ocfs2: Enable cross extent block merge.
[safe/jmp/linux-2.6] / fs / ocfs2 / alloc.c
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * alloc.c
5  *
6  * Extent allocs and frees
7  *
8  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public
12  * License as published by the Free Software Foundation; either
13  * version 2 of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public
21  * License along with this program; if not, write to the
22  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23  * Boston, MA 021110-1307, USA.
24  */
25
26 #include <linux/fs.h>
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/swap.h>
31
32 #define MLOG_MASK_PREFIX ML_DISK_ALLOC
33 #include <cluster/masklog.h>
34
35 #include "ocfs2.h"
36
37 #include "alloc.h"
38 #include "aops.h"
39 #include "dlmglue.h"
40 #include "extent_map.h"
41 #include "inode.h"
42 #include "journal.h"
43 #include "localalloc.h"
44 #include "suballoc.h"
45 #include "sysfile.h"
46 #include "file.h"
47 #include "super.h"
48 #include "uptodate.h"
49
50 #include "buffer_head_io.h"
51
52 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc);
53 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
54                                          struct ocfs2_extent_block *eb);
55
56 /*
57  * Structures which describe a path through a btree, and functions to
58  * manipulate them.
59  *
60  * The idea here is to be as generic as possible with the tree
61  * manipulation code.
62  */
63 struct ocfs2_path_item {
64         struct buffer_head              *bh;
65         struct ocfs2_extent_list        *el;
66 };
67
68 #define OCFS2_MAX_PATH_DEPTH    5
69
70 struct ocfs2_path {
71         int                     p_tree_depth;
72         struct ocfs2_path_item  p_node[OCFS2_MAX_PATH_DEPTH];
73 };
74
75 #define path_root_bh(_path) ((_path)->p_node[0].bh)
76 #define path_root_el(_path) ((_path)->p_node[0].el)
77 #define path_leaf_bh(_path) ((_path)->p_node[(_path)->p_tree_depth].bh)
78 #define path_leaf_el(_path) ((_path)->p_node[(_path)->p_tree_depth].el)
79 #define path_num_items(_path) ((_path)->p_tree_depth + 1)
80
81 /*
82  * Reset the actual path elements so that we can re-use the structure
83  * to build another path. Generally, this involves freeing the buffer
84  * heads.
85  */
86 static void ocfs2_reinit_path(struct ocfs2_path *path, int keep_root)
87 {
88         int i, start = 0, depth = 0;
89         struct ocfs2_path_item *node;
90
91         if (keep_root)
92                 start = 1;
93
94         for(i = start; i < path_num_items(path); i++) {
95                 node = &path->p_node[i];
96
97                 brelse(node->bh);
98                 node->bh = NULL;
99                 node->el = NULL;
100         }
101
102         /*
103          * Tree depth may change during truncate, or insert. If we're
104          * keeping the root extent list, then make sure that our path
105          * structure reflects the proper depth.
106          */
107         if (keep_root)
108                 depth = le16_to_cpu(path_root_el(path)->l_tree_depth);
109
110         path->p_tree_depth = depth;
111 }
112
113 static void ocfs2_free_path(struct ocfs2_path *path)
114 {
115         if (path) {
116                 ocfs2_reinit_path(path, 0);
117                 kfree(path);
118         }
119 }
120
121 /*
122  * All the elements of src into dest. After this call, src could be freed
123  * without affecting dest.
124  *
125  * Both paths should have the same root. Any non-root elements of dest
126  * will be freed.
127  */
128 static void ocfs2_cp_path(struct ocfs2_path *dest, struct ocfs2_path *src)
129 {
130         int i;
131
132         BUG_ON(path_root_bh(dest) != path_root_bh(src));
133         BUG_ON(path_root_el(dest) != path_root_el(src));
134
135         ocfs2_reinit_path(dest, 1);
136
137         for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
138                 dest->p_node[i].bh = src->p_node[i].bh;
139                 dest->p_node[i].el = src->p_node[i].el;
140
141                 if (dest->p_node[i].bh)
142                         get_bh(dest->p_node[i].bh);
143         }
144 }
145
146 /*
147  * Make the *dest path the same as src and re-initialize src path to
148  * have a root only.
149  */
150 static void ocfs2_mv_path(struct ocfs2_path *dest, struct ocfs2_path *src)
151 {
152         int i;
153
154         BUG_ON(path_root_bh(dest) != path_root_bh(src));
155
156         for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
157                 brelse(dest->p_node[i].bh);
158
159                 dest->p_node[i].bh = src->p_node[i].bh;
160                 dest->p_node[i].el = src->p_node[i].el;
161
162                 src->p_node[i].bh = NULL;
163                 src->p_node[i].el = NULL;
164         }
165 }
166
167 /*
168  * Insert an extent block at given index.
169  *
170  * This will not take an additional reference on eb_bh.
171  */
172 static inline void ocfs2_path_insert_eb(struct ocfs2_path *path, int index,
173                                         struct buffer_head *eb_bh)
174 {
175         struct ocfs2_extent_block *eb = (struct ocfs2_extent_block *)eb_bh->b_data;
176
177         /*
178          * Right now, no root bh is an extent block, so this helps
179          * catch code errors with dinode trees. The assertion can be
180          * safely removed if we ever need to insert extent block
181          * structures at the root.
182          */
183         BUG_ON(index == 0);
184
185         path->p_node[index].bh = eb_bh;
186         path->p_node[index].el = &eb->h_list;
187 }
188
189 static struct ocfs2_path *ocfs2_new_path(struct buffer_head *root_bh,
190                                          struct ocfs2_extent_list *root_el)
191 {
192         struct ocfs2_path *path;
193
194         BUG_ON(le16_to_cpu(root_el->l_tree_depth) >= OCFS2_MAX_PATH_DEPTH);
195
196         path = kzalloc(sizeof(*path), GFP_NOFS);
197         if (path) {
198                 path->p_tree_depth = le16_to_cpu(root_el->l_tree_depth);
199                 get_bh(root_bh);
200                 path_root_bh(path) = root_bh;
201                 path_root_el(path) = root_el;
202         }
203
204         return path;
205 }
206
207 /*
208  * Allocate and initialize a new path based on a disk inode tree.
209  */
210 static struct ocfs2_path *ocfs2_new_inode_path(struct buffer_head *di_bh)
211 {
212         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
213         struct ocfs2_extent_list *el = &di->id2.i_list;
214
215         return ocfs2_new_path(di_bh, el);
216 }
217
218 /*
219  * Convenience function to journal all components in a path.
220  */
221 static int ocfs2_journal_access_path(struct inode *inode, handle_t *handle,
222                                      struct ocfs2_path *path)
223 {
224         int i, ret = 0;
225
226         if (!path)
227                 goto out;
228
229         for(i = 0; i < path_num_items(path); i++) {
230                 ret = ocfs2_journal_access(handle, inode, path->p_node[i].bh,
231                                            OCFS2_JOURNAL_ACCESS_WRITE);
232                 if (ret < 0) {
233                         mlog_errno(ret);
234                         goto out;
235                 }
236         }
237
238 out:
239         return ret;
240 }
241
242 /*
243  * Return the index of the extent record which contains cluster #v_cluster.
244  * -1 is returned if it was not found.
245  *
246  * Should work fine on interior and exterior nodes.
247  */
248 int ocfs2_search_extent_list(struct ocfs2_extent_list *el, u32 v_cluster)
249 {
250         int ret = -1;
251         int i;
252         struct ocfs2_extent_rec *rec;
253         u32 rec_end, rec_start, clusters;
254
255         for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
256                 rec = &el->l_recs[i];
257
258                 rec_start = le32_to_cpu(rec->e_cpos);
259                 clusters = ocfs2_rec_clusters(el, rec);
260
261                 rec_end = rec_start + clusters;
262
263                 if (v_cluster >= rec_start && v_cluster < rec_end) {
264                         ret = i;
265                         break;
266                 }
267         }
268
269         return ret;
270 }
271
272 enum ocfs2_contig_type {
273         CONTIG_NONE = 0,
274         CONTIG_LEFT,
275         CONTIG_RIGHT,
276         CONTIG_LEFTRIGHT,
277 };
278
279
280 /*
281  * NOTE: ocfs2_block_extent_contig(), ocfs2_extents_adjacent() and
282  * ocfs2_extent_contig only work properly against leaf nodes!
283  */
284 static int ocfs2_block_extent_contig(struct super_block *sb,
285                                      struct ocfs2_extent_rec *ext,
286                                      u64 blkno)
287 {
288         u64 blk_end = le64_to_cpu(ext->e_blkno);
289
290         blk_end += ocfs2_clusters_to_blocks(sb,
291                                     le16_to_cpu(ext->e_leaf_clusters));
292
293         return blkno == blk_end;
294 }
295
296 static int ocfs2_extents_adjacent(struct ocfs2_extent_rec *left,
297                                   struct ocfs2_extent_rec *right)
298 {
299         u32 left_range;
300
301         left_range = le32_to_cpu(left->e_cpos) +
302                 le16_to_cpu(left->e_leaf_clusters);
303
304         return (left_range == le32_to_cpu(right->e_cpos));
305 }
306
307 static enum ocfs2_contig_type
308         ocfs2_extent_contig(struct inode *inode,
309                             struct ocfs2_extent_rec *ext,
310                             struct ocfs2_extent_rec *insert_rec)
311 {
312         u64 blkno = le64_to_cpu(insert_rec->e_blkno);
313
314         /*
315          * Refuse to coalesce extent records with different flag
316          * fields - we don't want to mix unwritten extents with user
317          * data.
318          */
319         if (ext->e_flags != insert_rec->e_flags)
320                 return CONTIG_NONE;
321
322         if (ocfs2_extents_adjacent(ext, insert_rec) &&
323             ocfs2_block_extent_contig(inode->i_sb, ext, blkno))
324                         return CONTIG_RIGHT;
325
326         blkno = le64_to_cpu(ext->e_blkno);
327         if (ocfs2_extents_adjacent(insert_rec, ext) &&
328             ocfs2_block_extent_contig(inode->i_sb, insert_rec, blkno))
329                 return CONTIG_LEFT;
330
331         return CONTIG_NONE;
332 }
333
334 /*
335  * NOTE: We can have pretty much any combination of contiguousness and
336  * appending.
337  *
338  * The usefulness of APPEND_TAIL is more in that it lets us know that
339  * we'll have to update the path to that leaf.
340  */
341 enum ocfs2_append_type {
342         APPEND_NONE = 0,
343         APPEND_TAIL,
344 };
345
346 enum ocfs2_split_type {
347         SPLIT_NONE = 0,
348         SPLIT_LEFT,
349         SPLIT_RIGHT,
350 };
351
352 struct ocfs2_insert_type {
353         enum ocfs2_split_type   ins_split;
354         enum ocfs2_append_type  ins_appending;
355         enum ocfs2_contig_type  ins_contig;
356         int                     ins_contig_index;
357         int                     ins_tree_depth;
358 };
359
360 struct ocfs2_merge_ctxt {
361         enum ocfs2_contig_type  c_contig_type;
362         int                     c_has_empty_extent;
363         int                     c_split_covers_rec;
364 };
365
366 /*
367  * How many free extents have we got before we need more meta data?
368  */
369 int ocfs2_num_free_extents(struct ocfs2_super *osb,
370                            struct inode *inode,
371                            struct ocfs2_dinode *fe)
372 {
373         int retval;
374         struct ocfs2_extent_list *el;
375         struct ocfs2_extent_block *eb;
376         struct buffer_head *eb_bh = NULL;
377
378         mlog_entry_void();
379
380         if (!OCFS2_IS_VALID_DINODE(fe)) {
381                 OCFS2_RO_ON_INVALID_DINODE(inode->i_sb, fe);
382                 retval = -EIO;
383                 goto bail;
384         }
385
386         if (fe->i_last_eb_blk) {
387                 retval = ocfs2_read_block(osb, le64_to_cpu(fe->i_last_eb_blk),
388                                           &eb_bh, OCFS2_BH_CACHED, inode);
389                 if (retval < 0) {
390                         mlog_errno(retval);
391                         goto bail;
392                 }
393                 eb = (struct ocfs2_extent_block *) eb_bh->b_data;
394                 el = &eb->h_list;
395         } else
396                 el = &fe->id2.i_list;
397
398         BUG_ON(el->l_tree_depth != 0);
399
400         retval = le16_to_cpu(el->l_count) - le16_to_cpu(el->l_next_free_rec);
401 bail:
402         if (eb_bh)
403                 brelse(eb_bh);
404
405         mlog_exit(retval);
406         return retval;
407 }
408
409 /* expects array to already be allocated
410  *
411  * sets h_signature, h_blkno, h_suballoc_bit, h_suballoc_slot, and
412  * l_count for you
413  */
414 static int ocfs2_create_new_meta_bhs(struct ocfs2_super *osb,
415                                      handle_t *handle,
416                                      struct inode *inode,
417                                      int wanted,
418                                      struct ocfs2_alloc_context *meta_ac,
419                                      struct buffer_head *bhs[])
420 {
421         int count, status, i;
422         u16 suballoc_bit_start;
423         u32 num_got;
424         u64 first_blkno;
425         struct ocfs2_extent_block *eb;
426
427         mlog_entry_void();
428
429         count = 0;
430         while (count < wanted) {
431                 status = ocfs2_claim_metadata(osb,
432                                               handle,
433                                               meta_ac,
434                                               wanted - count,
435                                               &suballoc_bit_start,
436                                               &num_got,
437                                               &first_blkno);
438                 if (status < 0) {
439                         mlog_errno(status);
440                         goto bail;
441                 }
442
443                 for(i = count;  i < (num_got + count); i++) {
444                         bhs[i] = sb_getblk(osb->sb, first_blkno);
445                         if (bhs[i] == NULL) {
446                                 status = -EIO;
447                                 mlog_errno(status);
448                                 goto bail;
449                         }
450                         ocfs2_set_new_buffer_uptodate(inode, bhs[i]);
451
452                         status = ocfs2_journal_access(handle, inode, bhs[i],
453                                                       OCFS2_JOURNAL_ACCESS_CREATE);
454                         if (status < 0) {
455                                 mlog_errno(status);
456                                 goto bail;
457                         }
458
459                         memset(bhs[i]->b_data, 0, osb->sb->s_blocksize);
460                         eb = (struct ocfs2_extent_block *) bhs[i]->b_data;
461                         /* Ok, setup the minimal stuff here. */
462                         strcpy(eb->h_signature, OCFS2_EXTENT_BLOCK_SIGNATURE);
463                         eb->h_blkno = cpu_to_le64(first_blkno);
464                         eb->h_fs_generation = cpu_to_le32(osb->fs_generation);
465                         eb->h_suballoc_slot = cpu_to_le16(osb->slot_num);
466                         eb->h_suballoc_bit = cpu_to_le16(suballoc_bit_start);
467                         eb->h_list.l_count =
468                                 cpu_to_le16(ocfs2_extent_recs_per_eb(osb->sb));
469
470                         suballoc_bit_start++;
471                         first_blkno++;
472
473                         /* We'll also be dirtied by the caller, so
474                          * this isn't absolutely necessary. */
475                         status = ocfs2_journal_dirty(handle, bhs[i]);
476                         if (status < 0) {
477                                 mlog_errno(status);
478                                 goto bail;
479                         }
480                 }
481
482                 count += num_got;
483         }
484
485         status = 0;
486 bail:
487         if (status < 0) {
488                 for(i = 0; i < wanted; i++) {
489                         if (bhs[i])
490                                 brelse(bhs[i]);
491                         bhs[i] = NULL;
492                 }
493         }
494         mlog_exit(status);
495         return status;
496 }
497
498 /*
499  * Helper function for ocfs2_add_branch() and ocfs2_shift_tree_depth().
500  *
501  * Returns the sum of the rightmost extent rec logical offset and
502  * cluster count.
503  *
504  * ocfs2_add_branch() uses this to determine what logical cluster
505  * value should be populated into the leftmost new branch records.
506  *
507  * ocfs2_shift_tree_depth() uses this to determine the # clusters
508  * value for the new topmost tree record.
509  */
510 static inline u32 ocfs2_sum_rightmost_rec(struct ocfs2_extent_list  *el)
511 {
512         int i;
513
514         i = le16_to_cpu(el->l_next_free_rec) - 1;
515
516         return le32_to_cpu(el->l_recs[i].e_cpos) +
517                 ocfs2_rec_clusters(el, &el->l_recs[i]);
518 }
519
520 /*
521  * Add an entire tree branch to our inode. eb_bh is the extent block
522  * to start at, if we don't want to start the branch at the dinode
523  * structure.
524  *
525  * last_eb_bh is required as we have to update it's next_leaf pointer
526  * for the new last extent block.
527  *
528  * the new branch will be 'empty' in the sense that every block will
529  * contain a single record with cluster count == 0.
530  */
531 static int ocfs2_add_branch(struct ocfs2_super *osb,
532                             handle_t *handle,
533                             struct inode *inode,
534                             struct buffer_head *fe_bh,
535                             struct buffer_head *eb_bh,
536                             struct buffer_head **last_eb_bh,
537                             struct ocfs2_alloc_context *meta_ac)
538 {
539         int status, new_blocks, i;
540         u64 next_blkno, new_last_eb_blk;
541         struct buffer_head *bh;
542         struct buffer_head **new_eb_bhs = NULL;
543         struct ocfs2_dinode *fe;
544         struct ocfs2_extent_block *eb;
545         struct ocfs2_extent_list  *eb_el;
546         struct ocfs2_extent_list  *el;
547         u32 new_cpos;
548
549         mlog_entry_void();
550
551         BUG_ON(!last_eb_bh || !*last_eb_bh);
552
553         fe = (struct ocfs2_dinode *) fe_bh->b_data;
554
555         if (eb_bh) {
556                 eb = (struct ocfs2_extent_block *) eb_bh->b_data;
557                 el = &eb->h_list;
558         } else
559                 el = &fe->id2.i_list;
560
561         /* we never add a branch to a leaf. */
562         BUG_ON(!el->l_tree_depth);
563
564         new_blocks = le16_to_cpu(el->l_tree_depth);
565
566         /* allocate the number of new eb blocks we need */
567         new_eb_bhs = kcalloc(new_blocks, sizeof(struct buffer_head *),
568                              GFP_KERNEL);
569         if (!new_eb_bhs) {
570                 status = -ENOMEM;
571                 mlog_errno(status);
572                 goto bail;
573         }
574
575         status = ocfs2_create_new_meta_bhs(osb, handle, inode, new_blocks,
576                                            meta_ac, new_eb_bhs);
577         if (status < 0) {
578                 mlog_errno(status);
579                 goto bail;
580         }
581
582         eb = (struct ocfs2_extent_block *)(*last_eb_bh)->b_data;
583         new_cpos = ocfs2_sum_rightmost_rec(&eb->h_list);
584
585         /* Note: new_eb_bhs[new_blocks - 1] is the guy which will be
586          * linked with the rest of the tree.
587          * conversly, new_eb_bhs[0] is the new bottommost leaf.
588          *
589          * when we leave the loop, new_last_eb_blk will point to the
590          * newest leaf, and next_blkno will point to the topmost extent
591          * block. */
592         next_blkno = new_last_eb_blk = 0;
593         for(i = 0; i < new_blocks; i++) {
594                 bh = new_eb_bhs[i];
595                 eb = (struct ocfs2_extent_block *) bh->b_data;
596                 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
597                         OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
598                         status = -EIO;
599                         goto bail;
600                 }
601                 eb_el = &eb->h_list;
602
603                 status = ocfs2_journal_access(handle, inode, bh,
604                                               OCFS2_JOURNAL_ACCESS_CREATE);
605                 if (status < 0) {
606                         mlog_errno(status);
607                         goto bail;
608                 }
609
610                 eb->h_next_leaf_blk = 0;
611                 eb_el->l_tree_depth = cpu_to_le16(i);
612                 eb_el->l_next_free_rec = cpu_to_le16(1);
613                 /*
614                  * This actually counts as an empty extent as
615                  * c_clusters == 0
616                  */
617                 eb_el->l_recs[0].e_cpos = cpu_to_le32(new_cpos);
618                 eb_el->l_recs[0].e_blkno = cpu_to_le64(next_blkno);
619                 /*
620                  * eb_el isn't always an interior node, but even leaf
621                  * nodes want a zero'd flags and reserved field so
622                  * this gets the whole 32 bits regardless of use.
623                  */
624                 eb_el->l_recs[0].e_int_clusters = cpu_to_le32(0);
625                 if (!eb_el->l_tree_depth)
626                         new_last_eb_blk = le64_to_cpu(eb->h_blkno);
627
628                 status = ocfs2_journal_dirty(handle, bh);
629                 if (status < 0) {
630                         mlog_errno(status);
631                         goto bail;
632                 }
633
634                 next_blkno = le64_to_cpu(eb->h_blkno);
635         }
636
637         /* This is a bit hairy. We want to update up to three blocks
638          * here without leaving any of them in an inconsistent state
639          * in case of error. We don't have to worry about
640          * journal_dirty erroring as it won't unless we've aborted the
641          * handle (in which case we would never be here) so reserving
642          * the write with journal_access is all we need to do. */
643         status = ocfs2_journal_access(handle, inode, *last_eb_bh,
644                                       OCFS2_JOURNAL_ACCESS_WRITE);
645         if (status < 0) {
646                 mlog_errno(status);
647                 goto bail;
648         }
649         status = ocfs2_journal_access(handle, inode, fe_bh,
650                                       OCFS2_JOURNAL_ACCESS_WRITE);
651         if (status < 0) {
652                 mlog_errno(status);
653                 goto bail;
654         }
655         if (eb_bh) {
656                 status = ocfs2_journal_access(handle, inode, eb_bh,
657                                               OCFS2_JOURNAL_ACCESS_WRITE);
658                 if (status < 0) {
659                         mlog_errno(status);
660                         goto bail;
661                 }
662         }
663
664         /* Link the new branch into the rest of the tree (el will
665          * either be on the fe, or the extent block passed in. */
666         i = le16_to_cpu(el->l_next_free_rec);
667         el->l_recs[i].e_blkno = cpu_to_le64(next_blkno);
668         el->l_recs[i].e_cpos = cpu_to_le32(new_cpos);
669         el->l_recs[i].e_int_clusters = 0;
670         le16_add_cpu(&el->l_next_free_rec, 1);
671
672         /* fe needs a new last extent block pointer, as does the
673          * next_leaf on the previously last-extent-block. */
674         fe->i_last_eb_blk = cpu_to_le64(new_last_eb_blk);
675
676         eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
677         eb->h_next_leaf_blk = cpu_to_le64(new_last_eb_blk);
678
679         status = ocfs2_journal_dirty(handle, *last_eb_bh);
680         if (status < 0)
681                 mlog_errno(status);
682         status = ocfs2_journal_dirty(handle, fe_bh);
683         if (status < 0)
684                 mlog_errno(status);
685         if (eb_bh) {
686                 status = ocfs2_journal_dirty(handle, eb_bh);
687                 if (status < 0)
688                         mlog_errno(status);
689         }
690
691         /*
692          * Some callers want to track the rightmost leaf so pass it
693          * back here.
694          */
695         brelse(*last_eb_bh);
696         get_bh(new_eb_bhs[0]);
697         *last_eb_bh = new_eb_bhs[0];
698
699         status = 0;
700 bail:
701         if (new_eb_bhs) {
702                 for (i = 0; i < new_blocks; i++)
703                         if (new_eb_bhs[i])
704                                 brelse(new_eb_bhs[i]);
705                 kfree(new_eb_bhs);
706         }
707
708         mlog_exit(status);
709         return status;
710 }
711
712 /*
713  * adds another level to the allocation tree.
714  * returns back the new extent block so you can add a branch to it
715  * after this call.
716  */
717 static int ocfs2_shift_tree_depth(struct ocfs2_super *osb,
718                                   handle_t *handle,
719                                   struct inode *inode,
720                                   struct buffer_head *fe_bh,
721                                   struct ocfs2_alloc_context *meta_ac,
722                                   struct buffer_head **ret_new_eb_bh)
723 {
724         int status, i;
725         u32 new_clusters;
726         struct buffer_head *new_eb_bh = NULL;
727         struct ocfs2_dinode *fe;
728         struct ocfs2_extent_block *eb;
729         struct ocfs2_extent_list  *fe_el;
730         struct ocfs2_extent_list  *eb_el;
731
732         mlog_entry_void();
733
734         status = ocfs2_create_new_meta_bhs(osb, handle, inode, 1, meta_ac,
735                                            &new_eb_bh);
736         if (status < 0) {
737                 mlog_errno(status);
738                 goto bail;
739         }
740
741         eb = (struct ocfs2_extent_block *) new_eb_bh->b_data;
742         if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
743                 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
744                 status = -EIO;
745                 goto bail;
746         }
747
748         eb_el = &eb->h_list;
749         fe = (struct ocfs2_dinode *) fe_bh->b_data;
750         fe_el = &fe->id2.i_list;
751
752         status = ocfs2_journal_access(handle, inode, new_eb_bh,
753                                       OCFS2_JOURNAL_ACCESS_CREATE);
754         if (status < 0) {
755                 mlog_errno(status);
756                 goto bail;
757         }
758
759         /* copy the fe data into the new extent block */
760         eb_el->l_tree_depth = fe_el->l_tree_depth;
761         eb_el->l_next_free_rec = fe_el->l_next_free_rec;
762         for(i = 0; i < le16_to_cpu(fe_el->l_next_free_rec); i++)
763                 eb_el->l_recs[i] = fe_el->l_recs[i];
764
765         status = ocfs2_journal_dirty(handle, new_eb_bh);
766         if (status < 0) {
767                 mlog_errno(status);
768                 goto bail;
769         }
770
771         status = ocfs2_journal_access(handle, inode, fe_bh,
772                                       OCFS2_JOURNAL_ACCESS_WRITE);
773         if (status < 0) {
774                 mlog_errno(status);
775                 goto bail;
776         }
777
778         new_clusters = ocfs2_sum_rightmost_rec(eb_el);
779
780         /* update fe now */
781         le16_add_cpu(&fe_el->l_tree_depth, 1);
782         fe_el->l_recs[0].e_cpos = 0;
783         fe_el->l_recs[0].e_blkno = eb->h_blkno;
784         fe_el->l_recs[0].e_int_clusters = cpu_to_le32(new_clusters);
785         for(i = 1; i < le16_to_cpu(fe_el->l_next_free_rec); i++)
786                 memset(&fe_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
787         fe_el->l_next_free_rec = cpu_to_le16(1);
788
789         /* If this is our 1st tree depth shift, then last_eb_blk
790          * becomes the allocated extent block */
791         if (fe_el->l_tree_depth == cpu_to_le16(1))
792                 fe->i_last_eb_blk = eb->h_blkno;
793
794         status = ocfs2_journal_dirty(handle, fe_bh);
795         if (status < 0) {
796                 mlog_errno(status);
797                 goto bail;
798         }
799
800         *ret_new_eb_bh = new_eb_bh;
801         new_eb_bh = NULL;
802         status = 0;
803 bail:
804         if (new_eb_bh)
805                 brelse(new_eb_bh);
806
807         mlog_exit(status);
808         return status;
809 }
810
811 /*
812  * Should only be called when there is no space left in any of the
813  * leaf nodes. What we want to do is find the lowest tree depth
814  * non-leaf extent block with room for new records. There are three
815  * valid results of this search:
816  *
817  * 1) a lowest extent block is found, then we pass it back in
818  *    *lowest_eb_bh and return '0'
819  *
820  * 2) the search fails to find anything, but the dinode has room. We
821  *    pass NULL back in *lowest_eb_bh, but still return '0'
822  *
823  * 3) the search fails to find anything AND the dinode is full, in
824  *    which case we return > 0
825  *
826  * return status < 0 indicates an error.
827  */
828 static int ocfs2_find_branch_target(struct ocfs2_super *osb,
829                                     struct inode *inode,
830                                     struct buffer_head *fe_bh,
831                                     struct buffer_head **target_bh)
832 {
833         int status = 0, i;
834         u64 blkno;
835         struct ocfs2_dinode *fe;
836         struct ocfs2_extent_block *eb;
837         struct ocfs2_extent_list  *el;
838         struct buffer_head *bh = NULL;
839         struct buffer_head *lowest_bh = NULL;
840
841         mlog_entry_void();
842
843         *target_bh = NULL;
844
845         fe = (struct ocfs2_dinode *) fe_bh->b_data;
846         el = &fe->id2.i_list;
847
848         while(le16_to_cpu(el->l_tree_depth) > 1) {
849                 if (le16_to_cpu(el->l_next_free_rec) == 0) {
850                         ocfs2_error(inode->i_sb, "Dinode %llu has empty "
851                                     "extent list (next_free_rec == 0)",
852                                     (unsigned long long)OCFS2_I(inode)->ip_blkno);
853                         status = -EIO;
854                         goto bail;
855                 }
856                 i = le16_to_cpu(el->l_next_free_rec) - 1;
857                 blkno = le64_to_cpu(el->l_recs[i].e_blkno);
858                 if (!blkno) {
859                         ocfs2_error(inode->i_sb, "Dinode %llu has extent "
860                                     "list where extent # %d has no physical "
861                                     "block start",
862                                     (unsigned long long)OCFS2_I(inode)->ip_blkno, i);
863                         status = -EIO;
864                         goto bail;
865                 }
866
867                 if (bh) {
868                         brelse(bh);
869                         bh = NULL;
870                 }
871
872                 status = ocfs2_read_block(osb, blkno, &bh, OCFS2_BH_CACHED,
873                                           inode);
874                 if (status < 0) {
875                         mlog_errno(status);
876                         goto bail;
877                 }
878
879                 eb = (struct ocfs2_extent_block *) bh->b_data;
880                 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
881                         OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
882                         status = -EIO;
883                         goto bail;
884                 }
885                 el = &eb->h_list;
886
887                 if (le16_to_cpu(el->l_next_free_rec) <
888                     le16_to_cpu(el->l_count)) {
889                         if (lowest_bh)
890                                 brelse(lowest_bh);
891                         lowest_bh = bh;
892                         get_bh(lowest_bh);
893                 }
894         }
895
896         /* If we didn't find one and the fe doesn't have any room,
897          * then return '1' */
898         if (!lowest_bh
899             && (fe->id2.i_list.l_next_free_rec == fe->id2.i_list.l_count))
900                 status = 1;
901
902         *target_bh = lowest_bh;
903 bail:
904         if (bh)
905                 brelse(bh);
906
907         mlog_exit(status);
908         return status;
909 }
910
911 /*
912  * Grow a b-tree so that it has more records.
