ocfs2: Don't check for NULL before brelse()
[safe/jmp/linux-2.6] / fs / ocfs2 / alloc.c
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * alloc.c
5  *
6  * Extent allocs and frees
7  *
8  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public
12  * License as published by the Free Software Foundation; either
13  * version 2 of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public
21  * License along with this program; if not, write to the
22  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23  * Boston, MA 021110-1307, USA.
24  */
25
26 #include <linux/fs.h>
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/swap.h>
31
32 #define MLOG_MASK_PREFIX ML_DISK_ALLOC
33 #include <cluster/masklog.h>
34
35 #include "ocfs2.h"
36
37 #include "alloc.h"
38 #include "aops.h"
39 #include "dlmglue.h"
40 #include "extent_map.h"
41 #include "inode.h"
42 #include "journal.h"
43 #include "localalloc.h"
44 #include "suballoc.h"
45 #include "sysfile.h"
46 #include "file.h"
47 #include "super.h"
48 #include "uptodate.h"
49
50 #include "buffer_head_io.h"
51
52
53 /*
54  * Operations for a specific extent tree type.
55  *
56  * To implement an on-disk btree (extent tree) type in ocfs2, add
57  * an ocfs2_extent_tree_operations structure and the matching
58  * ocfs2_init_<thingy>_extent_tree() function.  That's pretty much it
59  * for the allocation portion of the extent tree.
60  */
61 struct ocfs2_extent_tree_operations {
62         /*
63          * last_eb_blk is the block number of the right most leaf extent
64          * block.  Most on-disk structures containing an extent tree store
65          * this value for fast access.  The ->eo_set_last_eb_blk() and
66          * ->eo_get_last_eb_blk() operations access this value.  They are
67          *  both required.
68          */
69         void (*eo_set_last_eb_blk)(struct ocfs2_extent_tree *et,
70                                    u64 blkno);
71         u64 (*eo_get_last_eb_blk)(struct ocfs2_extent_tree *et);
72
73         /*
74          * The on-disk structure usually keeps track of how many total
75          * clusters are stored in this extent tree.  This function updates
76          * that value.  new_clusters is the delta, and must be
77          * added to the total.  Required.
78          */
79         void (*eo_update_clusters)(struct inode *inode,
80                                    struct ocfs2_extent_tree *et,
81                                    u32 new_clusters);
82
83         /*
84          * If ->eo_insert_check() exists, it is called before rec is
85          * inserted into the extent tree.  It is optional.
86          */
87         int (*eo_insert_check)(struct inode *inode,
88                                struct ocfs2_extent_tree *et,
89                                struct ocfs2_extent_rec *rec);
90         int (*eo_sanity_check)(struct inode *inode, struct ocfs2_extent_tree *et);
91
92         /*
93          * --------------------------------------------------------------
94          * The remaining are internal to ocfs2_extent_tree and don't have
95          * accessor functions
96          */
97
98         /*
99          * ->eo_fill_root_el() takes et->et_object and sets et->et_root_el.
100          * It is required.
101          */
102         void (*eo_fill_root_el)(struct ocfs2_extent_tree *et);
103
104         /*
105          * ->eo_fill_max_leaf_clusters sets et->et_max_leaf_clusters if
106          * it exists.  If it does not, et->et_max_leaf_clusters is set
107          * to 0 (unlimited).  Optional.
108          */
109         void (*eo_fill_max_leaf_clusters)(struct inode *inode,
110                                           struct ocfs2_extent_tree *et);
111 };
112
113
114 /*
115  * Pre-declare ocfs2_dinode_et_ops so we can use it as a sanity check
116  * in the methods.
117  */
118 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et);
119 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et,
120                                          u64 blkno);
121 static void ocfs2_dinode_update_clusters(struct inode *inode,
122                                          struct ocfs2_extent_tree *et,
123                                          u32 clusters);
124 static int ocfs2_dinode_insert_check(struct inode *inode,
125                                      struct ocfs2_extent_tree *et,
126                                      struct ocfs2_extent_rec *rec);
127 static int ocfs2_dinode_sanity_check(struct inode *inode,
128                                      struct ocfs2_extent_tree *et);
129 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et);
130 static struct ocfs2_extent_tree_operations ocfs2_dinode_et_ops = {
131         .eo_set_last_eb_blk     = ocfs2_dinode_set_last_eb_blk,
132         .eo_get_last_eb_blk     = ocfs2_dinode_get_last_eb_blk,
133         .eo_update_clusters     = ocfs2_dinode_update_clusters,
134         .eo_insert_check        = ocfs2_dinode_insert_check,
135         .eo_sanity_check        = ocfs2_dinode_sanity_check,
136         .eo_fill_root_el        = ocfs2_dinode_fill_root_el,
137 };
138
139 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et,
140                                          u64 blkno)
141 {
142         struct ocfs2_dinode *di = et->et_object;
143
144         BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
145         di->i_last_eb_blk = cpu_to_le64(blkno);
146 }
147
148 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et)
149 {
150         struct ocfs2_dinode *di = et->et_object;
151
152         BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
153         return le64_to_cpu(di->i_last_eb_blk);
154 }
155
156 static void ocfs2_dinode_update_clusters(struct inode *inode,
157                                          struct ocfs2_extent_tree *et,
158                                          u32 clusters)
159 {
160         struct ocfs2_dinode *di = et->et_object;
161
162         le32_add_cpu(&di->i_clusters, clusters);
163         spin_lock(&OCFS2_I(inode)->ip_lock);
164         OCFS2_I(inode)->ip_clusters = le32_to_cpu(di->i_clusters);
165         spin_unlock(&OCFS2_I(inode)->ip_lock);
166 }
167
168 static int ocfs2_dinode_insert_check(struct inode *inode,
169                                      struct ocfs2_extent_tree *et,
170                                      struct ocfs2_extent_rec *rec)
171 {
172         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
173
174         BUG_ON(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL);
175         mlog_bug_on_msg(!ocfs2_sparse_alloc(osb) &&
176                         (OCFS2_I(inode)->ip_clusters != rec->e_cpos),
177                         "Device %s, asking for sparse allocation: inode %llu, "
178                         "cpos %u, clusters %u\n",
179                         osb->dev_str,
180                         (unsigned long long)OCFS2_I(inode)->ip_blkno,
181                         rec->e_cpos,
182                         OCFS2_I(inode)->ip_clusters);
183
184         return 0;
185 }
186
187 static int ocfs2_dinode_sanity_check(struct inode *inode,
188                                      struct ocfs2_extent_tree *et)
189 {
190         int ret = 0;
191         struct ocfs2_dinode *di;
192
193         BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
194
195         di = et->et_object;
196         if (!OCFS2_IS_VALID_DINODE(di)) {
197                 ret = -EIO;
198                 ocfs2_error(inode->i_sb,
199                         "Inode %llu has invalid path root",
200                         (unsigned long long)OCFS2_I(inode)->ip_blkno);
201         }
202
203         return ret;
204 }
205
206 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et)
207 {
208         struct ocfs2_dinode *di = et->et_object;
209
210         et->et_root_el = &di->id2.i_list;
211 }
212
213
214 static void ocfs2_xattr_value_fill_root_el(struct ocfs2_extent_tree *et)
215 {
216         struct ocfs2_xattr_value_root *xv = et->et_object;
217
218         et->et_root_el = &xv->xr_list;
219 }
220
221 static void ocfs2_xattr_value_set_last_eb_blk(struct ocfs2_extent_tree *et,
222                                               u64 blkno)
223 {
224         struct ocfs2_xattr_value_root *xv =
225                 (struct ocfs2_xattr_value_root *)et->et_object;
226
227         xv->xr_last_eb_blk = cpu_to_le64(blkno);
228 }
229
230 static u64 ocfs2_xattr_value_get_last_eb_blk(struct ocfs2_extent_tree *et)
231 {
232         struct ocfs2_xattr_value_root *xv =
233                 (struct ocfs2_xattr_value_root *) et->et_object;
234
235         return le64_to_cpu(xv->xr_last_eb_blk);
236 }
237
238 static void ocfs2_xattr_value_update_clusters(struct inode *inode,
239                                               struct ocfs2_extent_tree *et,
240                                               u32 clusters)
241 {
242         struct ocfs2_xattr_value_root *xv =
243                 (struct ocfs2_xattr_value_root *)et->et_object;
244
245         le32_add_cpu(&xv->xr_clusters, clusters);
246 }
247
248 static struct ocfs2_extent_tree_operations ocfs2_xattr_value_et_ops = {
249         .eo_set_last_eb_blk     = ocfs2_xattr_value_set_last_eb_blk,
250         .eo_get_last_eb_blk     = ocfs2_xattr_value_get_last_eb_blk,
251         .eo_update_clusters     = ocfs2_xattr_value_update_clusters,
252         .eo_fill_root_el        = ocfs2_xattr_value_fill_root_el,
253 };
254
255 static void ocfs2_xattr_tree_fill_root_el(struct ocfs2_extent_tree *et)
256 {
257         struct ocfs2_xattr_block *xb = et->et_object;
258
259         et->et_root_el = &xb->xb_attrs.xb_root.xt_list;
260 }
261
262 static void ocfs2_xattr_tree_fill_max_leaf_clusters(struct inode *inode,
263                                                     struct ocfs2_extent_tree *et)
264 {
265         et->et_max_leaf_clusters =
266                 ocfs2_clusters_for_bytes(inode->i_sb,
267                                          OCFS2_MAX_XATTR_TREE_LEAF_SIZE);
268 }
269
270 static void ocfs2_xattr_tree_set_last_eb_blk(struct ocfs2_extent_tree *et,
271                                              u64 blkno)
272 {
273         struct ocfs2_xattr_block *xb = et->et_object;
274         struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root;
275
276         xt->xt_last_eb_blk = cpu_to_le64(blkno);
277 }
278
279 static u64 ocfs2_xattr_tree_get_last_eb_blk(struct ocfs2_extent_tree *et)
280 {
281         struct ocfs2_xattr_block *xb = et->et_object;
282         struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root;
283
284         return le64_to_cpu(xt->xt_last_eb_blk);
285 }
286
287 static void ocfs2_xattr_tree_update_clusters(struct inode *inode,
288                                              struct ocfs2_extent_tree *et,
289                                              u32 clusters)
290 {
291         struct ocfs2_xattr_block *xb = et->et_object;
292
293         le32_add_cpu(&xb->xb_attrs.xb_root.xt_clusters, clusters);
294 }
295
296 static struct ocfs2_extent_tree_operations ocfs2_xattr_tree_et_ops = {
297         .eo_set_last_eb_blk     = ocfs2_xattr_tree_set_last_eb_blk,
298         .eo_get_last_eb_blk     = ocfs2_xattr_tree_get_last_eb_blk,
299         .eo_update_clusters     = ocfs2_xattr_tree_update_clusters,
300         .eo_fill_root_el        = ocfs2_xattr_tree_fill_root_el,
301         .eo_fill_max_leaf_clusters = ocfs2_xattr_tree_fill_max_leaf_clusters,
302 };
303
304 static void __ocfs2_init_extent_tree(struct ocfs2_extent_tree *et,
305                                      struct inode *inode,
306                                      struct buffer_head *bh,
307                                      void *obj,
308                                      struct ocfs2_extent_tree_operations *ops)
309 {
310         et->et_ops = ops;
311         et->et_root_bh = bh;
312         if (!obj)
313                 obj = (void *)bh->b_data;
314         et->et_object = obj;
315
316         et->et_ops->eo_fill_root_el(et);
317         if (!et->et_ops->eo_fill_max_leaf_clusters)
318                 et->et_max_leaf_clusters = 0;
319         else
320                 et->et_ops->eo_fill_max_leaf_clusters(inode, et);
321 }
322
323 void ocfs2_init_dinode_extent_tree(struct ocfs2_extent_tree *et,
324                                    struct inode *inode,
325                                    struct buffer_head *bh)
326 {
327         __ocfs2_init_extent_tree(et, inode, bh, NULL, &ocfs2_dinode_et_ops);
328 }
329
330 void ocfs2_init_xattr_tree_extent_tree(struct ocfs2_extent_tree *et,
331                                        struct inode *inode,
332                                        struct buffer_head *bh)
333 {
334         __ocfs2_init_extent_tree(et, inode, bh, NULL,
335                                  &ocfs2_xattr_tree_et_ops);
336 }
337
338 void ocfs2_init_xattr_value_extent_tree(struct ocfs2_extent_tree *et,
339                                         struct inode *inode,
340                                         struct buffer_head *bh,
341                                         struct ocfs2_xattr_value_root *xv)
342 {
343         __ocfs2_init_extent_tree(et, inode, bh, xv,
344                                  &ocfs2_xattr_value_et_ops);
345 }
346
347 static inline void ocfs2_et_set_last_eb_blk(struct ocfs2_extent_tree *et,
348                                             u64 new_last_eb_blk)
349 {
350         et->et_ops->eo_set_last_eb_blk(et, new_last_eb_blk);
351 }
352
353 static inline u64 ocfs2_et_get_last_eb_blk(struct ocfs2_extent_tree *et)
354 {
355         return et->et_ops->eo_get_last_eb_blk(et);
356 }
357
358 static inline void ocfs2_et_update_clusters(struct inode *inode,
359                                             struct ocfs2_extent_tree *et,
360                                             u32 clusters)
361 {
362         et->et_ops->eo_update_clusters(inode, et, clusters);
363 }
364
365 static inline int ocfs2_et_insert_check(struct inode *inode,
366                                         struct ocfs2_extent_tree *et,
367                                         struct ocfs2_extent_rec *rec)
368 {
369         int ret = 0;
370
371         if (et->et_ops->eo_insert_check)
372                 ret = et->et_ops->eo_insert_check(inode, et, rec);
373         return ret;
374 }
375
376 static inline int ocfs2_et_sanity_check(struct inode *inode,
377                                         struct ocfs2_extent_tree *et)
378 {
379         int ret = 0;
380
381         if (et->et_ops->eo_sanity_check)
382                 ret = et->et_ops->eo_sanity_check(inode, et);
383         return ret;
384 }
385
386 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc);
387 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
388                                          struct ocfs2_extent_block *eb);
389
390 /*
391  * Structures which describe a path through a btree, and functions to
392  * manipulate them.
393  *
394  * The idea here is to be as generic as possible with the tree
395  * manipulation code.
396  */
397 struct ocfs2_path_item {
398         struct buffer_head              *bh;
399         struct ocfs2_extent_list        *el;
400 };
401
402 #define OCFS2_MAX_PATH_DEPTH    5
403
404 struct ocfs2_path {
405         int                     p_tree_depth;
406         struct ocfs2_path_item  p_node[OCFS2_MAX_PATH_DEPTH];
407 };
408
409 #define path_root_bh(_path) ((_path)->p_node[0].bh)
410 #define path_root_el(_path) ((_path)->p_node[0].el)
411 #define path_leaf_bh(_path) ((_path)->p_node[(_path)->p_tree_depth].bh)
412 #define path_leaf_el(_path) ((_path)->p_node[(_path)->p_tree_depth].el)
413 #define path_num_items(_path) ((_path)->p_tree_depth + 1)
414
415 /*
416  * Reset the actual path elements so that we can re-use the structure
417  * to build another path. Generally, this involves freeing the buffer
418  * heads.
419  */
420 static void ocfs2_reinit_path(struct ocfs2_path *path, int keep_root)
421 {
422         int i, start = 0, depth = 0;
423         struct ocfs2_path_item *node;
424
425         if (keep_root)
426                 start = 1;
427
428         for(i = start; i < path_num_items(path); i++) {
429                 node = &path->p_node[i];
430
431                 brelse(node->bh);
432                 node->bh = NULL;
433                 node->el = NULL;
434         }
435
436         /*
437          * Tree depth may change during truncate, or insert. If we're
438          * keeping the root extent list, then make sure that our path
439          * structure reflects the proper depth.
440          */
441         if (keep_root)
442                 depth = le16_to_cpu(path_root_el(path)->l_tree_depth);
443
444         path->p_tree_depth = depth;
445 }
446
447 static void ocfs2_free_path(struct ocfs2_path *path)
448 {
449         if (path) {
450                 ocfs2_reinit_path(path, 0);
451                 kfree(path);
452         }
453 }
454
455 /*
456  * All the elements of src into dest. After this call, src could be freed
457  * without affecting dest.
458  *
459  * Both paths should have the same root. Any non-root elements of dest
460  * will be freed.
461  */
462 static void ocfs2_cp_path(struct ocfs2_path *dest, struct ocfs2_path *src)
463 {
464         int i;
465
466         BUG_ON(path_root_bh(dest) != path_root_bh(src));
467         BUG_ON(path_root_el(dest) != path_root_el(src));
468
469         ocfs2_reinit_path(dest, 1);
470
471         for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
472                 dest->p_node[i].bh = src->p_node[i].bh;
473                 dest->p_node[i].el = src->p_node[i].el;
474
475                 if (dest->p_node[i].bh)
476                         get_bh(dest->p_node[i].bh);
477         }
478 }
479
480 /*
481  * Make the *dest path the same as src and re-initialize src path to
482  * have a root only.
483  */
484 static void ocfs2_mv_path(struct ocfs2_path *dest, struct ocfs2_path *src)
485 {
486         int i;
487
488         BUG_ON(path_root_bh(dest) != path_root_bh(src));
489
490         for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
491                 brelse(dest->p_node[i].bh);
492
493                 dest->p_node[i].bh = src->p_node[i].bh;
494                 dest->p_node[i].el = src->p_node[i].el;
495
496                 src->p_node[i].bh = NULL;
497                 src->p_node[i].el = NULL;
498         }
499 }
500
501 /*
502  * Insert an extent block at given index.
503  *
504  * This will not take an additional reference on eb_bh.
505  */
506 static inline void ocfs2_path_insert_eb(struct ocfs2_path *path, int index,
507                                         struct buffer_head *eb_bh)
508 {
509         struct ocfs2_extent_block *eb = (struct ocfs2_extent_block *)eb_bh->b_data;
510
511         /*
512          * Right now, no root bh is an extent block, so this helps
513          * catch code errors with dinode trees. The assertion can be
514          * safely removed if we ever need to insert extent block
515          * structures at the root.
516          */
517         BUG_ON(index == 0);
518
519         path->p_node[index].bh = eb_bh;
520         path->p_node[index].el = &eb->h_list;
521 }
522
523 static struct ocfs2_path *ocfs2_new_path(struct buffer_head *root_bh,
524                                          struct ocfs2_extent_list *root_el)
525 {
526         struct ocfs2_path *path;
527
528         BUG_ON(le16_to_cpu(root_el->l_tree_depth) >= OCFS2_MAX_PATH_DEPTH);
529
530         path = kzalloc(sizeof(*path), GFP_NOFS);
531         if (path) {
532                 path->p_tree_depth = le16_to_cpu(root_el->l_tree_depth);
533                 get_bh(root_bh);
534                 path_root_bh(path) = root_bh;
535                 path_root_el(path) = root_el;
536         }
537
538         return path;
539 }
540
541 /*
542  * Convenience function to journal all components in a path.
543  */
544 static int ocfs2_journal_access_path(struct inode *inode, handle_t *handle,
545                                      struct ocfs2_path *path)
546 {
547         int i, ret = 0;
548
549         if (!path)
550                 goto out;
551
552         for(i = 0; i < path_num_items(path); i++) {
553                 ret = ocfs2_journal_access(handle, inode, path->p_node[i].bh,
554                                            OCFS2_JOURNAL_ACCESS_WRITE);
555                 if (ret < 0) {
556                         mlog_errno(ret);
557                         goto out;
558                 }
559         }
560
561 out:
562         return ret;
563 }
564
565 /*
566  * Return the index of the extent record which contains cluster #v_cluster.
567  * -1 is returned if it was not found.
568  *
569  * Should work fine on interior and exterior nodes.
570  */
571 int ocfs2_search_extent_list(struct ocfs2_extent_list *el, u32 v_cluster)
572 {
573         int ret = -1;
574         int i;
575         struct ocfs2_extent_rec *rec;
576         u32 rec_end, rec_start, clusters;
577
578         for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
579                 rec = &el->l_recs[i];
580
581                 rec_start = le32_to_cpu(rec->e_cpos);
582                 clusters = ocfs2_rec_clusters(el, rec);
583
584                 rec_end = rec_start + clusters;
585
586                 if (v_cluster >= rec_start && v_cluster < rec_end) {
587                         ret = i;
588                         break;
589                 }
590         }
591
592         return ret;
593 }
594
595 enum ocfs2_contig_type {
596         CONTIG_NONE = 0,
597         CONTIG_LEFT,
598         CONTIG_RIGHT,
599         CONTIG_LEFTRIGHT,
600 };
601
602
603 /*
604  * NOTE: ocfs2_block_extent_contig(), ocfs2_extents_adjacent() and
605  * ocfs2_extent_contig only work properly against leaf nodes!
606  */
607 static int ocfs2_block_extent_contig(struct super_block *sb,
608                                      struct ocfs2_extent_rec *ext,
609                                      u64 blkno)
610 {
611         u64 blk_end = le64_to_cpu(ext->e_blkno);
612
613         blk_end += ocfs2_clusters_to_blocks(sb,
614                                     le16_to_cpu(ext->e_leaf_clusters));
615
616         return blkno == blk_end;
617 }
618
619 static int ocfs2_extents_adjacent(struct ocfs2_extent_rec *left,
620                                   struct ocfs2_extent_rec *right)
621 {
622         u32 left_range;
623
624         left_range = le32_to_cpu(left->e_cpos) +
625                 le16_to_cpu(left->e_leaf_clusters);
626
627         return (left_range == le32_to_cpu(right->e_cpos));
628 }
629
630 static enum ocfs2_contig_type
631         ocfs2_extent_contig(struct inode *inode,
632                             struct ocfs2_extent_rec *ext,
633                             struct ocfs2_extent_rec *insert_rec)
634 {
635         u64 blkno = le64_to_cpu(insert_rec->e_blkno);
636
637         /*
638          * Refuse to coalesce extent records with different flag
639          * fields - we don't want to mix unwritten extents with user
640          * data.
641          */
642         if (ext->e_flags != insert_rec->e_flags)
643                 return CONTIG_NONE;
644
645         if (ocfs2_extents_adjacent(ext, insert_rec) &&
646             ocfs2_block_extent_contig(inode->i_sb, ext, blkno))
647                         return CONTIG_RIGHT;
648
649         blkno = le64_to_cpu(ext->e_blkno);
650         if (ocfs2_extents_adjacent(insert_rec, ext) &&
651             ocfs2_block_extent_contig(inode->i_sb, insert_rec, blkno))
652                 return CONTIG_LEFT;
653
654         return CONTIG_NONE;
655 }
656
657 /*
658  * NOTE: We can have pretty much any combination of contiguousness and
659  * appending.
660  *
661  * The usefulness of APPEND_TAIL is more in that it lets us know that
662  * we'll have to update the path to that leaf.
663  */
664 enum ocfs2_append_type {
665         APPEND_NONE = 0,
666         APPEND_TAIL,
667 };
668
669 enum ocfs2_split_type {
670         SPLIT_NONE = 0,
671         SPLIT_LEFT,
672         SPLIT_RIGHT,
673 };
674
675 struct ocfs2_insert_type {
676         enum ocfs2_split_type   ins_split;
677         enum ocfs2_append_type  ins_appending;
678         enum ocfs2_contig_type  ins_contig;
679         int                     ins_contig_index;
680         int                     ins_tree_depth;
681 };
682
683 struct ocfs2_merge_ctxt {
684         enum ocfs2_contig_type  c_contig_type;
685         int                     c_has_empty_extent;
686         int                     c_split_covers_rec;
687 };
688
689 /*
690  * How many free extents have we got before we need more meta data?
691  */
692 int ocfs2_num_free_extents(struct ocfs2_super *osb,
693                            struct inode *inode,
694                            struct ocfs2_extent_tree *et)
695 {
696         int retval;
697         struct ocfs2_extent_list *el = NULL;
698         struct ocfs2_extent_block *eb;
699         struct buffer_head *eb_bh = NULL;
700         u64 last_eb_blk = 0;
701
702         mlog_entry_void();
703
704         el = et->et_root_el;
705         last_eb_blk = ocfs2_et_get_last_eb_blk(et);
706
707         if (last_eb_blk) {
708                 retval = ocfs2_read_block(osb, last_eb_blk,
709                                           &eb_bh, OCFS2_BH_CACHED, inode);
710                 if (retval < 0) {
711                         mlog_errno(retval);
712                         goto bail;
713                 }
714                 eb = (struct ocfs2_extent_block *) eb_bh->b_data;
715                 el = &eb->h_list;
716         }
717
718         BUG_ON(el->l_tree_depth != 0);
719
720         retval = le16_to_cpu(el->l_count) - le16_to_cpu(el->l_next_free_rec);
721 bail:
722         brelse(eb_bh);
723
724         mlog_exit(retval);
725         return retval;
726 }
727
728 /* expects array to already be allocated
729  *
730  * sets h_signature, h_blkno, h_suballoc_bit, h_suballoc_slot, and
731  * l_count for you
732  */
733 static int ocfs2_create_new_meta_bhs(struct ocfs2_super *osb,
734                                      handle_t *handle,
735                                      struct inode *inode,
736                                      int wanted,
737                                      struct ocfs2_alloc_context *meta_ac,
738                                      struct buffer_head *bhs[])
739 {
740         int count, status, i;
741         u16 suballoc_bit_start;
742         u32 num_got;
743         u64 first_blkno;
744         struct ocfs2_extent_block *eb;
745
746         mlog_entry_void();
747
748         count = 0;
749         while (count < wanted) {
750                 status = ocfs2_claim_metadata(osb,
751                                               handle,
752                                               meta_ac,
753                                               wanted - count,
754                                               &suballoc_bit_start,
755                                               &num_got,
756                                               &first_blkno);
757                 if (status < 0) {
758                         mlog_errno(status);
759                         goto bail;
760                 }
761
762                 for(i = count;  i < (num_got + count); i++) {
763                         bhs[i] = sb_getblk(osb->sb, first_blkno);
764                         if (bhs[i] == NULL) {
765                                 status = -EIO;
766                                 mlog_errno(status);
767                                 goto bail;
768                         }
769                         ocfs2_set_new_buffer_uptodate(inode, bhs[i]);
770
771                         status = ocfs2_journal_access(handle, inode, bhs[i],
772                                                       OCFS2_JOURNAL_ACCESS_CREATE);
773                         if (status < 0) {
774                                 mlog_errno(status);
775                                 goto bail;
776                         }
777
778                         memset(bhs[i]->b_data, 0, osb->sb->s_blocksize);
779                         eb = (struct ocfs2_extent_block *) bhs[i]->b_data;
780                         /* Ok, setup the minimal stuff here. */
781                         strcpy(eb->h_signature, OCFS2_EXTENT_BLOCK_SIGNATURE);
782                         eb->h_blkno = cpu_to_le64(first_blkno);
783                         eb->h_fs_generation = cpu_to_le32(osb->fs_generation);
784                         eb->h_suballoc_slot = cpu_to_le16(osb->slot_num);
785                         eb->h_suballoc_bit = cpu_to_le16(suballoc_bit_start);
786                         eb->h_list.l_count =
787                                 cpu_to_le16(ocfs2_extent_recs_per_eb(osb->sb));
788
789                         suballoc_bit_start++;
790                         first_blkno++;
791
792                         /* We'll also be dirtied by the caller, so
793                          * this isn't absolutely necessary. */
794                         status = ocfs2_journal_dirty(handle, bhs[i]);
795                         if (status < 0) {
796                                 mlog_errno(status);
797                                 goto bail;
798                         }
799                 }
800
801                 count += num_got;
802         }
803
804         status = 0;
805 bail:
806         if (status < 0) {
807                 for(i = 0; i < wanted; i++) {
808                         brelse(bhs[i]);
809                         bhs[i] = NULL;
810                 }
811         }
812         mlog_exit(status);
813         return status;
814 }
815
816 /*
817  * Helper function for ocfs2_add_branch() and ocfs2_shift_tree_depth().
818  *
819  * Returns the sum of the rightmost extent rec logical offset and
820  * cluster count.
821  *
822  * ocfs2_add_branch() uses this to determine what logical cluster
823  * value should be populated into the leftmost new branch records.
824  *
825  * ocfs2_shift_tree_depth() uses this to determine the # clusters
826  * value for the new topmost tree record.
827  */
828 static inline u32 ocfs2_sum_rightmost_rec(struct ocfs2_extent_list  *el)
829 {
830         int i;
831
832         i = le16_to_cpu(el->l_next_free_rec) - 1;
833
834         return le32_to_cpu(el->l_recs[i].e_cpos) +
835                 ocfs2_rec_clusters(el, &el->l_recs[i]);
836 }
837
838 /*
839  * Add an entire tree branch to our inode. eb_bh is the extent block
840  * to start at, if we don't want to start the branch at the dinode
841  * structure.
842  *
843  * last_eb_bh is required as we have to update it's next_leaf pointer
844  * for the new last extent block.
845  *
846  * the new branch will be 'empty' in the sense that every block will
847  * contain a single record with cluster count == 0.
848  */
849 static int ocfs2_add_branch(struct ocfs2_super *osb,
850                             handle_t *handle,
851                             struct inode *inode,
852                             struct ocfs2_extent_tree *et,
853                             struct buffer_head *eb_bh,
854                             struct buffer_head **last_eb_bh,
855                             struct ocfs2_alloc_context *meta_ac)
856 {
857         int status, new_blocks, i;
858         u64 next_blkno, new_last_eb_blk;
859         struct buffer_head *bh;
860         struct buffer_head **new_eb_bhs = NULL;
861         struct ocfs2_extent_block *eb;
862         struct ocfs2_extent_list  *eb_el;
863         struct ocfs2_extent_list  *el;
864         u32 new_cpos;
865
866         mlog_entry_void();
867
868         BUG_ON(!last_eb_bh || !*last_eb_bh);
869
870         if (eb_bh) {
871                 eb = (struct ocfs2_extent_block *) eb_bh->b_data;
872                 el = &eb->h_list;
873         } else
874                 el = et->et_root_el;
875
876         /* we never add a branch to a leaf. */
877         BUG_ON(!el->l_tree_depth);
878
879         new_blocks = le16_to_cpu(el->l_tree_depth);
880
881         /* allocate the number of new eb blocks we need */
882         new_eb_bhs = kcalloc(new_blocks, sizeof(struct buffer_head *),
883                              GFP_KERNEL);
884         if (!new_eb_bhs) {
885                 status = -ENOMEM;
886                 mlog_errno(status);
887                 goto bail;
888         }
889
890         status = ocfs2_create_new_meta_bhs(osb, handle, inode, new_blocks,
891                                            meta_ac, new_eb_bhs);
892         if (status < 0) {
893                 mlog_errno(status);
894                 goto bail;
895         }
896
897         eb = (struct ocfs2_extent_block *)(*last_eb_bh)->b_data;
898         new_cpos = ocfs2_sum_rightmost_rec(&eb->h_list);
899
900         /* Note: new_eb_bhs[new_blocks - 1] is the guy which will be
901          * linked with the rest of the tree.
902          * conversly, new_eb_bhs[0] is the new bottommost leaf.
903          *
904          * when we leave the loop, new_last_eb_blk will point to the
905          * newest leaf, and next_blkno will point to the topmost extent
906          * block. */
907         next_blkno = new_last_eb_blk = 0;
908         for(i = 0; i < new_blocks; i++) {
909                 bh = new_eb_bhs[i];
910                 eb = (struct ocfs2_extent_block *) bh->b_data;
911                 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
912                         OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
913                         status = -EIO;
914                         goto bail;
915                 }
916                 eb_el = &eb->h_list;
917
918                 status = ocfs2_journal_access(handle, inode, bh,
919                                               OCFS2_JOURNAL_ACCESS_CREATE);
920                 if (status < 0) {
921                         mlog_errno(status);
922                         goto bail;
923                 }
924
925                 eb->h_next_leaf_blk = 0;
926                 eb_el->l_tree_depth = cpu_to_le16(i);
927                 eb_el->l_next_free_rec = cpu_to_le16(1);
928                 /*
929                  * This actually counts as an empty extent as
930                  * c_clusters == 0
931                  */
932                 eb_el->l_recs[0].e_cpos = cpu_to_le32(new_cpos);
933                 eb_el->l_recs[0].e_blkno = cpu_to_le64(next_blkno);
934                 /*
935                  * eb_el isn't always an interior node, but even leaf
936                  * nodes want a zero'd flags and reserved field so
937                  * this gets the whole 32 bits regardless of use.
