes *= sizeof(struct ocfs2_extent_rec);
1596                 memmove(&el->l_recs[insert_index + 1],
1597                         &el->l_recs[insert_index],
1598                         num_bytes);
1599         }
1600
1601         /*
1602          * Either we had an empty extent, and need to re-increment or
1603          * there was no empty extent on a non full rightmost leaf node,
1604          * in which case we still need to increment.
1605          */
1606         next_free++;
1607         el->l_next_free_rec = cpu_to_le16(next_free);
1608         /*
1609          * Make sure none of the math above just messed up our tree.
1610          */
1611         BUG_ON(le16_to_cpu(el->l_next_free_rec) > le16_to_cpu(el->l_count));
1612
1613         el->l_recs[insert_index] = *insert_rec;
1614
1615 }
1616
1617 static void ocfs2_remove_empty_extent(struct ocfs2_extent_list *el)
1618 {
1619         int size, num_recs = le16_to_cpu(el->l_next_free_rec);
1620
1621         BUG_ON(num_recs == 0);
1622
1623         if (ocfs2_is_empty_extent(&el->l_recs[0])) {
1624                 num_recs--;
1625                 size = num_recs * sizeof(struct ocfs2_extent_rec);
1626                 memmove(&el->l_recs[0], &el->l_recs[1], size);
1627                 memset(&el->l_recs[num_recs], 0,
1628                        sizeof(struct ocfs2_extent_rec));
1629                 el->l_next_free_rec = cpu_to_le16(num_recs);
1630         }
1631 }
1632
1633 /*
1634  * Create an empty extent record .
1635  *
1636  * l_next_free_rec may be updated.
1637  *
1638  * If an empty extent already exists do nothing.
1639  */
1640 static void ocfs2_create_empty_extent(struct ocfs2_extent_list *el)
1641 {
1642         int next_free = le16_to_cpu(el->l_next_free_rec);
1643
1644         BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
1645
1646         if (next_free == 0)
1647                 goto set_and_inc;
1648
1649         if (ocfs2_is_empty_extent(&el->l_recs[0]))
1650                 return;
1651
1652         mlog_bug_on_msg(el->l_count == el->l_next_free_rec,
1653                         "Asked to create an empty extent in a full list:\n"
1654                         "count = %u, tree depth = %u",
1655                         le16_to_cpu(el->l_count),
1656                         le16_to_cpu(el->l_tree_depth));
1657
1658         ocfs2_shift_records_right(el);
1659
1660 set_and_inc:
1661         le16_add_cpu(&el->l_next_free_rec, 1);
1662         memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
1663 }
1664
1665 /*
1666  * For a rotation which involves two leaf nodes, the "root node" is
1667  * the lowest level tree node which contains a path to both leafs. This
1668  * resulting set of information can be used to form a complete "subtree"
1669  *
1670  * This function is passed two full paths from the dinode down to a
1671  * pair of adjacent leaves. It's task is to figure out which path
1672  * index contains the subtree root - this can be the root index itself
1673  * in a worst-case rotation.
1674  *
1675  * The array index of the subtree root is passed back.
1676  */
1677 static int ocfs2_find_subtree_root(struct ocfs2_extent_tree *et,
1678                                    struct ocfs2_path *left,
1679                                    struct ocfs2_path *right)
1680 {
1681         int i = 0;
1682
1683         /*
1684          * Check that the caller passed in two paths from the same tree.
1685          */
1686         BUG_ON(path_root_bh(left) != path_root_bh(right));
1687
1688         do {
1689                 i++;
1690
1691                 /*
1692                  * The caller didn't pass two adjacent paths.
1693                  */
1694                 mlog_bug_on_msg(i > left->p_tree_depth,
1695                                 "Owner %llu, left depth %u, right depth %u\n"
1696                                 "left leaf blk %llu, right leaf blk %llu\n",
1697                                 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
1698                                 left->p_tree_depth, right->p_tree_depth,
1699                                 (unsigned long long)path_leaf_bh(left)->b_blocknr,
1700                                 (unsigned long long)path_leaf_bh(right)->b_blocknr);
1701         } while (left->p_node[i].bh->b_blocknr ==
1702                  right->p_node[i].bh->b_blocknr);
1703
1704         return i - 1;
1705 }
1706
1707 typedef void (path_insert_t)(void *, struct buffer_head *);
1708
1709 /*
1710  * Traverse a btree path in search of cpos, starting at root_el.
1711  *
1712  * This code can be called with a cpos larger than the tree, in which
1713  * case it will return the rightmost path.
1714  */
1715 static int __ocfs2_find_path(struct ocfs2_caching_info *ci,
1716                              struct ocfs2_extent_list *root_el, u32 cpos,
1717                              path_insert_t *func, void *data)
1718 {
1719         int i, ret = 0;
1720         u32 range;
1721         u64 blkno;
1722         struct buffer_head *bh = NULL;
1723         struct ocfs2_extent_block *eb;
1724         struct ocfs2_extent_list *el;
1725         struct ocfs2_extent_rec *rec;
1726
1727         el = root_el;
1728         while (el->l_tree_depth) {
1729                 if (le16_to_cpu(el->l_next_free_rec) == 0) {
1730                         ocfs2_error(ocfs2_metadata_cache_get_super(ci),
1731                                     "Owner %llu has empty extent list at "
1732                                     "depth %u\n",
1733                                     (unsigned long long)ocfs2_metadata_cache_owner(ci),
1734                                     le16_to_cpu(el->l_tree_depth));
1735                         ret = -EROFS;
1736                         goto out;
1737
1738                 }
1739
1740                 for(i = 0; i < le16_to_cpu(el->l_next_free_rec) - 1; i++) {
1741                         rec = &el->l_recs[i];
1742
1743                         /*
1744                          * In the case that cpos is off the allocation
1745                          * tree, this should just wind up returning the
1746                          * rightmost record.
1747                          */
1748                         range = le32_to_cpu(rec->e_cpos) +
1749                                 ocfs2_rec_clusters(el, rec);
1750                         if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
1751                             break;
1752                 }
1753
1754                 blkno = le64_to_cpu(el->l_recs[i].e_blkno);
1755                 if (blkno == 0) {
1756                         ocfs2_error(ocfs2_metadata_cache_get_super(ci),
1757                                     "Owner %llu has bad blkno in extent list "
1758                                     "at depth %u (index %d)\n",
1759                                     (unsigned long long)ocfs2_metadata_cache_owner(ci),
1760                                     le16_to_cpu(el->l_tree_depth), i);
1761                         ret = -EROFS;
1762                         goto out;
1763                 }
1764
1765                 brelse(bh);
1766                 bh = NULL;
1767                 ret = ocfs2_read_extent_block(ci, blkno, &bh);
1768                 if (ret) {
1769                         mlog_errno(ret);
1770                         goto out;
1771                 }
1772
1773                 eb = (struct ocfs2_extent_block *) bh->b_data;
1774                 el = &eb->h_list;
1775
1776                 if (le16_to_cpu(el->l_next_free_rec) >
1777                     le16_to_cpu(el->l_count)) {
1778                         ocfs2_error(ocfs2_metadata_cache_get_super(ci),
1779                                     "Owner %llu has bad count in extent list "
1780                                     "at block %llu (next free=%u, count=%u)\n",
1781                                     (unsigned long long)ocfs2_metadata_cache_owner(ci),
1782                                     (unsigned long long)bh->b_blocknr,
1783                                     le16_to_cpu(el->l_next_free_rec),
1784                                     le16_to_cpu(el->l_count));
1785                         ret = -EROFS;
1786                         goto out;
1787                 }
1788
1789                 if (func)
1790                         func(data, bh);
1791         }
1792
1793 out:
1794         /*
1795          * Catch any trailing bh that the loop didn't handle.
1796          */
1797         brelse(bh);
1798
1799         return ret;
1800 }
1801
1802 /*
1803  * Given an initialized path (that is, it has a valid root extent
1804  * list), this function will traverse the btree in search of the path
1805  * which would contain cpos.
1806  *
1807  * The path traveled is recorded in the path structure.
1808  *
1809  * Note that this will not do any comparisons on leaf node extent
1810  * records, so it will work fine in the case that we just added a tree
1811  * branch.
1812  */
1813 struct find_path_data {
1814         int index;
1815         struct ocfs2_path *path;
1816 };
1817 static void find_path_ins(void *data, struct buffer_head *bh)
1818 {
1819         struct find_path_data *fp = data;
1820
1821         get_bh(bh);
1822         ocfs2_path_insert_eb(fp->path, fp->index, bh);
1823         fp->index++;
1824 }
1825 static int ocfs2_find_path(struct ocfs2_caching_info *ci,
1826                            struct ocfs2_path *path, u32 cpos)
1827 {
1828         struct find_path_data data;
1829
1830         data.index = 1;
1831         data.path = path;
1832         return __ocfs2_find_path(ci, path_root_el(path), cpos,
1833                                  find_path_ins, &data);
1834 }
1835
1836 static void find_leaf_ins(void *data, struct buffer_head *bh)
1837 {
1838         struct ocfs2_extent_block *eb =(struct ocfs2_extent_block *)bh->b_data;
1839         struct ocfs2_extent_list *el = &eb->h_list;
1840         struct buffer_head **ret = data;
1841
1842         /* We want to retain only the leaf block. */
1843         if (le16_to_cpu(el->l_tree_depth) == 0) {
1844                 get_bh(bh);
1845                 *ret = bh;
1846         }
1847 }
1848 /*
1849  * Find the leaf block in the tree which would contain cpos. No
1850  * checking of the actual leaf is done.
1851  *
1852  * Some paths want to call this instead of allocating a path structure
1853  * and calling ocfs2_find_path().
1854  *
1855  * This function doesn't handle non btree extent lists.
1856  */
1857 int ocfs2_find_leaf(struct ocfs2_caching_info *ci,
1858                     struct ocfs2_extent_list *root_el, u32 cpos,
1859                     struct buffer_head **leaf_bh)
1860 {
1861         int ret;
1862         struct buffer_head *bh = NULL;
1863
1864         ret = __ocfs2_find_path(ci, root_el, cpos, find_leaf_ins, &bh);
1865         if (ret) {
1866                 mlog_errno(ret);
1867                 goto out;
1868         }
1869
1870         *leaf_bh = bh;
1871 out:
1872         return ret;
1873 }
1874
1875 /*
1876  * Adjust the adjacent records (left_rec, right_rec) involved in a rotation.
1877  *
1878  * Basically, we've moved stuff around at the bottom of the tree and
1879  * we need to fix up the extent records above the changes to reflect
1880  * the new changes.
1881  *
1882  * left_rec: the record on the left.
1883  * left_child_el: is the child list pointed to by left_rec
1884  * right_rec: the record to the right of left_rec
1885  * right_child_el: is the child list pointed to by right_rec
1886  *
1887  * By definition, this only works on interior nodes.
1888  */
1889 static void ocfs2_adjust_adjacent_records(struct ocfs2_extent_rec *left_rec,
1890                                   struct ocfs2_extent_list *left_child_el,
1891                                   struct ocfs2_extent_rec *right_rec,
1892                                   struct ocfs2_extent_list *right_child_el)
1893 {
1894         u32 left_clusters, right_end;
1895
1896         /*
1897          * Interior nodes never have holes. Their cpos is the cpos of
1898          * the leftmost record in their child list. Their cluster
1899          * count covers the full theoretical range of their child list
1900          * - the range between their cpos and the cpos of the record
1901          * immediately to their right.
1902          */
1903         left_clusters = le32_to_cpu(right_child_el->l_recs[0].e_cpos);
1904         if (!ocfs2_rec_clusters(right_child_el, &right_child_el->l_recs[0])) {
1905                 BUG_ON(right_child_el->l_tree_depth);
1906                 BUG_ON(le16_to_cpu(right_child_el->l_next_free_rec) <= 1);
1907                 left_clusters = le32_to_cpu(right_child_el->l_recs[1].e_cpos);
1908         }
1909         left_clusters -= le32_to_cpu(left_rec->e_cpos);
1910         left_rec->e_int_clusters = cpu_to_le32(left_clusters);
1911
1912         /*
1913          * Calculate the rightmost cluster count boundary before
1914          * moving cpos - we will need to adjust clusters after
1915          * updating e_cpos to keep the same highest cluster count.
1916          */
1917         right_end = le32_to_cpu(right_rec->e_cpos);
1918         right_end += le32_to_cpu(right_rec->e_int_clusters);
1919
1920         right_rec->e_cpos = left_rec->e_cpos;
1921         le32_add_cpu(&right_rec->e_cpos, left_clusters);
1922
1923         right_end -= le32_to_cpu(right_rec->e_cpos);
1924         right_rec->e_int_clusters = cpu_to_le32(right_end);
1925 }
1926
1927 /*
1928  * Adjust the adjacent root node records involved in a
1929  * rotation. left_el_blkno is passed in as a key so that we can easily
1930  * find it's index in the root list.
1931  */
1932 static void ocfs2_adjust_root_records(struct ocfs2_extent_list *root_el,
1933                                       struct ocfs2_extent_list *left_el,
1934                                       struct ocfs2_extent_list *right_el,
1935                                       u64 left_el_blkno)
1936 {
1937         int i;
1938
1939         BUG_ON(le16_to_cpu(root_el->l_tree_depth) <=
1940                le16_to_cpu(left_el->l_tree_depth));
1941
1942         for(i = 0; i < le16_to_cpu(root_el->l_next_free_rec) - 1; i++) {
1943                 if (le64_to_cpu(root_el->l_recs[i].e_blkno) == left_el_blkno)
1944                         break;
1945         }
1946
1947         /*
1948          * The path walking code should have never returned a root and
1949          * two paths which are not adjacent.
1950          */
1951         BUG_ON(i >= (le16_to_cpu(root_el->l_next_free_rec) - 1));
1952
1953         ocfs2_adjust_adjacent_records(&root_el->l_recs[i], left_el,
1954                                       &root_el->l_recs[i + 1], right_el);
1955 }
1956
1957 /*
1958  * We've changed a leaf block (in right_path) and need to reflect that
1959  * change back up the subtree.
1960  *
1961  * This happens in multiple places:
1962  *   - When we've moved an extent record from the left path leaf to the right
1963  *     path leaf to make room for an empty extent in the left path leaf.
1964  *   - When our insert into the right path leaf is at the leftmost edge
1965  *     and requires an update of the path immediately to it's left. This
1966  *     can occur at the end of some types of rotation and appending inserts.
1967  *   - When we've adjusted the last extent record in the left path leaf and the
1968  *     1st extent record in the right path leaf during cross extent block merge.
1969  */
1970 static void ocfs2_complete_edge_insert(handle_t *handle,
1971                                        struct ocfs2_path *left_path,
1972                                        struct ocfs2_path *right_path,
1973                                        int subtree_index)
1974 {
1975         int ret, i, idx;
1976         struct ocfs2_extent_list *el, *left_el, *right_el;
1977         struct ocfs2_extent_rec *left_rec, *right_rec;
1978         struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
1979
1980         /*
1981          * Update the counts and position values within all the
1982          * interior nodes to reflect the leaf rotation we just did.
1983          *
1984          * The root node is handled below the loop.
1985          *
1986          * We begin the loop with right_el and left_el pointing to the
1987          * leaf lists and work our way up.
1988          *
1989          * NOTE: within this loop, left_el and right_el always refer
1990          * to the *child* lists.
1991          */
1992         left_el = path_leaf_el(left_path);
1993         right_el = path_leaf_el(right_path);
1994         for(i = left_path->p_tree_depth - 1; i > subtree_index; i--) {
1995                 mlog(0, "Adjust records at index %u\n", i);
1996
1997                 /*
1998                  * One nice property of knowing that all of these
1999                  * nodes are below the root is that we only deal with
2000                  * the leftmost right node record and the rightmost
2001                  * left node record.
2002                  */
2003                 el = left_path->p_node[i].el;
2004                 idx = le16_to_cpu(left_el->l_next_free_rec) - 1;
2005                 left_rec = &el->l_recs[idx];
2006
2007                 el = right_path->p_node[i].el;
2008                 right_rec = &el->l_recs[0];
2009
2010                 ocfs2_adjust_adjacent_records(left_rec, left_el, right_rec,
2011                                               right_el);
2012
2013                 ret = ocfs2_journal_dirty(handle, left_path->p_node[i].bh);
2014                 if (ret)
2015                         mlog_errno(ret);
2016
2017                 ret = ocfs2_journal_dirty(handle, right_path->p_node[i].bh);
2018                 if (ret)
2019                         mlog_errno(ret);
2020
2021                 /*
2022                  * Setup our list pointers now so that the current
2023                  * parents become children in the next iteration.
2024                  */
2025                 left_el = left_path->p_node[i].el;
2026                 right_el = right_path->p_node[i].el;
2027         }
2028
2029         /*
2030          * At the root node, adjust the two adjacent records which
2031          * begin our path to the leaves.
2032          */
2033
2034         el = left_path->p_node[subtree_index].el;
2035         left_el = left_path->p_node[subtree_index + 1].el;
2036         right_el = right_path->p_node[subtree_index + 1].el;
2037
2038         ocfs2_adjust_root_records(el, left_el, right_el,
2039                                   left_path->p_node[subtree_index + 1].bh->b_blocknr);
2040
2041         root_bh = left_path->p_node[subtree_index].bh;
2042
2043         ret = ocfs2_journal_dirty(handle, root_bh);
2044         if (ret)
2045                 mlog_errno(ret);
2046 }
2047
2048 static int ocfs2_rotate_subtree_right(handle_t *handle,
2049                                       struct ocfs2_extent_tree *et,
2050                                       struct ocfs2_path *left_path,
2051                                       struct ocfs2_path *right_path,
2052                                       int subtree_index)
2053 {
2054         int ret, i;
2055         struct buffer_head *right_leaf_bh;
2056         struct buffer_head *left_leaf_bh = NULL;
2057         struct buffer_head *root_bh;
2058         struct ocfs2_extent_list *right_el, *left_el;
2059         struct ocfs2_extent_rec move_rec;
2060
2061         left_leaf_bh = path_leaf_bh(left_path);
2062         left_el = path_leaf_el(left_path);
2063
2064         if (left_el->l_next_free_rec != left_el->l_count) {
2065                 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
2066                             "Inode %llu has non-full interior leaf node %llu"
2067                             "(next free = %u)",
2068                             (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2069                             (unsigned long long)left_leaf_bh->b_blocknr,
2070                             le16_to_cpu(left_el->l_next_free_rec));
2071                 return -EROFS;
2072         }
2073
2074         /*
2075          * This extent block may already have an empty record, so we
2076          * return early if so.
2077          */
2078         if (ocfs2_is_empty_extent(&left_el->l_recs[0]))
2079                 return 0;
2080
2081         root_bh = left_path->p_node[subtree_index].bh;
2082         BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
2083
2084         ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
2085                                            subtree_index);
2086         if (ret) {
2087                 mlog_errno(ret);
2088                 goto out;
2089         }
2090
2091         for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
2092                 ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2093                                                    right_path, i);
2094                 if (ret) {
2095                         mlog_errno(ret);
2096                         goto out;
2097                 }
2098
2099                 ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2100                                                    left_path, i);
2101                 if (ret) {
2102                         mlog_errno(ret);
2103                         goto out;
2104                 }
2105         }
2106
2107         right_leaf_bh = path_leaf_bh(right_path);
2108         right_el = path_leaf_el(right_path);
2109
2110         /* This is a code error, not a disk corruption. */
2111         mlog_bug_on_msg(!right_el->l_next_free_rec, "Inode %llu: Rotate fails "
2112                         "because rightmost leaf block %llu is empty\n",
2113                         (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2114                         (unsigned long long)right_leaf_bh->b_blocknr);
2115
2116         ocfs2_create_empty_extent(right_el);
2117
2118         ret = ocfs2_journal_dirty(handle, right_leaf_bh);
2119         if (ret) {
2120                 mlog_errno(ret);
2121                 goto out;
2122         }
2123
2124         /* Do the copy now. */
2125         i = le16_to_cpu(left_el->l_next_free_rec) - 1;
2126         move_rec = left_el->l_recs[i];
2127         right_el->l_recs[0] = move_rec;
2128
2129         /*
2130          * Clear out the record we just copied and shift everything
2131          * over, leaving an empty extent in the left leaf.
2132          *
2133          * We temporarily subtract from next_free_rec so that the
2134          * shift will lose the tail record (which is now defunct).
2135          */
2136         le16_add_cpu(&left_el->l_next_free_rec, -1);
2137         ocfs2_shift_records_right(left_el);
2138         memset(&left_el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2139         le16_add_cpu(&left_el->l_next_free_rec, 1);
2140
2141         ret = ocfs2_journal_dirty(handle, left_leaf_bh);
2142         if (ret) {
2143                 mlog_errno(ret);
2144                 goto out;
2145         }
2146
2147         ocfs2_complete_edge_insert(handle, left_path, right_path,
2148                                    subtree_index);
2149
2150 out:
2151         return ret;
2152 }
2153
2154 /*
2155  * Given a full path, determine what cpos value would return us a path
2156  * containing the leaf immediately to the left of the current one.
2157  *
2158  * Will return zero if the path passed in is already the leftmost path.
2159  */
2160 static int ocfs2_find_cpos_for_left_leaf(struct super_block *sb,
2161                                          struct ocfs2_path *path, u32 *cpos)
2162 {
2163         int i, j, ret = 0;
2164         u64 blkno;
2165         struct ocfs2_extent_list *el;
2166
2167         BUG_ON(path->p_tree_depth == 0);
2168
2169         *cpos = 0;
2170
2171         blkno = path_leaf_bh(path)->b_blocknr;
2172
2173         /* Start at the tree node just above the leaf and work our way up. */
2174         i = path->p_tree_depth - 1;
2175         while (i >= 0) {
2176                 el = path->p_node[i].el;
2177
2178                 /*
2179                  * Find the extent record just before the one in our
2180                  * path.
2181                  */
2182                 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
2183                         if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
2184                                 if (j == 0) {
2185                                         if (i == 0) {
2186                                                 /*
2187                                                  * We've determined that the
2188                                                  * path specified is already
2189                                                  * the leftmost one - return a
2190                                                  * cpos of zero.
2191                                                  */
2192                                                 goto out;
2193                                         }
2194                                         /*
2195                                          * The leftmost record points to our
2196                                          * leaf - we need to travel up the
2197                                          * tree one level.
2198                                          */
2199                                         goto next_node;
2200                                 }
2201
2202                                 *cpos = le32_to_cpu(el->l_recs[j - 1].e_cpos);
2203                                 *cpos = *cpos + ocfs2_rec_clusters(el,
2204                                                            &el->l_recs[j - 1]);
2205                                 *cpos = *cpos - 1;
2206                                 goto out;
2207                         }
2208                 }
2209
2210                 /*
2211                  * If we got here, we never found a valid node where
2212                  * the tree indicated one should be.
2213                  */
2214                 ocfs2_error(sb,
2215                             "Invalid extent tree at extent block %llu\n",
2216                             (unsigned long long)blkno);
2217                 ret = -EROFS;
2218                 goto out;
2219
2220 next_node:
2221                 blkno = path->p_node[i].bh->b_blocknr;
2222                 i--;
2223         }
2224
2225 out:
2226         return ret;
2227 }
2228
2229 /*
2230  * Extend the transaction by enough credits to complete the rotation,
2231  * and still leave at least the original number of credits allocated
2232  * to this transaction.
2233  */
2234 static int ocfs2_extend_rotate_transaction(handle_t *handle, int subtree_depth,
2235                                            int op_credits,
2236                                            struct ocfs2_path *path)
2237 {
2238         int credits = (path->p_tree_depth - subtree_depth) * 2 + 1 + op_credits;
2239
2240         if (handle->h_buffer_credits < credits)
2241                 return ocfs2_extend_trans(handle, credits);
2242
2243         return 0;
2244 }
2245
2246 /*
2247  * Trap the case where we're inserting into the theoretical range past
2248  * the _actual_ left leaf range. Otherwise, we'll rotate a record
2249  * whose cpos is less than ours into the right leaf.
2250  *
2251  * It's only necessary to look at the rightmost record of the left
2252  * leaf because the logic that calls us should ensure that the
2253  * theoretical ranges in the path components above the leaves are
2254  * correct.
2255  */
2256 static int ocfs2_rotate_requires_path_adjustment(struct ocfs2_path *left_path,
2257                                                  u32 insert_cpos)
2258 {
2259         struct ocfs2_extent_list *left_el;
2260         struct ocfs2_extent_rec *rec;
2261         int next_free;
2262
2263         left_el = path_leaf_el(left_path);
2264         next_free = le16_to_cpu(left_el->l_next_free_rec);
2265         rec = &left_el->l_recs[next_free - 1];
2266
2267         if (insert_cpos > le32_to_cpu(rec->e_cpos))
2268                 return 1;
2269         return 0;
2270 }
2271
2272 static int ocfs2_leftmost_rec_contains(struct ocfs2_extent_list *el, u32 cpos)
2273 {
2274         int next_free = le16_to_cpu(el->l_next_free_rec);
2275         unsigned int range;
2276         struct ocfs2_extent_rec *rec;
2277
2278         if (next_free == 0)
2279                 return 0;
2280
2281         rec = &el->l_recs[0];
2282         if (ocfs2_is_empty_extent(rec)) {
2283                 /* Empty list. */
2284                 if (next_free == 1)
2285                         return 0;
2286                 rec = &el->l_recs[1];
2287         }
2288
2289         range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
2290         if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
2291                 return 1;
2292         return 0;
2293 }
2294
2295 /*
2296  * Rotate all the records in a btree right one record, starting at insert_cpos.
2297  *
2298  * The path to the rightmost leaf should be passed in.
2299  *
2300  * The array is assumed to be large enough to hold an entire path (tree depth).
2301  *
2302  * Upon succesful return from this function:
2303  *
2304  * - The 'right_path' array will contain a path to the leaf block
2305  *   whose range contains e_cpos.
2306  * - That leaf block will have a single empty extent in list index 0.
2307  * - In the case that the rotation requires a post-insert update,
2308  *   *ret_left_path will contain a valid path which can be passed to
2309  *   ocfs2_insert_path().
2310  */
2311 static int ocfs2_rotate_tree_right(handle_t *handle,
2312                                    struct ocfs2_extent_tree *et,
2313                                    enum ocfs2_split_type split,
2314                                    u32 insert_cpos,
2315                                    struct ocfs2_path *right_path,
2316                                    struct ocfs2_path **ret_left_path)
2317 {
2318         int ret, start, orig_credits = handle->h_buffer_credits;
2319         u32 cpos;
2320         struct ocfs2_path *left_path = NULL;
2321         struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
2322
2323         *ret_left_path = NULL;
2324
2325         left_path = ocfs2_new_path_from_path(right_path);
2326         if (!left_path) {
2327                 ret = -ENOMEM;
2328                 mlog_errno(ret);
2329                 goto out;
2330         }
2331
2332         ret = ocfs2_find_cpos_for_left_leaf(sb, right_path, &cpos);
2333         if (ret) {
2334                 mlog_errno(ret);
2335                 goto out;
2336         }
2337
2338         mlog(0, "Insert: %u, first left path cpos: %u\n", insert_cpos, cpos);
2339
2340         /*
2341          * What we want to do here is:
2342          *
2343          * 1) Start with the rightmost path.
