ocfs2: Add a name indexed b-tree to directory inodes
[safe/jmp/linux-2.6] / fs / ocfs2 / alloc.c
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * alloc.c
5  *
6  * Extent allocs and frees
7  *
8  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public
12  * License as published by the Free Software Foundation; either
13  * version 2 of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public
21  * License along with this program; if not, write to the
22  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23  * Boston, MA 021110-1307, USA.
24  */
25
26 #include <linux/fs.h>
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/swap.h>
31 #include <linux/quotaops.h>
32
33 #define MLOG_MASK_PREFIX ML_DISK_ALLOC
34 #include <cluster/masklog.h>
35
36 #include "ocfs2.h"
37
38 #include "alloc.h"
39 #include "aops.h"
40 #include "blockcheck.h"
41 #include "dlmglue.h"
42 #include "extent_map.h"
43 #include "inode.h"
44 #include "journal.h"
45 #include "localalloc.h"
46 #include "suballoc.h"
47 #include "sysfile.h"
48 #include "file.h"
49 #include "super.h"
50 #include "uptodate.h"
51 #include "xattr.h"
52
53 #include "buffer_head_io.h"
54
55
56 /*
57  * Operations for a specific extent tree type.
58  *
59  * To implement an on-disk btree (extent tree) type in ocfs2, add
60  * an ocfs2_extent_tree_operations structure and the matching
61  * ocfs2_init_<thingy>_extent_tree() function.  That's pretty much it
62  * for the allocation portion of the extent tree.
63  */
64 struct ocfs2_extent_tree_operations {
65         /*
66          * last_eb_blk is the block number of the right most leaf extent
67          * block.  Most on-disk structures containing an extent tree store
68          * this value for fast access.  The ->eo_set_last_eb_blk() and
69          * ->eo_get_last_eb_blk() operations access this value.  They are
70          *  both required.
71          */
72         void (*eo_set_last_eb_blk)(struct ocfs2_extent_tree *et,
73                                    u64 blkno);
74         u64 (*eo_get_last_eb_blk)(struct ocfs2_extent_tree *et);
75
76         /*
77          * The on-disk structure usually keeps track of how many total
78          * clusters are stored in this extent tree.  This function updates
79          * that value.  new_clusters is the delta, and must be
80          * added to the total.  Required.
81          */
82         void (*eo_update_clusters)(struct inode *inode,
83                                    struct ocfs2_extent_tree *et,
84                                    u32 new_clusters);
85
86         /*
87          * If ->eo_insert_check() exists, it is called before rec is
88          * inserted into the extent tree.  It is optional.
89          */
90         int (*eo_insert_check)(struct inode *inode,
91                                struct ocfs2_extent_tree *et,
92                                struct ocfs2_extent_rec *rec);
93         int (*eo_sanity_check)(struct inode *inode, struct ocfs2_extent_tree *et);
94
95         /*
96          * --------------------------------------------------------------
97          * The remaining are internal to ocfs2_extent_tree and don't have
98          * accessor functions
99          */
100
101         /*
102          * ->eo_fill_root_el() takes et->et_object and sets et->et_root_el.
103          * It is required.
104          */
105         void (*eo_fill_root_el)(struct ocfs2_extent_tree *et);
106
107         /*
108          * ->eo_fill_max_leaf_clusters sets et->et_max_leaf_clusters if
109          * it exists.  If it does not, et->et_max_leaf_clusters is set
110          * to 0 (unlimited).  Optional.
111          */
112         void (*eo_fill_max_leaf_clusters)(struct inode *inode,
113                                           struct ocfs2_extent_tree *et);
114 };
115
116
117 /*
118  * Pre-declare ocfs2_dinode_et_ops so we can use it as a sanity check
119  * in the methods.
120  */
121 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et);
122 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et,
123                                          u64 blkno);
124 static void ocfs2_dinode_update_clusters(struct inode *inode,
125                                          struct ocfs2_extent_tree *et,
126                                          u32 clusters);
127 static int ocfs2_dinode_insert_check(struct inode *inode,
128                                      struct ocfs2_extent_tree *et,
129                                      struct ocfs2_extent_rec *rec);
130 static int ocfs2_dinode_sanity_check(struct inode *inode,
131                                      struct ocfs2_extent_tree *et);
132 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et);
133 static struct ocfs2_extent_tree_operations ocfs2_dinode_et_ops = {
134         .eo_set_last_eb_blk     = ocfs2_dinode_set_last_eb_blk,
135         .eo_get_last_eb_blk     = ocfs2_dinode_get_last_eb_blk,
136         .eo_update_clusters     = ocfs2_dinode_update_clusters,
137         .eo_insert_check        = ocfs2_dinode_insert_check,
138         .eo_sanity_check        = ocfs2_dinode_sanity_check,
139         .eo_fill_root_el        = ocfs2_dinode_fill_root_el,
140 };
141
142 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et,
143                                          u64 blkno)
144 {
145         struct ocfs2_dinode *di = et->et_object;
146
147         BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
148         di->i_last_eb_blk = cpu_to_le64(blkno);
149 }
150
151 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et)
152 {
153         struct ocfs2_dinode *di = et->et_object;
154
155         BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
156         return le64_to_cpu(di->i_last_eb_blk);
157 }
158
159 static void ocfs2_dinode_update_clusters(struct inode *inode,
160                                          struct ocfs2_extent_tree *et,
161                                          u32 clusters)
162 {
163         struct ocfs2_dinode *di = et->et_object;
164
165         le32_add_cpu(&di->i_clusters, clusters);
166         spin_lock(&OCFS2_I(inode)->ip_lock);
167         OCFS2_I(inode)->ip_clusters = le32_to_cpu(di->i_clusters);
168         spin_unlock(&OCFS2_I(inode)->ip_lock);
169 }
170
171 static int ocfs2_dinode_insert_check(struct inode *inode,
172                                      struct ocfs2_extent_tree *et,
173                                      struct ocfs2_extent_rec *rec)
174 {
175         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
176
177         BUG_ON(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL);
178         mlog_bug_on_msg(!ocfs2_sparse_alloc(osb) &&
179                         (OCFS2_I(inode)->ip_clusters !=
180                          le32_to_cpu(rec->e_cpos)),
181                         "Device %s, asking for sparse allocation: inode %llu, "
182                         "cpos %u, clusters %u\n",
183                         osb->dev_str,
184                         (unsigned long long)OCFS2_I(inode)->ip_blkno,
185                         rec->e_cpos,
186                         OCFS2_I(inode)->ip_clusters);
187
188         return 0;
189 }
190
191 static int ocfs2_dinode_sanity_check(struct inode *inode,
192                                      struct ocfs2_extent_tree *et)
193 {
194         struct ocfs2_dinode *di = et->et_object;
195
196         BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
197         BUG_ON(!OCFS2_IS_VALID_DINODE(di));
198
199         return 0;
200 }
201
202 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et)
203 {
204         struct ocfs2_dinode *di = et->et_object;
205
206         et->et_root_el = &di->id2.i_list;
207 }
208
209
210 static void ocfs2_xattr_value_fill_root_el(struct ocfs2_extent_tree *et)
211 {
212         struct ocfs2_xattr_value_buf *vb = et->et_object;
213
214         et->et_root_el = &vb->vb_xv->xr_list;
215 }
216
217 static void ocfs2_xattr_value_set_last_eb_blk(struct ocfs2_extent_tree *et,
218                                               u64 blkno)
219 {
220         struct ocfs2_xattr_value_buf *vb = et->et_object;
221
222         vb->vb_xv->xr_last_eb_blk = cpu_to_le64(blkno);
223 }
224
225 static u64 ocfs2_xattr_value_get_last_eb_blk(struct ocfs2_extent_tree *et)
226 {
227         struct ocfs2_xattr_value_buf *vb = et->et_object;
228
229         return le64_to_cpu(vb->vb_xv->xr_last_eb_blk);
230 }
231
232 static void ocfs2_xattr_value_update_clusters(struct inode *inode,
233                                               struct ocfs2_extent_tree *et,
234                                               u32 clusters)
235 {
236         struct ocfs2_xattr_value_buf *vb = et->et_object;
237
238         le32_add_cpu(&vb->vb_xv->xr_clusters, clusters);
239 }
240
241 static struct ocfs2_extent_tree_operations ocfs2_xattr_value_et_ops = {
242         .eo_set_last_eb_blk     = ocfs2_xattr_value_set_last_eb_blk,
243         .eo_get_last_eb_blk     = ocfs2_xattr_value_get_last_eb_blk,
244         .eo_update_clusters     = ocfs2_xattr_value_update_clusters,
245         .eo_fill_root_el        = ocfs2_xattr_value_fill_root_el,
246 };
247
248 static void ocfs2_xattr_tree_fill_root_el(struct ocfs2_extent_tree *et)
249 {
250         struct ocfs2_xattr_block *xb = et->et_object;
251
252         et->et_root_el = &xb->xb_attrs.xb_root.xt_list;
253 }
254
255 static void ocfs2_xattr_tree_fill_max_leaf_clusters(struct inode *inode,
256                                                     struct ocfs2_extent_tree *et)
257 {
258         et->et_max_leaf_clusters =
259                 ocfs2_clusters_for_bytes(inode->i_sb,
260                                          OCFS2_MAX_XATTR_TREE_LEAF_SIZE);
261 }
262
263 static void ocfs2_xattr_tree_set_last_eb_blk(struct ocfs2_extent_tree *et,
264                                              u64 blkno)
265 {
266         struct ocfs2_xattr_block *xb = et->et_object;
267         struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root;
268
269         xt->xt_last_eb_blk = cpu_to_le64(blkno);
270 }
271
272 static u64 ocfs2_xattr_tree_get_last_eb_blk(struct ocfs2_extent_tree *et)
273 {
274         struct ocfs2_xattr_block *xb = et->et_object;
275         struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root;
276
277         return le64_to_cpu(xt->xt_last_eb_blk);
278 }
279
280 static void ocfs2_xattr_tree_update_clusters(struct inode *inode,
281                                              struct ocfs2_extent_tree *et,
282                                              u32 clusters)
283 {
284         struct ocfs2_xattr_block *xb = et->et_object;
285
286         le32_add_cpu(&xb->xb_attrs.xb_root.xt_clusters, clusters);
287 }
288
289 static struct ocfs2_extent_tree_operations ocfs2_xattr_tree_et_ops = {
290         .eo_set_last_eb_blk     = ocfs2_xattr_tree_set_last_eb_blk,
291         .eo_get_last_eb_blk     = ocfs2_xattr_tree_get_last_eb_blk,
292         .eo_update_clusters     = ocfs2_xattr_tree_update_clusters,
293         .eo_fill_root_el        = ocfs2_xattr_tree_fill_root_el,
294         .eo_fill_max_leaf_clusters = ocfs2_xattr_tree_fill_max_leaf_clusters,
295 };
296
297 static void ocfs2_dx_root_set_last_eb_blk(struct ocfs2_extent_tree *et,
298                                           u64 blkno)
299 {
300         struct ocfs2_dx_root_block *dx_root = et->et_object;
301
302         dx_root->dr_last_eb_blk = cpu_to_le64(blkno);
303 }
304
305 static u64 ocfs2_dx_root_get_last_eb_blk(struct ocfs2_extent_tree *et)
306 {
307         struct ocfs2_dx_root_block *dx_root = et->et_object;
308
309         return le64_to_cpu(dx_root->dr_last_eb_blk);
310 }
311
312 static void ocfs2_dx_root_update_clusters(struct inode *inode,
313                                           struct ocfs2_extent_tree *et,
314                                           u32 clusters)
315 {
316         struct ocfs2_dx_root_block *dx_root = et->et_object;
317
318         le32_add_cpu(&dx_root->dr_clusters, clusters);
319 }
320
321 static int ocfs2_dx_root_sanity_check(struct inode *inode,
322                                       struct ocfs2_extent_tree *et)
323 {
324         struct ocfs2_dx_root_block *dx_root = et->et_object;
325
326         BUG_ON(!OCFS2_IS_VALID_DX_ROOT(dx_root));
327
328         return 0;
329 }
330
331 static void ocfs2_dx_root_fill_root_el(struct ocfs2_extent_tree *et)
332 {
333         struct ocfs2_dx_root_block *dx_root = et->et_object;
334
335         et->et_root_el = &dx_root->dr_list;
336 }
337
338 static struct ocfs2_extent_tree_operations ocfs2_dx_root_et_ops = {
339         .eo_set_last_eb_blk     = ocfs2_dx_root_set_last_eb_blk,
340         .eo_get_last_eb_blk     = ocfs2_dx_root_get_last_eb_blk,
341         .eo_update_clusters     = ocfs2_dx_root_update_clusters,
342         .eo_sanity_check        = ocfs2_dx_root_sanity_check,
343         .eo_fill_root_el        = ocfs2_dx_root_fill_root_el,
344 };
345
346 static void __ocfs2_init_extent_tree(struct ocfs2_extent_tree *et,
347                                      struct inode *inode,
348                                      struct buffer_head *bh,
349                                      ocfs2_journal_access_func access,
350                                      void *obj,
351                                      struct ocfs2_extent_tree_operations *ops)
352 {
353         et->et_ops = ops;
354         et->et_root_bh = bh;
355         et->et_root_journal_access = access;
356         if (!obj)
357                 obj = (void *)bh->b_data;
358         et->et_object = obj;
359
360         et->et_ops->eo_fill_root_el(et);
361         if (!et->et_ops->eo_fill_max_leaf_clusters)
362                 et->et_max_leaf_clusters = 0;
363         else
364                 et->et_ops->eo_fill_max_leaf_clusters(inode, et);
365 }
366
367 void ocfs2_init_dinode_extent_tree(struct ocfs2_extent_tree *et,
368                                    struct inode *inode,
369                                    struct buffer_head *bh)
370 {
371         __ocfs2_init_extent_tree(et, inode, bh, ocfs2_journal_access_di,
372                                  NULL, &ocfs2_dinode_et_ops);
373 }
374
375 void ocfs2_init_xattr_tree_extent_tree(struct ocfs2_extent_tree *et,
376                                        struct inode *inode,
377                                        struct buffer_head *bh)
378 {
379         __ocfs2_init_extent_tree(et, inode, bh, ocfs2_journal_access_xb,
380                                  NULL, &ocfs2_xattr_tree_et_ops);
381 }
382
383 void ocfs2_init_xattr_value_extent_tree(struct ocfs2_extent_tree *et,
384                                         struct inode *inode,
385                                         struct ocfs2_xattr_value_buf *vb)
386 {
387         __ocfs2_init_extent_tree(et, inode, vb->vb_bh, vb->vb_access, vb,
388                                  &ocfs2_xattr_value_et_ops);
389 }
390
391 void ocfs2_init_dx_root_extent_tree(struct ocfs2_extent_tree *et,
392                                     struct inode *inode,
393                                     struct buffer_head *bh)
394 {
395         __ocfs2_init_extent_tree(et, inode, bh, ocfs2_journal_access_dr,
396                                  NULL, &ocfs2_dx_root_et_ops);
397 }
398
399 static inline void ocfs2_et_set_last_eb_blk(struct ocfs2_extent_tree *et,
400                                             u64 new_last_eb_blk)
401 {
402         et->et_ops->eo_set_last_eb_blk(et, new_last_eb_blk);
403 }
404
405 static inline u64 ocfs2_et_get_last_eb_blk(struct ocfs2_extent_tree *et)
406 {
407         return et->et_ops->eo_get_last_eb_blk(et);
408 }
409
410 static inline void ocfs2_et_update_clusters(struct inode *inode,
411                                             struct ocfs2_extent_tree *et,
412                                             u32 clusters)
413 {
414         et->et_ops->eo_update_clusters(inode, et, clusters);
415 }
416
417 static inline int ocfs2_et_root_journal_access(handle_t *handle,
418                                                struct inode *inode,
419                                                struct ocfs2_extent_tree *et,
420                                                int type)
421 {
422         return et->et_root_journal_access(handle, inode, et->et_root_bh,
423                                           type);
424 }
425
426 static inline int ocfs2_et_insert_check(struct inode *inode,
427                                         struct ocfs2_extent_tree *et,
428                                         struct ocfs2_extent_rec *rec)
429 {
430         int ret = 0;
431
432         if (et->et_ops->eo_insert_check)
433                 ret = et->et_ops->eo_insert_check(inode, et, rec);
434         return ret;
435 }
436
437 static inline int ocfs2_et_sanity_check(struct inode *inode,
438                                         struct ocfs2_extent_tree *et)
439 {
440         int ret = 0;
441
442         if (et->et_ops->eo_sanity_check)
443                 ret = et->et_ops->eo_sanity_check(inode, et);
444         return ret;
445 }
446
447 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc);
448 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
449                                          struct ocfs2_extent_block *eb);
450
451 /*
452  * Structures which describe a path through a btree, and functions to
453  * manipulate them.