938                  */
939                 eb_el->l_recs[0].e_int_clusters = cpu_to_le32(0);
940                 if (!eb_el->l_tree_depth)
941                         new_last_eb_blk = le64_to_cpu(eb->h_blkno);
942
943                 status = ocfs2_journal_dirty(handle, bh);
944                 if (status < 0) {
945                         mlog_errno(status);
946                         goto bail;
947                 }
948
949                 next_blkno = le64_to_cpu(eb->h_blkno);
950         }
951
952         /* This is a bit hairy. We want to update up to three blocks
953          * here without leaving any of them in an inconsistent state
954          * in case of error. We don't have to worry about
955          * journal_dirty erroring as it won't unless we've aborted the
956          * handle (in which case we would never be here) so reserving
957          * the write with journal_access is all we need to do. */
958         status = ocfs2_journal_access(handle, inode, *last_eb_bh,
959                                       OCFS2_JOURNAL_ACCESS_WRITE);
960         if (status < 0) {
961                 mlog_errno(status);
962                 goto bail;
963         }
964         status = ocfs2_journal_access(handle, inode, et->et_root_bh,
965                                       OCFS2_JOURNAL_ACCESS_WRITE);
966         if (status < 0) {
967                 mlog_errno(status);
968                 goto bail;
969         }
970         if (eb_bh) {
971                 status = ocfs2_journal_access(handle, inode, eb_bh,
972                                               OCFS2_JOURNAL_ACCESS_WRITE);
973                 if (status < 0) {
974                         mlog_errno(status);
975                         goto bail;
976                 }
977         }
978
979         /* Link the new branch into the rest of the tree (el will
980          * either be on the root_bh, or the extent block passed in. */
981         i = le16_to_cpu(el->l_next_free_rec);
982         el->l_recs[i].e_blkno = cpu_to_le64(next_blkno);
983         el->l_recs[i].e_cpos = cpu_to_le32(new_cpos);
984         el->l_recs[i].e_int_clusters = 0;
985         le16_add_cpu(&el->l_next_free_rec, 1);
986
987         /* fe needs a new last extent block pointer, as does the
988          * next_leaf on the previously last-extent-block. */
989         ocfs2_et_set_last_eb_blk(et, new_last_eb_blk);
990
991         eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
992         eb->h_next_leaf_blk = cpu_to_le64(new_last_eb_blk);
993
994         status = ocfs2_journal_dirty(handle, *last_eb_bh);
995         if (status < 0)
996                 mlog_errno(status);
997         status = ocfs2_journal_dirty(handle, et->et_root_bh);
998         if (status < 0)
999                 mlog_errno(status);
1000         if (eb_bh) {
1001                 status = ocfs2_journal_dirty(handle, eb_bh);
1002                 if (status < 0)
1003                         mlog_errno(status);
1004         }
1005
1006         /*
1007          * Some callers want to track the rightmost leaf so pass it
1008          * back here.
1009          */
1010         brelse(*last_eb_bh);
1011         get_bh(new_eb_bhs[0]);
1012         *last_eb_bh = new_eb_bhs[0];
1013
1014         status = 0;
1015 bail:
1016         if (new_eb_bhs) {
1017                 for (i = 0; i < new_blocks; i++)
1018                         brelse(new_eb_bhs[i]);
1019                 kfree(new_eb_bhs);
1020         }
1021
1022         mlog_exit(status);
1023         return status;
1024 }
1025
1026 /*
1027  * adds another level to the allocation tree.
1028  * returns back the new extent block so you can add a branch to it
1029  * after this call.
1030  */
1031 static int ocfs2_shift_tree_depth(struct ocfs2_super *osb,
1032                                   handle_t *handle,
1033                                   struct inode *inode,
1034                                   struct ocfs2_extent_tree *et,
1035                                   struct ocfs2_alloc_context *meta_ac,
1036                                   struct buffer_head **ret_new_eb_bh)
1037 {
1038         int status, i;
1039         u32 new_clusters;
1040         struct buffer_head *new_eb_bh = NULL;
1041         struct ocfs2_extent_block *eb;
1042         struct ocfs2_extent_list  *root_el;
1043         struct ocfs2_extent_list  *eb_el;
1044
1045         mlog_entry_void();
1046
1047         status = ocfs2_create_new_meta_bhs(osb, handle, inode, 1, meta_ac,
1048                                            &new_eb_bh);
1049         if (status < 0) {
1050                 mlog_errno(status);
1051                 goto bail;
1052         }
1053
1054         eb = (struct ocfs2_extent_block *) new_eb_bh->b_data;
1055         if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
1056                 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
1057                 status = -EIO;
1058                 goto bail;
1059         }
1060
1061         eb_el = &eb->h_list;
1062         root_el = et->et_root_el;
1063
1064         status = ocfs2_journal_access(handle, inode, new_eb_bh,
1065                                       OCFS2_JOURNAL_ACCESS_CREATE);
1066         if (status < 0) {
1067                 mlog_errno(status);
1068                 goto bail;
1069         }
1070
1071         /* copy the root extent list data into the new extent block */
1072         eb_el->l_tree_depth = root_el->l_tree_depth;
1073         eb_el->l_next_free_rec = root_el->l_next_free_rec;
1074         for (i = 0; i < le16_to_cpu(root_el->l_next_free_rec); i++)
1075                 eb_el->l_recs[i] = root_el->l_recs[i];
1076
1077         status = ocfs2_journal_dirty(handle, new_eb_bh);
1078         if (status < 0) {
1079                 mlog_errno(status);
1080                 goto bail;
1081         }
1082
1083         status = ocfs2_journal_access(handle, inode, et->et_root_bh,
1084                                       OCFS2_JOURNAL_ACCESS_WRITE);
1085         if (status < 0) {
1086                 mlog_errno(status);
1087                 goto bail;
1088         }
1089
1090         new_clusters = ocfs2_sum_rightmost_rec(eb_el);
1091
1092         /* update root_bh now */
1093         le16_add_cpu(&root_el->l_tree_depth, 1);
1094         root_el->l_recs[0].e_cpos = 0;
1095         root_el->l_recs[0].e_blkno = eb->h_blkno;
1096         root_el->l_recs[0].e_int_clusters = cpu_to_le32(new_clusters);
1097         for (i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++)
1098                 memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
1099         root_el->l_next_free_rec = cpu_to_le16(1);
1100
1101         /* If this is our 1st tree depth shift, then last_eb_blk
1102          * becomes the allocated extent block */
1103         if (root_el->l_tree_depth == cpu_to_le16(1))
1104                 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
1105
1106         status = ocfs2_journal_dirty(handle, et->et_root_bh);
1107         if (status < 0) {
1108                 mlog_errno(status);
1109                 goto bail;
1110         }
1111
1112         *ret_new_eb_bh = new_eb_bh;
1113         new_eb_bh = NULL;
1114         status = 0;
1115 bail:
1116         brelse(new_eb_bh);
1117
1118         mlog_exit(status);
1119         return status;
1120 }
1121
1122 /*
1123  * Should only be called when there is no space left in any of the
1124  * leaf nodes. What we want to do is find the lowest tree depth
1125  * non-leaf extent block with room for new records. There are three
1126  * valid results of this search:
1127  *
1128  * 1) a lowest extent block is found, then we pass it back in
1129  *    *lowest_eb_bh and return '0'
1130  *
1131  * 2) the search fails to find anything, but the root_el has room. We
1132  *    pass NULL back in *lowest_eb_bh, but still return '0'
1133  *
1134  * 3) the search fails to find anything AND the root_el is full, in
1135  *    which case we return > 0
1136  *
1137  * return status < 0 indicates an error.
1138  */
1139 static int ocfs2_find_branch_target(struct ocfs2_super *osb,
1140                                     struct inode *inode,
1141                                     struct ocfs2_extent_tree *et,
1142                                     struct buffer_head **target_bh)
1143 {
1144         int status = 0, i;
1145         u64 blkno;
1146         struct ocfs2_extent_block *eb;
1147         struct ocfs2_extent_list  *el;
1148         struct buffer_head *bh = NULL;
1149         struct buffer_head *lowest_bh = NULL;
1150
1151         mlog_entry_void();
1152
1153         *target_bh = NULL;
1154
1155         el = et->et_root_el;
1156
1157         while(le16_to_cpu(el->l_tree_depth) > 1) {
1158                 if (le16_to_cpu(el->l_next_free_rec) == 0) {
1159                         ocfs2_error(inode->i_sb, "Dinode %llu has empty "
1160                                     "extent list (next_free_rec == 0)",
1161                                     (unsigned long long)OCFS2_I(inode)->ip_blkno);
1162                         status = -EIO;
1163                         goto bail;
1164                 }
1165                 i = le16_to_cpu(el->l_next_free_rec) - 1;
1166                 blkno = le64_to_cpu(el->l_recs[i].e_blkno);
1167                 if (!blkno) {
1168                         ocfs2_error(inode->i_sb, "Dinode %llu has extent "
1169                                     "list where extent # %d has no physical "
1170                                     "block start",
1171                                     (unsigned long long)OCFS2_I(inode)->ip_blkno, i);
1172                         status = -EIO;
1173                         goto bail;
1174                 }
1175
1176                 brelse(bh);
1177                 bh = NULL;
1178
1179                 status = ocfs2_read_block(osb, blkno, &bh, OCFS2_BH_CACHED,
1180                                           inode);
1181                 if (status < 0) {
1182                         mlog_errno(status);
1183                         goto bail;
1184                 }
1185
1186                 eb = (struct ocfs2_extent_block *) bh->b_data;
1187                 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
1188                         OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
1189                         status = -EIO;
1190                         goto bail;
1191                 }
1192                 el = &eb->h_list;
1193
1194                 if (le16_to_cpu(el->l_next_free_rec) <
1195                     le16_to_cpu(el->l_count)) {
1196                         brelse(lowest_bh);
1197                         lowest_bh = bh;
1198                         get_bh(lowest_bh);
1199                 }
1200         }
1201
1202         /* If we didn't find one and the fe doesn't have any room,
1203          * then return '1' */
1204         el = et->et_root_el;
1205         if (!lowest_bh && (el->l_next_free_rec == el->l_count))
1206                 status = 1;
1207
1208         *target_bh = lowest_bh;
1209 bail:
1210         brelse(bh);
1211
1212         mlog_exit(status);
1213         return status;
1214 }
1215
1216 /*
1217  * Grow a b-tree so that it has more records.
1218  *
1219  * We might shift the tree depth in which case existing paths should
1220  * be considered invalid.
1221  *
1222  * Tree depth after the grow is returned via *final_depth.
1223  *
1224  * *last_eb_bh will be updated by ocfs2_add_branch().
1225  */
1226 static int ocfs2_grow_tree(struct inode *inode, handle_t *handle,
1227                            struct ocfs2_extent_tree *et, int *final_depth,
1228                            struct buffer_head **last_eb_bh,
1229                            struct ocfs2_alloc_context *meta_ac)
1230 {
1231         int ret, shift;
1232         struct ocfs2_extent_list *el = et->et_root_el;
1233         int depth = le16_to_cpu(el->l_tree_depth);
1234         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1235         struct buffer_head *bh = NULL;
1236
1237         BUG_ON(meta_ac == NULL);
1238
1239         shift = ocfs2_find_branch_target(osb, inode, et, &bh);
1240         if (shift < 0) {
1241                 ret = shift;
1242                 mlog_errno(ret);
1243                 goto out;
1244         }
1245
1246         /* We traveled all the way to the bottom of the allocation tree
1247          * and didn't find room for any more extents - we need to add
1248          * another tree level */
1249         if (shift) {
1250                 BUG_ON(bh);
1251                 mlog(0, "need to shift tree depth (current = %d)\n", depth);
1252
1253                 /* ocfs2_shift_tree_depth will return us a buffer with
1254                  * the new extent block (so we can pass that to
1255                  * ocfs2_add_branch). */
1256                 ret = ocfs2_shift_tree_depth(osb, handle, inode, et,
1257                                              meta_ac, &bh);
1258                 if (ret < 0) {
1259                         mlog_errno(ret);
1260                         goto out;
1261                 }
1262                 depth++;
1263                 if (depth == 1) {
1264                         /*
1265                          * Special case: we have room now if we shifted from
1266                          * tree_depth 0, so no more work needs to be done.
1267                          *
1268                          * We won't be calling add_branch, so pass
1269                          * back *last_eb_bh as the new leaf. At depth
1270                          * zero, it should always be null so there's
1271                          * no reason to brelse.
1272                          */
1273                         BUG_ON(*last_eb_bh);
1274                         get_bh(bh);
1275                         *last_eb_bh = bh;
1276                         goto out;
1277                 }
1278         }
1279
1280         /* call ocfs2_add_branch to add the final part of the tree with
1281          * the new data. */
1282         mlog(0, "add branch. bh = %p\n", bh);
1283         ret = ocfs2_add_branch(osb, handle, inode, et, bh, last_eb_bh,
1284                                meta_ac);
1285         if (ret < 0) {
1286                 mlog_errno(ret);
1287                 goto out;
1288         }
1289
1290 out:
1291         if (final_depth)
1292                 *final_depth = depth;
1293         brelse(bh);
1294         return ret;
1295 }
1296
1297 /*
1298  * This function will discard the rightmost extent record.
1299  */
1300 static void ocfs2_shift_records_right(struct ocfs2_extent_list *el)
1301 {
1302         int next_free = le16_to_cpu(el->l_next_free_rec);
1303         int count = le16_to_cpu(el->l_count);
1304         unsigned int num_bytes;
1305
1306         BUG_ON(!next_free);
1307         /* This will cause us to go off the end of our extent list. */
1308         BUG_ON(next_free >= count);
1309
1310         num_bytes = sizeof(struct ocfs2_extent_rec) * next_free;
1311
1312         memmove(&el->l_recs[1], &el->l_recs[0], num_bytes);
1313 }
1314
1315 static void ocfs2_rotate_leaf(struct ocfs2_extent_list *el,
1316                               struct ocfs2_extent_rec *insert_rec)
1317 {
1318         int i, insert_index, next_free, has_empty, num_bytes;
1319         u32 insert_cpos = le32_to_cpu(insert_rec->e_cpos);
1320         struct ocfs2_extent_rec *rec;
1321
1322         next_free = le16_to_cpu(el->l_next_free_rec);
1323         has_empty = ocfs2_is_empty_extent(&el->l_recs[0]);
1324
1325         BUG_ON(!next_free);
1326
1327         /* The tree code before us didn't allow enough room in the leaf. */
1328         BUG_ON(el->l_next_free_rec == el->l_count && !has_empty);
1329
1330         /*
1331          * The easiest way to approach this is to just remove the
1332          * empty extent and temporarily decrement next_free.
1333          */
1334         if (has_empty) {
1335                 /*
1336                  * If next_free was 1 (only an empty extent), this
1337                  * loop won't execute, which is fine. We still want
1338                  * the decrement above to happen.
1339                  */
1340                 for(i = 0; i < (next_free - 1); i++)
1341                         el->l_recs[i] = el->l_recs[i+1];
1342
1343                 next_free--;
1344         }
1345
1346         /*
1347          * Figure out what the new record index should be.
1348          */
1349         for(i = 0; i < next_free; i++) {
1350                 rec = &el->l_recs[i];
1351
1352                 if (insert_cpos < le32_to_cpu(rec->e_cpos))
1353                         break;
1354         }
1355         insert_index = i;
1356
1357         mlog(0, "ins %u: index %d, has_empty %d, next_free %d, count %d\n",
1358              insert_cpos, insert_index, has_empty, next_free, le16_to_cpu(el->l_count));
1359
1360         BUG_ON(insert_index < 0);
1361         BUG_ON(insert_index >= le16_to_cpu(el->l_count));
1362         BUG_ON(insert_index > next_free);
1363
1364         /*
1365          * No need to memmove if we're just adding to the tail.
1366          */
1367         if (insert_index != next_free) {
1368                 BUG_ON(next_free >= le16_to_cpu(el->l_count));
1369
1370                 num_bytes = next_free - insert_index;
1371                 num_bytes *= sizeof(struct ocfs2_extent_rec);
1372                 memmove(&el->l_recs[insert_index + 1],
1373                         &el->l_recs[insert_index],
1374                         num_bytes);
1375         }
1376
1377         /*
1378          * Either we had an empty extent, and need to re-increment or
1379          * there was no empty extent on a non full rightmost leaf node,
1380          * in which case we still need to increment.
1381          */
1382         next_free++;
1383         el->l_next_free_rec = cpu_to_le16(next_free);
1384         /*
1385          * Make sure none of the math above just messed up our tree.
1386          */
1387         BUG_ON(le16_to_cpu(el->l_next_free_rec) > le16_to_cpu(el->l_count));
1388
1389         el->l_recs[insert_index] = *insert_rec;
1390
1391 }
1392
1393 static void ocfs2_remove_empty_extent(struct ocfs2_extent_list *el)
1394 {
1395         int size, num_recs = le16_to_cpu(el->l_next_free_rec);
1396
1397         BUG_ON(num_recs == 0);
1398
1399         if (ocfs2_is_empty_extent(&el->l_recs[0])) {
1400                 num_recs--;
1401                 size = num_recs * sizeof(struct ocfs2_extent_rec);
1402                 memmove(&el->l_recs[0], &el->l_recs[1], size);
1403                 memset(&el->l_recs[num_recs], 0,
1404                        sizeof(struct ocfs2_extent_rec));
1405                 el->l_next_free_rec = cpu_to_le16(num_recs);
1406         }
1407 }
1408
1409 /*
1410  * Create an empty extent record .
1411  *
1412  * l_next_free_rec may be updated.
1413  *
1414  * If an empty extent already exists do nothing.
1415  */
1416 static void ocfs2_create_empty_extent(struct ocfs2_extent_list *el)
1417 {
1418         int next_free = le16_to_cpu(el->l_next_free_rec);
1419
1420         BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
1421
1422         if (next_free == 0)
1423                 goto set_and_inc;
1424
1425         if (ocfs2_is_empty_extent(&el->l_recs[0]))
1426                 return;
1427
1428         mlog_bug_on_msg(el->l_count == el->l_next_free_rec,
1429                         "Asked to create an empty extent in a full list:\n"
1430                         "count = %u, tree depth = %u",
1431                         le16_to_cpu(el->l_count),
1432                         le16_to_cpu(el->l_tree_depth));
1433
1434         ocfs2_shift_records_right(el);
1435
1436 set_and_inc:
1437         le16_add_cpu(&el->l_next_free_rec, 1);
1438         memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
1439 }
1440
1441 /*
1442  * For a rotation which involves two leaf nodes, the "root node" is
1443  * the lowest level tree node which contains a path to both leafs. This
1444  * resulting set of information can be used to form a complete "subtree"
1445  *
1446  * This function is passed two full paths from the dinode down to a
1447  * pair of adjacent leaves. It's task is to figure out which path
1448  * index contains the subtree root - this can be the root index itself
1449  * in a worst-case rotation.
1450  *
1451  * The array index of the subtree root is passed back.
1452  */
1453 static int ocfs2_find_subtree_root(struct inode *inode,
1454                                    struct ocfs2_path *left,
1455                                    struct ocfs2_path *right)
1456 {
1457         int i = 0;
1458
1459         /*
1460          * Check that the caller passed in two paths from the same tree.
1461          */
1462         BUG_ON(path_root_bh(left) != path_root_bh(right));
1463
1464         do {
1465                 i++;
1466
1467                 /*
1468                  * The caller didn't pass two adjacent paths.
1469                  */
1470                 mlog_bug_on_msg(i > left->p_tree_depth,
1471                                 "Inode %lu, left depth %u, right depth %u\n"
1472                                 "left leaf blk %llu, right leaf blk %llu\n",
1473                                 inode->i_ino, left->p_tree_depth,
1474                                 right->p_tree_depth,
1475                                 (unsigned long long)path_leaf_bh(left)->b_blocknr,
1476                                 (unsigned long long)path_leaf_bh(right)->b_blocknr);
1477         } while (left->p_node[i].bh->b_blocknr ==
1478                  right->p_node[i].bh->b_blocknr);
1479
1480         return i - 1;
1481 }
1482
1483 typedef void (path_insert_t)(void *, struct buffer_head *);
1484
1485 /*
1486  * Traverse a btree path in search of cpos, starting at root_el.
1487  *
1488  * This code can be called with a cpos larger than the tree, in which
1489  * case it will return the rightmost path.
1490  */
1491 static int __ocfs2_find_path(struct inode *inode,
1492                              struct ocfs2_extent_list *root_el, u32 cpos,
1493                              path_insert_t *func, void *data)
1494 {
1495         int i, ret = 0;
1496         u32 range;
1497         u64 blkno;
1498         struct buffer_head *bh = NULL;
1499         struct ocfs2_extent_block *eb;
1500         struct ocfs2_extent_list *el;
1501         struct ocfs2_extent_rec *rec;
1502         struct ocfs2_inode_info *oi = OCFS2_I(inode);
1503
1504         el = root_el;
1505         while (el->l_tree_depth) {
1506                 if (le16_to_cpu(el->l_next_free_rec) == 0) {
1507                         ocfs2_error(inode->i_sb,
1508                                     "Inode %llu has empty extent list at "
1509                                     "depth %u\n",
1510                                     (unsigned long long)oi->ip_blkno,
1511                                     le16_to_cpu(el->l_tree_depth));
1512                         ret = -EROFS;
1513                         goto out;
1514
1515                 }
1516
1517                 for(i = 0; i < le16_to_cpu(el->l_next_free_rec) - 1; i++) {
1518                         rec = &el->l_recs[i];
1519
1520                         /*
1521                          * In the case that cpos is off the allocation
1522                          * tree, this should just wind up returning the
1523                          * rightmost record.
1524                          */
1525                         range = le32_to_cpu(rec->e_cpos) +
1526                                 ocfs2_rec_clusters(el, rec);
1527                         if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
1528                             break;
1529                 }
1530
1531                 blkno = le64_to_cpu(el->l_recs[i].e_blkno);
1532                 if (blkno == 0) {
1533                         ocfs2_error(inode->i_sb,
1534                                     "Inode %llu has bad blkno in extent list "
1535                                     "at depth %u (index %d)\n",
1536                                     (unsigned long long)oi->ip_blkno,
1537                                     le16_to_cpu(el->l_tree_depth), i);
1538                         ret = -EROFS;
1539                         goto out;
1540                 }
1541
1542                 brelse(bh);
1543                 bh = NULL;
1544                 ret = ocfs2_read_block(OCFS2_SB(inode->i_sb), blkno,
1545                                        &bh, OCFS2_BH_CACHED, inode);
1546                 if (ret) {
1547                         mlog_errno(ret);
1548                         goto out;
1549                 }
1550
1551                 eb = (struct ocfs2_extent_block *) bh->b_data;
1552                 el = &eb->h_list;
1553                 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
1554                         OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
1555                         ret = -EIO;
1556                         goto out;
1557                 }
1558
1559                 if (le16_to_cpu(el->l_next_free_rec) >
1560                     le16_to_cpu(el->l_count)) {
1561                         ocfs2_error(inode->i_sb,
1562                                     "Inode %llu has bad count in extent list "
1563                                     "at block %llu (next free=%u, count=%u)\n",
1564                                     (unsigned long long)oi->ip_blkno,
1565                                     (unsigned long long)bh->b_blocknr,
1566                                     le16_to_cpu(el->l_next_free_rec),
1567                                     le16_to_cpu(el->l_count));
1568                         ret = -EROFS;
1569                         goto out;
1570                 }
1571
1572                 if (func)
1573                         func(data, bh);
1574         }
1575
1576 out:
1577         /*
1578          * Catch any trailing bh that the loop didn't handle.
1579          */
1580         brelse(bh);
1581
1582         return ret;
1583 }
1584
1585 /*
1586  * Given an initialized path (that is, it has a valid root extent
1587  * list), this function will traverse the btree in search of the path
1588  * which would contain cpos.
1589  *
1590  * The path traveled is recorded in the path structure.
1591  *
1592  * Note that this will not do any comparisons on leaf node extent
1593  * records, so it will work fine in the case that we just added a tree
1594  * branch.
1595  */
1596 struct find_path_data {
1597         int index;
1598         struct ocfs2_path *path;
1599 };
1600 static void find_path_ins(void *data, struct buffer_head *bh)
1601 {
1602         struct find_path_data *fp = data;
1603
1604         get_bh(bh);
1605         ocfs2_path_insert_eb(fp->path, fp->index, bh);
1606         fp->index++;
1607 }
1608 static int ocfs2_find_path(struct inode *inode, struct ocfs2_path *path,
1609                            u32 cpos)
1610 {
1611         struct find_path_data data;
1612
1613         data.index = 1;
1614         data.path = path;
1615         return __ocfs2_find_path(inode, path_root_el(path), cpos,
1616                                  find_path_ins, &data);
1617 }
1618
1619 static void find_leaf_ins(void *data, struct buffer_head *bh)
1620 {
1621         struct ocfs2_extent_block *eb =(struct ocfs2_extent_block *)bh->b_data;
1622         struct ocfs2_extent_list *el = &eb->h_list;
1623         struct buffer_head **ret = data;
1624
1625         /* We want to retain only the leaf block. */
1626         if (le16_to_cpu(el->l_tree_depth) == 0) {
1627                 get_bh(bh);
1628                 *ret = bh;
1629         }
1630 }
1631 /*
1632  * Find the leaf block in the tree which would contain cpos. No
1633  * checking of the actual leaf is done.
1634  *
1635  * Some paths want to call this instead of allocating a path structure
1636  * and calling ocfs2_find_path().
1637  *
1638  * This function doesn't handle non btree extent lists.
1639  */
1640 int ocfs2_find_leaf(struct inode *inode, struct ocfs2_extent_list *root_el,
1641                     u32 cpos, struct buffer_head **leaf_bh)
1642 {
1643         int ret;
1644         struct buffer_head *bh = NULL;
1645
1646         ret = __ocfs2_find_path(inode, root_el, cpos, find_leaf_ins, &bh);
1647         if (ret) {
1648                 mlog_errno(ret);
1649                 goto out;
1650         }
1651
1652         *leaf_bh = bh;
1653 out:
1654         return ret;
1655 }
1656
1657 /*
1658  * Adjust the adjacent records (left_rec, right_rec) involved in a rotation.
1659  *
1660  * Basically, we've moved stuff around at the bottom of the tree and
1661  * we need to fix up the extent records above the changes to reflect
1662  * the new changes.
1663  *
1664  * left_rec: the record on the left.
1665  * left_child_el: is the child list pointed to by left_rec
1666  * right_rec: the record to the right of left_rec
1667  * right_child_el: is the child list pointed to by right_rec
1668  *
1669  * By definition, this only works on interior nodes.
1670  */
1671 static void ocfs2_adjust_adjacent_records(struct ocfs2_extent_rec *left_rec,
1672                                   struct ocfs2_extent_list *left_child_el,
1673                                   struct ocfs2_extent_rec *right_rec,
1674                                   struct ocfs2_extent_list *right_child_el)
1675 {
1676         u32 left_clusters, right_end;
1677
1678         /*
1679          * Interior nodes never have holes. Their cpos is the cpos of
1680          * the leftmost record in their child list. Their cluster
1681          * count covers the full theoretical range of their child list
1682          * - the range between their cpos and the cpos of the record
1683          * immediately to their right.
1684          */
1685         left_clusters = le32_to_cpu(right_child_el->l_recs[0].e_cpos);
1686         if (ocfs2_is_empty_extent(&right_child_el->l_recs[0])) {
1687                 BUG_ON(le16_to_cpu(right_child_el->l_next_free_rec) <= 1);
1688                 left_clusters = le32_to_cpu(right_child_el->l_recs[1].e_cpos);
1689         }
1690         left_clusters -= le32_to_cpu(left_rec->e_cpos);
1691         left_rec->e_int_clusters = cpu_to_le32(left_clusters);
1692
1693         /*
1694          * Calculate the rightmost cluster count boundary before
1695          * moving cpos - we will need to adjust clusters after
1696          * updating e_cpos to keep the same highest cluster count.
1697          */
1698         right_end = le32_to_cpu(right_rec->e_cpos);
1699         right_end += le32_to_cpu(right_rec->e_int_clusters);
1700
1701         right_rec->e_cpos = left_rec->e_cpos;
1702         le32_add_cpu(&right_rec->e_cpos, left_clusters);
1703
1704         right_end -= le32_to_cpu(right_rec->e_cpos);
1705         right_rec->e_int_clusters = cpu_to_le32(right_end);
1706 }
1707
1708 /*
1709  * Adjust the adjacent root node records involved in a
1710  * rotation. left_el_blkno is passed in as a key so that we can easily
1711  * find it's index in the root list.
1712  */
1713 static void ocfs2_adjust_root_records(struct ocfs2_extent_list *root_el,
1714                                       struct ocfs2_extent_list *left_el,
1715                                       struct ocfs2_extent_list *right_el,
1716                                       u64 left_el_blkno)
1717 {
1718         int i;
1719
1720         BUG_ON(le16_to_cpu(root_el->l_tree_depth) <=
1721                le16_to_cpu(left_el->l_tree_depth));
1722
1723         for(i = 0; i < le16_to_cpu(root_el->l_next_free_rec) - 1; i++) {
1724                 if (le64_to_cpu(root_el->l_recs[i].e_blkno) == left_el_blkno)
1725                         break;
1726         }
1727
1728         /*
1729          * The path walking code should have never returned a root and
1730          * two paths which are not adjacent.
1731          */
1732         BUG_ON(i >= (le16_to_cpu(root_el->l_next_free_rec) - 1));
1733
1734         ocfs2_adjust_adjacent_records(&root_el->l_recs[i], left_el,
1735                                       &root_el->l_recs[i + 1], right_el);
1736 }
1737
1738 /*
1739  * We've changed a leaf block (in right_path) and need to reflect that
1740  * change back up the subtree.
1741  *
1742  * This happens in multiple places:
1743  *   - When we've moved an extent record from the left path leaf to the right
1744  *     path leaf to make room for an empty extent in the left path leaf.
1745  *   - When our insert into the right path leaf is at the leftmost edge
1746  *     and requires an update of the path immediately to it's left. This
1747  *     can occur at the end of some types of rotation and appending inserts.
1748  *   - When we've adjusted the last extent record in the left path leaf and the
1749  *     1st extent record in the right path leaf during cross extent block merge.
1750  */
1751 static void ocfs2_complete_edge_insert(struct inode *inode, handle_t *handle,
1752                                        struct ocfs2_path *left_path,
1753                                        struct ocfs2_path *right_path,
1754                                        int subtree_index)
1755 {
1756         int ret, i, idx;
1757         struct ocfs2_extent_list *el, *left_el, *right_el;
1758         struct ocfs2_extent_rec *left_rec, *right_rec;
1759         struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
1760
1761         /*
1762          * Update the counts and position values within all the
1763          * interior nodes to reflect the leaf rotation we just did.
1764          *
1765          * The root node is handled below the loop.
1766          *
1767          * We begin the loop with right_el and left_el pointing to the
1768          * leaf lists and work our way up.
1769          *
1770          * NOTE: within this loop, left_el and right_el always refer
1771          * to the *child* lists.
1772          */
1773         left_el = path_leaf_el(left_path);
1774         right_el = path_leaf_el(right_path);
1775         for(i = left_path->p_tree_depth - 1; i > subtree_index; i--) {
1776                 mlog(0, "Adjust records at index %u\n", i);
1777
1778                 /*
1779                  * One nice property of knowing that all of these
1780                  * nodes are below the root is that we only deal with
1781                  * the leftmost right node record and the rightmost
1782                  * left node record.