2344          *
2345          * 2) Determine a path to the leaf block directly to the left
2346          *    of that leaf.
2347          *
2348          * 3) Determine the 'subtree root' - the lowest level tree node
2349          *    which contains a path to both leaves.
2350          *
2351          * 4) Rotate the subtree.
2352          *
2353          * 5) Find the next subtree by considering the left path to be
2354          *    the new right path.
2355          *
2356          * The check at the top of this while loop also accepts
2357          * insert_cpos == cpos because cpos is only a _theoretical_
2358          * value to get us the left path - insert_cpos might very well
2359          * be filling that hole.
2360          *
2361          * Stop at a cpos of '0' because we either started at the
2362          * leftmost branch (i.e., a tree with one branch and a
2363          * rotation inside of it), or we've gone as far as we can in
2364          * rotating subtrees.
2365          */
2366         while (cpos && insert_cpos <= cpos) {
2367                 mlog(0, "Rotating a tree: ins. cpos: %u, left path cpos: %u\n",
2368                      insert_cpos, cpos);
2369
2370                 ret = ocfs2_find_path(et->et_ci, left_path, cpos);
2371                 if (ret) {
2372                         mlog_errno(ret);
2373                         goto out;
2374                 }
2375
2376                 mlog_bug_on_msg(path_leaf_bh(left_path) ==
2377                                 path_leaf_bh(right_path),
2378                                 "Owner %llu: error during insert of %u "
2379                                 "(left path cpos %u) results in two identical "
2380                                 "paths ending at %llu\n",
2381                                 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2382                                 insert_cpos, cpos,
2383                                 (unsigned long long)
2384                                 path_leaf_bh(left_path)->b_blocknr);
2385
2386                 if (split == SPLIT_NONE &&
2387                     ocfs2_rotate_requires_path_adjustment(left_path,
2388                                                           insert_cpos)) {
2389
2390                         /*
2391                          * We've rotated the tree as much as we
2392                          * should. The rest is up to
2393                          * ocfs2_insert_path() to complete, after the
2394                          * record insertion. We indicate this
2395                          * situation by returning the left path.
2396                          *
2397                          * The reason we don't adjust the records here
2398                          * before the record insert is that an error
2399                          * later might break the rule where a parent
2400                          * record e_cpos will reflect the actual
2401                          * e_cpos of the 1st nonempty record of the
2402                          * child list.
2403                          */
2404                         *ret_left_path = left_path;
2405                         goto out_ret_path;
2406                 }
2407
2408                 start = ocfs2_find_subtree_root(et, left_path, right_path);
2409
2410                 mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n",
2411                      start,
2412                      (unsigned long long) right_path->p_node[start].bh->b_blocknr,
2413                      right_path->p_tree_depth);
2414
2415                 ret = ocfs2_extend_rotate_transaction(handle, start,
2416                                                       orig_credits, right_path);
2417                 if (ret) {
2418                         mlog_errno(ret);
2419                         goto out;
2420                 }
2421
2422                 ret = ocfs2_rotate_subtree_right(handle, et, left_path,
2423                                                  right_path, start);
2424                 if (ret) {
2425                         mlog_errno(ret);
2426                         goto out;
2427                 }
2428
2429                 if (split != SPLIT_NONE &&
2430                     ocfs2_leftmost_rec_contains(path_leaf_el(right_path),
2431                                                 insert_cpos)) {
2432                         /*
2433                          * A rotate moves the rightmost left leaf
2434                          * record over to the leftmost right leaf
2435                          * slot. If we're doing an extent split
2436                          * instead of a real insert, then we have to
2437                          * check that the extent to be split wasn't
2438                          * just moved over. If it was, then we can
2439                          * exit here, passing left_path back -
2440                          * ocfs2_split_extent() is smart enough to
2441                          * search both leaves.
2442                          */
2443                         *ret_left_path = left_path;
2444                         goto out_ret_path;
2445                 }
2446
2447                 /*
2448                  * There is no need to re-read the next right path
2449                  * as we know that it'll be our current left
2450                  * path. Optimize by copying values instead.
2451                  */
2452                 ocfs2_mv_path(right_path, left_path);
2453
2454                 ret = ocfs2_find_cpos_for_left_leaf(sb, right_path, &cpos);
2455                 if (ret) {
2456                         mlog_errno(ret);
2457                         goto out;
2458                 }
2459         }
2460
2461 out:
2462         ocfs2_free_path(left_path);
2463
2464 out_ret_path:
2465         return ret;
2466 }
2467
2468 static int ocfs2_update_edge_lengths(handle_t *handle,
2469                                      struct ocfs2_extent_tree *et,
2470                                      int subtree_index, struct ocfs2_path *path)
2471 {
2472         int i, idx, ret;
2473         struct ocfs2_extent_rec *rec;
2474         struct ocfs2_extent_list *el;
2475         struct ocfs2_extent_block *eb;
2476         u32 range;
2477
2478         /*
2479          * In normal tree rotation process, we will never touch the
2480          * tree branch above subtree_index and ocfs2_extend_rotate_transaction
2481          * doesn't reserve the credits for them either.
2482          *
2483          * But we do have a special case here which will update the rightmost
2484          * records for all the bh in the path.
2485          * So we have to allocate extra credits and access them.
2486          */
2487         ret = ocfs2_extend_trans(handle,
2488                                  handle->h_buffer_credits + subtree_index);
2489         if (ret) {
2490                 mlog_errno(ret);
2491                 goto out;
2492         }
2493
2494         ret = ocfs2_journal_access_path(et->et_ci, handle, path);
2495         if (ret) {
2496                 mlog_errno(ret);
2497                 goto out;
2498         }
2499
2500         /* Path should always be rightmost. */
2501         eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
2502         BUG_ON(eb->h_next_leaf_blk != 0ULL);
2503
2504         el = &eb->h_list;
2505         BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0);
2506         idx = le16_to_cpu(el->l_next_free_rec) - 1;
2507         rec = &el->l_recs[idx];
2508         range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
2509
2510         for (i = 0; i < path->p_tree_depth; i++) {
2511                 el = path->p_node[i].el;
2512                 idx = le16_to_cpu(el->l_next_free_rec) - 1;
2513                 rec = &el->l_recs[idx];
2514
2515                 rec->e_int_clusters = cpu_to_le32(range);
2516                 le32_add_cpu(&rec->e_int_clusters, -le32_to_cpu(rec->e_cpos));
2517
2518                 ocfs2_journal_dirty(handle, path->p_node[i].bh);
2519         }
2520 out:
2521         return ret;
2522 }
2523
2524 static void ocfs2_unlink_path(handle_t *handle,
2525                               struct ocfs2_extent_tree *et,
2526                               struct ocfs2_cached_dealloc_ctxt *dealloc,
2527                               struct ocfs2_path *path, int unlink_start)
2528 {
2529         int ret, i;
2530         struct ocfs2_extent_block *eb;
2531         struct ocfs2_extent_list *el;
2532         struct buffer_head *bh;
2533
2534         for(i = unlink_start; i < path_num_items(path); i++) {
2535                 bh = path->p_node[i].bh;
2536
2537                 eb = (struct ocfs2_extent_block *)bh->b_data;
2538                 /*
2539                  * Not all nodes might have had their final count
2540                  * decremented by the caller - handle this here.
2541                  */
2542                 el = &eb->h_list;
2543                 if (le16_to_cpu(el->l_next_free_rec) > 1) {
2544                         mlog(ML_ERROR,
2545                              "Inode %llu, attempted to remove extent block "
2546                              "%llu with %u records\n",
2547                              (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2548                              (unsigned long long)le64_to_cpu(eb->h_blkno),
2549                              le16_to_cpu(el->l_next_free_rec));
2550
2551                         ocfs2_journal_dirty(handle, bh);
2552                         ocfs2_remove_from_cache(et->et_ci, bh);
2553                         continue;
2554                 }
2555
2556                 el->l_next_free_rec = 0;
2557                 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2558
2559                 ocfs2_journal_dirty(handle, bh);
2560
2561                 ret = ocfs2_cache_extent_block_free(dealloc, eb);
2562                 if (ret)
2563                         mlog_errno(ret);
2564
2565                 ocfs2_remove_from_cache(et->et_ci, bh);
2566         }
2567 }
2568
2569 static void ocfs2_unlink_subtree(handle_t *handle,
2570                                  struct ocfs2_extent_tree *et,
2571                                  struct ocfs2_path *left_path,
2572                                  struct ocfs2_path *right_path,
2573                                  int subtree_index,
2574                                  struct ocfs2_cached_dealloc_ctxt *dealloc)
2575 {
2576         int i;
2577         struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
2578         struct ocfs2_extent_list *root_el = left_path->p_node[subtree_index].el;
2579         struct ocfs2_extent_list *el;
2580         struct ocfs2_extent_block *eb;
2581
2582         el = path_leaf_el(left_path);
2583
2584         eb = (struct ocfs2_extent_block *)right_path->p_node[subtree_index + 1].bh->b_data;
2585
2586         for(i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++)
2587                 if (root_el->l_recs[i].e_blkno == eb->h_blkno)
2588                         break;
2589
2590         BUG_ON(i >= le16_to_cpu(root_el->l_next_free_rec));
2591
2592         memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
2593         le16_add_cpu(&root_el->l_next_free_rec, -1);
2594
2595         eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2596         eb->h_next_leaf_blk = 0;
2597
2598         ocfs2_journal_dirty(handle, root_bh);
2599         ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2600
2601         ocfs2_unlink_path(handle, et, dealloc, right_path,
2602                           subtree_index + 1);
2603 }
2604
2605 static int ocfs2_rotate_subtree_left(handle_t *handle,
2606                                      struct ocfs2_extent_tree *et,
2607                                      struct ocfs2_path *left_path,
2608                                      struct ocfs2_path *right_path,
2609                                      int subtree_index,
2610                                      struct ocfs2_cached_dealloc_ctxt *dealloc,
2611                                      int *deleted)
2612 {
2613         int ret, i, del_right_subtree = 0, right_has_empty = 0;
2614         struct buffer_head *root_bh, *et_root_bh = path_root_bh(right_path);
2615         struct ocfs2_extent_list *right_leaf_el, *left_leaf_el;
2616         struct ocfs2_extent_block *eb;
2617
2618         *deleted = 0;
2619
2620         right_leaf_el = path_leaf_el(right_path);
2621         left_leaf_el = path_leaf_el(left_path);
2622         root_bh = left_path->p_node[subtree_index].bh;
2623         BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
2624
2625         if (!ocfs2_is_empty_extent(&left_leaf_el->l_recs[0]))
2626                 return 0;
2627
2628         eb = (struct ocfs2_extent_block *)path_leaf_bh(right_path)->b_data;
2629         if (ocfs2_is_empty_extent(&right_leaf_el->l_recs[0])) {
2630                 /*
2631                  * It's legal for us to proceed if the right leaf is
2632                  * the rightmost one and it has an empty extent. There
2633                  * are two cases to handle - whether the leaf will be
2634                  * empty after removal or not. If the leaf isn't empty
2635                  * then just remove the empty extent up front. The
2636                  * next block will handle empty leaves by flagging
2637                  * them for unlink.
2638                  *
2639                  * Non rightmost leaves will throw -EAGAIN and the
2640                  * caller can manually move the subtree and retry.
2641                  */
2642
2643                 if (eb->h_next_leaf_blk != 0ULL)
2644                         return -EAGAIN;
2645
2646                 if (le16_to_cpu(right_leaf_el->l_next_free_rec) > 1) {
2647                         ret = ocfs2_journal_access_eb(handle, et->et_ci,
2648                                                       path_leaf_bh(right_path),
2649                                                       OCFS2_JOURNAL_ACCESS_WRITE);
2650                         if (ret) {
2651                                 mlog_errno(ret);
2652                                 goto out;
2653                         }
2654
2655                         ocfs2_remove_empty_extent(right_leaf_el);
2656                 } else
2657                         right_has_empty = 1;
2658         }
2659
2660         if (eb->h_next_leaf_blk == 0ULL &&
2661             le16_to_cpu(right_leaf_el->l_next_free_rec) == 1) {
2662                 /*
2663                  * We have to update i_last_eb_blk during the meta
2664                  * data delete.
2665                  */
2666                 ret = ocfs2_et_root_journal_access(handle, et,
2667                                                    OCFS2_JOURNAL_ACCESS_WRITE);
2668                 if (ret) {
2669                         mlog_errno(ret);
2670                         goto out;
2671                 }
2672
2673                 del_right_subtree = 1;
2674         }
2675
2676         /*
2677          * Getting here with an empty extent in the right path implies
2678          * that it's the rightmost path and will be deleted.
2679          */
2680         BUG_ON(right_has_empty && !del_right_subtree);
2681
2682         ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
2683                                            subtree_index);
2684         if (ret) {
2685                 mlog_errno(ret);
2686                 goto out;
2687         }
2688
2689         for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
2690                 ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2691                                                    right_path, i);
2692                 if (ret) {
2693                         mlog_errno(ret);
2694                         goto out;
2695                 }
2696
2697                 ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2698                                                    left_path, i);
2699                 if (ret) {
2700                         mlog_errno(ret);
2701                         goto out;
2702                 }
2703         }
2704
2705         if (!right_has_empty) {
2706                 /*
2707                  * Only do this if we're moving a real
2708                  * record. Otherwise, the action is delayed until
2709                  * after removal of the right path in which case we
2710                  * can do a simple shift to remove the empty extent.
2711                  */
2712                 ocfs2_rotate_leaf(left_leaf_el, &right_leaf_el->l_recs[0]);
2713                 memset(&right_leaf_el->l_recs[0], 0,
2714                        sizeof(struct ocfs2_extent_rec));
2715         }
2716         if (eb->h_next_leaf_blk == 0ULL) {
2717                 /*
2718                  * Move recs over to get rid of empty extent, decrease
2719                  * next_free. This is allowed to remove the last
2720                  * extent in our leaf (setting l_next_free_rec to
2721                  * zero) - the delete code below won't care.
2722                  */
2723                 ocfs2_remove_empty_extent(right_leaf_el);
2724         }
2725
2726         ret = ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2727         if (ret)
2728                 mlog_errno(ret);
2729         ret = ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
2730         if (ret)
2731                 mlog_errno(ret);
2732
2733         if (del_right_subtree) {
2734                 ocfs2_unlink_subtree(handle, et, left_path, right_path,
2735                                      subtree_index, dealloc);
2736                 ret = ocfs2_update_edge_lengths(handle, et, subtree_index,
2737                                                 left_path);
2738                 if (ret) {
2739                         mlog_errno(ret);
2740                         goto out;
2741                 }
2742
2743                 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2744                 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
2745
2746                 /*
2747                  * Removal of the extent in the left leaf was skipped
2748                  * above so we could delete the right path
2749                  * 1st.
2750                  */
2751                 if (right_has_empty)
2752                         ocfs2_remove_empty_extent(left_leaf_el);
2753
2754                 ret = ocfs2_journal_dirty(handle, et_root_bh);
2755                 if (ret)
2756                         mlog_errno(ret);
2757
2758                 *deleted = 1;
2759         } else
2760                 ocfs2_complete_edge_insert(handle, left_path, right_path,
2761                                            subtree_index);
2762
2763 out:
2764         return ret;
2765 }
2766
2767 /*
2768  * Given a full path, determine what cpos value would return us a path
2769  * containing the leaf immediately to the right of the current one.
2770  *
2771  * Will return zero if the path passed in is already the rightmost path.
2772  *
2773  * This looks similar, but is subtly different to
2774  * ocfs2_find_cpos_for_left_leaf().
2775  */
2776 static int ocfs2_find_cpos_for_right_leaf(struct super_block *sb,
2777                                           struct ocfs2_path *path, u32 *cpos)
2778 {
2779         int i, j, ret = 0;
2780         u64 blkno;
2781         struct ocfs2_extent_list *el;
2782
2783         *cpos = 0;
2784
2785         if (path->p_tree_depth == 0)
2786                 return 0;
2787
2788         blkno = path_leaf_bh(path)->b_blocknr;
2789
2790         /* Start at the tree node just above the leaf and work our way up. */
2791         i = path->p_tree_depth - 1;
2792         while (i >= 0) {
2793                 int next_free;
2794
2795                 el = path->p_node[i].el;
2796
2797                 /*
2798                  * Find the extent record just after the one in our
2799                  * path.
2800                  */
2801                 next_free = le16_to_cpu(el->l_next_free_rec);
2802                 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
2803                         if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
2804                                 if (j == (next_free - 1)) {
2805                                         if (i == 0) {
2806                                                 /*
2807                                                  * We've determined that the
2808                                                  * path specified is already
2809                                                  * the rightmost one - return a
2810                                                  * cpos of zero.
2811                                                  */
2812                                                 goto out;
2813                                         }
2814                                         /*
2815                                          * The rightmost record points to our
2816                                          * leaf - we need to travel up the
2817                                          * tree one level.
2818                                          */
2819                                         goto next_node;
2820                                 }
2821
2822                                 *cpos = le32_to_cpu(el->l_recs[j + 1].e_cpos);
2823                                 goto out;
2824                         }
2825                 }
2826
2827                 /*
2828                  * If we got here, we never found a valid node where
2829                  * the tree indicated one should be.
2830                  */
2831                 ocfs2_error(sb,
2832                             "Invalid extent tree at extent block %llu\n",
2833                             (unsigned long long)blkno);
2834                 ret = -EROFS;
2835                 goto out;
2836
2837 next_node:
2838                 blkno = path->p_node[i].bh->b_blocknr;
2839                 i--;
2840         }
2841
2842 out:
2843         return ret;
2844 }
2845
2846 static int ocfs2_rotate_rightmost_leaf_left(handle_t *handle,
2847                                             struct ocfs2_extent_tree *et,
2848                                             struct ocfs2_path *path)
2849 {
2850         int ret;
2851         struct buffer_head *bh = path_leaf_bh(path);
2852         struct ocfs2_extent_list *el = path_leaf_el(path);
2853
2854         if (!ocfs2_is_empty_extent(&el->l_recs[0]))
2855                 return 0;
2856
2857         ret = ocfs2_path_bh_journal_access(handle, et->et_ci, path,
2858                                            path_num_items(path) - 1);
2859         if (ret) {
2860                 mlog_errno(ret);
2861                 goto out;
2862         }
2863
2864         ocfs2_remove_empty_extent(el);
2865
2866         ret = ocfs2_journal_dirty(handle, bh);
2867         if (ret)
2868                 mlog_errno(ret);
2869
2870 out:
2871         return ret;
2872 }
2873
2874 static int __ocfs2_rotate_tree_left(handle_t *handle,
2875                                     struct ocfs2_extent_tree *et,
2876                                     int orig_credits,
2877                                     struct ocfs2_path *path,
2878                                     struct ocfs2_cached_dealloc_ctxt *dealloc,
2879                                     struct ocfs2_path **empty_extent_path)
2880 {
2881         int ret, subtree_root, deleted;
2882         u32 right_cpos;
2883         struct ocfs2_path *left_path = NULL;
2884         struct ocfs2_path *right_path = NULL;
2885         struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
2886
2887         BUG_ON(!ocfs2_is_empty_extent(&(path_leaf_el(path)->l_recs[0])));
2888
2889         *empty_extent_path = NULL;
2890
2891         ret = ocfs2_find_cpos_for_right_leaf(sb, path, &right_cpos);
2892         if (ret) {
2893                 mlog_errno(ret);
2894                 goto out;
2895         }
2896
2897         left_path = ocfs2_new_path_from_path(path);
2898         if (!left_path) {
2899                 ret = -ENOMEM;
2900                 mlog_errno(ret);
2901                 goto out;
2902         }
2903
2904         ocfs2_cp_path(left_path, path);
2905
2906         right_path = ocfs2_new_path_from_path(path);
2907         if (!right_path) {
2908                 ret = -ENOMEM;
2909                 mlog_errno(ret);
2910                 goto out;
2911         }
2912
2913         while (right_cpos) {
2914                 ret = ocfs2_find_path(et->et_ci, right_path, right_cpos);
2915                 if (ret) {
2916                         mlog_errno(ret);
2917                         goto out;
2918                 }
2919
2920                 subtree_root = ocfs2_find_subtree_root(et, left_path,
2921                                                        right_path);
2922
2923                 mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n",
2924                      subtree_root,
2925                      (unsigned long long)
2926                      right_path->p_node[subtree_root].bh->b_blocknr,
2927                      right_path->p_tree_depth);
2928
2929                 ret = ocfs2_extend_rotate_transaction(handle, subtree_root,
2930                                                       orig_credits, left_path);
2931                 if (ret) {
2932                         mlog_errno(ret);
2933                         goto out;
2934                 }
2935
2936                 /*
2937                  * Caller might still want to make changes to the
2938                  * tree root, so re-add it to the journal here.
2939                  */
2940                 ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2941                                                    left_path, 0);
2942                 if (ret) {
2943                         mlog_errno(ret);
2944                         goto out;
2945                 }
2946
2947                 ret = ocfs2_rotate_subtree_left(handle, et, left_path,
2948                                                 right_path, subtree_root,
2949                                                 dealloc, &deleted);
2950                 if (ret == -EAGAIN) {
2951                         /*
2952                          * The rotation has to temporarily stop due to
2953                          * the right subtree having an empty
2954                          * extent. Pass it back to the caller for a
2955                          * fixup.
2956                          */
2957                         *empty_extent_path = right_path;
2958                         right_path = NULL;
2959                         goto out;
2960                 }
2961                 if (ret) {
2962                         mlog_errno(ret);
2963                         goto out;
2964                 }
2965
2966                 /*
2967                  * The subtree rotate might have removed records on
2968                  * the rightmost edge. If so, then rotation is
2969                  * complete.
2970                  */
2971                 if (deleted)
2972                         break;
2973
2974                 ocfs2_mv_path(left_path, right_path);
2975
2976                 ret = ocfs2_find_cpos_for_right_leaf(sb, left_path,
2977                                                      &right_cpos);
2978                 if (ret) {
2979                         mlog_errno(ret);
2980                         goto out;
2981                 }
2982         }
2983
2984 out:
2985         ocfs2_free_path(right_path);
2986         ocfs2_free_path(left_path);
2987
2988         return ret;
2989 }
2990
2991 static int ocfs2_remove_rightmost_path(handle_t *handle,
2992                                 struct ocfs2_extent_tree *et,
2993                                 struct ocfs2_path *path,
2994                                 struct ocfs2_cached_dealloc_ctxt *dealloc)
2995 {
2996         int ret, subtree_index;
2997         u32 cpos;
2998         struct ocfs2_path *left_path = NULL;
2999         struct ocfs2_extent_block *eb;
3000         struct ocfs2_extent_list *el;
3001
3002
3003         ret = ocfs2_et_sanity_check(et);
3004         if (ret)
3005                 goto out;
3006         /*
3007          * There's two ways we handle this depending on
3008          * whether path is the only existing one.
3009          */
3010         ret = ocfs2_extend_rotate_transaction(handle, 0,
3011                                               handle->h_buffer_credits,
3012                                               path);
3013         if (ret) {
3014                 mlog_errno(ret);
3015                 goto out;
3016         }
3017
3018         ret = ocfs2_journal_access_path(et->et_ci, handle, path);
3019         if (ret) {
3020                 mlog_errno(ret);
3021                 goto out;
3022         }
3023
3024         ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci),
3025                                             path, &cpos);
3026         if (ret) {
3027                 mlog_errno(ret);
3028                 goto out;
3029         }
3030
3031         if (cpos) {
3032                 /*
3033                  * We have a path to the left of this one - it needs
3034                  * an update too.
3035                  */
3036                 left_path = ocfs2_new_path_from_path(path);
3037                 if (!left_path) {
3038                         ret = -ENOMEM;
3039                         mlog_errno(ret);
3040                         goto out;
3041                 }
3042
3043                 ret = ocfs2_find_path(et->et_ci, left_path, cpos);
3044                 if (ret) {
3045                         mlog_errno(ret);
3046                         goto out;
3047                 }
3048
3049                 ret = ocfs2_journal_access_path(et->et_ci, handle, left_path);
3050                 if (ret) {
3051                         mlog_errno(ret);
3052                         goto out;
3053                 }
3054
3055                 subtree_index = ocfs2_find_subtree_root(et, left_path, path);
3056
3057                 ocfs2_unlink_subtree(handle, et, left_path, path,
3058                                      subtree_index, dealloc);
3059                 ret = ocfs2_update_edge_lengths(handle, et, subtree_index,
3060                                                 left_path);
3061                 if (ret) {
3062                         mlog_errno(ret);
3063                         goto out;
3064                 }
3065
3066                 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
3067                 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
3068         } else {
3069                 /*
3070                  * 'path' is also the leftmost path which
3071                  * means it must be the only one. This gets
3072                  * handled differently because we want to
3073                  * revert the root back to having extents
3074                  * in-line.
3075                  */
3076                 ocfs2_unlink_path(handle, et, dealloc, path, 1);
3077
3078                 el = et->et_root_el;
3079                 el->l_tree_depth = 0;
3080                 el->l_next_free_rec = 0;
3081                 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
3082
3083                 ocfs2_et_set_last_eb_blk(et, 0);
3084         }
3085
3086         ocfs2_journal_dirty(handle, path_root_bh(path));
3087
3088 out:
3089         ocfs2_free_path(left_path);
3090         return ret;
3091 }
3092
3093 /*
3094  * Left rotation of btree records.
3095  *
3096  * In many ways, this is (unsurprisingly) the opposite of right
3097  * rotation. We start at some non-rightmost path containing an empty
3098  * extent in the leaf block. The code works its way to the rightmost
3099  * path by rotating records to the left in every subtree.
3100  *
3101  * This is used by any code which reduces the number of extent records
3102  * in a leaf. After removal, an empty record should be placed in the
3103  * leftmost list position.
3104  *
3105  * This won't handle a length update of the rightmost path records if
3106  * the rightmost tree leaf record is removed so the caller is
3107  * responsible for detecting and correcting that.
3108  */
3109 static int ocfs2_rotate_tree_left(handle_t *handle,
3110                                   struct ocfs2_extent_tree *et,
3111                                   struct ocfs2_path *path,
3112                                   struct ocfs2_cached_dealloc_ctxt *dealloc)
3113 {
3114         int ret, orig_credits = handle->h_buffer_credits;
3115         struct ocfs2_path *tmp_path = NULL, *restart_path = NULL;
3116         struct ocfs2_extent_block *eb;
3117         struct ocfs2_extent_list *el;
3118
3119         el = path_leaf_el(path);
3120         if (!ocfs2_is_empty_extent(&el->l_recs[0]))
3121                 return 0;
3122
3123         if (path->p_tree_depth == 0) {
3124 rightmost_no_delete:
3125                 /*
3126                  * Inline extents. This is trivially handled, so do
3127                  * it up front.