913  *
914  * We might shift the tree depth in which case existing paths should
915  * be considered invalid.
916  *
917  * Tree depth after the grow is returned via *final_depth.
918  *
919  * *last_eb_bh will be updated by ocfs2_add_branch().
920  */
921 static int ocfs2_grow_tree(struct inode *inode, handle_t *handle,
922                            struct buffer_head *di_bh, int *final_depth,
923                            struct buffer_head **last_eb_bh,
924                            struct ocfs2_alloc_context *meta_ac)
925 {
926         int ret, shift;
927         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
928         int depth = le16_to_cpu(di->id2.i_list.l_tree_depth);
929         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
930         struct buffer_head *bh = NULL;
931
932         BUG_ON(meta_ac == NULL);
933
934         shift = ocfs2_find_branch_target(osb, inode, di_bh, &bh);
935         if (shift < 0) {
936                 ret = shift;
937                 mlog_errno(ret);
938                 goto out;
939         }
940
941         /* We traveled all the way to the bottom of the allocation tree
942          * and didn't find room for any more extents - we need to add
943          * another tree level */
944         if (shift) {
945                 BUG_ON(bh);
946                 mlog(0, "need to shift tree depth (current = %d)\n", depth);
947
948                 /* ocfs2_shift_tree_depth will return us a buffer with
949                  * the new extent block (so we can pass that to
950                  * ocfs2_add_branch). */
951                 ret = ocfs2_shift_tree_depth(osb, handle, inode, di_bh,
952                                              meta_ac, &bh);
953                 if (ret < 0) {
954                         mlog_errno(ret);
955                         goto out;
956                 }
957                 depth++;
958                 if (depth == 1) {
959                         /*
960                          * Special case: we have room now if we shifted from
961                          * tree_depth 0, so no more work needs to be done.
962                          *
963                          * We won't be calling add_branch, so pass
964                          * back *last_eb_bh as the new leaf. At depth
965                          * zero, it should always be null so there's
966                          * no reason to brelse.
967                          */
968                         BUG_ON(*last_eb_bh);
969                         get_bh(bh);
970                         *last_eb_bh = bh;
971                         goto out;
972                 }
973         }
974
975         /* call ocfs2_add_branch to add the final part of the tree with
976          * the new data. */
977         mlog(0, "add branch. bh = %p\n", bh);
978         ret = ocfs2_add_branch(osb, handle, inode, di_bh, bh, last_eb_bh,
979                                meta_ac);
980         if (ret < 0) {
981                 mlog_errno(ret);
982                 goto out;
983         }
984
985 out:
986         if (final_depth)
987                 *final_depth = depth;
988         brelse(bh);
989         return ret;
990 }
991
992 /*
993  * This is only valid for leaf nodes, which are the only ones that can
994  * have empty extents anyway.
995  */
996 static inline int ocfs2_is_empty_extent(struct ocfs2_extent_rec *rec)
997 {
998         return !rec->e_leaf_clusters;
999 }
1000
1001 /*
1002  * This function will discard the rightmost extent record.
1003  */
1004 static void ocfs2_shift_records_right(struct ocfs2_extent_list *el)
1005 {
1006         int next_free = le16_to_cpu(el->l_next_free_rec);
1007         int count = le16_to_cpu(el->l_count);
1008         unsigned int num_bytes;
1009
1010         BUG_ON(!next_free);
1011         /* This will cause us to go off the end of our extent list. */
1012         BUG_ON(next_free >= count);
1013
1014         num_bytes = sizeof(struct ocfs2_extent_rec) * next_free;
1015
1016         memmove(&el->l_recs[1], &el->l_recs[0], num_bytes);
1017 }
1018
1019 static void ocfs2_rotate_leaf(struct ocfs2_extent_list *el,
1020                               struct ocfs2_extent_rec *insert_rec)
1021 {
1022         int i, insert_index, next_free, has_empty, num_bytes;
1023         u32 insert_cpos = le32_to_cpu(insert_rec->e_cpos);
1024         struct ocfs2_extent_rec *rec;
1025
1026         next_free = le16_to_cpu(el->l_next_free_rec);
1027         has_empty = ocfs2_is_empty_extent(&el->l_recs[0]);
1028
1029         BUG_ON(!next_free);
1030
1031         /* The tree code before us didn't allow enough room in the leaf. */
1032         if (el->l_next_free_rec == el->l_count && !has_empty)
1033                 BUG();
1034
1035         /*
1036          * The easiest way to approach this is to just remove the
1037          * empty extent and temporarily decrement next_free.
1038          */
1039         if (has_empty) {
1040                 /*
1041                  * If next_free was 1 (only an empty extent), this
1042                  * loop won't execute, which is fine. We still want
1043                  * the decrement above to happen.
1044                  */
1045                 for(i = 0; i < (next_free - 1); i++)
1046                         el->l_recs[i] = el->l_recs[i+1];
1047
1048                 next_free--;
1049         }
1050
1051         /*
1052          * Figure out what the new record index should be.
1053          */
1054         for(i = 0; i < next_free; i++) {
1055                 rec = &el->l_recs[i];
1056
1057                 if (insert_cpos < le32_to_cpu(rec->e_cpos))
1058                         break;
1059         }
1060         insert_index = i;
1061
1062         mlog(0, "ins %u: index %d, has_empty %d, next_free %d, count %d\n",
1063              insert_cpos, insert_index, has_empty, next_free, le16_to_cpu(el->l_count));
1064
1065         BUG_ON(insert_index < 0);
1066         BUG_ON(insert_index >= le16_to_cpu(el->l_count));
1067         BUG_ON(insert_index > next_free);
1068
1069         /*
1070          * No need to memmove if we're just adding to the tail.
1071          */
1072         if (insert_index != next_free) {
1073                 BUG_ON(next_free >= le16_to_cpu(el->l_count));
1074
1075                 num_bytes = next_free - insert_index;
1076                 num_bytes *= sizeof(struct ocfs2_extent_rec);
1077                 memmove(&el->l_recs[insert_index + 1],
1078                         &el->l_recs[insert_index],
1079                         num_bytes);
1080         }
1081
1082         /*
1083          * Either we had an empty extent, and need to re-increment or
1084          * there was no empty extent on a non full rightmost leaf node,
1085          * in which case we still need to increment.
1086          */
1087         next_free++;
1088         el->l_next_free_rec = cpu_to_le16(next_free);
1089         /*
1090          * Make sure none of the math above just messed up our tree.
1091          */
1092         BUG_ON(le16_to_cpu(el->l_next_free_rec) > le16_to_cpu(el->l_count));
1093
1094         el->l_recs[insert_index] = *insert_rec;
1095
1096 }
1097
1098 static void ocfs2_remove_empty_extent(struct ocfs2_extent_list *el)
1099 {
1100         int size, num_recs = le16_to_cpu(el->l_next_free_rec);
1101
1102         BUG_ON(num_recs == 0);
1103
1104         if (ocfs2_is_empty_extent(&el->l_recs[0])) {
1105                 num_recs--;
1106                 size = num_recs * sizeof(struct ocfs2_extent_rec);
1107                 memmove(&el->l_recs[0], &el->l_recs[1], size);
1108                 memset(&el->l_recs[num_recs], 0,
1109                        sizeof(struct ocfs2_extent_rec));
1110                 el->l_next_free_rec = cpu_to_le16(num_recs);
1111         }
1112 }
1113
1114 /*
1115  * Create an empty extent record .
1116  *
1117  * l_next_free_rec may be updated.
1118  *
1119  * If an empty extent already exists do nothing.
1120  */
1121 static void ocfs2_create_empty_extent(struct ocfs2_extent_list *el)
1122 {
1123         int next_free = le16_to_cpu(el->l_next_free_rec);
1124
1125         BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
1126
1127         if (next_free == 0)
1128                 goto set_and_inc;
1129
1130         if (ocfs2_is_empty_extent(&el->l_recs[0]))
1131                 return;
1132
1133         mlog_bug_on_msg(el->l_count == el->l_next_free_rec,
1134                         "Asked to create an empty extent in a full list:\n"
1135                         "count = %u, tree depth = %u",
1136                         le16_to_cpu(el->l_count),
1137                         le16_to_cpu(el->l_tree_depth));
1138
1139         ocfs2_shift_records_right(el);
1140
1141 set_and_inc:
1142         le16_add_cpu(&el->l_next_free_rec, 1);
1143         memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
1144 }
1145
1146 /*
1147  * For a rotation which involves two leaf nodes, the "root node" is
1148  * the lowest level tree node which contains a path to both leafs. This
1149  * resulting set of information can be used to form a complete "subtree"
1150  *
1151  * This function is passed two full paths from the dinode down to a
1152  * pair of adjacent leaves. It's task is to figure out which path
1153  * index contains the subtree root - this can be the root index itself
1154  * in a worst-case rotation.
1155  *
1156  * The array index of the subtree root is passed back.
1157  */
1158 static int ocfs2_find_subtree_root(struct inode *inode,
1159                                    struct ocfs2_path *left,
1160                                    struct ocfs2_path *right)
1161 {
1162         int i = 0;
1163
1164         /*
1165          * Check that the caller passed in two paths from the same tree.
1166          */
1167         BUG_ON(path_root_bh(left) != path_root_bh(right));
1168
1169         do {
1170                 i++;
1171
1172                 /*
1173                  * The caller didn't pass two adjacent paths.
1174                  */
1175                 mlog_bug_on_msg(i > left->p_tree_depth,
1176                                 "Inode %lu, left depth %u, right depth %u\n"
1177                                 "left leaf blk %llu, right leaf blk %llu\n",
1178                                 inode->i_ino, left->p_tree_depth,
1179                                 right->p_tree_depth,
1180                                 (unsigned long long)path_leaf_bh(left)->b_blocknr,
1181                                 (unsigned long long)path_leaf_bh(right)->b_blocknr);
1182         } while (left->p_node[i].bh->b_blocknr ==
1183                  right->p_node[i].bh->b_blocknr);
1184
1185         return i - 1;
1186 }
1187
1188 typedef void (path_insert_t)(void *, struct buffer_head *);
1189
1190 /*
1191  * Traverse a btree path in search of cpos, starting at root_el.
1192  *
1193  * This code can be called with a cpos larger than the tree, in which
1194  * case it will return the rightmost path.
1195  */
1196 static int __ocfs2_find_path(struct inode *inode,
1197                              struct ocfs2_extent_list *root_el, u32 cpos,
1198                              path_insert_t *func, void *data)
1199 {
1200         int i, ret = 0;
1201         u32 range;
1202         u64 blkno;
1203         struct buffer_head *bh = NULL;
1204         struct ocfs2_extent_block *eb;
1205         struct ocfs2_extent_list *el;
1206         struct ocfs2_extent_rec *rec;
1207         struct ocfs2_inode_info *oi = OCFS2_I(inode);
1208
1209         el = root_el;
1210         while (el->l_tree_depth) {
1211                 if (le16_to_cpu(el->l_next_free_rec) == 0) {
1212                         ocfs2_error(inode->i_sb,
1213                                     "Inode %llu has empty extent list at "
1214                                     "depth %u\n",
1215                                     (unsigned long long)oi->ip_blkno,
1216                                     le16_to_cpu(el->l_tree_depth));
1217                         ret = -EROFS;
1218                         goto out;
1219
1220                 }
1221
1222                 for(i = 0; i < le16_to_cpu(el->l_next_free_rec) - 1; i++) {
1223                         rec = &el->l_recs[i];
1224
1225                         /*
1226                          * In the case that cpos is off the allocation
1227                          * tree, this should just wind up returning the
1228                          * rightmost record.
1229                          */
1230                         range = le32_to_cpu(rec->e_cpos) +
1231                                 ocfs2_rec_clusters(el, rec);
1232                         if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
1233                             break;
1234                 }
1235
1236                 blkno = le64_to_cpu(el->l_recs[i].e_blkno);
1237                 if (blkno == 0) {
1238                         ocfs2_error(inode->i_sb,
1239                                     "Inode %llu has bad blkno in extent list "
1240                                     "at depth %u (index %d)\n",
1241                                     (unsigned long long)oi->ip_blkno,
1242                                     le16_to_cpu(el->l_tree_depth), i);
1243                         ret = -EROFS;
1244                         goto out;
1245                 }
1246
1247                 brelse(bh);
1248                 bh = NULL;
1249                 ret = ocfs2_read_block(OCFS2_SB(inode->i_sb), blkno,
1250                                        &bh, OCFS2_BH_CACHED, inode);
1251                 if (ret) {
1252                         mlog_errno(ret);
1253                         goto out;
1254                 }
1255
1256                 eb = (struct ocfs2_extent_block *) bh->b_data;
1257                 el = &eb->h_list;
1258                 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
1259                         OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
1260                         ret = -EIO;
1261                         goto out;
1262                 }
1263
1264                 if (le16_to_cpu(el->l_next_free_rec) >
1265                     le16_to_cpu(el->l_count)) {
1266                         ocfs2_error(inode->i_sb,
1267                                     "Inode %llu has bad count in extent list "
1268                                     "at block %llu (next free=%u, count=%u)\n",
1269                                     (unsigned long long)oi->ip_blkno,
1270                                     (unsigned long long)bh->b_blocknr,
1271                                     le16_to_cpu(el->l_next_free_rec),
1272                                     le16_to_cpu(el->l_count));
1273                         ret = -EROFS;
1274                         goto out;
1275                 }
1276
1277                 if (func)
1278                         func(data, bh);
1279         }
1280
1281 out:
1282         /*
1283          * Catch any trailing bh that the loop didn't handle.
1284          */
1285         brelse(bh);
1286
1287         return ret;
1288 }
1289
1290 /*
1291  * Given an initialized path (that is, it has a valid root extent
1292  * list), this function will traverse the btree in search of the path
1293  * which would contain cpos.
1294  *
1295  * The path traveled is recorded in the path structure.
1296  *
1297  * Note that this will not do any comparisons on leaf node extent
1298  * records, so it will work fine in the case that we just added a tree
1299  * branch.
1300  */
1301 struct find_path_data {
1302         int index;
1303         struct ocfs2_path *path;
1304 };
1305 static void find_path_ins(void *data, struct buffer_head *bh)
1306 {
1307         struct find_path_data *fp = data;
1308
1309         get_bh(bh);
1310         ocfs2_path_insert_eb(fp->path, fp->index, bh);
1311         fp->index++;
1312 }
1313 static int ocfs2_find_path(struct inode *inode, struct ocfs2_path *path,
1314                            u32 cpos)
1315 {
1316         struct find_path_data data;
1317
1318         data.index = 1;
1319         data.path = path;
1320         return __ocfs2_find_path(inode, path_root_el(path), cpos,
1321                                  find_path_ins, &data);
1322 }
1323
1324 static void find_leaf_ins(void *data, struct buffer_head *bh)
1325 {
1326         struct ocfs2_extent_block *eb =(struct ocfs2_extent_block *)bh->b_data;
1327         struct ocfs2_extent_list *el = &eb->h_list;
1328         struct buffer_head **ret = data;
1329
1330         /* We want to retain only the leaf block. */
1331         if (le16_to_cpu(el->l_tree_depth) == 0) {
1332                 get_bh(bh);
1333                 *ret = bh;
1334         }
1335 }
1336 /*
1337  * Find the leaf block in the tree which would contain cpos. No
1338  * checking of the actual leaf is done.
1339  *
1340  * Some paths want to call this instead of allocating a path structure
1341  * and calling ocfs2_find_path().
1342  *
1343  * This function doesn't handle non btree extent lists.
1344  */
1345 int ocfs2_find_leaf(struct inode *inode, struct ocfs2_extent_list *root_el,
1346                     u32 cpos, struct buffer_head **leaf_bh)
1347 {
1348         int ret;
1349         struct buffer_head *bh = NULL;
1350
1351         ret = __ocfs2_find_path(inode, root_el, cpos, find_leaf_ins, &bh);
1352         if (ret) {
1353                 mlog_errno(ret);
1354                 goto out;
1355         }
1356
1357         *leaf_bh = bh;
1358 out:
1359         return ret;
1360 }
1361
1362 /*
1363  * Adjust the adjacent records (left_rec, right_rec) involved in a rotation.
1364  *
1365  * Basically, we've moved stuff around at the bottom of the tree and
1366  * we need to fix up the extent records above the changes to reflect
1367  * the new changes.
1368  *
1369  * left_rec: the record on the left.
1370  * left_child_el: is the child list pointed to by left_rec
1371  * right_rec: the record to the right of left_rec
1372  * right_child_el: is the child list pointed to by right_rec
1373  *
1374  * By definition, this only works on interior nodes.
1375  */
1376 static void ocfs2_adjust_adjacent_records(struct ocfs2_extent_rec *left_rec,
1377                                   struct ocfs2_extent_list *left_child_el,
1378                                   struct ocfs2_extent_rec *right_rec,
1379                                   struct ocfs2_extent_list *right_child_el)
1380 {
1381         u32 left_clusters, right_end;
1382
1383         /*
1384          * Interior nodes never have holes. Their cpos is the cpos of
1385          * the leftmost record in their child list. Their cluster
1386          * count covers the full theoretical range of their child list
1387          * - the range between their cpos and the cpos of the record
1388          * immediately to their right.
1389          */
1390         left_clusters = le32_to_cpu(right_child_el->l_recs[0].e_cpos);
1391         if (ocfs2_is_empty_extent(&right_child_el->l_recs[0])) {
1392                 BUG_ON(le16_to_cpu(right_child_el->l_next_free_rec) <= 1);
1393                 left_clusters = le32_to_cpu(right_child_el->l_recs[1].e_cpos);
1394         }
1395         left_clusters -= le32_to_cpu(left_rec->e_cpos);
1396         left_rec->e_int_clusters = cpu_to_le32(left_clusters);
1397
1398         /*
1399          * Calculate the rightmost cluster count boundary before
1400          * moving cpos - we will need to adjust clusters after
1401          * updating e_cpos to keep the same highest cluster count.
1402          */
1403         right_end = le32_to_cpu(right_rec->e_cpos);
1404         right_end += le32_to_cpu(right_rec->e_int_clusters);
1405
1406         right_rec->e_cpos = left_rec->e_cpos;
1407         le32_add_cpu(&right_rec->e_cpos, left_clusters);
1408
1409         right_end -= le32_to_cpu(right_rec->e_cpos);
1410         right_rec->e_int_clusters = cpu_to_le32(right_end);
1411 }
1412
1413 /*
1414  * Adjust the adjacent root node records involved in a
1415  * rotation. left_el_blkno is passed in as a key so that we can easily
1416  * find it's index in the root list.
1417  */
1418 static void ocfs2_adjust_root_records(struct ocfs2_extent_list *root_el,
1419                                       struct ocfs2_extent_list *left_el,
1420                                       struct ocfs2_extent_list *right_el,
1421                                       u64 left_el_blkno)
1422 {
1423         int i;
1424
1425         BUG_ON(le16_to_cpu(root_el->l_tree_depth) <=
1426                le16_to_cpu(left_el->l_tree_depth));
1427
1428         for(i = 0; i < le16_to_cpu(root_el->l_next_free_rec) - 1; i++) {
1429                 if (le64_to_cpu(root_el->l_recs[i].e_blkno) == left_el_blkno)
1430                         break;
1431         }
1432
1433         /*
1434          * The path walking code should have never returned a root and
1435          * two paths which are not adjacent.
1436          */
1437         BUG_ON(i >= (le16_to_cpu(root_el->l_next_free_rec) - 1));
1438
1439         ocfs2_adjust_adjacent_records(&root_el->l_recs[i], left_el,
1440                                       &root_el->l_recs[i + 1], right_el);
1441 }
1442
1443 /*
1444  * We've changed a leaf block (in right_path) and need to reflect that
1445  * change back up the subtree.
1446  *
1447  * This happens in multiple places:
1448  *   - When we've moved an extent record from the left path leaf to the right
1449  *     path leaf to make room for an empty extent in the left path leaf.
1450  *   - When our insert into the right path leaf is at the leftmost edge
1451  *     and requires an update of the path immediately to it's left. This
1452  *     can occur at the end of some types of rotation and appending inserts.
1453  *   - When we've adjusted the last extent record in the left path leaf and the
1454  *     1st extent record in the right path leaf during cross extent block merge.
1455  */
1456 static void ocfs2_complete_edge_insert(struct inode *inode, handle_t *handle,
1457                                        struct ocfs2_path *left_path,
1458                                        struct ocfs2_path *right_path,
1459                                        int subtree_index)
1460 {
1461         int ret, i, idx;
1462         struct ocfs2_extent_list *el, *left_el, *right_el;
1463         struct ocfs2_extent_rec *left_rec, *right_rec;
1464         struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
1465
1466         /*
1467          * Update the counts and position values within all the
1468          * interior nodes to reflect the leaf rotation we just did.
1469          *
1470          * The root node is handled below the loop.
1471          *
1472          * We begin the loop with right_el and left_el pointing to the
1473          * leaf lists and work our way up.
1474          *
1475          * NOTE: within this loop, left_el and right_el always refer
1476          * to the *child* lists.
1477          */
1478         left_el = path_leaf_el(left_path);
1479         right_el = path_leaf_el(right_path);
1480         for(i = left_path->p_tree_depth - 1; i > subtree_index; i--) {
1481                 mlog(0, "Adjust records at index %u\n", i);
1482
1483                 /*
1484                  * One nice property of knowing that all of these
1485                  * nodes are below the root is that we only deal with
1486                  * the leftmost right node record and the rightmost
1487                  * left node record.
1488                  */
1489                 el = left_path->p_node[i].el;
1490                 idx = le16_to_cpu(left_el->l_next_free_rec) - 1;
1491                 left_rec = &el->l_recs[idx];
1492
1493                 el = right_path->p_node[i].el;
1494                 right_rec = &el->l_recs[0];
1495
1496                 ocfs2_adjust_adjacent_records(left_rec, left_el, right_rec,
1497                                               right_el);
1498
1499                 ret = ocfs2_journal_dirty(handle, left_path->p_node[i].bh);
1500                 if (ret)
1501                         mlog_errno(ret);
1502
1503                 ret = ocfs2_journal_dirty(handle, right_path->p_node[i].bh);
1504                 if (ret)
1505                         mlog_errno(ret);
1506
1507                 /*
1508                  * Setup our list pointers now so that the current
1509                  * parents become children in the next iteration.
1510                  */
1511                 left_el = left_path->p_node[i].el;
1512                 right_el = right_path->p_node[i].el;
1513         }
1514
1515         /*
1516          * At the root node, adjust the two adjacent records which
1517          * begin our path to the leaves.
1518          */
1519
1520         el = left_path->p_node[subtree_index].el;
1521         left_el = left_path->p_node[subtree_index + 1].el;
1522         right_el = right_path->p_node[subtree_index + 1].el;
1523
1524         ocfs2_adjust_root_records(el, left_el, right_el,
1525                                   left_path->p_node[subtree_index + 1].bh->b_blocknr);
1526
1527         root_bh = left_path->p_node[subtree_index].bh;
1528
1529         ret = ocfs2_journal_dirty(handle, root_bh);
1530         if (ret)
1531                 mlog_errno(ret);
1532 }
1533
1534 static int ocfs2_rotate_subtree_right(struct inode *inode,
1535                                       handle_t *handle,
1536                                       struct ocfs2_path *left_path,
1537                                       struct ocfs2_path *right_path,
1538                                       int subtree_index)
1539 {
1540         int ret, i;
1541         struct buffer_head *right_leaf_bh;
1542         struct buffer_head *left_leaf_bh = NULL;
1543         struct buffer_head *root_bh;
1544         struct ocfs2_extent_list *right_el, *left_el;
1545         struct ocfs2_extent_rec move_rec;
1546
1547         left_leaf_bh = path_leaf_bh(left_path);
1548         left_el = path_leaf_el(left_path);
1549
1550         if (left_el->l_next_free_rec != left_el->l_count) {
1551                 ocfs2_error(inode->i_sb,
1552                             "Inode %llu has non-full interior leaf node %llu"
1553                             "(next free = %u)",
1554                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
1555                             (unsigned long long)left_leaf_bh->b_blocknr,
1556                             le16_to_cpu(left_el->l_next_free_rec));
1557                 return -EROFS;
1558         }
1559
1560         /*
1561          * This extent block may already have an empty record, so we
1562          * return early if so.
1563          */
1564         if (ocfs2_is_empty_extent(&left_el->l_recs[0]))
1565                 return 0;
1566
1567         root_bh = left_path->p_node[subtree_index].bh;
1568         BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
1569
1570         ret = ocfs2_journal_access(handle, inode, root_bh,
1571                                    OCFS2_JOURNAL_ACCESS_WRITE);
1572         if (ret) {
1573                 mlog_errno(ret);
1574                 goto out;
1575         }
1576
1577         for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
1578                 ret = ocfs2_journal_access(handle, inode,
1579                                            right_path->p_node[i].bh,
1580                                            OCFS2_JOURNAL_ACCESS_WRITE);
1581                 if (ret) {
1582                         mlog_errno(ret);
1583                         goto out;
1584                 }
1585
1586                 ret = ocfs2_journal_access(handle, inode,
1587                                            left_path->p_node[i].bh,
1588                                            OCFS2_JOURNAL_ACCESS_WRITE);
1589                 if (ret) {
1590                         mlog_errno(ret);
1591                         goto out;
1592                 }
1593         }
1594
1595         right_leaf_bh = path_leaf_bh(right_path);
1596         right_el = path_leaf_el(right_path);
1597
1598         /* This is a code error, not a disk corruption. */
1599         mlog_bug_on_msg(!right_el->l_next_free_rec, "Inode %llu: Rotate fails "
1600                         "because rightmost leaf block %llu is empty\n",
1601                         (unsigned long long)OCFS2_I(inode)->ip_blkno,
1602                         (unsigned long long)right_leaf_bh->b_blocknr);
1603
1604         ocfs2_create_empty_extent(right_el);
1605
1606         ret = ocfs2_journal_dirty(handle, right_leaf_bh);
1607         if (ret) {
1608                 mlog_errno(ret);
1609                 goto out;
1610         }
1611
1612         /* Do the copy now. */
1613         i = le16_to_cpu(left_el->l_next_free_rec) - 1;
1614         move_rec = left_el->l_recs[i];
1615         right_el->l_recs[0] = move_rec;
1616
1617         /*
1618          * Clear out the record we just copied and shift everything
1619          * over, leaving an empty extent in the left leaf.
1620          *
1621          * We temporarily subtract from next_free_rec so that the
1622          * shift will lose the tail record (which is now defunct).
1623          */
1624         le16_add_cpu(&left_el->l_next_free_rec, -1);
1625         ocfs2_shift_records_right(left_el);
1626         memset(&left_el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
1627         le16_add_cpu(&left_el->l_next_free_rec, 1);
1628
1629         ret = ocfs2_journal_dirty(handle, left_leaf_bh);
1630         if (ret) {
1631                 mlog_errno(ret);
1632                 goto out;
1633         }
1634
1635         ocfs2_complete_edge_insert(inode, handle, left_path, right_path,
1636                                 subtree_index);
1637
1638 out:
1639         return ret;
1640 }
1641
1642 /*
1643  * Given a full path, determine what cpos value would return us a path
1644  * containing the leaf immediately to the left of the current one.
1645  *
1646  * Will return zero if the path passed in is already the leftmost path.
1647  */
1648 static int ocfs2_find_cpos_for_left_leaf(struct super_block *sb,
1649                                          struct ocfs2_path *path, u32 *cpos)
1650 {
1651         int i, j, ret = 0;
1652         u64 blkno;
1653         struct ocfs2_extent_list *el;
1654
1655         BUG_ON(path->p_tree_depth == 0);
1656
1657         *cpos = 0;
1658
1659         blkno = path_leaf_bh(path)->b_blocknr;
1660
1661         /* Start at the tree node just above the leaf and work our way up. */
1662         i = path->p_tree_depth - 1;
1663         while (i >= 0) {
1664                 el = path->p_node[i].el;
1665
1666                 /*
1667                  * Find the extent record just before the one in our
1668                  * path.
1669                  */
1670                 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
1671                         if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
1672                                 if (j == 0) {
1673                                         if (i == 0) {
1674                                                 /*
1675                                                  * We've determined that the
1676                                                  * path specified is already
1677                                                  * the leftmost one - return a
1678                                                  * cpos of zero.
1679                                                  */
1680                                                 goto out;
1681                                         }
1682                                         /*
1683                                          * The leftmost record points to our
1684                                          * leaf - we need to travel up the
1685                                          * tree one level.
1686                                          */
1687                                         goto next_node;
1688                                 }
1689
1690                                 *cpos = le32_to_cpu(el->l_recs[j - 1].e_cpos);
1691                                 *cpos = *cpos + ocfs2_rec_clusters(el,
1692                                                            &el->l_recs[j - 1]);
1693                                 *cpos = *cpos - 1;
1694                                 goto out;
1695                         }
1696                 }
1697
1698                 /*
1699                  * If we got here, we never found a valid node where
1700                  * the tree indicated one should be.
1701                  */
1702                 ocfs2_error(sb,
1703                             "Invalid extent tree at extent block %llu\n",
1704                             (unsigned long long)blkno);
1705                 ret = -EROFS;
1706                 goto out;
1707
1708 next_node:
1709                 blkno = path->p_node[i].bh->b_blocknr;
1710                 i--;
1711         }
1712
1713 out:
1714         return ret;
1715 }
1716
1717 /*
1718  * Extend the transaction by enough credits to complete the rotation,
1719  * and still leave at least the original number of credits allocated
1720  * to this transaction.