1783                  */
1784                 el = left_path->p_node[i].el;
1785                 idx = le16_to_cpu(left_el->l_next_free_rec) - 1;
1786                 left_rec = &el->l_recs[idx];
1787
1788                 el = right_path->p_node[i].el;
1789                 right_rec = &el->l_recs[0];
1790
1791                 ocfs2_adjust_adjacent_records(left_rec, left_el, right_rec,
1792                                               right_el);
1793
1794                 ret = ocfs2_journal_dirty(handle, left_path->p_node[i].bh);
1795                 if (ret)
1796                         mlog_errno(ret);
1797
1798                 ret = ocfs2_journal_dirty(handle, right_path->p_node[i].bh);
1799                 if (ret)
1800                         mlog_errno(ret);
1801
1802                 /*
1803                  * Setup our list pointers now so that the current
1804                  * parents become children in the next iteration.
1805                  */
1806                 left_el = left_path->p_node[i].el;
1807                 right_el = right_path->p_node[i].el;
1808         }
1809
1810         /*
1811          * At the root node, adjust the two adjacent records which
1812          * begin our path to the leaves.
1813          */
1814
1815         el = left_path->p_node[subtree_index].el;
1816         left_el = left_path->p_node[subtree_index + 1].el;
1817         right_el = right_path->p_node[subtree_index + 1].el;
1818
1819         ocfs2_adjust_root_records(el, left_el, right_el,
1820                                   left_path->p_node[subtree_index + 1].bh->b_blocknr);
1821
1822         root_bh = left_path->p_node[subtree_index].bh;
1823
1824         ret = ocfs2_journal_dirty(handle, root_bh);
1825         if (ret)
1826                 mlog_errno(ret);
1827 }
1828
1829 static int ocfs2_rotate_subtree_right(struct inode *inode,
1830                                       handle_t *handle,
1831                                       struct ocfs2_path *left_path,
1832                                       struct ocfs2_path *right_path,
1833                                       int subtree_index)
1834 {
1835         int ret, i;
1836         struct buffer_head *right_leaf_bh;
1837         struct buffer_head *left_leaf_bh = NULL;
1838         struct buffer_head *root_bh;
1839         struct ocfs2_extent_list *right_el, *left_el;
1840         struct ocfs2_extent_rec move_rec;
1841
1842         left_leaf_bh = path_leaf_bh(left_path);
1843         left_el = path_leaf_el(left_path);
1844
1845         if (left_el->l_next_free_rec != left_el->l_count) {
1846                 ocfs2_error(inode->i_sb,
1847                             "Inode %llu has non-full interior leaf node %llu"
1848                             "(next free = %u)",
1849                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
1850                             (unsigned long long)left_leaf_bh->b_blocknr,
1851                             le16_to_cpu(left_el->l_next_free_rec));
1852                 return -EROFS;
1853         }
1854
1855         /*
1856          * This extent block may already have an empty record, so we
1857          * return early if so.
1858          */
1859         if (ocfs2_is_empty_extent(&left_el->l_recs[0]))
1860                 return 0;
1861
1862         root_bh = left_path->p_node[subtree_index].bh;
1863         BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
1864
1865         ret = ocfs2_journal_access(handle, inode, root_bh,
1866                                    OCFS2_JOURNAL_ACCESS_WRITE);
1867         if (ret) {
1868                 mlog_errno(ret);
1869                 goto out;
1870         }
1871
1872         for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
1873                 ret = ocfs2_journal_access(handle, inode,
1874                                            right_path->p_node[i].bh,
1875                                            OCFS2_JOURNAL_ACCESS_WRITE);
1876                 if (ret) {
1877                         mlog_errno(ret);
1878                         goto out;
1879                 }
1880
1881                 ret = ocfs2_journal_access(handle, inode,
1882                                            left_path->p_node[i].bh,
1883                                            OCFS2_JOURNAL_ACCESS_WRITE);
1884                 if (ret) {
1885                         mlog_errno(ret);
1886                         goto out;
1887                 }
1888         }
1889
1890         right_leaf_bh = path_leaf_bh(right_path);
1891         right_el = path_leaf_el(right_path);
1892
1893         /* This is a code error, not a disk corruption. */
1894         mlog_bug_on_msg(!right_el->l_next_free_rec, "Inode %llu: Rotate fails "
1895                         "because rightmost leaf block %llu is empty\n",
1896                         (unsigned long long)OCFS2_I(inode)->ip_blkno,
1897                         (unsigned long long)right_leaf_bh->b_blocknr);
1898
1899         ocfs2_create_empty_extent(right_el);
1900
1901         ret = ocfs2_journal_dirty(handle, right_leaf_bh);
1902         if (ret) {
1903                 mlog_errno(ret);
1904                 goto out;
1905         }
1906
1907         /* Do the copy now. */
1908         i = le16_to_cpu(left_el->l_next_free_rec) - 1;
1909         move_rec = left_el->l_recs[i];
1910         right_el->l_recs[0] = move_rec;
1911
1912         /*
1913          * Clear out the record we just copied and shift everything
1914          * over, leaving an empty extent in the left leaf.
1915          *
1916          * We temporarily subtract from next_free_rec so that the
1917          * shift will lose the tail record (which is now defunct).
1918          */
1919         le16_add_cpu(&left_el->l_next_free_rec, -1);
1920         ocfs2_shift_records_right(left_el);
1921         memset(&left_el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
1922         le16_add_cpu(&left_el->l_next_free_rec, 1);
1923
1924         ret = ocfs2_journal_dirty(handle, left_leaf_bh);
1925         if (ret) {
1926                 mlog_errno(ret);
1927                 goto out;
1928         }
1929
1930         ocfs2_complete_edge_insert(inode, handle, left_path, right_path,
1931                                 subtree_index);
1932
1933 out:
1934         return ret;
1935 }
1936
1937 /*
1938  * Given a full path, determine what cpos value would return us a path
1939  * containing the leaf immediately to the left of the current one.
1940  *
1941  * Will return zero if the path passed in is already the leftmost path.
1942  */
1943 static int ocfs2_find_cpos_for_left_leaf(struct super_block *sb,
1944                                          struct ocfs2_path *path, u32 *cpos)
1945 {
1946         int i, j, ret = 0;
1947         u64 blkno;
1948         struct ocfs2_extent_list *el;
1949
1950         BUG_ON(path->p_tree_depth == 0);
1951
1952         *cpos = 0;
1953
1954         blkno = path_leaf_bh(path)->b_blocknr;
1955
1956         /* Start at the tree node just above the leaf and work our way up. */
1957         i = path->p_tree_depth - 1;
1958         while (i >= 0) {
1959                 el = path->p_node[i].el;
1960
1961                 /*
1962                  * Find the extent record just before the one in our
1963                  * path.
1964                  */
1965                 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
1966                         if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
1967                                 if (j == 0) {
1968                                         if (i == 0) {
1969                                                 /*
1970                                                  * We've determined that the
1971                                                  * path specified is already
1972                                                  * the leftmost one - return a
1973                                                  * cpos of zero.
1974                                                  */
1975                                                 goto out;
1976                                         }
1977                                         /*
1978                                          * The leftmost record points to our
1979                                          * leaf - we need to travel up the
1980                                          * tree one level.
1981                                          */
1982                                         goto next_node;
1983                                 }
1984
1985                                 *cpos = le32_to_cpu(el->l_recs[j - 1].e_cpos);
1986                                 *cpos = *cpos + ocfs2_rec_clusters(el,
1987                                                            &el->l_recs[j - 1]);
1988                                 *cpos = *cpos - 1;
1989                                 goto out;
1990                         }
1991                 }
1992
1993                 /*
1994                  * If we got here, we never found a valid node where
1995                  * the tree indicated one should be.
1996                  */
1997                 ocfs2_error(sb,
1998                             "Invalid extent tree at extent block %llu\n",
1999                             (unsigned long long)blkno);
2000                 ret = -EROFS;
2001                 goto out;
2002
2003 next_node:
2004                 blkno = path->p_node[i].bh->b_blocknr;
2005                 i--;
2006         }
2007
2008 out:
2009         return ret;
2010 }
2011
2012 /*
2013  * Extend the transaction by enough credits to complete the rotation,
2014  * and still leave at least the original number of credits allocated
2015  * to this transaction.
2016  */
2017 static int ocfs2_extend_rotate_transaction(handle_t *handle, int subtree_depth,
2018                                            int op_credits,
2019                                            struct ocfs2_path *path)
2020 {
2021         int credits = (path->p_tree_depth - subtree_depth) * 2 + 1 + op_credits;
2022
2023         if (handle->h_buffer_credits < credits)
2024                 return ocfs2_extend_trans(handle, credits);
2025
2026         return 0;
2027 }
2028
2029 /*
2030  * Trap the case where we're inserting into the theoretical range past
2031  * the _actual_ left leaf range. Otherwise, we'll rotate a record
2032  * whose cpos is less than ours into the right leaf.
2033  *
2034  * It's only necessary to look at the rightmost record of the left
2035  * leaf because the logic that calls us should ensure that the
2036  * theoretical ranges in the path components above the leaves are
2037  * correct.
2038  */
2039 static int ocfs2_rotate_requires_path_adjustment(struct ocfs2_path *left_path,
2040                                                  u32 insert_cpos)
2041 {
2042         struct ocfs2_extent_list *left_el;
2043         struct ocfs2_extent_rec *rec;
2044         int next_free;
2045
2046         left_el = path_leaf_el(left_path);
2047         next_free = le16_to_cpu(left_el->l_next_free_rec);
2048         rec = &left_el->l_recs[next_free - 1];
2049
2050         if (insert_cpos > le32_to_cpu(rec->e_cpos))
2051                 return 1;
2052         return 0;
2053 }
2054
2055 static int ocfs2_leftmost_rec_contains(struct ocfs2_extent_list *el, u32 cpos)
2056 {
2057         int next_free = le16_to_cpu(el->l_next_free_rec);
2058         unsigned int range;
2059         struct ocfs2_extent_rec *rec;
2060
2061         if (next_free == 0)
2062                 return 0;
2063
2064         rec = &el->l_recs[0];
2065         if (ocfs2_is_empty_extent(rec)) {
2066                 /* Empty list. */
2067                 if (next_free == 1)
2068                         return 0;
2069                 rec = &el->l_recs[1];
2070         }
2071
2072         range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
2073         if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
2074                 return 1;
2075         return 0;
2076 }
2077
2078 /*
2079  * Rotate all the records in a btree right one record, starting at insert_cpos.
2080  *
2081  * The path to the rightmost leaf should be passed in.
2082  *
2083  * The array is assumed to be large enough to hold an entire path (tree depth).
2084  *
2085  * Upon succesful return from this function:
2086  *
2087  * - The 'right_path' array will contain a path to the leaf block
2088  *   whose range contains e_cpos.
2089  * - That leaf block will have a single empty extent in list index 0.
2090  * - In the case that the rotation requires a post-insert update,
2091  *   *ret_left_path will contain a valid path which can be passed to
2092  *   ocfs2_insert_path().
2093  */
2094 static int ocfs2_rotate_tree_right(struct inode *inode,
2095                                    handle_t *handle,
2096                                    enum ocfs2_split_type split,
2097                                    u32 insert_cpos,
2098                                    struct ocfs2_path *right_path,
2099                                    struct ocfs2_path **ret_left_path)
2100 {
2101         int ret, start, orig_credits = handle->h_buffer_credits;
2102         u32 cpos;
2103         struct ocfs2_path *left_path = NULL;
2104
2105         *ret_left_path = NULL;
2106
2107         left_path = ocfs2_new_path(path_root_bh(right_path),
2108                                    path_root_el(right_path));
2109         if (!left_path) {
2110                 ret = -ENOMEM;
2111                 mlog_errno(ret);
2112                 goto out;
2113         }
2114
2115         ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path, &cpos);
2116         if (ret) {
2117                 mlog_errno(ret);
2118                 goto out;
2119         }
2120
2121         mlog(0, "Insert: %u, first left path cpos: %u\n", insert_cpos, cpos);
2122
2123         /*
2124          * What we want to do here is:
2125          *
2126          * 1) Start with the rightmost path.
2127          *
2128          * 2) Determine a path to the leaf block directly to the left
2129          *    of that leaf.
2130          *
2131          * 3) Determine the 'subtree root' - the lowest level tree node
2132          *    which contains a path to both leaves.
2133          *
2134          * 4) Rotate the subtree.
2135          *
2136          * 5) Find the next subtree by considering the left path to be
2137          *    the new right path.
2138          *
2139          * The check at the top of this while loop also accepts
2140          * insert_cpos == cpos because cpos is only a _theoretical_
2141          * value to get us the left path - insert_cpos might very well
2142          * be filling that hole.
2143          *
2144          * Stop at a cpos of '0' because we either started at the
2145          * leftmost branch (i.e., a tree with one branch and a
2146          * rotation inside of it), or we've gone as far as we can in
2147          * rotating subtrees.
2148          */
2149         while (cpos && insert_cpos <= cpos) {
2150                 mlog(0, "Rotating a tree: ins. cpos: %u, left path cpos: %u\n",
2151                      insert_cpos, cpos);
2152
2153                 ret = ocfs2_find_path(inode, left_path, cpos);
2154                 if (ret) {
2155                         mlog_errno(ret);
2156                         goto out;
2157                 }
2158
2159                 mlog_bug_on_msg(path_leaf_bh(left_path) ==
2160                                 path_leaf_bh(right_path),
2161                                 "Inode %lu: error during insert of %u "
2162                                 "(left path cpos %u) results in two identical "
2163                                 "paths ending at %llu\n",
2164                                 inode->i_ino, insert_cpos, cpos,
2165                                 (unsigned long long)
2166                                 path_leaf_bh(left_path)->b_blocknr);
2167
2168                 if (split == SPLIT_NONE &&
2169                     ocfs2_rotate_requires_path_adjustment(left_path,
2170                                                           insert_cpos)) {
2171
2172                         /*
2173                          * We've rotated the tree as much as we
2174                          * should. The rest is up to
2175                          * ocfs2_insert_path() to complete, after the
2176                          * record insertion. We indicate this
2177                          * situation by returning the left path.
2178                          *
2179                          * The reason we don't adjust the records here
2180                          * before the record insert is that an error
2181                          * later might break the rule where a parent
2182                          * record e_cpos will reflect the actual
2183                          * e_cpos of the 1st nonempty record of the
2184                          * child list.
2185                          */
2186                         *ret_left_path = left_path;
2187                         goto out_ret_path;
2188                 }
2189
2190                 start = ocfs2_find_subtree_root(inode, left_path, right_path);
2191
2192                 mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n",
2193                      start,
2194                      (unsigned long long) right_path->p_node[start].bh->b_blocknr,
2195                      right_path->p_tree_depth);
2196
2197                 ret = ocfs2_extend_rotate_transaction(handle, start,
2198                                                       orig_credits, right_path);
2199                 if (ret) {
2200                         mlog_errno(ret);
2201                         goto out;
2202                 }
2203
2204                 ret = ocfs2_rotate_subtree_right(inode, handle, left_path,
2205                                                  right_path, start);
2206                 if (ret) {
2207                         mlog_errno(ret);
2208                         goto out;
2209                 }
2210
2211                 if (split != SPLIT_NONE &&
2212                     ocfs2_leftmost_rec_contains(path_leaf_el(right_path),
2213                                                 insert_cpos)) {
2214                         /*
2215                          * A rotate moves the rightmost left leaf
2216                          * record over to the leftmost right leaf
2217                          * slot. If we're doing an extent split
2218                          * instead of a real insert, then we have to
2219                          * check that the extent to be split wasn't
2220                          * just moved over. If it was, then we can
2221                          * exit here, passing left_path back -
2222                          * ocfs2_split_extent() is smart enough to
2223                          * search both leaves.
2224                          */
2225                         *ret_left_path = left_path;
2226                         goto out_ret_path;
2227                 }
2228
2229                 /*
2230                  * There is no need to re-read the next right path
2231                  * as we know that it'll be our current left
2232                  * path. Optimize by copying values instead.
2233                  */
2234                 ocfs2_mv_path(right_path, left_path);
2235
2236                 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path,
2237                                                     &cpos);
2238                 if (ret) {
2239                         mlog_errno(ret);
2240                         goto out;
2241                 }
2242         }
2243
2244 out:
2245         ocfs2_free_path(left_path);
2246
2247 out_ret_path:
2248         return ret;
2249 }
2250
2251 static void ocfs2_update_edge_lengths(struct inode *inode, handle_t *handle,
2252                                       struct ocfs2_path *path)
2253 {
2254         int i, idx;
2255         struct ocfs2_extent_rec *rec;
2256         struct ocfs2_extent_list *el;
2257         struct ocfs2_extent_block *eb;
2258         u32 range;
2259
2260         /* Path should always be rightmost. */
2261         eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
2262         BUG_ON(eb->h_next_leaf_blk != 0ULL);
2263
2264         el = &eb->h_list;
2265         BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0);
2266         idx = le16_to_cpu(el->l_next_free_rec) - 1;
2267         rec = &el->l_recs[idx];
2268         range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
2269
2270         for (i = 0; i < path->p_tree_depth; i++) {
2271                 el = path->p_node[i].el;
2272                 idx = le16_to_cpu(el->l_next_free_rec) - 1;
2273                 rec = &el->l_recs[idx];
2274
2275                 rec->e_int_clusters = cpu_to_le32(range);
2276                 le32_add_cpu(&rec->e_int_clusters, -le32_to_cpu(rec->e_cpos));
2277
2278                 ocfs2_journal_dirty(handle, path->p_node[i].bh);
2279         }
2280 }
2281
2282 static void ocfs2_unlink_path(struct inode *inode, handle_t *handle,
2283                               struct ocfs2_cached_dealloc_ctxt *dealloc,
2284                               struct ocfs2_path *path, int unlink_start)
2285 {
2286         int ret, i;
2287         struct ocfs2_extent_block *eb;
2288         struct ocfs2_extent_list *el;
2289         struct buffer_head *bh;
2290
2291         for(i = unlink_start; i < path_num_items(path); i++) {
2292                 bh = path->p_node[i].bh;
2293
2294                 eb = (struct ocfs2_extent_block *)bh->b_data;
2295                 /*
2296                  * Not all nodes might have had their final count
2297                  * decremented by the caller - handle this here.
2298                  */
2299                 el = &eb->h_list;
2300                 if (le16_to_cpu(el->l_next_free_rec) > 1) {
2301                         mlog(ML_ERROR,
2302                              "Inode %llu, attempted to remove extent block "
2303                              "%llu with %u records\n",
2304                              (unsigned long long)OCFS2_I(inode)->ip_blkno,
2305                              (unsigned long long)le64_to_cpu(eb->h_blkno),
2306                              le16_to_cpu(el->l_next_free_rec));
2307
2308                         ocfs2_journal_dirty(handle, bh);
2309                         ocfs2_remove_from_cache(inode, bh);
2310                         continue;
2311                 }
2312
2313                 el->l_next_free_rec = 0;
2314                 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2315
2316                 ocfs2_journal_dirty(handle, bh);
2317
2318                 ret = ocfs2_cache_extent_block_free(dealloc, eb);
2319                 if (ret)
2320                         mlog_errno(ret);
2321
2322                 ocfs2_remove_from_cache(inode, bh);
2323         }
2324 }
2325
2326 static void ocfs2_unlink_subtree(struct inode *inode, handle_t *handle,
2327                                  struct ocfs2_path *left_path,
2328                                  struct ocfs2_path *right_path,
2329                                  int subtree_index,
2330                                  struct ocfs2_cached_dealloc_ctxt *dealloc)
2331 {
2332         int i;
2333         struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
2334         struct ocfs2_extent_list *root_el = left_path->p_node[subtree_index].el;
2335         struct ocfs2_extent_list *el;
2336         struct ocfs2_extent_block *eb;
2337
2338         el = path_leaf_el(left_path);
2339
2340         eb = (struct ocfs2_extent_block *)right_path->p_node[subtree_index + 1].bh->b_data;
2341
2342         for(i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++)
2343                 if (root_el->l_recs[i].e_blkno == eb->h_blkno)
2344                         break;
2345
2346         BUG_ON(i >= le16_to_cpu(root_el->l_next_free_rec));
2347
2348         memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
2349         le16_add_cpu(&root_el->l_next_free_rec, -1);
2350
2351         eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2352         eb->h_next_leaf_blk = 0;
2353
2354         ocfs2_journal_dirty(handle, root_bh);
2355         ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2356
2357         ocfs2_unlink_path(inode, handle, dealloc, right_path,
2358                           subtree_index + 1);
2359 }
2360
2361 static int ocfs2_rotate_subtree_left(struct inode *inode, handle_t *handle,
2362                                      struct ocfs2_path *left_path,
2363                                      struct ocfs2_path *right_path,
2364                                      int subtree_index,
2365                                      struct ocfs2_cached_dealloc_ctxt *dealloc,
2366                                      int *deleted,
2367                                      struct ocfs2_extent_tree *et)
2368 {
2369         int ret, i, del_right_subtree = 0, right_has_empty = 0;
2370         struct buffer_head *root_bh, *et_root_bh = path_root_bh(right_path);
2371         struct ocfs2_extent_list *right_leaf_el, *left_leaf_el;
2372         struct ocfs2_extent_block *eb;
2373
2374         *deleted = 0;
2375
2376         right_leaf_el = path_leaf_el(right_path);
2377         left_leaf_el = path_leaf_el(left_path);
2378         root_bh = left_path->p_node[subtree_index].bh;
2379         BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
2380
2381         if (!ocfs2_is_empty_extent(&left_leaf_el->l_recs[0]))
2382                 return 0;
2383
2384         eb = (struct ocfs2_extent_block *)path_leaf_bh(right_path)->b_data;
2385         if (ocfs2_is_empty_extent(&right_leaf_el->l_recs[0])) {
2386                 /*
2387                  * It's legal for us to proceed if the right leaf is
2388                  * the rightmost one and it has an empty extent. There
2389                  * are two cases to handle - whether the leaf will be
2390                  * empty after removal or not. If the leaf isn't empty
2391                  * then just remove the empty extent up front. The
2392                  * next block will handle empty leaves by flagging
2393                  * them for unlink.
2394                  *
2395                  * Non rightmost leaves will throw -EAGAIN and the
2396                  * caller can manually move the subtree and retry.
2397                  */
2398
2399                 if (eb->h_next_leaf_blk != 0ULL)
2400                         return -EAGAIN;
2401
2402                 if (le16_to_cpu(right_leaf_el->l_next_free_rec) > 1) {
2403                         ret = ocfs2_journal_access(handle, inode,
2404                                                    path_leaf_bh(right_path),
2405                                                    OCFS2_JOURNAL_ACCESS_WRITE);
2406                         if (ret) {
2407                                 mlog_errno(ret);
2408                                 goto out;
2409                         }
2410
2411                         ocfs2_remove_empty_extent(right_leaf_el);
2412                 } else
2413                         right_has_empty = 1;
2414         }
2415
2416         if (eb->h_next_leaf_blk == 0ULL &&
2417             le16_to_cpu(right_leaf_el->l_next_free_rec) == 1) {
2418                 /*
2419                  * We have to update i_last_eb_blk during the meta
2420                  * data delete.
2421                  */
2422                 ret = ocfs2_journal_access(handle, inode, et_root_bh,
2423                                            OCFS2_JOURNAL_ACCESS_WRITE);
2424                 if (ret) {
2425                         mlog_errno(ret);
2426                         goto out;
2427                 }
2428
2429                 del_right_subtree = 1;
2430         }
2431
2432         /*
2433          * Getting here with an empty extent in the right path implies
2434          * that it's the rightmost path and will be deleted.
2435          */
2436         BUG_ON(right_has_empty && !del_right_subtree);
2437
2438         ret = ocfs2_journal_access(handle, inode, root_bh,
2439                                    OCFS2_JOURNAL_ACCESS_WRITE);
2440         if (ret) {
2441                 mlog_errno(ret);
2442                 goto out;
2443         }
2444
2445         for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
2446                 ret = ocfs2_journal_access(handle, inode,
2447                                            right_path->p_node[i].bh,
2448                                            OCFS2_JOURNAL_ACCESS_WRITE);
2449                 if (ret) {
2450                         mlog_errno(ret);
2451                         goto out;
2452                 }
2453
2454                 ret = ocfs2_journal_access(handle, inode,
2455                                            left_path->p_node[i].bh,
2456                                            OCFS2_JOURNAL_ACCESS_WRITE);
2457                 if (ret) {
2458                         mlog_errno(ret);
2459                         goto out;
2460                 }
2461         }
2462
2463         if (!right_has_empty) {
2464                 /*
2465                  * Only do this if we're moving a real
2466                  * record. Otherwise, the action is delayed until
2467                  * after removal of the right path in which case we
2468                  * can do a simple shift to remove the empty extent.
2469                  */
2470                 ocfs2_rotate_leaf(left_leaf_el, &right_leaf_el->l_recs[0]);
2471                 memset(&right_leaf_el->l_recs[0], 0,
2472                        sizeof(struct ocfs2_extent_rec));
2473         }
2474         if (eb->h_next_leaf_blk == 0ULL) {
2475                 /*
2476                  * Move recs over to get rid of empty extent, decrease
2477                  * next_free. This is allowed to remove the last
2478                  * extent in our leaf (setting l_next_free_rec to
2479                  * zero) - the delete code below won't care.
2480                  */
2481                 ocfs2_remove_empty_extent(right_leaf_el);
2482         }
2483
2484         ret = ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2485         if (ret)
2486                 mlog_errno(ret);
2487         ret = ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
2488         if (ret)
2489                 mlog_errno(ret);
2490
2491         if (del_right_subtree) {
2492                 ocfs2_unlink_subtree(inode, handle, left_path, right_path,
2493                                      subtree_index, dealloc);
2494                 ocfs2_update_edge_lengths(inode, handle, left_path);
2495
2496                 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2497                 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
2498
2499                 /*
2500                  * Removal of the extent in the left leaf was skipped
2501                  * above so we could delete the right path
2502                  * 1st.
2503                  */
2504                 if (right_has_empty)
2505                         ocfs2_remove_empty_extent(left_leaf_el);
2506
2507                 ret = ocfs2_journal_dirty(handle, et_root_bh);
2508                 if (ret)
2509                         mlog_errno(ret);
2510
2511                 *deleted = 1;
2512         } else
2513                 ocfs2_complete_edge_insert(inode, handle, left_path, right_path,
2514                                            subtree_index);
2515
2516 out:
2517         return ret;
2518 }
2519
2520 /*
2521  * Given a full path, determine what cpos value would return us a path
2522  * containing the leaf immediately to the right of the current one.
2523  *
2524  * Will return zero if the path passed in is already the rightmost path.
2525  *
2526  * This looks similar, but is subtly different to
2527  * ocfs2_find_cpos_for_left_leaf().
2528  */
2529 static int ocfs2_find_cpos_for_right_leaf(struct super_block *sb,
2530                                           struct ocfs2_path *path, u32 *cpos)
2531 {
2532         int i, j, ret = 0;
2533         u64 blkno;
2534         struct ocfs2_extent_list *el;
2535
2536         *cpos = 0;
2537
2538         if (path->p_tree_depth == 0)
2539                 return 0;
2540
2541         blkno = path_leaf_bh(path)->b_blocknr;
2542
2543         /* Start at the tree node just above the leaf and work our way up. */
2544         i = path->p_tree_depth - 1;
2545         while (i >= 0) {
2546                 int next_free;
2547
2548                 el = path->p_node[i].el;
2549
2550                 /*
2551                  * Find the extent record just after the one in our
2552                  * path.
2553                  */
2554                 next_free = le16_to_cpu(el->l_next_free_rec);
2555                 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
2556                         if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
2557                                 if (j == (next_free - 1)) {
2558                                         if (i == 0) {
2559                                                 /*
2560                                                  * We've determined that the
2561                                                  * path specified is already
2562                                                  * the rightmost one - return a
2563                                                  * cpos of zero.
2564                                                  */
2565                                                 goto out;
2566                                         }
2567                                         /*
2568                                          * The rightmost record points to our
2569                                          * leaf - we need to travel up the
2570                                          * tree one level.
2571                                          */
2572                                         goto next_node;
2573                                 }
2574
2575                                 *cpos = le32_to_cpu(el->l_recs[j + 1].e_cpos);
2576                                 goto out;
2577                         }
2578                 }
2579
2580                 /*
2581                  * If we got here, we never found a valid node where
2582                  * the tree indicated one should be.
2583                  */
2584                 ocfs2_error(sb,
2585                             "Invalid extent tree at extent block %llu\n",
2586                             (unsigned long long)blkno);
2587                 ret = -EROFS;
2588                 goto out;
2589
2590 next_node:
2591                 blkno = path->p_node[i].bh->b_blocknr;
2592                 i--;
2593         }
2594
2595 out:
2596         return ret;
2597 }
2598
2599 static int ocfs2_rotate_rightmost_leaf_left(struct inode *inode,
2600                                             handle_t *handle,
2601                                             struct buffer_head *bh,
2602                                             struct ocfs2_extent_list *el)
2603 {
2604         int ret;
2605
2606         if (!ocfs2_is_empty_extent(&el->l_recs[0]))
2607                 return 0;
2608
2609         ret = ocfs2_journal_access(handle, inode, bh,
2610                                    OCFS2_JOURNAL_ACCESS_WRITE);
2611         if (ret) {
2612                 mlog_errno(ret);
2613                 goto out;
2614         }
2615
2616         ocfs2_remove_empty_extent(el);
2617
2618         ret = ocfs2_journal_dirty(handle, bh);
2619         if (ret)
2620                 mlog_errno(ret);
2621
2622 out:
2623         return ret;
2624 }
2625
2626 static int __ocfs2_rotate_tree_left(struct inode *inode,
2627                                     handle_t *handle, int orig_credits,
2628                                     struct ocfs2_path *path,
2629                                     struct ocfs2_cached_dealloc_ctxt *dealloc,
2630                                     struct ocfs2_path **empty_extent_path,
2631                                     struct ocfs2_extent_tree *et)
2632 {
2633         int ret, subtree_root, deleted;
2634         u32 right_cpos;
2635         struct ocfs2_path *left_path = NULL;
2636         struct ocfs2_path *right_path = NULL;
2637
2638         BUG_ON(!ocfs2_is_empty_extent(&(path_leaf_el(path)->l_recs[0])));
2639
2640         *empty_extent_path = NULL;
2641
2642         ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, path,
2643                                              &right_cpos);
2644         if (ret) {
2645                 mlog_errno(ret);
2646                 goto out;
2647         }
2648
2649         left_path = ocfs2_new_path(path_root_bh(path),
2650                                    path_root_el(path));
2651         if (!left_path) {
2652                 ret = -ENOMEM;
2653                 mlog_errno(ret);
2654                 goto out;
2655         }
2656
2657         ocfs2_cp_path(left_path, path);
2658
2659         right_path = ocfs2_new_path(path_root_bh(path),
2660                                     path_root_el(path));
2661         if (!right_path) {
2662                 ret = -ENOMEM;
2663                 mlog_errno(ret);
2664                 goto out;
2665         }
2666
2667         while (right_cpos) {
2668                 ret = ocfs2_find_path(inode, right_path, right_cpos);
2669                 if (ret) {
2670                         mlog_errno(ret);
2671                         goto out;
2672                 }
2673
2674                 subtree_root = ocfs2_find_subtree_root(inode, left_path,
2675                                                        right_path);
2676
2677                 mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n",
2678                      subtree_root,
2679                      (unsigned long long)
2680                      right_path->p_node[subtree_root].bh->b_blocknr,
2681                      right_path->p_tree_depth);
2682
2683                 ret = ocfs2_extend_rotate_transaction(handle, subtree_root,
2684                                                       orig_credits, left_path);
2685                 if (ret) {
2686                         mlog_errno(ret);
2687                         goto out;
2688                 }
2689
2690                 /*
2691                  * Caller might still want to make changes to the
2692                  * tree root, so re-add it to the journal here.
2693                  */
2694                 ret = ocfs2_journal_access(handle, inode,
2695                                            path_root_bh(left_path),
2696                                            OCFS2_JOURNAL_ACCESS_WRITE);
2697                 if (ret) {
2698                         mlog_errno(ret);
2699                         goto out;
2700                 }
2701
2702                 ret = ocfs2_rotate_subtree_left(inode, handle, left_path,
2703                                                 right_path, subtree_root,
2704                                                 dealloc, &deleted, et);
2705                 if (ret == -EAGAIN) {
2706                         /*
2707                          * The rotation has to temporarily stop due to
2708                          * the right subtree having an empty
2709                          * extent. Pass it back to the caller for a
2710                          * fixup.