3128                  */
3129                 ret = ocfs2_rotate_rightmost_leaf_left(handle, et, path);
3130                 if (ret)
3131                         mlog_errno(ret);
3132                 goto out;
3133         }
3134
3135         /*
3136          * Handle rightmost branch now. There's several cases:
3137          *  1) simple rotation leaving records in there. That's trivial.
3138          *  2) rotation requiring a branch delete - there's no more
3139          *     records left. Two cases of this:
3140          *     a) There are branches to the left.
3141          *     b) This is also the leftmost (the only) branch.
3142          *
3143          *  1) is handled via ocfs2_rotate_rightmost_leaf_left()
3144          *  2a) we need the left branch so that we can update it with the unlink
3145          *  2b) we need to bring the root back to inline extents.
3146          */
3147
3148         eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
3149         el = &eb->h_list;
3150         if (eb->h_next_leaf_blk == 0) {
3151                 /*
3152                  * This gets a bit tricky if we're going to delete the
3153                  * rightmost path. Get the other cases out of the way
3154                  * 1st.
3155                  */
3156                 if (le16_to_cpu(el->l_next_free_rec) > 1)
3157                         goto rightmost_no_delete;
3158
3159                 if (le16_to_cpu(el->l_next_free_rec) == 0) {
3160                         ret = -EIO;
3161                         ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
3162                                     "Owner %llu has empty extent block at %llu",
3163                                     (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
3164                                     (unsigned long long)le64_to_cpu(eb->h_blkno));
3165                         goto out;
3166                 }
3167
3168                 /*
3169                  * XXX: The caller can not trust "path" any more after
3170                  * this as it will have been deleted. What do we do?
3171                  *
3172                  * In theory the rotate-for-merge code will never get
3173                  * here because it'll always ask for a rotate in a
3174                  * nonempty list.
3175                  */
3176
3177                 ret = ocfs2_remove_rightmost_path(handle, et, path,
3178                                                   dealloc);
3179                 if (ret)
3180                         mlog_errno(ret);
3181                 goto out;
3182         }
3183
3184         /*
3185          * Now we can loop, remembering the path we get from -EAGAIN
3186          * and restarting from there.
3187          */
3188 try_rotate:
3189         ret = __ocfs2_rotate_tree_left(handle, et, orig_credits, path,
3190                                        dealloc, &restart_path);
3191         if (ret && ret != -EAGAIN) {
3192                 mlog_errno(ret);
3193                 goto out;
3194         }
3195
3196         while (ret == -EAGAIN) {
3197                 tmp_path = restart_path;
3198                 restart_path = NULL;
3199
3200                 ret = __ocfs2_rotate_tree_left(handle, et, orig_credits,
3201                                                tmp_path, dealloc,
3202                                                &restart_path);
3203                 if (ret && ret != -EAGAIN) {
3204                         mlog_errno(ret);
3205                         goto out;
3206                 }
3207
3208                 ocfs2_free_path(tmp_path);
3209                 tmp_path = NULL;
3210
3211                 if (ret == 0)
3212                         goto try_rotate;
3213         }
3214
3215 out:
3216         ocfs2_free_path(tmp_path);
3217         ocfs2_free_path(restart_path);
3218         return ret;
3219 }
3220
3221 static void ocfs2_cleanup_merge(struct ocfs2_extent_list *el,
3222                                 int index)
3223 {
3224         struct ocfs2_extent_rec *rec = &el->l_recs[index];
3225         unsigned int size;
3226
3227         if (rec->e_leaf_clusters == 0) {
3228                 /*
3229                  * We consumed all of the merged-from record. An empty
3230                  * extent cannot exist anywhere but the 1st array
3231                  * position, so move things over if the merged-from
3232                  * record doesn't occupy that position.
3233                  *
3234                  * This creates a new empty extent so the caller
3235                  * should be smart enough to have removed any existing
3236                  * ones.
3237                  */
3238                 if (index > 0) {
3239                         BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
3240                         size = index * sizeof(struct ocfs2_extent_rec);
3241                         memmove(&el->l_recs[1], &el->l_recs[0], size);
3242                 }
3243
3244                 /*
3245                  * Always memset - the caller doesn't check whether it
3246                  * created an empty extent, so there could be junk in
3247                  * the other fields.
3248                  */
3249                 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
3250         }
3251 }
3252
3253 static int ocfs2_get_right_path(struct ocfs2_extent_tree *et,
3254                                 struct ocfs2_path *left_path,
3255                                 struct ocfs2_path **ret_right_path)
3256 {
3257         int ret;
3258         u32 right_cpos;
3259         struct ocfs2_path *right_path = NULL;
3260         struct ocfs2_extent_list *left_el;
3261
3262         *ret_right_path = NULL;
3263
3264         /* This function shouldn't be called for non-trees. */
3265         BUG_ON(left_path->p_tree_depth == 0);
3266
3267         left_el = path_leaf_el(left_path);
3268         BUG_ON(left_el->l_next_free_rec != left_el->l_count);
3269
3270         ret = ocfs2_find_cpos_for_right_leaf(ocfs2_metadata_cache_get_super(et->et_ci),
3271                                              left_path, &right_cpos);
3272         if (ret) {
3273                 mlog_errno(ret);
3274                 goto out;
3275         }
3276
3277         /* This function shouldn't be called for the rightmost leaf. */
3278         BUG_ON(right_cpos == 0);
3279
3280         right_path = ocfs2_new_path_from_path(left_path);
3281         if (!right_path) {
3282                 ret = -ENOMEM;
3283                 mlog_errno(ret);
3284                 goto out;
3285         }
3286
3287         ret = ocfs2_find_path(et->et_ci, right_path, right_cpos);
3288         if (ret) {
3289                 mlog_errno(ret);
3290                 goto out;
3291         }
3292
3293         *ret_right_path = right_path;
3294 out:
3295         if (ret)
3296                 ocfs2_free_path(right_path);
3297         return ret;
3298 }
3299
3300 /*
3301  * Remove split_rec clusters from the record at index and merge them
3302  * onto the beginning of the record "next" to it.
3303  * For index < l_count - 1, the next means the extent rec at index + 1.
3304  * For index == l_count - 1, the "next" means the 1st extent rec of the
3305  * next extent block.
3306  */
3307 static int ocfs2_merge_rec_right(struct ocfs2_path *left_path,
3308                                  handle_t *handle,
3309                                  struct ocfs2_extent_tree *et,
3310                                  struct ocfs2_extent_rec *split_rec,
3311                                  int index)
3312 {
3313         int ret, next_free, i;
3314         unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
3315         struct ocfs2_extent_rec *left_rec;
3316         struct ocfs2_extent_rec *right_rec;
3317         struct ocfs2_extent_list *right_el;
3318         struct ocfs2_path *right_path = NULL;
3319         int subtree_index = 0;
3320         struct ocfs2_extent_list *el = path_leaf_el(left_path);
3321         struct buffer_head *bh = path_leaf_bh(left_path);
3322         struct buffer_head *root_bh = NULL;
3323
3324         BUG_ON(index >= le16_to_cpu(el->l_next_free_rec));
3325         left_rec = &el->l_recs[index];
3326
3327         if (index == le16_to_cpu(el->l_next_free_rec) - 1 &&
3328             le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count)) {
3329                 /* we meet with a cross extent block merge. */
3330                 ret = ocfs2_get_right_path(et, left_path, &right_path);
3331                 if (ret) {
3332                         mlog_errno(ret);
3333                         goto out;
3334                 }
3335
3336                 right_el = path_leaf_el(right_path);
3337                 next_free = le16_to_cpu(right_el->l_next_free_rec);
3338                 BUG_ON(next_free <= 0);
3339                 right_rec = &right_el->l_recs[0];
3340                 if (ocfs2_is_empty_extent(right_rec)) {
3341                         BUG_ON(next_free <= 1);
3342                         right_rec = &right_el->l_recs[1];
3343                 }
3344
3345                 BUG_ON(le32_to_cpu(left_rec->e_cpos) +
3346                        le16_to_cpu(left_rec->e_leaf_clusters) !=
3347                        le32_to_cpu(right_rec->e_cpos));
3348
3349                 subtree_index = ocfs2_find_subtree_root(et, left_path,
3350                                                         right_path);
3351
3352                 ret = ocfs2_extend_rotate_transaction(handle, subtree_index,
3353                                                       handle->h_buffer_credits,
3354                                                       right_path);
3355                 if (ret) {
3356                         mlog_errno(ret);
3357                         goto out;
3358                 }
3359
3360                 root_bh = left_path->p_node[subtree_index].bh;
3361                 BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
3362
3363                 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
3364                                                    subtree_index);
3365                 if (ret) {
3366                         mlog_errno(ret);
3367                         goto out;
3368                 }
3369
3370                 for (i = subtree_index + 1;
3371                      i < path_num_items(right_path); i++) {
3372                         ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
3373                                                            right_path, i);
3374                         if (ret) {
3375                                 mlog_errno(ret);
3376                                 goto out;
3377                         }
3378
3379                         ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
3380                                                            left_path, i);
3381                         if (ret) {
3382                                 mlog_errno(ret);
3383                                 goto out;
3384                         }
3385                 }
3386
3387         } else {
3388                 BUG_ON(index == le16_to_cpu(el->l_next_free_rec) - 1);
3389                 right_rec = &el->l_recs[index + 1];
3390         }
3391
3392         ret = ocfs2_path_bh_journal_access(handle, et->et_ci, left_path,
3393                                            path_num_items(left_path) - 1);
3394         if (ret) {
3395                 mlog_errno(ret);
3396                 goto out;
3397         }
3398
3399         le16_add_cpu(&left_rec->e_leaf_clusters, -split_clusters);
3400
3401         le32_add_cpu(&right_rec->e_cpos, -split_clusters);
3402         le64_add_cpu(&right_rec->e_blkno,
3403                      -ocfs2_clusters_to_blocks(ocfs2_metadata_cache_get_super(et->et_ci),
3404                                                split_clusters));
3405         le16_add_cpu(&right_rec->e_leaf_clusters, split_clusters);
3406
3407         ocfs2_cleanup_merge(el, index);
3408
3409         ret = ocfs2_journal_dirty(handle, bh);
3410         if (ret)
3411                 mlog_errno(ret);
3412
3413         if (right_path) {
3414                 ret = ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
3415                 if (ret)
3416                         mlog_errno(ret);
3417
3418                 ocfs2_complete_edge_insert(handle, left_path, right_path,
3419                                            subtree_index);
3420         }
3421 out:
3422         if (right_path)
3423                 ocfs2_free_path(right_path);
3424         return ret;
3425 }
3426
3427 static int ocfs2_get_left_path(struct ocfs2_extent_tree *et,
3428                                struct ocfs2_path *right_path,
3429                                struct ocfs2_path **ret_left_path)
3430 {
3431         int ret;
3432         u32 left_cpos;
3433         struct ocfs2_path *left_path = NULL;
3434
3435         *ret_left_path = NULL;
3436
3437         /* This function shouldn't be called for non-trees. */
3438         BUG_ON(right_path->p_tree_depth == 0);
3439
3440         ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci),
3441                                             right_path, &left_cpos);
3442         if (ret) {
3443                 mlog_errno(ret);
3444                 goto out;
3445         }
3446
3447         /* This function shouldn't be called for the leftmost leaf. */
3448         BUG_ON(left_cpos == 0);
3449
3450         left_path = ocfs2_new_path_from_path(right_path);
3451         if (!left_path) {
3452                 ret = -ENOMEM;
3453                 mlog_errno(ret);
3454                 goto out;
3455         }
3456
3457         ret = ocfs2_find_path(et->et_ci, left_path, left_cpos);
3458         if (ret) {
3459                 mlog_errno(ret);
3460                 goto out;
3461         }
3462
3463         *ret_left_path = left_path;
3464 out:
3465         if (ret)
3466                 ocfs2_free_path(left_path);
3467         return ret;
3468 }
3469
3470 /*
3471  * Remove split_rec clusters from the record at index and merge them
3472  * onto the tail of the record "before" it.
3473  * For index > 0, the "before" means the extent rec at index - 1.
3474  *
3475  * For index == 0, the "before" means the last record of the previous
3476  * extent block. And there is also a situation that we may need to
3477  * remove the rightmost leaf extent block in the right_path and change
3478  * the right path to indicate the new rightmost path.
3479  */
3480 static int ocfs2_merge_rec_left(struct ocfs2_path *right_path,
3481                                 handle_t *handle,
3482                                 struct ocfs2_extent_tree *et,
3483                                 struct ocfs2_extent_rec *split_rec,
3484                                 struct ocfs2_cached_dealloc_ctxt *dealloc,
3485                                 int index)
3486 {
3487         int ret, i, subtree_index = 0, has_empty_extent = 0;
3488         unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
3489         struct ocfs2_extent_rec *left_rec;
3490         struct ocfs2_extent_rec *right_rec;
3491         struct ocfs2_extent_list *el = path_leaf_el(right_path);
3492         struct buffer_head *bh = path_leaf_bh(right_path);
3493         struct buffer_head *root_bh = NULL;
3494         struct ocfs2_path *left_path = NULL;
3495         struct ocfs2_extent_list *left_el;
3496
3497         BUG_ON(index < 0);
3498
3499         right_rec = &el->l_recs[index];
3500         if (index == 0) {
3501                 /* we meet with a cross extent block merge. */
3502                 ret = ocfs2_get_left_path(et, right_path, &left_path);
3503                 if (ret) {
3504                         mlog_errno(ret);
3505                         goto out;
3506                 }
3507
3508                 left_el = path_leaf_el(left_path);
3509                 BUG_ON(le16_to_cpu(left_el->l_next_free_rec) !=
3510                        le16_to_cpu(left_el->l_count));
3511
3512                 left_rec = &left_el->l_recs[
3513                                 le16_to_cpu(left_el->l_next_free_rec) - 1];
3514                 BUG_ON(le32_to_cpu(left_rec->e_cpos) +
3515                        le16_to_cpu(left_rec->e_leaf_clusters) !=
3516                        le32_to_cpu(split_rec->e_cpos));
3517
3518                 subtree_index = ocfs2_find_subtree_root(et, left_path,
3519                                                         right_path);
3520
3521                 ret = ocfs2_extend_rotate_transaction(handle, subtree_index,
3522                                                       handle->h_buffer_credits,
3523                                                       left_path);
3524                 if (ret) {
3525                         mlog_errno(ret);
3526                         goto out;
3527                 }
3528
3529                 root_bh = left_path->p_node[subtree_index].bh;
3530                 BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
3531
3532                 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
3533                                                    subtree_index);
3534                 if (ret) {
3535                         mlog_errno(ret);
3536                         goto out;
3537                 }
3538
3539                 for (i = subtree_index + 1;
3540                      i < path_num_items(right_path); i++) {
3541                         ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
3542                                                            right_path, i);
3543                         if (ret) {
3544                                 mlog_errno(ret);
3545                                 goto out;
3546                         }
3547
3548                         ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
3549                                                            left_path, i);
3550                         if (ret) {
3551                                 mlog_errno(ret);
3552                                 goto out;
3553                         }
3554                 }
3555         } else {
3556                 left_rec = &el->l_recs[index - 1];
3557                 if (ocfs2_is_empty_extent(&el->l_recs[0]))
3558                         has_empty_extent = 1;
3559         }
3560
3561         ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
3562                                            path_num_items(right_path) - 1);
3563         if (ret) {
3564                 mlog_errno(ret);
3565                 goto out;
3566         }
3567
3568         if (has_empty_extent && index == 1) {
3569                 /*
3570                  * The easy case - we can just plop the record right in.
3571                  */
3572                 *left_rec = *split_rec;
3573
3574                 has_empty_extent = 0;
3575         } else
3576                 le16_add_cpu(&left_rec->e_leaf_clusters, split_clusters);
3577
3578         le32_add_cpu(&right_rec->e_cpos, split_clusters);
3579         le64_add_cpu(&right_rec->e_blkno,
3580                      ocfs2_clusters_to_blocks(ocfs2_metadata_cache_get_super(et->et_ci),
3581                                               split_clusters));
3582         le16_add_cpu(&right_rec->e_leaf_clusters, -split_clusters);
3583
3584         ocfs2_cleanup_merge(el, index);
3585
3586         ret = ocfs2_journal_dirty(handle, bh);
3587         if (ret)
3588                 mlog_errno(ret);
3589
3590         if (left_path) {
3591                 ret = ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
3592                 if (ret)
3593                         mlog_errno(ret);
3594
3595                 /*
3596                  * In the situation that the right_rec is empty and the extent
3597                  * block is empty also,  ocfs2_complete_edge_insert can't handle
3598                  * it and we need to delete the right extent block.
3599                  */
3600                 if (le16_to_cpu(right_rec->e_leaf_clusters) == 0 &&
3601                     le16_to_cpu(el->l_next_free_rec) == 1) {
3602
3603                         ret = ocfs2_remove_rightmost_path(handle, et,
3604                                                           right_path,
3605                                                           dealloc);
3606                         if (ret) {
3607                                 mlog_errno(ret);
3608                                 goto out;
3609                         }
3610
3611                         /* Now the rightmost extent block has been deleted.
3612                          * So we use the new rightmost path.
3613                          */
3614                         ocfs2_mv_path(right_path, left_path);
3615                         left_path = NULL;
3616                 } else
3617                         ocfs2_complete_edge_insert(handle, left_path,
3618                                                    right_path, subtree_index);
3619         }
3620 out:
3621         if (left_path)
3622                 ocfs2_free_path(left_path);
3623         return ret;
3624 }
3625
3626 static int ocfs2_try_to_merge_extent(handle_t *handle,
3627                                      struct ocfs2_extent_tree *et,
3628                                      struct ocfs2_path *path,
3629                                      int split_index,
3630                                      struct ocfs2_extent_rec *split_rec,
3631                                      struct ocfs2_cached_dealloc_ctxt *dealloc,
3632                                      struct ocfs2_merge_ctxt *ctxt)
3633 {
3634         int ret = 0;
3635         struct ocfs2_extent_list *el = path_leaf_el(path);
3636         struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
3637
3638         BUG_ON(ctxt->c_contig_type == CONTIG_NONE);
3639
3640         if (ctxt->c_split_covers_rec && ctxt->c_has_empty_extent) {
3641                 /*
3642                  * The merge code will need to create an empty
3643                  * extent to take the place of the newly
3644                  * emptied slot. Remove any pre-existing empty
3645                  * extents - having more than one in a leaf is
3646                  * illegal.
3647                  */
3648                 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
3649                 if (ret) {
3650                         mlog_errno(ret);
3651                         goto out;
3652                 }
3653                 split_index--;
3654                 rec = &el->l_recs[split_index];
3655         }
3656
3657         if (ctxt->c_contig_type == CONTIG_LEFTRIGHT) {
3658                 /*
3659                  * Left-right contig implies this.
3660                  */
3661                 BUG_ON(!ctxt->c_split_covers_rec);
3662
3663                 /*
3664                  * Since the leftright insert always covers the entire
3665                  * extent, this call will delete the insert record
3666                  * entirely, resulting in an empty extent record added to
3667                  * the extent block.
3668                  *
3669                  * Since the adding of an empty extent shifts
3670                  * everything back to the right, there's no need to
3671                  * update split_index here.
3672                  *
3673                  * When the split_index is zero, we need to merge it to the
3674                  * prevoius extent block. It is more efficient and easier
3675                  * if we do merge_right first and merge_left later.
3676                  */
3677                 ret = ocfs2_merge_rec_right(path, handle, et, split_rec,
3678                                             split_index);
3679                 if (ret) {
3680                         mlog_errno(ret);
3681                         goto out;
3682                 }
3683
3684                 /*
3685                  * We can only get this from logic error above.
3686                  */
3687                 BUG_ON(!ocfs2_is_empty_extent(&el->l_recs[0]));
3688
3689                 /* The merge left us with an empty extent, remove it. */
3690                 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
3691                 if (ret) {
3692                         mlog_errno(ret);
3693                         goto out;
3694                 }
3695
3696                 rec = &el->l_recs[split_index];
3697
3698                 /*
3699                  * Note that we don't pass split_rec here on purpose -
3700                  * we've merged it into the rec already.
3701                  */
3702                 ret = ocfs2_merge_rec_left(path, handle, et, rec,
3703                                            dealloc, split_index);
3704
3705                 if (ret) {
3706                         mlog_errno(ret);
3707                         goto out;
3708                 }
3709
3710                 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
3711                 /*
3712                  * Error from this last rotate is not critical, so
3713                  * print but don't bubble it up.
3714                  */
3715                 if (ret)
3716                         mlog_errno(ret);
3717                 ret = 0;
3718         } else {
3719                 /*
3720                  * Merge a record to the left or right.
3721                  *
3722                  * 'contig_type' is relative to the existing record,
3723                  * so for example, if we're "right contig", it's to
3724                  * the record on the left (hence the left merge).
3725                  */
3726                 if (ctxt->c_contig_type == CONTIG_RIGHT) {
3727                         ret = ocfs2_merge_rec_left(path, handle, et,
3728                                                    split_rec, dealloc,
3729                                                    split_index);
3730                         if (ret) {
3731                                 mlog_errno(ret);
3732                                 goto out;
3733                         }
3734                 } else {
3735                         ret = ocfs2_merge_rec_right(path, handle,
3736                                                     et, split_rec,
3737                                                     split_index);
3738                         if (ret) {
3739                                 mlog_errno(ret);
3740                                 goto out;
3741                         }
3742                 }
3743
3744                 if (ctxt->c_split_covers_rec) {
3745                         /*
3746                          * The merge may have left an empty extent in
3747                          * our leaf. Try to rotate it away.
3748                          */
3749                         ret = ocfs2_rotate_tree_left(handle, et, path,
3750                                                      dealloc);
3751                         if (ret)
3752                                 mlog_errno(ret);
3753                         ret = 0;
3754                 }
3755         }
3756
3757 out:
3758         return ret;
3759 }
3760
3761 static void ocfs2_subtract_from_rec(struct super_block *sb,
3762                                     enum ocfs2_split_type split,
3763                                     struct ocfs2_extent_rec *rec,
3764                                     struct ocfs2_extent_rec *split_rec)
3765 {
3766         u64 len_blocks;
3767
3768         len_blocks = ocfs2_clusters_to_blocks(sb,
3769                                 le16_to_cpu(split_rec->e_leaf_clusters));
3770
3771         if (split == SPLIT_LEFT) {
3772                 /*
3773                  * Region is on the left edge of the existing
3774                  * record.
3775                  */
3776                 le32_add_cpu(&rec->e_cpos,
3777                              le16_to_cpu(split_rec->e_leaf_clusters));
3778                 le64_add_cpu(&rec->e_blkno, len_blocks);
3779                 le16_add_cpu(&rec->e_leaf_clusters,
3780                              -le16_to_cpu(split_rec->e_leaf_clusters));
3781         } else {
3782                 /*
3783                  * Region is on the right edge of the existing
3784                  * record.
3785                  */
3786                 le16_add_cpu(&rec->e_leaf_clusters,
3787                              -le16_to_cpu(split_rec->e_leaf_clusters));
3788         }
3789 }
3790
3791 /*
3792  * Do the final bits of extent record insertion at the target leaf
3793  * list. If this leaf is part of an allocation tree, it is assumed
3794  * that the tree above has been prepared.
3795  */
3796 static void ocfs2_insert_at_leaf(struct ocfs2_extent_rec *insert_rec,
3797                                  struct ocfs2_extent_list *el,
3798                                  struct ocfs2_insert_type *insert,
3799                                  struct inode *inode)
3800 {
3801         int i = insert->ins_contig_index;
3802         unsigned int range;
3803         struct ocfs2_extent_rec *rec;
3804
3805         BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
3806
3807         if (insert->ins_split != SPLIT_NONE) {
3808                 i = ocfs2_search_extent_list(el, le32_to_cpu(insert_rec->e_cpos));
3809                 BUG_ON(i == -1);
3810                 rec = &el->l_recs[i];
3811                 ocfs2_subtract_from_rec(inode->i_sb, insert->ins_split, rec,
3812                                         insert_rec);
3813                 goto rotate;
3814         }
3815
3816         /*
3817          * Contiguous insert - either left or right.
3818          */
3819         if (insert->ins_contig != CONTIG_NONE) {
3820                 rec = &el->l_recs[i];
3821                 if (insert->ins_contig == CONTIG_LEFT) {
3822                         rec->e_blkno = insert_rec->e_blkno;
3823                         rec->e_cpos = insert_rec->e_cpos;
3824                 }
3825                 le16_add_cpu(&rec->e_leaf_clusters,
3826                              le16_to_cpu(insert_rec->e_leaf_clusters));
3827                 return;
3828         }
3829
3830         /*
3831          * Handle insert into an empty leaf.
3832          */
3833         if (le16_to_cpu(el->l_next_free_rec) == 0 ||
3834             ((le16_to_cpu(el->l_next_free_rec) == 1) &&
3835              ocfs2_is_empty_extent(&el->l_recs[0]))) {
3836                 el->l_recs[0] = *insert_rec;
3837                 el->l_next_free_rec = cpu_to_le16(1);
3838                 return;
3839         }
3840
3841         /*
3842          * Appending insert.
3843          */
3844         if (insert->ins_appending == APPEND_TAIL) {
3845                 i = le16_to_cpu(el->l_next_free_rec) - 1;
3846                 rec = &el->l_recs[i];
3847                 range = le32_to_cpu(rec->e_cpos)
3848                         + le16_to_cpu(rec->e_leaf_clusters);
3849                 BUG_ON(le32_to_cpu(insert_rec->e_cpos) < range);
3850
3851                 mlog_bug_on_msg(le16_to_cpu(el->l_next_free_rec) >=
3852                                 le16_to_cpu(el->l_count),
3853                                 "inode %lu, depth %u, count %u, next free %u, "
3854                                 "rec.cpos %u, rec.clusters %u, "
3855                                 "insert.cpos %u, insert.clusters %u\n",
3856                                 inode->i_ino,
3857                                 le16_to_cpu(el->l_tree_depth),
3858                                 le16_to_cpu(el->l_count),
3859                                 le16_to_cpu(el->l_next_free_rec),
3860                                 le32_to_cpu(el->l_recs[i].e_cpos),
3861                                 le16_to_cpu(el->l_recs[i].e_leaf_clusters),
3862                                 le32_to_cpu(insert_rec->e_cpos),
3863                                 le16_to_cpu(insert_rec->e_leaf_clusters));
3864                 i++;
3865                 el->l_recs[i] = *insert_rec;
3866                 le16_add_cpu(&el->l_next_free_rec, 1);
3867                 return;
3868         }
3869
3870 rotate:
3871         /*
3872          * Ok, we have to rotate.