1721  */
1722 static int ocfs2_extend_rotate_transaction(handle_t *handle, int subtree_depth,
1723                                            int op_credits,
1724                                            struct ocfs2_path *path)
1725 {
1726         int credits = (path->p_tree_depth - subtree_depth) * 2 + 1 + op_credits;
1727
1728         if (handle->h_buffer_credits < credits)
1729                 return ocfs2_extend_trans(handle, credits);
1730
1731         return 0;
1732 }
1733
1734 /*
1735  * Trap the case where we're inserting into the theoretical range past
1736  * the _actual_ left leaf range. Otherwise, we'll rotate a record
1737  * whose cpos is less than ours into the right leaf.
1738  *
1739  * It's only necessary to look at the rightmost record of the left
1740  * leaf because the logic that calls us should ensure that the
1741  * theoretical ranges in the path components above the leaves are
1742  * correct.
1743  */
1744 static int ocfs2_rotate_requires_path_adjustment(struct ocfs2_path *left_path,
1745                                                  u32 insert_cpos)
1746 {
1747         struct ocfs2_extent_list *left_el;
1748         struct ocfs2_extent_rec *rec;
1749         int next_free;
1750
1751         left_el = path_leaf_el(left_path);
1752         next_free = le16_to_cpu(left_el->l_next_free_rec);
1753         rec = &left_el->l_recs[next_free - 1];
1754
1755         if (insert_cpos > le32_to_cpu(rec->e_cpos))
1756                 return 1;
1757         return 0;
1758 }
1759
1760 static int ocfs2_leftmost_rec_contains(struct ocfs2_extent_list *el, u32 cpos)
1761 {
1762         int next_free = le16_to_cpu(el->l_next_free_rec);
1763         unsigned int range;
1764         struct ocfs2_extent_rec *rec;
1765
1766         if (next_free == 0)
1767                 return 0;
1768
1769         rec = &el->l_recs[0];
1770         if (ocfs2_is_empty_extent(rec)) {
1771                 /* Empty list. */
1772                 if (next_free == 1)
1773                         return 0;
1774                 rec = &el->l_recs[1];
1775         }
1776
1777         range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
1778         if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
1779                 return 1;
1780         return 0;
1781 }
1782
1783 /*
1784  * Rotate all the records in a btree right one record, starting at insert_cpos.
1785  *
1786  * The path to the rightmost leaf should be passed in.
1787  *
1788  * The array is assumed to be large enough to hold an entire path (tree depth).
1789  *
1790  * Upon succesful return from this function:
1791  *
1792  * - The 'right_path' array will contain a path to the leaf block
1793  *   whose range contains e_cpos.
1794  * - That leaf block will have a single empty extent in list index 0.
1795  * - In the case that the rotation requires a post-insert update,
1796  *   *ret_left_path will contain a valid path which can be passed to
1797  *   ocfs2_insert_path().
1798  */
1799 static int ocfs2_rotate_tree_right(struct inode *inode,
1800                                    handle_t *handle,
1801                                    enum ocfs2_split_type split,
1802                                    u32 insert_cpos,
1803                                    struct ocfs2_path *right_path,
1804                                    struct ocfs2_path **ret_left_path)
1805 {
1806         int ret, start, orig_credits = handle->h_buffer_credits;
1807         u32 cpos;
1808         struct ocfs2_path *left_path = NULL;
1809
1810         *ret_left_path = NULL;
1811
1812         left_path = ocfs2_new_path(path_root_bh(right_path),
1813                                    path_root_el(right_path));
1814         if (!left_path) {
1815                 ret = -ENOMEM;
1816                 mlog_errno(ret);
1817                 goto out;
1818         }
1819
1820         ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path, &cpos);
1821         if (ret) {
1822                 mlog_errno(ret);
1823                 goto out;
1824         }
1825
1826         mlog(0, "Insert: %u, first left path cpos: %u\n", insert_cpos, cpos);
1827
1828         /*
1829          * What we want to do here is:
1830          *
1831          * 1) Start with the rightmost path.
1832          *
1833          * 2) Determine a path to the leaf block directly to the left
1834          *    of that leaf.
1835          *
1836          * 3) Determine the 'subtree root' - the lowest level tree node
1837          *    which contains a path to both leaves.
1838          *
1839          * 4) Rotate the subtree.
1840          *
1841          * 5) Find the next subtree by considering the left path to be
1842          *    the new right path.
1843          *
1844          * The check at the top of this while loop also accepts
1845          * insert_cpos == cpos because cpos is only a _theoretical_
1846          * value to get us the left path - insert_cpos might very well
1847          * be filling that hole.
1848          *
1849          * Stop at a cpos of '0' because we either started at the
1850          * leftmost branch (i.e., a tree with one branch and a
1851          * rotation inside of it), or we've gone as far as we can in
1852          * rotating subtrees.
1853          */
1854         while (cpos && insert_cpos <= cpos) {
1855                 mlog(0, "Rotating a tree: ins. cpos: %u, left path cpos: %u\n",
1856                      insert_cpos, cpos);
1857
1858                 ret = ocfs2_find_path(inode, left_path, cpos);
1859                 if (ret) {
1860                         mlog_errno(ret);
1861                         goto out;
1862                 }
1863
1864                 mlog_bug_on_msg(path_leaf_bh(left_path) ==
1865                                 path_leaf_bh(right_path),
1866                                 "Inode %lu: error during insert of %u "
1867                                 "(left path cpos %u) results in two identical "
1868                                 "paths ending at %llu\n",
1869                                 inode->i_ino, insert_cpos, cpos,
1870                                 (unsigned long long)
1871                                 path_leaf_bh(left_path)->b_blocknr);
1872
1873                 if (split == SPLIT_NONE &&
1874                     ocfs2_rotate_requires_path_adjustment(left_path,
1875                                                           insert_cpos)) {
1876
1877                         /*
1878                          * We've rotated the tree as much as we
1879                          * should. The rest is up to
1880                          * ocfs2_insert_path() to complete, after the
1881                          * record insertion. We indicate this
1882                          * situation by returning the left path.
1883                          *
1884                          * The reason we don't adjust the records here
1885                          * before the record insert is that an error
1886                          * later might break the rule where a parent
1887                          * record e_cpos will reflect the actual
1888                          * e_cpos of the 1st nonempty record of the
1889                          * child list.
1890                          */
1891                         *ret_left_path = left_path;
1892                         goto out_ret_path;
1893                 }
1894
1895                 start = ocfs2_find_subtree_root(inode, left_path, right_path);
1896
1897                 mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n",
1898                      start,
1899                      (unsigned long long) right_path->p_node[start].bh->b_blocknr,
1900                      right_path->p_tree_depth);
1901
1902                 ret = ocfs2_extend_rotate_transaction(handle, start,
1903                                                       orig_credits, right_path);
1904                 if (ret) {
1905                         mlog_errno(ret);
1906                         goto out;
1907                 }
1908
1909                 ret = ocfs2_rotate_subtree_right(inode, handle, left_path,
1910                                                  right_path, start);
1911                 if (ret) {
1912                         mlog_errno(ret);
1913                         goto out;
1914                 }
1915
1916                 if (split != SPLIT_NONE &&
1917                     ocfs2_leftmost_rec_contains(path_leaf_el(right_path),
1918                                                 insert_cpos)) {
1919                         /*
1920                          * A rotate moves the rightmost left leaf
1921                          * record over to the leftmost right leaf
1922                          * slot. If we're doing an extent split
1923                          * instead of a real insert, then we have to
1924                          * check that the extent to be split wasn't
1925                          * just moved over. If it was, then we can
1926                          * exit here, passing left_path back -
1927                          * ocfs2_split_extent() is smart enough to
1928                          * search both leaves.
1929                          */
1930                         *ret_left_path = left_path;
1931                         goto out_ret_path;
1932                 }
1933
1934                 /*
1935                  * There is no need to re-read the next right path
1936                  * as we know that it'll be our current left
1937                  * path. Optimize by copying values instead.
1938                  */
1939                 ocfs2_mv_path(right_path, left_path);
1940
1941                 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path,
1942                                                     &cpos);
1943                 if (ret) {
1944                         mlog_errno(ret);
1945                         goto out;
1946                 }
1947         }
1948
1949 out:
1950         ocfs2_free_path(left_path);
1951
1952 out_ret_path:
1953         return ret;
1954 }
1955
1956 static void ocfs2_update_edge_lengths(struct inode *inode, handle_t *handle,
1957                                       struct ocfs2_path *path)
1958 {
1959         int i, idx;
1960         struct ocfs2_extent_rec *rec;
1961         struct ocfs2_extent_list *el;
1962         struct ocfs2_extent_block *eb;
1963         u32 range;
1964
1965         /* Path should always be rightmost. */
1966         eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
1967         BUG_ON(eb->h_next_leaf_blk != 0ULL);
1968
1969         el = &eb->h_list;
1970         BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0);
1971         idx = le16_to_cpu(el->l_next_free_rec) - 1;
1972         rec = &el->l_recs[idx];
1973         range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
1974
1975         for (i = 0; i < path->p_tree_depth; i++) {
1976                 el = path->p_node[i].el;
1977                 idx = le16_to_cpu(el->l_next_free_rec) - 1;
1978                 rec = &el->l_recs[idx];
1979
1980                 rec->e_int_clusters = cpu_to_le32(range);
1981                 le32_add_cpu(&rec->e_int_clusters, -le32_to_cpu(rec->e_cpos));
1982
1983                 ocfs2_journal_dirty(handle, path->p_node[i].bh);
1984         }
1985 }
1986
1987 static void ocfs2_unlink_path(struct inode *inode, handle_t *handle,
1988                               struct ocfs2_cached_dealloc_ctxt *dealloc,
1989                               struct ocfs2_path *path, int unlink_start)
1990 {
1991         int ret, i;
1992         struct ocfs2_extent_block *eb;
1993         struct ocfs2_extent_list *el;
1994         struct buffer_head *bh;
1995
1996         for(i = unlink_start; i < path_num_items(path); i++) {
1997                 bh = path->p_node[i].bh;
1998
1999                 eb = (struct ocfs2_extent_block *)bh->b_data;
2000                 /*
2001                  * Not all nodes might have had their final count
2002                  * decremented by the caller - handle this here.
2003                  */
2004                 el = &eb->h_list;
2005                 if (le16_to_cpu(el->l_next_free_rec) > 1) {
2006                         mlog(ML_ERROR,
2007                              "Inode %llu, attempted to remove extent block "
2008                              "%llu with %u records\n",
2009                              (unsigned long long)OCFS2_I(inode)->ip_blkno,
2010                              (unsigned long long)le64_to_cpu(eb->h_blkno),
2011                              le16_to_cpu(el->l_next_free_rec));
2012
2013                         ocfs2_journal_dirty(handle, bh);
2014                         ocfs2_remove_from_cache(inode, bh);
2015                         continue;
2016                 }
2017
2018                 el->l_next_free_rec = 0;
2019                 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2020
2021                 ocfs2_journal_dirty(handle, bh);
2022
2023                 ret = ocfs2_cache_extent_block_free(dealloc, eb);
2024                 if (ret)
2025                         mlog_errno(ret);
2026
2027                 ocfs2_remove_from_cache(inode, bh);
2028         }
2029 }
2030
2031 static void ocfs2_unlink_subtree(struct inode *inode, handle_t *handle,
2032                                  struct ocfs2_path *left_path,
2033                                  struct ocfs2_path *right_path,
2034                                  int subtree_index,
2035                                  struct ocfs2_cached_dealloc_ctxt *dealloc)
2036 {
2037         int i;
2038         struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
2039         struct ocfs2_extent_list *root_el = left_path->p_node[subtree_index].el;
2040         struct ocfs2_extent_list *el;
2041         struct ocfs2_extent_block *eb;
2042
2043         el = path_leaf_el(left_path);
2044
2045         eb = (struct ocfs2_extent_block *)right_path->p_node[subtree_index + 1].bh->b_data;
2046
2047         for(i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++)
2048                 if (root_el->l_recs[i].e_blkno == eb->h_blkno)
2049                         break;
2050
2051         BUG_ON(i >= le16_to_cpu(root_el->l_next_free_rec));
2052
2053         memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
2054         le16_add_cpu(&root_el->l_next_free_rec, -1);
2055
2056         eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2057         eb->h_next_leaf_blk = 0;
2058
2059         ocfs2_journal_dirty(handle, root_bh);
2060         ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2061
2062         ocfs2_unlink_path(inode, handle, dealloc, right_path,
2063                           subtree_index + 1);
2064 }
2065
2066 static int ocfs2_rotate_subtree_left(struct inode *inode, handle_t *handle,
2067                                      struct ocfs2_path *left_path,
2068                                      struct ocfs2_path *right_path,
2069                                      int subtree_index,
2070                                      struct ocfs2_cached_dealloc_ctxt *dealloc,
2071                                      int *deleted)
2072 {
2073         int ret, i, del_right_subtree = 0, right_has_empty = 0;
2074         struct buffer_head *root_bh, *di_bh = path_root_bh(right_path);
2075         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
2076         struct ocfs2_extent_list *right_leaf_el, *left_leaf_el;
2077         struct ocfs2_extent_block *eb;
2078
2079         *deleted = 0;
2080
2081         right_leaf_el = path_leaf_el(right_path);
2082         left_leaf_el = path_leaf_el(left_path);
2083         root_bh = left_path->p_node[subtree_index].bh;
2084         BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
2085
2086         if (!ocfs2_is_empty_extent(&left_leaf_el->l_recs[0]))
2087                 return 0;
2088
2089         eb = (struct ocfs2_extent_block *)path_leaf_bh(right_path)->b_data;
2090         if (ocfs2_is_empty_extent(&right_leaf_el->l_recs[0])) {
2091                 /*
2092                  * It's legal for us to proceed if the right leaf is
2093                  * the rightmost one and it has an empty extent. There
2094                  * are two cases to handle - whether the leaf will be
2095                  * empty after removal or not. If the leaf isn't empty
2096                  * then just remove the empty extent up front. The
2097                  * next block will handle empty leaves by flagging
2098                  * them for unlink.
2099                  *
2100                  * Non rightmost leaves will throw -EAGAIN and the
2101                  * caller can manually move the subtree and retry.
2102                  */
2103
2104                 if (eb->h_next_leaf_blk != 0ULL)
2105                         return -EAGAIN;
2106
2107                 if (le16_to_cpu(right_leaf_el->l_next_free_rec) > 1) {
2108                         ret = ocfs2_journal_access(handle, inode,
2109                                                    path_leaf_bh(right_path),
2110                                                    OCFS2_JOURNAL_ACCESS_WRITE);
2111                         if (ret) {
2112                                 mlog_errno(ret);
2113                                 goto out;
2114                         }
2115
2116                         ocfs2_remove_empty_extent(right_leaf_el);
2117                 } else
2118                         right_has_empty = 1;
2119         }
2120
2121         if (eb->h_next_leaf_blk == 0ULL &&
2122             le16_to_cpu(right_leaf_el->l_next_free_rec) == 1) {
2123                 /*
2124                  * We have to update i_last_eb_blk during the meta
2125                  * data delete.
2126                  */
2127                 ret = ocfs2_journal_access(handle, inode, di_bh,
2128                                            OCFS2_JOURNAL_ACCESS_WRITE);
2129                 if (ret) {
2130                         mlog_errno(ret);
2131                         goto out;
2132                 }
2133
2134                 del_right_subtree = 1;
2135         }
2136
2137         /*
2138          * Getting here with an empty extent in the right path implies
2139          * that it's the rightmost path and will be deleted.
2140          */
2141         BUG_ON(right_has_empty && !del_right_subtree);
2142
2143         ret = ocfs2_journal_access(handle, inode, root_bh,
2144                                    OCFS2_JOURNAL_ACCESS_WRITE);
2145         if (ret) {
2146                 mlog_errno(ret);
2147                 goto out;
2148         }
2149
2150         for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
2151                 ret = ocfs2_journal_access(handle, inode,
2152                                            right_path->p_node[i].bh,
2153                                            OCFS2_JOURNAL_ACCESS_WRITE);
2154                 if (ret) {
2155                         mlog_errno(ret);
2156                         goto out;
2157                 }
2158
2159                 ret = ocfs2_journal_access(handle, inode,
2160                                            left_path->p_node[i].bh,
2161                                            OCFS2_JOURNAL_ACCESS_WRITE);
2162                 if (ret) {
2163                         mlog_errno(ret);
2164                         goto out;
2165                 }
2166         }
2167
2168         if (!right_has_empty) {
2169                 /*
2170                  * Only do this if we're moving a real
2171                  * record. Otherwise, the action is delayed until
2172                  * after removal of the right path in which case we
2173                  * can do a simple shift to remove the empty extent.
2174                  */
2175                 ocfs2_rotate_leaf(left_leaf_el, &right_leaf_el->l_recs[0]);
2176                 memset(&right_leaf_el->l_recs[0], 0,
2177                        sizeof(struct ocfs2_extent_rec));
2178         }
2179         if (eb->h_next_leaf_blk == 0ULL) {
2180                 /*
2181                  * Move recs over to get rid of empty extent, decrease
2182                  * next_free. This is allowed to remove the last
2183                  * extent in our leaf (setting l_next_free_rec to
2184                  * zero) - the delete code below won't care.
2185                  */
2186                 ocfs2_remove_empty_extent(right_leaf_el);
2187         }
2188
2189         ret = ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2190         if (ret)
2191                 mlog_errno(ret);
2192         ret = ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
2193         if (ret)
2194                 mlog_errno(ret);
2195
2196         if (del_right_subtree) {
2197                 ocfs2_unlink_subtree(inode, handle, left_path, right_path,
2198                                      subtree_index, dealloc);
2199                 ocfs2_update_edge_lengths(inode, handle, left_path);
2200
2201                 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2202                 di->i_last_eb_blk = eb->h_blkno;
2203
2204                 /*
2205                  * Removal of the extent in the left leaf was skipped
2206                  * above so we could delete the right path
2207                  * 1st.
2208                  */
2209                 if (right_has_empty)
2210                         ocfs2_remove_empty_extent(left_leaf_el);
2211
2212                 ret = ocfs2_journal_dirty(handle, di_bh);
2213                 if (ret)
2214                         mlog_errno(ret);
2215
2216                 *deleted = 1;
2217         } else
2218                 ocfs2_complete_edge_insert(inode, handle, left_path, right_path,
2219                                            subtree_index);
2220
2221 out:
2222         return ret;
2223 }
2224
2225 /*
2226  * Given a full path, determine what cpos value would return us a path
2227  * containing the leaf immediately to the right of the current one.
2228  *
2229  * Will return zero if the path passed in is already the rightmost path.
2230  *
2231  * This looks similar, but is subtly different to
2232  * ocfs2_find_cpos_for_left_leaf().
2233  */
2234 static int ocfs2_find_cpos_for_right_leaf(struct super_block *sb,
2235                                           struct ocfs2_path *path, u32 *cpos)
2236 {
2237         int i, j, ret = 0;
2238         u64 blkno;
2239         struct ocfs2_extent_list *el;
2240
2241         *cpos = 0;
2242
2243         if (path->p_tree_depth == 0)
2244                 return 0;
2245
2246         blkno = path_leaf_bh(path)->b_blocknr;
2247
2248         /* Start at the tree node just above the leaf and work our way up. */
2249         i = path->p_tree_depth - 1;
2250         while (i >= 0) {
2251                 int next_free;
2252
2253                 el = path->p_node[i].el;
2254
2255                 /*
2256                  * Find the extent record just after the one in our
2257                  * path.
2258                  */
2259                 next_free = le16_to_cpu(el->l_next_free_rec);
2260                 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
2261                         if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
2262                                 if (j == (next_free - 1)) {
2263                                         if (i == 0) {
2264                                                 /*
2265                                                  * We've determined that the
2266                                                  * path specified is already
2267                                                  * the rightmost one - return a
2268                                                  * cpos of zero.
2269                                                  */
2270                                                 goto out;
2271                                         }
2272                                         /*
2273                                          * The rightmost record points to our
2274                                          * leaf - we need to travel up the
2275                                          * tree one level.
2276                                          */
2277                                         goto next_node;
2278                                 }
2279
2280                                 *cpos = le32_to_cpu(el->l_recs[j + 1].e_cpos);
2281                                 goto out;
2282                         }
2283                 }
2284
2285                 /*
2286                  * If we got here, we never found a valid node where
2287                  * the tree indicated one should be.
2288                  */
2289                 ocfs2_error(sb,
2290                             "Invalid extent tree at extent block %llu\n",
2291                             (unsigned long long)blkno);
2292                 ret = -EROFS;
2293                 goto out;
2294
2295 next_node:
2296                 blkno = path->p_node[i].bh->b_blocknr;
2297                 i--;
2298         }
2299
2300 out:
2301         return ret;
2302 }
2303
2304 static int ocfs2_rotate_rightmost_leaf_left(struct inode *inode,
2305                                             handle_t *handle,
2306                                             struct buffer_head *bh,
2307                                             struct ocfs2_extent_list *el)
2308 {
2309         int ret;
2310
2311         if (!ocfs2_is_empty_extent(&el->l_recs[0]))
2312                 return 0;
2313
2314         ret = ocfs2_journal_access(handle, inode, bh,
2315                                    OCFS2_JOURNAL_ACCESS_WRITE);
2316         if (ret) {
2317                 mlog_errno(ret);
2318                 goto out;
2319         }
2320
2321         ocfs2_remove_empty_extent(el);
2322
2323         ret = ocfs2_journal_dirty(handle, bh);
2324         if (ret)
2325                 mlog_errno(ret);
2326
2327 out:
2328         return ret;
2329 }
2330
2331 static int __ocfs2_rotate_tree_left(struct inode *inode,
2332                                     handle_t *handle, int orig_credits,
2333                                     struct ocfs2_path *path,
2334                                     struct ocfs2_cached_dealloc_ctxt *dealloc,
2335                                     struct ocfs2_path **empty_extent_path)
2336 {
2337         int ret, subtree_root, deleted;
2338         u32 right_cpos;
2339         struct ocfs2_path *left_path = NULL;
2340         struct ocfs2_path *right_path = NULL;
2341
2342         BUG_ON(!ocfs2_is_empty_extent(&(path_leaf_el(path)->l_recs[0])));
2343
2344         *empty_extent_path = NULL;
2345
2346         ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, path,
2347                                              &right_cpos);
2348         if (ret) {
2349                 mlog_errno(ret);
2350                 goto out;
2351         }
2352
2353         left_path = ocfs2_new_path(path_root_bh(path),
2354                                    path_root_el(path));
2355         if (!left_path) {
2356                 ret = -ENOMEM;
2357                 mlog_errno(ret);
2358                 goto out;
2359         }
2360
2361         ocfs2_cp_path(left_path, path);
2362
2363         right_path = ocfs2_new_path(path_root_bh(path),
2364                                     path_root_el(path));
2365         if (!right_path) {
2366                 ret = -ENOMEM;
2367                 mlog_errno(ret);
2368                 goto out;
2369         }
2370
2371         while (right_cpos) {
2372                 ret = ocfs2_find_path(inode, right_path, right_cpos);
2373                 if (ret) {
2374                         mlog_errno(ret);
2375                         goto out;
2376                 }
2377
2378                 subtree_root = ocfs2_find_subtree_root(inode, left_path,
2379                                                        right_path);
2380
2381                 mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n",
2382                      subtree_root,
2383                      (unsigned long long)
2384                      right_path->p_node[subtree_root].bh->b_blocknr,
2385                      right_path->p_tree_depth);
2386
2387                 ret = ocfs2_extend_rotate_transaction(handle, subtree_root,
2388                                                       orig_credits, left_path);
2389                 if (ret) {
2390                         mlog_errno(ret);
2391                         goto out;
2392                 }
2393
2394                 /*
2395                  * Caller might still want to make changes to the
2396                  * tree root, so re-add it to the journal here.
2397                  */
2398                 ret = ocfs2_journal_access(handle, inode,
2399                                            path_root_bh(left_path),
2400                                            OCFS2_JOURNAL_ACCESS_WRITE);
2401                 if (ret) {
2402                         mlog_errno(ret);
2403                         goto out;
2404                 }
2405
2406                 ret = ocfs2_rotate_subtree_left(inode, handle, left_path,
2407                                                 right_path, subtree_root,
2408                                                 dealloc, &deleted);
2409                 if (ret == -EAGAIN) {
2410                         /*
2411                          * The rotation has to temporarily stop due to
2412                          * the right subtree having an empty
2413                          * extent. Pass it back to the caller for a
2414                          * fixup.
2415                          */
2416                         *empty_extent_path = right_path;
2417                         right_path = NULL;
2418                         goto out;
2419                 }
2420                 if (ret) {
2421                         mlog_errno(ret);
2422                         goto out;
2423                 }
2424
2425                 /*
2426                  * The subtree rotate might have removed records on
2427                  * the rightmost edge. If so, then rotation is
2428                  * complete.
2429                  */
2430                 if (deleted)
2431                         break;
2432
2433                 ocfs2_mv_path(left_path, right_path);
2434
2435                 ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, left_path,
2436                                                      &right_cpos);
2437                 if (ret) {
2438                         mlog_errno(ret);
2439                         goto out;
2440                 }
2441         }
2442
2443 out:
2444         ocfs2_free_path(right_path);
2445         ocfs2_free_path(left_path);
2446
2447         return ret;
2448 }
2449
2450 static int ocfs2_remove_rightmost_path(struct inode *inode, handle_t *handle,
2451                                        struct ocfs2_path *path,
2452                                        struct ocfs2_cached_dealloc_ctxt *dealloc)
2453 {
2454         int ret, subtree_index;
2455         u32 cpos;
2456         struct ocfs2_path *left_path = NULL;
2457         struct ocfs2_dinode *di;
2458         struct ocfs2_extent_block *eb;
2459         struct ocfs2_extent_list *el;
2460
2461         /*
2462          * XXX: This code assumes that the root is an inode, which is
2463          * true for now but may change as tree code gets generic.
2464          */
2465         di = (struct ocfs2_dinode *)path_root_bh(path)->b_data;
2466         if (!OCFS2_IS_VALID_DINODE(di)) {
2467                 ret = -EIO;
2468                 ocfs2_error(inode->i_sb,
2469                             "Inode %llu has invalid path root",
2470                             (unsigned long long)OCFS2_I(inode)->ip_blkno);
2471                 goto out;
2472         }
2473
2474         /*
2475          * There's two ways we handle this depending on
2476          * whether path is the only existing one.
2477          */
2478         ret = ocfs2_extend_rotate_transaction(handle, 0,
2479                                               handle->h_buffer_credits,
2480                                               path);
2481         if (ret) {
2482                 mlog_errno(ret);
2483                 goto out;
2484         }
2485
2486         ret = ocfs2_journal_access_path(inode, handle, path);
2487         if (ret) {
2488                 mlog_errno(ret);
2489                 goto out;
2490         }
2491
2492         ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, &cpos);
2493         if (ret) {
2494                 mlog_errno(ret);
2495                 goto out;
2496         }
2497
2498         if (cpos) {
2499                 /*
2500                  * We have a path to the left of this one - it needs
2501                  * an update too.
2502                  */
2503                 left_path = ocfs2_new_path(path_root_bh(path),
2504                                            path_root_el(path));
2505                 if (!left_path) {
2506                         ret = -ENOMEM;
2507                         mlog_errno(ret);
2508                         goto out;
2509                 }
2510
2511                 ret = ocfs2_find_path(inode, left_path, cpos);
2512                 if (ret) {
2513                         mlog_errno(ret);
2514                         goto out;
2515                 }
2516
2517                 ret = ocfs2_journal_access_path(inode, handle, left_path);
2518                 if (ret) {
2519                         mlog_errno(ret);
2520                         goto out;
2521                 }
2522
2523                 subtree_index = ocfs2_find_subtree_root(inode, left_path, path);
2524
2525                 ocfs2_unlink_subtree(inode, handle, left_path, path,
2526                                      subtree_index, dealloc);
2527                 ocfs2_update_edge_lengths(inode, handle, left_path);
2528
2529                 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2530                 di->i_last_eb_blk = eb->h_blkno;
2531         } else {
2532                 /*
2533                  * 'path' is also the leftmost path which
2534                  * means it must be the only one. This gets
2535                  * handled differently because we want to
2536                  * revert the inode back to having extents
2537                  * in-line.
2538                  */
2539                 ocfs2_unlink_path(inode, handle, dealloc, path, 1);
2540
2541                 el = &di->id2.i_list;
2542                 el->l_tree_depth = 0;
2543                 el->l_next_free_rec = 0;
2544                 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2545
2546                 di->i_last_eb_blk = 0;
2547         }
2548
2549         ocfs2_journal_dirty(handle, path_root_bh(path));
2550
2551 out:
2552         ocfs2_free_path(left_path);
2553         return ret;
2554 }
2555
2556 /*
2557  * Left rotation of btree records.
2558  *
2559  * In many ways, this is (unsurprisingly) the opposite of right
2560  * rotation. We start at some non-rightmost path containing an empty
2561  * extent in the leaf block. The code works its way to the rightmost
2562  * path by rotating records to the left in every subtree.
2563  *
2564  * This is used by any code which reduces the number of extent records
2565  * in a leaf. After removal, an empty record should be placed in the
2566  * leftmost list position.
2567  *
2568  * This won't handle a length update of the rightmost path records if
2569  * the rightmost tree leaf record is removed so the caller is
2570  * responsible for detecting and correcting that.
2571  */
2572 static int ocfs2_rotate_tree_left(struct inode *inode, handle_t *handle,
2573                                   struct ocfs2_path *path,
2574                                   struct ocfs2_cached_dealloc_ctxt *dealloc)
2575 {
2576         int ret, orig_credits = handle->h_buffer_credits;
2577         struct ocfs2_path *tmp_path = NULL, *restart_path = NULL;
2578         struct ocfs2_extent_block *eb;
2579         struct ocfs2_extent_list *el;
2580
2581         el = path_leaf_el(path);
2582         if (!ocfs2_is_empty_extent(&el->l_recs[0]))
2583                 return 0;
2584
2585         if (path->p_tree_depth == 0) {
2586 rightmost_no_delete:
2587                 /*
2588                  * In-inode extents. This is trivially handled, so do
2589                  * it up front.