454  *
455  * The idea here is to be as generic as possible with the tree
456  * manipulation code.
457  */
458 struct ocfs2_path_item {
459         struct buffer_head              *bh;
460         struct ocfs2_extent_list        *el;
461 };
462
463 #define OCFS2_MAX_PATH_DEPTH    5
464
465 struct ocfs2_path {
466         int                             p_tree_depth;
467         ocfs2_journal_access_func       p_root_access;
468         struct ocfs2_path_item          p_node[OCFS2_MAX_PATH_DEPTH];
469 };
470
471 #define path_root_bh(_path) ((_path)->p_node[0].bh)
472 #define path_root_el(_path) ((_path)->p_node[0].el)
473 #define path_root_access(_path)((_path)->p_root_access)
474 #define path_leaf_bh(_path) ((_path)->p_node[(_path)->p_tree_depth].bh)
475 #define path_leaf_el(_path) ((_path)->p_node[(_path)->p_tree_depth].el)
476 #define path_num_items(_path) ((_path)->p_tree_depth + 1)
477
478 /*
479  * Reset the actual path elements so that we can re-use the structure
480  * to build another path. Generally, this involves freeing the buffer
481  * heads.
482  */
483 static void ocfs2_reinit_path(struct ocfs2_path *path, int keep_root)
484 {
485         int i, start = 0, depth = 0;
486         struct ocfs2_path_item *node;
487
488         if (keep_root)
489                 start = 1;
490
491         for(i = start; i < path_num_items(path); i++) {
492                 node = &path->p_node[i];
493
494                 brelse(node->bh);
495                 node->bh = NULL;
496                 node->el = NULL;
497         }
498
499         /*
500          * Tree depth may change during truncate, or insert. If we're
501          * keeping the root extent list, then make sure that our path
502          * structure reflects the proper depth.
503          */
504         if (keep_root)
505                 depth = le16_to_cpu(path_root_el(path)->l_tree_depth);
506         else
507                 path_root_access(path) = NULL;
508
509         path->p_tree_depth = depth;
510 }
511
512 static void ocfs2_free_path(struct ocfs2_path *path)
513 {
514         if (path) {
515                 ocfs2_reinit_path(path, 0);
516                 kfree(path);
517         }
518 }
519
520 /*
521  * All the elements of src into dest. After this call, src could be freed
522  * without affecting dest.
523  *
524  * Both paths should have the same root. Any non-root elements of dest
525  * will be freed.
526  */
527 static void ocfs2_cp_path(struct ocfs2_path *dest, struct ocfs2_path *src)
528 {
529         int i;
530
531         BUG_ON(path_root_bh(dest) != path_root_bh(src));
532         BUG_ON(path_root_el(dest) != path_root_el(src));
533         BUG_ON(path_root_access(dest) != path_root_access(src));
534
535         ocfs2_reinit_path(dest, 1);
536
537         for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
538                 dest->p_node[i].bh = src->p_node[i].bh;
539                 dest->p_node[i].el = src->p_node[i].el;
540
541                 if (dest->p_node[i].bh)
542                         get_bh(dest->p_node[i].bh);
543         }
544 }
545
546 /*
547  * Make the *dest path the same as src and re-initialize src path to
548  * have a root only.
549  */
550 static void ocfs2_mv_path(struct ocfs2_path *dest, struct ocfs2_path *src)
551 {
552         int i;
553
554         BUG_ON(path_root_bh(dest) != path_root_bh(src));
555         BUG_ON(path_root_access(dest) != path_root_access(src));
556
557         for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
558                 brelse(dest->p_node[i].bh);
559
560                 dest->p_node[i].bh = src->p_node[i].bh;
561                 dest->p_node[i].el = src->p_node[i].el;
562
563                 src->p_node[i].bh = NULL;
564                 src->p_node[i].el = NULL;
565         }
566 }
567
568 /*
569  * Insert an extent block at given index.
570  *
571  * This will not take an additional reference on eb_bh.
572  */
573 static inline void ocfs2_path_insert_eb(struct ocfs2_path *path, int index,
574                                         struct buffer_head *eb_bh)
575 {
576         struct ocfs2_extent_block *eb = (struct ocfs2_extent_block *)eb_bh->b_data;
577
578         /*
579          * Right now, no root bh is an extent block, so this helps
580          * catch code errors with dinode trees. The assertion can be
581          * safely removed if we ever need to insert extent block
582          * structures at the root.
583          */
584         BUG_ON(index == 0);
585
586         path->p_node[index].bh = eb_bh;
587         path->p_node[index].el = &eb->h_list;
588 }
589
590 static struct ocfs2_path *ocfs2_new_path(struct buffer_head *root_bh,
591                                          struct ocfs2_extent_list *root_el,
592                                          ocfs2_journal_access_func access)
593 {
594         struct ocfs2_path *path;
595
596         BUG_ON(le16_to_cpu(root_el->l_tree_depth) >= OCFS2_MAX_PATH_DEPTH);
597
598         path = kzalloc(sizeof(*path), GFP_NOFS);
599         if (path) {
600                 path->p_tree_depth = le16_to_cpu(root_el->l_tree_depth);
601                 get_bh(root_bh);
602                 path_root_bh(path) = root_bh;
603                 path_root_el(path) = root_el;
604                 path_root_access(path) = access;
605         }
606
607         return path;
608 }
609
610 static struct ocfs2_path *ocfs2_new_path_from_path(struct ocfs2_path *path)
611 {
612         return ocfs2_new_path(path_root_bh(path), path_root_el(path),
613                               path_root_access(path));
614 }
615
616 static struct ocfs2_path *ocfs2_new_path_from_et(struct ocfs2_extent_tree *et)
617 {
618         return ocfs2_new_path(et->et_root_bh, et->et_root_el,
619                               et->et_root_journal_access);
620 }
621
622 /*
623  * Journal the buffer at depth idx.  All idx>0 are extent_blocks,
624  * otherwise it's the root_access function.
625  *
626  * I don't like the way this function's name looks next to
627  * ocfs2_journal_access_path(), but I don't have a better one.
628  */
629 static int ocfs2_path_bh_journal_access(handle_t *handle,
630                                         struct inode *inode,
631                                         struct ocfs2_path *path,
632                                         int idx)
633 {
634         ocfs2_journal_access_func access = path_root_access(path);
635
636         if (!access)
637                 access = ocfs2_journal_access;
638
639         if (idx)
640                 access = ocfs2_journal_access_eb;
641
642         return access(handle, inode, path->p_node[idx].bh,
643                       OCFS2_JOURNAL_ACCESS_WRITE);
644 }
645
646 /*
647  * Convenience function to journal all components in a path.
648  */
649 static int ocfs2_journal_access_path(struct inode *inode, handle_t *handle,
650                                      struct ocfs2_path *path)
651 {
652         int i, ret = 0;
653
654         if (!path)
655                 goto out;
656
657         for(i = 0; i < path_num_items(path); i++) {
658                 ret = ocfs2_path_bh_journal_access(handle, inode, path, i);
659                 if (ret < 0) {
660                         mlog_errno(ret);
661                         goto out;
662                 }
663         }
664
665 out:
666         return ret;
667 }
668
669 /*
670  * Return the index of the extent record which contains cluster #v_cluster.
671  * -1 is returned if it was not found.
672  *
673  * Should work fine on interior and exterior nodes.
674  */
675 int ocfs2_search_extent_list(struct ocfs2_extent_list *el, u32 v_cluster)
676 {
677         int ret = -1;
678         int i;
679         struct ocfs2_extent_rec *rec;
680         u32 rec_end, rec_start, clusters;
681
682         for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
683                 rec = &el->l_recs[i];
684
685                 rec_start = le32_to_cpu(rec->e_cpos);
686                 clusters = ocfs2_rec_clusters(el, rec);
687
688                 rec_end = rec_start + clusters;
689
690                 if (v_cluster >= rec_start && v_cluster < rec_end) {
691                         ret = i;
692                         break;
693                 }
694         }
695
696         return ret;
697 }
698
699 enum ocfs2_contig_type {
700         CONTIG_NONE = 0,
701         CONTIG_LEFT,
702         CONTIG_RIGHT,
703         CONTIG_LEFTRIGHT,
704 };
705
706
707 /*
708  * NOTE: ocfs2_block_extent_contig(), ocfs2_extents_adjacent() and
709  * ocfs2_extent_contig only work properly against leaf nodes!
710  */
711 static int ocfs2_block_extent_contig(struct super_block *sb,
712                                      struct ocfs2_extent_rec *ext,
713                                      u64 blkno)
714 {
715         u64 blk_end = le64_to_cpu(ext->e_blkno);
716
717         blk_end += ocfs2_clusters_to_blocks(sb,
718                                     le16_to_cpu(ext->e_leaf_clusters));
719
720         return blkno == blk_end;
721 }
722
723 static int ocfs2_extents_adjacent(struct ocfs2_extent_rec *left,
724                                   struct ocfs2_extent_rec *right)
725 {
726         u32 left_range;
727
728         left_range = le32_to_cpu(left->e_cpos) +
729                 le16_to_cpu(left->e_leaf_clusters);
730
731         return (left_range == le32_to_cpu(right->e_cpos));
732 }
733
734 static enum ocfs2_contig_type
735         ocfs2_extent_contig(struct inode *inode,
736                             struct ocfs2_extent_rec *ext,
737                             struct ocfs2_extent_rec *insert_rec)
738 {
739         u64 blkno = le64_to_cpu(insert_rec->e_blkno);
740
741         /*
742          * Refuse to coalesce extent records with different flag
743          * fields - we don't want to mix unwritten extents with user
744          * data.
745          */
746         if (ext->e_flags != insert_rec->e_flags)
747                 return CONTIG_NONE;
748
749         if (ocfs2_extents_adjacent(ext, insert_rec) &&
750             ocfs2_block_extent_contig(inode->i_sb, ext, blkno))
751                         return CONTIG_RIGHT;
752
753         blkno = le64_to_cpu(ext->e_blkno);
754         if (ocfs2_extents_adjacent(insert_rec, ext) &&
755             ocfs2_block_extent_contig(inode->i_sb, insert_rec, blkno))
756                 return CONTIG_LEFT;
757
758         return CONTIG_NONE;
759 }
760
761 /*
762  * NOTE: We can have pretty much any combination of contiguousness and
763  * appending.
764  *
765  * The usefulness of APPEND_TAIL is more in that it lets us know that
766  * we'll have to update the path to that leaf.