3873          *
3874          * At this point, it is safe to assume that inserting into an
3875          * empty leaf and appending to a leaf have both been handled
3876          * above.
3877          *
3878          * This leaf needs to have space, either by the empty 1st
3879          * extent record, or by virtue of an l_next_rec < l_count.
3880          */
3881         ocfs2_rotate_leaf(el, insert_rec);
3882 }
3883
3884 static void ocfs2_adjust_rightmost_records(struct inode *inode,
3885                                            handle_t *handle,
3886                                            struct ocfs2_path *path,
3887                                            struct ocfs2_extent_rec *insert_rec)
3888 {
3889         int ret, i, next_free;
3890         struct buffer_head *bh;
3891         struct ocfs2_extent_list *el;
3892         struct ocfs2_extent_rec *rec;
3893
3894         /*
3895          * Update everything except the leaf block.
3896          */
3897         for (i = 0; i < path->p_tree_depth; i++) {
3898                 bh = path->p_node[i].bh;
3899                 el = path->p_node[i].el;
3900
3901                 next_free = le16_to_cpu(el->l_next_free_rec);
3902                 if (next_free == 0) {
3903                         ocfs2_error(inode->i_sb,
3904                                     "Dinode %llu has a bad extent list",
3905                                     (unsigned long long)OCFS2_I(inode)->ip_blkno);
3906                         ret = -EIO;
3907                         return;
3908                 }
3909
3910                 rec = &el->l_recs[next_free - 1];
3911
3912                 rec->e_int_clusters = insert_rec->e_cpos;
3913                 le32_add_cpu(&rec->e_int_clusters,
3914                              le16_to_cpu(insert_rec->e_leaf_clusters));
3915                 le32_add_cpu(&rec->e_int_clusters,
3916                              -le32_to_cpu(rec->e_cpos));
3917
3918                 ret = ocfs2_journal_dirty(handle, bh);
3919                 if (ret)
3920                         mlog_errno(ret);
3921
3922         }
3923 }
3924
3925 static int ocfs2_append_rec_to_path(struct inode *inode, handle_t *handle,
3926                                     struct ocfs2_extent_rec *insert_rec,
3927                                     struct ocfs2_path *right_path,
3928                                     struct ocfs2_path **ret_left_path)
3929 {
3930         int ret, next_free;
3931         struct ocfs2_extent_list *el;
3932         struct ocfs2_path *left_path = NULL;
3933
3934         *ret_left_path = NULL;
3935
3936         /*
3937          * This shouldn't happen for non-trees. The extent rec cluster
3938          * count manipulation below only works for interior nodes.
3939          */
3940         BUG_ON(right_path->p_tree_depth == 0);
3941
3942         /*
3943          * If our appending insert is at the leftmost edge of a leaf,
3944          * then we might need to update the rightmost records of the
3945          * neighboring path.
3946          */
3947         el = path_leaf_el(right_path);
3948         next_free = le16_to_cpu(el->l_next_free_rec);
3949         if (next_free == 0 ||
3950             (next_free == 1 && ocfs2_is_empty_extent(&el->l_recs[0]))) {
3951                 u32 left_cpos;
3952
3953                 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path,
3954                                                     &left_cpos);
3955                 if (ret) {
3956                         mlog_errno(ret);
3957                         goto out;
3958                 }
3959
3960                 mlog(0, "Append may need a left path update. cpos: %u, "
3961                      "left_cpos: %u\n", le32_to_cpu(insert_rec->e_cpos),
3962                      left_cpos);
3963
3964                 /*
3965                  * No need to worry if the append is already in the
3966                  * leftmost leaf.
3967                  */
3968                 if (left_cpos) {
3969                         left_path = ocfs2_new_path_from_path(right_path);
3970                         if (!left_path) {
3971                                 ret = -ENOMEM;
3972                                 mlog_errno(ret);
3973                                 goto out;
3974                         }
3975
3976                         ret = ocfs2_find_path(INODE_CACHE(inode), left_path,
3977                                               left_cpos);
3978                         if (ret) {
3979                                 mlog_errno(ret);
3980                                 goto out;
3981                         }
3982
3983                         /*
3984                          * ocfs2_insert_path() will pass the left_path to the
3985                          * journal for us.
3986                          */
3987                 }
3988         }
3989
3990         ret = ocfs2_journal_access_path(INODE_CACHE(inode), handle, right_path);
3991         if (ret) {
3992                 mlog_errno(ret);
3993                 goto out;
3994         }
3995
3996         ocfs2_adjust_rightmost_records(inode, handle, right_path, insert_rec);
3997
3998         *ret_left_path = left_path;
3999         ret = 0;
4000 out:
4001         if (ret != 0)
4002                 ocfs2_free_path(left_path);
4003
4004         return ret;
4005 }
4006
4007 static void ocfs2_split_record(struct inode *inode,
4008                                struct ocfs2_path *left_path,
4009                                struct ocfs2_path *right_path,
4010                                struct ocfs2_extent_rec *split_rec,
4011                                enum ocfs2_split_type split)
4012 {
4013         int index;
4014         u32 cpos = le32_to_cpu(split_rec->e_cpos);
4015         struct ocfs2_extent_list *left_el = NULL, *right_el, *insert_el, *el;
4016         struct ocfs2_extent_rec *rec, *tmprec;
4017
4018         right_el = path_leaf_el(right_path);
4019         if (left_path)
4020                 left_el = path_leaf_el(left_path);
4021
4022         el = right_el;
4023         insert_el = right_el;
4024         index = ocfs2_search_extent_list(el, cpos);
4025         if (index != -1) {
4026                 if (index == 0 && left_path) {
4027                         BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
4028
4029                         /*
4030                          * This typically means that the record
4031                          * started in the left path but moved to the
4032                          * right as a result of rotation. We either
4033                          * move the existing record to the left, or we
4034                          * do the later insert there.
4035                          *
4036                          * In this case, the left path should always
4037                          * exist as the rotate code will have passed
4038                          * it back for a post-insert update.
4039                          */
4040
4041                         if (split == SPLIT_LEFT) {
4042                                 /*
4043                                  * It's a left split. Since we know
4044                                  * that the rotate code gave us an
4045                                  * empty extent in the left path, we
4046                                  * can just do the insert there.
4047                                  */
4048                                 insert_el = left_el;
4049                         } else {
4050                                 /*
4051                                  * Right split - we have to move the
4052                                  * existing record over to the left
4053                                  * leaf. The insert will be into the
4054                                  * newly created empty extent in the
4055                                  * right leaf.
4056                                  */
4057                                 tmprec = &right_el->l_recs[index];
4058                                 ocfs2_rotate_leaf(left_el, tmprec);
4059                                 el = left_el;
4060
4061                                 memset(tmprec, 0, sizeof(*tmprec));
4062                                 index = ocfs2_search_extent_list(left_el, cpos);
4063                                 BUG_ON(index == -1);
4064                         }
4065                 }
4066         } else {
4067                 BUG_ON(!left_path);
4068                 BUG_ON(!ocfs2_is_empty_extent(&left_el->l_recs[0]));
4069                 /*
4070                  * Left path is easy - we can just allow the insert to
4071                  * happen.
4072                  */
4073                 el = left_el;
4074                 insert_el = left_el;
4075                 index = ocfs2_search_extent_list(el, cpos);
4076                 BUG_ON(index == -1);
4077         }
4078
4079         rec = &el->l_recs[index];
4080         ocfs2_subtract_from_rec(inode->i_sb, split, rec, split_rec);
4081         ocfs2_rotate_leaf(insert_el, split_rec);
4082 }
4083
4084 /*
4085  * This function only does inserts on an allocation b-tree. For tree
4086  * depth = 0, ocfs2_insert_at_leaf() is called directly.
4087  *
4088  * right_path is the path we want to do the actual insert
4089  * in. left_path should only be passed in if we need to update that
4090  * portion of the tree after an edge insert.
4091  */
4092 static int ocfs2_insert_path(struct inode *inode,
4093                              handle_t *handle,
4094                              struct ocfs2_extent_tree *et,
4095                              struct ocfs2_path *left_path,
4096                              struct ocfs2_path *right_path,
4097                              struct ocfs2_extent_rec *insert_rec,
4098                              struct ocfs2_insert_type *insert)
4099 {
4100         int ret, subtree_index;
4101         struct buffer_head *leaf_bh = path_leaf_bh(right_path);
4102
4103         if (left_path) {
4104                 int credits = handle->h_buffer_credits;
4105
4106                 /*
4107                  * There's a chance that left_path got passed back to
4108                  * us without being accounted for in the
4109                  * journal. Extend our transaction here to be sure we
4110                  * can change those blocks.
4111                  */
4112                 credits += left_path->p_tree_depth;
4113
4114                 ret = ocfs2_extend_trans(handle, credits);
4115                 if (ret < 0) {
4116                         mlog_errno(ret);
4117                         goto out;
4118                 }
4119
4120                 ret = ocfs2_journal_access_path(et->et_ci, handle, left_path);
4121                 if (ret < 0) {
4122                         mlog_errno(ret);
4123                         goto out;
4124                 }
4125         }
4126
4127         /*
4128          * Pass both paths to the journal. The majority of inserts
4129          * will be touching all components anyway.
4130          */
4131         ret = ocfs2_journal_access_path(et->et_ci, handle, right_path);
4132         if (ret < 0) {
4133                 mlog_errno(ret);
4134                 goto out;
4135         }
4136
4137         if (insert->ins_split != SPLIT_NONE) {
4138                 /*
4139                  * We could call ocfs2_insert_at_leaf() for some types
4140                  * of splits, but it's easier to just let one separate
4141                  * function sort it all out.
4142                  */
4143                 ocfs2_split_record(inode, left_path, right_path,
4144                                    insert_rec, insert->ins_split);
4145
4146                 /*
4147                  * Split might have modified either leaf and we don't
4148                  * have a guarantee that the later edge insert will
4149                  * dirty this for us.
4150                  */
4151                 if (left_path)
4152                         ret = ocfs2_journal_dirty(handle,
4153                                                   path_leaf_bh(left_path));
4154                         if (ret)
4155                                 mlog_errno(ret);
4156         } else
4157                 ocfs2_insert_at_leaf(insert_rec, path_leaf_el(right_path),
4158                                      insert, inode);
4159
4160         ret = ocfs2_journal_dirty(handle, leaf_bh);
4161         if (ret)
4162                 mlog_errno(ret);
4163
4164         if (left_path) {
4165                 /*
4166                  * The rotate code has indicated that we need to fix
4167                  * up portions of the tree after the insert.
4168                  *
4169                  * XXX: Should we extend the transaction here?
4170                  */
4171                 subtree_index = ocfs2_find_subtree_root(et, left_path,
4172                                                         right_path);
4173                 ocfs2_complete_edge_insert(handle, left_path, right_path,
4174                                            subtree_index);
4175         }
4176
4177         ret = 0;
4178 out:
4179         return ret;
4180 }
4181
4182 static int ocfs2_do_insert_extent(struct inode *inode,
4183                                   handle_t *handle,
4184                                   struct ocfs2_extent_tree *et,
4185                                   struct ocfs2_extent_rec *insert_rec,
4186                                   struct ocfs2_insert_type *type)
4187 {
4188         int ret, rotate = 0;
4189         u32 cpos;
4190         struct ocfs2_path *right_path = NULL;
4191         struct ocfs2_path *left_path = NULL;
4192         struct ocfs2_extent_list *el;
4193
4194         el = et->et_root_el;
4195
4196         ret = ocfs2_et_root_journal_access(handle, et,
4197                                            OCFS2_JOURNAL_ACCESS_WRITE);
4198         if (ret) {
4199                 mlog_errno(ret);
4200                 goto out;
4201         }
4202
4203         if (le16_to_cpu(el->l_tree_depth) == 0) {
4204                 ocfs2_insert_at_leaf(insert_rec, el, type, inode);
4205                 goto out_update_clusters;
4206         }
4207
4208         right_path = ocfs2_new_path_from_et(et);
4209         if (!right_path) {
4210                 ret = -ENOMEM;
4211                 mlog_errno(ret);
4212                 goto out;
4213         }
4214
4215         /*
4216          * Determine the path to start with. Rotations need the
4217          * rightmost path, everything else can go directly to the
4218          * target leaf.
4219          */
4220         cpos = le32_to_cpu(insert_rec->e_cpos);
4221         if (type->ins_appending == APPEND_NONE &&
4222             type->ins_contig == CONTIG_NONE) {
4223                 rotate = 1;
4224                 cpos = UINT_MAX;
4225         }
4226
4227         ret = ocfs2_find_path(et->et_ci, right_path, cpos);
4228         if (ret) {
4229                 mlog_errno(ret);
4230                 goto out;
4231         }
4232
4233         /*
4234          * Rotations and appends need special treatment - they modify
4235          * parts of the tree's above them.
4236          *
4237          * Both might pass back a path immediate to the left of the
4238          * one being inserted to. This will be cause
4239          * ocfs2_insert_path() to modify the rightmost records of
4240          * left_path to account for an edge insert.
4241          *
4242          * XXX: When modifying this code, keep in mind that an insert
4243          * can wind up skipping both of these two special cases...
4244          */
4245         if (rotate) {
4246                 ret = ocfs2_rotate_tree_right(handle, et, type->ins_split,
4247                                               le32_to_cpu(insert_rec->e_cpos),
4248                                               right_path, &left_path);
4249                 if (ret) {
4250                         mlog_errno(ret);
4251                         goto out;
4252                 }
4253
4254                 /*
4255                  * ocfs2_rotate_tree_right() might have extended the
4256                  * transaction without re-journaling our tree root.
4257                  */
4258                 ret = ocfs2_et_root_journal_access(handle, et,
4259                                                    OCFS2_JOURNAL_ACCESS_WRITE);
4260                 if (ret) {
4261                         mlog_errno(ret);
4262                         goto out;
4263                 }
4264         } else if (type->ins_appending == APPEND_TAIL
4265                    && type->ins_contig != CONTIG_LEFT) {
4266                 ret = ocfs2_append_rec_to_path(inode, handle, insert_rec,
4267                                                right_path, &left_path);
4268                 if (ret) {
4269                         mlog_errno(ret);
4270                         goto out;
4271                 }
4272         }
4273
4274         ret = ocfs2_insert_path(inode, handle, et, left_path, right_path,
4275                                 insert_rec, type);
4276         if (ret) {
4277                 mlog_errno(ret);
4278                 goto out;
4279         }
4280
4281 out_update_clusters:
4282         if (type->ins_split == SPLIT_NONE)
4283                 ocfs2_et_update_clusters(et,
4284                                          le16_to_cpu(insert_rec->e_leaf_clusters));
4285
4286         ret = ocfs2_journal_dirty(handle, et->et_root_bh);
4287         if (ret)
4288                 mlog_errno(ret);
4289
4290 out:
4291         ocfs2_free_path(left_path);
4292         ocfs2_free_path(right_path);
4293
4294         return ret;
4295 }
4296
4297 static enum ocfs2_contig_type
4298 ocfs2_figure_merge_contig_type(struct inode *inode, struct ocfs2_path *path,
4299                                struct ocfs2_extent_list *el, int index,
4300                                struct ocfs2_extent_rec *split_rec)
4301 {
4302         int status;
4303         enum ocfs2_contig_type ret = CONTIG_NONE;
4304         u32 left_cpos, right_cpos;
4305         struct ocfs2_extent_rec *rec = NULL;
4306         struct ocfs2_extent_list *new_el;
4307         struct ocfs2_path *left_path = NULL, *right_path = NULL;
4308         struct buffer_head *bh;
4309         struct ocfs2_extent_block *eb;
4310
4311         if (index > 0) {
4312                 rec = &el->l_recs[index - 1];
4313         } else if (path->p_tree_depth > 0) {
4314                 status = ocfs2_find_cpos_for_left_leaf(inode->i_sb,
4315                                                        path, &left_cpos);
4316                 if (status)
4317                         goto out;
4318
4319                 if (left_cpos != 0) {
4320                         left_path = ocfs2_new_path_from_path(path);
4321                         if (!left_path)
4322                                 goto out;
4323
4324                         status = ocfs2_find_path(INODE_CACHE(inode),
4325                                                  left_path, left_cpos);
4326                         if (status)
4327                                 goto out;
4328
4329                         new_el = path_leaf_el(left_path);
4330
4331                         if (le16_to_cpu(new_el->l_next_free_rec) !=
4332                             le16_to_cpu(new_el->l_count)) {
4333                                 bh = path_leaf_bh(left_path);
4334                                 eb = (struct ocfs2_extent_block *)bh->b_data;
4335                                 ocfs2_error(inode->i_sb,
4336                                             "Extent block #%llu has an "
4337                                             "invalid l_next_free_rec of "
4338                                             "%d.  It should have "
4339                                             "matched the l_count of %d",
4340                                             (unsigned long long)le64_to_cpu(eb->h_blkno),
4341                                             le16_to_cpu(new_el->l_next_free_rec),
4342                                             le16_to_cpu(new_el->l_count));
4343                                 status = -EINVAL;
4344                                 goto out;
4345                         }
4346                         rec = &new_el->l_recs[
4347                                 le16_to_cpu(new_el->l_next_free_rec) - 1];
4348                 }
4349         }
4350
4351         /*
4352          * We're careful to check for an empty extent record here -
4353          * the merge code will know what to do if it sees one.
4354          */
4355         if (rec) {
4356                 if (index == 1 && ocfs2_is_empty_extent(rec)) {
4357                         if (split_rec->e_cpos == el->l_recs[index].e_cpos)
4358                                 ret = CONTIG_RIGHT;
4359                 } else {
4360                         ret = ocfs2_extent_contig(inode, rec, split_rec);
4361                 }
4362         }
4363
4364         rec = NULL;
4365         if (index < (le16_to_cpu(el->l_next_free_rec) - 1))
4366                 rec = &el->l_recs[index + 1];
4367         else if (le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count) &&
4368                  path->p_tree_depth > 0) {
4369                 status = ocfs2_find_cpos_for_right_leaf(inode->i_sb,
4370                                                         path, &right_cpos);
4371                 if (status)
4372                         goto out;
4373
4374                 if (right_cpos == 0)
4375                         goto out;
4376
4377                 right_path = ocfs2_new_path_from_path(path);
4378                 if (!right_path)
4379                         goto out;
4380
4381                 status = ocfs2_find_path(INODE_CACHE(inode), right_path, right_cpos);
4382                 if (status)
4383                         goto out;
4384
4385                 new_el = path_leaf_el(right_path);
4386                 rec = &new_el->l_recs[0];
4387                 if (ocfs2_is_empty_extent(rec)) {
4388                         if (le16_to_cpu(new_el->l_next_free_rec) <= 1) {
4389                                 bh = path_leaf_bh(right_path);
4390                                 eb = (struct ocfs2_extent_block *)bh->b_data;
4391                                 ocfs2_error(inode->i_sb,
4392                                             "Extent block #%llu has an "
4393                                             "invalid l_next_free_rec of %d",
4394                                             (unsigned long long)le64_to_cpu(eb->h_blkno),
4395                                             le16_to_cpu(new_el->l_next_free_rec));
4396                                 status = -EINVAL;
4397                                 goto out;
4398                         }
4399                         rec = &new_el->l_recs[1];
4400                 }
4401         }
4402
4403         if (rec) {
4404                 enum ocfs2_contig_type contig_type;
4405
4406                 contig_type = ocfs2_extent_contig(inode, rec, split_rec);
4407
4408                 if (contig_type == CONTIG_LEFT && ret == CONTIG_RIGHT)
4409                         ret = CONTIG_LEFTRIGHT;
4410                 else if (ret == CONTIG_NONE)
4411                         ret = contig_type;
4412         }
4413
4414 out:
4415         if (left_path)
4416                 ocfs2_free_path(left_path);
4417         if (right_path)
4418                 ocfs2_free_path(right_path);
4419
4420         return ret;
4421 }
4422
4423 static void ocfs2_figure_contig_type(struct inode *inode,
4424                                      struct ocfs2_insert_type *insert,
4425                                      struct ocfs2_extent_list *el,
4426                                      struct ocfs2_extent_rec *insert_rec,
4427                                      struct ocfs2_extent_tree *et)
4428 {
4429         int i;
4430         enum ocfs2_contig_type contig_type = CONTIG_NONE;
4431
4432         BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
4433
4434         for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
4435                 contig_type = ocfs2_extent_contig(inode, &el->l_recs[i],
4436                                                   insert_rec);
4437                 if (contig_type != CONTIG_NONE) {
4438                         insert->ins_contig_index = i;
4439                         break;
4440                 }
4441         }
4442         insert->ins_contig = contig_type;
4443
4444         if (insert->ins_contig != CONTIG_NONE) {
4445                 struct ocfs2_extent_rec *rec =
4446                                 &el->l_recs[insert->ins_contig_index];
4447                 unsigned int len = le16_to_cpu(rec->e_leaf_clusters) +
4448                                    le16_to_cpu(insert_rec->e_leaf_clusters);
4449
4450                 /*
4451                  * Caller might want us to limit the size of extents, don't
4452                  * calculate contiguousness if we might exceed that limit.
4453                  */
4454                 if (et->et_max_leaf_clusters &&
4455                     (len > et->et_max_leaf_clusters))
4456                         insert->ins_contig = CONTIG_NONE;
4457         }
4458 }
4459
4460 /*
4461  * This should only be called against the righmost leaf extent list.
4462  *
4463  * ocfs2_figure_appending_type() will figure out whether we'll have to
4464  * insert at the tail of the rightmost leaf.
4465  *
4466  * This should also work against the root extent list for tree's with 0
4467  * depth. If we consider the root extent list to be the rightmost leaf node
4468  * then the logic here makes sense.
4469  */
4470 static void ocfs2_figure_appending_type(struct ocfs2_insert_type *insert,
4471                                         struct ocfs2_extent_list *el,
4472                                         struct ocfs2_extent_rec *insert_rec)
4473 {
4474         int i;
4475         u32 cpos = le32_to_cpu(insert_rec->e_cpos);
4476         struct ocfs2_extent_rec *rec;
4477
4478         insert->ins_appending = APPEND_NONE;
4479
4480         BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
4481
4482         if (!el->l_next_free_rec)
4483                 goto set_tail_append;
4484
4485         if (ocfs2_is_empty_extent(&el->l_recs[0])) {
4486                 /* Were all records empty? */
4487                 if (le16_to_cpu(el->l_next_free_rec) == 1)
4488                         goto set_tail_append;
4489         }
4490
4491         i = le16_to_cpu(el->l_next_free_rec) - 1;
4492         rec = &el->l_recs[i];
4493
4494         if (cpos >=
4495             (le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)))
4496                 goto set_tail_append;
4497
4498         return;
4499
4500 set_tail_append:
4501         insert->ins_appending = APPEND_TAIL;
4502 }
4503
4504 /*
4505  * Helper function called at the begining of an insert.
4506  *
4507  * This computes a few things that are commonly used in the process of
4508  * inserting into the btree:
4509  *   - Whether the new extent is contiguous with an existing one.
4510  *   - The current tree depth.
4511  *   - Whether the insert is an appending one.
4512  *   - The total # of free records in the tree.
4513  *
4514  * All of the information is stored on the ocfs2_insert_type
4515  * structure.
4516  */
4517 static int ocfs2_figure_insert_type(struct inode *inode,
4518                                     struct ocfs2_extent_tree *et,
4519                                     struct buffer_head **last_eb_bh,
4520                                     struct ocfs2_extent_rec *insert_rec,
4521                                     int *free_records,
4522                                     struct ocfs2_insert_type *insert)
4523 {
4524         int ret;
4525         struct ocfs2_extent_block *eb;
4526         struct ocfs2_extent_list *el;
4527         struct ocfs2_path *path = NULL;
4528         struct buffer_head *bh = NULL;
4529
4530         insert->ins_split = SPLIT_NONE;
4531
4532         el = et->et_root_el;
4533         insert->ins_tree_depth = le16_to_cpu(el->l_tree_depth);
4534
4535         if (el->l_tree_depth) {
4536                 /*
4537                  * If we have tree depth, we read in the
4538                  * rightmost extent block ahead of time as
4539                  * ocfs2_figure_insert_type() and ocfs2_add_branch()
4540                  * may want it later.
4541                  */
4542                 ret = ocfs2_read_extent_block(et->et_ci,
4543                                               ocfs2_et_get_last_eb_blk(et),
4544                                               &bh);
4545                 if (ret) {
4546                         mlog_exit(ret);
4547                         goto out;
4548                 }
4549                 eb = (struct ocfs2_extent_block *) bh->b_data;
4550                 el = &eb->h_list;
4551         }
4552
4553         /*
4554          * Unless we have a contiguous insert, we'll need to know if
4555          * there is room left in our allocation tree for another
4556          * extent record.
4557          *
4558          * XXX: This test is simplistic, we can search for empty
4559          * extent records too.
4560          */
4561         *free_records = le16_to_cpu(el->l_count) -
4562                 le16_to_cpu(el->l_next_free_rec);
4563
4564         if (!insert->ins_tree_depth) {
4565                 ocfs2_figure_contig_type(inode, insert, el, insert_rec, et);
4566                 ocfs2_figure_appending_type(insert, el, insert_rec);
4567                 return 0;
4568         }
4569
4570         path = ocfs2_new_path_from_et(et);
4571         if (!path) {
4572                 ret = -ENOMEM;
4573                 mlog_errno(ret);
4574                 goto out;
4575         }
4576
4577         /*
4578          * In the case that we're inserting past what the tree
4579          * currently accounts for, ocfs2_find_path() will return for
4580          * us the rightmost tree path. This is accounted for below in
4581          * the appending code.
4582          */
4583         ret = ocfs2_find_path(et->et_ci, path, le32_to_cpu(insert_rec->e_cpos));
4584         if (ret) {
4585                 mlog_errno(ret);
4586                 goto out;
4587         }
4588
4589         el = path_leaf_el(path);
4590
4591         /*
4592          * Now that we have the path, there's two things we want to determine:
4593          * 1) Contiguousness (also set contig_index if this is so)
4594          *
4595          * 2) Are we doing an append? We can trivially break this up
4596          *     into two types of appends: simple record append, or a
4597          *     rotate inside the tail leaf.
4598          */
4599         ocfs2_figure_contig_type(inode, insert, el, insert_rec, et);
4600
4601         /*
4602          * The insert code isn't quite ready to deal with all cases of
4603          * left contiguousness. Specifically, if it's an insert into
4604          * the 1st record in a leaf, it will require the adjustment of
4605          * cluster count on the last record of the path directly to it's
4606          * left. For now, just catch that case and fool the layers
4607          * above us. This works just fine for tree_depth == 0, which
4608          * is why we allow that above.
4609          */
4610         if (insert->ins_contig == CONTIG_LEFT &&
4611             insert->ins_contig_index == 0)
4612                 insert->ins_contig = CONTIG_NONE;
4613
4614         /*
4615          * Ok, so we can simply compare against last_eb to figure out
4616          * whether the path doesn't exist. This will only happen in
4617          * the case that we're doing a tail append, so maybe we can
4618          * take advantage of that information somehow.