2590                  */
2591                 ret = ocfs2_rotate_rightmost_leaf_left(inode, handle,
2592                                                        path_leaf_bh(path),
2593                                                        path_leaf_el(path));
2594                 if (ret)
2595                         mlog_errno(ret);
2596                 goto out;
2597         }
2598
2599         /*
2600          * Handle rightmost branch now. There's several cases:
2601          *  1) simple rotation leaving records in there. That's trivial.
2602          *  2) rotation requiring a branch delete - there's no more
2603          *     records left. Two cases of this:
2604          *     a) There are branches to the left.
2605          *     b) This is also the leftmost (the only) branch.
2606          *
2607          *  1) is handled via ocfs2_rotate_rightmost_leaf_left()
2608          *  2a) we need the left branch so that we can update it with the unlink
2609          *  2b) we need to bring the inode back to inline extents.
2610          */
2611
2612         eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
2613         el = &eb->h_list;
2614         if (eb->h_next_leaf_blk == 0) {
2615                 /*
2616                  * This gets a bit tricky if we're going to delete the
2617                  * rightmost path. Get the other cases out of the way
2618                  * 1st.
2619                  */
2620                 if (le16_to_cpu(el->l_next_free_rec) > 1)
2621                         goto rightmost_no_delete;
2622
2623                 if (le16_to_cpu(el->l_next_free_rec) == 0) {
2624                         ret = -EIO;
2625                         ocfs2_error(inode->i_sb,
2626                                     "Inode %llu has empty extent block at %llu",
2627                                     (unsigned long long)OCFS2_I(inode)->ip_blkno,
2628                                     (unsigned long long)le64_to_cpu(eb->h_blkno));
2629                         goto out;
2630                 }
2631
2632                 /*
2633                  * XXX: The caller can not trust "path" any more after
2634                  * this as it will have been deleted. What do we do?
2635                  *
2636                  * In theory the rotate-for-merge code will never get
2637                  * here because it'll always ask for a rotate in a
2638                  * nonempty list.
2639                  */
2640
2641                 ret = ocfs2_remove_rightmost_path(inode, handle, path,
2642                                                   dealloc);
2643                 if (ret)
2644                         mlog_errno(ret);
2645                 goto out;
2646         }
2647
2648         /*
2649          * Now we can loop, remembering the path we get from -EAGAIN
2650          * and restarting from there.
2651          */
2652 try_rotate:
2653         ret = __ocfs2_rotate_tree_left(inode, handle, orig_credits, path,
2654                                        dealloc, &restart_path);
2655         if (ret && ret != -EAGAIN) {
2656                 mlog_errno(ret);
2657                 goto out;
2658         }
2659
2660         while (ret == -EAGAIN) {
2661                 tmp_path = restart_path;
2662                 restart_path = NULL;
2663
2664                 ret = __ocfs2_rotate_tree_left(inode, handle, orig_credits,
2665                                                tmp_path, dealloc,
2666                                                &restart_path);
2667                 if (ret && ret != -EAGAIN) {
2668                         mlog_errno(ret);
2669                         goto out;
2670                 }
2671
2672                 ocfs2_free_path(tmp_path);
2673                 tmp_path = NULL;
2674
2675                 if (ret == 0)
2676                         goto try_rotate;
2677         }
2678
2679 out:
2680         ocfs2_free_path(tmp_path);
2681         ocfs2_free_path(restart_path);
2682         return ret;
2683 }
2684
2685 static void ocfs2_cleanup_merge(struct ocfs2_extent_list *el,
2686                                 int index)
2687 {
2688         struct ocfs2_extent_rec *rec = &el->l_recs[index];
2689         unsigned int size;
2690
2691         if (rec->e_leaf_clusters == 0) {
2692                 /*
2693                  * We consumed all of the merged-from record. An empty
2694                  * extent cannot exist anywhere but the 1st array
2695                  * position, so move things over if the merged-from
2696                  * record doesn't occupy that position.
2697                  *
2698                  * This creates a new empty extent so the caller
2699                  * should be smart enough to have removed any existing
2700                  * ones.
2701                  */
2702                 if (index > 0) {
2703                         BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
2704                         size = index * sizeof(struct ocfs2_extent_rec);
2705                         memmove(&el->l_recs[1], &el->l_recs[0], size);
2706                 }
2707
2708                 /*
2709                  * Always memset - the caller doesn't check whether it
2710                  * created an empty extent, so there could be junk in
2711                  * the other fields.
2712                  */
2713                 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2714         }
2715 }
2716
2717 static int ocfs2_get_right_path(struct inode *inode,
2718                                 struct ocfs2_path *left_path,
2719                                 struct ocfs2_path **ret_right_path)
2720 {
2721         int ret;
2722         u32 right_cpos;
2723         struct ocfs2_path *right_path = NULL;
2724         struct ocfs2_extent_list *left_el;
2725
2726         *ret_right_path = NULL;
2727
2728         /* This function shouldn't be called for non-trees. */
2729         BUG_ON(left_path->p_tree_depth == 0);
2730
2731         left_el = path_leaf_el(left_path);
2732         BUG_ON(left_el->l_next_free_rec != left_el->l_count);
2733
2734         ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, left_path,
2735                                              &right_cpos);
2736         if (ret) {
2737                 mlog_errno(ret);
2738                 goto out;
2739         }
2740
2741         /* This function shouldn't be called for the rightmost leaf. */
2742         BUG_ON(right_cpos == 0);
2743
2744         right_path = ocfs2_new_path(path_root_bh(left_path),
2745                                     path_root_el(left_path));
2746         if (!right_path) {
2747                 ret = -ENOMEM;
2748                 mlog_errno(ret);
2749                 goto out;
2750         }
2751
2752         ret = ocfs2_find_path(inode, right_path, right_cpos);
2753         if (ret) {
2754                 mlog_errno(ret);
2755                 goto out;
2756         }
2757
2758         *ret_right_path = right_path;
2759 out:
2760         if (ret)
2761                 ocfs2_free_path(right_path);
2762         return ret;
2763 }
2764
2765 /*
2766  * Remove split_rec clusters from the record at index and merge them
2767  * onto the beginning of the record "next" to it.
2768  * For index < l_count - 1, the next means the extent rec at index + 1.
2769  * For index == l_count - 1, the "next" means the 1st extent rec of the
2770  * next extent block.
2771  */
2772 static int ocfs2_merge_rec_right(struct inode *inode,
2773                                  struct ocfs2_path *left_path,
2774                                  handle_t *handle,
2775                                  struct ocfs2_extent_rec *split_rec,
2776                                  int index)
2777 {
2778         int ret, next_free, i;
2779         unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
2780         struct ocfs2_extent_rec *left_rec;
2781         struct ocfs2_extent_rec *right_rec;
2782         struct ocfs2_extent_list *right_el;
2783         struct ocfs2_path *right_path = NULL;
2784         int subtree_index = 0;
2785         struct ocfs2_extent_list *el = path_leaf_el(left_path);
2786         struct buffer_head *bh = path_leaf_bh(left_path);
2787         struct buffer_head *root_bh = NULL;
2788
2789         BUG_ON(index >= le16_to_cpu(el->l_next_free_rec));
2790         left_rec = &el->l_recs[index];
2791
2792         if (index == le16_to_cpu(el->l_next_free_rec - 1) &&
2793             le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count)) {
2794                 /* we meet with a cross extent block merge. */
2795                 ret = ocfs2_get_right_path(inode, left_path, &right_path);
2796                 if (ret) {
2797                         mlog_errno(ret);
2798                         goto out;
2799                 }
2800
2801                 right_el = path_leaf_el(right_path);
2802                 next_free = le16_to_cpu(right_el->l_next_free_rec);
2803                 BUG_ON(next_free <= 0);
2804                 right_rec = &right_el->l_recs[0];
2805                 if (ocfs2_is_empty_extent(right_rec)) {
2806                         BUG_ON(le16_to_cpu(next_free) <= 1);
2807                         right_rec = &right_el->l_recs[1];
2808                 }
2809
2810                 BUG_ON(le32_to_cpu(left_rec->e_cpos) +
2811                        le16_to_cpu(left_rec->e_leaf_clusters) !=
2812                        le32_to_cpu(right_rec->e_cpos));
2813
2814                 subtree_index = ocfs2_find_subtree_root(inode,
2815                                                         left_path, right_path);
2816
2817                 ret = ocfs2_extend_rotate_transaction(handle, subtree_index,
2818                                                       handle->h_buffer_credits,
2819                                                       right_path);
2820                 if (ret) {
2821                         mlog_errno(ret);
2822                         goto out;
2823                 }
2824
2825                 root_bh = left_path->p_node[subtree_index].bh;
2826                 BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
2827
2828                 ret = ocfs2_journal_access(handle, inode, root_bh,
2829                                            OCFS2_JOURNAL_ACCESS_WRITE);
2830                 if (ret) {
2831                         mlog_errno(ret);
2832                         goto out;
2833                 }
2834
2835                 for (i = subtree_index + 1;
2836                      i < path_num_items(right_path); i++) {
2837                         ret = ocfs2_journal_access(handle, inode,
2838                                                    right_path->p_node[i].bh,
2839                                                    OCFS2_JOURNAL_ACCESS_WRITE);
2840                         if (ret) {
2841                                 mlog_errno(ret);
2842                                 goto out;
2843                         }
2844
2845                         ret = ocfs2_journal_access(handle, inode,
2846                                                    left_path->p_node[i].bh,
2847                                                    OCFS2_JOURNAL_ACCESS_WRITE);
2848                         if (ret) {
2849                                 mlog_errno(ret);
2850                                 goto out;
2851                         }
2852                 }
2853
2854         } else {
2855                 BUG_ON(index == le16_to_cpu(el->l_next_free_rec) - 1);
2856                 right_rec = &el->l_recs[index + 1];
2857         }
2858
2859         ret = ocfs2_journal_access(handle, inode, bh,
2860                                    OCFS2_JOURNAL_ACCESS_WRITE);
2861         if (ret) {
2862                 mlog_errno(ret);
2863                 goto out;
2864         }
2865
2866         le16_add_cpu(&left_rec->e_leaf_clusters, -split_clusters);
2867
2868         le32_add_cpu(&right_rec->e_cpos, -split_clusters);
2869         le64_add_cpu(&right_rec->e_blkno,
2870                      -ocfs2_clusters_to_blocks(inode->i_sb, split_clusters));
2871         le16_add_cpu(&right_rec->e_leaf_clusters, split_clusters);
2872
2873         ocfs2_cleanup_merge(el, index);
2874
2875         ret = ocfs2_journal_dirty(handle, bh);
2876         if (ret)
2877                 mlog_errno(ret);
2878
2879         if (right_path) {
2880                 ret = ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
2881                 if (ret)
2882                         mlog_errno(ret);
2883
2884                 ocfs2_complete_edge_insert(inode, handle, left_path,
2885                                            right_path, subtree_index);
2886         }
2887 out:
2888         if (right_path)
2889                 ocfs2_free_path(right_path);
2890         return ret;
2891 }
2892
2893 static int ocfs2_get_left_path(struct inode *inode,
2894                                struct ocfs2_path *right_path,
2895                                struct ocfs2_path **ret_left_path)
2896 {
2897         int ret;
2898         u32 left_cpos;
2899         struct ocfs2_path *left_path = NULL;
2900
2901         *ret_left_path = NULL;
2902
2903         /* This function shouldn't be called for non-trees. */
2904         BUG_ON(right_path->p_tree_depth == 0);
2905
2906         ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb,
2907                                             right_path, &left_cpos);
2908         if (ret) {
2909                 mlog_errno(ret);
2910                 goto out;
2911         }
2912
2913         /* This function shouldn't be called for the leftmost leaf. */
2914         BUG_ON(left_cpos == 0);
2915
2916         left_path = ocfs2_new_path(path_root_bh(right_path),
2917                                    path_root_el(right_path));
2918         if (!left_path) {
2919                 ret = -ENOMEM;
2920                 mlog_errno(ret);
2921                 goto out;
2922         }
2923
2924         ret = ocfs2_find_path(inode, left_path, left_cpos);
2925         if (ret) {
2926                 mlog_errno(ret);
2927                 goto out;
2928         }
2929
2930         *ret_left_path = left_path;
2931 out:
2932         if (ret)
2933                 ocfs2_free_path(left_path);
2934         return ret;
2935 }
2936
2937 /*
2938  * Remove split_rec clusters from the record at index and merge them
2939  * onto the tail of the record "before" it.
2940  * For index > 0, the "before" means the extent rec at index - 1.
2941  *
2942  * For index == 0, the "before" means the last record of the previous
2943  * extent block. And there is also a situation that we may need to
2944  * remove the rightmost leaf extent block in the right_path and change
2945  * the right path to indicate the new rightmost path.
2946  */
2947 static int ocfs2_merge_rec_left(struct inode *inode,
2948                                 struct ocfs2_path *right_path,
2949                                 handle_t *handle,
2950                                 struct ocfs2_extent_rec *split_rec,
2951                                 struct ocfs2_cached_dealloc_ctxt *dealloc,
2952                                 int index)
2953 {
2954         int ret, i, subtree_index = 0, has_empty_extent = 0;
2955         unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
2956         struct ocfs2_extent_rec *left_rec;
2957         struct ocfs2_extent_rec *right_rec;
2958         struct ocfs2_extent_list *el = path_leaf_el(right_path);
2959         struct buffer_head *bh = path_leaf_bh(right_path);
2960         struct buffer_head *root_bh = NULL;
2961         struct ocfs2_path *left_path = NULL;
2962         struct ocfs2_extent_list *left_el;
2963
2964         BUG_ON(index < 0);
2965
2966         right_rec = &el->l_recs[index];
2967         if (index == 0) {
2968                 /* we meet with a cross extent block merge. */
2969                 ret = ocfs2_get_left_path(inode, right_path, &left_path);
2970                 if (ret) {
2971                         mlog_errno(ret);
2972                         goto out;
2973                 }
2974
2975                 left_el = path_leaf_el(left_path);
2976                 BUG_ON(le16_to_cpu(left_el->l_next_free_rec) !=
2977                        le16_to_cpu(left_el->l_count));
2978
2979                 left_rec = &left_el->l_recs[
2980                                 le16_to_cpu(left_el->l_next_free_rec) - 1];
2981                 BUG_ON(le32_to_cpu(left_rec->e_cpos) +
2982                        le16_to_cpu(left_rec->e_leaf_clusters) !=
2983                        le32_to_cpu(split_rec->e_cpos));
2984
2985                 subtree_index = ocfs2_find_subtree_root(inode,
2986                                                         left_path, right_path);
2987
2988                 ret = ocfs2_extend_rotate_transaction(handle, subtree_index,
2989                                                       handle->h_buffer_credits,
2990                                                       left_path);
2991                 if (ret) {
2992                         mlog_errno(ret);
2993                         goto out;
2994                 }
2995
2996                 root_bh = left_path->p_node[subtree_index].bh;
2997                 BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
2998
2999                 ret = ocfs2_journal_access(handle, inode, root_bh,
3000                                            OCFS2_JOURNAL_ACCESS_WRITE);
3001                 if (ret) {
3002                         mlog_errno(ret);
3003                         goto out;
3004                 }
3005
3006                 for (i = subtree_index + 1;
3007                      i < path_num_items(right_path); i++) {
3008                         ret = ocfs2_journal_access(handle, inode,
3009                                                    right_path->p_node[i].bh,
3010                                                    OCFS2_JOURNAL_ACCESS_WRITE);
3011                         if (ret) {
3012                                 mlog_errno(ret);
3013                                 goto out;
3014                         }
3015
3016                         ret = ocfs2_journal_access(handle, inode,
3017                                                    left_path->p_node[i].bh,
3018                                                    OCFS2_JOURNAL_ACCESS_WRITE);
3019                         if (ret) {
3020                                 mlog_errno(ret);
3021                                 goto out;
3022                         }
3023                 }
3024         } else {
3025                 left_rec = &el->l_recs[index - 1];
3026                 if (ocfs2_is_empty_extent(&el->l_recs[0]))
3027                         has_empty_extent = 1;
3028         }
3029
3030         ret = ocfs2_journal_access(handle, inode, bh,
3031                                    OCFS2_JOURNAL_ACCESS_WRITE);
3032         if (ret) {
3033                 mlog_errno(ret);
3034                 goto out;
3035         }
3036
3037         if (has_empty_extent && index == 1) {
3038                 /*
3039                  * The easy case - we can just plop the record right in.
3040                  */
3041                 *left_rec = *split_rec;
3042
3043                 has_empty_extent = 0;
3044         } else
3045                 le16_add_cpu(&left_rec->e_leaf_clusters, split_clusters);
3046
3047         le32_add_cpu(&right_rec->e_cpos, split_clusters);
3048         le64_add_cpu(&right_rec->e_blkno,
3049                      ocfs2_clusters_to_blocks(inode->i_sb, split_clusters));
3050         le16_add_cpu(&right_rec->e_leaf_clusters, -split_clusters);
3051
3052         ocfs2_cleanup_merge(el, index);
3053
3054         ret = ocfs2_journal_dirty(handle, bh);
3055         if (ret)
3056                 mlog_errno(ret);
3057
3058         if (left_path) {
3059                 ret = ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
3060                 if (ret)
3061                         mlog_errno(ret);
3062
3063                 /*
3064                  * In the situation that the right_rec is empty and the extent
3065                  * block is empty also,  ocfs2_complete_edge_insert can't handle
3066                  * it and we need to delete the right extent block.
3067                  */
3068                 if (le16_to_cpu(right_rec->e_leaf_clusters) == 0 &&
3069                     le16_to_cpu(el->l_next_free_rec) == 1) {
3070
3071                         ret = ocfs2_remove_rightmost_path(inode, handle,
3072                                                           right_path, dealloc);
3073                         if (ret) {
3074                                 mlog_errno(ret);
3075                                 goto out;
3076                         }
3077
3078                         /* Now the rightmost extent block has been deleted.
3079                          * So we use the new rightmost path.
3080                          */
3081                         ocfs2_mv_path(right_path, left_path);
3082                         left_path = NULL;
3083                 } else
3084                         ocfs2_complete_edge_insert(inode, handle, left_path,
3085                                                    right_path, subtree_index);
3086         }
3087 out:
3088         if (left_path)
3089                 ocfs2_free_path(left_path);
3090         return ret;
3091 }
3092
3093 static int ocfs2_try_to_merge_extent(struct inode *inode,
3094                                      handle_t *handle,
3095                                      struct ocfs2_path *path,
3096                                      int split_index,
3097                                      struct ocfs2_extent_rec *split_rec,
3098                                      struct ocfs2_cached_dealloc_ctxt *dealloc,
3099                                      struct ocfs2_merge_ctxt *ctxt)
3100
3101 {
3102         int ret = 0;
3103         struct ocfs2_extent_list *el = path_leaf_el(path);
3104         struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
3105
3106         BUG_ON(ctxt->c_contig_type == CONTIG_NONE);
3107
3108         if (ctxt->c_split_covers_rec && ctxt->c_has_empty_extent) {
3109                 /*
3110                  * The merge code will need to create an empty
3111                  * extent to take the place of the newly
3112                  * emptied slot. Remove any pre-existing empty
3113                  * extents - having more than one in a leaf is
3114                  * illegal.
3115                  */
3116                 ret = ocfs2_rotate_tree_left(inode, handle, path,
3117                                              dealloc);
3118                 if (ret) {
3119                         mlog_errno(ret);
3120                         goto out;
3121                 }
3122                 split_index--;
3123                 rec = &el->l_recs[split_index];
3124         }
3125
3126         if (ctxt->c_contig_type == CONTIG_LEFTRIGHT) {
3127                 /*
3128                  * Left-right contig implies this.
3129                  */
3130                 BUG_ON(!ctxt->c_split_covers_rec);
3131
3132                 /*
3133                  * Since the leftright insert always covers the entire
3134                  * extent, this call will delete the insert record
3135                  * entirely, resulting in an empty extent record added to
3136                  * the extent block.
3137                  *
3138                  * Since the adding of an empty extent shifts
3139                  * everything back to the right, there's no need to
3140                  * update split_index here.
3141                  *
3142                  * When the split_index is zero, we need to merge it to the
3143                  * prevoius extent block. It is more efficient and easier
3144                  * if we do merge_right first and merge_left later.
3145                  */
3146                 ret = ocfs2_merge_rec_right(inode, path,
3147                                             handle, split_rec,
3148                                             split_index);
3149                 if (ret) {
3150                         mlog_errno(ret);
3151                         goto out;
3152                 }
3153
3154                 /*
3155                  * We can only get this from logic error above.
3156                  */
3157                 BUG_ON(!ocfs2_is_empty_extent(&el->l_recs[0]));
3158
3159                 /* The merge left us with an empty extent, remove it. */
3160                 ret = ocfs2_rotate_tree_left(inode, handle, path, dealloc);
3161                 if (ret) {
3162                         mlog_errno(ret);
3163                         goto out;
3164                 }
3165
3166                 rec = &el->l_recs[split_index];
3167
3168                 /*
3169                  * Note that we don't pass split_rec here on purpose -
3170                  * we've merged it into the rec already.
3171                  */
3172                 ret = ocfs2_merge_rec_left(inode, path,
3173                                            handle, rec,
3174                                            dealloc,
3175                                            split_index);
3176
3177                 if (ret) {
3178                         mlog_errno(ret);
3179                         goto out;
3180                 }
3181
3182                 ret = ocfs2_rotate_tree_left(inode, handle, path,
3183                                              dealloc);
3184                 /*
3185                  * Error from this last rotate is not critical, so
3186                  * print but don't bubble it up.
3187                  */
3188                 if (ret)
3189                         mlog_errno(ret);
3190                 ret = 0;
3191         } else {
3192                 /*
3193                  * Merge a record to the left or right.
3194                  *
3195                  * 'contig_type' is relative to the existing record,
3196                  * so for example, if we're "right contig", it's to
3197                  * the record on the left (hence the left merge).
3198                  */
3199                 if (ctxt->c_contig_type == CONTIG_RIGHT) {
3200                         ret = ocfs2_merge_rec_left(inode,
3201                                                    path,
3202                                                    handle, split_rec,
3203                                                    dealloc,
3204                                                    split_index);
3205                         if (ret) {
3206                                 mlog_errno(ret);
3207                                 goto out;
3208                         }
3209                 } else {
3210                         ret = ocfs2_merge_rec_right(inode,
3211                                                     path,
3212                                                     handle, split_rec,
3213                                                     split_index);
3214                         if (ret) {
3215                                 mlog_errno(ret);
3216                                 goto out;
3217                         }
3218                 }
3219
3220                 if (ctxt->c_split_covers_rec) {
3221                         /*
3222                          * The merge may have left an empty extent in
3223                          * our leaf. Try to rotate it away.
3224                          */
3225                         ret = ocfs2_rotate_tree_left(inode, handle, path,
3226                                                      dealloc);
3227                         if (ret)
3228                                 mlog_errno(ret);
3229                         ret = 0;
3230                 }
3231         }
3232
3233 out:
3234         return ret;
3235 }
3236
3237 static void ocfs2_subtract_from_rec(struct super_block *sb,
3238                                     enum ocfs2_split_type split,
3239                                     struct ocfs2_extent_rec *rec,
3240                                     struct ocfs2_extent_rec *split_rec)
3241 {
3242         u64 len_blocks;
3243
3244         len_blocks = ocfs2_clusters_to_blocks(sb,
3245                                 le16_to_cpu(split_rec->e_leaf_clusters));
3246
3247         if (split == SPLIT_LEFT) {
3248                 /*
3249                  * Region is on the left edge of the existing
3250                  * record.
3251                  */
3252                 le32_add_cpu(&rec->e_cpos,
3253                              le16_to_cpu(split_rec->e_leaf_clusters));
3254                 le64_add_cpu(&rec->e_blkno, len_blocks);
3255                 le16_add_cpu(&rec->e_leaf_clusters,
3256                              -le16_to_cpu(split_rec->e_leaf_clusters));
3257         } else {
3258                 /*
3259                  * Region is on the right edge of the existing
3260                  * record.
3261                  */
3262                 le16_add_cpu(&rec->e_leaf_clusters,
3263                              -le16_to_cpu(split_rec->e_leaf_clusters));
3264         }
3265 }
3266
3267 /*
3268  * Do the final bits of extent record insertion at the target leaf
3269  * list. If this leaf is part of an allocation tree, it is assumed
3270  * that the tree above has been prepared.
3271  */
3272 static void ocfs2_insert_at_leaf(struct ocfs2_extent_rec *insert_rec,
3273                                  struct ocfs2_extent_list *el,
3274                                  struct ocfs2_insert_type *insert,
3275                                  struct inode *inode)
3276 {
3277         int i = insert->ins_contig_index;
3278         unsigned int range;
3279         struct ocfs2_extent_rec *rec;
3280
3281         BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
3282
3283         if (insert->ins_split != SPLIT_NONE) {
3284                 i = ocfs2_search_extent_list(el, le32_to_cpu(insert_rec->e_cpos));
3285                 BUG_ON(i == -1);
3286                 rec = &el->l_recs[i];
3287                 ocfs2_subtract_from_rec(inode->i_sb, insert->ins_split, rec,
3288                                         insert_rec);
3289                 goto rotate;
3290         }
3291
3292         /*
3293          * Contiguous insert - either left or right.
3294          */
3295         if (insert->ins_contig != CONTIG_NONE) {
3296                 rec = &el->l_recs[i];
3297                 if (insert->ins_contig == CONTIG_LEFT) {
3298                         rec->e_blkno = insert_rec->e_blkno;
3299                         rec->e_cpos = insert_rec->e_cpos;
3300                 }
3301                 le16_add_cpu(&rec->e_leaf_clusters,
3302                              le16_to_cpu(insert_rec->e_leaf_clusters));
3303                 return;
3304         }
3305
3306         /*
3307          * Handle insert into an empty leaf.
3308          */
3309         if (le16_to_cpu(el->l_next_free_rec) == 0 ||
3310             ((le16_to_cpu(el->l_next_free_rec) == 1) &&
3311              ocfs2_is_empty_extent(&el->l_recs[0]))) {
3312                 el->l_recs[0] = *insert_rec;
3313                 el->l_next_free_rec = cpu_to_le16(1);
3314                 return;
3315         }
3316
3317         /*
3318          * Appending insert.
3319          */
3320         if (insert->ins_appending == APPEND_TAIL) {
3321                 i = le16_to_cpu(el->l_next_free_rec) - 1;
3322                 rec = &el->l_recs[i];
3323                 range = le32_to_cpu(rec->e_cpos)
3324                         + le16_to_cpu(rec->e_leaf_clusters);
3325                 BUG_ON(le32_to_cpu(insert_rec->e_cpos) < range);
3326
3327                 mlog_bug_on_msg(le16_to_cpu(el->l_next_free_rec) >=
3328                                 le16_to_cpu(el->l_count),
3329                                 "inode %lu, depth %u, count %u, next free %u, "
3330                                 "rec.cpos %u, rec.clusters %u, "
3331                                 "insert.cpos %u, insert.clusters %u\n",
3332                                 inode->i_ino,
3333                                 le16_to_cpu(el->l_tree_depth),
3334                                 le16_to_cpu(el->l_count),
3335                                 le16_to_cpu(el->l_next_free_rec),
3336                                 le32_to_cpu(el->l_recs[i].e_cpos),
3337                                 le16_to_cpu(el->l_recs[i].e_leaf_clusters),
3338                                 le32_to_cpu(insert_rec->e_cpos),
3339                                 le16_to_cpu(insert_rec->e_leaf_clusters));
3340                 i++;
3341                 el->l_recs[i] = *insert_rec;
3342                 le16_add_cpu(&el->l_next_free_rec, 1);
3343                 return;
3344         }
3345
3346 rotate:
3347         /*
3348          * Ok, we have to rotate.
3349          *
3350          * At this point, it is safe to assume that inserting into an
3351          * empty leaf and appending to a leaf have both been handled
3352          * above.
3353          *
3354          * This leaf needs to have space, either by the empty 1st
3355          * extent record, or by virtue of an l_next_rec < l_count.
3356          */
3357         ocfs2_rotate_leaf(el, insert_rec);
3358 }
3359
3360 static inline void ocfs2_update_dinode_clusters(struct inode *inode,
3361                                                 struct ocfs2_dinode *di,
3362                                                 u32 clusters)
3363 {
3364         le32_add_cpu(&di->i_clusters, clusters);
3365         spin_lock(&OCFS2_I(inode)->ip_lock);
3366         OCFS2_I(inode)->ip_clusters = le32_to_cpu(di->i_clusters);
3367         spin_unlock(&OCFS2_I(inode)->ip_lock);
3368 }
3369
3370 static void ocfs2_adjust_rightmost_records(struct inode *inode,
3371                                            handle_t *handle,
3372                                            struct ocfs2_path *path,
3373                                            struct ocfs2_extent_rec *insert_rec)
3374 {
3375         int ret, i, next_free;
3376         struct buffer_head *bh;
3377         struct ocfs2_extent_list *el;
3378         struct ocfs2_extent_rec *rec;
3379
3380         /*
3381          * Update everything except the leaf block.
3382          */
3383         for (i = 0; i < path->p_tree_depth; i++) {
3384                 bh = path->p_node[i].bh;
3385                 el = path->p_node[i].el;
3386
3387                 next_free = le16_to_cpu(el->l_next_free_rec);
3388                 if (next_free == 0) {
3389                         ocfs2_error(inode->i_sb,
3390                                     "Dinode %llu has a bad extent list",
3391                                     (unsigned long long)OCFS2_I(inode)->ip_blkno);
3392                         ret = -EIO;
3393                         return;
3394                 }
3395
3396                 rec = &el->l_recs[next_free - 1];
3397
3398                 rec->e_int_clusters = insert_rec->e_cpos;
3399                 le32_add_cpu(&rec->e_int_clusters,
3400                              le16_to_cpu(insert_rec->e_leaf_clusters));
3401                 le32_add_cpu(&rec->e_int_clusters,
3402                              -le32_to_cpu(rec->e_cpos));
3403
3404                 ret = ocfs2_journal_dirty(handle, bh);
3405                 if (ret)
3406                         mlog_errno(ret);
3407
3408         }
3409 }
3410
3411 static int ocfs2_append_rec_to_path(struct inode *inode, handle_t *handle,
3412                                     struct ocfs2_extent_rec *insert_rec,
3413                                     struct ocfs2_path *right_path,
3414                                     struct ocfs2_path **ret_left_path)
3415 {
3416         int ret, next_free;
3417         struct ocfs2_extent_list *el;
3418         struct ocfs2_path *left_path = NULL;
3419
3420         *ret_left_path = NULL;
3421
3422         /*
3423          * This shouldn't happen for non-trees. The extent rec cluster
3424          * count manipulation below only works for interior nodes.