767  */
768 enum ocfs2_append_type {
769         APPEND_NONE = 0,
770         APPEND_TAIL,
771 };
772
773 enum ocfs2_split_type {
774         SPLIT_NONE = 0,
775         SPLIT_LEFT,
776         SPLIT_RIGHT,
777 };
778
779 struct ocfs2_insert_type {
780         enum ocfs2_split_type   ins_split;
781         enum ocfs2_append_type  ins_appending;
782         enum ocfs2_contig_type  ins_contig;
783         int                     ins_contig_index;
784         int                     ins_tree_depth;
785 };
786
787 struct ocfs2_merge_ctxt {
788         enum ocfs2_contig_type  c_contig_type;
789         int                     c_has_empty_extent;
790         int                     c_split_covers_rec;
791 };
792
793 static int ocfs2_validate_extent_block(struct super_block *sb,
794                                        struct buffer_head *bh)
795 {
796         int rc;
797         struct ocfs2_extent_block *eb =
798                 (struct ocfs2_extent_block *)bh->b_data;
799
800         mlog(0, "Validating extent block %llu\n",
801              (unsigned long long)bh->b_blocknr);
802
803         BUG_ON(!buffer_uptodate(bh));
804
805         /*
806          * If the ecc fails, we return the error but otherwise
807          * leave the filesystem running.  We know any error is
808          * local to this block.
809          */
810         rc = ocfs2_validate_meta_ecc(sb, bh->b_data, &eb->h_check);
811         if (rc) {
812                 mlog(ML_ERROR, "Checksum failed for extent block %llu\n",
813                      (unsigned long long)bh->b_blocknr);
814                 return rc;
815         }
816
817         /*
818          * Errors after here are fatal.
819          */
820
821         if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
822                 ocfs2_error(sb,
823                             "Extent block #%llu has bad signature %.*s",
824                             (unsigned long long)bh->b_blocknr, 7,
825                             eb->h_signature);
826                 return -EINVAL;
827         }
828
829         if (le64_to_cpu(eb->h_blkno) != bh->b_blocknr) {
830                 ocfs2_error(sb,
831                             "Extent block #%llu has an invalid h_blkno "
832                             "of %llu",
833                             (unsigned long long)bh->b_blocknr,
834                             (unsigned long long)le64_to_cpu(eb->h_blkno));
835                 return -EINVAL;
836         }
837
838         if (le32_to_cpu(eb->h_fs_generation) != OCFS2_SB(sb)->fs_generation) {
839                 ocfs2_error(sb,
840                             "Extent block #%llu has an invalid "
841                             "h_fs_generation of #%u",
842                             (unsigned long long)bh->b_blocknr,
843                             le32_to_cpu(eb->h_fs_generation));
844                 return -EINVAL;
845         }
846
847         return 0;
848 }
849
850 int ocfs2_read_extent_block(struct inode *inode, u64 eb_blkno,
851                             struct buffer_head **bh)
852 {
853         int rc;
854         struct buffer_head *tmp = *bh;
855
856         rc = ocfs2_read_block(inode, eb_blkno, &tmp,
857                               ocfs2_validate_extent_block);
858
859         /* If ocfs2_read_block() got us a new bh, pass it up. */
860         if (!rc && !*bh)
861                 *bh = tmp;
862
863         return rc;
864 }
865
866
867 /*
868  * How many free extents have we got before we need more meta data?
869  */
870 int ocfs2_num_free_extents(struct ocfs2_super *osb,
871                            struct inode *inode,
872                            struct ocfs2_extent_tree *et)
873 {
874         int retval;
875         struct ocfs2_extent_list *el = NULL;
876         struct ocfs2_extent_block *eb;
877         struct buffer_head *eb_bh = NULL;
878         u64 last_eb_blk = 0;
879
880         mlog_entry_void();
881
882         el = et->et_root_el;
883         last_eb_blk = ocfs2_et_get_last_eb_blk(et);
884
885         if (last_eb_blk) {
886                 retval = ocfs2_read_extent_block(inode, last_eb_blk, &eb_bh);
887                 if (retval < 0) {
888                         mlog_errno(retval);
889                         goto bail;
890                 }
891                 eb = (struct ocfs2_extent_block *) eb_bh->b_data;
892                 el = &eb->h_list;
893         }
894
895         BUG_ON(el->l_tree_depth != 0);
896
897         retval = le16_to_cpu(el->l_count) - le16_to_cpu(el->l_next_free_rec);
898 bail:
899         brelse(eb_bh);
900
901         mlog_exit(retval);
902         return retval;
903 }
904
905 /* expects array to already be allocated
906  *
907  * sets h_signature, h_blkno, h_suballoc_bit, h_suballoc_slot, and
908  * l_count for you
909  */
910 static int ocfs2_create_new_meta_bhs(struct ocfs2_super *osb,
911                                      handle_t *handle,
912                                      struct inode *inode,
913                                      int wanted,
914                                      struct ocfs2_alloc_context *meta_ac,
915                                      struct buffer_head *bhs[])
916 {
917         int count, status, i;
918         u16 suballoc_bit_start;
919         u32 num_got;
920         u64 first_blkno;
921         struct ocfs2_extent_block *eb;
922
923         mlog_entry_void();
924
925         count = 0;
926         while (count < wanted) {
927                 status = ocfs2_claim_metadata(osb,
928                                               handle,
929                                               meta_ac,
930                                               wanted - count,
931                                               &suballoc_bit_start,
932                                               &num_got,
933                                               &first_blkno);
934                 if (status < 0) {
935                         mlog_errno(status);
936                         goto bail;
937                 }
938
939                 for(i = count;  i < (num_got + count); i++) {
940                         bhs[i] = sb_getblk(osb->sb, first_blkno);
941                         if (bhs[i] == NULL) {
942                                 status = -EIO;
943                                 mlog_errno(status);
944                                 goto bail;
945                         }
946                         ocfs2_set_new_buffer_uptodate(inode, bhs[i]);
947
948                         status = ocfs2_journal_access_eb(handle, inode, bhs[i],
949                                                          OCFS2_JOURNAL_ACCESS_CREATE);
950                         if (status < 0) {
951                                 mlog_errno(status);
952                                 goto bail;
953                         }
954
955                         memset(bhs[i]->b_data, 0, osb->sb->s_blocksize);
956                         eb = (struct ocfs2_extent_block *) bhs[i]->b_data;
957                         /* Ok, setup the minimal stuff here. */
958                         strcpy(eb->h_signature, OCFS2_EXTENT_BLOCK_SIGNATURE);
959                         eb->h_blkno = cpu_to_le64(first_blkno);
960                         eb->h_fs_generation = cpu_to_le32(osb->fs_generation);
961                         eb->h_suballoc_slot = cpu_to_le16(osb->slot_num);
962                         eb->h_suballoc_bit = cpu_to_le16(suballoc_bit_start);
963                         eb->h_list.l_count =
964                                 cpu_to_le16(ocfs2_extent_recs_per_eb(osb->sb));
965
966                         suballoc_bit_start++;
967                         first_blkno++;
968
969                         /* We'll also be dirtied by the caller, so
970                          * this isn't absolutely necessary. */
971                         status = ocfs2_journal_dirty(handle, bhs[i]);
972                         if (status < 0) {
973                                 mlog_errno(status);
974                                 goto bail;
975                         }
976                 }
977
978                 count += num_got;
979         }
980
981         status = 0;
982 bail:
983         if (status < 0) {
984                 for(i = 0; i < wanted; i++) {
985                         brelse(bhs[i]);
986                         bhs[i] = NULL;
987                 }
988         }
989         mlog_exit(status);
990         return status;
991 }
992
993 /*
994  * Helper function for ocfs2_add_branch() and ocfs2_shift_tree_depth().
995  *
996  * Returns the sum of the rightmost extent rec logical offset and
997  * cluster count.
998  *
999  * ocfs2_add_branch() uses this to determine what logical cluster
1000  * value should be populated into the leftmost new branch records.
1001  *
1002  * ocfs2_shift_tree_depth() uses this to determine the # clusters
1003  * value for the new topmost tree record.
1004  */
1005 static inline u32 ocfs2_sum_rightmost_rec(struct ocfs2_extent_list  *el)
1006 {
1007         int i;
1008
1009         i = le16_to_cpu(el->l_next_free_rec) - 1;
1010
1011         return le32_to_cpu(el->l_recs[i].e_cpos) +
1012                 ocfs2_rec_clusters(el, &el->l_recs[i]);
1013 }
1014
1015 /*
1016  * Add an entire tree branch to our inode. eb_bh is the extent block
1017  * to start at, if we don't want to start the branch at the dinode
1018  * structure.
1019  *
1020  * last_eb_bh is required as we have to update it's next_leaf pointer
1021  * for the new last extent block.
1022  *
1023  * the new branch will be 'empty' in the sense that every block will
1024  * contain a single record with cluster count == 0.
1025  */
1026 static int ocfs2_add_branch(struct ocfs2_super *osb,
1027                             handle_t *handle,
1028                             struct inode *inode,
1029                             struct ocfs2_extent_tree *et,
1030                             struct buffer_head *eb_bh,
1031                             struct buffer_head **last_eb_bh,
1032                             struct ocfs2_alloc_context *meta_ac)
1033 {
1034         int status, new_blocks, i;
1035         u64 next_blkno, new_last_eb_blk;
1036         struct buffer_head *bh;
1037         struct buffer_head **new_eb_bhs = NULL;
1038         struct ocfs2_extent_block *eb;
1039         struct ocfs2_extent_list  *eb_el;
1040         struct ocfs2_extent_list  *el;
1041         u32 new_cpos;
1042
1043         mlog_entry_void();
1044
1045         BUG_ON(!last_eb_bh || !*last_eb_bh);
1046
1047         if (eb_bh) {
1048                 eb = (struct ocfs2_extent_block *) eb_bh->b_data;
1049                 el = &eb->h_list;
1050         } else
1051                 el = et->et_root_el;
1052
1053         /* we never add a branch to a leaf. */
1054         BUG_ON(!el->l_tree_depth);
1055
1056         new_blocks = le16_to_cpu(el->l_tree_depth);
1057
1058         /* allocate the number of new eb blocks we need */
1059         new_eb_bhs = kcalloc(new_blocks, sizeof(struct buffer_head *),
1060                              GFP_KERNEL);
1061         if (!new_eb_bhs) {
1062                 status = -ENOMEM;
1063                 mlog_errno(status);
1064                 goto bail;
1065         }
1066
1067         status = ocfs2_create_new_meta_bhs(osb, handle, inode, new_blocks,
1068                                            meta_ac, new_eb_bhs);
1069         if (status < 0) {
1070                 mlog_errno(status);
1071                 goto bail;
1072         }
1073
1074         eb = (struct ocfs2_extent_block *)(*last_eb_bh)->b_data;
1075         new_cpos = ocfs2_sum_rightmost_rec(&eb->h_list);
1076
1077         /* Note: new_eb_bhs[new_blocks - 1] is the guy which will be
1078          * linked with the rest of the tree.
1079          * conversly, new_eb_bhs[0] is the new bottommost leaf.
1080          *
1081          * when we leave the loop, new_last_eb_blk will point to the
1082          * newest leaf, and next_blkno will point to the topmost extent
1083          * block. */
1084         next_blkno = new_last_eb_blk = 0;
1085         for(i = 0; i < new_blocks; i++) {
1086                 bh = new_eb_bhs[i];
1087                 eb = (struct ocfs2_extent_block *) bh->b_data;
1088                 /* ocfs2_create_new_meta_bhs() should create it right! */
1089                 BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb));
1090                 eb_el = &eb->h_list;
1091
1092                 status = ocfs2_journal_access_eb(handle, inode, bh,
1093                                                  OCFS2_JOURNAL_ACCESS_CREATE);
1094                 if (status < 0) {
1095                         mlog_errno(status);
1096                         goto bail;
1097                 }
1098
1099                 eb->h_next_leaf_blk = 0;
1100                 eb_el->l_tree_depth = cpu_to_le16(i);
1101                 eb_el->l_next_free_rec = cpu_to_le16(1);
1102                 /*
1103                  * This actually counts as an empty extent as
1104                  * c_clusters == 0
1105                  */
1106                 eb_el->l_recs[0].e_cpos = cpu_to_le32(new_cpos);
1107                 eb_el->l_recs[0].e_blkno = cpu_to_le64(next_blkno);
1108                 /*
1109                  * eb_el isn't always an interior node, but even leaf
1110                  * nodes want a zero'd flags and reserved field so
1111                  * this gets the whole 32 bits regardless of use.