2711                          */
2712                         *empty_extent_path = right_path;
2713                         right_path = NULL;
2714                         goto out;
2715                 }
2716                 if (ret) {
2717                         mlog_errno(ret);
2718                         goto out;
2719                 }
2720
2721                 /*
2722                  * The subtree rotate might have removed records on
2723                  * the rightmost edge. If so, then rotation is
2724                  * complete.
2725                  */
2726                 if (deleted)
2727                         break;
2728
2729                 ocfs2_mv_path(left_path, right_path);
2730
2731                 ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, left_path,
2732                                                      &right_cpos);
2733                 if (ret) {
2734                         mlog_errno(ret);
2735                         goto out;
2736                 }
2737         }
2738
2739 out:
2740         ocfs2_free_path(right_path);
2741         ocfs2_free_path(left_path);
2742
2743         return ret;
2744 }
2745
2746 static int ocfs2_remove_rightmost_path(struct inode *inode, handle_t *handle,
2747                                 struct ocfs2_path *path,
2748                                 struct ocfs2_cached_dealloc_ctxt *dealloc,
2749                                 struct ocfs2_extent_tree *et)
2750 {
2751         int ret, subtree_index;
2752         u32 cpos;
2753         struct ocfs2_path *left_path = NULL;
2754         struct ocfs2_extent_block *eb;
2755         struct ocfs2_extent_list *el;
2756
2757
2758         ret = ocfs2_et_sanity_check(inode, et);
2759         if (ret)
2760                 goto out;
2761         /*
2762          * There's two ways we handle this depending on
2763          * whether path is the only existing one.
2764          */
2765         ret = ocfs2_extend_rotate_transaction(handle, 0,
2766                                               handle->h_buffer_credits,
2767                                               path);
2768         if (ret) {
2769                 mlog_errno(ret);
2770                 goto out;
2771         }
2772
2773         ret = ocfs2_journal_access_path(inode, handle, path);
2774         if (ret) {
2775                 mlog_errno(ret);
2776                 goto out;
2777         }
2778
2779         ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, &cpos);
2780         if (ret) {
2781                 mlog_errno(ret);
2782                 goto out;
2783         }
2784
2785         if (cpos) {
2786                 /*
2787                  * We have a path to the left of this one - it needs
2788                  * an update too.
2789                  */
2790                 left_path = ocfs2_new_path(path_root_bh(path),
2791                                            path_root_el(path));
2792                 if (!left_path) {
2793                         ret = -ENOMEM;
2794                         mlog_errno(ret);
2795                         goto out;
2796                 }
2797
2798                 ret = ocfs2_find_path(inode, left_path, cpos);
2799                 if (ret) {
2800                         mlog_errno(ret);
2801                         goto out;
2802                 }
2803
2804                 ret = ocfs2_journal_access_path(inode, handle, left_path);
2805                 if (ret) {
2806                         mlog_errno(ret);
2807                         goto out;
2808                 }
2809
2810                 subtree_index = ocfs2_find_subtree_root(inode, left_path, path);
2811
2812                 ocfs2_unlink_subtree(inode, handle, left_path, path,
2813                                      subtree_index, dealloc);
2814                 ocfs2_update_edge_lengths(inode, handle, left_path);
2815
2816                 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2817                 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
2818         } else {
2819                 /*
2820                  * 'path' is also the leftmost path which
2821                  * means it must be the only one. This gets
2822                  * handled differently because we want to
2823                  * revert the inode back to having extents
2824                  * in-line.
2825                  */
2826                 ocfs2_unlink_path(inode, handle, dealloc, path, 1);
2827
2828                 el = et->et_root_el;
2829                 el->l_tree_depth = 0;
2830                 el->l_next_free_rec = 0;
2831                 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2832
2833                 ocfs2_et_set_last_eb_blk(et, 0);
2834         }
2835
2836         ocfs2_journal_dirty(handle, path_root_bh(path));
2837
2838 out:
2839         ocfs2_free_path(left_path);
2840         return ret;
2841 }
2842
2843 /*
2844  * Left rotation of btree records.
2845  *
2846  * In many ways, this is (unsurprisingly) the opposite of right
2847  * rotation. We start at some non-rightmost path containing an empty
2848  * extent in the leaf block. The code works its way to the rightmost
2849  * path by rotating records to the left in every subtree.
2850  *
2851  * This is used by any code which reduces the number of extent records
2852  * in a leaf. After removal, an empty record should be placed in the
2853  * leftmost list position.
2854  *
2855  * This won't handle a length update of the rightmost path records if
2856  * the rightmost tree leaf record is removed so the caller is
2857  * responsible for detecting and correcting that.
2858  */
2859 static int ocfs2_rotate_tree_left(struct inode *inode, handle_t *handle,
2860                                   struct ocfs2_path *path,
2861                                   struct ocfs2_cached_dealloc_ctxt *dealloc,
2862                                   struct ocfs2_extent_tree *et)
2863 {
2864         int ret, orig_credits = handle->h_buffer_credits;
2865         struct ocfs2_path *tmp_path = NULL, *restart_path = NULL;
2866         struct ocfs2_extent_block *eb;
2867         struct ocfs2_extent_list *el;
2868
2869         el = path_leaf_el(path);
2870         if (!ocfs2_is_empty_extent(&el->l_recs[0]))
2871                 return 0;
2872
2873         if (path->p_tree_depth == 0) {
2874 rightmost_no_delete:
2875                 /*
2876                  * Inline extents. This is trivially handled, so do
2877                  * it up front.
2878                  */
2879                 ret = ocfs2_rotate_rightmost_leaf_left(inode, handle,
2880                                                        path_leaf_bh(path),
2881                                                        path_leaf_el(path));
2882                 if (ret)
2883                         mlog_errno(ret);
2884                 goto out;
2885         }
2886
2887         /*
2888          * Handle rightmost branch now. There's several cases:
2889          *  1) simple rotation leaving records in there. That's trivial.
2890          *  2) rotation requiring a branch delete - there's no more
2891          *     records left. Two cases of this:
2892          *     a) There are branches to the left.
2893          *     b) This is also the leftmost (the only) branch.
2894          *
2895          *  1) is handled via ocfs2_rotate_rightmost_leaf_left()
2896          *  2a) we need the left branch so that we can update it with the unlink
2897          *  2b) we need to bring the inode back to inline extents.
2898          */
2899
2900         eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
2901         el = &eb->h_list;
2902         if (eb->h_next_leaf_blk == 0) {
2903                 /*
2904                  * This gets a bit tricky if we're going to delete the
2905                  * rightmost path. Get the other cases out of the way
2906                  * 1st.
2907                  */
2908                 if (le16_to_cpu(el->l_next_free_rec) > 1)
2909                         goto rightmost_no_delete;
2910
2911                 if (le16_to_cpu(el->l_next_free_rec) == 0) {
2912                         ret = -EIO;
2913                         ocfs2_error(inode->i_sb,
2914                                     "Inode %llu has empty extent block at %llu",
2915                                     (unsigned long long)OCFS2_I(inode)->ip_blkno,
2916                                     (unsigned long long)le64_to_cpu(eb->h_blkno));
2917                         goto out;
2918                 }
2919
2920                 /*
2921                  * XXX: The caller can not trust "path" any more after
2922                  * this as it will have been deleted. What do we do?
2923                  *
2924                  * In theory the rotate-for-merge code will never get
2925                  * here because it'll always ask for a rotate in a
2926                  * nonempty list.
2927                  */
2928
2929                 ret = ocfs2_remove_rightmost_path(inode, handle, path,
2930                                                   dealloc, et);
2931                 if (ret)
2932                         mlog_errno(ret);
2933                 goto out;
2934         }
2935
2936         /*
2937          * Now we can loop, remembering the path we get from -EAGAIN
2938          * and restarting from there.
2939          */
2940 try_rotate:
2941         ret = __ocfs2_rotate_tree_left(inode, handle, orig_credits, path,
2942                                        dealloc, &restart_path, et);
2943         if (ret && ret != -EAGAIN) {
2944                 mlog_errno(ret);
2945                 goto out;
2946         }
2947
2948         while (ret == -EAGAIN) {
2949                 tmp_path = restart_path;
2950                 restart_path = NULL;
2951
2952                 ret = __ocfs2_rotate_tree_left(inode, handle, orig_credits,
2953                                                tmp_path, dealloc,
2954                                                &restart_path, et);
2955                 if (ret && ret != -EAGAIN) {
2956                         mlog_errno(ret);
2957                         goto out;
2958                 }
2959
2960                 ocfs2_free_path(tmp_path);
2961                 tmp_path = NULL;
2962
2963                 if (ret == 0)
2964                         goto try_rotate;
2965         }
2966
2967 out:
2968         ocfs2_free_path(tmp_path);
2969         ocfs2_free_path(restart_path);
2970         return ret;
2971 }
2972
2973 static void ocfs2_cleanup_merge(struct ocfs2_extent_list *el,
2974                                 int index)
2975 {
2976         struct ocfs2_extent_rec *rec = &el->l_recs[index];
2977         unsigned int size;
2978
2979         if (rec->e_leaf_clusters == 0) {
2980                 /*
2981                  * We consumed all of the merged-from record. An empty
2982                  * extent cannot exist anywhere but the 1st array
2983                  * position, so move things over if the merged-from
2984                  * record doesn't occupy that position.
2985                  *
2986                  * This creates a new empty extent so the caller
2987                  * should be smart enough to have removed any existing
2988                  * ones.
2989                  */
2990                 if (index > 0) {
2991                         BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
2992                         size = index * sizeof(struct ocfs2_extent_rec);
2993                         memmove(&el->l_recs[1], &el->l_recs[0], size);
2994                 }
2995
2996                 /*
2997                  * Always memset - the caller doesn't check whether it
2998                  * created an empty extent, so there could be junk in
2999                  * the other fields.
3000                  */
3001                 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
3002         }
3003 }
3004
3005 static int ocfs2_get_right_path(struct inode *inode,
3006                                 struct ocfs2_path *left_path,
3007                                 struct ocfs2_path **ret_right_path)
3008 {
3009         int ret;
3010         u32 right_cpos;
3011         struct ocfs2_path *right_path = NULL;
3012         struct ocfs2_extent_list *left_el;
3013
3014         *ret_right_path = NULL;
3015
3016         /* This function shouldn't be called for non-trees. */
3017         BUG_ON(left_path->p_tree_depth == 0);
3018
3019         left_el = path_leaf_el(left_path);
3020         BUG_ON(left_el->l_next_free_rec != left_el->l_count);
3021
3022         ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, left_path,
3023                                              &right_cpos);
3024         if (ret) {
3025                 mlog_errno(ret);
3026                 goto out;
3027         }
3028
3029         /* This function shouldn't be called for the rightmost leaf. */
3030         BUG_ON(right_cpos == 0);
3031
3032         right_path = ocfs2_new_path(path_root_bh(left_path),
3033                                     path_root_el(left_path));
3034         if (!right_path) {
3035                 ret = -ENOMEM;
3036                 mlog_errno(ret);
3037                 goto out;
3038         }
3039
3040         ret = ocfs2_find_path(inode, right_path, right_cpos);
3041         if (ret) {
3042                 mlog_errno(ret);
3043                 goto out;
3044         }
3045
3046         *ret_right_path = right_path;
3047 out:
3048         if (ret)
3049                 ocfs2_free_path(right_path);
3050         return ret;
3051 }
3052
3053 /*
3054  * Remove split_rec clusters from the record at index and merge them
3055  * onto the beginning of the record "next" to it.
3056  * For index < l_count - 1, the next means the extent rec at index + 1.
3057  * For index == l_count - 1, the "next" means the 1st extent rec of the
3058  * next extent block.
3059  */
3060 static int ocfs2_merge_rec_right(struct inode *inode,
3061                                  struct ocfs2_path *left_path,
3062                                  handle_t *handle,
3063                                  struct ocfs2_extent_rec *split_rec,
3064                                  int index)
3065 {
3066         int ret, next_free, i;
3067         unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
3068         struct ocfs2_extent_rec *left_rec;
3069         struct ocfs2_extent_rec *right_rec;
3070         struct ocfs2_extent_list *right_el;
3071         struct ocfs2_path *right_path = NULL;
3072         int subtree_index = 0;
3073         struct ocfs2_extent_list *el = path_leaf_el(left_path);
3074         struct buffer_head *bh = path_leaf_bh(left_path);
3075         struct buffer_head *root_bh = NULL;
3076
3077         BUG_ON(index >= le16_to_cpu(el->l_next_free_rec));
3078         left_rec = &el->l_recs[index];
3079
3080         if (index == le16_to_cpu(el->l_next_free_rec) - 1 &&
3081             le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count)) {
3082                 /* we meet with a cross extent block merge. */
3083                 ret = ocfs2_get_right_path(inode, left_path, &right_path);
3084                 if (ret) {
3085                         mlog_errno(ret);
3086                         goto out;
3087                 }
3088
3089                 right_el = path_leaf_el(right_path);
3090                 next_free = le16_to_cpu(right_el->l_next_free_rec);
3091                 BUG_ON(next_free <= 0);
3092                 right_rec = &right_el->l_recs[0];
3093                 if (ocfs2_is_empty_extent(right_rec)) {
3094                         BUG_ON(next_free <= 1);
3095                         right_rec = &right_el->l_recs[1];
3096                 }
3097
3098                 BUG_ON(le32_to_cpu(left_rec->e_cpos) +
3099                        le16_to_cpu(left_rec->e_leaf_clusters) !=
3100                        le32_to_cpu(right_rec->e_cpos));
3101
3102                 subtree_index = ocfs2_find_subtree_root(inode,
3103                                                         left_path, right_path);
3104
3105                 ret = ocfs2_extend_rotate_transaction(handle, subtree_index,
3106                                                       handle->h_buffer_credits,
3107                                                       right_path);
3108                 if (ret) {
3109                         mlog_errno(ret);
3110                         goto out;
3111                 }
3112
3113                 root_bh = left_path->p_node[subtree_index].bh;
3114                 BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
3115
3116                 ret = ocfs2_journal_access(handle, inode, root_bh,
3117                                            OCFS2_JOURNAL_ACCESS_WRITE);
3118                 if (ret) {
3119                         mlog_errno(ret);
3120                         goto out;
3121                 }
3122
3123                 for (i = subtree_index + 1;
3124                      i < path_num_items(right_path); i++) {
3125                         ret = ocfs2_journal_access(handle, inode,
3126                                                    right_path->p_node[i].bh,
3127                                                    OCFS2_JOURNAL_ACCESS_WRITE);
3128                         if (ret) {
3129                                 mlog_errno(ret);
3130                                 goto out;
3131                         }
3132
3133                         ret = ocfs2_journal_access(handle, inode,
3134                                                    left_path->p_node[i].bh,
3135                                                    OCFS2_JOURNAL_ACCESS_WRITE);
3136                         if (ret) {
3137                                 mlog_errno(ret);
3138                                 goto out;
3139                         }
3140                 }
3141
3142         } else {
3143                 BUG_ON(index == le16_to_cpu(el->l_next_free_rec) - 1);
3144                 right_rec = &el->l_recs[index + 1];
3145         }
3146
3147         ret = ocfs2_journal_access(handle, inode, bh,
3148                                    OCFS2_JOURNAL_ACCESS_WRITE);
3149         if (ret) {
3150                 mlog_errno(ret);
3151                 goto out;
3152         }
3153
3154         le16_add_cpu(&left_rec->e_leaf_clusters, -split_clusters);
3155
3156         le32_add_cpu(&right_rec->e_cpos, -split_clusters);
3157         le64_add_cpu(&right_rec->e_blkno,
3158                      -ocfs2_clusters_to_blocks(inode->i_sb, split_clusters));
3159         le16_add_cpu(&right_rec->e_leaf_clusters, split_clusters);
3160
3161         ocfs2_cleanup_merge(el, index);
3162
3163         ret = ocfs2_journal_dirty(handle, bh);
3164         if (ret)
3165                 mlog_errno(ret);
3166
3167         if (right_path) {
3168                 ret = ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
3169                 if (ret)
3170                         mlog_errno(ret);
3171
3172                 ocfs2_complete_edge_insert(inode, handle, left_path,
3173                                            right_path, subtree_index);
3174         }
3175 out:
3176         if (right_path)
3177                 ocfs2_free_path(right_path);
3178         return ret;
3179 }
3180
3181 static int ocfs2_get_left_path(struct inode *inode,
3182                                struct ocfs2_path *right_path,
3183                                struct ocfs2_path **ret_left_path)
3184 {
3185         int ret;
3186         u32 left_cpos;
3187         struct ocfs2_path *left_path = NULL;
3188
3189         *ret_left_path = NULL;
3190
3191         /* This function shouldn't be called for non-trees. */
3192         BUG_ON(right_path->p_tree_depth == 0);
3193
3194         ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb,
3195                                             right_path, &left_cpos);
3196         if (ret) {
3197                 mlog_errno(ret);
3198                 goto out;
3199         }
3200
3201         /* This function shouldn't be called for the leftmost leaf. */
3202         BUG_ON(left_cpos == 0);
3203
3204         left_path = ocfs2_new_path(path_root_bh(right_path),
3205                                    path_root_el(right_path));
3206         if (!left_path) {
3207                 ret = -ENOMEM;
3208                 mlog_errno(ret);
3209                 goto out;
3210         }
3211
3212         ret = ocfs2_find_path(inode, left_path, left_cpos);
3213         if (ret) {
3214                 mlog_errno(ret);
3215                 goto out;
3216         }
3217
3218         *ret_left_path = left_path;
3219 out:
3220         if (ret)
3221                 ocfs2_free_path(left_path);
3222         return ret;
3223 }
3224
3225 /*
3226  * Remove split_rec clusters from the record at index and merge them
3227  * onto the tail of the record "before" it.
3228  * For index > 0, the "before" means the extent rec at index - 1.
3229  *
3230  * For index == 0, the "before" means the last record of the previous
3231  * extent block. And there is also a situation that we may need to
3232  * remove the rightmost leaf extent block in the right_path and change
3233  * the right path to indicate the new rightmost path.
3234  */
3235 static int ocfs2_merge_rec_left(struct inode *inode,
3236                                 struct ocfs2_path *right_path,
3237                                 handle_t *handle,
3238                                 struct ocfs2_extent_rec *split_rec,
3239                                 struct ocfs2_cached_dealloc_ctxt *dealloc,
3240                                 struct ocfs2_extent_tree *et,
3241                                 int index)
3242 {
3243         int ret, i, subtree_index = 0, has_empty_extent = 0;
3244         unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
3245         struct ocfs2_extent_rec *left_rec;
3246         struct ocfs2_extent_rec *right_rec;
3247         struct ocfs2_extent_list *el = path_leaf_el(right_path);
3248         struct buffer_head *bh = path_leaf_bh(right_path);
3249         struct buffer_head *root_bh = NULL;
3250         struct ocfs2_path *left_path = NULL;
3251         struct ocfs2_extent_list *left_el;
3252
3253         BUG_ON(index < 0);
3254
3255         right_rec = &el->l_recs[index];
3256         if (index == 0) {
3257                 /* we meet with a cross extent block merge. */
3258                 ret = ocfs2_get_left_path(inode, right_path, &left_path);
3259                 if (ret) {
3260                         mlog_errno(ret);
3261                         goto out;
3262                 }
3263
3264                 left_el = path_leaf_el(left_path);
3265                 BUG_ON(le16_to_cpu(left_el->l_next_free_rec) !=
3266                        le16_to_cpu(left_el->l_count));
3267
3268                 left_rec = &left_el->l_recs[
3269                                 le16_to_cpu(left_el->l_next_free_rec) - 1];
3270                 BUG_ON(le32_to_cpu(left_rec->e_cpos) +
3271                        le16_to_cpu(left_rec->e_leaf_clusters) !=
3272                        le32_to_cpu(split_rec->e_cpos));
3273
3274                 subtree_index = ocfs2_find_subtree_root(inode,
3275                                                         left_path, right_path);
3276
3277                 ret = ocfs2_extend_rotate_transaction(handle, subtree_index,
3278                                                       handle->h_buffer_credits,
3279                                                       left_path);
3280                 if (ret) {
3281                         mlog_errno(ret);
3282                         goto out;
3283                 }
3284
3285                 root_bh = left_path->p_node[subtree_index].bh;
3286                 BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
3287
3288                 ret = ocfs2_journal_access(handle, inode, root_bh,
3289                                            OCFS2_JOURNAL_ACCESS_WRITE);
3290                 if (ret) {
3291                         mlog_errno(ret);
3292                         goto out;
3293                 }
3294
3295                 for (i = subtree_index + 1;
3296                      i < path_num_items(right_path); i++) {
3297                         ret = ocfs2_journal_access(handle, inode,
3298                                                    right_path->p_node[i].bh,
3299                                                    OCFS2_JOURNAL_ACCESS_WRITE);
3300                         if (ret) {
3301                                 mlog_errno(ret);
3302                                 goto out;
3303                         }
3304
3305                         ret = ocfs2_journal_access(handle, inode,
3306                                                    left_path->p_node[i].bh,
3307                                                    OCFS2_JOURNAL_ACCESS_WRITE);
3308                         if (ret) {
3309                                 mlog_errno(ret);
3310                                 goto out;
3311                         }
3312                 }
3313         } else {
3314                 left_rec = &el->l_recs[index - 1];
3315                 if (ocfs2_is_empty_extent(&el->l_recs[0]))
3316                         has_empty_extent = 1;
3317         }
3318
3319         ret = ocfs2_journal_access(handle, inode, bh,
3320                                    OCFS2_JOURNAL_ACCESS_WRITE);
3321         if (ret) {
3322                 mlog_errno(ret);
3323                 goto out;
3324         }
3325
3326         if (has_empty_extent && index == 1) {
3327                 /*
3328                  * The easy case - we can just plop the record right in.
3329                  */
3330                 *left_rec = *split_rec;
3331
3332                 has_empty_extent = 0;
3333         } else
3334                 le16_add_cpu(&left_rec->e_leaf_clusters, split_clusters);
3335
3336         le32_add_cpu(&right_rec->e_cpos, split_clusters);
3337         le64_add_cpu(&right_rec->e_blkno,
3338                      ocfs2_clusters_to_blocks(inode->i_sb, split_clusters));
3339         le16_add_cpu(&right_rec->e_leaf_clusters, -split_clusters);
3340
3341         ocfs2_cleanup_merge(el, index);
3342
3343         ret = ocfs2_journal_dirty(handle, bh);
3344         if (ret)
3345                 mlog_errno(ret);
3346
3347         if (left_path) {
3348                 ret = ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
3349                 if (ret)
3350                         mlog_errno(ret);
3351
3352                 /*
3353                  * In the situation that the right_rec is empty and the extent
3354                  * block is empty also,  ocfs2_complete_edge_insert can't handle
3355                  * it and we need to delete the right extent block.
3356                  */
3357                 if (le16_to_cpu(right_rec->e_leaf_clusters) == 0 &&
3358                     le16_to_cpu(el->l_next_free_rec) == 1) {
3359
3360                         ret = ocfs2_remove_rightmost_path(inode, handle,
3361                                                           right_path,
3362                                                           dealloc, et);
3363                         if (ret) {
3364                                 mlog_errno(ret);
3365                                 goto out;
3366                         }
3367
3368                         /* Now the rightmost extent block has been deleted.
3369                          * So we use the new rightmost path.
3370                          */
3371                         ocfs2_mv_path(right_path, left_path);
3372                         left_path = NULL;
3373                 } else
3374                         ocfs2_complete_edge_insert(inode, handle, left_path,
3375                                                    right_path, subtree_index);
3376         }
3377 out:
3378         if (left_path)
3379                 ocfs2_free_path(left_path);
3380         return ret;
3381 }
3382
3383 static int ocfs2_try_to_merge_extent(struct inode *inode,
3384                                      handle_t *handle,
3385                                      struct ocfs2_path *path,
3386                                      int split_index,
3387                                      struct ocfs2_extent_rec *split_rec,
3388                                      struct ocfs2_cached_dealloc_ctxt *dealloc,
3389                                      struct ocfs2_merge_ctxt *ctxt,
3390                                      struct ocfs2_extent_tree *et)
3391
3392 {
3393         int ret = 0;
3394         struct ocfs2_extent_list *el = path_leaf_el(path);
3395         struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
3396
3397         BUG_ON(ctxt->c_contig_type == CONTIG_NONE);
3398
3399         if (ctxt->c_split_covers_rec && ctxt->c_has_empty_extent) {
3400                 /*
3401                  * The merge code will need to create an empty
3402                  * extent to take the place of the newly
3403                  * emptied slot. Remove any pre-existing empty
3404                  * extents - having more than one in a leaf is
3405                  * illegal.
3406                  */
3407                 ret = ocfs2_rotate_tree_left(inode, handle, path,
3408                                              dealloc, et);
3409                 if (ret) {
3410                         mlog_errno(ret);
3411                         goto out;
3412                 }
3413                 split_index--;
3414                 rec = &el->l_recs[split_index];
3415         }
3416
3417         if (ctxt->c_contig_type == CONTIG_LEFTRIGHT) {
3418                 /*
3419                  * Left-right contig implies this.
3420                  */
3421                 BUG_ON(!ctxt->c_split_covers_rec);
3422
3423                 /*
3424                  * Since the leftright insert always covers the entire
3425                  * extent, this call will delete the insert record
3426                  * entirely, resulting in an empty extent record added to
3427                  * the extent block.
3428                  *
3429                  * Since the adding of an empty extent shifts
3430                  * everything back to the right, there's no need to
3431                  * update split_index here.
3432                  *
3433                  * When the split_index is zero, we need to merge it to the
3434                  * prevoius extent block. It is more efficient and easier
3435                  * if we do merge_right first and merge_left later.
3436                  */
3437                 ret = ocfs2_merge_rec_right(inode, path,
3438                                             handle, split_rec,
3439                                             split_index);
3440                 if (ret) {
3441                         mlog_errno(ret);
3442                         goto out;
3443                 }
3444
3445                 /*
3446                  * We can only get this from logic error above.
3447                  */
3448                 BUG_ON(!ocfs2_is_empty_extent(&el->l_recs[0]));
3449
3450                 /* The merge left us with an empty extent, remove it. */
3451                 ret = ocfs2_rotate_tree_left(inode, handle, path,
3452                                              dealloc, et);
3453                 if (ret) {
3454                         mlog_errno(ret);
3455                         goto out;
3456                 }
3457
3458                 rec = &el->l_recs[split_index];
3459
3460                 /*
3461                  * Note that we don't pass split_rec here on purpose -
3462                  * we've merged it into the rec already.
3463                  */
3464                 ret = ocfs2_merge_rec_left(inode, path,
3465                                            handle, rec,
3466                                            dealloc, et,
3467                                            split_index);
3468
3469                 if (ret) {
3470                         mlog_errno(ret);
3471                         goto out;
3472                 }
3473
3474                 ret = ocfs2_rotate_tree_left(inode, handle, path,
3475                                              dealloc, et);
3476                 /*
3477                  * Error from this last rotate is not critical, so
3478                  * print but don't bubble it up.
3479                  */
3480                 if (ret)
3481                         mlog_errno(ret);
3482                 ret = 0;
3483         } else {
3484                 /*
3485                  * Merge a record to the left or right.
3486                  *
3487                  * 'contig_type' is relative to the existing record,
3488                  * so for example, if we're "right contig", it's to
3489                  * the record on the left (hence the left merge).
3490                  */
3491                 if (ctxt->c_contig_type == CONTIG_RIGHT) {
3492                         ret = ocfs2_merge_rec_left(inode,
3493                                                    path,
3494                                                    handle, split_rec,
3495                                                    dealloc, et,
3496                                                    split_index);
3497                         if (ret) {
3498                                 mlog_errno(ret);
3499                                 goto out;
3500                         }
3501                 } else {
3502                         ret = ocfs2_merge_rec_right(inode,
3503                                                     path,
3504                                                     handle, split_rec,
3505                                                     split_index);
3506                         if (ret) {
3507                                 mlog_errno(ret);
3508                                 goto out;
3509                         }
3510                 }
3511
3512                 if (ctxt->c_split_covers_rec) {
3513                         /*
3514                          * The merge may have left an empty extent in
3515                          * our leaf. Try to rotate it away.
3516                          */
3517                         ret = ocfs2_rotate_tree_left(inode, handle, path,
3518                                                      dealloc, et);
3519                         if (ret)
3520                                 mlog_errno(ret);
3521                         ret = 0;
3522                 }
3523         }
3524
3525 out:
3526         return ret;
3527 }
3528
3529 static void ocfs2_subtract_from_rec(struct super_block *sb,
3530                                     enum ocfs2_split_type split,
3531                                     struct ocfs2_extent_rec *rec,
3532                                     struct ocfs2_extent_rec *split_rec)
3533 {
3534         u64 len_blocks;
3535
3536         len_blocks = ocfs2_clusters_to_blocks(sb,
3537                                 le16_to_cpu(split_rec->e_leaf_clusters));
3538
3539         if (split == SPLIT_LEFT) {
3540                 /*
3541                  * Region is on the left edge of the existing
3542                  * record.
3543                  */
3544                 le32_add_cpu(&rec->e_cpos,
3545                              le16_to_cpu(split_rec->e_leaf_clusters));
3546                 le64_add_cpu(&rec->e_blkno, len_blocks);
3547                 le16_add_cpu(&rec->e_leaf_clusters,
3548                              -le16_to_cpu(split_rec->e_leaf_clusters));
3549         } else {
3550                 /*
3551                  * Region is on the right edge of the existing
3552                  * record.
3553                  */
3554                 le16_add_cpu(&rec->e_leaf_clusters,
3555                              -le16_to_cpu(split_rec->e_leaf_clusters));
3556         }
3557 }
3558
3559 /*
3560  * Do the final bits of extent record insertion at the target leaf
3561  * list. If this leaf is part of an allocation tree, it is assumed
3562  * that the tree above has been prepared.
3563  */
3564 static void ocfs2_insert_at_leaf(struct ocfs2_extent_rec *insert_rec,
3565                                  struct ocfs2_extent_list *el,
3566                                  struct ocfs2_insert_type *insert,
3567                                  struct inode *inode)
3568 {
3569         int i = insert->ins_contig_index;
3570         unsigned int range;
3571         struct ocfs2_extent_rec *rec;
3572
3573         BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
3574
3575         if (insert->ins_split != SPLIT_NONE) {
3576                 i = ocfs2_search_extent_list(el, le32_to_cpu(insert_rec->e_cpos));
3577                 BUG_ON(i == -1);
3578                 rec = &el->l_recs[i];
3579                 ocfs2_subtract_from_rec(inode->i_sb, insert->ins_split, rec,
3580                                         insert_rec);
3581                 goto rotate;
3582         }
3583
3584         /*
3585          * Contiguous insert - either left or right.
3586          */
3587         if (insert->ins_contig != CONTIG_NONE) {
3588                 rec = &el->l_recs[i];
3589                 if (insert->ins_contig == CONTIG_LEFT) {
3590                         rec->e_blkno = insert_rec->e_blkno;
3591                         rec->e_cpos = insert_rec->e_cpos;
3592                 }
3593                 le16_add_cpu(&rec->e_leaf_clusters,
3594                              le16_to_cpu(insert_rec->e_leaf_clusters));
3595                 return;
3596         }
3597
3598         /*
3599          * Handle insert into an empty leaf.
3600          */
3601         if (le16_to_cpu(el->l_next_free_rec) == 0 ||
3602             ((le16_to_cpu(el->l_next_free_rec) == 1) &&
3603              ocfs2_is_empty_extent(&el->l_recs[0]))) {
3604                 el->l_recs[0] = *insert_rec;
3605                 el->l_next_free_rec = cpu_to_le16(1);
3606                 return;
3607         }
3608
3609         /*
3610          * Appending insert.