4619          */
4620         if (ocfs2_et_get_last_eb_blk(et) ==
4621             path_leaf_bh(path)->b_blocknr) {
4622                 /*
4623                  * Ok, ocfs2_find_path() returned us the rightmost
4624                  * tree path. This might be an appending insert. There are
4625                  * two cases:
4626                  *    1) We're doing a true append at the tail:
4627                  *      -This might even be off the end of the leaf
4628                  *    2) We're "appending" by rotating in the tail
4629                  */
4630                 ocfs2_figure_appending_type(insert, el, insert_rec);
4631         }
4632
4633 out:
4634         ocfs2_free_path(path);
4635
4636         if (ret == 0)
4637                 *last_eb_bh = bh;
4638         else
4639                 brelse(bh);
4640         return ret;
4641 }
4642
4643 /*
4644  * Insert an extent into an inode btree.
4645  *
4646  * The caller needs to update fe->i_clusters
4647  */
4648 int ocfs2_insert_extent(struct ocfs2_super *osb,
4649                         handle_t *handle,
4650                         struct inode *inode,
4651                         struct ocfs2_extent_tree *et,
4652                         u32 cpos,
4653                         u64 start_blk,
4654                         u32 new_clusters,
4655                         u8 flags,
4656                         struct ocfs2_alloc_context *meta_ac)
4657 {
4658         int status;
4659         int uninitialized_var(free_records);
4660         struct buffer_head *last_eb_bh = NULL;
4661         struct ocfs2_insert_type insert = {0, };
4662         struct ocfs2_extent_rec rec;
4663
4664         mlog(0, "add %u clusters at position %u to inode %llu\n",
4665              new_clusters, cpos, (unsigned long long)OCFS2_I(inode)->ip_blkno);
4666
4667         memset(&rec, 0, sizeof(rec));
4668         rec.e_cpos = cpu_to_le32(cpos);
4669         rec.e_blkno = cpu_to_le64(start_blk);
4670         rec.e_leaf_clusters = cpu_to_le16(new_clusters);
4671         rec.e_flags = flags;
4672         status = ocfs2_et_insert_check(et, &rec);
4673         if (status) {
4674                 mlog_errno(status);
4675                 goto bail;
4676         }
4677
4678         status = ocfs2_figure_insert_type(inode, et, &last_eb_bh, &rec,
4679                                           &free_records, &insert);
4680         if (status < 0) {
4681                 mlog_errno(status);
4682                 goto bail;
4683         }
4684
4685         mlog(0, "Insert.appending: %u, Insert.Contig: %u, "
4686              "Insert.contig_index: %d, Insert.free_records: %d, "
4687              "Insert.tree_depth: %d\n",
4688              insert.ins_appending, insert.ins_contig, insert.ins_contig_index,
4689              free_records, insert.ins_tree_depth);
4690
4691         if (insert.ins_contig == CONTIG_NONE && free_records == 0) {
4692                 status = ocfs2_grow_tree(inode, handle, et,
4693                                          &insert.ins_tree_depth, &last_eb_bh,
4694                                          meta_ac);
4695                 if (status) {
4696                         mlog_errno(status);
4697                         goto bail;
4698                 }
4699         }
4700
4701         /* Finally, we can add clusters. This might rotate the tree for us. */
4702         status = ocfs2_do_insert_extent(inode, handle, et, &rec, &insert);
4703         if (status < 0)
4704                 mlog_errno(status);
4705         else if (et->et_ops == &ocfs2_dinode_et_ops)
4706                 ocfs2_extent_map_insert_rec(inode, &rec);
4707
4708 bail:
4709         brelse(last_eb_bh);
4710
4711         mlog_exit(status);
4712         return status;
4713 }
4714
4715 /*
4716  * Allcate and add clusters into the extent b-tree.
4717  * The new clusters(clusters_to_add) will be inserted at logical_offset.
4718  * The extent b-tree's root is specified by et, and
4719  * it is not limited to the file storage. Any extent tree can use this
4720  * function if it implements the proper ocfs2_extent_tree.
4721  */
4722 int ocfs2_add_clusters_in_btree(struct ocfs2_super *osb,
4723                                 struct inode *inode,
4724                                 u32 *logical_offset,
4725                                 u32 clusters_to_add,
4726                                 int mark_unwritten,
4727                                 struct ocfs2_extent_tree *et,
4728                                 handle_t *handle,
4729                                 struct ocfs2_alloc_context *data_ac,
4730                                 struct ocfs2_alloc_context *meta_ac,
4731                                 enum ocfs2_alloc_restarted *reason_ret)
4732 {
4733         int status = 0;
4734         int free_extents;
4735         enum ocfs2_alloc_restarted reason = RESTART_NONE;
4736         u32 bit_off, num_bits;
4737         u64 block;
4738         u8 flags = 0;
4739
4740         BUG_ON(!clusters_to_add);
4741
4742         if (mark_unwritten)
4743                 flags = OCFS2_EXT_UNWRITTEN;
4744
4745         free_extents = ocfs2_num_free_extents(osb, et);
4746         if (free_extents < 0) {
4747                 status = free_extents;
4748                 mlog_errno(status);
4749                 goto leave;
4750         }
4751
4752         /* there are two cases which could cause us to EAGAIN in the
4753          * we-need-more-metadata case:
4754          * 1) we haven't reserved *any*
4755          * 2) we are so fragmented, we've needed to add metadata too
4756          *    many times. */
4757         if (!free_extents && !meta_ac) {
4758                 mlog(0, "we haven't reserved any metadata!\n");
4759                 status = -EAGAIN;
4760                 reason = RESTART_META;
4761                 goto leave;
4762         } else if ((!free_extents)
4763                    && (ocfs2_alloc_context_bits_left(meta_ac)
4764                        < ocfs2_extend_meta_needed(et->et_root_el))) {
4765                 mlog(0, "filesystem is really fragmented...\n");
4766                 status = -EAGAIN;
4767                 reason = RESTART_META;
4768                 goto leave;
4769         }
4770
4771         status = __ocfs2_claim_clusters(osb, handle, data_ac, 1,
4772                                         clusters_to_add, &bit_off, &num_bits);
4773         if (status < 0) {
4774                 if (status != -ENOSPC)
4775                         mlog_errno(status);
4776                 goto leave;
4777         }
4778
4779         BUG_ON(num_bits > clusters_to_add);
4780
4781         /* reserve our write early -- insert_extent may update the tree root */
4782         status = ocfs2_et_root_journal_access(handle, et,
4783                                               OCFS2_JOURNAL_ACCESS_WRITE);
4784         if (status < 0) {
4785                 mlog_errno(status);
4786                 goto leave;
4787         }
4788
4789         block = ocfs2_clusters_to_blocks(osb->sb, bit_off);
4790         mlog(0, "Allocating %u clusters at block %u for inode %llu\n",
4791              num_bits, bit_off, (unsigned long long)OCFS2_I(inode)->ip_blkno);
4792         status = ocfs2_insert_extent(osb, handle, inode, et,
4793                                      *logical_offset, block,
4794                                      num_bits, flags, meta_ac);
4795         if (status < 0) {
4796                 mlog_errno(status);
4797                 goto leave;
4798         }
4799
4800         status = ocfs2_journal_dirty(handle, et->et_root_bh);
4801         if (status < 0) {
4802                 mlog_errno(status);
4803                 goto leave;
4804         }
4805
4806         clusters_to_add -= num_bits;
4807         *logical_offset += num_bits;
4808
4809         if (clusters_to_add) {
4810                 mlog(0, "need to alloc once more, wanted = %u\n",
4811                      clusters_to_add);
4812                 status = -EAGAIN;
4813                 reason = RESTART_TRANS;
4814         }
4815
4816 leave:
4817         mlog_exit(status);
4818         if (reason_ret)
4819                 *reason_ret = reason;
4820         return status;
4821 }
4822
4823 static void ocfs2_make_right_split_rec(struct super_block *sb,
4824                                        struct ocfs2_extent_rec *split_rec,
4825                                        u32 cpos,
4826                                        struct ocfs2_extent_rec *rec)
4827 {
4828         u32 rec_cpos = le32_to_cpu(rec->e_cpos);
4829         u32 rec_range = rec_cpos + le16_to_cpu(rec->e_leaf_clusters);
4830
4831         memset(split_rec, 0, sizeof(struct ocfs2_extent_rec));
4832
4833         split_rec->e_cpos = cpu_to_le32(cpos);
4834         split_rec->e_leaf_clusters = cpu_to_le16(rec_range - cpos);
4835
4836         split_rec->e_blkno = rec->e_blkno;
4837         le64_add_cpu(&split_rec->e_blkno,
4838                      ocfs2_clusters_to_blocks(sb, cpos - rec_cpos));
4839
4840         split_rec->e_flags = rec->e_flags;
4841 }
4842
4843 static int ocfs2_split_and_insert(struct inode *inode,
4844                                   handle_t *handle,
4845                                   struct ocfs2_path *path,
4846                                   struct ocfs2_extent_tree *et,
4847                                   struct buffer_head **last_eb_bh,
4848                                   int split_index,
4849                                   struct ocfs2_extent_rec *orig_split_rec,
4850                                   struct ocfs2_alloc_context *meta_ac)
4851 {
4852         int ret = 0, depth;
4853         unsigned int insert_range, rec_range, do_leftright = 0;
4854         struct ocfs2_extent_rec tmprec;
4855         struct ocfs2_extent_list *rightmost_el;
4856         struct ocfs2_extent_rec rec;
4857         struct ocfs2_extent_rec split_rec = *orig_split_rec;
4858         struct ocfs2_insert_type insert;
4859         struct ocfs2_extent_block *eb;
4860
4861 leftright:
4862         /*
4863          * Store a copy of the record on the stack - it might move
4864          * around as the tree is manipulated below.
4865          */
4866         rec = path_leaf_el(path)->l_recs[split_index];
4867
4868         rightmost_el = et->et_root_el;
4869
4870         depth = le16_to_cpu(rightmost_el->l_tree_depth);
4871         if (depth) {
4872                 BUG_ON(!(*last_eb_bh));
4873                 eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
4874                 rightmost_el = &eb->h_list;
4875         }
4876
4877         if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
4878             le16_to_cpu(rightmost_el->l_count)) {
4879                 ret = ocfs2_grow_tree(inode, handle, et,
4880                                       &depth, last_eb_bh, meta_ac);
4881                 if (ret) {
4882                         mlog_errno(ret);
4883                         goto out;
4884                 }
4885         }
4886
4887         memset(&insert, 0, sizeof(struct ocfs2_insert_type));
4888         insert.ins_appending = APPEND_NONE;
4889         insert.ins_contig = CONTIG_NONE;
4890         insert.ins_tree_depth = depth;
4891
4892         insert_range = le32_to_cpu(split_rec.e_cpos) +
4893                 le16_to_cpu(split_rec.e_leaf_clusters);
4894         rec_range = le32_to_cpu(rec.e_cpos) +
4895                 le16_to_cpu(rec.e_leaf_clusters);
4896
4897         if (split_rec.e_cpos == rec.e_cpos) {
4898                 insert.ins_split = SPLIT_LEFT;
4899         } else if (insert_range == rec_range) {
4900                 insert.ins_split = SPLIT_RIGHT;
4901         } else {
4902                 /*
4903                  * Left/right split. We fake this as a right split
4904                  * first and then make a second pass as a left split.
4905                  */
4906                 insert.ins_split = SPLIT_RIGHT;
4907
4908                 ocfs2_make_right_split_rec(inode->i_sb, &tmprec, insert_range,
4909                                            &rec);
4910
4911                 split_rec = tmprec;
4912
4913                 BUG_ON(do_leftright);
4914                 do_leftright = 1;
4915         }
4916
4917         ret = ocfs2_do_insert_extent(inode, handle, et, &split_rec, &insert);
4918         if (ret) {
4919                 mlog_errno(ret);
4920                 goto out;
4921         }
4922
4923         if (do_leftright == 1) {
4924                 u32 cpos;
4925                 struct ocfs2_extent_list *el;
4926
4927                 do_leftright++;
4928                 split_rec = *orig_split_rec;
4929
4930                 ocfs2_reinit_path(path, 1);
4931
4932                 cpos = le32_to_cpu(split_rec.e_cpos);
4933                 ret = ocfs2_find_path(et->et_ci, path, cpos);
4934                 if (ret) {
4935                         mlog_errno(ret);
4936                         goto out;
4937                 }
4938
4939                 el = path_leaf_el(path);
4940                 split_index = ocfs2_search_extent_list(el, cpos);
4941                 goto leftright;
4942         }
4943 out:
4944
4945         return ret;
4946 }
4947
4948 static int ocfs2_replace_extent_rec(struct inode *inode,
4949                                     handle_t *handle,
4950                                     struct ocfs2_path *path,
4951                                     struct ocfs2_extent_list *el,
4952                                     int split_index,
4953                                     struct ocfs2_extent_rec *split_rec)
4954 {
4955         int ret;
4956
4957         ret = ocfs2_path_bh_journal_access(handle, INODE_CACHE(inode), path,
4958                                            path_num_items(path) - 1);
4959         if (ret) {
4960                 mlog_errno(ret);
4961                 goto out;
4962         }
4963
4964         el->l_recs[split_index] = *split_rec;
4965
4966         ocfs2_journal_dirty(handle, path_leaf_bh(path));
4967 out:
4968         return ret;
4969 }
4970
4971 /*
4972  * Mark part or all of the extent record at split_index in the leaf
4973  * pointed to by path as written. This removes the unwritten
4974  * extent flag.
4975  *
4976  * Care is taken to handle contiguousness so as to not grow the tree.
4977  *
4978  * meta_ac is not strictly necessary - we only truly need it if growth
4979  * of the tree is required. All other cases will degrade into a less
4980  * optimal tree layout.
4981  *
4982  * last_eb_bh should be the rightmost leaf block for any extent
4983  * btree. Since a split may grow the tree or a merge might shrink it,
4984  * the caller cannot trust the contents of that buffer after this call.
4985  *
4986  * This code is optimized for readability - several passes might be
4987  * made over certain portions of the tree. All of those blocks will
4988  * have been brought into cache (and pinned via the journal), so the
4989  * extra overhead is not expressed in terms of disk reads.
4990  */
4991 static int __ocfs2_mark_extent_written(struct inode *inode,
4992                                        struct ocfs2_extent_tree *et,
4993                                        handle_t *handle,
4994                                        struct ocfs2_path *path,
4995                                        int split_index,
4996                                        struct ocfs2_extent_rec *split_rec,
4997                                        struct ocfs2_alloc_context *meta_ac,
4998                                        struct ocfs2_cached_dealloc_ctxt *dealloc)
4999 {
5000         int ret = 0;
5001         struct ocfs2_extent_list *el = path_leaf_el(path);
5002         struct buffer_head *last_eb_bh = NULL;
5003         struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
5004         struct ocfs2_merge_ctxt ctxt;
5005         struct ocfs2_extent_list *rightmost_el;
5006
5007         if (!(rec->e_flags & OCFS2_EXT_UNWRITTEN)) {
5008                 ret = -EIO;
5009                 mlog_errno(ret);
5010                 goto out;
5011         }
5012
5013         if (le32_to_cpu(rec->e_cpos) > le32_to_cpu(split_rec->e_cpos) ||
5014             ((le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)) <
5015              (le32_to_cpu(split_rec->e_cpos) + le16_to_cpu(split_rec->e_leaf_clusters)))) {
5016                 ret = -EIO;
5017                 mlog_errno(ret);
5018                 goto out;
5019         }
5020
5021         ctxt.c_contig_type = ocfs2_figure_merge_contig_type(inode, path, el,
5022                                                             split_index,
5023                                                             split_rec);
5024
5025         /*
5026          * The core merge / split code wants to know how much room is
5027          * left in this inodes allocation tree, so we pass the
5028          * rightmost extent list.
5029          */
5030         if (path->p_tree_depth) {
5031                 struct ocfs2_extent_block *eb;
5032
5033                 ret = ocfs2_read_extent_block(et->et_ci,
5034                                               ocfs2_et_get_last_eb_blk(et),
5035                                               &last_eb_bh);
5036                 if (ret) {
5037                         mlog_exit(ret);
5038                         goto out;
5039                 }
5040
5041                 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
5042                 rightmost_el = &eb->h_list;
5043         } else
5044                 rightmost_el = path_root_el(path);
5045
5046         if (rec->e_cpos == split_rec->e_cpos &&
5047             rec->e_leaf_clusters == split_rec->e_leaf_clusters)
5048                 ctxt.c_split_covers_rec = 1;
5049         else
5050                 ctxt.c_split_covers_rec = 0;
5051
5052         ctxt.c_has_empty_extent = ocfs2_is_empty_extent(&el->l_recs[0]);
5053
5054         mlog(0, "index: %d, contig: %u, has_empty: %u, split_covers: %u\n",
5055              split_index, ctxt.c_contig_type, ctxt.c_has_empty_extent,
5056              ctxt.c_split_covers_rec);
5057
5058         if (ctxt.c_contig_type == CONTIG_NONE) {
5059                 if (ctxt.c_split_covers_rec)
5060                         ret = ocfs2_replace_extent_rec(inode, handle,
5061                                                        path, el,
5062                                                        split_index, split_rec);
5063                 else
5064                         ret = ocfs2_split_and_insert(inode, handle, path, et,
5065                                                      &last_eb_bh, split_index,
5066                                                      split_rec, meta_ac);
5067                 if (ret)
5068                         mlog_errno(ret);
5069         } else {
5070                 ret = ocfs2_try_to_merge_extent(handle, et, path,
5071                                                 split_index, split_rec,
5072                                                 dealloc, &ctxt);
5073                 if (ret)
5074                         mlog_errno(ret);
5075         }
5076
5077 out:
5078         brelse(last_eb_bh);
5079         return ret;
5080 }
5081
5082 /*
5083  * Mark the already-existing extent at cpos as written for len clusters.
5084  *
5085  * If the existing extent is larger than the request, initiate a
5086  * split. An attempt will be made at merging with adjacent extents.
5087  *
5088  * The caller is responsible for passing down meta_ac if we'll need it.
5089  */
5090 int ocfs2_mark_extent_written(struct inode *inode,
5091                               struct ocfs2_extent_tree *et,
5092                               handle_t *handle, u32 cpos, u32 len, u32 phys,
5093                               struct ocfs2_alloc_context *meta_ac,
5094                               struct ocfs2_cached_dealloc_ctxt *dealloc)
5095 {
5096         int ret, index;
5097         u64 start_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys);
5098         struct ocfs2_extent_rec split_rec;
5099         struct ocfs2_path *left_path = NULL;
5100         struct ocfs2_extent_list *el;
5101
5102         mlog(0, "Inode %lu cpos %u, len %u, phys %u (%llu)\n",
5103              inode->i_ino, cpos, len, phys, (unsigned long long)start_blkno);
5104
5105         if (!ocfs2_writes_unwritten_extents(OCFS2_SB(inode->i_sb))) {
5106                 ocfs2_error(inode->i_sb, "Inode %llu has unwritten extents "
5107                             "that are being written to, but the feature bit "
5108                             "is not set in the super block.",
5109                             (unsigned long long)OCFS2_I(inode)->ip_blkno);
5110                 ret = -EROFS;
5111                 goto out;
5112         }
5113
5114         /*
5115          * XXX: This should be fixed up so that we just re-insert the
5116          * next extent records.
5117          *
5118          * XXX: This is a hack on the extent tree, maybe it should be
5119          * an op?
5120          */
5121         if (et->et_ops == &ocfs2_dinode_et_ops)
5122                 ocfs2_extent_map_trunc(inode, 0);
5123
5124         left_path = ocfs2_new_path_from_et(et);
5125         if (!left_path) {
5126                 ret = -ENOMEM;
5127                 mlog_errno(ret);
5128                 goto out;
5129         }
5130
5131         ret = ocfs2_find_path(et->et_ci, left_path, cpos);
5132         if (ret) {
5133                 mlog_errno(ret);
5134                 goto out;
5135         }
5136         el = path_leaf_el(left_path);
5137
5138         index = ocfs2_search_extent_list(el, cpos);
5139         if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
5140                 ocfs2_error(inode->i_sb,
5141                             "Inode %llu has an extent at cpos %u which can no "
5142                             "longer be found.\n",
5143                             (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
5144                 ret = -EROFS;
5145                 goto out;
5146         }
5147
5148         memset(&split_rec, 0, sizeof(struct ocfs2_extent_rec));
5149         split_rec.e_cpos = cpu_to_le32(cpos);
5150         split_rec.e_leaf_clusters = cpu_to_le16(len);
5151         split_rec.e_blkno = cpu_to_le64(start_blkno);
5152         split_rec.e_flags = path_leaf_el(left_path)->l_recs[index].e_flags;
5153         split_rec.e_flags &= ~OCFS2_EXT_UNWRITTEN;
5154
5155         ret = __ocfs2_mark_extent_written(inode, et, handle, left_path,
5156                                           index, &split_rec, meta_ac,
5157                                           dealloc);
5158         if (ret)
5159                 mlog_errno(ret);
5160
5161 out:
5162         ocfs2_free_path(left_path);
5163         return ret;
5164 }
5165
5166 static int ocfs2_split_tree(struct inode *inode, struct ocfs2_extent_tree *et,
5167                             handle_t *handle, struct ocfs2_path *path,
5168                             int index, u32 new_range,
5169                             struct ocfs2_alloc_context *meta_ac)
5170 {
5171         int ret, depth, credits = handle->h_buffer_credits;
5172         struct buffer_head *last_eb_bh = NULL;
5173         struct ocfs2_extent_block *eb;
5174         struct ocfs2_extent_list *rightmost_el, *el;
5175         struct ocfs2_extent_rec split_rec;
5176         struct ocfs2_extent_rec *rec;
5177         struct ocfs2_insert_type insert;
5178
5179         /*
5180          * Setup the record to split before we grow the tree.
5181          */
5182         el = path_leaf_el(path);
5183         rec = &el->l_recs[index];
5184         ocfs2_make_right_split_rec(inode->i_sb, &split_rec, new_range, rec);
5185
5186         depth = path->p_tree_depth;
5187         if (depth > 0) {
5188                 ret = ocfs2_read_extent_block(et->et_ci,
5189                                               ocfs2_et_get_last_eb_blk(et),
5190                                               &last_eb_bh);
5191                 if (ret < 0) {
5192                         mlog_errno(ret);
5193                         goto out;
5194                 }
5195
5196                 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
5197                 rightmost_el = &eb->h_list;
5198         } else
5199                 rightmost_el = path_leaf_el(path);
5200
5201         credits += path->p_tree_depth +
5202                    ocfs2_extend_meta_needed(et->et_root_el);
5203         ret = ocfs2_extend_trans(handle, credits);
5204         if (ret) {
5205                 mlog_errno(ret);
5206                 goto out;
5207         }
5208
5209         if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
5210             le16_to_cpu(rightmost_el->l_count)) {
5211                 ret = ocfs2_grow_tree(inode, handle, et, &depth, &last_eb_bh,
5212                                       meta_ac);
5213                 if (ret) {
5214                         mlog_errno(ret);
5215                         goto out;
5216                 }
5217         }
5218
5219         memset(&insert, 0, sizeof(struct ocfs2_insert_type));
5220         insert.ins_appending = APPEND_NONE;
5221         insert.ins_contig = CONTIG_NONE;
5222         insert.ins_split = SPLIT_RIGHT;
5223         insert.ins_tree_depth = depth;
5224
5225         ret = ocfs2_do_insert_extent(inode, handle, et, &split_rec, &insert);
5226         if (ret)
5227                 mlog_errno(ret);
5228
5229 out:
5230         brelse(last_eb_bh);
5231         return ret;
5232 }
5233
5234 static int ocfs2_truncate_rec(struct inode *inode, handle_t *handle,
5235                               struct ocfs2_path *path, int index,
5236                               struct ocfs2_cached_dealloc_ctxt *dealloc,
5237                               u32 cpos, u32 len,
5238                               struct ocfs2_extent_tree *et)
5239 {
5240         int ret;
5241         u32 left_cpos, rec_range, trunc_range;
5242         int wants_rotate = 0, is_rightmost_tree_rec = 0;
5243         struct super_block *sb = inode->i_sb;
5244         struct ocfs2_path *left_path = NULL;
5245         struct ocfs2_extent_list *el = path_leaf_el(path);
5246         struct ocfs2_extent_rec *rec;
5247         struct ocfs2_extent_block *eb;
5248
5249         if (ocfs2_is_empty_extent(&el->l_recs[0]) && index > 0) {
5250                 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
5251                 if (ret) {
5252                         mlog_errno(ret);
5253                         goto out;
5254                 }
5255
5256                 index--;
5257         }
5258
5259         if (index == (le16_to_cpu(el->l_next_free_rec) - 1) &&
5260             path->p_tree_depth) {
5261                 /*
5262                  * Check whether this is the rightmost tree record. If
5263                  * we remove all of this record or part of its right
5264                  * edge then an update of the record lengths above it
5265                  * will be required.
5266                  */
5267                 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
5268                 if (eb->h_next_leaf_blk == 0)
5269                         is_rightmost_tree_rec = 1;
5270         }
5271
5272         rec = &el->l_recs[index];
5273         if (index == 0 && path->p_tree_depth &&
5274             le32_to_cpu(rec->e_cpos) == cpos) {
5275                 /*
5276                  * Changing the leftmost offset (via partial or whole
5277                  * record truncate) of an interior (or rightmost) path
5278                  * means we have to update the subtree that is formed
5279                  * by this leaf and the one to it's left.
5280                  *
5281                  * There are two cases we can skip:
5282                  *   1) Path is the leftmost one in our inode tree.
5283                  *   2) The leaf is rightmost and will be empty after
5284                  *      we remove the extent record - the rotate code
5285                  *      knows how to update the newly formed edge.