3425          */
3426         BUG_ON(right_path->p_tree_depth == 0);
3427
3428         /*
3429          * If our appending insert is at the leftmost edge of a leaf,
3430          * then we might need to update the rightmost records of the
3431          * neighboring path.
3432          */
3433         el = path_leaf_el(right_path);
3434         next_free = le16_to_cpu(el->l_next_free_rec);
3435         if (next_free == 0 ||
3436             (next_free == 1 && ocfs2_is_empty_extent(&el->l_recs[0]))) {
3437                 u32 left_cpos;
3438
3439                 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path,
3440                                                     &left_cpos);
3441                 if (ret) {
3442                         mlog_errno(ret);
3443                         goto out;
3444                 }
3445
3446                 mlog(0, "Append may need a left path update. cpos: %u, "
3447                      "left_cpos: %u\n", le32_to_cpu(insert_rec->e_cpos),
3448                      left_cpos);
3449
3450                 /*
3451                  * No need to worry if the append is already in the
3452                  * leftmost leaf.
3453                  */
3454                 if (left_cpos) {
3455                         left_path = ocfs2_new_path(path_root_bh(right_path),
3456                                                    path_root_el(right_path));
3457                         if (!left_path) {
3458                                 ret = -ENOMEM;
3459                                 mlog_errno(ret);
3460                                 goto out;
3461                         }
3462
3463                         ret = ocfs2_find_path(inode, left_path, left_cpos);
3464                         if (ret) {
3465                                 mlog_errno(ret);
3466                                 goto out;
3467                         }
3468
3469                         /*
3470                          * ocfs2_insert_path() will pass the left_path to the
3471                          * journal for us.
3472                          */
3473                 }
3474         }
3475
3476         ret = ocfs2_journal_access_path(inode, handle, right_path);
3477         if (ret) {
3478                 mlog_errno(ret);
3479                 goto out;
3480         }
3481
3482         ocfs2_adjust_rightmost_records(inode, handle, right_path, insert_rec);
3483
3484         *ret_left_path = left_path;
3485         ret = 0;
3486 out:
3487         if (ret != 0)
3488                 ocfs2_free_path(left_path);
3489
3490         return ret;
3491 }
3492
3493 static void ocfs2_split_record(struct inode *inode,
3494                                struct ocfs2_path *left_path,
3495                                struct ocfs2_path *right_path,
3496                                struct ocfs2_extent_rec *split_rec,
3497                                enum ocfs2_split_type split)
3498 {
3499         int index;
3500         u32 cpos = le32_to_cpu(split_rec->e_cpos);
3501         struct ocfs2_extent_list *left_el = NULL, *right_el, *insert_el, *el;
3502         struct ocfs2_extent_rec *rec, *tmprec;
3503
3504         right_el = path_leaf_el(right_path);;
3505         if (left_path)
3506                 left_el = path_leaf_el(left_path);
3507
3508         el = right_el;
3509         insert_el = right_el;
3510         index = ocfs2_search_extent_list(el, cpos);
3511         if (index != -1) {
3512                 if (index == 0 && left_path) {
3513                         BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
3514
3515                         /*
3516                          * This typically means that the record
3517                          * started in the left path but moved to the
3518                          * right as a result of rotation. We either
3519                          * move the existing record to the left, or we
3520                          * do the later insert there.
3521                          *
3522                          * In this case, the left path should always
3523                          * exist as the rotate code will have passed
3524                          * it back for a post-insert update.
3525                          */
3526
3527                         if (split == SPLIT_LEFT) {
3528                                 /*
3529                                  * It's a left split. Since we know
3530                                  * that the rotate code gave us an
3531                                  * empty extent in the left path, we
3532                                  * can just do the insert there.
3533                                  */
3534                                 insert_el = left_el;
3535                         } else {
3536                                 /*
3537                                  * Right split - we have to move the
3538                                  * existing record over to the left
3539                                  * leaf. The insert will be into the
3540                                  * newly created empty extent in the
3541                                  * right leaf.
3542                                  */
3543                                 tmprec = &right_el->l_recs[index];
3544                                 ocfs2_rotate_leaf(left_el, tmprec);
3545                                 el = left_el;
3546
3547                                 memset(tmprec, 0, sizeof(*tmprec));
3548                                 index = ocfs2_search_extent_list(left_el, cpos);
3549                                 BUG_ON(index == -1);
3550                         }
3551                 }
3552         } else {
3553                 BUG_ON(!left_path);
3554                 BUG_ON(!ocfs2_is_empty_extent(&left_el->l_recs[0]));
3555                 /*
3556                  * Left path is easy - we can just allow the insert to
3557                  * happen.
3558                  */
3559                 el = left_el;
3560                 insert_el = left_el;
3561                 index = ocfs2_search_extent_list(el, cpos);
3562                 BUG_ON(index == -1);
3563         }
3564
3565         rec = &el->l_recs[index];
3566         ocfs2_subtract_from_rec(inode->i_sb, split, rec, split_rec);
3567         ocfs2_rotate_leaf(insert_el, split_rec);
3568 }
3569
3570 /*
3571  * This function only does inserts on an allocation b-tree. For dinode
3572  * lists, ocfs2_insert_at_leaf() is called directly.
3573  *
3574  * right_path is the path we want to do the actual insert
3575  * in. left_path should only be passed in if we need to update that
3576  * portion of the tree after an edge insert.
3577  */
3578 static int ocfs2_insert_path(struct inode *inode,
3579                              handle_t *handle,
3580                              struct ocfs2_path *left_path,
3581                              struct ocfs2_path *right_path,
3582                              struct ocfs2_extent_rec *insert_rec,
3583                              struct ocfs2_insert_type *insert)
3584 {
3585         int ret, subtree_index;
3586         struct buffer_head *leaf_bh = path_leaf_bh(right_path);
3587
3588         if (left_path) {
3589                 int credits = handle->h_buffer_credits;
3590
3591                 /*
3592                  * There's a chance that left_path got passed back to
3593                  * us without being accounted for in the
3594                  * journal. Extend our transaction here to be sure we
3595                  * can change those blocks.
3596                  */
3597                 credits += left_path->p_tree_depth;
3598
3599                 ret = ocfs2_extend_trans(handle, credits);
3600                 if (ret < 0) {
3601                         mlog_errno(ret);
3602                         goto out;
3603                 }
3604
3605                 ret = ocfs2_journal_access_path(inode, handle, left_path);
3606                 if (ret < 0) {
3607                         mlog_errno(ret);
3608                         goto out;
3609                 }
3610         }
3611
3612         /*
3613          * Pass both paths to the journal. The majority of inserts
3614          * will be touching all components anyway.
3615          */
3616         ret = ocfs2_journal_access_path(inode, handle, right_path);
3617         if (ret < 0) {
3618                 mlog_errno(ret);
3619                 goto out;
3620         }
3621
3622         if (insert->ins_split != SPLIT_NONE) {
3623                 /*
3624                  * We could call ocfs2_insert_at_leaf() for some types
3625                  * of splits, but it's easier to just let one separate
3626                  * function sort it all out.
3627                  */
3628                 ocfs2_split_record(inode, left_path, right_path,
3629                                    insert_rec, insert->ins_split);
3630
3631                 /*
3632                  * Split might have modified either leaf and we don't
3633                  * have a guarantee that the later edge insert will
3634                  * dirty this for us.
3635                  */
3636                 if (left_path)
3637                         ret = ocfs2_journal_dirty(handle,
3638                                                   path_leaf_bh(left_path));
3639                         if (ret)
3640                                 mlog_errno(ret);
3641         } else
3642                 ocfs2_insert_at_leaf(insert_rec, path_leaf_el(right_path),
3643                                      insert, inode);
3644
3645         ret = ocfs2_journal_dirty(handle, leaf_bh);
3646         if (ret)
3647                 mlog_errno(ret);
3648
3649         if (left_path) {
3650                 /*
3651                  * The rotate code has indicated that we need to fix
3652                  * up portions of the tree after the insert.
3653                  *
3654                  * XXX: Should we extend the transaction here?
3655                  */
3656                 subtree_index = ocfs2_find_subtree_root(inode, left_path,
3657                                                         right_path);
3658                 ocfs2_complete_edge_insert(inode, handle, left_path,
3659                                            right_path, subtree_index);
3660         }
3661
3662         ret = 0;
3663 out:
3664         return ret;
3665 }
3666
3667 static int ocfs2_do_insert_extent(struct inode *inode,
3668                                   handle_t *handle,
3669                                   struct buffer_head *di_bh,
3670                                   struct ocfs2_extent_rec *insert_rec,
3671                                   struct ocfs2_insert_type *type)
3672 {
3673         int ret, rotate = 0;
3674         u32 cpos;
3675         struct ocfs2_path *right_path = NULL;
3676         struct ocfs2_path *left_path = NULL;
3677         struct ocfs2_dinode *di;
3678         struct ocfs2_extent_list *el;
3679
3680         di = (struct ocfs2_dinode *) di_bh->b_data;
3681         el = &di->id2.i_list;
3682
3683         ret = ocfs2_journal_access(handle, inode, di_bh,
3684                                    OCFS2_JOURNAL_ACCESS_WRITE);
3685         if (ret) {
3686                 mlog_errno(ret);
3687                 goto out;
3688         }
3689
3690         if (le16_to_cpu(el->l_tree_depth) == 0) {
3691                 ocfs2_insert_at_leaf(insert_rec, el, type, inode);
3692                 goto out_update_clusters;
3693         }
3694
3695         right_path = ocfs2_new_inode_path(di_bh);
3696         if (!right_path) {
3697                 ret = -ENOMEM;
3698                 mlog_errno(ret);
3699                 goto out;
3700         }
3701
3702         /*
3703          * Determine the path to start with. Rotations need the
3704          * rightmost path, everything else can go directly to the
3705          * target leaf.
3706          */
3707         cpos = le32_to_cpu(insert_rec->e_cpos);
3708         if (type->ins_appending == APPEND_NONE &&
3709             type->ins_contig == CONTIG_NONE) {
3710                 rotate = 1;
3711                 cpos = UINT_MAX;
3712         }
3713
3714         ret = ocfs2_find_path(inode, right_path, cpos);
3715         if (ret) {
3716                 mlog_errno(ret);
3717                 goto out;
3718         }
3719
3720         /*
3721          * Rotations and appends need special treatment - they modify
3722          * parts of the tree's above them.
3723          *
3724          * Both might pass back a path immediate to the left of the
3725          * one being inserted to. This will be cause
3726          * ocfs2_insert_path() to modify the rightmost records of
3727          * left_path to account for an edge insert.
3728          *
3729          * XXX: When modifying this code, keep in mind that an insert
3730          * can wind up skipping both of these two special cases...
3731          */
3732         if (rotate) {
3733                 ret = ocfs2_rotate_tree_right(inode, handle, type->ins_split,
3734                                               le32_to_cpu(insert_rec->e_cpos),
3735                                               right_path, &left_path);
3736                 if (ret) {
3737                         mlog_errno(ret);
3738                         goto out;
3739                 }
3740
3741                 /*
3742                  * ocfs2_rotate_tree_right() might have extended the
3743                  * transaction without re-journaling our tree root.
3744                  */
3745                 ret = ocfs2_journal_access(handle, inode, di_bh,
3746                                            OCFS2_JOURNAL_ACCESS_WRITE);
3747                 if (ret) {
3748                         mlog_errno(ret);
3749                         goto out;
3750                 }
3751         } else if (type->ins_appending == APPEND_TAIL
3752                    && type->ins_contig != CONTIG_LEFT) {
3753                 ret = ocfs2_append_rec_to_path(inode, handle, insert_rec,
3754                                                right_path, &left_path);
3755                 if (ret) {
3756                         mlog_errno(ret);
3757                         goto out;
3758                 }
3759         }
3760
3761         ret = ocfs2_insert_path(inode, handle, left_path, right_path,
3762                                 insert_rec, type);
3763         if (ret) {
3764                 mlog_errno(ret);
3765                 goto out;
3766         }
3767
3768 out_update_clusters:
3769         if (type->ins_split == SPLIT_NONE)
3770                 ocfs2_update_dinode_clusters(inode, di,
3771                                              le16_to_cpu(insert_rec->e_leaf_clusters));
3772
3773         ret = ocfs2_journal_dirty(handle, di_bh);
3774         if (ret)
3775                 mlog_errno(ret);
3776
3777 out:
3778         ocfs2_free_path(left_path);
3779         ocfs2_free_path(right_path);
3780
3781         return ret;
3782 }
3783
3784 static enum ocfs2_contig_type
3785 ocfs2_figure_merge_contig_type(struct inode *inode, struct ocfs2_path *path,
3786                                struct ocfs2_extent_list *el, int index,
3787                                struct ocfs2_extent_rec *split_rec)
3788 {
3789         int status;
3790         enum ocfs2_contig_type ret = CONTIG_NONE;
3791         u32 left_cpos, right_cpos;
3792         struct ocfs2_extent_rec *rec = NULL;
3793         struct ocfs2_extent_list *new_el;
3794         struct ocfs2_path *left_path = NULL, *right_path = NULL;
3795         struct buffer_head *bh;
3796         struct ocfs2_extent_block *eb;
3797
3798         if (index > 0) {
3799                 rec = &el->l_recs[index - 1];
3800         } else if (path->p_tree_depth > 0) {
3801                 status = ocfs2_find_cpos_for_left_leaf(inode->i_sb,
3802                                                        path, &left_cpos);
3803                 if (status)
3804                         goto out;
3805
3806                 if (left_cpos != 0) {
3807                         left_path = ocfs2_new_path(path_root_bh(path),
3808                                                    path_root_el(path));
3809                         if (!left_path)
3810                                 goto out;
3811
3812                         status = ocfs2_find_path(inode, left_path, left_cpos);
3813                         if (status)
3814                                 goto out;
3815
3816                         new_el = path_leaf_el(left_path);
3817
3818                         if (le16_to_cpu(new_el->l_next_free_rec) !=
3819                             le16_to_cpu(new_el->l_count)) {
3820                                 bh = path_leaf_bh(left_path);
3821                                 eb = (struct ocfs2_extent_block *)bh->b_data;
3822                                 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb,
3823                                                                  eb);
3824                                 goto out;
3825                         }
3826                         rec = &new_el->l_recs[
3827                                 le16_to_cpu(new_el->l_next_free_rec) - 1];
3828                 }
3829         }
3830
3831         /*
3832          * We're careful to check for an empty extent record here -
3833          * the merge code will know what to do if it sees one.
3834          */
3835         if (rec) {
3836                 if (index == 1 && ocfs2_is_empty_extent(rec)) {
3837                         if (split_rec->e_cpos == el->l_recs[index].e_cpos)
3838                                 ret = CONTIG_RIGHT;
3839                 } else {
3840                         ret = ocfs2_extent_contig(inode, rec, split_rec);
3841                 }
3842         }
3843
3844         rec = NULL;
3845         if (index < (le16_to_cpu(el->l_next_free_rec) - 1))
3846                 rec = &el->l_recs[index + 1];
3847         else if (le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count) &&
3848                  path->p_tree_depth > 0) {
3849                 status = ocfs2_find_cpos_for_right_leaf(inode->i_sb,
3850                                                         path, &right_cpos);
3851                 if (status)
3852                         goto out;
3853
3854                 if (right_cpos == 0)
3855                         goto out;
3856
3857                 right_path = ocfs2_new_path(path_root_bh(path),
3858                                             path_root_el(path));
3859                 if (!right_path)
3860                         goto out;
3861
3862                 status = ocfs2_find_path(inode, right_path, right_cpos);
3863                 if (status)
3864                         goto out;
3865
3866                 new_el = path_leaf_el(right_path);
3867                 rec = &new_el->l_recs[0];
3868                 if (ocfs2_is_empty_extent(rec)) {
3869                         if (le16_to_cpu(new_el->l_next_free_rec) <= 1) {
3870                                 bh = path_leaf_bh(right_path);
3871                                 eb = (struct ocfs2_extent_block *)bh->b_data;
3872                                 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb,
3873                                                                  eb);
3874                                 goto out;
3875                         }
3876                         rec = &new_el->l_recs[1];
3877                 }
3878         }
3879
3880         if (rec) {
3881                 enum ocfs2_contig_type contig_type;
3882
3883                 contig_type = ocfs2_extent_contig(inode, rec, split_rec);
3884
3885                 if (contig_type == CONTIG_LEFT && ret == CONTIG_RIGHT)
3886                         ret = CONTIG_LEFTRIGHT;
3887                 else if (ret == CONTIG_NONE)
3888                         ret = contig_type;
3889         }
3890
3891 out:
3892         if (left_path)
3893                 ocfs2_free_path(left_path);
3894         if (right_path)
3895                 ocfs2_free_path(right_path);
3896
3897         return ret;
3898 }
3899
3900 static void ocfs2_figure_contig_type(struct inode *inode,
3901                                      struct ocfs2_insert_type *insert,
3902                                      struct ocfs2_extent_list *el,
3903                                      struct ocfs2_extent_rec *insert_rec)
3904 {
3905         int i;
3906         enum ocfs2_contig_type contig_type = CONTIG_NONE;
3907
3908         BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
3909
3910         for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
3911                 contig_type = ocfs2_extent_contig(inode, &el->l_recs[i],
3912                                                   insert_rec);
3913                 if (contig_type != CONTIG_NONE) {
3914                         insert->ins_contig_index = i;
3915                         break;
3916                 }
3917         }
3918         insert->ins_contig = contig_type;
3919 }
3920
3921 /*
3922  * This should only be called against the righmost leaf extent list.
3923  *
3924  * ocfs2_figure_appending_type() will figure out whether we'll have to
3925  * insert at the tail of the rightmost leaf.
3926  *
3927  * This should also work against the dinode list for tree's with 0
3928  * depth. If we consider the dinode list to be the rightmost leaf node
3929  * then the logic here makes sense.
3930  */
3931 static void ocfs2_figure_appending_type(struct ocfs2_insert_type *insert,
3932                                         struct ocfs2_extent_list *el,
3933                                         struct ocfs2_extent_rec *insert_rec)
3934 {
3935         int i;
3936         u32 cpos = le32_to_cpu(insert_rec->e_cpos);
3937         struct ocfs2_extent_rec *rec;
3938
3939         insert->ins_appending = APPEND_NONE;
3940
3941         BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
3942
3943         if (!el->l_next_free_rec)
3944                 goto set_tail_append;
3945
3946         if (ocfs2_is_empty_extent(&el->l_recs[0])) {
3947                 /* Were all records empty? */
3948                 if (le16_to_cpu(el->l_next_free_rec) == 1)
3949                         goto set_tail_append;
3950         }
3951
3952         i = le16_to_cpu(el->l_next_free_rec) - 1;
3953         rec = &el->l_recs[i];
3954
3955         if (cpos >=
3956             (le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)))
3957                 goto set_tail_append;
3958
3959         return;
3960
3961 set_tail_append:
3962         insert->ins_appending = APPEND_TAIL;
3963 }
3964
3965 /*
3966  * Helper function called at the begining of an insert.
3967  *
3968  * This computes a few things that are commonly used in the process of
3969  * inserting into the btree:
3970  *   - Whether the new extent is contiguous with an existing one.
3971  *   - The current tree depth.
3972  *   - Whether the insert is an appending one.
3973  *   - The total # of free records in the tree.
3974  *
3975  * All of the information is stored on the ocfs2_insert_type
3976  * structure.
3977  */
3978 static int ocfs2_figure_insert_type(struct inode *inode,
3979                                     struct buffer_head *di_bh,
3980                                     struct buffer_head **last_eb_bh,
3981                                     struct ocfs2_extent_rec *insert_rec,
3982                                     int *free_records,
3983                                     struct ocfs2_insert_type *insert)
3984 {
3985         int ret;
3986         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
3987         struct ocfs2_extent_block *eb;
3988         struct ocfs2_extent_list *el;
3989         struct ocfs2_path *path = NULL;
3990         struct buffer_head *bh = NULL;
3991
3992         insert->ins_split = SPLIT_NONE;
3993
3994         el = &di->id2.i_list;
3995         insert->ins_tree_depth = le16_to_cpu(el->l_tree_depth);
3996
3997         if (el->l_tree_depth) {
3998                 /*
3999                  * If we have tree depth, we read in the
4000                  * rightmost extent block ahead of time as
4001                  * ocfs2_figure_insert_type() and ocfs2_add_branch()
4002                  * may want it later.
4003                  */
4004                 ret = ocfs2_read_block(OCFS2_SB(inode->i_sb),
4005                                        le64_to_cpu(di->i_last_eb_blk), &bh,
4006                                        OCFS2_BH_CACHED, inode);
4007                 if (ret) {
4008                         mlog_exit(ret);
4009                         goto out;
4010                 }
4011                 eb = (struct ocfs2_extent_block *) bh->b_data;
4012                 el = &eb->h_list;
4013         }
4014
4015         /*
4016          * Unless we have a contiguous insert, we'll need to know if
4017          * there is room left in our allocation tree for another
4018          * extent record.
4019          *
4020          * XXX: This test is simplistic, we can search for empty
4021          * extent records too.
4022          */
4023         *free_records = le16_to_cpu(el->l_count) -
4024                 le16_to_cpu(el->l_next_free_rec);
4025
4026         if (!insert->ins_tree_depth) {
4027                 ocfs2_figure_contig_type(inode, insert, el, insert_rec);
4028                 ocfs2_figure_appending_type(insert, el, insert_rec);
4029                 return 0;
4030         }
4031
4032         path = ocfs2_new_inode_path(di_bh);
4033         if (!path) {
4034                 ret = -ENOMEM;
4035                 mlog_errno(ret);
4036                 goto out;
4037         }
4038
4039         /*
4040          * In the case that we're inserting past what the tree
4041          * currently accounts for, ocfs2_find_path() will return for
4042          * us the rightmost tree path. This is accounted for below in
4043          * the appending code.
4044          */
4045         ret = ocfs2_find_path(inode, path, le32_to_cpu(insert_rec->e_cpos));
4046         if (ret) {
4047                 mlog_errno(ret);
4048                 goto out;
4049         }
4050
4051         el = path_leaf_el(path);
4052
4053         /*
4054          * Now that we have the path, there's two things we want to determine:
4055          * 1) Contiguousness (also set contig_index if this is so)
4056          *
4057          * 2) Are we doing an append? We can trivially break this up
4058          *     into two types of appends: simple record append, or a
4059          *     rotate inside the tail leaf.
4060          */
4061         ocfs2_figure_contig_type(inode, insert, el, insert_rec);
4062
4063         /*
4064          * The insert code isn't quite ready to deal with all cases of
4065          * left contiguousness. Specifically, if it's an insert into
4066          * the 1st record in a leaf, it will require the adjustment of
4067          * cluster count on the last record of the path directly to it's
4068          * left. For now, just catch that case and fool the layers
4069          * above us. This works just fine for tree_depth == 0, which
4070          * is why we allow that above.
4071          */
4072         if (insert->ins_contig == CONTIG_LEFT &&
4073             insert->ins_contig_index == 0)
4074                 insert->ins_contig = CONTIG_NONE;
4075
4076         /*
4077          * Ok, so we can simply compare against last_eb to figure out
4078          * whether the path doesn't exist. This will only happen in
4079          * the case that we're doing a tail append, so maybe we can
4080          * take advantage of that information somehow.
4081          */
4082         if (le64_to_cpu(di->i_last_eb_blk) == path_leaf_bh(path)->b_blocknr) {
4083                 /*
4084                  * Ok, ocfs2_find_path() returned us the rightmost
4085                  * tree path. This might be an appending insert. There are
4086                  * two cases:
4087                  *    1) We're doing a true append at the tail:
4088                  *      -This might even be off the end of the leaf
4089                  *    2) We're "appending" by rotating in the tail
4090                  */
4091                 ocfs2_figure_appending_type(insert, el, insert_rec);
4092         }
4093
4094 out:
4095         ocfs2_free_path(path);
4096
4097         if (ret == 0)
4098                 *last_eb_bh = bh;
4099         else
4100                 brelse(bh);
4101         return ret;
4102 }
4103
4104 /*
4105  * Insert an extent into an inode btree.
4106  *
4107  * The caller needs to update fe->i_clusters
4108  */
4109 int ocfs2_insert_extent(struct ocfs2_super *osb,
4110                         handle_t *handle,
4111                         struct inode *inode,
4112                         struct buffer_head *fe_bh,
4113                         u32 cpos,
4114                         u64 start_blk,
4115                         u32 new_clusters,
4116                         u8 flags,
4117                         struct ocfs2_alloc_context *meta_ac)
4118 {
4119         int status;
4120         int uninitialized_var(free_records);
4121         struct buffer_head *last_eb_bh = NULL;
4122         struct ocfs2_insert_type insert = {0, };
4123         struct ocfs2_extent_rec rec;
4124
4125         BUG_ON(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL);
4126
4127         mlog(0, "add %u clusters at position %u to inode %llu\n",
4128              new_clusters, cpos, (unsigned long long)OCFS2_I(inode)->ip_blkno);
4129
4130         mlog_bug_on_msg(!ocfs2_sparse_alloc(osb) &&
4131                         (OCFS2_I(inode)->ip_clusters != cpos),
4132                         "Device %s, asking for sparse allocation: inode %llu, "
4133                         "cpos %u, clusters %u\n",
4134                         osb->dev_str,
4135                         (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos,
4136                         OCFS2_I(inode)->ip_clusters);
4137
4138         memset(&rec, 0, sizeof(rec));
4139         rec.e_cpos = cpu_to_le32(cpos);
4140         rec.e_blkno = cpu_to_le64(start_blk);
4141         rec.e_leaf_clusters = cpu_to_le16(new_clusters);
4142         rec.e_flags = flags;
4143
4144         status = ocfs2_figure_insert_type(inode, fe_bh, &last_eb_bh, &rec,
4145                                           &free_records, &insert);
4146         if (status < 0) {
4147                 mlog_errno(status);
4148                 goto bail;
4149         }
4150
4151         mlog(0, "Insert.appending: %u, Insert.Contig: %u, "
4152              "Insert.contig_index: %d, Insert.free_records: %d, "
4153              "Insert.tree_depth: %d\n",
4154              insert.ins_appending, insert.ins_contig, insert.ins_contig_index,
4155              free_records, insert.ins_tree_depth);
4156
4157         if (insert.ins_contig == CONTIG_NONE && free_records == 0) {
4158                 status = ocfs2_grow_tree(inode, handle, fe_bh,
4159                                          &insert.ins_tree_depth, &last_eb_bh,
4160                                          meta_ac);
4161                 if (status) {
4162                         mlog_errno(status);
4163                         goto bail;
4164                 }
4165         }
4166
4167         /* Finally, we can add clusters. This might rotate the tree for us. */
4168         status = ocfs2_do_insert_extent(inode, handle, fe_bh, &rec, &insert);
4169         if (status < 0)
4170                 mlog_errno(status);
4171         else
4172                 ocfs2_extent_map_insert_rec(inode, &rec);
4173
4174 bail:
4175         if (last_eb_bh)
4176                 brelse(last_eb_bh);
4177
4178         mlog_exit(status);
4179         return status;
4180 }
4181
4182 static void ocfs2_make_right_split_rec(struct super_block *sb,
4183                                        struct ocfs2_extent_rec *split_rec,
4184                                        u32 cpos,
4185                                        struct ocfs2_extent_rec *rec)
4186 {
4187         u32 rec_cpos = le32_to_cpu(rec->e_cpos);
4188         u32 rec_range = rec_cpos + le16_to_cpu(rec->e_leaf_clusters);
4189
4190         memset(split_rec, 0, sizeof(struct ocfs2_extent_rec));
4191
4192         split_rec->e_cpos = cpu_to_le32(cpos);
4193         split_rec->e_leaf_clusters = cpu_to_le16(rec_range - cpos);
4194
4195         split_rec->e_blkno = rec->e_blkno;
4196         le64_add_cpu(&split_rec->e_blkno,
4197                      ocfs2_clusters_to_blocks(sb, cpos - rec_cpos));
4198
4199         split_rec->e_flags = rec->e_flags;
4200 }
4201
4202 static int ocfs2_split_and_insert(struct inode *inode,
4203                                   handle_t *handle,
4204                                   struct ocfs2_path *path,
4205                                   struct buffer_head *di_bh,
4206                                   struct buffer_head **last_eb_bh,
4207                                   int split_index,
4208                                   struct ocfs2_extent_rec *orig_split_rec,
4209                                   struct ocfs2_alloc_context *meta_ac)
4210 {
4211         int ret = 0, depth;
4212         unsigned int insert_range, rec_range, do_leftright = 0;
4213         struct ocfs2_extent_rec tmprec;
4214         struct ocfs2_extent_list *rightmost_el;
4215         struct ocfs2_extent_rec rec;
4216         struct ocfs2_extent_rec split_rec = *orig_split_rec;
4217         struct ocfs2_insert_type insert;
4218         struct ocfs2_extent_block *eb;
4219         struct ocfs2_dinode *di;
4220
4221 leftright:
4222         /*
4223          * Store a copy of the record on the stack - it might move
4224          * around as the tree is manipulated below.