1112                  */
1113                 eb_el->l_recs[0].e_int_clusters = cpu_to_le32(0);
1114                 if (!eb_el->l_tree_depth)
1115                         new_last_eb_blk = le64_to_cpu(eb->h_blkno);
1116
1117                 status = ocfs2_journal_dirty(handle, bh);
1118                 if (status < 0) {
1119                         mlog_errno(status);
1120                         goto bail;
1121                 }
1122
1123                 next_blkno = le64_to_cpu(eb->h_blkno);
1124         }
1125
1126         /* This is a bit hairy. We want to update up to three blocks
1127          * here without leaving any of them in an inconsistent state
1128          * in case of error. We don't have to worry about
1129          * journal_dirty erroring as it won't unless we've aborted the
1130          * handle (in which case we would never be here) so reserving
1131          * the write with journal_access is all we need to do. */
1132         status = ocfs2_journal_access_eb(handle, inode, *last_eb_bh,
1133                                          OCFS2_JOURNAL_ACCESS_WRITE);
1134         if (status < 0) {
1135                 mlog_errno(status);
1136                 goto bail;
1137         }
1138         status = ocfs2_et_root_journal_access(handle, inode, et,
1139                                               OCFS2_JOURNAL_ACCESS_WRITE);
1140         if (status < 0) {
1141                 mlog_errno(status);
1142                 goto bail;
1143         }
1144         if (eb_bh) {
1145                 status = ocfs2_journal_access_eb(handle, inode, eb_bh,
1146                                                  OCFS2_JOURNAL_ACCESS_WRITE);
1147                 if (status < 0) {
1148                         mlog_errno(status);
1149                         goto bail;
1150                 }
1151         }
1152
1153         /* Link the new branch into the rest of the tree (el will
1154          * either be on the root_bh, or the extent block passed in. */
1155         i = le16_to_cpu(el->l_next_free_rec);
1156         el->l_recs[i].e_blkno = cpu_to_le64(next_blkno);
1157         el->l_recs[i].e_cpos = cpu_to_le32(new_cpos);
1158         el->l_recs[i].e_int_clusters = 0;
1159         le16_add_cpu(&el->l_next_free_rec, 1);
1160
1161         /* fe needs a new last extent block pointer, as does the
1162          * next_leaf on the previously last-extent-block. */
1163         ocfs2_et_set_last_eb_blk(et, new_last_eb_blk);
1164
1165         eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
1166         eb->h_next_leaf_blk = cpu_to_le64(new_last_eb_blk);
1167
1168         status = ocfs2_journal_dirty(handle, *last_eb_bh);
1169         if (status < 0)
1170                 mlog_errno(status);
1171         status = ocfs2_journal_dirty(handle, et->et_root_bh);
1172         if (status < 0)
1173                 mlog_errno(status);
1174         if (eb_bh) {
1175                 status = ocfs2_journal_dirty(handle, eb_bh);
1176                 if (status < 0)
1177                         mlog_errno(status);
1178         }
1179
1180         /*
1181          * Some callers want to track the rightmost leaf so pass it
1182          * back here.
1183          */
1184         brelse(*last_eb_bh);
1185         get_bh(new_eb_bhs[0]);
1186         *last_eb_bh = new_eb_bhs[0];
1187
1188         status = 0;
1189 bail:
1190         if (new_eb_bhs) {
1191                 for (i = 0; i < new_blocks; i++)
1192                         brelse(new_eb_bhs[i]);
1193                 kfree(new_eb_bhs);
1194         }
1195
1196         mlog_exit(status);
1197         return status;
1198 }
1199
1200 /*
1201  * adds another level to the allocation tree.
1202  * returns back the new extent block so you can add a branch to it
1203  * after this call.
1204  */
1205 static int ocfs2_shift_tree_depth(struct ocfs2_super *osb,
1206                                   handle_t *handle,
1207                                   struct inode *inode,
1208                                   struct ocfs2_extent_tree *et,
1209                                   struct ocfs2_alloc_context *meta_ac,
1210                                   struct buffer_head **ret_new_eb_bh)
1211 {
1212         int status, i;
1213         u32 new_clusters;
1214         struct buffer_head *new_eb_bh = NULL;
1215         struct ocfs2_extent_block *eb;
1216         struct ocfs2_extent_list  *root_el;
1217         struct ocfs2_extent_list  *eb_el;
1218
1219         mlog_entry_void();
1220
1221         status = ocfs2_create_new_meta_bhs(osb, handle, inode, 1, meta_ac,
1222                                            &new_eb_bh);
1223         if (status < 0) {
1224                 mlog_errno(status);
1225                 goto bail;
1226         }
1227
1228         eb = (struct ocfs2_extent_block *) new_eb_bh->b_data;
1229         /* ocfs2_create_new_meta_bhs() should create it right! */
1230         BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb));
1231
1232         eb_el = &eb->h_list;
1233         root_el = et->et_root_el;
1234
1235         status = ocfs2_journal_access_eb(handle, inode, new_eb_bh,
1236                                          OCFS2_JOURNAL_ACCESS_CREATE);
1237         if (status < 0) {
1238                 mlog_errno(status);
1239                 goto bail;
1240         }
1241
1242         /* copy the root extent list data into the new extent block */
1243         eb_el->l_tree_depth = root_el->l_tree_depth;
1244         eb_el->l_next_free_rec = root_el->l_next_free_rec;
1245         for (i = 0; i < le16_to_cpu(root_el->l_next_free_rec); i++)
1246                 eb_el->l_recs[i] = root_el->l_recs[i];
1247
1248         status = ocfs2_journal_dirty(handle, new_eb_bh);
1249         if (status < 0) {
1250                 mlog_errno(status);
1251                 goto bail;
1252         }
1253
1254         status = ocfs2_et_root_journal_access(handle, inode, et,
1255                                               OCFS2_JOURNAL_ACCESS_WRITE);
1256         if (status < 0) {
1257                 mlog_errno(status);
1258                 goto bail;
1259         }
1260
1261         new_clusters = ocfs2_sum_rightmost_rec(eb_el);
1262
1263         /* update root_bh now */
1264         le16_add_cpu(&root_el->l_tree_depth, 1);
1265         root_el->l_recs[0].e_cpos = 0;
1266         root_el->l_recs[0].e_blkno = eb->h_blkno;
1267         root_el->l_recs[0].e_int_clusters = cpu_to_le32(new_clusters);
1268         for (i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++)
1269                 memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
1270         root_el->l_next_free_rec = cpu_to_le16(1);
1271
1272         /* If this is our 1st tree depth shift, then last_eb_blk
1273          * becomes the allocated extent block */
1274         if (root_el->l_tree_depth == cpu_to_le16(1))
1275                 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
1276
1277         status = ocfs2_journal_dirty(handle, et->et_root_bh);
1278         if (status < 0) {
1279                 mlog_errno(status);
1280                 goto bail;
1281         }
1282
1283         *ret_new_eb_bh = new_eb_bh;
1284         new_eb_bh = NULL;
1285         status = 0;
1286 bail:
1287         brelse(new_eb_bh);
1288
1289         mlog_exit(status);
1290         return status;
1291 }
1292
1293 /*
1294  * Should only be called when there is no space left in any of the
1295  * leaf nodes. What we want to do is find the lowest tree depth
1296  * non-leaf extent block with room for new records. There are three
1297  * valid results of this search:
1298  *
1299  * 1) a lowest extent block is found, then we pass it back in
1300  *    *lowest_eb_bh and return '0'
1301  *
1302  * 2) the search fails to find anything, but the root_el has room. We
1303  *    pass NULL back in *lowest_eb_bh, but still return '0'
1304  *
1305  * 3) the search fails to find anything AND the root_el is full, in
1306  *    which case we return > 0
1307  *
1308  * return status < 0 indicates an error.
1309  */
1310 static int ocfs2_find_branch_target(struct ocfs2_super *osb,
1311                                     struct inode *inode,
1312                                     struct ocfs2_extent_tree *et,
1313                                     struct buffer_head **target_bh)
1314 {
1315         int status = 0, i;
1316         u64 blkno;
1317         struct ocfs2_extent_block *eb;
1318         struct ocfs2_extent_list  *el;
1319         struct buffer_head *bh = NULL;
1320         struct buffer_head *lowest_bh = NULL;
1321
1322         mlog_entry_void();
1323
1324         *target_bh = NULL;
1325
1326         el = et->et_root_el;
1327
1328         while(le16_to_cpu(el->l_tree_depth) > 1) {
1329                 if (le16_to_cpu(el->l_next_free_rec) == 0) {
1330                         ocfs2_error(inode->i_sb, "Dinode %llu has empty "
1331                                     "extent list (next_free_rec == 0)",
1332                                     (unsigned long long)OCFS2_I(inode)->ip_blkno);
1333                         status = -EIO;
1334                         goto bail;
1335                 }
1336                 i = le16_to_cpu(el->l_next_free_rec) - 1;
1337                 blkno = le64_to_cpu(el->l_recs[i].e_blkno);
1338                 if (!blkno) {
1339                         ocfs2_error(inode->i_sb, "Dinode %llu has extent "
1340                                     "list where extent # %d has no physical "
1341                                     "block start",
1342                                     (unsigned long long)OCFS2_I(inode)->ip_blkno, i);
1343                         status = -EIO;
1344                         goto bail;
1345                 }
1346
1347                 brelse(bh);
1348                 bh = NULL;
1349
1350                 status = ocfs2_read_extent_block(inode, blkno, &bh);
1351                 if (status < 0) {
1352                         mlog_errno(status);
1353                         goto bail;
1354                 }
1355
1356                 eb = (struct ocfs2_extent_block *) bh->b_data;
1357                 el = &eb->h_list;
1358
1359                 if (le16_to_cpu(el->l_next_free_rec) <
1360                     le16_to_cpu(el->l_count)) {
1361                         brelse(lowest_bh);
1362                         lowest_bh = bh;
1363                         get_bh(lowest_bh);
1364                 }
1365         }
1366
1367         /* If we didn't find one and the fe doesn't have any room,
1368          * then return '1' */
1369         el = et->et_root_el;
1370         if (!lowest_bh && (el->l_next_free_rec == el->l_count))
1371                 status = 1;
1372
1373         *target_bh = lowest_bh;
1374 bail:
1375         brelse(bh);
1376
1377         mlog_exit(status);
1378         return status;
1379 }
1380
1381 /*
1382  * Grow a b-tree so that it has more records.
1383  *
1384  * We might shift the tree depth in which case existing paths should
1385  * be considered invalid.
1386  *
1387  * Tree depth after the grow is returned via *final_depth.
1388  *
1389  * *last_eb_bh will be updated by ocfs2_add_branch().
1390  */
1391 static int ocfs2_grow_tree(struct inode *inode, handle_t *handle,
1392                            struct ocfs2_extent_tree *et, int *final_depth,
1393                            struct buffer_head **last_eb_bh,
1394                            struct ocfs2_alloc_context *meta_ac)
1395 {
1396         int ret, shift;
1397         struct ocfs2_extent_list *el = et->et_root_el;
1398         int depth = le16_to_cpu(el->l_tree_depth);
1399         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1400         struct buffer_head *bh = NULL;
1401
1402         BUG_ON(meta_ac == NULL);
1403
1404         shift = ocfs2_find_branch_target(osb, inode, et, &bh);
1405         if (shift < 0) {
1406                 ret = shift;
1407                 mlog_errno(ret);
1408                 goto out;
1409         }
1410
1411         /* We traveled all the way to the bottom of the allocation tree
1412          * and didn't find room for any more extents - we need to add
1413          * another tree level */
1414         if (shift) {
1415                 BUG_ON(bh);
1416                 mlog(0, "need to shift tree depth (current = %d)\n", depth);
1417
1418                 /* ocfs2_shift_tree_depth will return us a buffer with
1419                  * the new extent block (so we can pass that to
1420                  * ocfs2_add_branch). */
1421                 ret = ocfs2_shift_tree_depth(osb, handle, inode, et,
1422                                              meta_ac, &bh);
1423                 if (ret < 0) {
1424                         mlog_errno(ret);
1425                         goto out;
1426                 }
1427                 depth++;
1428                 if (depth == 1) {
1429                         /*
1430                          * Special case: we have room now if we shifted from
1431                          * tree_depth 0, so no more work needs to be done.
1432                          *
1433                          * We won't be calling add_branch, so pass
1434                          * back *last_eb_bh as the new leaf. At depth
1435                          * zero, it should always be null so there's
1436                          * no reason to brelse.
1437                          */
1438                         BUG_ON(*last_eb_bh);
1439                         get_bh(bh);
1440                         *last_eb_bh = bh;
1441                         goto out;
1442                 }
1443         }
1444
1445         /* call ocfs2_add_branch to add the final part of the tree with
1446          * the new data. */
1447         mlog(0, "add branch. bh = %p\n", bh);
1448         ret = ocfs2_add_branch(osb, handle, inode, et, bh, last_eb_bh,
1449                                meta_ac);
1450         if (ret < 0) {
1451                 mlog_errno(ret);
1452                 goto out;
1453         }
1454
1455 out:
1456         if (final_depth)
1457                 *final_depth = depth;
1458         brelse(bh);
1459         return ret;
1460 }
1461
1462 /*
1463  * This function will discard the rightmost extent record.
1464  */
1465 static void ocfs2_shift_records_right(struct ocfs2_extent_list *el)
1466 {
1467         int next_free = le16_to_cpu(el->l_next_free_rec);
1468         int count = le16_to_cpu(el->l_count);
1469         unsigned int num_bytes;
1470
1471         BUG_ON(!next_free);
1472         /* This will cause us to go off the end of our extent list. */
1473         BUG_ON(next_free >= count);
1474
1475         num_bytes = sizeof(struct ocfs2_extent_rec) * next_free;
1476
1477         memmove(&el->l_recs[1], &el->l_recs[0], num_bytes);
1478 }
1479
1480 static void ocfs2_rotate_leaf(struct ocfs2_extent_list *el,
1481                               struct ocfs2_extent_rec *insert_rec)
1482 {
1483         int i, insert_index, next_free, has_empty, num_bytes;
1484         u32 insert_cpos = le32_to_cpu(insert_rec->e_cpos);
1485         struct ocfs2_extent_rec *rec;
1486
1487         next_free = le16_to_cpu(el->l_next_free_rec);
1488         has_empty = ocfs2_is_empty_extent(&el->l_recs[0]);
1489
1490         BUG_ON(!next_free);
1491
1492         /* The tree code before us didn't allow enough room in the leaf. */
1493         BUG_ON(el->l_next_free_rec == el->l_count && !has_empty);
1494
1495         /*
1496          * The easiest way to approach this is to just remove the
1497          * empty extent and temporarily decrement next_free.