3611          */
3612         if (insert->ins_appending == APPEND_TAIL) {
3613                 i = le16_to_cpu(el->l_next_free_rec) - 1;
3614                 rec = &el->l_recs[i];
3615                 range = le32_to_cpu(rec->e_cpos)
3616                         + le16_to_cpu(rec->e_leaf_clusters);
3617                 BUG_ON(le32_to_cpu(insert_rec->e_cpos) < range);
3618
3619                 mlog_bug_on_msg(le16_to_cpu(el->l_next_free_rec) >=
3620                                 le16_to_cpu(el->l_count),
3621                                 "inode %lu, depth %u, count %u, next free %u, "
3622                                 "rec.cpos %u, rec.clusters %u, "
3623                                 "insert.cpos %u, insert.clusters %u\n",
3624                                 inode->i_ino,
3625                                 le16_to_cpu(el->l_tree_depth),
3626                                 le16_to_cpu(el->l_count),
3627                                 le16_to_cpu(el->l_next_free_rec),
3628                                 le32_to_cpu(el->l_recs[i].e_cpos),
3629                                 le16_to_cpu(el->l_recs[i].e_leaf_clusters),
3630                                 le32_to_cpu(insert_rec->e_cpos),
3631                                 le16_to_cpu(insert_rec->e_leaf_clusters));
3632                 i++;
3633                 el->l_recs[i] = *insert_rec;
3634                 le16_add_cpu(&el->l_next_free_rec, 1);
3635                 return;
3636         }
3637
3638 rotate:
3639         /*
3640          * Ok, we have to rotate.
3641          *
3642          * At this point, it is safe to assume that inserting into an
3643          * empty leaf and appending to a leaf have both been handled
3644          * above.
3645          *
3646          * This leaf needs to have space, either by the empty 1st
3647          * extent record, or by virtue of an l_next_rec < l_count.
3648          */
3649         ocfs2_rotate_leaf(el, insert_rec);
3650 }
3651
3652 static void ocfs2_adjust_rightmost_records(struct inode *inode,
3653                                            handle_t *handle,
3654                                            struct ocfs2_path *path,
3655                                            struct ocfs2_extent_rec *insert_rec)
3656 {
3657         int ret, i, next_free;
3658         struct buffer_head *bh;
3659         struct ocfs2_extent_list *el;
3660         struct ocfs2_extent_rec *rec;
3661
3662         /*
3663          * Update everything except the leaf block.
3664          */
3665         for (i = 0; i < path->p_tree_depth; i++) {
3666                 bh = path->p_node[i].bh;
3667                 el = path->p_node[i].el;
3668
3669                 next_free = le16_to_cpu(el->l_next_free_rec);
3670                 if (next_free == 0) {
3671                         ocfs2_error(inode->i_sb,
3672                                     "Dinode %llu has a bad extent list",
3673                                     (unsigned long long)OCFS2_I(inode)->ip_blkno);
3674                         ret = -EIO;
3675                         return;
3676                 }
3677
3678                 rec = &el->l_recs[next_free - 1];
3679
3680                 rec->e_int_clusters = insert_rec->e_cpos;
3681                 le32_add_cpu(&rec->e_int_clusters,
3682                              le16_to_cpu(insert_rec->e_leaf_clusters));
3683                 le32_add_cpu(&rec->e_int_clusters,
3684                              -le32_to_cpu(rec->e_cpos));
3685
3686                 ret = ocfs2_journal_dirty(handle, bh);
3687                 if (ret)
3688                         mlog_errno(ret);
3689
3690         }
3691 }
3692
3693 static int ocfs2_append_rec_to_path(struct inode *inode, handle_t *handle,
3694                                     struct ocfs2_extent_rec *insert_rec,
3695                                     struct ocfs2_path *right_path,
3696                                     struct ocfs2_path **ret_left_path)
3697 {
3698         int ret, next_free;
3699         struct ocfs2_extent_list *el;
3700         struct ocfs2_path *left_path = NULL;
3701
3702         *ret_left_path = NULL;
3703
3704         /*
3705          * This shouldn't happen for non-trees. The extent rec cluster
3706          * count manipulation below only works for interior nodes.
3707          */
3708         BUG_ON(right_path->p_tree_depth == 0);
3709
3710         /*
3711          * If our appending insert is at the leftmost edge of a leaf,
3712          * then we might need to update the rightmost records of the
3713          * neighboring path.
3714          */
3715         el = path_leaf_el(right_path);
3716         next_free = le16_to_cpu(el->l_next_free_rec);
3717         if (next_free == 0 ||
3718             (next_free == 1 && ocfs2_is_empty_extent(&el->l_recs[0]))) {
3719                 u32 left_cpos;
3720
3721                 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path,
3722                                                     &left_cpos);
3723                 if (ret) {
3724                         mlog_errno(ret);
3725                         goto out;
3726                 }
3727
3728                 mlog(0, "Append may need a left path update. cpos: %u, "
3729                      "left_cpos: %u\n", le32_to_cpu(insert_rec->e_cpos),
3730                      left_cpos);
3731
3732                 /*
3733                  * No need to worry if the append is already in the
3734                  * leftmost leaf.
3735                  */
3736                 if (left_cpos) {
3737                         left_path = ocfs2_new_path(path_root_bh(right_path),
3738                                                    path_root_el(right_path));
3739                         if (!left_path) {
3740                                 ret = -ENOMEM;
3741                                 mlog_errno(ret);
3742                                 goto out;
3743                         }
3744
3745                         ret = ocfs2_find_path(inode, left_path, left_cpos);
3746                         if (ret) {
3747                                 mlog_errno(ret);
3748                                 goto out;
3749                         }
3750
3751                         /*
3752                          * ocfs2_insert_path() will pass the left_path to the
3753                          * journal for us.
3754                          */
3755                 }
3756         }
3757
3758         ret = ocfs2_journal_access_path(inode, handle, right_path);
3759         if (ret) {
3760                 mlog_errno(ret);
3761                 goto out;
3762         }
3763
3764         ocfs2_adjust_rightmost_records(inode, handle, right_path, insert_rec);
3765
3766         *ret_left_path = left_path;
3767         ret = 0;
3768 out:
3769         if (ret != 0)
3770                 ocfs2_free_path(left_path);
3771
3772         return ret;
3773 }
3774
3775 static void ocfs2_split_record(struct inode *inode,
3776                                struct ocfs2_path *left_path,
3777                                struct ocfs2_path *right_path,
3778                                struct ocfs2_extent_rec *split_rec,
3779                                enum ocfs2_split_type split)
3780 {
3781         int index;
3782         u32 cpos = le32_to_cpu(split_rec->e_cpos);
3783         struct ocfs2_extent_list *left_el = NULL, *right_el, *insert_el, *el;
3784         struct ocfs2_extent_rec *rec, *tmprec;
3785
3786         right_el = path_leaf_el(right_path);;
3787         if (left_path)
3788                 left_el = path_leaf_el(left_path);
3789
3790         el = right_el;
3791         insert_el = right_el;
3792         index = ocfs2_search_extent_list(el, cpos);
3793         if (index != -1) {
3794                 if (index == 0 && left_path) {
3795                         BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
3796
3797                         /*
3798                          * This typically means that the record
3799                          * started in the left path but moved to the
3800                          * right as a result of rotation. We either
3801                          * move the existing record to the left, or we
3802                          * do the later insert there.
3803                          *
3804                          * In this case, the left path should always
3805                          * exist as the rotate code will have passed
3806                          * it back for a post-insert update.
3807                          */
3808
3809                         if (split == SPLIT_LEFT) {
3810                                 /*
3811                                  * It's a left split. Since we know
3812                                  * that the rotate code gave us an
3813                                  * empty extent in the left path, we
3814                                  * can just do the insert there.
3815                                  */
3816                                 insert_el = left_el;
3817                         } else {
3818                                 /*
3819                                  * Right split - we have to move the
3820                                  * existing record over to the left
3821                                  * leaf. The insert will be into the
3822                                  * newly created empty extent in the
3823                                  * right leaf.
3824                                  */
3825                                 tmprec = &right_el->l_recs[index];
3826                                 ocfs2_rotate_leaf(left_el, tmprec);
3827                                 el = left_el;
3828
3829                                 memset(tmprec, 0, sizeof(*tmprec));
3830                                 index = ocfs2_search_extent_list(left_el, cpos);
3831                                 BUG_ON(index == -1);
3832                         }
3833                 }
3834         } else {
3835                 BUG_ON(!left_path);
3836                 BUG_ON(!ocfs2_is_empty_extent(&left_el->l_recs[0]));
3837                 /*
3838                  * Left path is easy - we can just allow the insert to
3839                  * happen.
3840                  */
3841                 el = left_el;
3842                 insert_el = left_el;
3843                 index = ocfs2_search_extent_list(el, cpos);
3844                 BUG_ON(index == -1);
3845         }
3846
3847         rec = &el->l_recs[index];
3848         ocfs2_subtract_from_rec(inode->i_sb, split, rec, split_rec);
3849         ocfs2_rotate_leaf(insert_el, split_rec);
3850 }
3851
3852 /*
3853  * This function only does inserts on an allocation b-tree. For tree
3854  * depth = 0, ocfs2_insert_at_leaf() is called directly.
3855  *
3856  * right_path is the path we want to do the actual insert
3857  * in. left_path should only be passed in if we need to update that
3858  * portion of the tree after an edge insert.
3859  */
3860 static int ocfs2_insert_path(struct inode *inode,
3861                              handle_t *handle,
3862                              struct ocfs2_path *left_path,
3863                              struct ocfs2_path *right_path,
3864                              struct ocfs2_extent_rec *insert_rec,
3865                              struct ocfs2_insert_type *insert)
3866 {
3867         int ret, subtree_index;
3868         struct buffer_head *leaf_bh = path_leaf_bh(right_path);
3869
3870         if (left_path) {
3871                 int credits = handle->h_buffer_credits;
3872
3873                 /*
3874                  * There's a chance that left_path got passed back to
3875                  * us without being accounted for in the
3876                  * journal. Extend our transaction here to be sure we
3877                  * can change those blocks.
3878                  */
3879                 credits += left_path->p_tree_depth;
3880
3881                 ret = ocfs2_extend_trans(handle, credits);
3882                 if (ret < 0) {
3883                         mlog_errno(ret);
3884                         goto out;
3885                 }
3886
3887                 ret = ocfs2_journal_access_path(inode, handle, left_path);
3888                 if (ret < 0) {
3889                         mlog_errno(ret);
3890                         goto out;
3891                 }
3892         }
3893
3894         /*
3895          * Pass both paths to the journal. The majority of inserts
3896          * will be touching all components anyway.
3897          */
3898         ret = ocfs2_journal_access_path(inode, handle, right_path);
3899         if (ret < 0) {
3900                 mlog_errno(ret);
3901                 goto out;
3902         }
3903
3904         if (insert->ins_split != SPLIT_NONE) {
3905                 /*
3906                  * We could call ocfs2_insert_at_leaf() for some types
3907                  * of splits, but it's easier to just let one separate
3908                  * function sort it all out.
3909                  */
3910                 ocfs2_split_record(inode, left_path, right_path,
3911                                    insert_rec, insert->ins_split);
3912
3913                 /*
3914                  * Split might have modified either leaf and we don't
3915                  * have a guarantee that the later edge insert will
3916                  * dirty this for us.
3917                  */
3918                 if (left_path)
3919                         ret = ocfs2_journal_dirty(handle,
3920                                                   path_leaf_bh(left_path));
3921                         if (ret)
3922                                 mlog_errno(ret);
3923         } else
3924                 ocfs2_insert_at_leaf(insert_rec, path_leaf_el(right_path),
3925                                      insert, inode);
3926
3927         ret = ocfs2_journal_dirty(handle, leaf_bh);
3928         if (ret)
3929                 mlog_errno(ret);
3930
3931         if (left_path) {
3932                 /*
3933                  * The rotate code has indicated that we need to fix
3934                  * up portions of the tree after the insert.
3935                  *
3936                  * XXX: Should we extend the transaction here?
3937                  */
3938                 subtree_index = ocfs2_find_subtree_root(inode, left_path,
3939                                                         right_path);
3940                 ocfs2_complete_edge_insert(inode, handle, left_path,
3941                                            right_path, subtree_index);
3942         }
3943
3944         ret = 0;
3945 out:
3946         return ret;
3947 }
3948
3949 static int ocfs2_do_insert_extent(struct inode *inode,
3950                                   handle_t *handle,
3951                                   struct ocfs2_extent_tree *et,
3952                                   struct ocfs2_extent_rec *insert_rec,
3953                                   struct ocfs2_insert_type *type)
3954 {
3955         int ret, rotate = 0;
3956         u32 cpos;
3957         struct ocfs2_path *right_path = NULL;
3958         struct ocfs2_path *left_path = NULL;
3959         struct ocfs2_extent_list *el;
3960
3961         el = et->et_root_el;
3962
3963         ret = ocfs2_journal_access(handle, inode, et->et_root_bh,
3964                                    OCFS2_JOURNAL_ACCESS_WRITE);
3965         if (ret) {
3966                 mlog_errno(ret);
3967                 goto out;
3968         }
3969
3970         if (le16_to_cpu(el->l_tree_depth) == 0) {
3971                 ocfs2_insert_at_leaf(insert_rec, el, type, inode);
3972                 goto out_update_clusters;
3973         }
3974
3975         right_path = ocfs2_new_path(et->et_root_bh, et->et_root_el);
3976         if (!right_path) {
3977                 ret = -ENOMEM;
3978                 mlog_errno(ret);
3979                 goto out;
3980         }
3981
3982         /*
3983          * Determine the path to start with. Rotations need the
3984          * rightmost path, everything else can go directly to the
3985          * target leaf.
3986          */
3987         cpos = le32_to_cpu(insert_rec->e_cpos);
3988         if (type->ins_appending == APPEND_NONE &&
3989             type->ins_contig == CONTIG_NONE) {
3990                 rotate = 1;
3991                 cpos = UINT_MAX;
3992         }
3993
3994         ret = ocfs2_find_path(inode, right_path, cpos);
3995         if (ret) {
3996                 mlog_errno(ret);
3997                 goto out;
3998         }
3999
4000         /*
4001          * Rotations and appends need special treatment - they modify
4002          * parts of the tree's above them.
4003          *
4004          * Both might pass back a path immediate to the left of the
4005          * one being inserted to. This will be cause
4006          * ocfs2_insert_path() to modify the rightmost records of
4007          * left_path to account for an edge insert.
4008          *
4009          * XXX: When modifying this code, keep in mind that an insert
4010          * can wind up skipping both of these two special cases...
4011          */
4012         if (rotate) {
4013                 ret = ocfs2_rotate_tree_right(inode, handle, type->ins_split,
4014                                               le32_to_cpu(insert_rec->e_cpos),
4015                                               right_path, &left_path);
4016                 if (ret) {
4017                         mlog_errno(ret);
4018                         goto out;
4019                 }
4020
4021                 /*
4022                  * ocfs2_rotate_tree_right() might have extended the
4023                  * transaction without re-journaling our tree root.
4024                  */
4025                 ret = ocfs2_journal_access(handle, inode, et->et_root_bh,
4026                                            OCFS2_JOURNAL_ACCESS_WRITE);
4027                 if (ret) {
4028                         mlog_errno(ret);
4029                         goto out;
4030                 }
4031         } else if (type->ins_appending == APPEND_TAIL
4032                    && type->ins_contig != CONTIG_LEFT) {
4033                 ret = ocfs2_append_rec_to_path(inode, handle, insert_rec,
4034                                                right_path, &left_path);
4035                 if (ret) {
4036                         mlog_errno(ret);
4037                         goto out;
4038                 }
4039         }
4040
4041         ret = ocfs2_insert_path(inode, handle, left_path, right_path,
4042                                 insert_rec, type);
4043         if (ret) {
4044                 mlog_errno(ret);
4045                 goto out;
4046         }
4047
4048 out_update_clusters:
4049         if (type->ins_split == SPLIT_NONE)
4050                 ocfs2_et_update_clusters(inode, et,
4051                                          le16_to_cpu(insert_rec->e_leaf_clusters));
4052
4053         ret = ocfs2_journal_dirty(handle, et->et_root_bh);
4054         if (ret)
4055                 mlog_errno(ret);
4056
4057 out:
4058         ocfs2_free_path(left_path);
4059         ocfs2_free_path(right_path);
4060
4061         return ret;
4062 }
4063
4064 static enum ocfs2_contig_type
4065 ocfs2_figure_merge_contig_type(struct inode *inode, struct ocfs2_path *path,
4066                                struct ocfs2_extent_list *el, int index,
4067                                struct ocfs2_extent_rec *split_rec)
4068 {
4069         int status;
4070         enum ocfs2_contig_type ret = CONTIG_NONE;
4071         u32 left_cpos, right_cpos;
4072         struct ocfs2_extent_rec *rec = NULL;
4073         struct ocfs2_extent_list *new_el;
4074         struct ocfs2_path *left_path = NULL, *right_path = NULL;
4075         struct buffer_head *bh;
4076         struct ocfs2_extent_block *eb;
4077
4078         if (index > 0) {
4079                 rec = &el->l_recs[index - 1];
4080         } else if (path->p_tree_depth > 0) {
4081                 status = ocfs2_find_cpos_for_left_leaf(inode->i_sb,
4082                                                        path, &left_cpos);
4083                 if (status)
4084                         goto out;
4085
4086                 if (left_cpos != 0) {
4087                         left_path = ocfs2_new_path(path_root_bh(path),
4088                                                    path_root_el(path));
4089                         if (!left_path)
4090                                 goto out;
4091
4092                         status = ocfs2_find_path(inode, left_path, left_cpos);
4093                         if (status)
4094                                 goto out;
4095
4096                         new_el = path_leaf_el(left_path);
4097
4098                         if (le16_to_cpu(new_el->l_next_free_rec) !=
4099                             le16_to_cpu(new_el->l_count)) {
4100                                 bh = path_leaf_bh(left_path);
4101                                 eb = (struct ocfs2_extent_block *)bh->b_data;
4102                                 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb,
4103                                                                  eb);
4104                                 goto out;
4105                         }
4106                         rec = &new_el->l_recs[
4107                                 le16_to_cpu(new_el->l_next_free_rec) - 1];
4108                 }
4109         }
4110
4111         /*
4112          * We're careful to check for an empty extent record here -
4113          * the merge code will know what to do if it sees one.
4114          */
4115         if (rec) {
4116                 if (index == 1 && ocfs2_is_empty_extent(rec)) {
4117                         if (split_rec->e_cpos == el->l_recs[index].e_cpos)
4118                                 ret = CONTIG_RIGHT;
4119                 } else {
4120                         ret = ocfs2_extent_contig(inode, rec, split_rec);
4121                 }
4122         }
4123
4124         rec = NULL;
4125         if (index < (le16_to_cpu(el->l_next_free_rec) - 1))
4126                 rec = &el->l_recs[index + 1];
4127         else if (le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count) &&
4128                  path->p_tree_depth > 0) {
4129                 status = ocfs2_find_cpos_for_right_leaf(inode->i_sb,
4130                                                         path, &right_cpos);
4131                 if (status)
4132                         goto out;
4133
4134                 if (right_cpos == 0)
4135                         goto out;
4136
4137                 right_path = ocfs2_new_path(path_root_bh(path),
4138                                             path_root_el(path));
4139                 if (!right_path)
4140                         goto out;
4141
4142                 status = ocfs2_find_path(inode, right_path, right_cpos);
4143                 if (status)
4144                         goto out;
4145
4146                 new_el = path_leaf_el(right_path);
4147                 rec = &new_el->l_recs[0];
4148                 if (ocfs2_is_empty_extent(rec)) {
4149                         if (le16_to_cpu(new_el->l_next_free_rec) <= 1) {
4150                                 bh = path_leaf_bh(right_path);
4151                                 eb = (struct ocfs2_extent_block *)bh->b_data;
4152                                 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb,
4153                                                                  eb);
4154                                 goto out;
4155                         }
4156                         rec = &new_el->l_recs[1];
4157                 }
4158         }
4159
4160         if (rec) {
4161                 enum ocfs2_contig_type contig_type;
4162
4163                 contig_type = ocfs2_extent_contig(inode, rec, split_rec);
4164
4165                 if (contig_type == CONTIG_LEFT && ret == CONTIG_RIGHT)
4166                         ret = CONTIG_LEFTRIGHT;
4167                 else if (ret == CONTIG_NONE)
4168                         ret = contig_type;
4169         }
4170
4171 out:
4172         if (left_path)
4173                 ocfs2_free_path(left_path);
4174         if (right_path)
4175                 ocfs2_free_path(right_path);
4176
4177         return ret;
4178 }
4179
4180 static void ocfs2_figure_contig_type(struct inode *inode,
4181                                      struct ocfs2_insert_type *insert,
4182                                      struct ocfs2_extent_list *el,
4183                                      struct ocfs2_extent_rec *insert_rec,
4184                                      struct ocfs2_extent_tree *et)
4185 {
4186         int i;
4187         enum ocfs2_contig_type contig_type = CONTIG_NONE;
4188
4189         BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
4190
4191         for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
4192                 contig_type = ocfs2_extent_contig(inode, &el->l_recs[i],
4193                                                   insert_rec);
4194                 if (contig_type != CONTIG_NONE) {
4195                         insert->ins_contig_index = i;
4196                         break;
4197                 }
4198         }
4199         insert->ins_contig = contig_type;
4200
4201         if (insert->ins_contig != CONTIG_NONE) {
4202                 struct ocfs2_extent_rec *rec =
4203                                 &el->l_recs[insert->ins_contig_index];
4204                 unsigned int len = le16_to_cpu(rec->e_leaf_clusters) +
4205                                    le16_to_cpu(insert_rec->e_leaf_clusters);
4206
4207                 /*
4208                  * Caller might want us to limit the size of extents, don't
4209                  * calculate contiguousness if we might exceed that limit.
4210                  */
4211                 if (et->et_max_leaf_clusters &&
4212                     (len > et->et_max_leaf_clusters))
4213                         insert->ins_contig = CONTIG_NONE;
4214         }
4215 }
4216
4217 /*
4218  * This should only be called against the righmost leaf extent list.
4219  *
4220  * ocfs2_figure_appending_type() will figure out whether we'll have to
4221  * insert at the tail of the rightmost leaf.
4222  *
4223  * This should also work against the root extent list for tree's with 0
4224  * depth. If we consider the root extent list to be the rightmost leaf node
4225  * then the logic here makes sense.
4226  */
4227 static void ocfs2_figure_appending_type(struct ocfs2_insert_type *insert,
4228                                         struct ocfs2_extent_list *el,
4229                                         struct ocfs2_extent_rec *insert_rec)
4230 {
4231         int i;
4232         u32 cpos = le32_to_cpu(insert_rec->e_cpos);
4233         struct ocfs2_extent_rec *rec;
4234
4235         insert->ins_appending = APPEND_NONE;
4236
4237         BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
4238
4239         if (!el->l_next_free_rec)
4240                 goto set_tail_append;
4241
4242         if (ocfs2_is_empty_extent(&el->l_recs[0])) {
4243                 /* Were all records empty? */
4244                 if (le16_to_cpu(el->l_next_free_rec) == 1)
4245                         goto set_tail_append;
4246         }
4247
4248         i = le16_to_cpu(el->l_next_free_rec) - 1;
4249         rec = &el->l_recs[i];
4250
4251         if (cpos >=
4252             (le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)))
4253                 goto set_tail_append;
4254
4255         return;
4256
4257 set_tail_append:
4258         insert->ins_appending = APPEND_TAIL;
4259 }
4260
4261 /*
4262  * Helper function called at the begining of an insert.
4263  *
4264  * This computes a few things that are commonly used in the process of
4265  * inserting into the btree:
4266  *   - Whether the new extent is contiguous with an existing one.
4267  *   - The current tree depth.
4268  *   - Whether the insert is an appending one.
4269  *   - The total # of free records in the tree.
4270  *
4271  * All of the information is stored on the ocfs2_insert_type
4272  * structure.
4273  */
4274 static int ocfs2_figure_insert_type(struct inode *inode,
4275                                     struct ocfs2_extent_tree *et,
4276                                     struct buffer_head **last_eb_bh,
4277                                     struct ocfs2_extent_rec *insert_rec,
4278                                     int *free_records,
4279                                     struct ocfs2_insert_type *insert)
4280 {
4281         int ret;
4282         struct ocfs2_extent_block *eb;
4283         struct ocfs2_extent_list *el;
4284         struct ocfs2_path *path = NULL;
4285         struct buffer_head *bh = NULL;
4286
4287         insert->ins_split = SPLIT_NONE;
4288
4289         el = et->et_root_el;
4290         insert->ins_tree_depth = le16_to_cpu(el->l_tree_depth);
4291
4292         if (el->l_tree_depth) {
4293                 /*
4294                  * If we have tree depth, we read in the
4295                  * rightmost extent block ahead of time as
4296                  * ocfs2_figure_insert_type() and ocfs2_add_branch()
4297                  * may want it later.
4298                  */
4299                 ret = ocfs2_read_block(OCFS2_SB(inode->i_sb),
4300                                        ocfs2_et_get_last_eb_blk(et), &bh,
4301                                        OCFS2_BH_CACHED, inode);
4302                 if (ret) {
4303                         mlog_exit(ret);
4304                         goto out;
4305                 }
4306                 eb = (struct ocfs2_extent_block *) bh->b_data;
4307                 el = &eb->h_list;
4308         }
4309
4310         /*
4311          * Unless we have a contiguous insert, we'll need to know if
4312          * there is room left in our allocation tree for another
4313          * extent record.
4314          *
4315          * XXX: This test is simplistic, we can search for empty
4316          * extent records too.
4317          */
4318         *free_records = le16_to_cpu(el->l_count) -
4319                 le16_to_cpu(el->l_next_free_rec);
4320
4321         if (!insert->ins_tree_depth) {
4322                 ocfs2_figure_contig_type(inode, insert, el, insert_rec, et);
4323                 ocfs2_figure_appending_type(insert, el, insert_rec);
4324                 return 0;
4325         }
4326
4327         path = ocfs2_new_path(et->et_root_bh, et->et_root_el);
4328         if (!path) {
4329                 ret = -ENOMEM;
4330                 mlog_errno(ret);
4331                 goto out;
4332         }
4333
4334         /*
4335          * In the case that we're inserting past what the tree
4336          * currently accounts for, ocfs2_find_path() will return for
4337          * us the rightmost tree path. This is accounted for below in
4338          * the appending code.
4339          */
4340         ret = ocfs2_find_path(inode, path, le32_to_cpu(insert_rec->e_cpos));
4341         if (ret) {
4342                 mlog_errno(ret);
4343                 goto out;
4344         }
4345
4346         el = path_leaf_el(path);
4347
4348         /*
4349          * Now that we have the path, there's two things we want to determine:
4350          * 1) Contiguousness (also set contig_index if this is so)
4351          *
4352          * 2) Are we doing an append? We can trivially break this up
4353          *     into two types of appends: simple record append, or a
4354          *     rotate inside the tail leaf.
4355          */
4356         ocfs2_figure_contig_type(inode, insert, el, insert_rec, et);
4357
4358         /*
4359          * The insert code isn't quite ready to deal with all cases of
4360          * left contiguousness. Specifically, if it's an insert into
4361          * the 1st record in a leaf, it will require the adjustment of
4362          * cluster count on the last record of the path directly to it's
4363          * left. For now, just catch that case and fool the layers
4364          * above us. This works just fine for tree_depth == 0, which
4365          * is why we allow that above.
4366          */
4367         if (insert->ins_contig == CONTIG_LEFT &&
4368             insert->ins_contig_index == 0)
4369                 insert->ins_contig = CONTIG_NONE;
4370
4371         /*
4372          * Ok, so we can simply compare against last_eb to figure out
4373          * whether the path doesn't exist. This will only happen in
4374          * the case that we're doing a tail append, so maybe we can
4375          * take advantage of that information somehow.
4376          */
4377         if (ocfs2_et_get_last_eb_blk(et) ==
4378             path_leaf_bh(path)->b_blocknr) {
4379                 /*
4380                  * Ok, ocfs2_find_path() returned us the rightmost
4381                  * tree path. This might be an appending insert. There are
4382                  * two cases:
4383                  *    1) We're doing a true append at the tail:
4384                  *      -This might even be off the end of the leaf
4385                  *    2) We're "appending" by rotating in the tail
4386                  */
4387                 ocfs2_figure_appending_type(insert, el, insert_rec);
4388         }
4389
4390 out:
4391         ocfs2_free_path(path);
4392
4393         if (ret == 0)
4394                 *last_eb_bh = bh;
4395         else
4396                 brelse(bh);
4397         return ret;
4398 }
4399
4400 /*
4401  * Insert an extent into an inode btree.
4402  *
4403  * The caller needs to update fe->i_clusters
4404  */
4405 int ocfs2_insert_extent(struct ocfs2_super *osb,
4406                         handle_t *handle,
4407                         struct inode *inode,
4408                         struct ocfs2_extent_tree *et,
4409                         u32 cpos,
4410                         u64 start_blk,
4411                         u32 new_clusters,
4412                         u8 flags,
4413                         struct ocfs2_alloc_context *meta_ac)
4414 {
4415         int status;
4416         int uninitialized_var(free_records);
4417         struct buffer_head *last_eb_bh = NULL;
4418         struct ocfs2_insert_type insert = {0, };
4419         struct ocfs2_extent_rec rec;
4420
4421         mlog(0, "add %u clusters at position %u to inode %llu\n",
4422              new_clusters, cpos, (unsigned long long)OCFS2_I(inode)->ip_blkno);
4423
4424         memset(&rec, 0, sizeof(rec));
4425         rec.e_cpos = cpu_to_le32(cpos);
4426         rec.e_blkno = cpu_to_le64(start_blk);
4427         rec.e_leaf_clusters = cpu_to_le16(new_clusters);
4428         rec.e_flags = flags;
4429         status = ocfs2_et_insert_check(inode, et, &rec);
4430         if (status) {
4431                 mlog_errno(status);
4432                 goto bail;
4433         }
4434
4435         status = ocfs2_figure_insert_type(inode, et, &last_eb_bh, &rec,
4436                                           &free_records, &insert);
4437         if (status < 0) {
4438                 mlog_errno(status);
4439                 goto bail;
4440         }
4441
4442         mlog(0, "Insert.appending: %u, Insert.Contig: %u, "
4443              "Insert.contig_index: %d, Insert.free_records: %d, "
4444              "Insert.tree_depth: %d\n",
4445              insert.ins_appending, insert.ins_contig, insert.ins_contig_index,
4446              free_records, insert.ins_tree_depth);
4447
4448         if (insert.ins_contig == CONTIG_NONE && free_records == 0) {
4449                 status = ocfs2_grow_tree(inode, handle, et,
4450                                          &insert.ins_tree_depth, &last_eb_bh,
4451                                          meta_ac);
4452                 if (status) {
4453                         mlog_errno(status);
4454                         goto bail;
4455                 }
4456         }
4457
4458         /* Finally, we can add clusters. This might rotate the tree for us. */
4459         status = ocfs2_do_insert_extent(inode, handle, et, &rec, &insert);
4460         if (status < 0)
4461                 mlog_errno(status);
4462         else if (et->et_ops == &ocfs2_dinode_et_ops)
4463                 ocfs2_extent_map_insert_rec(inode, &rec);
4464
4465 bail:
4466         brelse(last_eb_bh);
4467
4468         mlog_exit(status);
4469         return status;
4470 }
4471
4472 /*
4473  * Allcate and add clusters into the extent b-tree.
4474  * The new clusters(clusters_to_add) will be inserted at logical_offset.
4475  * The extent b-tree's root is specified by et, and
4476  * it is not limited to the file storage. Any extent tree can use this
4477  * function if it implements the proper ocfs2_extent_tree.