4225          */
4226         rec = path_leaf_el(path)->l_recs[split_index];
4227
4228         di = (struct ocfs2_dinode *)di_bh->b_data;
4229         rightmost_el = &di->id2.i_list;
4230
4231         depth = le16_to_cpu(rightmost_el->l_tree_depth);
4232         if (depth) {
4233                 BUG_ON(!(*last_eb_bh));
4234                 eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
4235                 rightmost_el = &eb->h_list;
4236         }
4237
4238         if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
4239             le16_to_cpu(rightmost_el->l_count)) {
4240                 ret = ocfs2_grow_tree(inode, handle, di_bh, &depth, last_eb_bh,
4241                                       meta_ac);
4242                 if (ret) {
4243                         mlog_errno(ret);
4244                         goto out;
4245                 }
4246         }
4247
4248         memset(&insert, 0, sizeof(struct ocfs2_insert_type));
4249         insert.ins_appending = APPEND_NONE;
4250         insert.ins_contig = CONTIG_NONE;
4251         insert.ins_tree_depth = depth;
4252
4253         insert_range = le32_to_cpu(split_rec.e_cpos) +
4254                 le16_to_cpu(split_rec.e_leaf_clusters);
4255         rec_range = le32_to_cpu(rec.e_cpos) +
4256                 le16_to_cpu(rec.e_leaf_clusters);
4257
4258         if (split_rec.e_cpos == rec.e_cpos) {
4259                 insert.ins_split = SPLIT_LEFT;
4260         } else if (insert_range == rec_range) {
4261                 insert.ins_split = SPLIT_RIGHT;
4262         } else {
4263                 /*
4264                  * Left/right split. We fake this as a right split
4265                  * first and then make a second pass as a left split.
4266                  */
4267                 insert.ins_split = SPLIT_RIGHT;
4268
4269                 ocfs2_make_right_split_rec(inode->i_sb, &tmprec, insert_range,
4270                                            &rec);
4271
4272                 split_rec = tmprec;
4273
4274                 BUG_ON(do_leftright);
4275                 do_leftright = 1;
4276         }
4277
4278         ret = ocfs2_do_insert_extent(inode, handle, di_bh, &split_rec,
4279                                      &insert);
4280         if (ret) {
4281                 mlog_errno(ret);
4282                 goto out;
4283         }
4284
4285         if (do_leftright == 1) {
4286                 u32 cpos;
4287                 struct ocfs2_extent_list *el;
4288
4289                 do_leftright++;
4290                 split_rec = *orig_split_rec;
4291
4292                 ocfs2_reinit_path(path, 1);
4293
4294                 cpos = le32_to_cpu(split_rec.e_cpos);
4295                 ret = ocfs2_find_path(inode, path, cpos);
4296                 if (ret) {
4297                         mlog_errno(ret);
4298                         goto out;
4299                 }
4300
4301                 el = path_leaf_el(path);
4302                 split_index = ocfs2_search_extent_list(el, cpos);
4303                 goto leftright;
4304         }
4305 out:
4306
4307         return ret;
4308 }
4309
4310 /*
4311  * Mark part or all of the extent record at split_index in the leaf
4312  * pointed to by path as written. This removes the unwritten
4313  * extent flag.
4314  *
4315  * Care is taken to handle contiguousness so as to not grow the tree.
4316  *
4317  * meta_ac is not strictly necessary - we only truly need it if growth
4318  * of the tree is required. All other cases will degrade into a less
4319  * optimal tree layout.
4320  *
4321  * last_eb_bh should be the rightmost leaf block for any inode with a
4322  * btree. Since a split may grow the tree or a merge might shrink it, the caller cannot trust the contents of that buffer after this call.
4323  *
4324  * This code is optimized for readability - several passes might be
4325  * made over certain portions of the tree. All of those blocks will
4326  * have been brought into cache (and pinned via the journal), so the
4327  * extra overhead is not expressed in terms of disk reads.
4328  */
4329 static int __ocfs2_mark_extent_written(struct inode *inode,
4330                                        struct buffer_head *di_bh,
4331                                        handle_t *handle,
4332                                        struct ocfs2_path *path,
4333                                        int split_index,
4334                                        struct ocfs2_extent_rec *split_rec,
4335                                        struct ocfs2_alloc_context *meta_ac,
4336                                        struct ocfs2_cached_dealloc_ctxt *dealloc)
4337 {
4338         int ret = 0;
4339         struct ocfs2_extent_list *el = path_leaf_el(path);
4340         struct buffer_head *last_eb_bh = NULL;
4341         struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
4342         struct ocfs2_merge_ctxt ctxt;
4343         struct ocfs2_extent_list *rightmost_el;
4344
4345         if (!(rec->e_flags & OCFS2_EXT_UNWRITTEN)) {
4346                 ret = -EIO;
4347                 mlog_errno(ret);
4348                 goto out;
4349         }
4350
4351         if (le32_to_cpu(rec->e_cpos) > le32_to_cpu(split_rec->e_cpos) ||
4352             ((le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)) <
4353              (le32_to_cpu(split_rec->e_cpos) + le16_to_cpu(split_rec->e_leaf_clusters)))) {
4354                 ret = -EIO;
4355                 mlog_errno(ret);
4356                 goto out;
4357         }
4358
4359         ctxt.c_contig_type = ocfs2_figure_merge_contig_type(inode, path, el,
4360                                                             split_index,
4361                                                             split_rec);
4362
4363         /*
4364          * The core merge / split code wants to know how much room is
4365          * left in this inodes allocation tree, so we pass the
4366          * rightmost extent list.
4367          */
4368         if (path->p_tree_depth) {
4369                 struct ocfs2_extent_block *eb;
4370                 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
4371
4372                 ret = ocfs2_read_block(OCFS2_SB(inode->i_sb),
4373                                        le64_to_cpu(di->i_last_eb_blk),
4374                                        &last_eb_bh, OCFS2_BH_CACHED, inode);
4375                 if (ret) {
4376                         mlog_exit(ret);
4377                         goto out;
4378                 }
4379
4380                 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
4381                 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
4382                         OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
4383                         ret = -EROFS;
4384                         goto out;
4385                 }
4386
4387                 rightmost_el = &eb->h_list;
4388         } else
4389                 rightmost_el = path_root_el(path);
4390
4391         if (rec->e_cpos == split_rec->e_cpos &&
4392             rec->e_leaf_clusters == split_rec->e_leaf_clusters)
4393                 ctxt.c_split_covers_rec = 1;
4394         else
4395                 ctxt.c_split_covers_rec = 0;
4396
4397         ctxt.c_has_empty_extent = ocfs2_is_empty_extent(&el->l_recs[0]);
4398
4399         mlog(0, "index: %d, contig: %u, has_empty: %u, split_covers: %u\n",
4400              split_index, ctxt.c_contig_type, ctxt.c_has_empty_extent,
4401              ctxt.c_split_covers_rec);
4402
4403         if (ctxt.c_contig_type == CONTIG_NONE) {
4404                 if (ctxt.c_split_covers_rec)
4405                         el->l_recs[split_index] = *split_rec;
4406                 else
4407                         ret = ocfs2_split_and_insert(inode, handle, path, di_bh,
4408                                                      &last_eb_bh, split_index,
4409                                                      split_rec, meta_ac);
4410                 if (ret)
4411                         mlog_errno(ret);
4412         } else {
4413                 ret = ocfs2_try_to_merge_extent(inode, handle, path,
4414                                                 split_index, split_rec,
4415                                                 dealloc, &ctxt);
4416                 if (ret)
4417                         mlog_errno(ret);
4418         }
4419
4420 out:
4421         brelse(last_eb_bh);
4422         return ret;
4423 }
4424
4425 /*
4426  * Mark the already-existing extent at cpos as written for len clusters.
4427  *
4428  * If the existing extent is larger than the request, initiate a
4429  * split. An attempt will be made at merging with adjacent extents.
4430  *
4431  * The caller is responsible for passing down meta_ac if we'll need it.
4432  */
4433 int ocfs2_mark_extent_written(struct inode *inode, struct buffer_head *di_bh,
4434                               handle_t *handle, u32 cpos, u32 len, u32 phys,
4435                               struct ocfs2_alloc_context *meta_ac,
4436                               struct ocfs2_cached_dealloc_ctxt *dealloc)
4437 {
4438         int ret, index;
4439         u64 start_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys);
4440         struct ocfs2_extent_rec split_rec;
4441         struct ocfs2_path *left_path = NULL;
4442         struct ocfs2_extent_list *el;
4443
4444         mlog(0, "Inode %lu cpos %u, len %u, phys %u (%llu)\n",
4445              inode->i_ino, cpos, len, phys, (unsigned long long)start_blkno);
4446
4447         if (!ocfs2_writes_unwritten_extents(OCFS2_SB(inode->i_sb))) {
4448                 ocfs2_error(inode->i_sb, "Inode %llu has unwritten extents "
4449                             "that are being written to, but the feature bit "
4450                             "is not set in the super block.",
4451                             (unsigned long long)OCFS2_I(inode)->ip_blkno);
4452                 ret = -EROFS;
4453                 goto out;
4454         }
4455
4456         /*
4457          * XXX: This should be fixed up so that we just re-insert the
4458          * next extent records.
4459          */
4460         ocfs2_extent_map_trunc(inode, 0);
4461
4462         left_path = ocfs2_new_inode_path(di_bh);
4463         if (!left_path) {
4464                 ret = -ENOMEM;
4465                 mlog_errno(ret);
4466                 goto out;
4467         }
4468
4469         ret = ocfs2_find_path(inode, left_path, cpos);
4470         if (ret) {
4471                 mlog_errno(ret);
4472                 goto out;
4473         }
4474         el = path_leaf_el(left_path);
4475
4476         index = ocfs2_search_extent_list(el, cpos);
4477         if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
4478                 ocfs2_error(inode->i_sb,
4479                             "Inode %llu has an extent at cpos %u which can no "
4480                             "longer be found.\n",
4481                             (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
4482                 ret = -EROFS;
4483                 goto out;
4484         }
4485
4486         memset(&split_rec, 0, sizeof(struct ocfs2_extent_rec));
4487         split_rec.e_cpos = cpu_to_le32(cpos);
4488         split_rec.e_leaf_clusters = cpu_to_le16(len);
4489         split_rec.e_blkno = cpu_to_le64(start_blkno);
4490         split_rec.e_flags = path_leaf_el(left_path)->l_recs[index].e_flags;
4491         split_rec.e_flags &= ~OCFS2_EXT_UNWRITTEN;
4492
4493         ret = __ocfs2_mark_extent_written(inode, di_bh, handle, left_path,
4494                                           index, &split_rec, meta_ac, dealloc);
4495         if (ret)
4496                 mlog_errno(ret);
4497
4498 out:
4499         ocfs2_free_path(left_path);
4500         return ret;
4501 }
4502
4503 static int ocfs2_split_tree(struct inode *inode, struct buffer_head *di_bh,
4504                             handle_t *handle, struct ocfs2_path *path,
4505                             int index, u32 new_range,
4506                             struct ocfs2_alloc_context *meta_ac)
4507 {
4508         int ret, depth, credits = handle->h_buffer_credits;
4509         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
4510         struct buffer_head *last_eb_bh = NULL;
4511         struct ocfs2_extent_block *eb;
4512         struct ocfs2_extent_list *rightmost_el, *el;
4513         struct ocfs2_extent_rec split_rec;
4514         struct ocfs2_extent_rec *rec;
4515         struct ocfs2_insert_type insert;
4516
4517         /*
4518          * Setup the record to split before we grow the tree.
4519          */
4520         el = path_leaf_el(path);
4521         rec = &el->l_recs[index];
4522         ocfs2_make_right_split_rec(inode->i_sb, &split_rec, new_range, rec);
4523
4524         depth = path->p_tree_depth;
4525         if (depth > 0) {
4526                 ret = ocfs2_read_block(OCFS2_SB(inode->i_sb),
4527                                        le64_to_cpu(di->i_last_eb_blk),
4528                                        &last_eb_bh, OCFS2_BH_CACHED, inode);
4529                 if (ret < 0) {
4530                         mlog_errno(ret);
4531                         goto out;
4532                 }
4533
4534                 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
4535                 rightmost_el = &eb->h_list;
4536         } else
4537                 rightmost_el = path_leaf_el(path);
4538
4539         credits += path->p_tree_depth + ocfs2_extend_meta_needed(di);
4540         ret = ocfs2_extend_trans(handle, credits);
4541         if (ret) {
4542                 mlog_errno(ret);
4543                 goto out;
4544         }
4545
4546         if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
4547             le16_to_cpu(rightmost_el->l_count)) {
4548                 ret = ocfs2_grow_tree(inode, handle, di_bh, &depth, &last_eb_bh,
4549                                       meta_ac);
4550                 if (ret) {
4551                         mlog_errno(ret);
4552                         goto out;
4553                 }
4554         }
4555
4556         memset(&insert, 0, sizeof(struct ocfs2_insert_type));
4557         insert.ins_appending = APPEND_NONE;
4558         insert.ins_contig = CONTIG_NONE;
4559         insert.ins_split = SPLIT_RIGHT;
4560         insert.ins_tree_depth = depth;
4561
4562         ret = ocfs2_do_insert_extent(inode, handle, di_bh, &split_rec, &insert);
4563         if (ret)
4564                 mlog_errno(ret);
4565
4566 out:
4567         brelse(last_eb_bh);
4568         return ret;
4569 }
4570
4571 static int ocfs2_truncate_rec(struct inode *inode, handle_t *handle,
4572                               struct ocfs2_path *path, int index,
4573                               struct ocfs2_cached_dealloc_ctxt *dealloc,
4574                               u32 cpos, u32 len)
4575 {
4576         int ret;
4577         u32 left_cpos, rec_range, trunc_range;
4578         int wants_rotate = 0, is_rightmost_tree_rec = 0;
4579         struct super_block *sb = inode->i_sb;
4580         struct ocfs2_path *left_path = NULL;
4581         struct ocfs2_extent_list *el = path_leaf_el(path);
4582         struct ocfs2_extent_rec *rec;
4583         struct ocfs2_extent_block *eb;
4584
4585         if (ocfs2_is_empty_extent(&el->l_recs[0]) && index > 0) {
4586                 ret = ocfs2_rotate_tree_left(inode, handle, path, dealloc);
4587                 if (ret) {
4588                         mlog_errno(ret);
4589                         goto out;
4590                 }
4591
4592                 index--;
4593         }
4594
4595         if (index == (le16_to_cpu(el->l_next_free_rec) - 1) &&
4596             path->p_tree_depth) {
4597                 /*
4598                  * Check whether this is the rightmost tree record. If
4599                  * we remove all of this record or part of its right
4600                  * edge then an update of the record lengths above it
4601                  * will be required.
4602                  */
4603                 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
4604                 if (eb->h_next_leaf_blk == 0)
4605                         is_rightmost_tree_rec = 1;
4606         }
4607
4608         rec = &el->l_recs[index];
4609         if (index == 0 && path->p_tree_depth &&
4610             le32_to_cpu(rec->e_cpos) == cpos) {
4611                 /*
4612                  * Changing the leftmost offset (via partial or whole
4613                  * record truncate) of an interior (or rightmost) path
4614                  * means we have to update the subtree that is formed
4615                  * by this leaf and the one to it's left.
4616                  *
4617                  * There are two cases we can skip:
4618                  *   1) Path is the leftmost one in our inode tree.
4619                  *   2) The leaf is rightmost and will be empty after
4620                  *      we remove the extent record - the rotate code
4621                  *      knows how to update the newly formed edge.
4622                  */
4623
4624                 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path,
4625                                                     &left_cpos);
4626                 if (ret) {
4627                         mlog_errno(ret);
4628                         goto out;
4629                 }
4630
4631                 if (left_cpos && le16_to_cpu(el->l_next_free_rec) > 1) {
4632                         left_path = ocfs2_new_path(path_root_bh(path),
4633                                                    path_root_el(path));
4634                         if (!left_path) {
4635                                 ret = -ENOMEM;
4636                                 mlog_errno(ret);
4637                                 goto out;
4638                         }
4639
4640                         ret = ocfs2_find_path(inode, left_path, left_cpos);
4641                         if (ret) {
4642                                 mlog_errno(ret);
4643                                 goto out;
4644                         }
4645                 }
4646         }
4647
4648         ret = ocfs2_extend_rotate_transaction(handle, 0,
4649                                               handle->h_buffer_credits,
4650                                               path);
4651         if (ret) {
4652                 mlog_errno(ret);
4653                 goto out;
4654         }
4655
4656         ret = ocfs2_journal_access_path(inode, handle, path);
4657         if (ret) {
4658                 mlog_errno(ret);
4659                 goto out;
4660         }
4661
4662         ret = ocfs2_journal_access_path(inode, handle, left_path);
4663         if (ret) {
4664                 mlog_errno(ret);
4665                 goto out;
4666         }
4667
4668         rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
4669         trunc_range = cpos + len;
4670
4671         if (le32_to_cpu(rec->e_cpos) == cpos && rec_range == trunc_range) {
4672                 int next_free;
4673
4674                 memset(rec, 0, sizeof(*rec));
4675                 ocfs2_cleanup_merge(el, index);
4676                 wants_rotate = 1;
4677
4678                 next_free = le16_to_cpu(el->l_next_free_rec);
4679                 if (is_rightmost_tree_rec && next_free > 1) {
4680                         /*
4681                          * We skip the edge update if this path will
4682                          * be deleted by the rotate code.
4683                          */
4684                         rec = &el->l_recs[next_free - 1];
4685                         ocfs2_adjust_rightmost_records(inode, handle, path,
4686                                                        rec);
4687                 }
4688         } else if (le32_to_cpu(rec->e_cpos) == cpos) {
4689                 /* Remove leftmost portion of the record. */
4690                 le32_add_cpu(&rec->e_cpos, len);
4691                 le64_add_cpu(&rec->e_blkno, ocfs2_clusters_to_blocks(sb, len));
4692                 le16_add_cpu(&rec->e_leaf_clusters, -len);
4693         } else if (rec_range == trunc_range) {
4694                 /* Remove rightmost portion of the record */
4695                 le16_add_cpu(&rec->e_leaf_clusters, -len);
4696                 if (is_rightmost_tree_rec)
4697                         ocfs2_adjust_rightmost_records(inode, handle, path, rec);
4698         } else {
4699                 /* Caller should have trapped this. */
4700                 mlog(ML_ERROR, "Inode %llu: Invalid record truncate: (%u, %u) "
4701                      "(%u, %u)\n", (unsigned long long)OCFS2_I(inode)->ip_blkno,
4702                      le32_to_cpu(rec->e_cpos),
4703                      le16_to_cpu(rec->e_leaf_clusters), cpos, len);
4704                 BUG();
4705         }
4706
4707         if (left_path) {
4708                 int subtree_index;
4709
4710                 subtree_index = ocfs2_find_subtree_root(inode, left_path, path);
4711                 ocfs2_complete_edge_insert(inode, handle, left_path, path,
4712                                            subtree_index);
4713         }
4714
4715         ocfs2_journal_dirty(handle, path_leaf_bh(path));
4716
4717         ret = ocfs2_rotate_tree_left(inode, handle, path, dealloc);
4718         if (ret) {
4719                 mlog_errno(ret);
4720                 goto out;
4721         }
4722
4723 out:
4724         ocfs2_free_path(left_path);
4725         return ret;
4726 }
4727
4728 int ocfs2_remove_extent(struct inode *inode, struct buffer_head *di_bh,
4729                         u32 cpos, u32 len, handle_t *handle,
4730                         struct ocfs2_alloc_context *meta_ac,
4731                         struct ocfs2_cached_dealloc_ctxt *dealloc)
4732 {
4733         int ret, index;
4734         u32 rec_range, trunc_range;
4735         struct ocfs2_extent_rec *rec;
4736         struct ocfs2_extent_list *el;
4737         struct ocfs2_path *path;
4738
4739         ocfs2_extent_map_trunc(inode, 0);
4740
4741         path = ocfs2_new_inode_path(di_bh);
4742         if (!path) {
4743                 ret = -ENOMEM;
4744                 mlog_errno(ret);
4745                 goto out;
4746         }
4747
4748         ret = ocfs2_find_path(inode, path, cpos);
4749         if (ret) {
4750                 mlog_errno(ret);
4751                 goto out;
4752         }
4753
4754         el = path_leaf_el(path);
4755         index = ocfs2_search_extent_list(el, cpos);
4756         if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
4757                 ocfs2_error(inode->i_sb,
4758                             "Inode %llu has an extent at cpos %u which can no "
4759                             "longer be found.\n",
4760                             (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
4761                 ret = -EROFS;
4762                 goto out;
4763         }
4764
4765         /*
4766          * We have 3 cases of extent removal:
4767          *   1) Range covers the entire extent rec
4768          *   2) Range begins or ends on one edge of the extent rec
4769          *   3) Range is in the middle of the extent rec (no shared edges)
4770          *
4771          * For case 1 we remove the extent rec and left rotate to
4772          * fill the hole.
4773          *
4774          * For case 2 we just shrink the existing extent rec, with a
4775          * tree update if the shrinking edge is also the edge of an
4776          * extent block.
4777          *
4778          * For case 3 we do a right split to turn the extent rec into
4779          * something case 2 can handle.
4780          */
4781         rec = &el->l_recs[index];
4782         rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
4783         trunc_range = cpos + len;
4784
4785         BUG_ON(cpos < le32_to_cpu(rec->e_cpos) || trunc_range > rec_range);
4786
4787         mlog(0, "Inode %llu, remove (cpos %u, len %u). Existing index %d "
4788              "(cpos %u, len %u)\n",
4789              (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos, len, index,
4790              le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec));
4791
4792         if (le32_to_cpu(rec->e_cpos) == cpos || rec_range == trunc_range) {
4793                 ret = ocfs2_truncate_rec(inode, handle, path, index, dealloc,
4794                                          cpos, len);
4795                 if (ret) {
4796                         mlog_errno(ret);
4797                         goto out;
4798                 }
4799         } else {
4800                 ret = ocfs2_split_tree(inode, di_bh, handle, path, index,
4801                                        trunc_range, meta_ac);
4802                 if (ret) {
4803                         mlog_errno(ret);
4804                         goto out;
4805                 }
4806
4807                 /*
4808                  * The split could have manipulated the tree enough to
4809                  * move the record location, so we have to look for it again.
4810                  */
4811                 ocfs2_reinit_path(path, 1);
4812
4813                 ret = ocfs2_find_path(inode, path, cpos);
4814                 if (ret) {
4815                         mlog_errno(ret);
4816                         goto out;
4817                 }
4818
4819                 el = path_leaf_el(path);
4820                 index = ocfs2_search_extent_list(el, cpos);
4821                 if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
4822                         ocfs2_error(inode->i_sb,
4823                                     "Inode %llu: split at cpos %u lost record.",
4824                                     (unsigned long long)OCFS2_I(inode)->ip_blkno,
4825                                     cpos);
4826                         ret = -EROFS;
4827                         goto out;
4828                 }
4829
4830                 /*
4831                  * Double check our values here. If anything is fishy,
4832                  * it's easier to catch it at the top level.
4833                  */
4834                 rec = &el->l_recs[index];
4835                 rec_range = le32_to_cpu(rec->e_cpos) +
4836                         ocfs2_rec_clusters(el, rec);
4837                 if (rec_range != trunc_range) {
4838                         ocfs2_error(inode->i_sb,
4839                                     "Inode %llu: error after split at cpos %u"
4840                                     "trunc len %u, existing record is (%u,%u)",
4841                                     (unsigned long long)OCFS2_I(inode)->ip_blkno,
4842                                     cpos, len, le32_to_cpu(rec->e_cpos),
4843                                     ocfs2_rec_clusters(el, rec));
4844                         ret = -EROFS;
4845                         goto out;
4846                 }
4847
4848                 ret = ocfs2_truncate_rec(inode, handle, path, index, dealloc,
4849                                          cpos, len);
4850                 if (ret) {
4851                         mlog_errno(ret);
4852                         goto out;
4853                 }
4854         }
4855
4856 out:
4857         ocfs2_free_path(path);
4858         return ret;
4859 }
4860
4861 int ocfs2_truncate_log_needs_flush(struct ocfs2_super *osb)
4862 {
4863         struct buffer_head *tl_bh = osb->osb_tl_bh;
4864         struct ocfs2_dinode *di;
4865         struct ocfs2_truncate_log *tl;
4866
4867         di = (struct ocfs2_dinode *) tl_bh->b_data;
4868         tl = &di->id2.i_dealloc;
4869
4870         mlog_bug_on_msg(le16_to_cpu(tl->tl_used) > le16_to_cpu(tl->tl_count),
4871                         "slot %d, invalid truncate log parameters: used = "
4872                         "%u, count = %u\n", osb->slot_num,
4873                         le16_to_cpu(tl->tl_used), le16_to_cpu(tl->tl_count));
4874         return le16_to_cpu(tl->tl_used) == le16_to_cpu(tl->tl_count);
4875 }
4876
4877 static int ocfs2_truncate_log_can_coalesce(struct ocfs2_truncate_log *tl,
4878                                            unsigned int new_start)
4879 {
4880         unsigned int tail_index;
4881         unsigned int current_tail;
4882
4883         /* No records, nothing to coalesce */
4884         if (!le16_to_cpu(tl->tl_used))
4885                 return 0;
4886
4887         tail_index = le16_to_cpu(tl->tl_used) - 1;
4888         current_tail = le32_to_cpu(tl->tl_recs[tail_index].t_start);
4889         current_tail += le32_to_cpu(tl->tl_recs[tail_index].t_clusters);
4890
4891         return current_tail == new_start;
4892 }
4893
4894 int ocfs2_truncate_log_append(struct ocfs2_super *osb,
4895                               handle_t *handle,
4896                               u64 start_blk,
4897                               unsigned int num_clusters)
4898 {
4899         int status, index;
4900         unsigned int start_cluster, tl_count;
4901         struct inode *tl_inode = osb->osb_tl_inode;
4902         struct buffer_head *tl_bh = osb->osb_tl_bh;
4903         struct ocfs2_dinode *di;
4904         struct ocfs2_truncate_log *tl;
4905
4906         mlog_entry("start_blk = %llu, num_clusters = %u\n",
4907                    (unsigned long long)start_blk, num_clusters);
4908
4909         BUG_ON(mutex_trylock(&tl_inode->i_mutex));
4910
4911         start_cluster = ocfs2_blocks_to_clusters(osb->sb, start_blk);
4912
4913         di = (struct ocfs2_dinode *) tl_bh->b_data;
4914         tl = &di->id2.i_dealloc;
4915         if (!OCFS2_IS_VALID_DINODE(di)) {
4916                 OCFS2_RO_ON_INVALID_DINODE(osb->sb, di);
4917                 status = -EIO;
4918                 goto bail;
4919         }
4920
4921         tl_count = le16_to_cpu(tl->tl_count);
4922         mlog_bug_on_msg(tl_count > ocfs2_truncate_recs_per_inode(osb->sb) ||
4923                         tl_count == 0,
4924                         "Truncate record count on #%llu invalid "
4925                         "wanted %u, actual %u\n",
4926                         (unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
4927                         ocfs2_truncate_recs_per_inode(osb->sb),
4928                         le16_to_cpu(tl->tl_count));
4929
4930         /* Caller should have known to flush before calling us. */
4931         index = le16_to_cpu(tl->tl_used);
4932         if (index >= tl_count) {
4933                 status = -ENOSPC;
4934                 mlog_errno(status);
4935                 goto bail;
4936         }
4937
4938         status = ocfs2_journal_access(handle, tl_inode, tl_bh,
4939                                       OCFS2_JOURNAL_ACCESS_WRITE);
4940         if (status < 0) {
4941                 mlog_errno(status);
4942                 goto bail;
4943         }
4944
4945         mlog(0, "Log truncate of %u clusters starting at cluster %u to "
4946              "%llu (index = %d)\n", num_clusters, start_cluster,
4947              (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, index);
4948
4949         if (ocfs2_truncate_log_can_coalesce(tl, start_cluster)) {
4950                 /*
4951                  * Move index back to the record we are coalescing with.