1498          */
1499         if (has_empty) {
1500                 /*
1501                  * If next_free was 1 (only an empty extent), this
1502                  * loop won't execute, which is fine. We still want
1503                  * the decrement above to happen.
1504                  */
1505                 for(i = 0; i < (next_free - 1); i++)
1506                         el->l_recs[i] = el->l_recs[i+1];
1507
1508                 next_free--;
1509         }
1510
1511         /*
1512          * Figure out what the new record index should be.
1513          */
1514         for(i = 0; i < next_free; i++) {
1515                 rec = &el->l_recs[i];
1516
1517                 if (insert_cpos < le32_to_cpu(rec->e_cpos))
1518                         break;
1519         }
1520         insert_index = i;
1521
1522         mlog(0, "ins %u: index %d, has_empty %d, next_free %d, count %d\n",
1523              insert_cpos, insert_index, has_empty, next_free, le16_to_cpu(el->l_count));
1524
1525         BUG_ON(insert_index < 0);
1526         BUG_ON(insert_index >= le16_to_cpu(el->l_count));
1527         BUG_ON(insert_index > next_free);
1528
1529         /*
1530          * No need to memmove if we're just adding to the tail.
1531          */
1532         if (insert_index != next_free) {
1533                 BUG_ON(next_free >= le16_to_cpu(el->l_count));
1534
1535                 num_bytes = next_free - insert_index;
1536                 num_bytes *= sizeof(struct ocfs2_extent_rec);
1537                 memmove(&el->l_recs[insert_index + 1],
1538                         &el->l_recs[insert_index],
1539                         num_bytes);
1540         }
1541
1542         /*
1543          * Either we had an empty extent, and need to re-increment or
1544          * there was no empty extent on a non full rightmost leaf node,
1545          * in which case we still need to increment.
1546          */
1547         next_free++;
1548         el->l_next_free_rec = cpu_to_le16(next_free);
1549         /*
1550          * Make sure none of the math above just messed up our tree.
1551          */
1552         BUG_ON(le16_to_cpu(el->l_next_free_rec) > le16_to_cpu(el->l_count));
1553
1554         el->l_recs[insert_index] = *insert_rec;
1555
1556 }
1557
1558 static void ocfs2_remove_empty_extent(struct ocfs2_extent_list *el)
1559 {
1560         int size, num_recs = le16_to_cpu(el->l_next_free_rec);
1561
1562         BUG_ON(num_recs == 0);
1563
1564         if (ocfs2_is_empty_extent(&el->l_recs[0])) {
1565                 num_recs--;
1566                 size = num_recs * sizeof(struct ocfs2_extent_rec);
1567                 memmove(&el->l_recs[0], &el->l_recs[1], size);
1568                 memset(&el->l_recs[num_recs], 0,
1569                        sizeof(struct ocfs2_extent_rec));
1570                 el->l_next_free_rec = cpu_to_le16(num_recs);
1571         }
1572 }
1573
1574 /*
1575  * Create an empty extent record .
1576  *
1577  * l_next_free_rec may be updated.
1578  *
1579  * If an empty extent already exists do nothing.
1580  */
1581 static void ocfs2_create_empty_extent(struct ocfs2_extent_list *el)
1582 {
1583         int next_free = le16_to_cpu(el->l_next_free_rec);
1584
1585         BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
1586
1587         if (next_free == 0)
1588                 goto set_and_inc;
1589
1590         if (ocfs2_is_empty_extent(&el->l_recs[0]))
1591                 return;
1592
1593         mlog_bug_on_msg(el->l_count == el->l_next_free_rec,
1594                         "Asked to create an empty extent in a full list:\n"
1595                         "count = %u, tree depth = %u",
1596                         le16_to_cpu(el->l_count),
1597                         le16_to_cpu(el->l_tree_depth));
1598
1599         ocfs2_shift_records_right(el);
1600
1601 set_and_inc:
1602         le16_add_cpu(&el->l_next_free_rec, 1);
1603         memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
1604 }
1605
1606 /*
1607  * For a rotation which involves two leaf nodes, the "root node" is
1608  * the lowest level tree node which contains a path to both leafs. This
1609  * resulting set of information can be used to form a complete "subtree"
1610  *
1611  * This function is passed two full paths from the dinode down to a
1612  * pair of adjacent leaves. It's task is to figure out which path
1613  * index contains the subtree root - this can be the root index itself
1614  * in a worst-case rotation.
1615  *
1616  * The array index of the subtree root is passed back.
1617  */
1618 static int ocfs2_find_subtree_root(struct inode *inode,
1619                                    struct ocfs2_path *left,
1620                                    struct ocfs2_path *right)
1621 {
1622         int i = 0;
1623
1624         /*
1625          * Check that the caller passed in two paths from the same tree.
1626          */
1627         BUG_ON(path_root_bh(left) != path_root_bh(right));
1628
1629         do {
1630                 i++;
1631
1632                 /*
1633                  * The caller didn't pass two adjacent paths.
1634                  */
1635                 mlog_bug_on_msg(i > left->p_tree_depth,
1636                                 "Inode %lu, left depth %u, right depth %u\n"
1637                                 "left leaf blk %llu, right leaf blk %llu\n",
1638                                 inode->i_ino, left->p_tree_depth,
1639                                 right->p_tree_depth,
1640                                 (unsigned long long)path_leaf_bh(left)->b_blocknr,
1641                                 (unsigned long long)path_leaf_bh(right)->b_blocknr);
1642         } while (left->p_node[i].bh->b_blocknr ==
1643                  right->p_node[i].bh->b_blocknr);
1644
1645         return i - 1;
1646 }
1647
1648 typedef void (path_insert_t)(void *, struct buffer_head *);
1649
1650 /*
1651  * Traverse a btree path in search of cpos, starting at root_el.
1652  *
1653  * This code can be called with a cpos larger than the tree, in which
1654  * case it will return the rightmost path.
1655  */
1656 static int __ocfs2_find_path(struct inode *inode,
1657                              struct ocfs2_extent_list *root_el, u32 cpos,
1658                              path_insert_t *func, void *data)
1659 {
1660         int i, ret = 0;
1661         u32 range;
1662         u64 blkno;
1663         struct buffer_head *bh = NULL;
1664         struct ocfs2_extent_block *eb;
1665         struct ocfs2_extent_list *el;
1666         struct ocfs2_extent_rec *rec;
1667         struct ocfs2_inode_info *oi = OCFS2_I(inode);
1668
1669         el = root_el;
1670         while (el->l_tree_depth) {
1671                 if (le16_to_cpu(el->l_next_free_rec) == 0) {
1672                         ocfs2_error(inode->i_sb,
1673                                     "Inode %llu has empty extent list at "
1674                                     "depth %u\n",
1675                                     (unsigned long long)oi->ip_blkno,
1676                                     le16_to_cpu(el->l_tree_depth));
1677                         ret = -EROFS;
1678                         goto out;
1679
1680                 }
1681
1682                 for(i = 0; i < le16_to_cpu(el->l_next_free_rec) - 1; i++) {
1683                         rec = &el->l_recs[i];
1684
1685                         /*
1686                          * In the case that cpos is off the allocation
1687                          * tree, this should just wind up returning the
1688                          * rightmost record.
1689                          */
1690                         range = le32_to_cpu(rec->e_cpos) +
1691                                 ocfs2_rec_clusters(el, rec);
1692                         if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
1693                             break;
1694                 }
1695
1696                 blkno = le64_to_cpu(el->l_recs[i].e_blkno);
1697                 if (blkno == 0) {
1698                         ocfs2_error(inode->i_sb,
1699                                     "Inode %llu has bad blkno in extent list "
1700                                     "at depth %u (index %d)\n",
1701                                     (unsigned long long)oi->ip_blkno,
1702                                     le16_to_cpu(el->l_tree_depth), i);
1703                         ret = -EROFS;
1704                         goto out;
1705                 }
1706
1707                 brelse(bh);
1708                 bh = NULL;
1709                 ret = ocfs2_read_extent_block(inode, blkno, &bh);
1710                 if (ret) {
1711                         mlog_errno(ret);
1712                         goto out;
1713                 }
1714
1715                 eb = (struct ocfs2_extent_block *) bh->b_data;
1716                 el = &eb->h_list;
1717
1718                 if (le16_to_cpu(el->l_next_free_rec) >
1719                     le16_to_cpu(el->l_count)) {
1720                         ocfs2_error(inode->i_sb,
1721                                     "Inode %llu has bad count in extent list "
1722                                     "at block %llu (next free=%u, count=%u)\n",
1723                                     (unsigned long long)oi->ip_blkno,
1724                                     (unsigned long long)bh->b_blocknr,
1725                                     le16_to_cpu(el->l_next_free_rec),
1726                                     le16_to_cpu(el->l_count));
1727                         ret = -EROFS;
1728                         goto out;
1729                 }
1730
1731                 if (func)
1732                         func(data, bh);
1733         }
1734
1735 out:
1736         /*
1737          * Catch any trailing bh that the loop didn't handle.
1738          */
1739         brelse(bh);
1740
1741         return ret;
1742 }
1743
1744 /*
1745  * Given an initialized path (that is, it has a valid root extent
1746  * list), this function will traverse the btree in search of the path
1747  * which would contain cpos.
1748  *
1749  * The path traveled is recorded in the path structure.
1750  *
1751  * Note that this will not do any comparisons on leaf node extent
1752  * records, so it will work fine in the case that we just added a tree
1753  * branch.
1754  */
1755 struct find_path_data {
1756         int index;
1757         struct ocfs2_path *path;
1758 };
1759 static void find_path_ins(void *data, struct buffer_head *bh)
1760 {
1761         struct find_path_data *fp = data;
1762
1763         get_bh(bh);
1764         ocfs2_path_insert_eb(fp->path, fp->index, bh);
1765         fp->index++;
1766 }
1767 static int ocfs2_find_path(struct inode *inode, struct ocfs2_path *path,
1768                            u32 cpos)
1769 {
1770         struct find_path_data data;
1771
1772         data.index = 1;
1773         data.path = path;
1774         return __ocfs2_find_path(inode, path_root_el(path), cpos,
1775                                  find_path_ins, &data);
1776 }
1777
1778 static void find_leaf_ins(void *data, struct buffer_head *bh)
1779 {
1780         struct ocfs2_extent_block *eb =(struct ocfs2_extent_block *)bh->b_data;
1781         struct ocfs2_extent_list *el = &eb->h_list;
1782         struct buffer_head **ret = data;
1783
1784         /* We want to retain only the leaf block. */
1785         if (le16_to_cpu(el->l_tree_depth) == 0) {
1786                 get_bh(bh);
1787                 *ret = bh;
1788         }
1789 }
1790 /*
1791  * Find the leaf block in the tree which would contain cpos. No
1792  * checking of the actual leaf is done.
1793  *
1794  * Some paths want to call this instead of allocating a path structure
1795  * and calling ocfs2_find_path().
1796  *
1797  * This function doesn't handle non btree extent lists.
1798  */
1799 int ocfs2_find_leaf(struct inode *inode, struct ocfs2_extent_list *root_el,
1800                     u32 cpos, struct buffer_head **leaf_bh)
1801 {
1802         int ret;
1803         struct buffer_head *bh = NULL;
1804
1805         ret = __ocfs2_find_path(inode, root_el, cpos, find_leaf_ins, &bh);
1806         if (ret) {
1807                 mlog_errno(ret);
1808                 goto out;
1809         }
1810
1811         *leaf_bh = bh;
1812 out:
1813         return ret;
1814 }
1815
1816 /*
1817  * Adjust the adjacent records (left_rec, right_rec) involved in a rotation.
1818  *
1819  * Basically, we've moved stuff around at the bottom of the tree and
1820  * we need to fix up the extent records above the changes to reflect
1821  * the new changes.
1822  *
1823  * left_rec: the record on the left.
1824  * left_child_el: is the child list pointed to by left_rec
1825  * right_rec: the record to the right of left_rec
1826  * right_child_el: is the child list pointed to by right_rec
1827  *
1828  * By definition, this only works on interior nodes.
1829  */
1830 static void ocfs2_adjust_adjacent_records(struct ocfs2_extent_rec *left_rec,
1831                                   struct ocfs2_extent_list *left_child_el,
1832                                   struct ocfs2_extent_rec *right_rec,
1833                                   struct ocfs2_extent_list *right_child_el)
1834 {
1835         u32 left_clusters, right_end;
1836
1837         /*
1838          * Interior nodes never have holes. Their cpos is the cpos of
1839          * the leftmost record in their child list. Their cluster
1840          * count covers the full theoretical range of their child list
1841          * - the range between their cpos and the cpos of the record
1842          * immediately to their right.
1843          */
1844         left_clusters = le32_to_cpu(right_child_el->l_recs[0].e_cpos);
1845         if (ocfs2_is_empty_extent(&right_child_el->l_recs[0])) {
1846                 BUG_ON(le16_to_cpu(right_child_el->l_next_free_rec) <= 1);
1847                 left_clusters = le32_to_cpu(right_child_el->l_recs[1].e_cpos);
1848         }
1849         left_clusters -= le32_to_cpu(left_rec->e_cpos);
1850         left_rec->e_int_clusters = cpu_to_le32(left_clusters);
1851
1852         /*
1853          * Calculate the rightmost cluster count boundary before
1854          * moving cpos - we will need to adjust clusters after
1855          * updating e_cpos to keep the same highest cluster count.