4478  */
4479 int ocfs2_add_clusters_in_btree(struct ocfs2_super *osb,
4480                                 struct inode *inode,
4481                                 u32 *logical_offset,
4482                                 u32 clusters_to_add,
4483                                 int mark_unwritten,
4484                                 struct ocfs2_extent_tree *et,
4485                                 handle_t *handle,
4486                                 struct ocfs2_alloc_context *data_ac,
4487                                 struct ocfs2_alloc_context *meta_ac,
4488                                 enum ocfs2_alloc_restarted *reason_ret)
4489 {
4490         int status = 0;
4491         int free_extents;
4492         enum ocfs2_alloc_restarted reason = RESTART_NONE;
4493         u32 bit_off, num_bits;
4494         u64 block;
4495         u8 flags = 0;
4496
4497         BUG_ON(!clusters_to_add);
4498
4499         if (mark_unwritten)
4500                 flags = OCFS2_EXT_UNWRITTEN;
4501
4502         free_extents = ocfs2_num_free_extents(osb, inode, et);
4503         if (free_extents < 0) {
4504                 status = free_extents;
4505                 mlog_errno(status);
4506                 goto leave;
4507         }
4508
4509         /* there are two cases which could cause us to EAGAIN in the
4510          * we-need-more-metadata case:
4511          * 1) we haven't reserved *any*
4512          * 2) we are so fragmented, we've needed to add metadata too
4513          *    many times. */
4514         if (!free_extents && !meta_ac) {
4515                 mlog(0, "we haven't reserved any metadata!\n");
4516                 status = -EAGAIN;
4517                 reason = RESTART_META;
4518                 goto leave;
4519         } else if ((!free_extents)
4520                    && (ocfs2_alloc_context_bits_left(meta_ac)
4521                        < ocfs2_extend_meta_needed(et->et_root_el))) {
4522                 mlog(0, "filesystem is really fragmented...\n");
4523                 status = -EAGAIN;
4524                 reason = RESTART_META;
4525                 goto leave;
4526         }
4527
4528         status = __ocfs2_claim_clusters(osb, handle, data_ac, 1,
4529                                         clusters_to_add, &bit_off, &num_bits);
4530         if (status < 0) {
4531                 if (status != -ENOSPC)
4532                         mlog_errno(status);
4533                 goto leave;
4534         }
4535
4536         BUG_ON(num_bits > clusters_to_add);
4537
4538         /* reserve our write early -- insert_extent may update the inode */
4539         status = ocfs2_journal_access(handle, inode, et->et_root_bh,
4540                                       OCFS2_JOURNAL_ACCESS_WRITE);
4541         if (status < 0) {
4542                 mlog_errno(status);
4543                 goto leave;
4544         }
4545
4546         block = ocfs2_clusters_to_blocks(osb->sb, bit_off);
4547         mlog(0, "Allocating %u clusters at block %u for inode %llu\n",
4548              num_bits, bit_off, (unsigned long long)OCFS2_I(inode)->ip_blkno);
4549         status = ocfs2_insert_extent(osb, handle, inode, et,
4550                                      *logical_offset, block,
4551                                      num_bits, flags, meta_ac);
4552         if (status < 0) {
4553                 mlog_errno(status);
4554                 goto leave;
4555         }
4556
4557         status = ocfs2_journal_dirty(handle, et->et_root_bh);
4558         if (status < 0) {
4559                 mlog_errno(status);
4560                 goto leave;
4561         }
4562
4563         clusters_to_add -= num_bits;
4564         *logical_offset += num_bits;
4565
4566         if (clusters_to_add) {
4567                 mlog(0, "need to alloc once more, wanted = %u\n",
4568                      clusters_to_add);
4569                 status = -EAGAIN;
4570                 reason = RESTART_TRANS;
4571         }
4572
4573 leave:
4574         mlog_exit(status);
4575         if (reason_ret)
4576                 *reason_ret = reason;
4577         return status;
4578 }
4579
4580 static void ocfs2_make_right_split_rec(struct super_block *sb,
4581                                        struct ocfs2_extent_rec *split_rec,
4582                                        u32 cpos,
4583                                        struct ocfs2_extent_rec *rec)
4584 {
4585         u32 rec_cpos = le32_to_cpu(rec->e_cpos);
4586         u32 rec_range = rec_cpos + le16_to_cpu(rec->e_leaf_clusters);
4587
4588         memset(split_rec, 0, sizeof(struct ocfs2_extent_rec));
4589
4590         split_rec->e_cpos = cpu_to_le32(cpos);
4591         split_rec->e_leaf_clusters = cpu_to_le16(rec_range - cpos);
4592
4593         split_rec->e_blkno = rec->e_blkno;
4594         le64_add_cpu(&split_rec->e_blkno,
4595                      ocfs2_clusters_to_blocks(sb, cpos - rec_cpos));
4596
4597         split_rec->e_flags = rec->e_flags;
4598 }
4599
4600 static int ocfs2_split_and_insert(struct inode *inode,
4601                                   handle_t *handle,
4602                                   struct ocfs2_path *path,
4603                                   struct ocfs2_extent_tree *et,
4604                                   struct buffer_head **last_eb_bh,
4605                                   int split_index,
4606                                   struct ocfs2_extent_rec *orig_split_rec,
4607                                   struct ocfs2_alloc_context *meta_ac)
4608 {
4609         int ret = 0, depth;
4610         unsigned int insert_range, rec_range, do_leftright = 0;
4611         struct ocfs2_extent_rec tmprec;
4612         struct ocfs2_extent_list *rightmost_el;
4613         struct ocfs2_extent_rec rec;
4614         struct ocfs2_extent_rec split_rec = *orig_split_rec;
4615         struct ocfs2_insert_type insert;
4616         struct ocfs2_extent_block *eb;
4617
4618 leftright:
4619         /*
4620          * Store a copy of the record on the stack - it might move
4621          * around as the tree is manipulated below.
4622          */
4623         rec = path_leaf_el(path)->l_recs[split_index];
4624
4625         rightmost_el = et->et_root_el;
4626
4627         depth = le16_to_cpu(rightmost_el->l_tree_depth);
4628         if (depth) {
4629                 BUG_ON(!(*last_eb_bh));
4630                 eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
4631                 rightmost_el = &eb->h_list;
4632         }
4633
4634         if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
4635             le16_to_cpu(rightmost_el->l_count)) {
4636                 ret = ocfs2_grow_tree(inode, handle, et,
4637                                       &depth, last_eb_bh, meta_ac);
4638                 if (ret) {
4639                         mlog_errno(ret);
4640                         goto out;
4641                 }
4642         }
4643
4644         memset(&insert, 0, sizeof(struct ocfs2_insert_type));
4645         insert.ins_appending = APPEND_NONE;
4646         insert.ins_contig = CONTIG_NONE;
4647         insert.ins_tree_depth = depth;
4648
4649         insert_range = le32_to_cpu(split_rec.e_cpos) +
4650                 le16_to_cpu(split_rec.e_leaf_clusters);
4651         rec_range = le32_to_cpu(rec.e_cpos) +
4652                 le16_to_cpu(rec.e_leaf_clusters);
4653
4654         if (split_rec.e_cpos == rec.e_cpos) {
4655                 insert.ins_split = SPLIT_LEFT;
4656         } else if (insert_range == rec_range) {
4657                 insert.ins_split = SPLIT_RIGHT;
4658         } else {
4659                 /*
4660                  * Left/right split. We fake this as a right split
4661                  * first and then make a second pass as a left split.
4662                  */
4663                 insert.ins_split = SPLIT_RIGHT;
4664
4665                 ocfs2_make_right_split_rec(inode->i_sb, &tmprec, insert_range,
4666                                            &rec);
4667
4668                 split_rec = tmprec;
4669
4670                 BUG_ON(do_leftright);
4671                 do_leftright = 1;
4672         }
4673
4674         ret = ocfs2_do_insert_extent(inode, handle, et, &split_rec, &insert);
4675         if (ret) {
4676                 mlog_errno(ret);
4677                 goto out;
4678         }
4679
4680         if (do_leftright == 1) {
4681                 u32 cpos;
4682                 struct ocfs2_extent_list *el;
4683
4684                 do_leftright++;
4685                 split_rec = *orig_split_rec;
4686
4687                 ocfs2_reinit_path(path, 1);
4688
4689                 cpos = le32_to_cpu(split_rec.e_cpos);
4690                 ret = ocfs2_find_path(inode, path, cpos);
4691                 if (ret) {
4692                         mlog_errno(ret);
4693                         goto out;
4694                 }
4695
4696                 el = path_leaf_el(path);
4697                 split_index = ocfs2_search_extent_list(el, cpos);
4698                 goto leftright;
4699         }
4700 out:
4701
4702         return ret;
4703 }
4704
4705 /*
4706  * Mark part or all of the extent record at split_index in the leaf
4707  * pointed to by path as written. This removes the unwritten
4708  * extent flag.
4709  *
4710  * Care is taken to handle contiguousness so as to not grow the tree.
4711  *
4712  * meta_ac is not strictly necessary - we only truly need it if growth
4713  * of the tree is required. All other cases will degrade into a less
4714  * optimal tree layout.
4715  *
4716  * last_eb_bh should be the rightmost leaf block for any extent
4717  * btree. Since a split may grow the tree or a merge might shrink it,
4718  * the caller cannot trust the contents of that buffer after this call.
4719  *
4720  * This code is optimized for readability - several passes might be
4721  * made over certain portions of the tree. All of those blocks will
4722  * have been brought into cache (and pinned via the journal), so the
4723  * extra overhead is not expressed in terms of disk reads.
4724  */
4725 static int __ocfs2_mark_extent_written(struct inode *inode,
4726                                        struct ocfs2_extent_tree *et,
4727                                        handle_t *handle,
4728                                        struct ocfs2_path *path,
4729                                        int split_index,
4730                                        struct ocfs2_extent_rec *split_rec,
4731                                        struct ocfs2_alloc_context *meta_ac,
4732                                        struct ocfs2_cached_dealloc_ctxt *dealloc)
4733 {
4734         int ret = 0;
4735         struct ocfs2_extent_list *el = path_leaf_el(path);
4736         struct buffer_head *last_eb_bh = NULL;
4737         struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
4738         struct ocfs2_merge_ctxt ctxt;
4739         struct ocfs2_extent_list *rightmost_el;
4740
4741         if (!(rec->e_flags & OCFS2_EXT_UNWRITTEN)) {
4742                 ret = -EIO;
4743                 mlog_errno(ret);
4744                 goto out;
4745         }
4746
4747         if (le32_to_cpu(rec->e_cpos) > le32_to_cpu(split_rec->e_cpos) ||
4748             ((le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)) <
4749              (le32_to_cpu(split_rec->e_cpos) + le16_to_cpu(split_rec->e_leaf_clusters)))) {
4750                 ret = -EIO;
4751                 mlog_errno(ret);
4752                 goto out;
4753         }
4754
4755         ctxt.c_contig_type = ocfs2_figure_merge_contig_type(inode, path, el,
4756                                                             split_index,
4757                                                             split_rec);
4758
4759         /*
4760          * The core merge / split code wants to know how much room is
4761          * left in this inodes allocation tree, so we pass the
4762          * rightmost extent list.
4763          */
4764         if (path->p_tree_depth) {
4765                 struct ocfs2_extent_block *eb;
4766
4767                 ret = ocfs2_read_block(OCFS2_SB(inode->i_sb),
4768                                        ocfs2_et_get_last_eb_blk(et),
4769                                        &last_eb_bh, OCFS2_BH_CACHED, inode);
4770                 if (ret) {
4771                         mlog_exit(ret);
4772                         goto out;
4773                 }
4774
4775                 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
4776                 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
4777                         OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
4778                         ret = -EROFS;
4779                         goto out;
4780                 }
4781
4782                 rightmost_el = &eb->h_list;
4783         } else
4784                 rightmost_el = path_root_el(path);
4785
4786         if (rec->e_cpos == split_rec->e_cpos &&
4787             rec->e_leaf_clusters == split_rec->e_leaf_clusters)
4788                 ctxt.c_split_covers_rec = 1;
4789         else
4790                 ctxt.c_split_covers_rec = 0;
4791
4792         ctxt.c_has_empty_extent = ocfs2_is_empty_extent(&el->l_recs[0]);
4793
4794         mlog(0, "index: %d, contig: %u, has_empty: %u, split_covers: %u\n",
4795              split_index, ctxt.c_contig_type, ctxt.c_has_empty_extent,
4796              ctxt.c_split_covers_rec);
4797
4798         if (ctxt.c_contig_type == CONTIG_NONE) {
4799                 if (ctxt.c_split_covers_rec)
4800                         el->l_recs[split_index] = *split_rec;
4801                 else
4802                         ret = ocfs2_split_and_insert(inode, handle, path, et,
4803                                                      &last_eb_bh, split_index,
4804                                                      split_rec, meta_ac);
4805                 if (ret)
4806                         mlog_errno(ret);
4807         } else {
4808                 ret = ocfs2_try_to_merge_extent(inode, handle, path,
4809                                                 split_index, split_rec,
4810                                                 dealloc, &ctxt, et);
4811                 if (ret)
4812                         mlog_errno(ret);
4813         }
4814
4815 out:
4816         brelse(last_eb_bh);
4817         return ret;
4818 }
4819
4820 /*
4821  * Mark the already-existing extent at cpos as written for len clusters.
4822  *
4823  * If the existing extent is larger than the request, initiate a
4824  * split. An attempt will be made at merging with adjacent extents.
4825  *
4826  * The caller is responsible for passing down meta_ac if we'll need it.
4827  */
4828 int ocfs2_mark_extent_written(struct inode *inode,
4829                               struct ocfs2_extent_tree *et,
4830                               handle_t *handle, u32 cpos, u32 len, u32 phys,
4831                               struct ocfs2_alloc_context *meta_ac,
4832                               struct ocfs2_cached_dealloc_ctxt *dealloc)
4833 {
4834         int ret, index;
4835         u64 start_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys);
4836         struct ocfs2_extent_rec split_rec;
4837         struct ocfs2_path *left_path = NULL;
4838         struct ocfs2_extent_list *el;
4839
4840         mlog(0, "Inode %lu cpos %u, len %u, phys %u (%llu)\n",
4841              inode->i_ino, cpos, len, phys, (unsigned long long)start_blkno);
4842
4843         if (!ocfs2_writes_unwritten_extents(OCFS2_SB(inode->i_sb))) {
4844                 ocfs2_error(inode->i_sb, "Inode %llu has unwritten extents "
4845                             "that are being written to, but the feature bit "
4846                             "is not set in the super block.",
4847                             (unsigned long long)OCFS2_I(inode)->ip_blkno);
4848                 ret = -EROFS;
4849                 goto out;
4850         }
4851
4852         /*
4853          * XXX: This should be fixed up so that we just re-insert the
4854          * next extent records.
4855          *
4856          * XXX: This is a hack on the extent tree, maybe it should be
4857          * an op?
4858          */
4859         if (et->et_ops == &ocfs2_dinode_et_ops)
4860                 ocfs2_extent_map_trunc(inode, 0);
4861
4862         left_path = ocfs2_new_path(et->et_root_bh, et->et_root_el);
4863         if (!left_path) {
4864                 ret = -ENOMEM;
4865                 mlog_errno(ret);
4866                 goto out;
4867         }
4868
4869         ret = ocfs2_find_path(inode, left_path, cpos);
4870         if (ret) {
4871                 mlog_errno(ret);
4872                 goto out;
4873         }
4874         el = path_leaf_el(left_path);
4875
4876         index = ocfs2_search_extent_list(el, cpos);
4877         if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
4878                 ocfs2_error(inode->i_sb,
4879                             "Inode %llu has an extent at cpos %u which can no "
4880                             "longer be found.\n",
4881                             (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
4882                 ret = -EROFS;
4883                 goto out;
4884         }
4885
4886         memset(&split_rec, 0, sizeof(struct ocfs2_extent_rec));
4887         split_rec.e_cpos = cpu_to_le32(cpos);
4888         split_rec.e_leaf_clusters = cpu_to_le16(len);
4889         split_rec.e_blkno = cpu_to_le64(start_blkno);
4890         split_rec.e_flags = path_leaf_el(left_path)->l_recs[index].e_flags;
4891         split_rec.e_flags &= ~OCFS2_EXT_UNWRITTEN;
4892
4893         ret = __ocfs2_mark_extent_written(inode, et, handle, left_path,
4894                                           index, &split_rec, meta_ac,
4895                                           dealloc);
4896         if (ret)
4897                 mlog_errno(ret);
4898
4899 out:
4900         ocfs2_free_path(left_path);
4901         return ret;
4902 }
4903
4904 static int ocfs2_split_tree(struct inode *inode, struct ocfs2_extent_tree *et,
4905                             handle_t *handle, struct ocfs2_path *path,
4906                             int index, u32 new_range,
4907                             struct ocfs2_alloc_context *meta_ac)
4908 {
4909         int ret, depth, credits = handle->h_buffer_credits;
4910         struct buffer_head *last_eb_bh = NULL;
4911         struct ocfs2_extent_block *eb;
4912         struct ocfs2_extent_list *rightmost_el, *el;
4913         struct ocfs2_extent_rec split_rec;
4914         struct ocfs2_extent_rec *rec;
4915         struct ocfs2_insert_type insert;
4916
4917         /*
4918          * Setup the record to split before we grow the tree.
4919          */
4920         el = path_leaf_el(path);
4921         rec = &el->l_recs[index];
4922         ocfs2_make_right_split_rec(inode->i_sb, &split_rec, new_range, rec);
4923
4924         depth = path->p_tree_depth;
4925         if (depth > 0) {
4926                 ret = ocfs2_read_block(OCFS2_SB(inode->i_sb),
4927                                        ocfs2_et_get_last_eb_blk(et),
4928                                        &last_eb_bh, OCFS2_BH_CACHED, inode);
4929                 if (ret < 0) {
4930                         mlog_errno(ret);
4931                         goto out;
4932                 }
4933
4934                 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
4935                 rightmost_el = &eb->h_list;
4936         } else
4937                 rightmost_el = path_leaf_el(path);
4938
4939         credits += path->p_tree_depth +
4940                    ocfs2_extend_meta_needed(et->et_root_el);
4941         ret = ocfs2_extend_trans(handle, credits);
4942         if (ret) {
4943                 mlog_errno(ret);
4944                 goto out;
4945         }
4946
4947         if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
4948             le16_to_cpu(rightmost_el->l_count)) {
4949                 ret = ocfs2_grow_tree(inode, handle, et, &depth, &last_eb_bh,
4950                                       meta_ac);
4951                 if (ret) {
4952                         mlog_errno(ret);
4953                         goto out;
4954                 }
4955         }
4956
4957         memset(&insert, 0, sizeof(struct ocfs2_insert_type));
4958         insert.ins_appending = APPEND_NONE;
4959         insert.ins_contig = CONTIG_NONE;
4960         insert.ins_split = SPLIT_RIGHT;
4961         insert.ins_tree_depth = depth;
4962
4963         ret = ocfs2_do_insert_extent(inode, handle, et, &split_rec, &insert);
4964         if (ret)
4965                 mlog_errno(ret);
4966
4967 out:
4968         brelse(last_eb_bh);
4969         return ret;
4970 }
4971
4972 static int ocfs2_truncate_rec(struct inode *inode, handle_t *handle,
4973                               struct ocfs2_path *path, int index,
4974                               struct ocfs2_cached_dealloc_ctxt *dealloc,
4975                               u32 cpos, u32 len,
4976                               struct ocfs2_extent_tree *et)
4977 {
4978         int ret;
4979         u32 left_cpos, rec_range, trunc_range;
4980         int wants_rotate = 0, is_rightmost_tree_rec = 0;
4981         struct super_block *sb = inode->i_sb;
4982         struct ocfs2_path *left_path = NULL;
4983         struct ocfs2_extent_list *el = path_leaf_el(path);
4984         struct ocfs2_extent_rec *rec;
4985         struct ocfs2_extent_block *eb;
4986
4987         if (ocfs2_is_empty_extent(&el->l_recs[0]) && index > 0) {
4988                 ret = ocfs2_rotate_tree_left(inode, handle, path, dealloc, et);
4989                 if (ret) {
4990                         mlog_errno(ret);
4991                         goto out;
4992                 }
4993
4994                 index--;
4995         }
4996
4997         if (index == (le16_to_cpu(el->l_next_free_rec) - 1) &&
4998             path->p_tree_depth) {
4999                 /*
5000                  * Check whether this is the rightmost tree record. If
5001                  * we remove all of this record or part of its right
5002                  * edge then an update of the record lengths above it
5003                  * will be required.
5004                  */
5005                 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
5006                 if (eb->h_next_leaf_blk == 0)
5007                         is_rightmost_tree_rec = 1;
5008         }
5009
5010         rec = &el->l_recs[index];
5011         if (index == 0 && path->p_tree_depth &&
5012             le32_to_cpu(rec->e_cpos) == cpos) {
5013                 /*
5014                  * Changing the leftmost offset (via partial or whole
5015                  * record truncate) of an interior (or rightmost) path
5016                  * means we have to update the subtree that is formed
5017                  * by this leaf and the one to it's left.
5018                  *
5019                  * There are two cases we can skip:
5020                  *   1) Path is the leftmost one in our inode tree.
5021                  *   2) The leaf is rightmost and will be empty after
5022                  *      we remove the extent record - the rotate code
5023                  *      knows how to update the newly formed edge.
5024                  */
5025
5026                 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path,
5027                                                     &left_cpos);
5028                 if (ret) {
5029                         mlog_errno(ret);
5030                         goto out;
5031                 }
5032
5033                 if (left_cpos && le16_to_cpu(el->l_next_free_rec) > 1) {
5034                         left_path = ocfs2_new_path(path_root_bh(path),
5035                                                    path_root_el(path));
5036                         if (!left_path) {
5037                                 ret = -ENOMEM;
5038                                 mlog_errno(ret);
5039                                 goto out;
5040                         }
5041
5042                         ret = ocfs2_find_path(inode, left_path, left_cpos);
5043                         if (ret) {
5044                                 mlog_errno(ret);
5045                                 goto out;
5046                         }
5047                 }
5048         }
5049
5050         ret = ocfs2_extend_rotate_transaction(handle, 0,
5051                                               handle->h_buffer_credits,
5052                                               path);
5053         if (ret) {
5054                 mlog_errno(ret);
5055                 goto out;
5056         }
5057
5058         ret = ocfs2_journal_access_path(inode, handle, path);
5059         if (ret) {
5060                 mlog_errno(ret);
5061                 goto out;
5062         }
5063
5064         ret = ocfs2_journal_access_path(inode, handle, left_path);
5065         if (ret) {
5066                 mlog_errno(ret);
5067                 goto out;
5068         }
5069
5070         rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
5071         trunc_range = cpos + len;
5072
5073         if (le32_to_cpu(rec->e_cpos) == cpos && rec_range == trunc_range) {
5074                 int next_free;
5075
5076                 memset(rec, 0, sizeof(*rec));
5077                 ocfs2_cleanup_merge(el, index);
5078                 wants_rotate = 1;
5079
5080                 next_free = le16_to_cpu(el->l_next_free_rec);
5081                 if (is_rightmost_tree_rec && next_free > 1) {
5082                         /*
5083                          * We skip the edge update if this path will
5084                          * be deleted by the rotate code.
5085                          */
5086                         rec = &el->l_recs[next_free - 1];
5087                         ocfs2_adjust_rightmost_records(inode, handle, path,
5088                                                        rec);
5089                 }
5090         } else if (le32_to_cpu(rec->e_cpos) == cpos) {
5091                 /* Remove leftmost portion of the record. */
5092                 le32_add_cpu(&rec->e_cpos, len);
5093                 le64_add_cpu(&rec->e_blkno, ocfs2_clusters_to_blocks(sb, len));
5094                 le16_add_cpu(&rec->e_leaf_clusters, -len);
5095         } else if (rec_range == trunc_range) {
5096                 /* Remove rightmost portion of the record */
5097                 le16_add_cpu(&rec->e_leaf_clusters, -len);
5098                 if (is_rightmost_tree_rec)
5099                         ocfs2_adjust_rightmost_records(inode, handle, path, rec);
5100         } else {
5101                 /* Caller should have trapped this. */
5102                 mlog(ML_ERROR, "Inode %llu: Invalid record truncate: (%u, %u) "
5103                      "(%u, %u)\n", (unsigned long long)OCFS2_I(inode)->ip_blkno,
5104                      le32_to_cpu(rec->e_cpos),
5105                      le16_to_cpu(rec->e_leaf_clusters), cpos, len);
5106                 BUG();
5107         }
5108
5109         if (left_path) {
5110                 int subtree_index;
5111
5112                 subtree_index = ocfs2_find_subtree_root(inode, left_path, path);
5113                 ocfs2_complete_edge_insert(inode, handle, left_path, path,
5114                                            subtree_index);
5115         }
5116
5117         ocfs2_journal_dirty(handle, path_leaf_bh(path));
5118
5119         ret = ocfs2_rotate_tree_left(inode, handle, path, dealloc, et);
5120         if (ret) {
5121                 mlog_errno(ret);
5122                 goto out;
5123         }
5124
5125 out:
5126         ocfs2_free_path(left_path);
5127         return ret;
5128 }
5129
5130 int ocfs2_remove_extent(struct inode *inode,
5131                         struct ocfs2_extent_tree *et,
5132                         u32 cpos, u32 len, handle_t *handle,
5133                         struct ocfs2_alloc_context *meta_ac,
5134                         struct ocfs2_cached_dealloc_ctxt *dealloc)
5135 {
5136         int ret, index;
5137         u32 rec_range, trunc_range;
5138         struct ocfs2_extent_rec *rec;
5139         struct ocfs2_extent_list *el;
5140         struct ocfs2_path *path = NULL;
5141
5142         ocfs2_extent_map_trunc(inode, 0);
5143
5144         path = ocfs2_new_path(et->et_root_bh, et->et_root_el);
5145         if (!path) {
5146                 ret = -ENOMEM;
5147                 mlog_errno(ret);
5148                 goto out;
5149         }
5150
5151         ret = ocfs2_find_path(inode, path, cpos);
5152         if (ret) {
5153                 mlog_errno(ret);
5154                 goto out;
5155         }
5156
5157         el = path_leaf_el(path);
5158         index = ocfs2_search_extent_list(el, cpos);
5159         if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
5160                 ocfs2_error(inode->i_sb,
5161                             "Inode %llu has an extent at cpos %u which can no "
5162                             "longer be found.\n",
5163                             (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
5164                 ret = -EROFS;
5165                 goto out;
5166         }
5167
5168         /*
5169          * We have 3 cases of extent removal:
5170          *   1) Range covers the entire extent rec
5171          *   2) Range begins or ends on one edge of the extent rec
5172          *   3) Range is in the middle of the extent rec (no shared edges)
5173          *
5174          * For case 1 we remove the extent rec and left rotate to
5175          * fill the hole.
5176          *
5177          * For case 2 we just shrink the existing extent rec, with a
5178          * tree update if the shrinking edge is also the edge of an
5179          * extent block.
5180          *
5181          * For case 3 we do a right split to turn the extent rec into
5182          * something case 2 can handle.
5183          */
5184         rec = &el->l_recs[index];
5185         rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
5186         trunc_range = cpos + len;
5187
5188         BUG_ON(cpos < le32_to_cpu(rec->e_cpos) || trunc_range > rec_range);
5189
5190         mlog(0, "Inode %llu, remove (cpos %u, len %u). Existing index %d "
5191              "(cpos %u, len %u)\n",
5192              (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos, len, index,
5193              le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec));
5194
5195         if (le32_to_cpu(rec->e_cpos) == cpos || rec_range == trunc_range) {
5196                 ret = ocfs2_truncate_rec(inode, handle, path, index, dealloc,
5197                                          cpos, len, et);
5198                 if (ret) {
5199                         mlog_errno(ret);
5200                         goto out;
5201                 }
5202         } else {
5203                 ret = ocfs2_split_tree(inode, et, handle, path, index,
5204                                        trunc_range, meta_ac);
5205                 if (ret) {
5206                         mlog_errno(ret);
5207                         goto out;
5208                 }
5209
5210                 /*
5211                  * The split could have manipulated the tree enough to
5212                  * move the record location, so we have to look for it again.
5213                  */
5214                 ocfs2_reinit_path(path, 1);
5215
5216                 ret = ocfs2_find_path(inode, path, cpos);
5217                 if (ret) {
5218                         mlog_errno(ret);
5219                         goto out;
5220                 }
5221
5222                 el = path_leaf_el(path);
5223                 index = ocfs2_search_extent_list(el, cpos);
5224                 if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
5225                         ocfs2_error(inode->i_sb,
5226                                     "Inode %llu: split at cpos %u lost record.",
5227                                     (unsigned long long)OCFS2_I(inode)->ip_blkno,
5228                                     cpos);
5229                         ret = -EROFS;
5230                         goto out;
5231                 }
5232
5233                 /*
5234                  * Double check our values here. If anything is fishy,
5235                  * it's easier to catch it at the top level.
5236                  */
5237                 rec = &el->l_recs[index];
5238                 rec_range = le32_to_cpu(rec->e_cpos) +
5239                         ocfs2_rec_clusters(el, rec);
5240                 if (rec_range != trunc_range) {
5241                         ocfs2_error(inode->i_sb,
5242                                     "Inode %llu: error after split at cpos %u"
5243                                     "trunc len %u, existing record is (%u,%u)",
5244                                     (unsigned long long)OCFS2_I(inode)->ip_blkno,
5245                                     cpos, len, le32_to_cpu(rec->e_cpos),
5246                                     ocfs2_rec_clusters(el, rec));
5247                         ret = -EROFS;
5248                         goto out;
5249                 }
5250
5251                 ret = ocfs2_truncate_rec(inode, handle, path, index, dealloc,
5252                                          cpos, len, et);
5253                 if (ret) {
5254                         mlog_errno(ret);
5255                         goto out;
5256                 }
5257         }
5258
5259 out:
5260         ocfs2_free_path(path);
5261         return ret;
5262 }
5263
5264 int ocfs2_truncate_log_needs_flush(struct ocfs2_super *osb)
5265 {
5266         struct buffer_head *tl_bh = osb->osb_tl_bh;
5267         struct ocfs2_dinode *di;
5268         struct ocfs2_truncate_log *tl;
5269
5270         di = (struct ocfs2_dinode *) tl_bh->b_data;
5271         tl = &di->id2.i_dealloc;
5272
5273         mlog_bug_on_msg(le16_to_cpu(tl->tl_used) > le16_to_cpu(tl->tl_count),
5274                         "slot %d, invalid truncate log parameters: used = "
5275                         "%u, count = %u\n", osb->slot_num,
5276                         le16_to_cpu(tl->tl_used), le16_to_cpu(tl->tl_count));
5277         return le16_to_cpu(tl->tl_used) == le16_to_cpu(tl->tl_count);
5278 }
5279
5280 static int ocfs2_truncate_log_can_coalesce(struct ocfs2_truncate_log *tl,
5281                                            unsigned int new_start)
5282 {
5283         unsigned int tail_index;
5284         unsigned int current_tail;
5285
5286         /* No records, nothing to coalesce */
5287         if (!le16_to_cpu(tl->tl_used))
5288                 return 0;
5289
5290         tail_index = le16_to_cpu(tl->tl_used) - 1;
5291         current_tail = le32_to_cpu(tl->tl_recs[tail_index].t_start);
5292         current_tail += le32_to_cpu(tl->tl_recs[tail_index].t_clusters);
5293
5294         return current_tail == new_start;
5295 }
5296
5297 int ocfs2_truncate_log_append(struct ocfs2_super *osb,
5298                               handle_t *handle,
5299                               u64 start_blk,
5300                               unsigned int num_clusters)
5301 {
5302         int status, index;
5303         unsigned int start_cluster, tl_count;
5304         struct inode *tl_inode = osb->osb_tl_inode;
5305         struct buffer_head *tl_bh = osb->osb_tl_bh;
5306         struct ocfs2_dinode *di;
5307         struct ocfs2_truncate_log *tl;
5308
5309         mlog_entry("start_blk = %llu, num_clusters = %u\n",
5310                    (unsigned long long)start_blk, num_clusters);
5311
5312         BUG_ON(mutex_trylock(&tl_inode->i_mutex));
5313
5314         start_cluster = ocfs2_blocks_to_clusters(osb->sb, start_blk);
5315
5316         di = (struct ocfs2_dinode *) tl_bh->b_data;
5317         tl = &di->id2.i_dealloc;
5318         if (!OCFS2_IS_VALID_DINODE(di)) {
5319                 OCFS2_RO_ON_INVALID_DINODE(osb->sb, di);
5320                 status = -EIO;
5321                 goto bail;
5322         }
5323
5324         tl_count = le16_to_cpu(tl->tl_count);
5325         mlog_bug_on_msg(tl_count > ocfs2_truncate_recs_per_inode(osb->sb) ||
5326                         tl_count == 0,
5327                         "Truncate record count on #%llu invalid "
5328                         "wanted %u, actual %u\n",
5329                         (unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
5330                         ocfs2_truncate_recs_per_inode(osb->sb),
5331                         le16_to_cpu(tl->tl_count));
5332
5333         /* Caller should have known to flush before calling us. */
5334         index = le16_to_cpu(tl->tl_used);
5335         if (index >= tl_count) {
5336                 status = -ENOSPC;
5337                 mlog_errno(status);
5338                 goto bail;
5339         }
5340
5341         status = ocfs2_journal_access(handle, tl_inode, tl_bh,
5342                                       OCFS2_JOURNAL_ACCESS_WRITE);
5343         if (status < 0) {
5344                 mlog_errno(status);
5345                 goto bail;
5346         }
5347
5348         mlog(0, "Log truncate of %u clusters starting at cluster %u to "
5349              "%llu (index = %d)\n", num_clusters, start_cluster,
5350              (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, index);
5351
5352         if (ocfs2_truncate_log_can_coalesce(tl, start_cluster)) {
5353                 /*
5354                  * Move index back to the record we are coalescing with.