4952                  * ocfs2_truncate_log_can_coalesce() guarantees nonzero
4953                  */
4954                 index--;
4955
4956                 num_clusters += le32_to_cpu(tl->tl_recs[index].t_clusters);
4957                 mlog(0, "Coalesce with index %u (start = %u, clusters = %u)\n",
4958                      index, le32_to_cpu(tl->tl_recs[index].t_start),
4959                      num_clusters);
4960         } else {
4961                 tl->tl_recs[index].t_start = cpu_to_le32(start_cluster);
4962                 tl->tl_used = cpu_to_le16(index + 1);
4963         }
4964         tl->tl_recs[index].t_clusters = cpu_to_le32(num_clusters);
4965
4966         status = ocfs2_journal_dirty(handle, tl_bh);
4967         if (status < 0) {
4968                 mlog_errno(status);
4969                 goto bail;
4970         }
4971
4972 bail:
4973         mlog_exit(status);
4974         return status;
4975 }
4976
4977 static int ocfs2_replay_truncate_records(struct ocfs2_super *osb,
4978                                          handle_t *handle,
4979                                          struct inode *data_alloc_inode,
4980                                          struct buffer_head *data_alloc_bh)
4981 {
4982         int status = 0;
4983         int i;
4984         unsigned int num_clusters;
4985         u64 start_blk;
4986         struct ocfs2_truncate_rec rec;
4987         struct ocfs2_dinode *di;
4988         struct ocfs2_truncate_log *tl;
4989         struct inode *tl_inode = osb->osb_tl_inode;
4990         struct buffer_head *tl_bh = osb->osb_tl_bh;
4991
4992         mlog_entry_void();
4993
4994         di = (struct ocfs2_dinode *) tl_bh->b_data;
4995         tl = &di->id2.i_dealloc;
4996         i = le16_to_cpu(tl->tl_used) - 1;
4997         while (i >= 0) {
4998                 /* Caller has given us at least enough credits to
4999                  * update the truncate log dinode */
5000                 status = ocfs2_journal_access(handle, tl_inode, tl_bh,
5001                                               OCFS2_JOURNAL_ACCESS_WRITE);
5002                 if (status < 0) {
5003                         mlog_errno(status);
5004                         goto bail;
5005                 }
5006
5007                 tl->tl_used = cpu_to_le16(i);
5008
5009                 status = ocfs2_journal_dirty(handle, tl_bh);
5010                 if (status < 0) {
5011                         mlog_errno(status);
5012                         goto bail;
5013                 }
5014
5015                 /* TODO: Perhaps we can calculate the bulk of the
5016                  * credits up front rather than extending like
5017                  * this. */
5018                 status = ocfs2_extend_trans(handle,
5019                                             OCFS2_TRUNCATE_LOG_FLUSH_ONE_REC);
5020                 if (status < 0) {
5021                         mlog_errno(status);
5022                         goto bail;
5023                 }
5024
5025                 rec = tl->tl_recs[i];
5026                 start_blk = ocfs2_clusters_to_blocks(data_alloc_inode->i_sb,
5027                                                     le32_to_cpu(rec.t_start));
5028                 num_clusters = le32_to_cpu(rec.t_clusters);
5029
5030                 /* if start_blk is not set, we ignore the record as
5031                  * invalid. */
5032                 if (start_blk) {
5033                         mlog(0, "free record %d, start = %u, clusters = %u\n",
5034                              i, le32_to_cpu(rec.t_start), num_clusters);
5035
5036                         status = ocfs2_free_clusters(handle, data_alloc_inode,
5037                                                      data_alloc_bh, start_blk,
5038                                                      num_clusters);
5039                         if (status < 0) {
5040                                 mlog_errno(status);
5041                                 goto bail;
5042                         }
5043                 }
5044                 i--;
5045         }
5046
5047 bail:
5048         mlog_exit(status);
5049         return status;
5050 }
5051
5052 /* Expects you to already be holding tl_inode->i_mutex */
5053 int __ocfs2_flush_truncate_log(struct ocfs2_super *osb)
5054 {
5055         int status;
5056         unsigned int num_to_flush;
5057         handle_t *handle;
5058         struct inode *tl_inode = osb->osb_tl_inode;
5059         struct inode *data_alloc_inode = NULL;
5060         struct buffer_head *tl_bh = osb->osb_tl_bh;
5061         struct buffer_head *data_alloc_bh = NULL;
5062         struct ocfs2_dinode *di;
5063         struct ocfs2_truncate_log *tl;
5064
5065         mlog_entry_void();
5066
5067         BUG_ON(mutex_trylock(&tl_inode->i_mutex));
5068
5069         di = (struct ocfs2_dinode *) tl_bh->b_data;
5070         tl = &di->id2.i_dealloc;
5071         if (!OCFS2_IS_VALID_DINODE(di)) {
5072                 OCFS2_RO_ON_INVALID_DINODE(osb->sb, di);
5073                 status = -EIO;
5074                 goto out;
5075         }
5076
5077         num_to_flush = le16_to_cpu(tl->tl_used);
5078         mlog(0, "Flush %u records from truncate log #%llu\n",
5079              num_to_flush, (unsigned long long)OCFS2_I(tl_inode)->ip_blkno);
5080         if (!num_to_flush) {
5081                 status = 0;
5082                 goto out;
5083         }
5084
5085         data_alloc_inode = ocfs2_get_system_file_inode(osb,
5086                                                        GLOBAL_BITMAP_SYSTEM_INODE,
5087                                                        OCFS2_INVALID_SLOT);
5088         if (!data_alloc_inode) {
5089                 status = -EINVAL;
5090                 mlog(ML_ERROR, "Could not get bitmap inode!\n");
5091                 goto out;
5092         }
5093
5094         mutex_lock(&data_alloc_inode->i_mutex);
5095
5096         status = ocfs2_inode_lock(data_alloc_inode, &data_alloc_bh, 1);
5097         if (status < 0) {
5098                 mlog_errno(status);
5099                 goto out_mutex;
5100         }
5101
5102         handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
5103         if (IS_ERR(handle)) {
5104                 status = PTR_ERR(handle);
5105                 mlog_errno(status);
5106                 goto out_unlock;
5107         }
5108
5109         status = ocfs2_replay_truncate_records(osb, handle, data_alloc_inode,
5110                                                data_alloc_bh);
5111         if (status < 0)
5112                 mlog_errno(status);
5113
5114         ocfs2_commit_trans(osb, handle);
5115
5116 out_unlock:
5117         brelse(data_alloc_bh);
5118         ocfs2_inode_unlock(data_alloc_inode, 1);
5119
5120 out_mutex:
5121         mutex_unlock(&data_alloc_inode->i_mutex);
5122         iput(data_alloc_inode);
5123
5124 out:
5125         mlog_exit(status);
5126         return status;
5127 }
5128
5129 int ocfs2_flush_truncate_log(struct ocfs2_super *osb)
5130 {
5131         int status;
5132         struct inode *tl_inode = osb->osb_tl_inode;
5133
5134         mutex_lock(&tl_inode->i_mutex);
5135         status = __ocfs2_flush_truncate_log(osb);
5136         mutex_unlock(&tl_inode->i_mutex);
5137
5138         return status;
5139 }
5140
5141 static void ocfs2_truncate_log_worker(struct work_struct *work)
5142 {
5143         int status;
5144         struct ocfs2_super *osb =
5145                 container_of(work, struct ocfs2_super,
5146                              osb_truncate_log_wq.work);
5147
5148         mlog_entry_void();
5149
5150         status = ocfs2_flush_truncate_log(osb);
5151         if (status < 0)
5152                 mlog_errno(status);
5153
5154         mlog_exit(status);
5155 }
5156
5157 #define OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL (2 * HZ)
5158 void ocfs2_schedule_truncate_log_flush(struct ocfs2_super *osb,
5159                                        int cancel)
5160 {
5161         if (osb->osb_tl_inode) {
5162                 /* We want to push off log flushes while truncates are
5163                  * still running. */
5164                 if (cancel)
5165                         cancel_delayed_work(&osb->osb_truncate_log_wq);
5166
5167                 queue_delayed_work(ocfs2_wq, &osb->osb_truncate_log_wq,
5168                                    OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL);
5169         }
5170 }
5171
5172 static int ocfs2_get_truncate_log_info(struct ocfs2_super *osb,
5173                                        int slot_num,
5174                                        struct inode **tl_inode,
5175                                        struct buffer_head **tl_bh)
5176 {
5177         int status;
5178         struct inode *inode = NULL;
5179         struct buffer_head *bh = NULL;
5180
5181         inode = ocfs2_get_system_file_inode(osb,
5182                                            TRUNCATE_LOG_SYSTEM_INODE,
5183                                            slot_num);
5184         if (!inode) {
5185                 status = -EINVAL;
5186                 mlog(ML_ERROR, "Could not get load truncate log inode!\n");
5187                 goto bail;
5188         }
5189
5190         status = ocfs2_read_block(osb, OCFS2_I(inode)->ip_blkno, &bh,
5191                                   OCFS2_BH_CACHED, inode);
5192         if (status < 0) {
5193                 iput(inode);
5194                 mlog_errno(status);
5195                 goto bail;
5196         }
5197
5198         *tl_inode = inode;
5199         *tl_bh    = bh;
5200 bail:
5201         mlog_exit(status);
5202         return status;
5203 }
5204
5205 /* called during the 1st stage of node recovery. we stamp a clean
5206  * truncate log and pass back a copy for processing later. if the
5207  * truncate log does not require processing, a *tl_copy is set to
5208  * NULL. */
5209 int ocfs2_begin_truncate_log_recovery(struct ocfs2_super *osb,
5210                                       int slot_num,
5211                                       struct ocfs2_dinode **tl_copy)
5212 {
5213         int status;
5214         struct inode *tl_inode = NULL;
5215         struct buffer_head *tl_bh = NULL;
5216         struct ocfs2_dinode *di;
5217         struct ocfs2_truncate_log *tl;
5218
5219         *tl_copy = NULL;
5220
5221         mlog(0, "recover truncate log from slot %d\n", slot_num);
5222
5223         status = ocfs2_get_truncate_log_info(osb, slot_num, &tl_inode, &tl_bh);
5224         if (status < 0) {
5225                 mlog_errno(status);
5226                 goto bail;
5227         }
5228
5229         di = (struct ocfs2_dinode *) tl_bh->b_data;
5230         tl = &di->id2.i_dealloc;
5231         if (!OCFS2_IS_VALID_DINODE(di)) {
5232                 OCFS2_RO_ON_INVALID_DINODE(tl_inode->i_sb, di);
5233                 status = -EIO;
5234                 goto bail;
5235         }
5236
5237         if (le16_to_cpu(tl->tl_used)) {
5238                 mlog(0, "We'll have %u logs to recover\n",
5239                      le16_to_cpu(tl->tl_used));
5240
5241                 *tl_copy = kmalloc(tl_bh->b_size, GFP_KERNEL);
5242                 if (!(*tl_copy)) {
5243                         status = -ENOMEM;
5244                         mlog_errno(status);
5245                         goto bail;
5246                 }
5247
5248                 /* Assuming the write-out below goes well, this copy
5249                  * will be passed back to recovery for processing. */
5250                 memcpy(*tl_copy, tl_bh->b_data, tl_bh->b_size);
5251
5252                 /* All we need to do to clear the truncate log is set
5253                  * tl_used. */
5254                 tl->tl_used = 0;
5255
5256                 status = ocfs2_write_block(osb, tl_bh, tl_inode);
5257                 if (status < 0) {
5258                         mlog_errno(status);
5259                         goto bail;
5260                 }
5261         }
5262
5263 bail:
5264         if (tl_inode)
5265                 iput(tl_inode);
5266         if (tl_bh)
5267                 brelse(tl_bh);
5268
5269         if (status < 0 && (*tl_copy)) {
5270                 kfree(*tl_copy);
5271                 *tl_copy = NULL;
5272         }
5273
5274         mlog_exit(status);
5275         return status;
5276 }
5277
5278 int ocfs2_complete_truncate_log_recovery(struct ocfs2_super *osb,
5279                                          struct ocfs2_dinode *tl_copy)
5280 {
5281         int status = 0;
5282         int i;
5283         unsigned int clusters, num_recs, start_cluster;
5284         u64 start_blk;
5285         handle_t *handle;
5286         struct inode *tl_inode = osb->osb_tl_inode;
5287         struct ocfs2_truncate_log *tl;
5288
5289         mlog_entry_void();
5290
5291         if (OCFS2_I(tl_inode)->ip_blkno == le64_to_cpu(tl_copy->i_blkno)) {
5292                 mlog(ML_ERROR, "Asked to recover my own truncate log!\n");
5293                 return -EINVAL;
5294         }
5295
5296         tl = &tl_copy->id2.i_dealloc;
5297         num_recs = le16_to_cpu(tl->tl_used);
5298         mlog(0, "cleanup %u records from %llu\n", num_recs,
5299              (unsigned long long)le64_to_cpu(tl_copy->i_blkno));
5300
5301         mutex_lock(&tl_inode->i_mutex);
5302         for(i = 0; i < num_recs; i++) {
5303                 if (ocfs2_truncate_log_needs_flush(osb)) {
5304                         status = __ocfs2_flush_truncate_log(osb);
5305                         if (status < 0) {
5306                                 mlog_errno(status);
5307                                 goto bail_up;
5308                         }
5309                 }
5310
5311                 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
5312                 if (IS_ERR(handle)) {
5313                         status = PTR_ERR(handle);
5314                         mlog_errno(status);
5315                         goto bail_up;
5316                 }
5317
5318                 clusters = le32_to_cpu(tl->tl_recs[i].t_clusters);
5319                 start_cluster = le32_to_cpu(tl->tl_recs[i].t_start);
5320                 start_blk = ocfs2_clusters_to_blocks(osb->sb, start_cluster);
5321
5322                 status = ocfs2_truncate_log_append(osb, handle,
5323                                                    start_blk, clusters);
5324                 ocfs2_commit_trans(osb, handle);
5325                 if (status < 0) {
5326                         mlog_errno(status);
5327                         goto bail_up;
5328                 }
5329         }
5330
5331 bail_up:
5332         mutex_unlock(&tl_inode->i_mutex);
5333
5334         mlog_exit(status);
5335         return status;
5336 }
5337
5338 void ocfs2_truncate_log_shutdown(struct ocfs2_super *osb)
5339 {
5340         int status;
5341         struct inode *tl_inode = osb->osb_tl_inode;
5342
5343         mlog_entry_void();
5344
5345         if (tl_inode) {
5346                 cancel_delayed_work(&osb->osb_truncate_log_wq);
5347                 flush_workqueue(ocfs2_wq);
5348
5349                 status = ocfs2_flush_truncate_log(osb);
5350                 if (status < 0)
5351                         mlog_errno(status);
5352
5353                 brelse(osb->osb_tl_bh);
5354                 iput(osb->osb_tl_inode);
5355         }
5356
5357         mlog_exit_void();
5358 }
5359
5360 int ocfs2_truncate_log_init(struct ocfs2_super *osb)
5361 {
5362         int status;
5363         struct inode *tl_inode = NULL;
5364         struct buffer_head *tl_bh = NULL;
5365
5366         mlog_entry_void();
5367
5368         status = ocfs2_get_truncate_log_info(osb,
5369                                              osb->slot_num,
5370                                              &tl_inode,
5371                                              &tl_bh);
5372         if (status < 0)
5373                 mlog_errno(status);
5374
5375         /* ocfs2_truncate_log_shutdown keys on the existence of
5376          * osb->osb_tl_inode so we don't set any of the osb variables
5377          * until we're sure all is well. */
5378         INIT_DELAYED_WORK(&osb->osb_truncate_log_wq,
5379                           ocfs2_truncate_log_worker);
5380         osb->osb_tl_bh    = tl_bh;
5381         osb->osb_tl_inode = tl_inode;
5382
5383         mlog_exit(status);
5384         return status;
5385 }
5386
5387 /*
5388  * Delayed de-allocation of suballocator blocks.
5389  *
5390  * Some sets of block de-allocations might involve multiple suballocator inodes.
5391  *
5392  * The locking for this can get extremely complicated, especially when
5393  * the suballocator inodes to delete from aren't known until deep
5394  * within an unrelated codepath.
5395  *
5396  * ocfs2_extent_block structures are a good example of this - an inode
5397  * btree could have been grown by any number of nodes each allocating
5398  * out of their own suballoc inode.
5399  *
5400  * These structures allow the delay of block de-allocation until a
5401  * later time, when locking of multiple cluster inodes won't cause
5402  * deadlock.
5403  */
5404
5405 /*
5406  * Describes a single block free from a suballocator
5407  */
5408 struct ocfs2_cached_block_free {
5409         struct ocfs2_cached_block_free          *free_next;
5410         u64                                     free_blk;
5411         unsigned int                            free_bit;
5412 };
5413
5414 struct ocfs2_per_slot_free_list {
5415         struct ocfs2_per_slot_free_list         *f_next_suballocator;
5416         int                                     f_inode_type;
5417         int                                     f_slot;
5418         struct ocfs2_cached_block_free          *f_first;
5419 };
5420
5421 static int ocfs2_free_cached_items(struct ocfs2_super *osb,
5422                                    int sysfile_type,
5423                                    int slot,
5424                                    struct ocfs2_cached_block_free *head)
5425 {
5426         int ret;
5427         u64 bg_blkno;
5428         handle_t *handle;
5429         struct inode *inode;
5430         struct buffer_head *di_bh = NULL;
5431         struct ocfs2_cached_block_free *tmp;
5432
5433         inode = ocfs2_get_system_file_inode(osb, sysfile_type, slot);
5434         if (!inode) {
5435                 ret = -EINVAL;
5436                 mlog_errno(ret);
5437                 goto out;
5438         }
5439
5440         mutex_lock(&inode->i_mutex);
5441
5442         ret = ocfs2_inode_lock(inode, &di_bh, 1);
5443         if (ret) {
5444                 mlog_errno(ret);
5445                 goto out_mutex;
5446         }
5447
5448         handle = ocfs2_start_trans(osb, OCFS2_SUBALLOC_FREE);
5449         if (IS_ERR(handle)) {
5450                 ret = PTR_ERR(handle);
5451                 mlog_errno(ret);
5452                 goto out_unlock;
5453         }
5454
5455         while (head) {
5456                 bg_blkno = ocfs2_which_suballoc_group(head->free_blk,
5457                                                       head->free_bit);
5458                 mlog(0, "Free bit: (bit %u, blkno %llu)\n",
5459                      head->free_bit, (unsigned long long)head->free_blk);
5460
5461                 ret = ocfs2_free_suballoc_bits(handle, inode, di_bh,
5462                                                head->free_bit, bg_blkno, 1);
5463                 if (ret) {
5464                         mlog_errno(ret);
5465                         goto out_journal;
5466                 }
5467
5468                 ret = ocfs2_extend_trans(handle, OCFS2_SUBALLOC_FREE);
5469                 if (ret) {
5470                         mlog_errno(ret);
5471                         goto out_journal;
5472                 }
5473
5474                 tmp = head;
5475                 head = head->free_next;
5476                 kfree(tmp);
5477         }
5478
5479 out_journal:
5480         ocfs2_commit_trans(osb, handle);
5481
5482 out_unlock:
5483         ocfs2_inode_unlock(inode, 1);
5484         brelse(di_bh);
5485 out_mutex:
5486         mutex_unlock(&inode->i_mutex);
5487         iput(inode);
5488 out:
5489         while(head) {
5490                 /* Premature exit may have left some dangling items. */
5491                 tmp = head;
5492                 head = head->free_next;
5493                 kfree(tmp);
5494         }
5495
5496         return ret;
5497 }
5498
5499 int ocfs2_run_deallocs(struct ocfs2_super *osb,
5500                        struct ocfs2_cached_dealloc_ctxt *ctxt)
5501 {
5502         int ret = 0, ret2;
5503         struct ocfs2_per_slot_free_list *fl;
5504
5505         if (!ctxt)
5506                 return 0;
5507
5508         while (ctxt->c_first_suballocator) {
5509                 fl = ctxt->c_first_suballocator;
5510
5511                 if (fl->f_first) {
5512                         mlog(0, "Free items: (type %u, slot %d)\n",
5513                              fl->f_inode_type, fl->f_slot);
5514                         ret2 = ocfs2_free_cached_items(osb, fl->f_inode_type,
5515                                                        fl->f_slot, fl->f_first);
5516                         if (ret2)
5517                                 mlog_errno(ret2);
5518                         if (!ret)
5519                                 ret = ret2;
5520                 }
5521
5522                 ctxt->c_first_suballocator = fl->f_next_suballocator;
5523                 kfree(fl);
5524         }
5525
5526         return ret;
5527 }
5528
5529 static struct ocfs2_per_slot_free_list *
5530 ocfs2_find_per_slot_free_list(int type,
5531                               int slot,
5532                               struct ocfs2_cached_dealloc_ctxt *ctxt)
5533 {
5534         struct ocfs2_per_slot_free_list *fl = ctxt->c_first_suballocator;
5535
5536         while (fl) {
5537                 if (fl->f_inode_type == type && fl->f_slot == slot)
5538                         return fl;
5539
5540                 fl = fl->f_next_suballocator;
5541         }
5542
5543         fl = kmalloc(sizeof(*fl), GFP_NOFS);
5544         if (fl) {
5545                 fl->f_inode_type = type;
5546                 fl->f_slot = slot;
5547                 fl->f_first = NULL;
5548                 fl->f_next_suballocator = ctxt->c_first_suballocator;
5549
5550                 ctxt->c_first_suballocator = fl;
5551         }
5552         return fl;
5553 }
5554
5555 static int ocfs2_cache_block_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt,
5556                                      int type, int slot, u64 blkno,
5557                                      unsigned int bit)
5558 {
5559         int ret;
5560         struct ocfs2_per_slot_free_list *fl;
5561         struct ocfs2_cached_block_free *item;
5562
5563         fl = ocfs2_find_per_slot_free_list(type, slot, ctxt);
5564         if (fl == NULL) {
5565                 ret = -ENOMEM;
5566                 mlog_errno(ret);
5567                 goto out;
5568         }
5569
5570         item = kmalloc(sizeof(*item), GFP_NOFS);
5571         if (item == NULL) {
5572                 ret = -ENOMEM;
5573                 mlog_errno(ret);
5574                 goto out;
5575         }
5576
5577         mlog(0, "Insert: (type %d, slot %u, bit %u, blk %llu)\n",
5578              type, slot, bit, (unsigned long long)blkno);
5579
5580         item->free_blk = blkno;
5581         item->free_bit = bit;
5582         item->free_next = fl->f_first;
5583
5584         fl->f_first = item;
5585
5586         ret = 0;
5587 out:
5588         return ret;
5589 }
5590
5591 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
5592                                          struct ocfs2_extent_block *eb)
5593 {
5594         return ocfs2_cache_block_dealloc(ctxt, EXTENT_ALLOC_SYSTEM_INODE,
5595                                          le16_to_cpu(eb->h_suballoc_slot),
5596                                          le64_to_cpu(eb->h_blkno),
5597                                          le16_to_cpu(eb->h_suballoc_bit));
5598 }
5599
5600 /* This function will figure out whether the currently last extent
5601  * block will be deleted, and if it will, what the new last extent
5602  * block will be so we can update his h_next_leaf_blk field, as well
5603  * as the dinodes i_last_eb_blk */
5604 static int ocfs2_find_new_last_ext_blk(struct inode *inode,
5605                                        unsigned int clusters_to_del,
5606                                        struct ocfs2_path *path,
5607                                        struct buffer_head **new_last_eb)
5608 {
5609         int next_free, ret = 0;
5610         u32 cpos;
5611         struct ocfs2_extent_rec *rec;
5612         struct ocfs2_extent_block *eb;
5613         struct ocfs2_extent_list *el;
5614         struct buffer_head *bh = NULL;
5615
5616         *new_last_eb = NULL;
5617
5618         /* we have no tree, so of course, no last_eb. */
5619         if (!path->p_tree_depth)
5620                 goto out;
5621
5622         /* trunc to zero special case - this makes tree_depth = 0
5623          * regardless of what it is.  */
5624         if (OCFS2_I(inode)->ip_clusters == clusters_to_del)
5625                 goto out;
5626
5627         el = path_leaf_el(path);
5628         BUG_ON(!el->l_next_free_rec);
5629
5630         /*
5631          * Make sure that this extent list will actually be empty
5632          * after we clear away the data. We can shortcut out if
5633          * there's more than one non-empty extent in the
5634          * list. Otherwise, a check of the remaining extent is
5635          * necessary.
5636          */
5637         next_free = le16_to_cpu(el->l_next_free_rec);
5638         rec = NULL;
5639         if (ocfs2_is_empty_extent(&el->l_recs[0])) {
5640                 if (next_free > 2)
5641                         goto out;
5642
5643                 /* We may have a valid extent in index 1, check it. */
5644                 if (next_free == 2)
5645                         rec = &el->l_recs[1];
5646
5647                 /*
5648                  * Fall through - no more nonempty extents, so we want
5649                  * to delete this leaf.
5650                  */
5651         } else {
5652                 if (next_free > 1)
5653                         goto out;
5654
5655                 rec = &el->l_recs[0];
5656         }
5657
5658         if (rec) {
5659                 /*
5660                  * Check it we'll only be trimming off the end of this
5661                  * cluster.
5662                  */
5663                 if (le16_to_cpu(rec->e_leaf_clusters) > clusters_to_del)
5664                         goto out;
5665         }
5666
5667         ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, &cpos);
5668         if (ret) {
5669                 mlog_errno(ret);
5670                 goto out;
5671         }
5672
5673         ret = ocfs2_find_leaf(inode, path_root_el(path), cpos, &bh);
5674         if (ret) {
5675                 mlog_errno(ret);
5676                 goto out;
5677         }
5678
5679         eb = (struct ocfs2_extent_block *) bh->b_data;
5680         el = &eb->h_list;
5681         if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
5682                 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
5683                 ret = -EROFS;
5684                 goto out;
5685         }
5686
5687         *new_last_eb = bh;
5688         get_bh(*new_last_eb);
5689         mlog(0, "returning block %llu, (cpos: %u)\n",
5690              (unsigned long long)le64_to_cpu(eb->h_blkno), cpos);
5691 out:
5692         brelse(bh);
5693
5694         return ret;
5695 }
5696
5697 /*
5698  * Trim some clusters off the rightmost edge of a tree. Only called
5699  * during truncate.
5700  *
5701  * The caller needs to:
5702  *   - start journaling of each path component.
5703  *   - compute and fully set up any new last ext block
5704  */
5705 static int ocfs2_trim_tree(struct inode *inode, struct ocfs2_path *path,
5706                            handle_t *handle, struct ocfs2_truncate_context *tc,
5707                            u32 clusters_to_del, u64 *delete_start)
5708 {
5709         int ret, i, index = path->p_tree_depth;
5710         u32 new_edge = 0;
5711         u64 deleted_eb = 0;
5712         struct buffer_head *bh;
5713         struct ocfs2_extent_list *el;
5714         struct ocfs2_extent_rec *rec;
5715
5716         *delete_start = 0;
5717
5718         while (index >= 0) {
5719                 bh = path->p_node[index].bh;
5720                 el = path->p_node[index].el;
5721
5722                 mlog(0, "traveling tree (index = %d, block = %llu)\n",
5723                      index,  (unsigned long long)bh->b_blocknr);
5724
5725                 BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0);
5726
5727                 if (index !=
5728                     (path->p_tree_depth - le16_to_cpu(el->l_tree_depth))) {
5729                         ocfs2_error(inode->i_sb,
5730                                     "Inode %lu has invalid ext. block %llu",
5731                                     inode->i_ino,
5732                                     (unsigned long long)bh->b_blocknr);
5733                         ret = -EROFS;
5734                         goto out;
5735                 }
5736
5737 find_tail_record:
5738                 i = le16_to_cpu(el->l_next_free_rec) - 1;
5739                 rec = &el->l_recs[i];
5740
5741                 mlog(0, "Extent list before: record %d: (%u, %u, %llu), "
5742                      "next = %u\n", i, le32_to_cpu(rec->e_cpos),
5743                      ocfs2_rec_clusters(el, rec),
5744                      (unsigned long long)le64_to_cpu(rec->e_blkno),
5745                      le16_to_cpu(el->l_next_free_rec));
5746
5747                 BUG_ON(ocfs2_rec_clusters(el, rec) < clusters_to_del);
5748
5749                 if (le16_to_cpu(el->l_tree_depth) == 0) {
5750                         /*
5751                          * If the leaf block contains a single empty
5752                          * extent and no records, we can just remove
5753                          * the block.
5754                          */
5755                         if (i == 0 && ocfs2_is_empty_extent(rec)) {
5756                                 memset(rec, 0,
5757                                        sizeof(struct ocfs2_extent_rec));
5758                                 el->l_next_free_rec = cpu_to_le16(0);
5759
5760                                 goto delete;
5761                         }
5762
5763                         /*
5764                          * Remove any empty extents by shifting things
5765                          * left. That should make life much easier on
5766                          * the code below. This condition is rare
5767                          * enough that we shouldn't see a performance
5768                          * hit.
5769                          */
5770                         if (ocfs2_is_empty_extent(&el->l_recs[0])) {
5771                                 le16_add_cpu(&el->l_next_free_rec, -1);
5772
5773                                 for(i = 0;
5774                                     i < le16_to_cpu(el->l_next_free_rec); i++)
5775                                         el->l_recs[i] = el->l_recs[i + 1];
5776
5777                                 memset(&el->l_recs[i], 0,
5778                                        sizeof(struct ocfs2_extent_rec));
5779
5780                                 /*
5781                                  * We've modified our extent list. The
5782                                  * simplest way to handle this change
5783                                  * is to being the search from the
5784                                  * start again.
5785                                  */
5786                                 goto find_tail_record;
5787                         }
5788
5789                         le16_add_cpu(&rec->e_leaf_clusters, -clusters_to_del);
5790
5791                         /*
5792                          * We'll use "new_edge" on our way back up the
5793                          * tree to know what our rightmost cpos is.
5794                          */
5795                         new_edge = le16_to_cpu(rec->e_leaf_clusters);
5796                         new_edge += le32_to_cpu(rec->e_cpos);
5797
5798                         /*
5799                          * The caller will use this to delete data blocks.
5800                          */
5801                         *delete_start = le64_to_cpu(rec->e_blkno)
5802                                 + ocfs2_clusters_to_blocks(inode->i_sb,
5803                                         le16_to_cpu(rec->e_leaf_clusters));
5804
5805                         /*
5806                          * If it's now empty, remove this record.
5807                          */
5808                         if (le16_to_cpu(rec->e_leaf_clusters) == 0) {
5809                                 memset(rec, 0,
5810                                        sizeof(struct ocfs2_extent_rec));
5811                                 le16_add_cpu(&el->l_next_free_rec, -1);
5812                         }
5813                 } else {
5814                         if (le64_to_cpu(rec->e_blkno) == deleted_eb) {
5815                                 memset(rec, 0,
5816                                        sizeof(struct ocfs2_extent_rec));
5817                                 le16_add_cpu(&el->l_next_free_rec, -1);
5818
5819                                 goto delete;
5820                         }
5821
5822                         /* Can this actually happen? */
5823                         if (le16_to_cpu(el->l_next_free_rec) == 0)
5824                                 goto delete;
5825
5826                         /*
5827                          * We never actually deleted any clusters
5828                          * because our leaf was empty. There's no
5829                          * reason to adjust the rightmost edge then.
5830                          */
5831                         if (new_edge == 0)
5832                                 goto delete;
5833
5834                         rec->e_int_clusters = cpu_to_le32(new_edge);
5835                         le32_add_cpu(&rec->e_int_clusters,
5836                                      -le32_to_cpu(rec->e_cpos));
5837
5838                          /*
5839                           * A deleted child record should have been
5840                           * caught above.