5286                  */
5287
5288                 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path,
5289                                                     &left_cpos);
5290                 if (ret) {
5291                         mlog_errno(ret);
5292                         goto out;
5293                 }
5294
5295                 if (left_cpos && le16_to_cpu(el->l_next_free_rec) > 1) {
5296                         left_path = ocfs2_new_path_from_path(path);
5297                         if (!left_path) {
5298                                 ret = -ENOMEM;
5299                                 mlog_errno(ret);
5300                                 goto out;
5301                         }
5302
5303                         ret = ocfs2_find_path(et->et_ci, left_path,
5304                                               left_cpos);
5305                         if (ret) {
5306                                 mlog_errno(ret);
5307                                 goto out;
5308                         }
5309                 }
5310         }
5311
5312         ret = ocfs2_extend_rotate_transaction(handle, 0,
5313                                               handle->h_buffer_credits,
5314                                               path);
5315         if (ret) {
5316                 mlog_errno(ret);
5317                 goto out;
5318         }
5319
5320         ret = ocfs2_journal_access_path(et->et_ci, handle, path);
5321         if (ret) {
5322                 mlog_errno(ret);
5323                 goto out;
5324         }
5325
5326         ret = ocfs2_journal_access_path(et->et_ci, handle, left_path);
5327         if (ret) {
5328                 mlog_errno(ret);
5329                 goto out;
5330         }
5331
5332         rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
5333         trunc_range = cpos + len;
5334
5335         if (le32_to_cpu(rec->e_cpos) == cpos && rec_range == trunc_range) {
5336                 int next_free;
5337
5338                 memset(rec, 0, sizeof(*rec));
5339                 ocfs2_cleanup_merge(el, index);
5340                 wants_rotate = 1;
5341
5342                 next_free = le16_to_cpu(el->l_next_free_rec);
5343                 if (is_rightmost_tree_rec && next_free > 1) {
5344                         /*
5345                          * We skip the edge update if this path will
5346                          * be deleted by the rotate code.
5347                          */
5348                         rec = &el->l_recs[next_free - 1];
5349                         ocfs2_adjust_rightmost_records(inode, handle, path,
5350                                                        rec);
5351                 }
5352         } else if (le32_to_cpu(rec->e_cpos) == cpos) {
5353                 /* Remove leftmost portion of the record. */
5354                 le32_add_cpu(&rec->e_cpos, len);
5355                 le64_add_cpu(&rec->e_blkno, ocfs2_clusters_to_blocks(sb, len));
5356                 le16_add_cpu(&rec->e_leaf_clusters, -len);
5357         } else if (rec_range == trunc_range) {
5358                 /* Remove rightmost portion of the record */
5359                 le16_add_cpu(&rec->e_leaf_clusters, -len);
5360                 if (is_rightmost_tree_rec)
5361                         ocfs2_adjust_rightmost_records(inode, handle, path, rec);
5362         } else {
5363                 /* Caller should have trapped this. */
5364                 mlog(ML_ERROR, "Inode %llu: Invalid record truncate: (%u, %u) "
5365                      "(%u, %u)\n", (unsigned long long)OCFS2_I(inode)->ip_blkno,
5366                      le32_to_cpu(rec->e_cpos),
5367                      le16_to_cpu(rec->e_leaf_clusters), cpos, len);
5368                 BUG();
5369         }
5370
5371         if (left_path) {
5372                 int subtree_index;
5373
5374                 subtree_index = ocfs2_find_subtree_root(et, left_path, path);
5375                 ocfs2_complete_edge_insert(handle, left_path, path,
5376                                            subtree_index);
5377         }
5378
5379         ocfs2_journal_dirty(handle, path_leaf_bh(path));
5380
5381         ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
5382         if (ret) {
5383                 mlog_errno(ret);
5384                 goto out;
5385         }
5386
5387 out:
5388         ocfs2_free_path(left_path);
5389         return ret;
5390 }
5391
5392 int ocfs2_remove_extent(struct inode *inode,
5393                         struct ocfs2_extent_tree *et,
5394                         u32 cpos, u32 len, handle_t *handle,
5395                         struct ocfs2_alloc_context *meta_ac,
5396                         struct ocfs2_cached_dealloc_ctxt *dealloc)
5397 {
5398         int ret, index;
5399         u32 rec_range, trunc_range;
5400         struct ocfs2_extent_rec *rec;
5401         struct ocfs2_extent_list *el;
5402         struct ocfs2_path *path = NULL;
5403
5404         ocfs2_extent_map_trunc(inode, 0);
5405
5406         path = ocfs2_new_path_from_et(et);
5407         if (!path) {
5408                 ret = -ENOMEM;
5409                 mlog_errno(ret);
5410                 goto out;
5411         }
5412
5413         ret = ocfs2_find_path(et->et_ci, path, cpos);
5414         if (ret) {
5415                 mlog_errno(ret);
5416                 goto out;
5417         }
5418
5419         el = path_leaf_el(path);
5420         index = ocfs2_search_extent_list(el, cpos);
5421         if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
5422                 ocfs2_error(inode->i_sb,
5423                             "Inode %llu has an extent at cpos %u which can no "
5424                             "longer be found.\n",
5425                             (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
5426                 ret = -EROFS;
5427                 goto out;
5428         }
5429
5430         /*
5431          * We have 3 cases of extent removal:
5432          *   1) Range covers the entire extent rec
5433          *   2) Range begins or ends on one edge of the extent rec
5434          *   3) Range is in the middle of the extent rec (no shared edges)
5435          *
5436          * For case 1 we remove the extent rec and left rotate to
5437          * fill the hole.
5438          *
5439          * For case 2 we just shrink the existing extent rec, with a
5440          * tree update if the shrinking edge is also the edge of an
5441          * extent block.
5442          *
5443          * For case 3 we do a right split to turn the extent rec into
5444          * something case 2 can handle.
5445          */
5446         rec = &el->l_recs[index];
5447         rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
5448         trunc_range = cpos + len;
5449
5450         BUG_ON(cpos < le32_to_cpu(rec->e_cpos) || trunc_range > rec_range);
5451
5452         mlog(0, "Inode %llu, remove (cpos %u, len %u). Existing index %d "
5453              "(cpos %u, len %u)\n",
5454              (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos, len, index,
5455              le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec));
5456
5457         if (le32_to_cpu(rec->e_cpos) == cpos || rec_range == trunc_range) {
5458                 ret = ocfs2_truncate_rec(inode, handle, path, index, dealloc,
5459                                          cpos, len, et);
5460                 if (ret) {
5461                         mlog_errno(ret);
5462                         goto out;
5463                 }
5464         } else {
5465                 ret = ocfs2_split_tree(inode, et, handle, path, index,
5466                                        trunc_range, meta_ac);
5467                 if (ret) {
5468                         mlog_errno(ret);
5469                         goto out;
5470                 }
5471
5472                 /*
5473                  * The split could have manipulated the tree enough to
5474                  * move the record location, so we have to look for it again.
5475                  */
5476                 ocfs2_reinit_path(path, 1);
5477
5478                 ret = ocfs2_find_path(et->et_ci, path, cpos);
5479                 if (ret) {
5480                         mlog_errno(ret);
5481                         goto out;
5482                 }
5483
5484                 el = path_leaf_el(path);
5485                 index = ocfs2_search_extent_list(el, cpos);
5486                 if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
5487                         ocfs2_error(inode->i_sb,
5488                                     "Inode %llu: split at cpos %u lost record.",
5489                                     (unsigned long long)OCFS2_I(inode)->ip_blkno,
5490                                     cpos);
5491                         ret = -EROFS;
5492                         goto out;
5493                 }
5494
5495                 /*
5496                  * Double check our values here. If anything is fishy,
5497                  * it's easier to catch it at the top level.
5498                  */
5499                 rec = &el->l_recs[index];
5500                 rec_range = le32_to_cpu(rec->e_cpos) +
5501                         ocfs2_rec_clusters(el, rec);
5502                 if (rec_range != trunc_range) {
5503                         ocfs2_error(inode->i_sb,
5504                                     "Inode %llu: error after split at cpos %u"
5505                                     "trunc len %u, existing record is (%u,%u)",
5506                                     (unsigned long long)OCFS2_I(inode)->ip_blkno,
5507                                     cpos, len, le32_to_cpu(rec->e_cpos),
5508                                     ocfs2_rec_clusters(el, rec));
5509                         ret = -EROFS;
5510                         goto out;
5511                 }
5512
5513                 ret = ocfs2_truncate_rec(inode, handle, path, index, dealloc,
5514                                          cpos, len, et);
5515                 if (ret) {
5516                         mlog_errno(ret);
5517                         goto out;
5518                 }
5519         }
5520
5521 out:
5522         ocfs2_free_path(path);
5523         return ret;
5524 }
5525
5526 int ocfs2_remove_btree_range(struct inode *inode,
5527                              struct ocfs2_extent_tree *et,
5528                              u32 cpos, u32 phys_cpos, u32 len,
5529                              struct ocfs2_cached_dealloc_ctxt *dealloc)
5530 {
5531         int ret;
5532         u64 phys_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys_cpos);
5533         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
5534         struct inode *tl_inode = osb->osb_tl_inode;
5535         handle_t *handle;
5536         struct ocfs2_alloc_context *meta_ac = NULL;
5537
5538         ret = ocfs2_lock_allocators(inode, et, 0, 1, NULL, &meta_ac);
5539         if (ret) {
5540                 mlog_errno(ret);
5541                 return ret;
5542         }
5543
5544         mutex_lock(&tl_inode->i_mutex);
5545
5546         if (ocfs2_truncate_log_needs_flush(osb)) {
5547                 ret = __ocfs2_flush_truncate_log(osb);
5548                 if (ret < 0) {
5549                         mlog_errno(ret);
5550                         goto out;
5551                 }
5552         }
5553
5554         handle = ocfs2_start_trans(osb, ocfs2_remove_extent_credits(osb->sb));
5555         if (IS_ERR(handle)) {
5556                 ret = PTR_ERR(handle);
5557                 mlog_errno(ret);
5558                 goto out;
5559         }
5560
5561         ret = ocfs2_et_root_journal_access(handle, et,
5562                                            OCFS2_JOURNAL_ACCESS_WRITE);
5563         if (ret) {
5564                 mlog_errno(ret);
5565                 goto out;
5566         }
5567
5568         vfs_dq_free_space_nodirty(inode,
5569                                   ocfs2_clusters_to_bytes(inode->i_sb, len));
5570
5571         ret = ocfs2_remove_extent(inode, et, cpos, len, handle, meta_ac,
5572                                   dealloc);
5573         if (ret) {
5574                 mlog_errno(ret);
5575                 goto out_commit;
5576         }
5577
5578         ocfs2_et_update_clusters(et, -len);
5579
5580         ret = ocfs2_journal_dirty(handle, et->et_root_bh);
5581         if (ret) {
5582                 mlog_errno(ret);
5583                 goto out_commit;
5584         }
5585
5586         ret = ocfs2_truncate_log_append(osb, handle, phys_blkno, len);
5587         if (ret)
5588                 mlog_errno(ret);
5589
5590 out_commit:
5591         ocfs2_commit_trans(osb, handle);
5592 out:
5593         mutex_unlock(&tl_inode->i_mutex);
5594
5595         if (meta_ac)
5596                 ocfs2_free_alloc_context(meta_ac);
5597
5598         return ret;
5599 }
5600
5601 int ocfs2_truncate_log_needs_flush(struct ocfs2_super *osb)
5602 {
5603         struct buffer_head *tl_bh = osb->osb_tl_bh;
5604         struct ocfs2_dinode *di;
5605         struct ocfs2_truncate_log *tl;
5606
5607         di = (struct ocfs2_dinode *) tl_bh->b_data;
5608         tl = &di->id2.i_dealloc;
5609
5610         mlog_bug_on_msg(le16_to_cpu(tl->tl_used) > le16_to_cpu(tl->tl_count),
5611                         "slot %d, invalid truncate log parameters: used = "
5612                         "%u, count = %u\n", osb->slot_num,
5613                         le16_to_cpu(tl->tl_used), le16_to_cpu(tl->tl_count));
5614         return le16_to_cpu(tl->tl_used) == le16_to_cpu(tl->tl_count);
5615 }
5616
5617 static int ocfs2_truncate_log_can_coalesce(struct ocfs2_truncate_log *tl,
5618                                            unsigned int new_start)
5619 {
5620         unsigned int tail_index;
5621         unsigned int current_tail;
5622
5623         /* No records, nothing to coalesce */
5624         if (!le16_to_cpu(tl->tl_used))
5625                 return 0;
5626
5627         tail_index = le16_to_cpu(tl->tl_used) - 1;
5628         current_tail = le32_to_cpu(tl->tl_recs[tail_index].t_start);
5629         current_tail += le32_to_cpu(tl->tl_recs[tail_index].t_clusters);
5630
5631         return current_tail == new_start;
5632 }
5633
5634 int ocfs2_truncate_log_append(struct ocfs2_super *osb,
5635                               handle_t *handle,
5636                               u64 start_blk,
5637                               unsigned int num_clusters)
5638 {
5639         int status, index;
5640         unsigned int start_cluster, tl_count;
5641         struct inode *tl_inode = osb->osb_tl_inode;
5642         struct buffer_head *tl_bh = osb->osb_tl_bh;
5643         struct ocfs2_dinode *di;
5644         struct ocfs2_truncate_log *tl;
5645
5646         mlog_entry("start_blk = %llu, num_clusters = %u\n",
5647                    (unsigned long long)start_blk, num_clusters);
5648
5649         BUG_ON(mutex_trylock(&tl_inode->i_mutex));
5650
5651         start_cluster = ocfs2_blocks_to_clusters(osb->sb, start_blk);
5652
5653         di = (struct ocfs2_dinode *) tl_bh->b_data;
5654
5655         /* tl_bh is loaded from ocfs2_truncate_log_init().  It's validated
5656          * by the underlying call to ocfs2_read_inode_block(), so any
5657          * corruption is a code bug */
5658         BUG_ON(!OCFS2_IS_VALID_DINODE(di));
5659
5660         tl = &di->id2.i_dealloc;
5661         tl_count = le16_to_cpu(tl->tl_count);
5662         mlog_bug_on_msg(tl_count > ocfs2_truncate_recs_per_inode(osb->sb) ||
5663                         tl_count == 0,
5664                         "Truncate record count on #%llu invalid "
5665                         "wanted %u, actual %u\n",
5666                         (unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
5667                         ocfs2_truncate_recs_per_inode(osb->sb),
5668                         le16_to_cpu(tl->tl_count));
5669
5670         /* Caller should have known to flush before calling us. */
5671         index = le16_to_cpu(tl->tl_used);
5672         if (index >= tl_count) {
5673                 status = -ENOSPC;
5674                 mlog_errno(status);
5675                 goto bail;
5676         }
5677
5678         status = ocfs2_journal_access_di(handle, INODE_CACHE(tl_inode), tl_bh,
5679                                          OCFS2_JOURNAL_ACCESS_WRITE);
5680         if (status < 0) {
5681                 mlog_errno(status);
5682                 goto bail;
5683         }
5684
5685         mlog(0, "Log truncate of %u clusters starting at cluster %u to "
5686              "%llu (index = %d)\n", num_clusters, start_cluster,
5687              (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, index);
5688
5689         if (ocfs2_truncate_log_can_coalesce(tl, start_cluster)) {
5690                 /*
5691                  * Move index back to the record we are coalescing with.
5692                  * ocfs2_truncate_log_can_coalesce() guarantees nonzero
5693                  */
5694                 index--;
5695
5696                 num_clusters += le32_to_cpu(tl->tl_recs[index].t_clusters);
5697                 mlog(0, "Coalesce with index %u (start = %u, clusters = %u)\n",
5698                      index, le32_to_cpu(tl->tl_recs[index].t_start),
5699                      num_clusters);
5700         } else {
5701                 tl->tl_recs[index].t_start = cpu_to_le32(start_cluster);
5702                 tl->tl_used = cpu_to_le16(index + 1);
5703         }
5704         tl->tl_recs[index].t_clusters = cpu_to_le32(num_clusters);
5705
5706         status = ocfs2_journal_dirty(handle, tl_bh);
5707         if (status < 0) {
5708                 mlog_errno(status);
5709                 goto bail;
5710         }
5711
5712 bail:
5713         mlog_exit(status);
5714         return status;
5715 }
5716
5717 static int ocfs2_replay_truncate_records(struct ocfs2_super *osb,
5718                                          handle_t *handle,
5719                                          struct inode *data_alloc_inode,
5720                                          struct buffer_head *data_alloc_bh)
5721 {
5722         int status = 0;
5723         int i;
5724         unsigned int num_clusters;
5725         u64 start_blk;
5726         struct ocfs2_truncate_rec rec;
5727         struct ocfs2_dinode *di;
5728         struct ocfs2_truncate_log *tl;
5729         struct inode *tl_inode = osb->osb_tl_inode;
5730         struct buffer_head *tl_bh = osb->osb_tl_bh;
5731
5732         mlog_entry_void();
5733
5734         di = (struct ocfs2_dinode *) tl_bh->b_data;
5735         tl = &di->id2.i_dealloc;
5736         i = le16_to_cpu(tl->tl_used) - 1;
5737         while (i >= 0) {
5738                 /* Caller has given us at least enough credits to
5739                  * update the truncate log dinode */
5740                 status = ocfs2_journal_access_di(handle, INODE_CACHE(tl_inode), tl_bh,
5741                                                  OCFS2_JOURNAL_ACCESS_WRITE);
5742                 if (status < 0) {
5743                         mlog_errno(status);
5744                         goto bail;
5745                 }
5746
5747                 tl->tl_used = cpu_to_le16(i);
5748
5749                 status = ocfs2_journal_dirty(handle, tl_bh);
5750                 if (status < 0) {
5751                         mlog_errno(status);
5752                         goto bail;
5753                 }
5754
5755                 /* TODO: Perhaps we can calculate the bulk of the
5756                  * credits up front rather than extending like
5757                  * this. */
5758                 status = ocfs2_extend_trans(handle,
5759                                             OCFS2_TRUNCATE_LOG_FLUSH_ONE_REC);
5760                 if (status < 0) {
5761                         mlog_errno(status);
5762                         goto bail;
5763                 }
5764
5765                 rec = tl->tl_recs[i];
5766                 start_blk = ocfs2_clusters_to_blocks(data_alloc_inode->i_sb,
5767                                                     le32_to_cpu(rec.t_start));
5768                 num_clusters = le32_to_cpu(rec.t_clusters);
5769
5770                 /* if start_blk is not set, we ignore the record as
5771                  * invalid. */
5772                 if (start_blk) {
5773                         mlog(0, "free record %d, start = %u, clusters = %u\n",
5774                              i, le32_to_cpu(rec.t_start), num_clusters);
5775
5776                         status = ocfs2_free_clusters(handle, data_alloc_inode,
5777                                                      data_alloc_bh, start_blk,
5778                                                      num_clusters);
5779                         if (status < 0) {
5780                                 mlog_errno(status);
5781                                 goto bail;
5782                         }
5783                 }
5784                 i--;
5785         }
5786
5787 bail:
5788         mlog_exit(status);
5789         return status;
5790 }
5791
5792 /* Expects you to already be holding tl_inode->i_mutex */
5793 int __ocfs2_flush_truncate_log(struct ocfs2_super *osb)
5794 {
5795         int status;
5796         unsigned int num_to_flush;
5797         handle_t *handle;
5798         struct inode *tl_inode = osb->osb_tl_inode;
5799         struct inode *data_alloc_inode = NULL;
5800         struct buffer_head *tl_bh = osb->osb_tl_bh;
5801         struct buffer_head *data_alloc_bh = NULL;
5802         struct ocfs2_dinode *di;
5803         struct ocfs2_truncate_log *tl;
5804
5805         mlog_entry_void();
5806
5807         BUG_ON(mutex_trylock(&tl_inode->i_mutex));
5808
5809         di = (struct ocfs2_dinode *) tl_bh->b_data;
5810
5811         /* tl_bh is loaded from ocfs2_truncate_log_init().  It's validated
5812          * by the underlying call to ocfs2_read_inode_block(), so any
5813          * corruption is a code bug */
5814         BUG_ON(!OCFS2_IS_VALID_DINODE(di));
5815
5816         tl = &di->id2.i_dealloc;
5817         num_to_flush = le16_to_cpu(tl->tl_used);
5818         mlog(0, "Flush %u records from truncate log #%llu\n",
5819              num_to_flush, (unsigned long long)OCFS2_I(tl_inode)->ip_blkno);
5820         if (!num_to_flush) {
5821                 status = 0;
5822                 goto out;
5823         }
5824
5825         data_alloc_inode = ocfs2_get_system_file_inode(osb,
5826                                                        GLOBAL_BITMAP_SYSTEM_INODE,
5827                                                        OCFS2_INVALID_SLOT);
5828         if (!data_alloc_inode) {
5829                 status = -EINVAL;
5830                 mlog(ML_ERROR, "Could not get bitmap inode!\n");
5831                 goto out;
5832         }
5833
5834         mutex_lock(&data_alloc_inode->i_mutex);
5835
5836         status = ocfs2_inode_lock(data_alloc_inode, &data_alloc_bh, 1);
5837         if (status < 0) {
5838                 mlog_errno(status);
5839                 goto out_mutex;
5840         }
5841
5842         handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
5843         if (IS_ERR(handle)) {
5844                 status = PTR_ERR(handle);
5845                 mlog_errno(status);
5846                 goto out_unlock;
5847         }
5848
5849         status = ocfs2_replay_truncate_records(osb, handle, data_alloc_inode,
5850                                                data_alloc_bh);
5851         if (status < 0)
5852                 mlog_errno(status);
5853
5854         ocfs2_commit_trans(osb, handle);
5855
5856 out_unlock:
5857         brelse(data_alloc_bh);
5858         ocfs2_inode_unlock(data_alloc_inode, 1);
5859
5860 out_mutex:
5861         mutex_unlock(&data_alloc_inode->i_mutex);
5862         iput(data_alloc_inode);
5863
5864 out:
5865         mlog_exit(status);
5866         return status;
5867 }
5868
5869 int ocfs2_flush_truncate_log(struct ocfs2_super *osb)
5870 {
5871         int status;
5872         struct inode *tl_inode = osb->osb_tl_inode;
5873
5874         mutex_lock(&tl_inode->i_mutex);
5875         status = __ocfs2_flush_truncate_log(osb);
5876         mutex_unlock(&tl_inode->i_mutex);
5877
5878         return status;
5879 }
5880
5881 static void ocfs2_truncate_log_worker(struct work_struct *work)
5882 {
5883         int status;
5884         struct ocfs2_super *osb =
5885                 container_of(work, struct ocfs2_super,
5886                              osb_truncate_log_wq.work);
5887
5888         mlog_entry_void();
5889
5890         status = ocfs2_flush_truncate_log(osb);
5891         if (status < 0)
5892                 mlog_errno(status);
5893         else
5894                 ocfs2_init_inode_steal_slot(osb);
5895
5896         mlog_exit(status);
5897 }
5898
5899 #define OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL (2 * HZ)
5900 void ocfs2_schedule_truncate_log_flush(struct ocfs2_super *osb,
5901                                        int cancel)
5902 {
5903         if (osb->osb_tl_inode) {
5904                 /* We want to push off log flushes while truncates are
5905                  * still running. */
5906                 if (cancel)
5907                         cancel_delayed_work(&osb->osb_truncate_log_wq);
5908
5909                 queue_delayed_work(ocfs2_wq, &osb->osb_truncate_log_wq,
5910                                    OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL);
5911         }
5912 }
5913
5914 static int ocfs2_get_truncate_log_info(struct ocfs2_super *osb,
5915                                        int slot_num,
5916                                        struct inode **tl_inode,
5917                                        struct buffer_head **tl_bh)
5918 {
5919         int status;
5920         struct inode *inode = NULL;
5921         struct buffer_head *bh = NULL;
5922
5923         inode = ocfs2_get_system_file_inode(osb,
5924                                            TRUNCATE_LOG_SYSTEM_INODE,
5925                                            slot_num);
5926         if (!inode) {
5927                 status = -EINVAL;
5928                 mlog(ML_ERROR, "Could not get load truncate log inode!\n");
5929                 goto bail;
5930         }
5931
5932         status = ocfs2_read_inode_block(inode, &bh);
5933         if (status < 0) {
5934                 iput(inode);
5935                 mlog_errno(status);
5936                 goto bail;
5937         }
5938
5939         *tl_inode = inode;
5940         *tl_bh    = bh;
5941 bail:
5942         mlog_exit(status);
5943         return status;
5944 }
5945
5946 /* called during the 1st stage of node recovery. we stamp a clean
5947  * truncate log and pass back a copy for processing later. if the
5948  * truncate log does not require processing, a *tl_copy is set to
5949  * NULL. */
5950 int ocfs2_begin_truncate_log_recovery(struct ocfs2_super *osb,
5951                                       int slot_num,
5952                                       struct ocfs2_dinode **tl_copy)
5953 {
5954         int status;
5955         struct inode *tl_inode = NULL;
5956         struct buffer_head *tl_bh = NULL;
5957         struct ocfs2_dinode *di;
5958         struct ocfs2_truncate_log *tl;
5959
5960         *tl_copy = NULL;
5961
5962         mlog(0, "recover truncate log from slot %d\n", slot_num);
5963
5964         status = ocfs2_get_truncate_log_info(osb, slot_num, &tl_inode, &tl_bh);
5965         if (status < 0) {
5966                 mlog_errno(status);
5967                 goto bail;
5968         }
5969
5970         di = (struct ocfs2_dinode *) tl_bh->b_data;
5971
5972         /* tl_bh is loaded from ocfs2_get_truncate_log_info().  It's
5973          * validated by the underlying call to ocfs2_read_inode_block(),
5974          * so any corruption is a code bug */
5975         BUG_ON(!OCFS2_IS_VALID_DINODE(di));
5976
5977         tl = &di->id2.i_dealloc;
5978         if (le16_to_cpu(tl->tl_used)) {
5979                 mlog(0, "We'll have %u logs to recover\n",
5980                      le16_to_cpu(tl->tl_used));
5981
5982                 *tl_copy = kmalloc(tl_bh->b_size, GFP_KERNEL);
5983                 if (!(*tl_copy)) {
5984                         status = -ENOMEM;
5985                         mlog_errno(status);
5986                         goto bail;
5987                 }
5988
5989                 /* Assuming the write-out below goes well, this copy
5990                  * will be passed back to recovery for processing. */
5991                 memcpy(*tl_copy, tl_bh->b_data, tl_bh->b_size);
5992
5993                 /* All we need to do to clear the truncate log is set
5994                  * tl_used. */
5995                 tl->tl_used = 0;
5996
5997                 ocfs2_compute_meta_ecc(osb->sb, tl_bh->b_data, &di->i_check);
5998                 status = ocfs2_write_block(osb, tl_bh, INODE_CACHE(tl_inode));
5999                 if (status < 0) {
6000                         mlog_errno(status);
6001                         goto bail;
6002                 }
6003         }
6004
6005 bail:
6006         if (tl_inode)
6007                 iput(tl_inode);
6008         brelse(tl_bh);
6009
6010         if (status < 0 && (*tl_copy)) {
6011                 kfree(*tl_copy);
6012                 *tl_copy = NULL;
6013         }
6014
6015         mlog_exit(status);
6016         return status;
6017 }
6018
6019 int ocfs2_complete_truncate_log_recovery(struct ocfs2_super *osb,
6020                                          struct ocfs2_dinode *tl_copy)
6021 {
6022         int status = 0;
6023         int i;
6024         unsigned int clusters, num_recs, start_cluster;
6025         u64 start_blk;
6026         handle_t *handle;
6027         struct inode *tl_inode = osb->osb_tl_inode;
6028         struct ocfs2_truncate_log *tl;
6029
6030         mlog_entry_void();
6031
6032         if (OCFS2_I(tl_inode)->ip_blkno == le64_to_cpu(tl_copy->i_blkno)) {
6033                 mlog(ML_ERROR, "Asked to recover my own truncate log!\n");
6034                 return -EINVAL;
6035         }
6036
6037         tl = &tl_copy->id2.i_dealloc;
6038         num_recs = le16_to_cpu(tl->tl_used);
6039         mlog(0, "cleanup %u records from %llu\n", num_recs,
6040              (unsigned long long)le64_to_cpu(tl_copy->i_blkno));
6041
6042         mutex_lock(&tl_inode->i_mutex);
6043         for(i = 0; i < num_recs; i++) {
6044                 if (ocfs2_truncate_log_needs_flush(osb)) {
6045                         status = __ocfs2_flush_truncate_log(osb);
6046                         if (status < 0) {
6047                                 mlog_errno(status);
6048                                 goto bail_up;
6049                         }
6050                 }
6051
6052                 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
6053                 if (IS_ERR(handle)) {
6054                         status = PTR_ERR(handle);
6055                         mlog_errno(status);
6056                         goto bail_up;
6057                 }
6058
6059                 clusters = le32_to_cpu(tl->tl_recs[i].t_clusters);
6060                 start_cluster = le32_to_cpu(tl->tl_recs[i].t_start);
6061                 start_blk = ocfs2_clusters_to_blocks(osb->sb, start_cluster);
6062
6063                 status = ocfs2_truncate_log_append(osb, handle,
6064                                                    start_blk, clusters);
6065                 ocfs2_commit_trans(osb, handle);
6066                 if (status < 0) {
6067                         mlog_errno(status);
6068                         goto bail_up;
6069                 }
6070         }
6071
6072 bail_up:
6073         mutex_unlock(&tl_inode->i_mutex);
6074
6075         mlog_exit(status);
6076         return status;
6077 }
6078
6079 void ocfs2_truncate_log_shutdown(struct ocfs2_super *osb)
6080 {
6081         int status;
6082         struct inode *tl_inode = osb->osb_tl_inode;
6083
6084         mlog_entry_void();
6085
6086         if (tl_inode) {
6087                 cancel_delayed_work(&osb->osb_truncate_log_wq);
6088                 flush_workqueue(ocfs2_wq);
6089
6090                 status = ocfs2_flush_truncate_log(osb);
6091                 if (status < 0)
6092                         mlog_errno(status);
6093
6094                 brelse(osb->osb_tl_bh);
6095                 iput(osb->osb_tl_inode);
6096         }
6097
6098         mlog_exit_void();
6099 }
6100
6101 int ocfs2_truncate_log_init(struct ocfs2_super *osb)
6102 {
6103         int status;
6104         struct inode *tl_inode = NULL;
6105         struct buffer_head *tl_bh = NULL;
6106
6107         mlog_entry_void();
6108
6109         status = ocfs2_get_truncate_log_info(osb,
6110                                              osb->slot_num,
6111                                              &tl_inode,
6112                                              &tl_bh);
6113         if (status < 0)
6114                 mlog_errno(status);
6115
6116         /* ocfs2_truncate_log_shutdown keys on the existence of
6117          * osb->osb_tl_inode so we don't set any of the osb variables
6118          * until we're sure all is well. */
6119         INIT_DELAYED_WORK(&osb->osb_truncate_log_wq,
6120                           ocfs2_truncate_log_worker);
6121         osb->osb_tl_bh    = tl_bh;
6122         osb->osb_tl_inode = tl_inode;
6123
6124         mlog_exit(status);
6125         return status;
6126 }
6127
6128 /*
6129  * Delayed de-allocation of suballocator blocks.