5355                  * ocfs2_truncate_log_can_coalesce() guarantees nonzero
5356                  */
5357                 index--;
5358
5359                 num_clusters += le32_to_cpu(tl->tl_recs[index].t_clusters);
5360                 mlog(0, "Coalesce with index %u (start = %u, clusters = %u)\n",
5361                      index, le32_to_cpu(tl->tl_recs[index].t_start),
5362                      num_clusters);
5363         } else {
5364                 tl->tl_recs[index].t_start = cpu_to_le32(start_cluster);
5365                 tl->tl_used = cpu_to_le16(index + 1);
5366         }
5367         tl->tl_recs[index].t_clusters = cpu_to_le32(num_clusters);
5368
5369         status = ocfs2_journal_dirty(handle, tl_bh);
5370         if (status < 0) {
5371                 mlog_errno(status);
5372                 goto bail;
5373         }
5374
5375 bail:
5376         mlog_exit(status);
5377         return status;
5378 }
5379
5380 static int ocfs2_replay_truncate_records(struct ocfs2_super *osb,
5381                                          handle_t *handle,
5382                                          struct inode *data_alloc_inode,
5383                                          struct buffer_head *data_alloc_bh)
5384 {
5385         int status = 0;
5386         int i;
5387         unsigned int num_clusters;
5388         u64 start_blk;
5389         struct ocfs2_truncate_rec rec;
5390         struct ocfs2_dinode *di;
5391         struct ocfs2_truncate_log *tl;
5392         struct inode *tl_inode = osb->osb_tl_inode;
5393         struct buffer_head *tl_bh = osb->osb_tl_bh;
5394
5395         mlog_entry_void();
5396
5397         di = (struct ocfs2_dinode *) tl_bh->b_data;
5398         tl = &di->id2.i_dealloc;
5399         i = le16_to_cpu(tl->tl_used) - 1;
5400         while (i >= 0) {
5401                 /* Caller has given us at least enough credits to
5402                  * update the truncate log dinode */
5403                 status = ocfs2_journal_access(handle, tl_inode, tl_bh,
5404                                               OCFS2_JOURNAL_ACCESS_WRITE);
5405                 if (status < 0) {
5406                         mlog_errno(status);
5407                         goto bail;
5408                 }
5409
5410                 tl->tl_used = cpu_to_le16(i);
5411
5412                 status = ocfs2_journal_dirty(handle, tl_bh);
5413                 if (status < 0) {
5414                         mlog_errno(status);
5415                         goto bail;
5416                 }
5417
5418                 /* TODO: Perhaps we can calculate the bulk of the
5419                  * credits up front rather than extending like
5420                  * this. */
5421                 status = ocfs2_extend_trans(handle,
5422                                             OCFS2_TRUNCATE_LOG_FLUSH_ONE_REC);
5423                 if (status < 0) {
5424                         mlog_errno(status);
5425                         goto bail;
5426                 }
5427
5428                 rec = tl->tl_recs[i];
5429                 start_blk = ocfs2_clusters_to_blocks(data_alloc_inode->i_sb,
5430                                                     le32_to_cpu(rec.t_start));
5431                 num_clusters = le32_to_cpu(rec.t_clusters);
5432
5433                 /* if start_blk is not set, we ignore the record as
5434                  * invalid. */
5435                 if (start_blk) {
5436                         mlog(0, "free record %d, start = %u, clusters = %u\n",
5437                              i, le32_to_cpu(rec.t_start), num_clusters);
5438
5439                         status = ocfs2_free_clusters(handle, data_alloc_inode,
5440                                                      data_alloc_bh, start_blk,
5441                                                      num_clusters);
5442                         if (status < 0) {
5443                                 mlog_errno(status);
5444                                 goto bail;
5445                         }
5446                 }
5447                 i--;
5448         }
5449
5450 bail:
5451         mlog_exit(status);
5452         return status;
5453 }
5454
5455 /* Expects you to already be holding tl_inode->i_mutex */
5456 int __ocfs2_flush_truncate_log(struct ocfs2_super *osb)
5457 {
5458         int status;
5459         unsigned int num_to_flush;
5460         handle_t *handle;
5461         struct inode *tl_inode = osb->osb_tl_inode;
5462         struct inode *data_alloc_inode = NULL;
5463         struct buffer_head *tl_bh = osb->osb_tl_bh;
5464         struct buffer_head *data_alloc_bh = NULL;
5465         struct ocfs2_dinode *di;
5466         struct ocfs2_truncate_log *tl;
5467
5468         mlog_entry_void();
5469
5470         BUG_ON(mutex_trylock(&tl_inode->i_mutex));
5471
5472         di = (struct ocfs2_dinode *) tl_bh->b_data;
5473         tl = &di->id2.i_dealloc;
5474         if (!OCFS2_IS_VALID_DINODE(di)) {
5475                 OCFS2_RO_ON_INVALID_DINODE(osb->sb, di);
5476                 status = -EIO;
5477                 goto out;
5478         }
5479
5480         num_to_flush = le16_to_cpu(tl->tl_used);
5481         mlog(0, "Flush %u records from truncate log #%llu\n",
5482              num_to_flush, (unsigned long long)OCFS2_I(tl_inode)->ip_blkno);
5483         if (!num_to_flush) {
5484                 status = 0;
5485                 goto out;
5486         }
5487
5488         data_alloc_inode = ocfs2_get_system_file_inode(osb,
5489                                                        GLOBAL_BITMAP_SYSTEM_INODE,
5490                                                        OCFS2_INVALID_SLOT);
5491         if (!data_alloc_inode) {
5492                 status = -EINVAL;
5493                 mlog(ML_ERROR, "Could not get bitmap inode!\n");
5494                 goto out;
5495         }
5496
5497         mutex_lock(&data_alloc_inode->i_mutex);
5498
5499         status = ocfs2_inode_lock(data_alloc_inode, &data_alloc_bh, 1);
5500         if (status < 0) {
5501                 mlog_errno(status);
5502                 goto out_mutex;
5503         }
5504
5505         handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
5506         if (IS_ERR(handle)) {
5507                 status = PTR_ERR(handle);
5508                 mlog_errno(status);
5509                 goto out_unlock;
5510         }
5511
5512         status = ocfs2_replay_truncate_records(osb, handle, data_alloc_inode,
5513                                                data_alloc_bh);
5514         if (status < 0)
5515                 mlog_errno(status);
5516
5517         ocfs2_commit_trans(osb, handle);
5518
5519 out_unlock:
5520         brelse(data_alloc_bh);
5521         ocfs2_inode_unlock(data_alloc_inode, 1);
5522
5523 out_mutex:
5524         mutex_unlock(&data_alloc_inode->i_mutex);
5525         iput(data_alloc_inode);
5526
5527 out:
5528         mlog_exit(status);
5529         return status;
5530 }
5531
5532 int ocfs2_flush_truncate_log(struct ocfs2_super *osb)
5533 {
5534         int status;
5535         struct inode *tl_inode = osb->osb_tl_inode;
5536
5537         mutex_lock(&tl_inode->i_mutex);
5538         status = __ocfs2_flush_truncate_log(osb);
5539         mutex_unlock(&tl_inode->i_mutex);
5540
5541         return status;
5542 }
5543
5544 static void ocfs2_truncate_log_worker(struct work_struct *work)
5545 {
5546         int status;
5547         struct ocfs2_super *osb =
5548                 container_of(work, struct ocfs2_super,
5549                              osb_truncate_log_wq.work);
5550
5551         mlog_entry_void();
5552
5553         status = ocfs2_flush_truncate_log(osb);
5554         if (status < 0)
5555                 mlog_errno(status);
5556         else
5557                 ocfs2_init_inode_steal_slot(osb);
5558
5559         mlog_exit(status);
5560 }
5561
5562 #define OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL (2 * HZ)
5563 void ocfs2_schedule_truncate_log_flush(struct ocfs2_super *osb,
5564                                        int cancel)
5565 {
5566         if (osb->osb_tl_inode) {
5567                 /* We want to push off log flushes while truncates are
5568                  * still running. */
5569                 if (cancel)
5570                         cancel_delayed_work(&osb->osb_truncate_log_wq);
5571
5572                 queue_delayed_work(ocfs2_wq, &osb->osb_truncate_log_wq,
5573                                    OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL);
5574         }
5575 }
5576
5577 static int ocfs2_get_truncate_log_info(struct ocfs2_super *osb,
5578                                        int slot_num,
5579                                        struct inode **tl_inode,
5580                                        struct buffer_head **tl_bh)
5581 {
5582         int status;
5583         struct inode *inode = NULL;
5584         struct buffer_head *bh = NULL;
5585
5586         inode = ocfs2_get_system_file_inode(osb,
5587                                            TRUNCATE_LOG_SYSTEM_INODE,
5588                                            slot_num);
5589         if (!inode) {
5590                 status = -EINVAL;
5591                 mlog(ML_ERROR, "Could not get load truncate log inode!\n");
5592                 goto bail;
5593         }
5594
5595         status = ocfs2_read_block(osb, OCFS2_I(inode)->ip_blkno, &bh,
5596                                   OCFS2_BH_CACHED, inode);
5597         if (status < 0) {
5598                 iput(inode);
5599                 mlog_errno(status);
5600                 goto bail;
5601         }
5602
5603         *tl_inode = inode;
5604         *tl_bh    = bh;
5605 bail:
5606         mlog_exit(status);
5607         return status;
5608 }
5609
5610 /* called during the 1st stage of node recovery. we stamp a clean
5611  * truncate log and pass back a copy for processing later. if the
5612  * truncate log does not require processing, a *tl_copy is set to
5613  * NULL. */
5614 int ocfs2_begin_truncate_log_recovery(struct ocfs2_super *osb,
5615                                       int slot_num,
5616                                       struct ocfs2_dinode **tl_copy)
5617 {
5618         int status;
5619         struct inode *tl_inode = NULL;
5620         struct buffer_head *tl_bh = NULL;
5621         struct ocfs2_dinode *di;
5622         struct ocfs2_truncate_log *tl;
5623
5624         *tl_copy = NULL;
5625
5626         mlog(0, "recover truncate log from slot %d\n", slot_num);
5627
5628         status = ocfs2_get_truncate_log_info(osb, slot_num, &tl_inode, &tl_bh);
5629         if (status < 0) {
5630                 mlog_errno(status);
5631                 goto bail;
5632         }
5633
5634         di = (struct ocfs2_dinode *) tl_bh->b_data;
5635         tl = &di->id2.i_dealloc;
5636         if (!OCFS2_IS_VALID_DINODE(di)) {
5637                 OCFS2_RO_ON_INVALID_DINODE(tl_inode->i_sb, di);
5638                 status = -EIO;
5639                 goto bail;
5640         }
5641
5642         if (le16_to_cpu(tl->tl_used)) {
5643                 mlog(0, "We'll have %u logs to recover\n",
5644                      le16_to_cpu(tl->tl_used));
5645
5646                 *tl_copy = kmalloc(tl_bh->b_size, GFP_KERNEL);
5647                 if (!(*tl_copy)) {
5648                         status = -ENOMEM;
5649                         mlog_errno(status);
5650                         goto bail;
5651                 }
5652
5653                 /* Assuming the write-out below goes well, this copy
5654                  * will be passed back to recovery for processing. */
5655                 memcpy(*tl_copy, tl_bh->b_data, tl_bh->b_size);
5656
5657                 /* All we need to do to clear the truncate log is set
5658                  * tl_used. */
5659                 tl->tl_used = 0;
5660
5661                 status = ocfs2_write_block(osb, tl_bh, tl_inode);
5662                 if (status < 0) {
5663                         mlog_errno(status);
5664                         goto bail;
5665                 }
5666         }
5667
5668 bail:
5669         if (tl_inode)
5670                 iput(tl_inode);
5671         brelse(tl_bh);
5672
5673         if (status < 0 && (*tl_copy)) {
5674                 kfree(*tl_copy);
5675                 *tl_copy = NULL;
5676         }
5677
5678         mlog_exit(status);
5679         return status;
5680 }
5681
5682 int ocfs2_complete_truncate_log_recovery(struct ocfs2_super *osb,
5683                                          struct ocfs2_dinode *tl_copy)
5684 {
5685         int status = 0;
5686         int i;
5687         unsigned int clusters, num_recs, start_cluster;
5688         u64 start_blk;
5689         handle_t *handle;
5690         struct inode *tl_inode = osb->osb_tl_inode;
5691         struct ocfs2_truncate_log *tl;
5692
5693         mlog_entry_void();
5694
5695         if (OCFS2_I(tl_inode)->ip_blkno == le64_to_cpu(tl_copy->i_blkno)) {
5696                 mlog(ML_ERROR, "Asked to recover my own truncate log!\n");
5697                 return -EINVAL;
5698         }
5699
5700         tl = &tl_copy->id2.i_dealloc;
5701         num_recs = le16_to_cpu(tl->tl_used);
5702         mlog(0, "cleanup %u records from %llu\n", num_recs,
5703              (unsigned long long)le64_to_cpu(tl_copy->i_blkno));
5704
5705         mutex_lock(&tl_inode->i_mutex);
5706         for(i = 0; i < num_recs; i++) {
5707                 if (ocfs2_truncate_log_needs_flush(osb)) {
5708                         status = __ocfs2_flush_truncate_log(osb);
5709                         if (status < 0) {
5710                                 mlog_errno(status);
5711                                 goto bail_up;
5712                         }
5713                 }
5714
5715                 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
5716                 if (IS_ERR(handle)) {
5717                         status = PTR_ERR(handle);
5718                         mlog_errno(status);
5719                         goto bail_up;
5720                 }
5721
5722                 clusters = le32_to_cpu(tl->tl_recs[i].t_clusters);
5723                 start_cluster = le32_to_cpu(tl->tl_recs[i].t_start);
5724                 start_blk = ocfs2_clusters_to_blocks(osb->sb, start_cluster);
5725
5726                 status = ocfs2_truncate_log_append(osb, handle,
5727                                                    start_blk, clusters);
5728                 ocfs2_commit_trans(osb, handle);
5729                 if (status < 0) {
5730                         mlog_errno(status);
5731                         goto bail_up;
5732                 }
5733         }
5734
5735 bail_up:
5736         mutex_unlock(&tl_inode->i_mutex);
5737
5738         mlog_exit(status);
5739         return status;
5740 }
5741
5742 void ocfs2_truncate_log_shutdown(struct ocfs2_super *osb)
5743 {
5744         int status;
5745         struct inode *tl_inode = osb->osb_tl_inode;
5746
5747         mlog_entry_void();
5748
5749         if (tl_inode) {
5750                 cancel_delayed_work(&osb->osb_truncate_log_wq);
5751                 flush_workqueue(ocfs2_wq);
5752
5753                 status = ocfs2_flush_truncate_log(osb);
5754                 if (status < 0)
5755                         mlog_errno(status);
5756
5757                 brelse(osb->osb_tl_bh);
5758                 iput(osb->osb_tl_inode);
5759         }
5760
5761         mlog_exit_void();
5762 }
5763
5764 int ocfs2_truncate_log_init(struct ocfs2_super *osb)
5765 {
5766         int status;
5767         struct inode *tl_inode = NULL;
5768         struct buffer_head *tl_bh = NULL;
5769
5770         mlog_entry_void();
5771
5772         status = ocfs2_get_truncate_log_info(osb,
5773                                              osb->slot_num,
5774                                              &tl_inode,
5775                                              &tl_bh);
5776         if (status < 0)
5777                 mlog_errno(status);
5778
5779         /* ocfs2_truncate_log_shutdown keys on the existence of
5780          * osb->osb_tl_inode so we don't set any of the osb variables
5781          * until we're sure all is well. */
5782         INIT_DELAYED_WORK(&osb->osb_truncate_log_wq,
5783                           ocfs2_truncate_log_worker);
5784         osb->osb_tl_bh    = tl_bh;
5785         osb->osb_tl_inode = tl_inode;
5786
5787         mlog_exit(status);
5788         return status;
5789 }
5790
5791 /*
5792  * Delayed de-allocation of suballocator blocks.
5793  *
5794  * Some sets of block de-allocations might involve multiple suballocator inodes.
5795  *
5796  * The locking for this can get extremely complicated, especially when
5797  * the suballocator inodes to delete from aren't known until deep
5798  * within an unrelated codepath.
5799  *
5800  * ocfs2_extent_block structures are a good example of this - an inode
5801  * btree could have been grown by any number of nodes each allocating
5802  * out of their own suballoc inode.
5803  *
5804  * These structures allow the delay of block de-allocation until a
5805  * later time, when locking of multiple cluster inodes won't cause
5806  * deadlock.
5807  */
5808
5809 /*
5810  * Describes a single block free from a suballocator
5811  */
5812 struct ocfs2_cached_block_free {
5813         struct ocfs2_cached_block_free          *free_next;
5814         u64                                     free_blk;
5815         unsigned int                            free_bit;
5816 };
5817
5818 struct ocfs2_per_slot_free_list {
5819         struct ocfs2_per_slot_free_list         *f_next_suballocator;
5820         int                                     f_inode_type;
5821         int                                     f_slot;
5822         struct ocfs2_cached_block_free          *f_first;
5823 };
5824
5825 static int ocfs2_free_cached_items(struct ocfs2_super *osb,
5826                                    int sysfile_type,
5827                                    int slot,
5828                                    struct ocfs2_cached_block_free *head)
5829 {
5830         int ret;
5831         u64 bg_blkno;
5832         handle_t *handle;
5833         struct inode *inode;
5834         struct buffer_head *di_bh = NULL;
5835         struct ocfs2_cached_block_free *tmp;
5836
5837         inode = ocfs2_get_system_file_inode(osb, sysfile_type, slot);
5838         if (!inode) {
5839                 ret = -EINVAL;
5840                 mlog_errno(ret);
5841                 goto out;
5842         }
5843
5844         mutex_lock(&inode->i_mutex);
5845
5846         ret = ocfs2_inode_lock(inode, &di_bh, 1);
5847         if (ret) {
5848                 mlog_errno(ret);
5849                 goto out_mutex;
5850         }
5851
5852         handle = ocfs2_start_trans(osb, OCFS2_SUBALLOC_FREE);
5853         if (IS_ERR(handle)) {
5854                 ret = PTR_ERR(handle);
5855                 mlog_errno(ret);
5856                 goto out_unlock;
5857         }
5858
5859         while (head) {
5860                 bg_blkno = ocfs2_which_suballoc_group(head->free_blk,
5861                                                       head->free_bit);
5862                 mlog(0, "Free bit: (bit %u, blkno %llu)\n",
5863                      head->free_bit, (unsigned long long)head->free_blk);
5864
5865                 ret = ocfs2_free_suballoc_bits(handle, inode, di_bh,
5866                                                head->free_bit, bg_blkno, 1);
5867                 if (ret) {
5868                         mlog_errno(ret);
5869                         goto out_journal;
5870                 }
5871
5872                 ret = ocfs2_extend_trans(handle, OCFS2_SUBALLOC_FREE);
5873                 if (ret) {
5874                         mlog_errno(ret);
5875                         goto out_journal;
5876                 }
5877
5878                 tmp = head;
5879                 head = head->free_next;
5880                 kfree(tmp);
5881         }
5882
5883 out_journal:
5884         ocfs2_commit_trans(osb, handle);
5885
5886 out_unlock:
5887         ocfs2_inode_unlock(inode, 1);
5888         brelse(di_bh);
5889 out_mutex:
5890         mutex_unlock(&inode->i_mutex);
5891         iput(inode);
5892 out:
5893         while(head) {
5894                 /* Premature exit may have left some dangling items. */
5895                 tmp = head;
5896                 head = head->free_next;
5897                 kfree(tmp);
5898         }
5899
5900         return ret;
5901 }
5902
5903 int ocfs2_run_deallocs(struct ocfs2_super *osb,
5904                        struct ocfs2_cached_dealloc_ctxt *ctxt)
5905 {
5906         int ret = 0, ret2;
5907         struct ocfs2_per_slot_free_list *fl;
5908
5909         if (!ctxt)
5910                 return 0;
5911
5912         while (ctxt->c_first_suballocator) {
5913                 fl = ctxt->c_first_suballocator;
5914
5915                 if (fl->f_first) {
5916                         mlog(0, "Free items: (type %u, slot %d)\n",
5917                              fl->f_inode_type, fl->f_slot);
5918                         ret2 = ocfs2_free_cached_items(osb, fl->f_inode_type,
5919                                                        fl->f_slot, fl->f_first);
5920                         if (ret2)
5921                                 mlog_errno(ret2);
5922                         if (!ret)
5923                                 ret = ret2;
5924                 }
5925
5926                 ctxt->c_first_suballocator = fl->f_next_suballocator;
5927                 kfree(fl);
5928         }
5929
5930         return ret;
5931 }
5932
5933 static struct ocfs2_per_slot_free_list *
5934 ocfs2_find_per_slot_free_list(int type,
5935                               int slot,
5936                               struct ocfs2_cached_dealloc_ctxt *ctxt)
5937 {
5938         struct ocfs2_per_slot_free_list *fl = ctxt->c_first_suballocator;
5939
5940         while (fl) {
5941                 if (fl->f_inode_type == type && fl->f_slot == slot)
5942                         return fl;
5943
5944                 fl = fl->f_next_suballocator;
5945         }
5946
5947         fl = kmalloc(sizeof(*fl), GFP_NOFS);
5948         if (fl) {
5949                 fl->f_inode_type = type;
5950                 fl->f_slot = slot;
5951                 fl->f_first = NULL;
5952                 fl->f_next_suballocator = ctxt->c_first_suballocator;
5953
5954                 ctxt->c_first_suballocator = fl;
5955         }
5956         return fl;
5957 }
5958
5959 static int ocfs2_cache_block_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt,
5960                                      int type, int slot, u64 blkno,
5961                                      unsigned int bit)
5962 {
5963         int ret;
5964         struct ocfs2_per_slot_free_list *fl;
5965         struct ocfs2_cached_block_free *item;
5966
5967         fl = ocfs2_find_per_slot_free_list(type, slot, ctxt);
5968         if (fl == NULL) {
5969                 ret = -ENOMEM;
5970                 mlog_errno(ret);
5971                 goto out;
5972         }
5973
5974         item = kmalloc(sizeof(*item), GFP_NOFS);
5975         if (item == NULL) {
5976                 ret = -ENOMEM;
5977                 mlog_errno(ret);
5978                 goto out;
5979         }
5980
5981         mlog(0, "Insert: (type %d, slot %u, bit %u, blk %llu)\n",
5982              type, slot, bit, (unsigned long long)blkno);
5983
5984         item->free_blk = blkno;
5985         item->free_bit = bit;
5986         item->free_next = fl->f_first;
5987
5988         fl->f_first = item;
5989
5990         ret = 0;
5991 out:
5992         return ret;
5993 }
5994
5995 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
5996                                          struct ocfs2_extent_block *eb)
5997 {
5998         return ocfs2_cache_block_dealloc(ctxt, EXTENT_ALLOC_SYSTEM_INODE,
5999                                          le16_to_cpu(eb->h_suballoc_slot),
6000                                          le64_to_cpu(eb->h_blkno),
6001                                          le16_to_cpu(eb->h_suballoc_bit));
6002 }
6003
6004 /* This function will figure out whether the currently last extent
6005  * block will be deleted, and if it will, what the new last extent
6006  * block will be so we can update his h_next_leaf_blk field, as well
6007  * as the dinodes i_last_eb_blk */
6008 static int ocfs2_find_new_last_ext_blk(struct inode *inode,
6009                                        unsigned int clusters_to_del,
6010                                        struct ocfs2_path *path,
6011                                        struct buffer_head **new_last_eb)
6012 {
6013         int next_free, ret = 0;
6014         u32 cpos;
6015         struct ocfs2_extent_rec *rec;
6016         struct ocfs2_extent_block *eb;
6017         struct ocfs2_extent_list *el;
6018         struct buffer_head *bh = NULL;
6019
6020         *new_last_eb = NULL;
6021
6022         /* we have no tree, so of course, no last_eb. */
6023         if (!path->p_tree_depth)
6024                 goto out;
6025
6026         /* trunc to zero special case - this makes tree_depth = 0
6027          * regardless of what it is.  */
6028         if (OCFS2_I(inode)->ip_clusters == clusters_to_del)
6029                 goto out;
6030
6031         el = path_leaf_el(path);
6032         BUG_ON(!el->l_next_free_rec);
6033
6034         /*
6035          * Make sure that this extent list will actually be empty
6036          * after we clear away the data. We can shortcut out if
6037          * there's more than one non-empty extent in the
6038          * list. Otherwise, a check of the remaining extent is
6039          * necessary.
6040          */
6041         next_free = le16_to_cpu(el->l_next_free_rec);
6042         rec = NULL;
6043         if (ocfs2_is_empty_extent(&el->l_recs[0])) {
6044                 if (next_free > 2)
6045                         goto out;
6046
6047                 /* We may have a valid extent in index 1, check it. */
6048                 if (next_free == 2)
6049                         rec = &el->l_recs[1];
6050
6051                 /*
6052                  * Fall through - no more nonempty extents, so we want
6053                  * to delete this leaf.
6054                  */
6055         } else {
6056                 if (next_free > 1)
6057                         goto out;
6058
6059                 rec = &el->l_recs[0];
6060         }
6061
6062         if (rec) {
6063                 /*
6064                  * Check it we'll only be trimming off the end of this
6065                  * cluster.
6066                  */
6067                 if (le16_to_cpu(rec->e_leaf_clusters) > clusters_to_del)
6068                         goto out;
6069         }
6070
6071         ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, &cpos);
6072         if (ret) {
6073                 mlog_errno(ret);
6074                 goto out;
6075         }
6076
6077         ret = ocfs2_find_leaf(inode, path_root_el(path), cpos, &bh);
6078         if (ret) {
6079                 mlog_errno(ret);
6080                 goto out;
6081         }
6082
6083         eb = (struct ocfs2_extent_block *) bh->b_data;
6084         el = &eb->h_list;
6085         if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
6086                 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
6087                 ret = -EROFS;
6088                 goto out;
6089         }
6090
6091         *new_last_eb = bh;
6092         get_bh(*new_last_eb);
6093         mlog(0, "returning block %llu, (cpos: %u)\n",
6094              (unsigned long long)le64_to_cpu(eb->h_blkno), cpos);
6095 out:
6096         brelse(bh);
6097
6098         return ret;
6099 }
6100
6101 /*
6102  * Trim some clusters off the rightmost edge of a tree. Only called
6103  * during truncate.
6104  *
6105  * The caller needs to:
6106  *   - start journaling of each path component.
6107  *   - compute and fully set up any new last ext block
6108  */
6109 static int ocfs2_trim_tree(struct inode *inode, struct ocfs2_path *path,
6110                            handle_t *handle, struct ocfs2_truncate_context *tc,
6111                            u32 clusters_to_del, u64 *delete_start)
6112 {
6113         int ret, i, index = path->p_tree_depth;
6114         u32 new_edge = 0;
6115         u64 deleted_eb = 0;
6116         struct buffer_head *bh;
6117         struct ocfs2_extent_list *el;
6118         struct ocfs2_extent_rec *rec;
6119
6120         *delete_start = 0;
6121
6122         while (index >= 0) {
6123                 bh = path->p_node[index].bh;
6124                 el = path->p_node[index].el;
6125
6126                 mlog(0, "traveling tree (index = %d, block = %llu)\n",
6127                      index,  (unsigned long long)bh->b_blocknr);
6128
6129                 BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0);
6130
6131                 if (index !=
6132                     (path->p_tree_depth - le16_to_cpu(el->l_tree_depth))) {
6133                         ocfs2_error(inode->i_sb,
6134                                     "Inode %lu has invalid ext. block %llu",
6135                                     inode->i_ino,
6136                                     (unsigned long long)bh->b_blocknr);
6137                         ret = -EROFS;
6138                         goto out;
6139                 }
6140
6141 find_tail_record:
6142                 i = le16_to_cpu(el->l_next_free_rec) - 1;
6143                 rec = &el->l_recs[i];
6144
6145                 mlog(0, "Extent list before: record %d: (%u, %u, %llu), "
6146                      "next = %u\n", i, le32_to_cpu(rec->e_cpos),
6147                      ocfs2_rec_clusters(el, rec),
6148                      (unsigned long long)le64_to_cpu(rec->e_blkno),
6149                      le16_to_cpu(el->l_next_free_rec));
6150
6151                 BUG_ON(ocfs2_rec_clusters(el, rec) < clusters_to_del);
6152
6153                 if (le16_to_cpu(el->l_tree_depth) == 0) {
6154                         /*
6155                          * If the leaf block contains a single empty
6156                          * extent and no records, we can just remove
6157                          * the block.
6158                          */
6159                         if (i == 0 && ocfs2_is_empty_extent(rec)) {
6160                                 memset(rec, 0,
6161                                        sizeof(struct ocfs2_extent_rec));
6162                                 el->l_next_free_rec = cpu_to_le16(0);
6163
6164                                 goto delete;
6165                         }
6166
6167                         /*
6168                          * Remove any empty extents by shifting things
6169                          * left. That should make life much easier on
6170                          * the code below. This condition is rare
6171                          * enough that we shouldn't see a performance
6172                          * hit.
6173                          */
6174                         if (ocfs2_is_empty_extent(&el->l_recs[0])) {
6175                                 le16_add_cpu(&el->l_next_free_rec, -1);
6176
6177                                 for(i = 0;
6178                                     i < le16_to_cpu(el->l_next_free_rec); i++)
6179                                         el->l_recs[i] = el->l_recs[i + 1];
6180
6181                                 memset(&el->l_recs[i], 0,
6182                                        sizeof(struct ocfs2_extent_rec));
6183
6184                                 /*
6185                                  * We've modified our extent list. The
6186                                  * simplest way to handle this change
6187                                  * is to being the search from the
6188                                  * start again.
6189                                  */
6190                                 goto find_tail_record;
6191                         }
6192
6193                         le16_add_cpu(&rec->e_leaf_clusters, -clusters_to_del);
6194
6195                         /*
6196                          * We'll use "new_edge" on our way back up the
6197                          * tree to know what our rightmost cpos is.
6198                          */
6199                         new_edge = le16_to_cpu(rec->e_leaf_clusters);
6200                         new_edge += le32_to_cpu(rec->e_cpos);
6201
6202                         /*
6203                          * The caller will use this to delete data blocks.
6204                          */
6205                         *delete_start = le64_to_cpu(rec->e_blkno)
6206                                 + ocfs2_clusters_to_blocks(inode->i_sb,
6207                                         le16_to_cpu(rec->e_leaf_clusters));
6208
6209                         /*
6210                          * If it's now empty, remove this record.