1856          */
1857         right_end = le32_to_cpu(right_rec->e_cpos);
1858         right_end += le32_to_cpu(right_rec->e_int_clusters);
1859
1860         right_rec->e_cpos = left_rec->e_cpos;
1861         le32_add_cpu(&right_rec->e_cpos, left_clusters);
1862
1863         right_end -= le32_to_cpu(right_rec->e_cpos);
1864         right_rec->e_int_clusters = cpu_to_le32(right_end);
1865 }
1866
1867 /*
1868  * Adjust the adjacent root node records involved in a
1869  * rotation. left_el_blkno is passed in as a key so that we can easily
1870  * find it's index in the root list.
1871  */
1872 static void ocfs2_adjust_root_records(struct ocfs2_extent_list *root_el,
1873                                       struct ocfs2_extent_list *left_el,
1874                                       struct ocfs2_extent_list *right_el,
1875                                       u64 left_el_blkno)
1876 {
1877         int i;
1878
1879         BUG_ON(le16_to_cpu(root_el->l_tree_depth) <=
1880                le16_to_cpu(left_el->l_tree_depth));
1881
1882         for(i = 0; i < le16_to_cpu(root_el->l_next_free_rec) - 1; i++) {
1883                 if (le64_to_cpu(root_el->l_recs[i].e_blkno) == left_el_blkno)
1884                         break;
1885         }
1886
1887         /*
1888          * The path walking code should have never returned a root and
1889          * two paths which are not adjacent.
1890          */
1891         BUG_ON(i >= (le16_to_cpu(root_el->l_next_free_rec) - 1));
1892
1893         ocfs2_adjust_adjacent_records(&root_el->l_recs[i], left_el,
1894                                       &root_el->l_recs[i + 1], right_el);
1895 }
1896
1897 /*
1898  * We've changed a leaf block (in right_path) and need to reflect that
1899  * change back up the subtree.
1900  *
1901  * This happens in multiple places:
1902  *   - When we've moved an extent record from the left path leaf to the right
1903  *     path leaf to make room for an empty extent in the left path leaf.
1904  *   - When our insert into the right path leaf is at the leftmost edge
1905  *     and requires an update of the path immediately to it's left. This
1906  *     can occur at the end of some types of rotation and appending inserts.
1907  *   - When we've adjusted the last extent record in the left path leaf and the
1908  *     1st extent record in the right path leaf during cross extent block merge.
1909  */
1910 static void ocfs2_complete_edge_insert(struct inode *inode, handle_t *handle,
1911                                        struct ocfs2_path *left_path,
1912                                        struct ocfs2_path *right_path,
1913                                        int subtree_index)
1914 {
1915         int ret, i, idx;
1916         struct ocfs2_extent_list *el, *left_el, *right_el;
1917         struct ocfs2_extent_rec *left_rec, *right_rec;
1918         struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
1919
1920         /*
1921          * Update the counts and position values within all the
1922          * interior nodes to reflect the leaf rotation we just did.
1923          *
1924          * The root node is handled below the loop.
1925          *
1926          * We begin the loop with right_el and left_el pointing to the
1927          * leaf lists and work our way up.
1928          *
1929          * NOTE: within this loop, left_el and right_el always refer
1930          * to the *child* lists.
1931          */
1932         left_el = path_leaf_el(left_path);
1933         right_el = path_leaf_el(right_path);
1934         for(i = left_path->p_tree_depth - 1; i > subtree_index; i--) {
1935                 mlog(0, "Adjust records at index %u\n", i);
1936
1937                 /*
1938                  * One nice property of knowing that all of these
1939                  * nodes are below the root is that we only deal with
1940                  * the leftmost right node record and the rightmost
1941                  * left node record.
1942                  */
1943                 el = left_path->p_node[i].el;
1944                 idx = le16_to_cpu(left_el->l_next_free_rec) - 1;
1945                 left_rec = &el->l_recs[idx];
1946
1947                 el = right_path->p_node[i].el;
1948                 right_rec = &el->l_recs[0];
1949
1950                 ocfs2_adjust_adjacent_records(left_rec, left_el, right_rec,
1951                                               right_el);
1952
1953                 ret = ocfs2_journal_dirty(handle, left_path->p_node[i].bh);
1954                 if (ret)
1955                         mlog_errno(ret);
1956
1957                 ret = ocfs2_journal_dirty(handle, right_path->p_node[i].bh);
1958                 if (ret)
1959                         mlog_errno(ret);
1960
1961                 /*
1962                  * Setup our list pointers now so that the current
1963                  * parents become children in the next iteration.
1964                  */
1965                 left_el = left_path->p_node[i].el;
1966                 right_el = right_path->p_node[i].el;
1967         }
1968
1969         /*
1970          * At the root node, adjust the two adjacent records which
1971          * begin our path to the leaves.
1972          */
1973
1974         el = left_path->p_node[subtree_index].el;
1975         left_el = left_path->p_node[subtree_index + 1].el;
1976         right_el = right_path->p_node[subtree_index + 1].el;
1977
1978         ocfs2_adjust_root_records(el, left_el, right_el,
1979                                   left_path->p_node[subtree_index + 1].bh->b_blocknr);
1980
1981         root_bh = left_path->p_node[subtree_index].bh;
1982
1983         ret = ocfs2_journal_dirty(handle, root_bh);
1984         if (ret)
1985                 mlog_errno(ret);
1986 }
1987
1988 static int ocfs2_rotate_subtree_right(struct inode *inode,
1989                                       handle_t *handle,
1990                                       struct ocfs2_path *left_path,
1991                                       struct ocfs2_path *right_path,
1992                                       int subtree_index)
1993 {
1994         int ret, i;
1995         struct buffer_head *right_leaf_bh;
1996         struct buffer_head *left_leaf_bh = NULL;
1997         struct buffer_head *root_bh;
1998         struct ocfs2_extent_list *right_el, *left_el;
1999         struct ocfs2_extent_rec move_rec;
2000
2001         left_leaf_bh = path_leaf_bh(left_path);
2002         left_el = path_leaf_el(left_path);
2003
2004         if (left_el->l_next_free_rec != left_el->l_count) {
2005                 ocfs2_error(inode->i_sb,
2006                             "Inode %llu has non-full interior leaf node %llu"
2007                             "(next free = %u)",
2008                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
2009                             (unsigned long long)left_leaf_bh->b_blocknr,
2010                             le16_to_cpu(left_el->l_next_free_rec));
2011                 return -EROFS;
2012         }
2013
2014         /*
2015          * This extent block may already have an empty record, so we
2016          * return early if so.
2017          */
2018         if (ocfs2_is_empty_extent(&left_el->l_recs[0]))
2019                 return 0;
2020
2021         root_bh = left_path->p_node[subtree_index].bh;
2022         BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
2023
2024         ret = ocfs2_path_bh_journal_access(handle, inode, right_path,
2025                                            subtree_index);
2026         if (ret) {
2027                 mlog_errno(ret);
2028                 goto out;
2029         }
2030
2031         for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
2032                 ret = ocfs2_path_bh_journal_access(handle, inode,
2033                                                    right_path, i);
2034                 if (ret) {
2035                         mlog_errno(ret);
2036                         goto out;
2037                 }
2038
2039                 ret = ocfs2_path_bh_journal_access(handle, inode,
2040                                                    left_path, i);
2041                 if (ret) {
2042                         mlog_errno(ret);
2043                         goto out;
2044                 }
2045         }
2046
2047         right_leaf_bh = path_leaf_bh(right_path);
2048         right_el = path_leaf_el(right_path);
2049
2050         /* This is a code error, not a disk corruption. */
2051         mlog_bug_on_msg(!right_el->l_next_free_rec, "Inode %llu: Rotate fails "
2052                         "because rightmost leaf block %llu is empty\n",
2053                         (unsigned long long)OCFS2_I(inode)->ip_blkno,
2054                         (unsigned long long)right_leaf_bh->b_blocknr);
2055
2056         ocfs2_create_empty_extent(right_el);
2057
2058         ret = ocfs2_journal_dirty(handle, right_leaf_bh);
2059         if (ret) {
2060                 mlog_errno(ret);
2061                 goto out;
2062         }
2063
2064         /* Do the copy now. */
2065         i = le16_to_cpu(left_el->l_next_free_rec) - 1;
2066         move_rec = left_el->l_recs[i];
2067         right_el->l_recs[0] = move_rec;
2068
2069         /*
2070          * Clear out the record we just copied and shift everything
2071          * over, leaving an empty extent in the left leaf.
2072          *
2073          * We temporarily subtract from next_free_rec so that the
2074          * shift will lose the tail record (which is now defunct).
2075          */
2076         le16_add_cpu(&left_el->l_next_free_rec, -1);
2077         ocfs2_shift_records_right(left_el);
2078         memset(&left_el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2079         le16_add_cpu(&left_el->l_next_free_rec, 1);
2080
2081         ret = ocfs2_journal_dirty(handle, left_leaf_bh);
2082         if (ret) {
2083                 mlog_errno(ret);
2084                 goto out;
2085         }
2086
2087         ocfs2_complete_edge_insert(inode, handle, left_path, right_path,
2088                                 subtree_index);
2089
2090 out:
2091         return ret;
2092 }
2093
2094 /*
2095  * Given a full path, determine what cpos value would return us a path
2096  * containing the leaf immediately to the left of the current one.
2097  *
2098  * Will return zero if the path passed in is already the leftmost path.
2099  */
2100 static int ocfs2_find_cpos_for_left_leaf(struct super_block *sb,
2101                                          struct ocfs2_path *path, u32 *cpos)
2102 {
2103         int i, j, ret = 0;
2104         u64 blkno;
2105         struct ocfs2_extent_list *el;
2106
2107         BUG_ON(path->p_tree_depth == 0);
2108
2109         *cpos = 0;
2110
2111         blkno = path_leaf_bh(path)->b_blocknr;
2112
2113         /* Start at the tree node just above the leaf and work our way up. */
2114         i = path->p_tree_depth - 1;
2115         while (i >= 0) {
2116                 el = path->p_node[i].el;
2117
2118                 /*
2119                  * Find the extent record just before the one in our
2120                  * path.
2121                  */
2122                 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
2123                         if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
2124                                 if (j == 0) {
2125                                         if (i == 0) {
2126                                                 /*
2127                                                  * We've determined that the
2128                                                  * path specified is already
2129                                                  * the leftmost one - return a
2130                                                  * cpos of zero.
2131                                                  */
2132                                                 goto out;
2133                                         }
2134                                         /*
2135                                          * The leftmost record points to our
2136                                          * leaf - we need to travel up the
2137                                          * tree one level.
2138                                          */
2139                                         goto next_node;
2140                                 }
2141
2142                                 *cpos = le32_to_cpu(el->l_recs[j - 1].e_cpos);
2143                                 *cpos = *cpos + ocfs2_rec_clusters(el,
2144                                                            &el->l_recs[j - 1]);
2145                                 *cpos = *cpos - 1;
2146                                 goto out;
2147                         }
2148                 }
2149
2150                 /*
2151                  * If we got here, we never found a valid node where
2152                  * the tree indicated one should be.
2153                  */
2154                 ocfs2_error(sb,
2155                             "Invalid extent tree at extent block %llu\n",
2156                             (unsigned long long)blkno);
2157                 ret = -EROFS;
2158                 goto out;
2159
2160 next_node:
2161                 blkno = path->p_node[i].bh->b_blocknr;
2162                 i--;
2163         }
2164
2165 out:
2166         return ret;
2167 }
2168
2169 /*
2170  * Extend the transaction by enough credits to complete the rotation,
2171  * and still leave at least the original number of credits allocated
2172  * to this transaction.
2173  */
2174 static int ocfs2_extend_rotate_transaction(handle_t *handle, int subtree_depth,
2175                                            int op_credits,
2176                                            struct ocfs2_path *path)
2177 {
2178         int credits = (path->p_tree_depth - subtree_depth) * 2 + 1 + op_credits;
2179
2180         if (handle->h_buffer_credits < credits)
2181                 return ocfs2_extend_trans(handle, credits);
2182
2183         return 0;
2184 }
2185
2186 /*
2187  * Trap the case where we're inserting into the theoretical range past
2188  * the _actual_ left leaf range. Otherwise, we'll rotate a record
2189  * whose cpos is less than ours into the right leaf.
2190  *
2191  * It's only necessary to look at the rightmost record of the left
2192  * leaf because the logic that calls us should ensure that the
2193  * theoretical ranges in the path components above the leaves are
2194  * correct.
2195  */
2196 static int ocfs2_rotate_requires_path_adjustment(struct ocfs2_path *left_path,
2197                                                  u32 insert_cpos)
2198 {
2199         struct ocfs2_extent_list *left_el;
2200         struct ocfs2_extent_rec *rec;
2201         int next_free;
2202
2203         left_el = path_leaf_el(left_path);
2204         next_free = le16_to_cpu(left_el->l_next_free_rec);
2205         rec = &left_el->l_recs[next_free - 1];
2206
2207         if (insert_cpos > le32_to_cpu(rec->e_cpos))
2208                 return 1;
2209         return 0;
2210 }
2211
2212 static int ocfs2_leftmost_rec_contains(struct ocfs2_extent_list *el, u32 cpos)
2213 {
2214         int next_free = le16_to_cpu(el->l_next_free_rec);
2215         unsigned int range;
2216         struct ocfs2_extent_rec *rec;
2217
2218         if (next_free == 0)
2219                 return 0;
2220
2221         rec = &el->l_recs[0];
2222         if (ocfs2_is_empty_extent(rec)) {
2223                 /* Empty list. */
2224                 if (next_free == 1)
2225                         return 0;
2226                 rec = &el->l_recs[1];
2227         }
2228
2229         range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
2230         if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
2231                 return 1;
2232         return 0;
2233 }
2234
2235 /*
2236  * Rotate all the records in a btree right one record, starting at insert_cpos.