6130  *
6131  * Some sets of block de-allocations might involve multiple suballocator inodes.
6132  *
6133  * The locking for this can get extremely complicated, especially when
6134  * the suballocator inodes to delete from aren't known until deep
6135  * within an unrelated codepath.
6136  *
6137  * ocfs2_extent_block structures are a good example of this - an inode
6138  * btree could have been grown by any number of nodes each allocating
6139  * out of their own suballoc inode.
6140  *
6141  * These structures allow the delay of block de-allocation until a
6142  * later time, when locking of multiple cluster inodes won't cause
6143  * deadlock.
6144  */
6145
6146 /*
6147  * Describe a single bit freed from a suballocator.  For the block
6148  * suballocators, it represents one block.  For the global cluster
6149  * allocator, it represents some clusters and free_bit indicates
6150  * clusters number.
6151  */
6152 struct ocfs2_cached_block_free {
6153         struct ocfs2_cached_block_free          *free_next;
6154         u64                                     free_blk;
6155         unsigned int                            free_bit;
6156 };
6157
6158 struct ocfs2_per_slot_free_list {
6159         struct ocfs2_per_slot_free_list         *f_next_suballocator;
6160         int                                     f_inode_type;
6161         int                                     f_slot;
6162         struct ocfs2_cached_block_free          *f_first;
6163 };
6164
6165 static int ocfs2_free_cached_blocks(struct ocfs2_super *osb,
6166                                     int sysfile_type,
6167                                     int slot,
6168                                     struct ocfs2_cached_block_free *head)
6169 {
6170         int ret;
6171         u64 bg_blkno;
6172         handle_t *handle;
6173         struct inode *inode;
6174         struct buffer_head *di_bh = NULL;
6175         struct ocfs2_cached_block_free *tmp;
6176
6177         inode = ocfs2_get_system_file_inode(osb, sysfile_type, slot);
6178         if (!inode) {
6179                 ret = -EINVAL;
6180                 mlog_errno(ret);
6181                 goto out;
6182         }
6183
6184         mutex_lock(&inode->i_mutex);
6185
6186         ret = ocfs2_inode_lock(inode, &di_bh, 1);
6187         if (ret) {
6188                 mlog_errno(ret);
6189                 goto out_mutex;
6190         }
6191
6192         handle = ocfs2_start_trans(osb, OCFS2_SUBALLOC_FREE);
6193         if (IS_ERR(handle)) {
6194                 ret = PTR_ERR(handle);
6195                 mlog_errno(ret);
6196                 goto out_unlock;
6197         }
6198
6199         while (head) {
6200                 bg_blkno = ocfs2_which_suballoc_group(head->free_blk,
6201                                                       head->free_bit);
6202                 mlog(0, "Free bit: (bit %u, blkno %llu)\n",
6203                      head->free_bit, (unsigned long long)head->free_blk);
6204
6205                 ret = ocfs2_free_suballoc_bits(handle, inode, di_bh,
6206                                                head->free_bit, bg_blkno, 1);
6207                 if (ret) {
6208                         mlog_errno(ret);
6209                         goto out_journal;
6210                 }
6211
6212                 ret = ocfs2_extend_trans(handle, OCFS2_SUBALLOC_FREE);
6213                 if (ret) {
6214                         mlog_errno(ret);
6215                         goto out_journal;
6216                 }
6217
6218                 tmp = head;
6219                 head = head->free_next;
6220                 kfree(tmp);
6221         }
6222
6223 out_journal:
6224         ocfs2_commit_trans(osb, handle);
6225
6226 out_unlock:
6227         ocfs2_inode_unlock(inode, 1);
6228         brelse(di_bh);
6229 out_mutex:
6230         mutex_unlock(&inode->i_mutex);
6231         iput(inode);
6232 out:
6233         while(head) {
6234                 /* Premature exit may have left some dangling items. */
6235                 tmp = head;
6236                 head = head->free_next;
6237                 kfree(tmp);
6238         }
6239
6240         return ret;
6241 }
6242
6243 int ocfs2_cache_cluster_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt,
6244                                 u64 blkno, unsigned int bit)
6245 {
6246         int ret = 0;
6247         struct ocfs2_cached_block_free *item;
6248
6249         item = kmalloc(sizeof(*item), GFP_NOFS);
6250         if (item == NULL) {
6251                 ret = -ENOMEM;
6252                 mlog_errno(ret);
6253                 return ret;
6254         }
6255
6256         mlog(0, "Insert clusters: (bit %u, blk %llu)\n",
6257              bit, (unsigned long long)blkno);
6258
6259         item->free_blk = blkno;
6260         item->free_bit = bit;
6261         item->free_next = ctxt->c_global_allocator;
6262
6263         ctxt->c_global_allocator = item;
6264         return ret;
6265 }
6266
6267 static int ocfs2_free_cached_clusters(struct ocfs2_super *osb,
6268                                       struct ocfs2_cached_block_free *head)
6269 {
6270         struct ocfs2_cached_block_free *tmp;
6271         struct inode *tl_inode = osb->osb_tl_inode;
6272         handle_t *handle;
6273         int ret = 0;
6274
6275         mutex_lock(&tl_inode->i_mutex);
6276
6277         while (head) {
6278                 if (ocfs2_truncate_log_needs_flush(osb)) {
6279                         ret = __ocfs2_flush_truncate_log(osb);
6280                         if (ret < 0) {
6281                                 mlog_errno(ret);
6282                                 break;
6283                         }
6284                 }
6285
6286                 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
6287                 if (IS_ERR(handle)) {
6288                         ret = PTR_ERR(handle);
6289                         mlog_errno(ret);
6290                         break;
6291                 }
6292
6293                 ret = ocfs2_truncate_log_append(osb, handle, head->free_blk,
6294                                                 head->free_bit);
6295
6296                 ocfs2_commit_trans(osb, handle);
6297                 tmp = head;
6298                 head = head->free_next;
6299                 kfree(tmp);
6300
6301                 if (ret < 0) {
6302                         mlog_errno(ret);
6303                         break;
6304                 }
6305         }
6306
6307         mutex_unlock(&tl_inode->i_mutex);
6308
6309         while (head) {
6310                 /* Premature exit may have left some dangling items. */
6311                 tmp = head;
6312                 head = head->free_next;
6313                 kfree(tmp);
6314         }
6315
6316         return ret;
6317 }
6318
6319 int ocfs2_run_deallocs(struct ocfs2_super *osb,
6320                        struct ocfs2_cached_dealloc_ctxt *ctxt)
6321 {
6322         int ret = 0, ret2;
6323         struct ocfs2_per_slot_free_list *fl;
6324
6325         if (!ctxt)
6326                 return 0;
6327
6328         while (ctxt->c_first_suballocator) {
6329                 fl = ctxt->c_first_suballocator;
6330
6331                 if (fl->f_first) {
6332                         mlog(0, "Free items: (type %u, slot %d)\n",
6333                              fl->f_inode_type, fl->f_slot);
6334                         ret2 = ocfs2_free_cached_blocks(osb,
6335                                                         fl->f_inode_type,
6336                                                         fl->f_slot,
6337                                                         fl->f_first);
6338                         if (ret2)
6339                                 mlog_errno(ret2);
6340                         if (!ret)
6341                                 ret = ret2;
6342                 }
6343
6344                 ctxt->c_first_suballocator = fl->f_next_suballocator;
6345                 kfree(fl);
6346         }
6347
6348         if (ctxt->c_global_allocator) {
6349                 ret2 = ocfs2_free_cached_clusters(osb,
6350                                                   ctxt->c_global_allocator);
6351                 if (ret2)
6352                         mlog_errno(ret2);
6353                 if (!ret)
6354                         ret = ret2;
6355
6356                 ctxt->c_global_allocator = NULL;
6357         }
6358
6359         return ret;
6360 }
6361
6362 static struct ocfs2_per_slot_free_list *
6363 ocfs2_find_per_slot_free_list(int type,
6364                               int slot,
6365                               struct ocfs2_cached_dealloc_ctxt *ctxt)
6366 {
6367         struct ocfs2_per_slot_free_list *fl = ctxt->c_first_suballocator;
6368
6369         while (fl) {
6370                 if (fl->f_inode_type == type && fl->f_slot == slot)
6371                         return fl;
6372
6373                 fl = fl->f_next_suballocator;
6374         }
6375
6376         fl = kmalloc(sizeof(*fl), GFP_NOFS);
6377         if (fl) {
6378                 fl->f_inode_type = type;
6379                 fl->f_slot = slot;
6380                 fl->f_first = NULL;
6381                 fl->f_next_suballocator = ctxt->c_first_suballocator;
6382
6383                 ctxt->c_first_suballocator = fl;
6384         }
6385         return fl;
6386 }
6387
6388 static int ocfs2_cache_block_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt,
6389                                      int type, int slot, u64 blkno,
6390                                      unsigned int bit)
6391 {
6392         int ret;
6393         struct ocfs2_per_slot_free_list *fl;
6394         struct ocfs2_cached_block_free *item;
6395
6396         fl = ocfs2_find_per_slot_free_list(type, slot, ctxt);
6397         if (fl == NULL) {
6398                 ret = -ENOMEM;
6399                 mlog_errno(ret);
6400                 goto out;
6401         }
6402
6403         item = kmalloc(sizeof(*item), GFP_NOFS);
6404         if (item == NULL) {
6405                 ret = -ENOMEM;
6406                 mlog_errno(ret);
6407                 goto out;
6408         }
6409
6410         mlog(0, "Insert: (type %d, slot %u, bit %u, blk %llu)\n",
6411              type, slot, bit, (unsigned long long)blkno);
6412
6413         item->free_blk = blkno;
6414         item->free_bit = bit;
6415         item->free_next = fl->f_first;
6416
6417         fl->f_first = item;
6418
6419         ret = 0;
6420 out:
6421         return ret;
6422 }
6423
6424 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
6425                                          struct ocfs2_extent_block *eb)
6426 {
6427         return ocfs2_cache_block_dealloc(ctxt, EXTENT_ALLOC_SYSTEM_INODE,
6428                                          le16_to_cpu(eb->h_suballoc_slot),
6429                                          le64_to_cpu(eb->h_blkno),
6430                                          le16_to_cpu(eb->h_suballoc_bit));
6431 }
6432
6433 /* This function will figure out whether the currently last extent
6434  * block will be deleted, and if it will, what the new last extent
6435  * block will be so we can update his h_next_leaf_blk field, as well
6436  * as the dinodes i_last_eb_blk */
6437 static int ocfs2_find_new_last_ext_blk(struct inode *inode,
6438                                        unsigned int clusters_to_del,
6439                                        struct ocfs2_path *path,
6440                                        struct buffer_head **new_last_eb)
6441 {
6442         int next_free, ret = 0;
6443         u32 cpos;
6444         struct ocfs2_extent_rec *rec;
6445         struct ocfs2_extent_block *eb;
6446         struct ocfs2_extent_list *el;
6447         struct buffer_head *bh = NULL;
6448
6449         *new_last_eb = NULL;
6450
6451         /* we have no tree, so of course, no last_eb. */
6452         if (!path->p_tree_depth)
6453                 goto out;
6454
6455         /* trunc to zero special case - this makes tree_depth = 0
6456          * regardless of what it is.  */
6457         if (OCFS2_I(inode)->ip_clusters == clusters_to_del)
6458                 goto out;
6459
6460         el = path_leaf_el(path);
6461         BUG_ON(!el->l_next_free_rec);
6462
6463         /*
6464          * Make sure that this extent list will actually be empty
6465          * after we clear away the data. We can shortcut out if
6466          * there's more than one non-empty extent in the
6467          * list. Otherwise, a check of the remaining extent is
6468          * necessary.
6469          */
6470         next_free = le16_to_cpu(el->l_next_free_rec);
6471         rec = NULL;
6472         if (ocfs2_is_empty_extent(&el->l_recs[0])) {
6473                 if (next_free > 2)
6474                         goto out;
6475
6476                 /* We may have a valid extent in index 1, check it. */
6477                 if (next_free == 2)
6478                         rec = &el->l_recs[1];
6479
6480                 /*
6481                  * Fall through - no more nonempty extents, so we want
6482                  * to delete this leaf.
6483                  */
6484         } else {
6485                 if (next_free > 1)
6486                         goto out;
6487
6488                 rec = &el->l_recs[0];
6489         }
6490
6491         if (rec) {
6492                 /*
6493                  * Check it we'll only be trimming off the end of this
6494                  * cluster.
6495                  */
6496                 if (le16_to_cpu(rec->e_leaf_clusters) > clusters_to_del)
6497                         goto out;
6498         }
6499
6500         ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, &cpos);
6501         if (ret) {
6502                 mlog_errno(ret);
6503                 goto out;
6504         }
6505
6506         ret = ocfs2_find_leaf(INODE_CACHE(inode), path_root_el(path), cpos, &bh);
6507         if (ret) {
6508                 mlog_errno(ret);
6509                 goto out;
6510         }
6511
6512         eb = (struct ocfs2_extent_block *) bh->b_data;
6513         el = &eb->h_list;
6514
6515         /* ocfs2_find_leaf() gets the eb from ocfs2_read_extent_block().
6516          * Any corruption is a code bug. */
6517         BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb));
6518
6519         *new_last_eb = bh;
6520         get_bh(*new_last_eb);
6521         mlog(0, "returning block %llu, (cpos: %u)\n",
6522              (unsigned long long)le64_to_cpu(eb->h_blkno), cpos);
6523 out:
6524         brelse(bh);
6525
6526         return ret;
6527 }
6528
6529 /*
6530  * Trim some clusters off the rightmost edge of a tree. Only called
6531  * during truncate.
6532  *
6533  * The caller needs to:
6534  *   - start journaling of each path component.
6535  *   - compute and fully set up any new last ext block
6536  */
6537 static int ocfs2_trim_tree(struct inode *inode, struct ocfs2_path *path,
6538                            handle_t *handle, struct ocfs2_truncate_context *tc,
6539                            u32 clusters_to_del, u64 *delete_start)
6540 {
6541         int ret, i, index = path->p_tree_depth;
6542         u32 new_edge = 0;
6543         u64 deleted_eb = 0;
6544         struct buffer_head *bh;
6545         struct ocfs2_extent_list *el;
6546         struct ocfs2_extent_rec *rec;
6547
6548         *delete_start = 0;
6549
6550         while (index >= 0) {
6551                 bh = path->p_node[index].bh;
6552                 el = path->p_node[index].el;
6553
6554                 mlog(0, "traveling tree (index = %d, block = %llu)\n",
6555                      index,  (unsigned long long)bh->b_blocknr);
6556
6557                 BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0);
6558
6559                 if (index !=
6560                     (path->p_tree_depth - le16_to_cpu(el->l_tree_depth))) {
6561                         ocfs2_error(inode->i_sb,
6562                                     "Inode %lu has invalid ext. block %llu",
6563                                     inode->i_ino,
6564                                     (unsigned long long)bh->b_blocknr);
6565                         ret = -EROFS;
6566                         goto out;
6567                 }
6568
6569 find_tail_record:
6570                 i = le16_to_cpu(el->l_next_free_rec) - 1;
6571                 rec = &el->l_recs[i];
6572
6573                 mlog(0, "Extent list before: record %d: (%u, %u, %llu), "
6574                      "next = %u\n", i, le32_to_cpu(rec->e_cpos),
6575                      ocfs2_rec_clusters(el, rec),
6576                      (unsigned long long)le64_to_cpu(rec->e_blkno),
6577                      le16_to_cpu(el->l_next_free_rec));
6578
6579                 BUG_ON(ocfs2_rec_clusters(el, rec) < clusters_to_del);
6580
6581                 if (le16_to_cpu(el->l_tree_depth) == 0) {
6582                         /*
6583                          * If the leaf block contains a single empty
6584                          * extent and no records, we can just remove
6585                          * the block.
6586                          */
6587                         if (i == 0 && ocfs2_is_empty_extent(rec)) {
6588                                 memset(rec, 0,
6589                                        sizeof(struct ocfs2_extent_rec));
6590                                 el->l_next_free_rec = cpu_to_le16(0);
6591
6592                                 goto delete;
6593                         }
6594
6595                         /*
6596                          * Remove any empty extents by shifting things
6597                          * left. That should make life much easier on
6598                          * the code below. This condition is rare
6599                          * enough that we shouldn't see a performance
6600                          * hit.
6601                          */
6602                         if (ocfs2_is_empty_extent(&el->l_recs[0])) {
6603                                 le16_add_cpu(&el->l_next_free_rec, -1);
6604
6605                                 for(i = 0;
6606                                     i < le16_to_cpu(el->l_next_free_rec); i++)
6607                                         el->l_recs[i] = el->l_recs[i + 1];
6608
6609                                 memset(&el->l_recs[i], 0,
6610                                        sizeof(struct ocfs2_extent_rec));
6611
6612                                 /*
6613                                  * We've modified our extent list. The
6614                                  * simplest way to handle this change
6615                                  * is to being the search from the
6616                                  * start again.
6617                                  */
6618                                 goto find_tail_record;
6619                         }
6620
6621                         le16_add_cpu(&rec->e_leaf_clusters, -clusters_to_del);
6622
6623                         /*
6624                          * We'll use "new_edge" on our way back up the
6625                          * tree to know what our rightmost cpos is.
6626                          */
6627                         new_edge = le16_to_cpu(rec->e_leaf_clusters);
6628                         new_edge += le32_to_cpu(rec->e_cpos);
6629
6630                         /*
6631                          * The caller will use this to delete data blocks.
6632                          */
6633                         *delete_start = le64_to_cpu(rec->e_blkno)
6634                                 + ocfs2_clusters_to_blocks(inode->i_sb,
6635                                         le16_to_cpu(rec->e_leaf_clusters));
6636
6637                         /*
6638                          * If it's now empty, remove this record.
6639                          */
6640                         if (le16_to_cpu(rec->e_leaf_clusters) == 0) {
6641                                 memset(rec, 0,
6642                                        sizeof(struct ocfs2_extent_rec));
6643                                 le16_add_cpu(&el->l_next_free_rec, -1);
6644                         }
6645                 } else {
6646                         if (le64_to_cpu(rec->e_blkno) == deleted_eb) {
6647                                 memset(rec, 0,
6648                                        sizeof(struct ocfs2_extent_rec));
6649                                 le16_add_cpu(&el->l_next_free_rec, -1);
6650
6651                                 goto delete;
6652                         }
6653
6654                         /* Can this actually happen? */
6655                         if (le16_to_cpu(el->l_next_free_rec) == 0)
6656                                 goto delete;
6657
6658                         /*
6659                          * We never actually deleted any clusters
6660                          * because our leaf was empty. There's no
6661                          * reason to adjust the rightmost edge then.
6662                          */
6663                         if (new_edge == 0)
6664                                 goto delete;
6665
6666                         rec->e_int_clusters = cpu_to_le32(new_edge);
6667                         le32_add_cpu(&rec->e_int_clusters,
6668                                      -le32_to_cpu(rec->e_cpos));
6669
6670                          /*
6671                           * A deleted child record should have been
6672                           * caught above.
6673                           */
6674                          BUG_ON(le32_to_cpu(rec->e_int_clusters) == 0);
6675                 }
6676
6677 delete:
6678                 ret = ocfs2_journal_dirty(handle, bh);
6679                 if (ret) {
6680                         mlog_errno(ret);
6681                         goto out;
6682                 }
6683
6684                 mlog(0, "extent list container %llu, after: record %d: "
6685                      "(%u, %u, %llu), next = %u.\n",
6686                      (unsigned long long)bh->b_blocknr, i,
6687                      le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec),
6688                      (unsigned long long)le64_to_cpu(rec->e_blkno),
6689                      le16_to_cpu(el->l_next_free_rec));
6690
6691                 /*
6692                  * We must be careful to only attempt delete of an
6693                  * extent block (and not the root inode block).
6694                  */
6695                 if (index > 0 && le16_to_cpu(el->l_next_free_rec) == 0) {
6696                         struct ocfs2_extent_block *eb =
6697                                 (struct ocfs2_extent_block *)bh->b_data;
6698
6699                         /*
6700                          * Save this for use when processing the
6701                          * parent block.
6702                          */
6703                         deleted_eb = le64_to_cpu(eb->h_blkno);
6704
6705                         mlog(0, "deleting this extent block.\n");
6706
6707                         ocfs2_remove_from_cache(INODE_CACHE(inode), bh);
6708
6709                         BUG_ON(ocfs2_rec_clusters(el, &el->l_recs[0]));
6710                         BUG_ON(le32_to_cpu(el->l_recs[0].e_cpos));
6711                         BUG_ON(le64_to_cpu(el->l_recs[0].e_blkno));
6712
6713                         ret = ocfs2_cache_extent_block_free(&tc->tc_dealloc, eb);
6714                         /* An error here is not fatal. */
6715                         if (ret < 0)
6716                                 mlog_errno(ret);
6717                 } else {
6718                         deleted_eb = 0;
6719                 }
6720
6721                 index--;
6722         }
6723
6724         ret = 0;
6725 out:
6726         return ret;
6727 }
6728
6729 static int ocfs2_do_truncate(struct ocfs2_super *osb,
6730                              unsigned int clusters_to_del,
6731                              struct inode *inode,
6732                              struct buffer_head *fe_bh,
6733                              handle_t *handle,
6734                              struct ocfs2_truncate_context *tc,
6735                              struct ocfs2_path *path)
6736 {
6737         int status;
6738         struct ocfs2_dinode *fe;
6739         struct ocfs2_extent_block *last_eb = NULL;
6740         struct ocfs2_extent_list *el;
6741         struct buffer_head *last_eb_bh = NULL;
6742         u64 delete_blk = 0;
6743
6744         fe = (struct ocfs2_dinode *) fe_bh->b_data;
6745
6746         status = ocfs2_find_new_last_ext_blk(inode, clusters_to_del,
6747                                              path, &last_eb_bh);
6748         if (status < 0) {
6749                 mlog_errno(status);
6750                 goto bail;
6751         }
6752
6753         /*
6754          * Each component will be touched, so we might as well journal
6755          * here to avoid having to handle errors later.
6756          */
6757         status = ocfs2_journal_access_path(INODE_CACHE(inode), handle, path);
6758         if (status < 0) {
6759                 mlog_errno(status);
6760                 goto bail;
6761         }
6762
6763         if (last_eb_bh) {
6764                 status = ocfs2_journal_access_eb(handle, INODE_CACHE(inode), last_eb_bh,
6765                                                  OCFS2_JOURNAL_ACCESS_WRITE);
6766                 if (status < 0) {
6767                         mlog_errno(status);
6768                         goto bail;
6769                 }
6770
6771                 last_eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
6772         }
6773
6774         el = &(fe->id2.i_list);
6775
6776         /*
6777          * Lower levels depend on this never happening, but it's best
6778          * to check it up here before changing the tree.