6211                          */
6212                         if (le16_to_cpu(rec->e_leaf_clusters) == 0) {
6213                                 memset(rec, 0,
6214                                        sizeof(struct ocfs2_extent_rec));
6215                                 le16_add_cpu(&el->l_next_free_rec, -1);
6216                         }
6217                 } else {
6218                         if (le64_to_cpu(rec->e_blkno) == deleted_eb) {
6219                                 memset(rec, 0,
6220                                        sizeof(struct ocfs2_extent_rec));
6221                                 le16_add_cpu(&el->l_next_free_rec, -1);
6222
6223                                 goto delete;
6224                         }
6225
6226                         /* Can this actually happen? */
6227                         if (le16_to_cpu(el->l_next_free_rec) == 0)
6228                                 goto delete;
6229
6230                         /*
6231                          * We never actually deleted any clusters
6232                          * because our leaf was empty. There's no
6233                          * reason to adjust the rightmost edge then.
6234                          */
6235                         if (new_edge == 0)
6236                                 goto delete;
6237
6238                         rec->e_int_clusters = cpu_to_le32(new_edge);
6239                         le32_add_cpu(&rec->e_int_clusters,
6240                                      -le32_to_cpu(rec->e_cpos));
6241
6242                          /*
6243                           * A deleted child record should have been
6244                           * caught above.
6245                           */
6246                          BUG_ON(le32_to_cpu(rec->e_int_clusters) == 0);
6247                 }
6248
6249 delete:
6250                 ret = ocfs2_journal_dirty(handle, bh);
6251                 if (ret) {
6252                         mlog_errno(ret);
6253                         goto out;
6254                 }
6255
6256                 mlog(0, "extent list container %llu, after: record %d: "
6257                      "(%u, %u, %llu), next = %u.\n",
6258                      (unsigned long long)bh->b_blocknr, i,
6259                      le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec),
6260                      (unsigned long long)le64_to_cpu(rec->e_blkno),
6261                      le16_to_cpu(el->l_next_free_rec));
6262
6263                 /*
6264                  * We must be careful to only attempt delete of an
6265                  * extent block (and not the root inode block).
6266                  */
6267                 if (index > 0 && le16_to_cpu(el->l_next_free_rec) == 0) {
6268                         struct ocfs2_extent_block *eb =
6269                                 (struct ocfs2_extent_block *)bh->b_data;
6270
6271                         /*
6272                          * Save this for use when processing the
6273                          * parent block.
6274                          */
6275                         deleted_eb = le64_to_cpu(eb->h_blkno);
6276
6277                         mlog(0, "deleting this extent block.\n");
6278
6279                         ocfs2_remove_from_cache(inode, bh);
6280
6281                         BUG_ON(ocfs2_rec_clusters(el, &el->l_recs[0]));
6282                         BUG_ON(le32_to_cpu(el->l_recs[0].e_cpos));
6283                         BUG_ON(le64_to_cpu(el->l_recs[0].e_blkno));
6284
6285                         ret = ocfs2_cache_extent_block_free(&tc->tc_dealloc, eb);
6286                         /* An error here is not fatal. */
6287                         if (ret < 0)
6288                                 mlog_errno(ret);
6289                 } else {
6290                         deleted_eb = 0;
6291                 }
6292
6293                 index--;
6294         }
6295
6296         ret = 0;
6297 out:
6298         return ret;
6299 }
6300
6301 static int ocfs2_do_truncate(struct ocfs2_super *osb,
6302                              unsigned int clusters_to_del,
6303                              struct inode *inode,
6304                              struct buffer_head *fe_bh,
6305                              handle_t *handle,
6306                              struct ocfs2_truncate_context *tc,
6307                              struct ocfs2_path *path)
6308 {
6309         int status;
6310         struct ocfs2_dinode *fe;
6311         struct ocfs2_extent_block *last_eb = NULL;
6312         struct ocfs2_extent_list *el;
6313         struct buffer_head *last_eb_bh = NULL;
6314         u64 delete_blk = 0;
6315
6316         fe = (struct ocfs2_dinode *) fe_bh->b_data;
6317
6318         status = ocfs2_find_new_last_ext_blk(inode, clusters_to_del,
6319                                              path, &last_eb_bh);
6320         if (status < 0) {
6321                 mlog_errno(status);
6322                 goto bail;
6323         }
6324
6325         /*
6326          * Each component will be touched, so we might as well journal
6327          * here to avoid having to handle errors later.
6328          */
6329         status = ocfs2_journal_access_path(inode, handle, path);
6330         if (status < 0) {
6331                 mlog_errno(status);
6332                 goto bail;
6333         }
6334
6335         if (last_eb_bh) {
6336                 status = ocfs2_journal_access(handle, inode, last_eb_bh,
6337                                               OCFS2_JOURNAL_ACCESS_WRITE);
6338                 if (status < 0) {
6339                         mlog_errno(status);
6340                         goto bail;
6341                 }
6342
6343                 last_eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
6344         }
6345
6346         el = &(fe->id2.i_list);
6347
6348         /*
6349          * Lower levels depend on this never happening, but it's best
6350          * to check it up here before changing the tree.
6351          */
6352         if (el->l_tree_depth && el->l_recs[0].e_int_clusters == 0) {
6353                 ocfs2_error(inode->i_sb,
6354                             "Inode %lu has an empty extent record, depth %u\n",
6355                             inode->i_ino, le16_to_cpu(el->l_tree_depth));
6356                 status = -EROFS;
6357                 goto bail;
6358         }
6359
6360         spin_lock(&OCFS2_I(inode)->ip_lock);
6361         OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters) -
6362                                       clusters_to_del;
6363         spin_unlock(&OCFS2_I(inode)->ip_lock);
6364         le32_add_cpu(&fe->i_clusters, -clusters_to_del);
6365         inode->i_blocks = ocfs2_inode_sector_count(inode);
6366
6367         status = ocfs2_trim_tree(inode, path, handle, tc,
6368                                  clusters_to_del, &delete_blk);
6369         if (status) {
6370                 mlog_errno(status);
6371                 goto bail;
6372         }
6373
6374         if (le32_to_cpu(fe->i_clusters) == 0) {
6375                 /* trunc to zero is a special case. */
6376                 el->l_tree_depth = 0;
6377                 fe->i_last_eb_blk = 0;
6378         } else if (last_eb)
6379                 fe->i_last_eb_blk = last_eb->h_blkno;
6380
6381         status = ocfs2_journal_dirty(handle, fe_bh);
6382         if (status < 0) {
6383                 mlog_errno(status);
6384                 goto bail;
6385         }
6386
6387         if (last_eb) {
6388                 /* If there will be a new last extent block, then by
6389                  * definition, there cannot be any leaves to the right of
6390                  * him. */
6391                 last_eb->h_next_leaf_blk = 0;
6392                 status = ocfs2_journal_dirty(handle, last_eb_bh);
6393                 if (status < 0) {
6394                         mlog_errno(status);
6395                         goto bail;
6396                 }
6397         }
6398
6399         if (delete_blk) {
6400                 status = ocfs2_truncate_log_append(osb, handle, delete_blk,
6401                                                    clusters_to_del);
6402                 if (status < 0) {
6403                         mlog_errno(status);
6404                         goto bail;
6405                 }
6406         }
6407         status = 0;
6408 bail:
6409
6410         mlog_exit(status);
6411         return status;
6412 }
6413
6414 static int ocfs2_zero_func(handle_t *handle, struct buffer_head *bh)
6415 {
6416         set_buffer_uptodate(bh);
6417         mark_buffer_dirty(bh);
6418         return 0;
6419 }
6420
6421 static void ocfs2_map_and_dirty_page(struct inode *inode, handle_t *handle,
6422                                      unsigned int from, unsigned int to,
6423                                      struct page *page, int zero, u64 *phys)
6424 {
6425         int ret, partial = 0;
6426
6427         ret = ocfs2_map_page_blocks(page, phys, inode, from, to, 0);
6428         if (ret)
6429                 mlog_errno(ret);
6430
6431         if (zero)
6432                 zero_user_segment(page, from, to);
6433
6434         /*
6435          * Need to set the buffers we zero'd into uptodate
6436          * here if they aren't - ocfs2_map_page_blocks()
6437          * might've skipped some
6438          */
6439         ret = walk_page_buffers(handle, page_buffers(page),
6440                                 from, to, &partial,
6441                                 ocfs2_zero_func);
6442         if (ret < 0)
6443                 mlog_errno(ret);
6444         else if (ocfs2_should_order_data(inode)) {
6445                 ret = ocfs2_jbd2_file_inode(handle, inode);
6446 #ifdef CONFIG_OCFS2_COMPAT_JBD
6447                 ret = walk_page_buffers(handle, page_buffers(page),
6448                                         from, to, &partial,
6449                                         ocfs2_journal_dirty_data);
6450 #endif
6451                 if (ret < 0)
6452                         mlog_errno(ret);
6453         }
6454
6455         if (!partial)
6456                 SetPageUptodate(page);
6457
6458         flush_dcache_page(page);
6459 }
6460
6461 static void ocfs2_zero_cluster_pages(struct inode *inode, loff_t start,
6462                                      loff_t end, struct page **pages,
6463                                      int numpages, u64 phys, handle_t *handle)
6464 {
6465         int i;
6466         struct page *page;
6467         unsigned int from, to = PAGE_CACHE_SIZE;
6468         struct super_block *sb = inode->i_sb;
6469
6470         BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb)));
6471
6472         if (numpages == 0)
6473                 goto out;
6474
6475         to = PAGE_CACHE_SIZE;
6476         for(i = 0; i < numpages; i++) {
6477                 page = pages[i];
6478
6479                 from = start & (PAGE_CACHE_SIZE - 1);
6480                 if ((end >> PAGE_CACHE_SHIFT) == page->index)
6481                         to = end & (PAGE_CACHE_SIZE - 1);
6482
6483                 BUG_ON(from > PAGE_CACHE_SIZE);
6484                 BUG_ON(to > PAGE_CACHE_SIZE);
6485
6486                 ocfs2_map_and_dirty_page(inode, handle, from, to, page, 1,
6487                                          &phys);
6488
6489                 start = (page->index + 1) << PAGE_CACHE_SHIFT;
6490         }
6491 out:
6492         if (pages)
6493                 ocfs2_unlock_and_free_pages(pages, numpages);
6494 }
6495
6496 static int ocfs2_grab_eof_pages(struct inode *inode, loff_t start, loff_t end,
6497                                 struct page **pages, int *num)
6498 {
6499         int numpages, ret = 0;
6500         struct super_block *sb = inode->i_sb;
6501         struct address_space *mapping = inode->i_mapping;
6502         unsigned long index;
6503         loff_t last_page_bytes;
6504
6505         BUG_ON(start > end);
6506
6507         BUG_ON(start >> OCFS2_SB(sb)->s_clustersize_bits !=
6508                (end - 1) >> OCFS2_SB(sb)->s_clustersize_bits);
6509
6510         numpages = 0;
6511         last_page_bytes = PAGE_ALIGN(end);
6512         index = start >> PAGE_CACHE_SHIFT;
6513         do {
6514                 pages[numpages] = grab_cache_page(mapping, index);
6515                 if (!pages[numpages]) {
6516                         ret = -ENOMEM;
6517                         mlog_errno(ret);
6518                         goto out;
6519                 }
6520
6521                 numpages++;
6522                 index++;
6523         } while (index < (last_page_bytes >> PAGE_CACHE_SHIFT));
6524
6525 out:
6526         if (ret != 0) {
6527                 if (pages)
6528                         ocfs2_unlock_and_free_pages(pages, numpages);
6529                 numpages = 0;
6530         }
6531
6532         *num = numpages;
6533
6534         return ret;
6535 }
6536
6537 /*
6538  * Zero the area past i_size but still within an allocated
6539  * cluster. This avoids exposing nonzero data on subsequent file
6540  * extends.
6541  *
6542  * We need to call this before i_size is updated on the inode because
6543  * otherwise block_write_full_page() will skip writeout of pages past
6544  * i_size. The new_i_size parameter is passed for this reason.
6545  */
6546 int ocfs2_zero_range_for_truncate(struct inode *inode, handle_t *handle,
6547                                   u64 range_start, u64 range_end)
6548 {
6549         int ret = 0, numpages;
6550         struct page **pages = NULL;
6551         u64 phys;
6552         unsigned int ext_flags;
6553         struct super_block *sb = inode->i_sb;
6554
6555         /*
6556          * File systems which don't support sparse files zero on every
6557          * extend.
6558          */
6559         if (!ocfs2_sparse_alloc(OCFS2_SB(sb)))
6560                 return 0;
6561
6562         pages = kcalloc(ocfs2_pages_per_cluster(sb),
6563                         sizeof(struct page *), GFP_NOFS);
6564         if (pages == NULL) {
6565                 ret = -ENOMEM;
6566                 mlog_errno(ret);
6567                 goto out;
6568         }
6569
6570         if (range_start == range_end)
6571                 goto out;
6572
6573         ret = ocfs2_extent_map_get_blocks(inode,
6574                                           range_start >> sb->s_blocksize_bits,
6575                                           &phys, NULL, &ext_flags);
6576         if (ret) {
6577                 mlog_errno(ret);
6578                 goto out;
6579         }
6580
6581         /*
6582          * Tail is a hole, or is marked unwritten. In either case, we
6583          * can count on read and write to return/push zero's.
6584          */
6585         if (phys == 0 || ext_flags & OCFS2_EXT_UNWRITTEN)
6586                 goto out;
6587
6588         ret = ocfs2_grab_eof_pages(inode, range_start, range_end, pages,
6589                                    &numpages);
6590         if (ret) {
6591                 mlog_errno(ret);
6592                 goto out;
6593         }
6594
6595         ocfs2_zero_cluster_pages(inode, range_start, range_end, pages,
6596                                  numpages, phys, handle);
6597
6598         /*
6599          * Initiate writeout of the pages we zero'd here. We don't
6600          * wait on them - the truncate_inode_pages() call later will
6601          * do that for us.
6602          */
6603         ret = do_sync_mapping_range(inode->i_mapping, range_start,
6604                                     range_end - 1, SYNC_FILE_RANGE_WRITE);
6605         if (ret)
6606                 mlog_errno(ret);
6607
6608 out:
6609         if (pages)
6610                 kfree(pages);
6611
6612         return ret;
6613 }
6614
6615 static void ocfs2_zero_dinode_id2_with_xattr(struct inode *inode,
6616                                              struct ocfs2_dinode *di)
6617 {
6618         unsigned int blocksize = 1 << inode->i_sb->s_blocksize_bits;
6619         unsigned int xattrsize = le16_to_cpu(di->i_xattr_inline_size);
6620
6621         if (le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_XATTR_FL)
6622                 memset(&di->id2, 0, blocksize -
6623                                     offsetof(struct ocfs2_dinode, id2) -
6624                                     xattrsize);
6625         else
6626                 memset(&di->id2, 0, blocksize -
6627                                     offsetof(struct ocfs2_dinode, id2));
6628 }
6629
6630 void ocfs2_dinode_new_extent_list(struct inode *inode,
6631                                   struct ocfs2_dinode *di)
6632 {
6633         ocfs2_zero_dinode_id2_with_xattr(inode, di);
6634         di->id2.i_list.l_tree_depth = 0;
6635         di->id2.i_list.l_next_free_rec = 0;
6636         di->id2.i_list.l_count = cpu_to_le16(
6637                 ocfs2_extent_recs_per_inode_with_xattr(inode->i_sb, di));
6638 }
6639
6640 void ocfs2_set_inode_data_inline(struct inode *inode, struct ocfs2_dinode *di)
6641 {
6642         struct ocfs2_inode_info *oi = OCFS2_I(inode);
6643         struct ocfs2_inline_data *idata = &di->id2.i_data;
6644
6645         spin_lock(&oi->ip_lock);
6646         oi->ip_dyn_features |= OCFS2_INLINE_DATA_FL;
6647         di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
6648         spin_unlock(&oi->ip_lock);
6649
6650         /*
6651          * We clear the entire i_data structure here so that all
6652          * fields can be properly initialized.
6653          */
6654         ocfs2_zero_dinode_id2_with_xattr(inode, di);
6655
6656         idata->id_count = cpu_to_le16(
6657                         ocfs2_max_inline_data_with_xattr(inode->i_sb, di));
6658 }
6659
6660 int ocfs2_convert_inline_data_to_extents(struct inode *inode,
6661                                          struct buffer_head *di_bh)
6662 {
6663         int ret, i, has_data, num_pages = 0;
6664         handle_t *handle;
6665         u64 uninitialized_var(block);
6666         struct ocfs2_inode_info *oi = OCFS2_I(inode);
6667         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
6668         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
6669         struct ocfs2_alloc_context *data_ac = NULL;
6670         struct page **pages = NULL;
6671         loff_t end = osb->s_clustersize;
6672         struct ocfs2_extent_tree et;
6673
6674         has_data = i_size_read(inode) ? 1 : 0;
6675
6676         if (has_data) {
6677                 pages = kcalloc(ocfs2_pages_per_cluster(osb->sb),
6678                                 sizeof(struct page *), GFP_NOFS);
6679                 if (pages == NULL) {
6680                         ret = -ENOMEM;
6681                         mlog_errno(ret);
6682                         goto out;
6683                 }
6684
6685                 ret = ocfs2_reserve_clusters(osb, 1, &data_ac);
6686                 if (ret) {
6687                         mlog_errno(ret);
6688                         goto out;
6689                 }
6690         }
6691
6692         handle = ocfs2_start_trans(osb, OCFS2_INLINE_TO_EXTENTS_CREDITS);
6693         if (IS_ERR(handle)) {
6694                 ret = PTR_ERR(handle);
6695                 mlog_errno(ret);
6696                 goto out_unlock;
6697         }
6698
6699         ret = ocfs2_journal_access(handle, inode, di_bh,
6700                                    OCFS2_JOURNAL_ACCESS_WRITE);
6701         if (ret) {
6702                 mlog_errno(ret);
6703                 goto out_commit;
6704         }
6705
6706         if (has_data) {
6707                 u32 bit_off, num;
6708                 unsigned int page_end;
6709                 u64 phys;
6710
6711                 ret = ocfs2_claim_clusters(osb, handle, data_ac, 1, &bit_off,
6712                                            &num);
6713                 if (ret) {
6714                         mlog_errno(ret);
6715                         goto out_commit;
6716                 }
6717
6718                 /*
6719                  * Save two copies, one for insert, and one that can
6720                  * be changed by ocfs2_map_and_dirty_page() below.
6721                  */
6722                 block = phys = ocfs2_clusters_to_blocks(inode->i_sb, bit_off);
6723
6724                 /*
6725                  * Non sparse file systems zero on extend, so no need
6726                  * to do that now.
6727                  */
6728                 if (!ocfs2_sparse_alloc(osb) &&
6729                     PAGE_CACHE_SIZE < osb->s_clustersize)
6730                         end = PAGE_CACHE_SIZE;
6731
6732                 ret = ocfs2_grab_eof_pages(inode, 0, end, pages, &num_pages);
6733                 if (ret) {
6734                         mlog_errno(ret);
6735                         goto out_commit;
6736                 }
6737
6738                 /*
6739                  * This should populate the 1st page for us and mark
6740                  * it up to date.
6741                  */
6742                 ret = ocfs2_read_inline_data(inode, pages[0], di_bh);
6743                 if (ret) {
6744                         mlog_errno(ret);
6745                         goto out_commit;
6746                 }
6747
6748                 page_end = PAGE_CACHE_SIZE;
6749                 if (PAGE_CACHE_SIZE > osb->s_clustersize)
6750                         page_end = osb->s_clustersize;
6751
6752                 for (i = 0; i < num_pages; i++)
6753                         ocfs2_map_and_dirty_page(inode, handle, 0, page_end,
6754                                                  pages[i], i > 0, &phys);
6755         }
6756
6757         spin_lock(&oi->ip_lock);
6758         oi->ip_dyn_features &= ~OCFS2_INLINE_DATA_FL;
6759         di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
6760         spin_unlock(&oi->ip_lock);
6761
6762         ocfs2_dinode_new_extent_list(inode, di);
6763
6764         ocfs2_journal_dirty(handle, di_bh);
6765
6766         if (has_data) {
6767                 /*
6768                  * An error at this point should be extremely rare. If
6769                  * this proves to be false, we could always re-build
6770                  * the in-inode data from our pages.
6771                  */
6772                 ocfs2_init_dinode_extent_tree(&et, inode, di_bh);
6773                 ret = ocfs2_insert_extent(osb, handle, inode, &et,
6774                                           0, block, 1, 0, NULL);
6775                 if (ret) {
6776                         mlog_errno(ret);
6777                         goto out_commit;
6778                 }
6779
6780                 inode->i_blocks = ocfs2_inode_sector_count(inode);
6781         }
6782
6783 out_commit:
6784         ocfs2_commit_trans(osb, handle);
6785
6786 out_unlock:
6787         if (data_ac)
6788                 ocfs2_free_alloc_context(data_ac);
6789
6790 out:
6791         if (pages) {
6792                 ocfs2_unlock_and_free_pages(pages, num_pages);
6793                 kfree(pages);
6794         }
6795
6796         return ret;
6797 }
6798
6799 /*
6800  * It is expected, that by the time you call this function,
6801  * inode->i_size and fe->i_size have been adjusted.
6802  *
6803  * WARNING: This will kfree the truncate context
6804  */
6805 int ocfs2_commit_truncate(struct ocfs2_super *osb,
6806                           struct inode *inode,
6807                           struct buffer_head *fe_bh,
6808                           struct ocfs2_truncate_context *tc)
6809 {
6810         int status, i, credits, tl_sem = 0;
6811         u32 clusters_to_del, new_highest_cpos, range;
6812         struct ocfs2_extent_list *el;
6813         handle_t *handle = NULL;
6814         struct inode *tl_inode = osb->osb_tl_inode;
6815         struct ocfs2_path *path = NULL;
6816         struct ocfs2_dinode *di = (struct ocfs2_dinode *)fe_bh->b_data;
6817
6818         mlog_entry_void();
6819
6820         new_highest_cpos = ocfs2_clusters_for_bytes(osb->sb,
6821                                                      i_size_read(inode));
6822
6823         path = ocfs2_new_path(fe_bh, &di->id2.i_list);
6824         if (!path) {
6825                 status = -ENOMEM;
6826                 mlog_errno(status);
6827                 goto bail;
6828         }
6829
6830         ocfs2_extent_map_trunc(inode, new_highest_cpos);
6831
6832 start:
6833         /*
6834          * Check that we still have allocation to delete.
6835          */
6836         if (OCFS2_I(inode)->ip_clusters == 0) {
6837                 status = 0;
6838                 goto bail;
6839         }
6840
6841         /*
6842          * Truncate always works against the rightmost tree branch.
6843          */
6844         status = ocfs2_find_path(inode, path, UINT_MAX);
6845         if (status) {
6846                 mlog_errno(status);
6847                 goto bail;
6848         }
6849
6850         mlog(0, "inode->ip_clusters = %u, tree_depth = %u\n",
6851              OCFS2_I(inode)->ip_clusters, path->p_tree_depth);
6852
6853         /*
6854          * By now, el will point to the extent list on the bottom most
6855          * portion of this tree. Only the tail record is considered in
6856          * each pass.
6857          *
6858          * We handle the following cases, in order:
6859          * - empty extent: delete the remaining branch
6860          * - remove the entire record
6861          * - remove a partial record
6862          * - no record needs to be removed (truncate has completed)
6863          */
6864         el = path_leaf_el(path);
6865         if (le16_to_cpu(el->l_next_free_rec) == 0) {
6866                 ocfs2_error(inode->i_sb,
6867                             "Inode %llu has empty extent block at %llu\n",
6868                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
6869                             (unsigned long long)path_leaf_bh(path)->b_blocknr);
6870                 status = -EROFS;
6871                 goto bail;
6872         }
6873
6874         i = le16_to_cpu(el->l_next_free_rec) - 1;
6875         range = le32_to_cpu(el->l_recs[i].e_cpos) +
6876                 ocfs2_rec_clusters(el, &el->l_recs[i]);
6877         if (i == 0 && ocfs2_is_empty_extent(&el->l_recs[i])) {
6878                 clusters_to_del = 0;
6879         } else if (le32_to_cpu(el->l_recs[i].e_cpos) >= new_highest_cpos) {
6880                 clusters_to_del = ocfs2_rec_clusters(el, &el->l_recs[i]);
6881         } else if (range > new_highest_cpos) {
6882                 clusters_to_del = (ocfs2_rec_clusters(el, &el->l_recs[i]) +
6883                                    le32_to_cpu(el->l_recs[i].e_cpos)) -
6884                                   new_highest_cpos;
6885         } else {
6886                 status = 0;
6887                 goto bail;
6888         }
6889
6890         mlog(0, "clusters_to_del = %u in this pass, tail blk=%llu\n",
6891              clusters_to_del, (unsigned long long)path_leaf_bh(path)->b_blocknr);
6892
6893         mutex_lock(&tl_inode->i_mutex);
6894         tl_sem = 1;
6895         /* ocfs2_truncate_log_needs_flush guarantees us at least one
6896          * record is free for use. If there isn't any, we flush to get
6897          * an empty truncate log.  */
6898         if (ocfs2_truncate_log_needs_flush(osb)) {
6899                 status = __ocfs2_flush_truncate_log(osb);
6900                 if (status < 0) {
6901                         mlog_errno(status);
6902                         goto bail;
6903                 }
6904         }
6905
6906         credits = ocfs2_calc_tree_trunc_credits(osb->sb, clusters_to_del,
6907                                                 (struct ocfs2_dinode *)fe_bh->b_data,
6908                                                 el);
6909         handle = ocfs2_start_trans(osb, credits);
6910         if (IS_ERR(handle)) {
6911                 status = PTR_ERR(handle);
6912                 handle = NULL;
6913                 mlog_errno(status);
6914                 goto bail;
6915         }
6916
6917         status = ocfs2_do_truncate(osb, clusters_to_del, inode, fe_bh, handle,
6918                                    tc, path);
6919         if (status < 0) {
6920                 mlog_errno(status);
6921                 goto bail;
6922         }
6923
6924         mutex_unlock(&tl_inode->i_mutex);
6925         tl_sem = 0;
6926
6927         ocfs2_commit_trans(osb, handle);
6928         handle = NULL;
6929
6930         ocfs2_reinit_path(path, 1);
6931
6932         /*
6933          * The check above will catch the case where we've truncated
6934          * away all allocation.
6935          */
6936         goto start;
6937
6938 bail:
6939
6940         ocfs2_schedule_truncate_log_flush(osb, 1);
6941
6942         if (tl_sem)
6943                 mutex_unlock(&tl_inode->i_mutex);
6944
6945         if (handle)
6946                 ocfs2_commit_trans(osb, handle);
6947
6948         ocfs2_run_deallocs(osb, &tc->tc_dealloc);
6949
6950         ocfs2_free_path(path);
6951
6952         /* This will drop the ext_alloc cluster lock for us */
6953         ocfs2_free_truncate_context(tc);
6954
6955         mlog_exit(status);
6956         return status;
6957 }
6958
6959 /*
6960  * Expects the inode to already be locked.
6961  */
6962 int ocfs2_prepare_truncate(struct ocfs2_super *osb,
6963                            struct inode *inode,
6964                            struct buffer_head *fe_bh,
6965                            struct ocfs2_truncate_context **tc)
6966 {
6967         int status;
6968         unsigned int new_i_clusters;
6969         struct ocfs2_dinode *fe;
6970         struct ocfs2_extent_block *eb;
6971         struct buffer_head *last_eb_bh = NULL;
6972
6973         mlog_entry_void();
6974
6975         *tc = NULL;
6976
6977         new_i_clusters = ocfs2_clusters_for_bytes(osb->sb,
6978                                                   i_size_read(inode));
6979         fe = (struct ocfs2_dinode *) fe_bh->b_data;
6980
6981         mlog(0, "fe->i_clusters = %u, new_i_clusters = %u, fe->i_size ="
6982              "%llu\n", le32_to_cpu(fe->i_clusters), new_i_clusters,
6983              (unsigned long long)le64_to_cpu(fe->i_size));
6984
6985         *tc = kzalloc(sizeof(struct ocfs2_truncate_context), GFP_KERNEL);
6986         if (!(*tc)) {
6987                 status = -ENOMEM;
6988                 mlog_errno(status);
6989                 goto bail;
6990         }
6991         ocfs2_init_dealloc_ctxt(&(*tc)->tc_dealloc);
6992
6993         if (fe->id2.i_list.l_tree_depth) {
6994                 status = ocfs2_read_block(osb, le64_to_cpu(fe->i_last_eb_blk),
6995                                           &last_eb_bh, OCFS2_BH_CACHED, inode);
6996                 if (status < 0) {
6997                         mlog_errno(status);
6998                         goto bail;
6999                 }
7000                 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
7001                 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
7002                         OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
7003
7004                         brelse(last_eb_bh);
7005                         status = -EIO;
7006                         goto bail;
7007                 }
7008         }
7009
7010         (*tc)->tc_last_eb_bh = last_eb_bh;
7011
7012         status = 0;
7013 bail:
7014         if (status < 0) {
7015                 if (*tc)
7016                         ocfs2_free_truncate_context(*tc);
7017                 *tc = NULL;
7018         }
7019         mlog_exit_void();
7020         return status;
7021 }
7022
7023 /*
7024  * 'start' is inclusive, 'end' is not.
7025  */
7026 int ocfs2_truncate_inline(struct inode *inode, struct buffer_head *di_bh,
7027                           unsigned int start, unsigned int end, int trunc)
7028 {
7029         int ret;
7030         unsigned int numbytes;
7031         handle_t *handle;
7032         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
7033         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
7034         struct ocfs2_inline_data *idata = &di->id2.i_data;
7035
7036         if (end > i_size_read(inode))
7037                 end = i_size_read(inode);
7038
7039         BUG_ON(start >= end);
7040
7041         if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) ||
7042             !(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL) ||
7043             !ocfs2_supports_inline_data(osb)) {
7044                 ocfs2_error(inode->i_sb,
7045                             "Inline data flags for inode %llu don't agree! "
7046                             "Disk: 0x%x, Memory: 0x%x, Superblock: 0x%x\n",
7047                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
7048                             le16_to_cpu(di->i_dyn_features),
7049                             OCFS2_I(inode)->ip_dyn_features,
7050                             osb->s_feature_incompat);
7051                 ret = -EROFS;
7052                 goto out;
7053         }
7054
7055         handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
7056         if (IS_ERR(handle)) {
7057                 ret = PTR_ERR(handle);
7058                 mlog_errno(ret);
7059                 goto out;
7060         }
7061
7062         ret = ocfs2_journal_access(handle, inode, di_bh,
7063                                    OCFS2_JOURNAL_ACCESS_WRITE);
7064         if (ret) {
7065                 mlog_errno(ret);
7066                 goto out_commit;
7067         }
7068
7069         numbytes = end - start;
7070         memset(idata->id_data + start, 0, numbytes);
7071
7072         /*
7073          * No need to worry about the data page here - it's been
7074          * truncated already and inline data doesn't need it for
7075          * pushing zero's to disk, so we'll let readpage pick it up
7076          * later.
7077          */
7078         if (trunc) {
7079                 i_size_write(inode, start);
7080                 di->i_size = cpu_to_le64(start);
7081         }
7082
7083         inode->i_blocks = ocfs2_inode_sector_count(inode);
7084         inode->i_ctime = inode->i_mtime = CURRENT_TIME;
7085
7086         di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec);
7087         di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
7088
7089         ocfs2_journal_dirty(handle, di_bh);
7090
7091 out_commit:
7092         ocfs2_commit_trans(osb, handle);
7093
7094 out:
7095         return ret;
7096 }
7097
7098 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc)
7099 {
7100         /*
7101          * The caller is responsible for completing deallocation
7102          * before freeing the context.
7103          */
7104         if (tc->tc_dealloc.c_first_suballocator != NULL)
7105                 mlog(ML_NOTICE,
7106                      "Truncate completion has non-empty dealloc context\n");
7107
7108         brelse(tc->tc_last_eb_bh);
7109
7110         kfree(tc);
7111 }