2237  *
2238  * The path to the rightmost leaf should be passed in.
2239  *
2240  * The array is assumed to be large enough to hold an entire path (tree depth).
2241  *
2242  * Upon succesful return from this function:
2243  *
2244  * - The 'right_path' array will contain a path to the leaf block
2245  *   whose range contains e_cpos.
2246  * - That leaf block will have a single empty extent in list index 0.
2247  * - In the case that the rotation requires a post-insert update,
2248  *   *ret_left_path will contain a valid path which can be passed to
2249  *   ocfs2_insert_path().
2250  */
2251 static int ocfs2_rotate_tree_right(struct inode *inode,
2252                                    handle_t *handle,
2253                                    enum ocfs2_split_type split,
2254                                    u32 insert_cpos,
2255                                    struct ocfs2_path *right_path,
2256                                    struct ocfs2_path **ret_left_path)
2257 {
2258         int ret, start, orig_credits = handle->h_buffer_credits;
2259         u32 cpos;
2260         struct ocfs2_path *left_path = NULL;
2261
2262         *ret_left_path = NULL;
2263
2264         left_path = ocfs2_new_path_from_path(right_path);
2265         if (!left_path) {
2266                 ret = -ENOMEM;
2267                 mlog_errno(ret);
2268                 goto out;
2269         }
2270
2271         ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path, &cpos);
2272         if (ret) {
2273                 mlog_errno(ret);
2274                 goto out;
2275         }
2276
2277         mlog(0, "Insert: %u, first left path cpos: %u\n", insert_cpos, cpos);
2278
2279         /*
2280          * What we want to do here is:
2281          *
2282          * 1) Start with the rightmost path.
2283          *
2284          * 2) Determine a path to the leaf block directly to the left
2285          *    of that leaf.
2286          *
2287          * 3) Determine the 'subtree root' - the lowest level tree node
2288          *    which contains a path to both leaves.
2289          *
2290          * 4) Rotate the subtree.
2291          *
2292          * 5) Find the next subtree by considering the left path to be
2293          *    the new right path.
2294          *
2295          * The check at the top of this while loop also accepts
2296          * insert_cpos == cpos because cpos is only a _theoretical_
2297          * value to get us the left path - insert_cpos might very well
2298          * be filling that hole.
2299          *
2300          * Stop at a cpos of '0' because we either started at the
2301          * leftmost branch (i.e., a tree with one branch and a
2302          * rotation inside of it), or we've gone as far as we can in
2303          * rotating subtrees.
2304          */
2305         while (cpos && insert_cpos <= cpos) {
2306                 mlog(0, "Rotating a tree: ins. cpos: %u, left path cpos: %u\n",
2307                      insert_cpos, cpos);
2308
2309                 ret = ocfs2_find_path(inode, left_path, cpos);
2310                 if (ret) {
2311                         mlog_errno(ret);
2312                         goto out;
2313                 }
2314
2315                 mlog_bug_on_msg(path_leaf_bh(left_path) ==
2316                                 path_leaf_bh(right_path),
2317                                 "Inode %lu: error during insert of %u "
2318                                 "(left path cpos %u) results in two identical "
2319                                 "paths ending at %llu\n",
2320                                 inode->i_ino, insert_cpos, cpos,
2321                                 (unsigned long long)
2322                                 path_leaf_bh(left_path)->b_blocknr);
2323
2324                 if (split == SPLIT_NONE &&
2325                     ocfs2_rotate_requires_path_adjustment(left_path,
2326                                                           insert_cpos)) {
2327
2328                         /*
2329                          * We've rotated the tree as much as we
2330                          * should. The rest is up to
2331                          * ocfs2_insert_path() to complete, after the
2332                          * record insertion. We indicate this
2333                          * situation by returning the left path.
2334                          *
2335                          * The reason we don't adjust the records here
2336                          * before the record insert is that an error
2337                          * later might break the rule where a parent
2338                          * record e_cpos will reflect the actual
2339                          * e_cpos of the 1st nonempty record of the
2340                          * child list.
2341                          */
2342                         *ret_left_path = left_path;
2343                         goto out_ret_path;
2344                 }
2345
2346                 start = ocfs2_find_subtree_root(inode, left_path, right_path);
2347
2348                 mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n",
2349                      start,
2350                      (unsigned long long) right_path->p_node[start].bh->b_blocknr,
2351                      right_path->p_tree_depth);
2352
2353                 ret = ocfs2_extend_rotate_transaction(handle, start,
2354                                                       orig_credits, right_path);
2355                 if (ret) {
2356                         mlog_errno(ret);
2357                         goto out;
2358                 }
2359
2360                 ret = ocfs2_rotate_subtree_right(inode, handle, left_path,
2361                                                  right_path, start);
2362                 if (ret) {
2363                         mlog_errno(ret);
2364                         goto out;
2365                 }
2366
2367                 if (split != SPLIT_NONE &&
2368                     ocfs2_leftmost_rec_contains(path_leaf_el(right_path),
2369                                                 insert_cpos)) {
2370                         /*
2371                          * A rotate moves the rightmost left leaf
2372                          * record over to the leftmost right leaf
2373                          * slot. If we're doing an extent split
2374                          * instead of a real insert, then we have to
2375                          * check that the extent to be split wasn't
2376                          * just moved over. If it was, then we can
2377                          * exit here, passing left_path back -
2378                          * ocfs2_split_extent() is smart enough to
2379                          * search both leaves.
2380                          */
2381                         *ret_left_path = left_path;
2382                         goto out_ret_path;
2383                 }
2384
2385                 /*
2386                  * There is no need to re-read the next right path
2387                  * as we know that it'll be our current left
2388                  * path. Optimize by copying values instead.
2389                  */
2390                 ocfs2_mv_path(right_path, left_path);
2391
2392                 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path,
2393                                                     &cpos);
2394                 if (ret) {
2395                         mlog_errno(ret);
2396                         goto out;
2397                 }
2398         }
2399
2400 out:
2401         ocfs2_free_path(left_path);
2402
2403 out_ret_path:
2404         return ret;
2405 }
2406
2407 static void ocfs2_update_edge_lengths(struct inode *inode, handle_t *handle,
2408                                       struct ocfs2_path *path)
2409 {
2410         int i, idx;
2411         struct ocfs2_extent_rec *rec;
2412         struct ocfs2_extent_list *el;
2413         struct ocfs2_extent_block *eb;
2414         u32 range;
2415
2416         /* Path should always be rightmost. */
2417         eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
2418         BUG_ON(eb->h_next_leaf_blk != 0ULL);
2419
2420         el = &eb->h_list;
2421         BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0);
2422         idx = le16_to_cpu(el->l_next_free_rec) - 1;
2423         rec = &el->l_recs[idx];
2424         range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
2425
2426         for (i = 0; i < path->p_tree_depth; i++) {
2427                 el = path->p_node[i].el;
2428                 idx = le16_to_cpu(el->l_next_free_rec) - 1;
2429                 rec = &el->l_recs[idx];
2430
2431                 rec->e_int_clusters = cpu_to_le32(range);
2432                 le32_add_cpu(&rec->e_int_clusters, -le32_to_cpu(rec->e_cpos));
2433
2434                 ocfs2_journal_dirty(handle, path->p_node[i].bh);
2435         }
2436 }
2437
2438 static void ocfs2_unlink_path(struct inode *inode, handle_t *handle,
2439                               struct ocfs2_cached_dealloc_ctxt *dealloc,
2440                               struct ocfs2_path *path, int unlink_start)
2441 {
2442         int ret, i;
2443         struct ocfs2_extent_block *eb;
2444         struct ocfs2_extent_list *el;
2445         struct buffer_head *bh;
2446
2447         for(i = unlink_start; i < path_num_items(path); i++) {
2448                 bh = path->p_node[i].bh;
2449
2450                 eb = (struct ocfs2_extent_block *)bh->b_data;
2451                 /*
2452                  * Not all nodes might have had their final count
2453                  * decremented by the caller - handle this here.
2454                  */
2455                 el = &eb->h_list;
2456                 if (le16_to_cpu(el->l_next_free_rec) > 1) {
2457                         mlog(ML_ERROR,
2458                              "Inode %llu, attempted to remove extent block "
2459                              "%llu with %u records\n",
2460                              (unsigned long long)OCFS2_I(inode)->ip_blkno,
2461                              (unsigned long long)le64_to_cpu(eb->h_blkno),
2462                              le16_to_cpu(el->l_next_free_rec));
2463
2464                         ocfs2_journal_dirty(handle, bh);
2465                         ocfs2_remove_from_cache(inode, bh);
2466                         continue;
2467                 }
2468
2469                 el->l_next_free_rec = 0;
2470                 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2471
2472                 ocfs2_journal_dirty(handle, bh);
2473
2474                 ret = ocfs2_cache_extent_block_free(dealloc, eb);
2475                 if (ret)
2476                         mlog_errno(ret);
2477
2478                 ocfs2_remove_from_cache(inode, bh);
2479         }
2480 }
2481
2482 static void ocfs2_unlink_subtree(struct inode *inode, handle_t *handle,
2483                                  struct ocfs2_path *left_path,
2484                                  struct ocfs2_path *right_path,
2485                                  int subtree_index,
2486                                  struct ocfs2_cached_dealloc_ctxt *dealloc)
2487 {
2488         int i;
2489         struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
2490         struct ocfs2_extent_list *root_el = left_path->p_node[subtree_index].el;
2491         struct ocfs2_extent_list *el;
2492         struct ocfs2_extent_block *eb;
2493
2494         el = path_leaf_el(left_path);
2495
2496         eb = (struct ocfs2_extent_block *)right_path->p_node[subtree_index + 1].bh->b_data;
2497
2498         for(i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++)
2499                 if (root_el->l_recs[i].e_blkno == eb->h_blkno)
2500                         break;
2501
2502         BUG_ON(i >= le16_to_cpu(root_el->l_next_free_rec));
2503
2504         memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
2505         le16_add_cpu(&root_el->l_next_free_rec, -1);
2506
2507         eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2508         eb->h_next_leaf_blk = 0;
2509
2510         ocfs2_journal_dirty(handle, root_bh);
2511         ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2512
2513         ocfs2_unlink_path(inode, handle, dealloc, right_path,
2514                           subtree_index + 1);
2515 }
2516
2517 static int ocfs2_rotate_subtree_left(struct inode *inode, handle_t *handle,
2518                                      struct ocfs2_path *left_path,
2519                                      struct ocfs2_path *right_path,
2520                                      int subtree_index,
2521                                      struct ocfs2_cached_dealloc_ctxt *dealloc,
2522                                      int *deleted,
2523                                      struct ocfs2_extent_tree *et)
2524 {
2525         int ret, i, del_right_subtree = 0, right_has_empty = 0;
2526         struct buffer_head *root_bh, *et_root_bh = path_root_bh(right_path);
2527         struct ocfs2_extent_list *right_leaf_el, *left_leaf_el;
2528         struct ocfs2_extent_block *eb;
2529
2530         *deleted = 0;
2531
2532         right_leaf_el = path_leaf_el(right_path);
2533         left_leaf_el = path_leaf_el(left_path);
2534         root_bh = left_path->p_node[subtree_index].bh;
2535         BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
2536
2537         if (!ocfs2_is_empty_extent(&left_leaf_el->l_recs[0]))
2538                 return 0;
2539
2540         eb = (struct ocfs2_extent_block *)path_leaf_bh(right_path)->b_data;
2541         if (ocfs2_is_empty_extent(&right_leaf_el->l_recs[0])) {
2542                 /*
2543                  * It's legal for us to proceed if the right leaf is
2544                  * the rightmost one and it has an empty extent. There
2545                  * are two cases to handle - whether the leaf will be
2546                  * empty after removal or not. If the leaf isn't empty
2547                  * then just remove the empty extent up front. The
2548                  * next block will handle empty leaves by flagging
2549                  * them for unlink.
2550                  *
2551                  * Non rightmost leaves will throw -EAGAIN and the
2552                  * caller can manually move the subtree and retry.
2553                  */
2554
2555                 if (eb->h_next_leaf_blk != 0ULL)
2556                         return -EAGAIN;
2557
2558                 if (le16_to_cpu(right_leaf_el->l_next_free_rec) > 1) {
2559                         ret = ocfs2_journal_access_eb(handle, inode,
2560                                                       path_leaf_bh(right_path),
2561                                                       OCFS2_JOURNAL_ACCESS_WRITE);
2562                         if (ret) {
2563                                 mlog_errno(ret);
2564                                 goto out;
2565                         }
2566
2567                         ocfs2_remove_empty_extent(right_leaf_el);
2568                 } else
2569                         right_has_empty = 1;
2570         }
2571
2572         if (eb->h_next_leaf_blk == 0ULL &&
2573             le16_to_cpu(right_leaf_el->l_next_free_rec) == 1) {
2574                 /*
2575                  * We have to update i_last_eb_blk during the meta
2576                  * data delete.
2577                  */
2578                 ret = ocfs2_et_root_journal_access(handle, inode, et,
2579                                                    OCFS2_JOURNAL_ACCESS_WRITE);
2580                 if (ret) {
2581                         mlog_errno(ret);
2582                         goto out;
2583                 }
2584
2585                 del_right_subtree = 1;
2586         }
2587
2588         /*
2589          * Getting here with an empty extent in the right path implies
2590          * that it's the rightmost path and will be deleted.