6779          */
6780         if (el->l_tree_depth && el->l_recs[0].e_int_clusters == 0) {
6781                 ocfs2_error(inode->i_sb,
6782                             "Inode %lu has an empty extent record, depth %u\n",
6783                             inode->i_ino, le16_to_cpu(el->l_tree_depth));
6784                 status = -EROFS;
6785                 goto bail;
6786         }
6787
6788         vfs_dq_free_space_nodirty(inode,
6789                         ocfs2_clusters_to_bytes(osb->sb, clusters_to_del));
6790         spin_lock(&OCFS2_I(inode)->ip_lock);
6791         OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters) -
6792                                       clusters_to_del;
6793         spin_unlock(&OCFS2_I(inode)->ip_lock);
6794         le32_add_cpu(&fe->i_clusters, -clusters_to_del);
6795         inode->i_blocks = ocfs2_inode_sector_count(inode);
6796
6797         status = ocfs2_trim_tree(inode, path, handle, tc,
6798                                  clusters_to_del, &delete_blk);
6799         if (status) {
6800                 mlog_errno(status);
6801                 goto bail;
6802         }
6803
6804         if (le32_to_cpu(fe->i_clusters) == 0) {
6805                 /* trunc to zero is a special case. */
6806                 el->l_tree_depth = 0;
6807                 fe->i_last_eb_blk = 0;
6808         } else if (last_eb)
6809                 fe->i_last_eb_blk = last_eb->h_blkno;
6810
6811         status = ocfs2_journal_dirty(handle, fe_bh);
6812         if (status < 0) {
6813                 mlog_errno(status);
6814                 goto bail;
6815         }
6816
6817         if (last_eb) {
6818                 /* If there will be a new last extent block, then by
6819                  * definition, there cannot be any leaves to the right of
6820                  * him. */
6821                 last_eb->h_next_leaf_blk = 0;
6822                 status = ocfs2_journal_dirty(handle, last_eb_bh);
6823                 if (status < 0) {
6824                         mlog_errno(status);
6825                         goto bail;
6826                 }
6827         }
6828
6829         if (delete_blk) {
6830                 status = ocfs2_truncate_log_append(osb, handle, delete_blk,
6831                                                    clusters_to_del);
6832                 if (status < 0) {
6833                         mlog_errno(status);
6834                         goto bail;
6835                 }
6836         }
6837         status = 0;
6838 bail:
6839         brelse(last_eb_bh);
6840         mlog_exit(status);
6841         return status;
6842 }
6843
6844 static int ocfs2_zero_func(handle_t *handle, struct buffer_head *bh)
6845 {
6846         set_buffer_uptodate(bh);
6847         mark_buffer_dirty(bh);
6848         return 0;
6849 }
6850
6851 static void ocfs2_map_and_dirty_page(struct inode *inode, handle_t *handle,
6852                                      unsigned int from, unsigned int to,
6853                                      struct page *page, int zero, u64 *phys)
6854 {
6855         int ret, partial = 0;
6856
6857         ret = ocfs2_map_page_blocks(page, phys, inode, from, to, 0);
6858         if (ret)
6859                 mlog_errno(ret);
6860
6861         if (zero)
6862                 zero_user_segment(page, from, to);
6863
6864         /*
6865          * Need to set the buffers we zero'd into uptodate
6866          * here if they aren't - ocfs2_map_page_blocks()
6867          * might've skipped some
6868          */
6869         ret = walk_page_buffers(handle, page_buffers(page),
6870                                 from, to, &partial,
6871                                 ocfs2_zero_func);
6872         if (ret < 0)
6873                 mlog_errno(ret);
6874         else if (ocfs2_should_order_data(inode)) {
6875                 ret = ocfs2_jbd2_file_inode(handle, inode);
6876                 if (ret < 0)
6877                         mlog_errno(ret);
6878         }
6879
6880         if (!partial)
6881                 SetPageUptodate(page);
6882
6883         flush_dcache_page(page);
6884 }
6885
6886 static void ocfs2_zero_cluster_pages(struct inode *inode, loff_t start,
6887                                      loff_t end, struct page **pages,
6888                                      int numpages, u64 phys, handle_t *handle)
6889 {
6890         int i;
6891         struct page *page;
6892         unsigned int from, to = PAGE_CACHE_SIZE;
6893         struct super_block *sb = inode->i_sb;
6894
6895         BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb)));
6896
6897         if (numpages == 0)
6898                 goto out;
6899
6900         to = PAGE_CACHE_SIZE;
6901         for(i = 0; i < numpages; i++) {
6902                 page = pages[i];
6903
6904                 from = start & (PAGE_CACHE_SIZE - 1);
6905                 if ((end >> PAGE_CACHE_SHIFT) == page->index)
6906                         to = end & (PAGE_CACHE_SIZE - 1);
6907
6908                 BUG_ON(from > PAGE_CACHE_SIZE);
6909                 BUG_ON(to > PAGE_CACHE_SIZE);
6910
6911                 ocfs2_map_and_dirty_page(inode, handle, from, to, page, 1,
6912                                          &phys);
6913
6914                 start = (page->index + 1) << PAGE_CACHE_SHIFT;
6915         }
6916 out:
6917         if (pages)
6918                 ocfs2_unlock_and_free_pages(pages, numpages);
6919 }
6920
6921 static int ocfs2_grab_eof_pages(struct inode *inode, loff_t start, loff_t end,
6922                                 struct page **pages, int *num)
6923 {
6924         int numpages, ret = 0;
6925         struct super_block *sb = inode->i_sb;
6926         struct address_space *mapping = inode->i_mapping;
6927         unsigned long index;
6928         loff_t last_page_bytes;
6929
6930         BUG_ON(start > end);
6931
6932         BUG_ON(start >> OCFS2_SB(sb)->s_clustersize_bits !=
6933                (end - 1) >> OCFS2_SB(sb)->s_clustersize_bits);
6934
6935         numpages = 0;
6936         last_page_bytes = PAGE_ALIGN(end);
6937         index = start >> PAGE_CACHE_SHIFT;
6938         do {
6939                 pages[numpages] = grab_cache_page(mapping, index);
6940                 if (!pages[numpages]) {
6941                         ret = -ENOMEM;
6942                         mlog_errno(ret);
6943                         goto out;
6944                 }
6945
6946                 numpages++;
6947                 index++;
6948         } while (index < (last_page_bytes >> PAGE_CACHE_SHIFT));
6949
6950 out:
6951         if (ret != 0) {
6952                 if (pages)
6953                         ocfs2_unlock_and_free_pages(pages, numpages);
6954                 numpages = 0;
6955         }
6956
6957         *num = numpages;
6958
6959         return ret;
6960 }
6961
6962 /*
6963  * Zero the area past i_size but still within an allocated
6964  * cluster. This avoids exposing nonzero data on subsequent file
6965  * extends.
6966  *
6967  * We need to call this before i_size is updated on the inode because
6968  * otherwise block_write_full_page() will skip writeout of pages past
6969  * i_size. The new_i_size parameter is passed for this reason.
6970  */
6971 int ocfs2_zero_range_for_truncate(struct inode *inode, handle_t *handle,
6972                                   u64 range_start, u64 range_end)
6973 {
6974         int ret = 0, numpages;
6975         struct page **pages = NULL;
6976         u64 phys;
6977         unsigned int ext_flags;
6978         struct super_block *sb = inode->i_sb;
6979
6980         /*
6981          * File systems which don't support sparse files zero on every
6982          * extend.
6983          */
6984         if (!ocfs2_sparse_alloc(OCFS2_SB(sb)))
6985                 return 0;
6986
6987         pages = kcalloc(ocfs2_pages_per_cluster(sb),
6988                         sizeof(struct page *), GFP_NOFS);
6989         if (pages == NULL) {
6990                 ret = -ENOMEM;
6991                 mlog_errno(ret);
6992                 goto out;
6993         }
6994
6995         if (range_start == range_end)
6996                 goto out;
6997
6998         ret = ocfs2_extent_map_get_blocks(inode,
6999                                           range_start >> sb->s_blocksize_bits,
7000                                           &phys, NULL, &ext_flags);
7001         if (ret) {
7002                 mlog_errno(ret);
7003                 goto out;
7004         }
7005
7006         /*
7007          * Tail is a hole, or is marked unwritten. In either case, we
7008          * can count on read and write to return/push zero's.
7009          */
7010         if (phys == 0 || ext_flags & OCFS2_EXT_UNWRITTEN)
7011                 goto out;
7012
7013         ret = ocfs2_grab_eof_pages(inode, range_start, range_end, pages,
7014                                    &numpages);
7015         if (ret) {
7016                 mlog_errno(ret);
7017                 goto out;
7018         }
7019
7020         ocfs2_zero_cluster_pages(inode, range_start, range_end, pages,
7021                                  numpages, phys, handle);
7022
7023         /*
7024          * Initiate writeout of the pages we zero'd here. We don't
7025          * wait on them - the truncate_inode_pages() call later will
7026          * do that for us.
7027          */
7028         ret = do_sync_mapping_range(inode->i_mapping, range_start,
7029                                     range_end - 1, SYNC_FILE_RANGE_WRITE);
7030         if (ret)
7031                 mlog_errno(ret);
7032
7033 out:
7034         if (pages)
7035                 kfree(pages);
7036
7037         return ret;
7038 }
7039
7040 static void ocfs2_zero_dinode_id2_with_xattr(struct inode *inode,
7041                                              struct ocfs2_dinode *di)
7042 {
7043         unsigned int blocksize = 1 << inode->i_sb->s_blocksize_bits;
7044         unsigned int xattrsize = le16_to_cpu(di->i_xattr_inline_size);
7045
7046         if (le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_XATTR_FL)
7047                 memset(&di->id2, 0, blocksize -
7048                                     offsetof(struct ocfs2_dinode, id2) -
7049                                     xattrsize);
7050         else
7051                 memset(&di->id2, 0, blocksize -
7052                                     offsetof(struct ocfs2_dinode, id2));
7053 }
7054
7055 void ocfs2_dinode_new_extent_list(struct inode *inode,
7056                                   struct ocfs2_dinode *di)
7057 {
7058         ocfs2_zero_dinode_id2_with_xattr(inode, di);
7059         di->id2.i_list.l_tree_depth = 0;
7060         di->id2.i_list.l_next_free_rec = 0;
7061         di->id2.i_list.l_count = cpu_to_le16(
7062                 ocfs2_extent_recs_per_inode_with_xattr(inode->i_sb, di));
7063 }
7064
7065 void ocfs2_set_inode_data_inline(struct inode *inode, struct ocfs2_dinode *di)
7066 {
7067         struct ocfs2_inode_info *oi = OCFS2_I(inode);
7068         struct ocfs2_inline_data *idata = &di->id2.i_data;
7069
7070         spin_lock(&oi->ip_lock);
7071         oi->ip_dyn_features |= OCFS2_INLINE_DATA_FL;
7072         di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
7073         spin_unlock(&oi->ip_lock);
7074
7075         /*
7076          * We clear the entire i_data structure here so that all
7077          * fields can be properly initialized.
7078          */
7079         ocfs2_zero_dinode_id2_with_xattr(inode, di);
7080
7081         idata->id_count = cpu_to_le16(
7082                         ocfs2_max_inline_data_with_xattr(inode->i_sb, di));
7083 }
7084
7085 int ocfs2_convert_inline_data_to_extents(struct inode *inode,
7086                                          struct buffer_head *di_bh)
7087 {
7088         int ret, i, has_data, num_pages = 0;
7089         handle_t *handle;
7090         u64 uninitialized_var(block);
7091         struct ocfs2_inode_info *oi = OCFS2_I(inode);
7092         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
7093         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
7094         struct ocfs2_alloc_context *data_ac = NULL;
7095         struct page **pages = NULL;
7096         loff_t end = osb->s_clustersize;
7097         struct ocfs2_extent_tree et;
7098         int did_quota = 0;
7099
7100         has_data = i_size_read(inode) ? 1 : 0;
7101
7102         if (has_data) {
7103                 pages = kcalloc(ocfs2_pages_per_cluster(osb->sb),
7104                                 sizeof(struct page *), GFP_NOFS);
7105                 if (pages == NULL) {
7106                         ret = -ENOMEM;
7107                         mlog_errno(ret);
7108                         goto out;
7109                 }
7110
7111                 ret = ocfs2_reserve_clusters(osb, 1, &data_ac);
7112                 if (ret) {
7113                         mlog_errno(ret);
7114                         goto out;
7115                 }
7116         }
7117
7118         handle = ocfs2_start_trans(osb,
7119                                    ocfs2_inline_to_extents_credits(osb->sb));
7120         if (IS_ERR(handle)) {
7121                 ret = PTR_ERR(handle);
7122                 mlog_errno(ret);
7123                 goto out_unlock;
7124         }
7125
7126         ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
7127                                       OCFS2_JOURNAL_ACCESS_WRITE);
7128         if (ret) {
7129                 mlog_errno(ret);
7130                 goto out_commit;
7131         }
7132
7133         if (has_data) {
7134                 u32 bit_off, num;
7135                 unsigned int page_end;
7136                 u64 phys;
7137
7138                 if (vfs_dq_alloc_space_nodirty(inode,
7139                                        ocfs2_clusters_to_bytes(osb->sb, 1))) {
7140                         ret = -EDQUOT;
7141                         goto out_commit;
7142                 }
7143                 did_quota = 1;
7144
7145                 ret = ocfs2_claim_clusters(osb, handle, data_ac, 1, &bit_off,
7146                                            &num);
7147                 if (ret) {
7148                         mlog_errno(ret);
7149                         goto out_commit;
7150                 }
7151
7152                 /*
7153                  * Save two copies, one for insert, and one that can
7154                  * be changed by ocfs2_map_and_dirty_page() below.
7155                  */
7156                 block = phys = ocfs2_clusters_to_blocks(inode->i_sb, bit_off);
7157
7158                 /*
7159                  * Non sparse file systems zero on extend, so no need
7160                  * to do that now.
7161                  */
7162                 if (!ocfs2_sparse_alloc(osb) &&
7163                     PAGE_CACHE_SIZE < osb->s_clustersize)
7164                         end = PAGE_CACHE_SIZE;
7165
7166                 ret = ocfs2_grab_eof_pages(inode, 0, end, pages, &num_pages);
7167                 if (ret) {
7168                         mlog_errno(ret);
7169                         goto out_commit;
7170                 }
7171
7172                 /*
7173                  * This should populate the 1st page for us and mark
7174                  * it up to date.
7175                  */
7176                 ret = ocfs2_read_inline_data(inode, pages[0], di_bh);
7177                 if (ret) {
7178                         mlog_errno(ret);
7179                         goto out_commit;
7180                 }
7181
7182                 page_end = PAGE_CACHE_SIZE;
7183                 if (PAGE_CACHE_SIZE > osb->s_clustersize)
7184                         page_end = osb->s_clustersize;
7185
7186                 for (i = 0; i < num_pages; i++)
7187                         ocfs2_map_and_dirty_page(inode, handle, 0, page_end,
7188                                                  pages[i], i > 0, &phys);
7189         }
7190
7191         spin_lock(&oi->ip_lock);
7192         oi->ip_dyn_features &= ~OCFS2_INLINE_DATA_FL;
7193         di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
7194         spin_unlock(&oi->ip_lock);
7195
7196         ocfs2_dinode_new_extent_list(inode, di);
7197
7198         ocfs2_journal_dirty(handle, di_bh);
7199
7200         if (has_data) {
7201                 /*
7202                  * An error at this point should be extremely rare. If
7203                  * this proves to be false, we could always re-build
7204                  * the in-inode data from our pages.
7205                  */
7206                 ocfs2_init_dinode_extent_tree(&et, inode, di_bh);
7207                 ret = ocfs2_insert_extent(osb, handle, inode, &et,
7208                                           0, block, 1, 0, NULL);
7209                 if (ret) {
7210                         mlog_errno(ret);
7211                         goto out_commit;
7212                 }
7213
7214                 inode->i_blocks = ocfs2_inode_sector_count(inode);
7215         }
7216
7217 out_commit:
7218         if (ret < 0 && did_quota)
7219                 vfs_dq_free_space_nodirty(inode,
7220                                           ocfs2_clusters_to_bytes(osb->sb, 1));
7221
7222         ocfs2_commit_trans(osb, handle);
7223
7224 out_unlock:
7225         if (data_ac)
7226                 ocfs2_free_alloc_context(data_ac);
7227
7228 out:
7229         if (pages) {
7230                 ocfs2_unlock_and_free_pages(pages, num_pages);
7231                 kfree(pages);
7232         }
7233
7234         return ret;
7235 }
7236
7237 /*
7238  * It is expected, that by the time you call this function,
7239  * inode->i_size and fe->i_size have been adjusted.
7240  *
7241  * WARNING: This will kfree the truncate context
7242  */
7243 int ocfs2_commit_truncate(struct ocfs2_super *osb,
7244                           struct inode *inode,
7245                           struct buffer_head *fe_bh,
7246                           struct ocfs2_truncate_context *tc)
7247 {
7248         int status, i, credits, tl_sem = 0;
7249         u32 clusters_to_del, new_highest_cpos, range;
7250         struct ocfs2_extent_list *el;
7251         handle_t *handle = NULL;
7252         struct inode *tl_inode = osb->osb_tl_inode;
7253         struct ocfs2_path *path = NULL;
7254         struct ocfs2_dinode *di = (struct ocfs2_dinode *)fe_bh->b_data;
7255
7256         mlog_entry_void();
7257
7258         new_highest_cpos = ocfs2_clusters_for_bytes(osb->sb,
7259                                                      i_size_read(inode));
7260
7261         path = ocfs2_new_path(fe_bh, &di->id2.i_list,
7262                               ocfs2_journal_access_di);
7263         if (!path) {
7264                 status = -ENOMEM;
7265                 mlog_errno(status);
7266                 goto bail;
7267         }
7268
7269         ocfs2_extent_map_trunc(inode, new_highest_cpos);
7270
7271 start:
7272         /*
7273          * Check that we still have allocation to delete.
7274          */
7275         if (OCFS2_I(inode)->ip_clusters == 0) {
7276                 status = 0;
7277                 goto bail;
7278         }
7279
7280         /*
7281          * Truncate always works against the rightmost tree branch.
7282          */
7283         status = ocfs2_find_path(INODE_CACHE(inode), path, UINT_MAX);
7284         if (status) {
7285                 mlog_errno(status);
7286                 goto bail;
7287         }
7288
7289         mlog(0, "inode->ip_clusters = %u, tree_depth = %u\n",
7290              OCFS2_I(inode)->ip_clusters, path->p_tree_depth);
7291
7292         /*
7293          * By now, el will point to the extent list on the bottom most
7294          * portion of this tree. Only the tail record is considered in
7295          * each pass.
7296          *
7297          * We handle the following cases, in order:
7298          * - empty extent: delete the remaining branch
7299          * - remove the entire record
7300          * - remove a partial record
7301          * - no record needs to be removed (truncate has completed)
7302          */
7303         el = path_leaf_el(path);
7304         if (le16_to_cpu(el->l_next_free_rec) == 0) {
7305                 ocfs2_error(inode->i_sb,
7306                             "Inode %llu has empty extent block at %llu\n",
7307                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
7308                             (unsigned long long)path_leaf_bh(path)->b_blocknr);
7309                 status = -EROFS;
7310                 goto bail;
7311         }
7312
7313         i = le16_to_cpu(el->l_next_free_rec) - 1;
7314         range = le32_to_cpu(el->l_recs[i].e_cpos) +
7315                 ocfs2_rec_clusters(el, &el->l_recs[i]);
7316         if (i == 0 && ocfs2_is_empty_extent(&el->l_recs[i])) {
7317                 clusters_to_del = 0;
7318         } else if (le32_to_cpu(el->l_recs[i].e_cpos) >= new_highest_cpos) {
7319                 clusters_to_del = ocfs2_rec_clusters(el, &el->l_recs[i]);
7320         } else if (range > new_highest_cpos) {
7321                 clusters_to_del = (ocfs2_rec_clusters(el, &el->l_recs[i]) +
7322                                    le32_to_cpu(el->l_recs[i].e_cpos)) -
7323                                   new_highest_cpos;
7324         } else {
7325                 status = 0;
7326                 goto bail;
7327         }
7328
7329         mlog(0, "clusters_to_del = %u in this pass, tail blk=%llu\n",
7330              clusters_to_del, (unsigned long long)path_leaf_bh(path)->b_blocknr);
7331
7332         mutex_lock(&tl_inode->i_mutex);
7333         tl_sem = 1;
7334         /* ocfs2_truncate_log_needs_flush guarantees us at least one
7335          * record is free for use. If there isn't any, we flush to get
7336          * an empty truncate log.  */
7337         if (ocfs2_truncate_log_needs_flush(osb)) {
7338                 status = __ocfs2_flush_truncate_log(osb);
7339                 if (status < 0) {
7340                         mlog_errno(status);
7341                         goto bail;
7342                 }
7343         }
7344
7345         credits = ocfs2_calc_tree_trunc_credits(osb->sb, clusters_to_del,
7346                                                 (struct ocfs2_dinode *)fe_bh->b_data,
7347                                                 el);
7348         handle = ocfs2_start_trans(osb, credits);
7349         if (IS_ERR(handle)) {
7350                 status = PTR_ERR(handle);
7351                 handle = NULL;
7352                 mlog_errno(status);
7353                 goto bail;
7354         }
7355
7356         status = ocfs2_do_truncate(osb, clusters_to_del, inode, fe_bh, handle,
7357                                    tc, path);
7358         if (status < 0) {
7359                 mlog_errno(status);
7360                 goto bail;
7361         }
7362
7363         mutex_unlock(&tl_inode->i_mutex);
7364         tl_sem = 0;
7365
7366         ocfs2_commit_trans(osb, handle);
7367         handle = NULL;
7368
7369         ocfs2_reinit_path(path, 1);
7370
7371         /*
7372          * The check above will catch the case where we've truncated
7373          * away all allocation.
7374          */
7375         goto start;
7376
7377 bail:
7378
7379         ocfs2_schedule_truncate_log_flush(osb, 1);
7380
7381         if (tl_sem)
7382                 mutex_unlock(&tl_inode->i_mutex);
7383
7384         if (handle)
7385                 ocfs2_commit_trans(osb, handle);
7386
7387         ocfs2_run_deallocs(osb, &tc->tc_dealloc);
7388
7389         ocfs2_free_path(path);
7390
7391         /* This will drop the ext_alloc cluster lock for us */
7392         ocfs2_free_truncate_context(tc);
7393
7394         mlog_exit(status);
7395         return status;
7396 }
7397
7398 /*
7399  * Expects the inode to already be locked.
7400  */
7401 int ocfs2_prepare_truncate(struct ocfs2_super *osb,
7402                            struct inode *inode,
7403                            struct buffer_head *fe_bh,
7404                            struct ocfs2_truncate_context **tc)
7405 {
7406         int status;
7407         unsigned int new_i_clusters;
7408         struct ocfs2_dinode *fe;
7409         struct ocfs2_extent_block *eb;
7410         struct buffer_head *last_eb_bh = NULL;
7411
7412         mlog_entry_void();
7413
7414         *tc = NULL;
7415
7416         new_i_clusters = ocfs2_clusters_for_bytes(osb->sb,
7417                                                   i_size_read(inode));
7418         fe = (struct ocfs2_dinode *) fe_bh->b_data;
7419
7420         mlog(0, "fe->i_clusters = %u, new_i_clusters = %u, fe->i_size ="
7421              "%llu\n", le32_to_cpu(fe->i_clusters), new_i_clusters,
7422              (unsigned long long)le64_to_cpu(fe->i_size));
7423
7424         *tc = kzalloc(sizeof(struct ocfs2_truncate_context), GFP_KERNEL);
7425         if (!(*tc)) {
7426                 status = -ENOMEM;
7427                 mlog_errno(status);
7428                 goto bail;
7429         }
7430         ocfs2_init_dealloc_ctxt(&(*tc)->tc_dealloc);
7431
7432         if (fe->id2.i_list.l_tree_depth) {
7433                 status = ocfs2_read_extent_block(INODE_CACHE(inode),
7434                                                  le64_to_cpu(fe->i_last_eb_blk),
7435                                                  &last_eb_bh);
7436                 if (status < 0) {
7437                         mlog_errno(status);
7438                         goto bail;
7439                 }
7440                 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
7441         }
7442
7443         (*tc)->tc_last_eb_bh = last_eb_bh;
7444
7445         status = 0;
7446 bail:
7447         if (status < 0) {
7448                 if (*tc)
7449                         ocfs2_free_truncate_context(*tc);
7450                 *tc = NULL;
7451         }
7452         mlog_exit_void();
7453         return status;
7454 }
7455
7456 /*
7457  * 'start' is inclusive, 'end' is not.
7458  */
7459 int ocfs2_truncate_inline(struct inode *inode, struct buffer_head *di_bh,
7460                           unsigned int start, unsigned int end, int trunc)
7461 {
7462         int ret;
7463         unsigned int numbytes;
7464         handle_t *handle;
7465         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
7466         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
7467         struct ocfs2_inline_data *idata = &di->id2.i_data;
7468
7469         if (end > i_size_read(inode))
7470                 end = i_size_read(inode);
7471
7472         BUG_ON(start >= end);
7473
7474         if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) ||
7475             !(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL) ||
7476             !ocfs2_supports_inline_data(osb)) {
7477                 ocfs2_error(inode->i_sb,
7478                             "Inline data flags for inode %llu don't agree! "
7479                             "Disk: 0x%x, Memory: 0x%x, Superblock: 0x%x\n",
7480                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
7481                             le16_to_cpu(di->i_dyn_features),
7482                             OCFS2_I(inode)->ip_dyn_features,
7483                             osb->s_feature_incompat);
7484                 ret = -EROFS;
7485                 goto out;
7486         }
7487
7488         handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
7489         if (IS_ERR(handle)) {
7490                 ret = PTR_ERR(handle);
7491                 mlog_errno(ret);
7492                 goto out;
7493         }
7494
7495         ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
7496                                       OCFS2_JOURNAL_ACCESS_WRITE);
7497         if (ret) {
7498                 mlog_errno(ret);
7499                 goto out_commit;
7500         }
7501
7502         numbytes = end - start;
7503         memset(idata->id_data + start, 0, numbytes);
7504
7505         /*
7506          * No need to worry about the data page here - it's been
7507          * truncated already and inline data doesn't need it for
7508          * pushing zero's to disk, so we'll let readpage pick it up
7509          * later.
7510          */
7511         if (trunc) {
7512                 i_size_write(inode, start);
7513                 di->i_size = cpu_to_le64(start);
7514         }
7515
7516         inode->i_blocks = ocfs2_inode_sector_count(inode);
7517         inode->i_ctime = inode->i_mtime = CURRENT_TIME;
7518
7519         di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec);
7520         di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
7521
7522         ocfs2_journal_dirty(handle, di_bh);
7523
7524 out_commit:
7525         ocfs2_commit_trans(osb, handle);
7526
7527 out:
7528         return ret;
7529 }
7530
7531 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc)
7532 {
7533         /*
7534          * The caller is responsible for completing deallocation
7535          * before freeing the context.
7536          */
7537         if (tc->tc_dealloc.c_first_suballocator != NULL)
7538                 mlog(ML_NOTICE,
7539                      "Truncate completion has non-empty dealloc context\n");
7540
7541         brelse(tc->tc_last_eb_bh);
7542
7543         kfree(tc);
7544 }