5841                           */
5842                          BUG_ON(le32_to_cpu(rec->e_int_clusters) == 0);
5843                 }
5844
5845 delete:
5846                 ret = ocfs2_journal_dirty(handle, bh);
5847                 if (ret) {
5848                         mlog_errno(ret);
5849                         goto out;
5850                 }
5851
5852                 mlog(0, "extent list container %llu, after: record %d: "
5853                      "(%u, %u, %llu), next = %u.\n",
5854                      (unsigned long long)bh->b_blocknr, i,
5855                      le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec),
5856                      (unsigned long long)le64_to_cpu(rec->e_blkno),
5857                      le16_to_cpu(el->l_next_free_rec));
5858
5859                 /*
5860                  * We must be careful to only attempt delete of an
5861                  * extent block (and not the root inode block).
5862                  */
5863                 if (index > 0 && le16_to_cpu(el->l_next_free_rec) == 0) {
5864                         struct ocfs2_extent_block *eb =
5865                                 (struct ocfs2_extent_block *)bh->b_data;
5866
5867                         /*
5868                          * Save this for use when processing the
5869                          * parent block.
5870                          */
5871                         deleted_eb = le64_to_cpu(eb->h_blkno);
5872
5873                         mlog(0, "deleting this extent block.\n");
5874
5875                         ocfs2_remove_from_cache(inode, bh);
5876
5877                         BUG_ON(ocfs2_rec_clusters(el, &el->l_recs[0]));
5878                         BUG_ON(le32_to_cpu(el->l_recs[0].e_cpos));
5879                         BUG_ON(le64_to_cpu(el->l_recs[0].e_blkno));
5880
5881                         ret = ocfs2_cache_extent_block_free(&tc->tc_dealloc, eb);
5882                         /* An error here is not fatal. */
5883                         if (ret < 0)
5884                                 mlog_errno(ret);
5885                 } else {
5886                         deleted_eb = 0;
5887                 }
5888
5889                 index--;
5890         }
5891
5892         ret = 0;
5893 out:
5894         return ret;
5895 }
5896
5897 static int ocfs2_do_truncate(struct ocfs2_super *osb,
5898                              unsigned int clusters_to_del,
5899                              struct inode *inode,
5900                              struct buffer_head *fe_bh,
5901                              handle_t *handle,
5902                              struct ocfs2_truncate_context *tc,
5903                              struct ocfs2_path *path)
5904 {
5905         int status;
5906         struct ocfs2_dinode *fe;
5907         struct ocfs2_extent_block *last_eb = NULL;
5908         struct ocfs2_extent_list *el;
5909         struct buffer_head *last_eb_bh = NULL;
5910         u64 delete_blk = 0;
5911
5912         fe = (struct ocfs2_dinode *) fe_bh->b_data;
5913
5914         status = ocfs2_find_new_last_ext_blk(inode, clusters_to_del,
5915                                              path, &last_eb_bh);
5916         if (status < 0) {
5917                 mlog_errno(status);
5918                 goto bail;
5919         }
5920
5921         /*
5922          * Each component will be touched, so we might as well journal
5923          * here to avoid having to handle errors later.
5924          */
5925         status = ocfs2_journal_access_path(inode, handle, path);
5926         if (status < 0) {
5927                 mlog_errno(status);
5928                 goto bail;
5929         }
5930
5931         if (last_eb_bh) {
5932                 status = ocfs2_journal_access(handle, inode, last_eb_bh,
5933                                               OCFS2_JOURNAL_ACCESS_WRITE);
5934                 if (status < 0) {
5935                         mlog_errno(status);
5936                         goto bail;
5937                 }
5938
5939                 last_eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
5940         }
5941
5942         el = &(fe->id2.i_list);
5943
5944         /*
5945          * Lower levels depend on this never happening, but it's best
5946          * to check it up here before changing the tree.
5947          */
5948         if (el->l_tree_depth && el->l_recs[0].e_int_clusters == 0) {
5949                 ocfs2_error(inode->i_sb,
5950                             "Inode %lu has an empty extent record, depth %u\n",
5951                             inode->i_ino, le16_to_cpu(el->l_tree_depth));
5952                 status = -EROFS;
5953                 goto bail;
5954         }
5955
5956         spin_lock(&OCFS2_I(inode)->ip_lock);
5957         OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters) -
5958                                       clusters_to_del;
5959         spin_unlock(&OCFS2_I(inode)->ip_lock);
5960         le32_add_cpu(&fe->i_clusters, -clusters_to_del);
5961         inode->i_blocks = ocfs2_inode_sector_count(inode);
5962
5963         status = ocfs2_trim_tree(inode, path, handle, tc,
5964                                  clusters_to_del, &delete_blk);
5965         if (status) {
5966                 mlog_errno(status);
5967                 goto bail;
5968         }
5969
5970         if (le32_to_cpu(fe->i_clusters) == 0) {
5971                 /* trunc to zero is a special case. */
5972                 el->l_tree_depth = 0;
5973                 fe->i_last_eb_blk = 0;
5974         } else if (last_eb)
5975                 fe->i_last_eb_blk = last_eb->h_blkno;
5976
5977         status = ocfs2_journal_dirty(handle, fe_bh);
5978         if (status < 0) {
5979                 mlog_errno(status);
5980                 goto bail;
5981         }
5982
5983         if (last_eb) {
5984                 /* If there will be a new last extent block, then by
5985                  * definition, there cannot be any leaves to the right of
5986                  * him. */
5987                 last_eb->h_next_leaf_blk = 0;
5988                 status = ocfs2_journal_dirty(handle, last_eb_bh);
5989                 if (status < 0) {
5990                         mlog_errno(status);
5991                         goto bail;
5992                 }
5993         }
5994
5995         if (delete_blk) {
5996                 status = ocfs2_truncate_log_append(osb, handle, delete_blk,
5997                                                    clusters_to_del);
5998                 if (status < 0) {
5999                         mlog_errno(status);
6000                         goto bail;
6001                 }
6002         }
6003         status = 0;
6004 bail:
6005
6006         mlog_exit(status);
6007         return status;
6008 }
6009
6010 static int ocfs2_writeback_zero_func(handle_t *handle, struct buffer_head *bh)
6011 {
6012         set_buffer_uptodate(bh);
6013         mark_buffer_dirty(bh);
6014         return 0;
6015 }
6016
6017 static int ocfs2_ordered_zero_func(handle_t *handle, struct buffer_head *bh)
6018 {
6019         set_buffer_uptodate(bh);
6020         mark_buffer_dirty(bh);
6021         return ocfs2_journal_dirty_data(handle, bh);
6022 }
6023
6024 static void ocfs2_map_and_dirty_page(struct inode *inode, handle_t *handle,
6025                                      unsigned int from, unsigned int to,
6026                                      struct page *page, int zero, u64 *phys)
6027 {
6028         int ret, partial = 0;
6029
6030         ret = ocfs2_map_page_blocks(page, phys, inode, from, to, 0);
6031         if (ret)
6032                 mlog_errno(ret);
6033
6034         if (zero)
6035                 zero_user_segment(page, from, to);
6036
6037         /*
6038          * Need to set the buffers we zero'd into uptodate
6039          * here if they aren't - ocfs2_map_page_blocks()
6040          * might've skipped some
6041          */
6042         if (ocfs2_should_order_data(inode)) {
6043                 ret = walk_page_buffers(handle,
6044                                         page_buffers(page),
6045                                         from, to, &partial,
6046                                         ocfs2_ordered_zero_func);
6047                 if (ret < 0)
6048                         mlog_errno(ret);
6049         } else {
6050                 ret = walk_page_buffers(handle, page_buffers(page),
6051                                         from, to, &partial,
6052                                         ocfs2_writeback_zero_func);
6053                 if (ret < 0)
6054                         mlog_errno(ret);
6055         }
6056
6057         if (!partial)
6058                 SetPageUptodate(page);
6059
6060         flush_dcache_page(page);
6061 }
6062
6063 static void ocfs2_zero_cluster_pages(struct inode *inode, loff_t start,
6064                                      loff_t end, struct page **pages,
6065                                      int numpages, u64 phys, handle_t *handle)
6066 {
6067         int i;
6068         struct page *page;
6069         unsigned int from, to = PAGE_CACHE_SIZE;
6070         struct super_block *sb = inode->i_sb;
6071
6072         BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb)));
6073
6074         if (numpages == 0)
6075                 goto out;
6076
6077         to = PAGE_CACHE_SIZE;
6078         for(i = 0; i < numpages; i++) {
6079                 page = pages[i];
6080
6081                 from = start & (PAGE_CACHE_SIZE - 1);
6082                 if ((end >> PAGE_CACHE_SHIFT) == page->index)
6083                         to = end & (PAGE_CACHE_SIZE - 1);
6084
6085                 BUG_ON(from > PAGE_CACHE_SIZE);
6086                 BUG_ON(to > PAGE_CACHE_SIZE);
6087
6088                 ocfs2_map_and_dirty_page(inode, handle, from, to, page, 1,
6089                                          &phys);
6090
6091                 start = (page->index + 1) << PAGE_CACHE_SHIFT;
6092         }
6093 out:
6094         if (pages)
6095                 ocfs2_unlock_and_free_pages(pages, numpages);
6096 }
6097
6098 static int ocfs2_grab_eof_pages(struct inode *inode, loff_t start, loff_t end,
6099                                 struct page **pages, int *num)
6100 {
6101         int numpages, ret = 0;
6102         struct super_block *sb = inode->i_sb;
6103         struct address_space *mapping = inode->i_mapping;
6104         unsigned long index;
6105         loff_t last_page_bytes;
6106
6107         BUG_ON(start > end);
6108
6109         BUG_ON(start >> OCFS2_SB(sb)->s_clustersize_bits !=
6110                (end - 1) >> OCFS2_SB(sb)->s_clustersize_bits);
6111
6112         numpages = 0;
6113         last_page_bytes = PAGE_ALIGN(end);
6114         index = start >> PAGE_CACHE_SHIFT;
6115         do {
6116                 pages[numpages] = grab_cache_page(mapping, index);
6117                 if (!pages[numpages]) {
6118                         ret = -ENOMEM;
6119                         mlog_errno(ret);
6120                         goto out;
6121                 }
6122
6123                 numpages++;
6124                 index++;
6125         } while (index < (last_page_bytes >> PAGE_CACHE_SHIFT));
6126
6127 out:
6128         if (ret != 0) {
6129                 if (pages)
6130                         ocfs2_unlock_and_free_pages(pages, numpages);
6131                 numpages = 0;
6132         }
6133
6134         *num = numpages;
6135
6136         return ret;
6137 }
6138
6139 /*
6140  * Zero the area past i_size but still within an allocated
6141  * cluster. This avoids exposing nonzero data on subsequent file
6142  * extends.
6143  *
6144  * We need to call this before i_size is updated on the inode because
6145  * otherwise block_write_full_page() will skip writeout of pages past
6146  * i_size. The new_i_size parameter is passed for this reason.
6147  */
6148 int ocfs2_zero_range_for_truncate(struct inode *inode, handle_t *handle,
6149                                   u64 range_start, u64 range_end)
6150 {
6151         int ret = 0, numpages;
6152         struct page **pages = NULL;
6153         u64 phys;
6154         unsigned int ext_flags;
6155         struct super_block *sb = inode->i_sb;
6156
6157         /*
6158          * File systems which don't support sparse files zero on every
6159          * extend.
6160          */
6161         if (!ocfs2_sparse_alloc(OCFS2_SB(sb)))
6162                 return 0;
6163
6164         pages = kcalloc(ocfs2_pages_per_cluster(sb),
6165                         sizeof(struct page *), GFP_NOFS);
6166         if (pages == NULL) {
6167                 ret = -ENOMEM;
6168                 mlog_errno(ret);
6169                 goto out;
6170         }
6171
6172         if (range_start == range_end)
6173                 goto out;
6174
6175         ret = ocfs2_extent_map_get_blocks(inode,
6176                                           range_start >> sb->s_blocksize_bits,
6177                                           &phys, NULL, &ext_flags);
6178         if (ret) {
6179                 mlog_errno(ret);
6180                 goto out;
6181         }
6182
6183         /*
6184          * Tail is a hole, or is marked unwritten. In either case, we
6185          * can count on read and write to return/push zero's.
6186          */
6187         if (phys == 0 || ext_flags & OCFS2_EXT_UNWRITTEN)
6188                 goto out;
6189
6190         ret = ocfs2_grab_eof_pages(inode, range_start, range_end, pages,
6191                                    &numpages);
6192         if (ret) {
6193                 mlog_errno(ret);
6194                 goto out;
6195         }
6196
6197         ocfs2_zero_cluster_pages(inode, range_start, range_end, pages,
6198                                  numpages, phys, handle);
6199
6200         /*
6201          * Initiate writeout of the pages we zero'd here. We don't
6202          * wait on them - the truncate_inode_pages() call later will
6203          * do that for us.
6204          */
6205         ret = do_sync_mapping_range(inode->i_mapping, range_start,
6206                                     range_end - 1, SYNC_FILE_RANGE_WRITE);
6207         if (ret)
6208                 mlog_errno(ret);
6209
6210 out:
6211         if (pages)
6212                 kfree(pages);
6213
6214         return ret;
6215 }
6216
6217 static void ocfs2_zero_dinode_id2(struct inode *inode, struct ocfs2_dinode *di)
6218 {
6219         unsigned int blocksize = 1 << inode->i_sb->s_blocksize_bits;
6220
6221         memset(&di->id2, 0, blocksize - offsetof(struct ocfs2_dinode, id2));
6222 }
6223
6224 void ocfs2_dinode_new_extent_list(struct inode *inode,
6225                                   struct ocfs2_dinode *di)
6226 {
6227         ocfs2_zero_dinode_id2(inode, di);
6228         di->id2.i_list.l_tree_depth = 0;
6229         di->id2.i_list.l_next_free_rec = 0;
6230         di->id2.i_list.l_count = cpu_to_le16(ocfs2_extent_recs_per_inode(inode->i_sb));
6231 }
6232
6233 void ocfs2_set_inode_data_inline(struct inode *inode, struct ocfs2_dinode *di)
6234 {
6235         struct ocfs2_inode_info *oi = OCFS2_I(inode);
6236         struct ocfs2_inline_data *idata = &di->id2.i_data;
6237
6238         spin_lock(&oi->ip_lock);
6239         oi->ip_dyn_features |= OCFS2_INLINE_DATA_FL;
6240         di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
6241         spin_unlock(&oi->ip_lock);
6242
6243         /*
6244          * We clear the entire i_data structure here so that all
6245          * fields can be properly initialized.
6246          */
6247         ocfs2_zero_dinode_id2(inode, di);
6248
6249         idata->id_count = cpu_to_le16(ocfs2_max_inline_data(inode->i_sb));
6250 }
6251
6252 int ocfs2_convert_inline_data_to_extents(struct inode *inode,
6253                                          struct buffer_head *di_bh)
6254 {
6255         int ret, i, has_data, num_pages = 0;
6256         handle_t *handle;
6257         u64 uninitialized_var(block);
6258         struct ocfs2_inode_info *oi = OCFS2_I(inode);
6259         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
6260         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
6261         struct ocfs2_alloc_context *data_ac = NULL;
6262         struct page **pages = NULL;
6263         loff_t end = osb->s_clustersize;
6264
6265         has_data = i_size_read(inode) ? 1 : 0;
6266
6267         if (has_data) {
6268                 pages = kcalloc(ocfs2_pages_per_cluster(osb->sb),
6269                                 sizeof(struct page *), GFP_NOFS);
6270                 if (pages == NULL) {
6271                         ret = -ENOMEM;
6272                         mlog_errno(ret);
6273                         goto out;
6274                 }
6275
6276                 ret = ocfs2_reserve_clusters(osb, 1, &data_ac);
6277                 if (ret) {
6278                         mlog_errno(ret);
6279                         goto out;
6280                 }
6281         }
6282
6283         handle = ocfs2_start_trans(osb, OCFS2_INLINE_TO_EXTENTS_CREDITS);
6284         if (IS_ERR(handle)) {
6285                 ret = PTR_ERR(handle);
6286                 mlog_errno(ret);
6287                 goto out_unlock;
6288         }
6289
6290         ret = ocfs2_journal_access(handle, inode, di_bh,
6291                                    OCFS2_JOURNAL_ACCESS_WRITE);
6292         if (ret) {
6293                 mlog_errno(ret);
6294                 goto out_commit;
6295         }
6296
6297         if (has_data) {
6298                 u32 bit_off, num;
6299                 unsigned int page_end;
6300                 u64 phys;
6301
6302                 ret = ocfs2_claim_clusters(osb, handle, data_ac, 1, &bit_off,
6303                                            &num);
6304                 if (ret) {
6305                         mlog_errno(ret);
6306                         goto out_commit;
6307                 }
6308
6309                 /*
6310                  * Save two copies, one for insert, and one that can
6311                  * be changed by ocfs2_map_and_dirty_page() below.
6312                  */
6313                 block = phys = ocfs2_clusters_to_blocks(inode->i_sb, bit_off);
6314
6315                 /*
6316                  * Non sparse file systems zero on extend, so no need
6317                  * to do that now.
6318                  */
6319                 if (!ocfs2_sparse_alloc(osb) &&
6320                     PAGE_CACHE_SIZE < osb->s_clustersize)
6321                         end = PAGE_CACHE_SIZE;
6322
6323                 ret = ocfs2_grab_eof_pages(inode, 0, end, pages, &num_pages);
6324                 if (ret) {
6325                         mlog_errno(ret);
6326                         goto out_commit;
6327                 }
6328
6329                 /*
6330                  * This should populate the 1st page for us and mark
6331                  * it up to date.
6332                  */
6333                 ret = ocfs2_read_inline_data(inode, pages[0], di_bh);
6334                 if (ret) {
6335                         mlog_errno(ret);
6336                         goto out_commit;
6337                 }
6338
6339                 page_end = PAGE_CACHE_SIZE;
6340                 if (PAGE_CACHE_SIZE > osb->s_clustersize)
6341                         page_end = osb->s_clustersize;
6342
6343                 for (i = 0; i < num_pages; i++)
6344                         ocfs2_map_and_dirty_page(inode, handle, 0, page_end,
6345                                                  pages[i], i > 0, &phys);
6346         }
6347
6348         spin_lock(&oi->ip_lock);
6349         oi->ip_dyn_features &= ~OCFS2_INLINE_DATA_FL;
6350         di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
6351         spin_unlock(&oi->ip_lock);
6352
6353         ocfs2_dinode_new_extent_list(inode, di);
6354
6355         ocfs2_journal_dirty(handle, di_bh);
6356
6357         if (has_data) {
6358                 /*
6359                  * An error at this point should be extremely rare. If
6360                  * this proves to be false, we could always re-build
6361                  * the in-inode data from our pages.
6362                  */
6363                 ret = ocfs2_insert_extent(osb, handle, inode, di_bh,
6364                                           0, block, 1, 0, NULL);
6365                 if (ret) {
6366                         mlog_errno(ret);
6367                         goto out_commit;
6368                 }
6369
6370                 inode->i_blocks = ocfs2_inode_sector_count(inode);
6371         }
6372
6373 out_commit:
6374         ocfs2_commit_trans(osb, handle);
6375
6376 out_unlock:
6377         if (data_ac)
6378                 ocfs2_free_alloc_context(data_ac);
6379
6380 out:
6381         if (pages) {
6382                 ocfs2_unlock_and_free_pages(pages, num_pages);
6383                 kfree(pages);
6384         }
6385
6386         return ret;
6387 }
6388
6389 /*
6390  * It is expected, that by the time you call this function,
6391  * inode->i_size and fe->i_size have been adjusted.
6392  *
6393  * WARNING: This will kfree the truncate context
6394  */
6395 int ocfs2_commit_truncate(struct ocfs2_super *osb,
6396                           struct inode *inode,
6397                           struct buffer_head *fe_bh,
6398                           struct ocfs2_truncate_context *tc)
6399 {
6400         int status, i, credits, tl_sem = 0;
6401         u32 clusters_to_del, new_highest_cpos, range;
6402         struct ocfs2_extent_list *el;
6403         handle_t *handle = NULL;
6404         struct inode *tl_inode = osb->osb_tl_inode;
6405         struct ocfs2_path *path = NULL;
6406
6407         mlog_entry_void();
6408
6409         new_highest_cpos = ocfs2_clusters_for_bytes(osb->sb,
6410                                                      i_size_read(inode));
6411
6412         path = ocfs2_new_inode_path(fe_bh);
6413         if (!path) {
6414                 status = -ENOMEM;
6415                 mlog_errno(status);
6416                 goto bail;
6417         }
6418
6419         ocfs2_extent_map_trunc(inode, new_highest_cpos);
6420
6421 start:
6422         /*
6423          * Check that we still have allocation to delete.
6424          */
6425         if (OCFS2_I(inode)->ip_clusters == 0) {
6426                 status = 0;
6427                 goto bail;
6428         }
6429
6430         /*
6431          * Truncate always works against the rightmost tree branch.
6432          */
6433         status = ocfs2_find_path(inode, path, UINT_MAX);
6434         if (status) {
6435                 mlog_errno(status);
6436                 goto bail;
6437         }
6438
6439         mlog(0, "inode->ip_clusters = %u, tree_depth = %u\n",
6440              OCFS2_I(inode)->ip_clusters, path->p_tree_depth);
6441
6442         /*
6443          * By now, el will point to the extent list on the bottom most
6444          * portion of this tree. Only the tail record is considered in
6445          * each pass.
6446          *
6447          * We handle the following cases, in order:
6448          * - empty extent: delete the remaining branch
6449          * - remove the entire record
6450          * - remove a partial record
6451          * - no record needs to be removed (truncate has completed)
6452          */
6453         el = path_leaf_el(path);
6454         if (le16_to_cpu(el->l_next_free_rec) == 0) {
6455                 ocfs2_error(inode->i_sb,
6456                             "Inode %llu has empty extent block at %llu\n",
6457                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
6458                             (unsigned long long)path_leaf_bh(path)->b_blocknr);
6459                 status = -EROFS;
6460                 goto bail;
6461         }
6462
6463         i = le16_to_cpu(el->l_next_free_rec) - 1;
6464         range = le32_to_cpu(el->l_recs[i].e_cpos) +
6465                 ocfs2_rec_clusters(el, &el->l_recs[i]);
6466         if (i == 0 && ocfs2_is_empty_extent(&el->l_recs[i])) {
6467                 clusters_to_del = 0;
6468         } else if (le32_to_cpu(el->l_recs[i].e_cpos) >= new_highest_cpos) {
6469                 clusters_to_del = ocfs2_rec_clusters(el, &el->l_recs[i]);
6470         } else if (range > new_highest_cpos) {
6471                 clusters_to_del = (ocfs2_rec_clusters(el, &el->l_recs[i]) +
6472                                    le32_to_cpu(el->l_recs[i].e_cpos)) -
6473                                   new_highest_cpos;
6474         } else {
6475                 status = 0;
6476                 goto bail;
6477         }
6478
6479         mlog(0, "clusters_to_del = %u in this pass, tail blk=%llu\n",
6480              clusters_to_del, (unsigned long long)path_leaf_bh(path)->b_blocknr);
6481
6482         mutex_lock(&tl_inode->i_mutex);
6483         tl_sem = 1;
6484         /* ocfs2_truncate_log_needs_flush guarantees us at least one
6485          * record is free for use. If there isn't any, we flush to get
6486          * an empty truncate log.  */
6487         if (ocfs2_truncate_log_needs_flush(osb)) {
6488                 status = __ocfs2_flush_truncate_log(osb);
6489                 if (status < 0) {
6490                         mlog_errno(status);
6491                         goto bail;
6492                 }
6493         }
6494
6495         credits = ocfs2_calc_tree_trunc_credits(osb->sb, clusters_to_del,
6496                                                 (struct ocfs2_dinode *)fe_bh->b_data,
6497                                                 el);
6498         handle = ocfs2_start_trans(osb, credits);
6499         if (IS_ERR(handle)) {
6500                 status = PTR_ERR(handle);
6501                 handle = NULL;
6502                 mlog_errno(status);
6503                 goto bail;
6504         }
6505
6506         status = ocfs2_do_truncate(osb, clusters_to_del, inode, fe_bh, handle,
6507                                    tc, path);
6508         if (status < 0) {
6509                 mlog_errno(status);
6510                 goto bail;
6511         }
6512
6513         mutex_unlock(&tl_inode->i_mutex);
6514         tl_sem = 0;
6515
6516         ocfs2_commit_trans(osb, handle);
6517         handle = NULL;
6518
6519         ocfs2_reinit_path(path, 1);
6520
6521         /*
6522          * The check above will catch the case where we've truncated
6523          * away all allocation.
6524          */
6525         goto start;
6526
6527 bail:
6528
6529         ocfs2_schedule_truncate_log_flush(osb, 1);
6530
6531         if (tl_sem)
6532                 mutex_unlock(&tl_inode->i_mutex);
6533
6534         if (handle)
6535                 ocfs2_commit_trans(osb, handle);
6536
6537         ocfs2_run_deallocs(osb, &tc->tc_dealloc);
6538
6539         ocfs2_free_path(path);
6540
6541         /* This will drop the ext_alloc cluster lock for us */
6542         ocfs2_free_truncate_context(tc);
6543
6544         mlog_exit(status);
6545         return status;
6546 }
6547
6548 /*
6549  * Expects the inode to already be locked.
6550  */
6551 int ocfs2_prepare_truncate(struct ocfs2_super *osb,
6552                            struct inode *inode,
6553                            struct buffer_head *fe_bh,
6554                            struct ocfs2_truncate_context **tc)
6555 {
6556         int status;
6557         unsigned int new_i_clusters;
6558         struct ocfs2_dinode *fe;
6559         struct ocfs2_extent_block *eb;
6560         struct buffer_head *last_eb_bh = NULL;
6561
6562         mlog_entry_void();
6563
6564         *tc = NULL;
6565
6566         new_i_clusters = ocfs2_clusters_for_bytes(osb->sb,
6567                                                   i_size_read(inode));
6568         fe = (struct ocfs2_dinode *) fe_bh->b_data;
6569
6570         mlog(0, "fe->i_clusters = %u, new_i_clusters = %u, fe->i_size ="
6571              "%llu\n", le32_to_cpu(fe->i_clusters), new_i_clusters,
6572              (unsigned long long)le64_to_cpu(fe->i_size));
6573
6574         *tc = kzalloc(sizeof(struct ocfs2_truncate_context), GFP_KERNEL);
6575         if (!(*tc)) {
6576                 status = -ENOMEM;
6577                 mlog_errno(status);
6578                 goto bail;
6579         }
6580         ocfs2_init_dealloc_ctxt(&(*tc)->tc_dealloc);
6581
6582         if (fe->id2.i_list.l_tree_depth) {
6583                 status = ocfs2_read_block(osb, le64_to_cpu(fe->i_last_eb_blk),
6584                                           &last_eb_bh, OCFS2_BH_CACHED, inode);
6585                 if (status < 0) {
6586                         mlog_errno(status);
6587                         goto bail;
6588                 }
6589                 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
6590                 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
6591                         OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
6592
6593                         brelse(last_eb_bh);
6594                         status = -EIO;
6595                         goto bail;
6596                 }
6597         }
6598
6599         (*tc)->tc_last_eb_bh = last_eb_bh;
6600
6601         status = 0;
6602 bail:
6603         if (status < 0) {
6604                 if (*tc)
6605                         ocfs2_free_truncate_context(*tc);
6606                 *tc = NULL;
6607         }
6608         mlog_exit_void();
6609         return status;
6610 }
6611
6612 /*
6613  * 'start' is inclusive, 'end' is not.
6614  */
6615 int ocfs2_truncate_inline(struct inode *inode, struct buffer_head *di_bh,
6616                           unsigned int start, unsigned int end, int trunc)
6617 {
6618         int ret;
6619         unsigned int numbytes;
6620         handle_t *handle;
6621         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
6622         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
6623         struct ocfs2_inline_data *idata = &di->id2.i_data;
6624
6625         if (end > i_size_read(inode))
6626                 end = i_size_read(inode);
6627
6628         BUG_ON(start >= end);
6629
6630         if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) ||
6631             !(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL) ||
6632             !ocfs2_supports_inline_data(osb)) {
6633                 ocfs2_error(inode->i_sb,
6634                             "Inline data flags for inode %llu don't agree! "
6635                             "Disk: 0x%x, Memory: 0x%x, Superblock: 0x%x\n",
6636                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
6637                             le16_to_cpu(di->i_dyn_features),
6638                             OCFS2_I(inode)->ip_dyn_features,
6639                             osb->s_feature_incompat);
6640                 ret = -EROFS;
6641                 goto out;
6642         }
6643
6644         handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
6645         if (IS_ERR(handle)) {
6646                 ret = PTR_ERR(handle);
6647                 mlog_errno(ret);
6648                 goto out;
6649         }
6650
6651         ret = ocfs2_journal_access(handle, inode, di_bh,
6652                                    OCFS2_JOURNAL_ACCESS_WRITE);
6653         if (ret) {
6654                 mlog_errno(ret);
6655                 goto out_commit;
6656         }
6657
6658         numbytes = end - start;
6659         memset(idata->id_data + start, 0, numbytes);
6660
6661         /*
6662          * No need to worry about the data page here - it's been
6663          * truncated already and inline data doesn't need it for
6664          * pushing zero's to disk, so we'll let readpage pick it up
6665          * later.
6666          */
6667         if (trunc) {
6668                 i_size_write(inode, start);
6669                 di->i_size = cpu_to_le64(start);
6670         }
6671
6672         inode->i_blocks = ocfs2_inode_sector_count(inode);
6673         inode->i_ctime = inode->i_mtime = CURRENT_TIME;
6674
6675         di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec);
6676         di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
6677
6678         ocfs2_journal_dirty(handle, di_bh);
6679
6680 out_commit:
6681         ocfs2_commit_trans(osb, handle);
6682
6683 out:
6684         return ret;
6685 }
6686
6687 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc)
6688 {
6689         /*
6690          * The caller is responsible for completing deallocation
6691          * before freeing the context.
6692          */
6693         if (tc->tc_dealloc.c_first_suballocator != NULL)
6694                 mlog(ML_NOTICE,
6695                      "Truncate completion has non-empty dealloc context\n");
6696
6697         if (tc->tc_last_eb_bh)
6698                 brelse(tc->tc_last_eb_bh);
6699
6700         kfree(tc);
6701 }