2591          */
2592         BUG_ON(right_has_empty && !del_right_subtree);
2593
2594         ret = ocfs2_path_bh_journal_access(handle, inode, right_path,
2595                                            subtree_index);
2596         if (ret) {
2597                 mlog_errno(ret);
2598                 goto out;
2599         }
2600
2601         for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
2602                 ret = ocfs2_path_bh_journal_access(handle, inode,
2603                                                    right_path, i);
2604                 if (ret) {
2605                         mlog_errno(ret);
2606                         goto out;
2607                 }
2608
2609                 ret = ocfs2_path_bh_journal_access(handle, inode,
2610                                                    left_path, i);
2611                 if (ret) {
2612                         mlog_errno(ret);
2613                         goto out;
2614                 }
2615         }
2616
2617         if (!right_has_empty) {
2618                 /*
2619                  * Only do this if we're moving a real
2620                  * record. Otherwise, the action is delayed until
2621                  * after removal of the right path in which case we
2622                  * can do a simple shift to remove the empty extent.
2623                  */
2624                 ocfs2_rotate_leaf(left_leaf_el, &right_leaf_el->l_recs[0]);
2625                 memset(&right_leaf_el->l_recs[0], 0,
2626                        sizeof(struct ocfs2_extent_rec));
2627         }
2628         if (eb->h_next_leaf_blk == 0ULL) {
2629                 /*
2630                  * Move recs over to get rid of empty extent, decrease
2631                  * next_free. This is allowed to remove the last
2632                  * extent in our leaf (setting l_next_free_rec to
2633                  * zero) - the delete code below won't care.
2634                  */
2635                 ocfs2_remove_empty_extent(right_leaf_el);
2636         }
2637
2638         ret = ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2639         if (ret)
2640                 mlog_errno(ret);
2641         ret = ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
2642         if (ret)
2643                 mlog_errno(ret);
2644
2645         if (del_right_subtree) {
2646                 ocfs2_unlink_subtree(inode, handle, left_path, right_path,
2647                                      subtree_index, dealloc);
2648                 ocfs2_update_edge_lengths(inode, handle, left_path);
2649
2650                 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2651                 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
2652
2653                 /*
2654                  * Removal of the extent in the left leaf was skipped
2655                  * above so we could delete the right path
2656                  * 1st.
2657                  */
2658                 if (right_has_empty)
2659                         ocfs2_remove_empty_extent(left_leaf_el);
2660
2661                 ret = ocfs2_journal_dirty(handle, et_root_bh);
2662                 if (ret)
2663                         mlog_errno(ret);
2664
2665                 *deleted = 1;
2666         } else
2667                 ocfs2_complete_edge_insert(inode, handle, left_path, right_path,
2668                                            subtree_index);
2669
2670 out:
2671         return ret;
2672 }
2673
2674 /*
2675  * Given a full path, determine what cpos value would return us a path
2676  * containing the leaf immediately to the right of the current one.
2677  *
2678  * Will return zero if the path passed in is already the rightmost path.
2679  *
2680  * This looks similar, but is subtly different to
2681  * ocfs2_find_cpos_for_left_leaf().
2682  */
2683 static int ocfs2_find_cpos_for_right_leaf(struct super_block *sb,
2684                                           struct ocfs2_path *path, u32 *cpos)
2685 {
2686         int i, j, ret = 0;
2687         u64 blkno;
2688         struct ocfs2_extent_list *el;
2689
2690         *cpos = 0;
2691
2692         if (path->p_tree_depth == 0)
2693                 return 0;
2694
2695         blkno = path_leaf_bh(path)->b_blocknr;
2696
2697         /* Start at the tree node just above the leaf and work our way up. */
2698         i = path->p_tree_depth - 1;
2699         while (i >= 0) {
2700                 int next_free;
2701
2702                 el = path->p_node[i].el;
2703
2704                 /*
2705                  * Find the extent record just after the one in our
2706                  * path.
2707                  */
2708                 next_free = le16_to_cpu(el->l_next_free_rec);
2709                 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
2710                         if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
2711                                 if (j == (next_free - 1)) {
2712                                         if (i == 0) {
2713                                                 /*
2714                                                  * We've determined that the
2715                                                  * path specified is already
2716                                                  * the rightmost one - return a
2717                                                  * cpos of zero.
2718                                                  */
2719                                                 goto out;
2720                                         }
2721                                         /*
2722                                          * The rightmost record points to our
2723                                          * leaf - we need to travel up the
2724                                          * tree one level.
2725                                          */
2726                                         goto next_node;
2727                                 }
2728
2729                                 *cpos = le32_to_cpu(el->l_recs[j + 1].e_cpos);
2730                                 goto out;
2731                         }
2732                 }
2733
2734                 /*
2735                  * If we got here, we never found a valid node where
2736                  * the tree indicated one should be.
2737                  */
2738                 ocfs2_error(sb,
2739                             "Invalid extent tree at extent block %llu\n",
2740                             (unsigned long long)blkno);
2741                 ret = -EROFS;
2742                 goto out;
2743
2744 next_node:
2745                 blkno = path->p_node[i].bh->b_blocknr;
2746                 i--;
2747         }
2748
2749 out:
2750         return ret;
2751 }
2752
2753 static int ocfs2_rotate_rightmost_leaf_left(struct inode *inode,
2754                                             handle_t *handle,
2755                                             struct ocfs2_path *path)
2756 {
2757         int ret;
2758         struct buffer_head *bh = path_leaf_bh(path);
2759         struct ocfs2_extent_list *el = path_leaf_el(path);
2760
2761         if (!ocfs2_is_empty_extent(&el->l_recs[0]))
2762                 return 0;
2763
2764         ret = ocfs2_path_bh_journal_access(handle, inode, path,
2765                                            path_num_items(path) - 1);
2766         if (ret) {
2767                 mlog_errno(ret);
2768                 goto out;
2769         }
2770
2771         ocfs2_remove_empty_extent(el);
2772
2773         ret = ocfs2_journal_dirty(handle, bh);
2774         if (ret)
2775                 mlog_errno(ret);
2776
2777 out:
2778         return ret;
2779 }
2780
2781 static int __ocfs2_rotate_tree_left(struct inode *inode,
2782                                     handle_t *handle, int orig_credits,
2783                                     struct ocfs2_path *path,
2784                                     struct ocfs2_cached_dealloc_ctxt *dealloc,
2785                                     struct ocfs2_path **empty_extent_path,
2786                                     struct ocfs2_extent_tree *et)
2787 {
2788         int ret, subtree_root, deleted;
2789         u32 right_cpos;
2790         struct ocfs2_path *left_path = NULL;
2791         struct ocfs2_path *right_path = NULL;
2792
2793         BUG_ON(!ocfs2_is_empty_extent(&(path_leaf_el(path)->l_recs[0])));
2794
2795         *empty_extent_path = NULL;
2796
2797         ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, path,
2798                                              &right_cpos);
2799         if (ret) {
2800                 mlog_errno(ret);
2801                 goto out;
2802         }
2803
2804         left_path = ocfs2_new_path_from_path(path);
2805         if (!left_path) {
2806                 ret = -ENOMEM;
2807                 mlog_errno(ret);
2808                 goto out;
2809         }
2810
2811         ocfs2_cp_path(left_path, path);
2812
2813         right_path = ocfs2_new_path_from_path(path);
2814         if (!right_path) {
2815                 ret = -ENOMEM;
2816                 mlog_errno(ret);
2817                 goto out;
2818         }
2819
2820         while (right_cpos) {
2821                 ret = ocfs2_find_path(inode, right_path, right_cpos);
2822                 if (ret) {
2823                         mlog_errno(ret);
2824                         goto out;
2825                 }
2826
2827                 subtree_root = ocfs2_find_subtree_root(inode, left_path,
2828                                                        right_path);
2829
2830                 mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n",
2831                      subtree_root,
2832                      (unsigned long long)
2833                      right_path->p_node[subtree_root].bh->b_blocknr,
2834                      right_path->p_tree_depth);
2835
2836                 ret = ocfs2_extend_rotate_transaction(handle, subtree_root,
2837                                                       orig_credits, left_path);
2838                 if (ret) {
2839                         mlog_errno(ret);
2840                         goto out;
2841                 }
2842
2843                 /*
2844                  * Caller might still want to make changes to the
2845                  * tree root, so re-add it to the journal here.
2846                  */
2847                 ret = ocfs2_path_bh_journal_access(handle, inode,
2848                                                    left_path, 0);
2849                 if (ret) {
2850                         mlog_errno(ret);
2851                         goto out;
2852                 }
2853
2854                 ret = ocfs2_rotate_subtree_left(inode, handle, left_path,
2855                                                 right_path, subtree_root,
2856                                                 dealloc, &deleted, et);
2857                 if (ret == -EAGAIN) {
2858                         /*
2859                          * The rotation has to temporarily stop due to
2860                          * the right subtree having an empty
2861                          * extent. Pass it back to the caller for a
2862                          * fixup.
2863                          */
2864                         *empty_extent_path = right_path;
2865                         right_path = NULL;
2866                         goto out;
2867                 }
2868                 if (ret) {
2869                         mlog_errno(ret);
2870                         goto out;
2871                 }
2872
2873                 /*
2874                  * The subtree rotate might have removed records on
2875                  * the rightmost edge. If so, then rotation is
2876                  * complete.
2877                  */
2878                 if (deleted)
2879                         break;
2880
2881                 ocfs2_mv_path(left_path, right_path);
2882
2883                 ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, left_path,
2884                                                      &right_cpos);
2885                 if (ret) {
2886                         mlog_errno(ret);
2887                         goto out;
2888                 }
2889         }
2890
2891 out:
2892         ocfs2_free_path(right_path);
2893         ocfs2_free_path(left_path);
2894
2895         return ret;
2896 }
2897
2898 static int ocfs2_remove_rightmost_path(struct inode *inode, handle_t *handle,
2899                                 struct ocfs2_path *path,
2900                                 struct ocfs2_cached_dealloc_ctxt *dealloc,
2901                                 struct ocfs2_extent_tree *et)
2902 {
2903         int ret, subtree_index;
2904         u32 cpos;
2905         struct ocfs2_path *left_path = NULL;
2906         struct ocfs2_extent_block *eb;
2907         struct ocfs2_extent_list *el;
2908
2909
2910         ret = ocfs2_et_sanity_check(inode, et);
2911         if (ret)
2912                 goto out;
2913         /*
2914          * There's two ways we handle this depending on
2915          * whether path is the only existing one.
2916          */
2917         ret = ocfs2_extend_rotate_transaction(handle, 0,
2918                                               handle->h_buffer_credits,
2919                                               path);
2920         if (ret) {
2921                 mlog_errno(ret);
2922                 goto out;
2923         }
2924
2925         ret = ocfs2_journal_access_path(inode, handle, path);
2926         if (ret) {
2927                 mlog_errno(ret);
2928                 goto out;
2929         }
2930
2931         ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, &cpos);
2932         if (ret) {
2933                 mlog_errno(ret);
2934                 goto out;
2935         }
2936
2937         if (cpos) {
2938                 /*
2939                  * We have a path to the left of this one - it needs
2940                  * an update too.
2941                  */
2942                 left_path = ocfs2_new_path_from_path(path);
2943                 if (!left_path) {
2944                         ret = -ENOMEM;
2945                         mlog_errno(ret);
2946                         goto out;
2947                 }
2948
2949                 ret = ocfs2_find_path(inode, left_path, cpos);
2950                 if (ret) {
2951                         mlog_errno(ret);
2952                         goto out;
2953                 }
2954
2955                 ret = ocfs2_journal_access_path(inode, handle, left_path);
2956                 if (ret) {
2957                         mlog_errno(ret);
2958                         goto out;
2959                 }
2960
2961                 subtree_index = ocfs2_find_subtree_root(inode, left_path, path);
2962
2963                 ocfs2_unlink_subtree(inode, handle, left_path, path,
2964                                      subtree_index, dealloc);
2965                 ocfs2_update_edge_lengths(inode, handle, left_path);
2966
2967                 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2968                 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
2969         } else {
2970                 /*
2971                  * 'path' is also the leftmost path which
2972                  * means it must be the only one. This gets
2973                  * handled differently because we want to
2974                  * revert the inode back to having extents
2975                  * in-line.
2976                  */
2977                 ocfs2_unlink_path(inode, handle, dealloc, path, 1);
2978
2979                 el = et->et_root_el;
2980                 el->l_tree_depth = 0;
2981                 el->l_next_free_rec = 0;
2982                 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2983
2984                 ocfs2_et_set_last_eb_blk(et, 0);
2985         }
2986
2987         ocfs2_journal_dirty(handle, path_root_bh(path));
2988
2989 out:
2990         ocfs2_free_path(left_path);
2991         return ret;
2992 }
2993
2994 /*
2995  * Left rotation of btree records.
2996  *
2997  * In many ways, this is (unsurprisingly) the opposite of right
2998  * rotation. We start at some non-rightmost path containing an empty
2999  * extent in the leaf block. The code works its way to the rightmost
3000  * path by rotating records to the left in every subtree.
3001  *
3002  * This is used by any code which reduces the number of extent records
3003  * in a leaf. After removal, an empty record should be placed in the
3004  * leftmost list position.
3005  *
3006  * This won't handle a length update of the rightmost path records if
3007  * the rightmost tree leaf record is removed so the caller is
3008  * responsible for detecting and correcting that.
3009  */
3010 static int ocfs2_rotate_tree_left(struct inode *inode, handle_t *handle,
3011                                   struct ocfs2_path *path,
3012                                   struct ocfs2_cached_dealloc_ctxt *dealloc,
3013                                   struct ocfs2_extent_tree *et)
3014 {
3015         int ret, orig_credits = handle->h_buffer_credits;
3016         struct ocfs2_path *tmp_path = NULL, *restart_path = NULL;
3017         struct ocfs2_extent_block *eb;
3018         struct ocfs2_extent_list *el;
3019
3020         el = path_leaf_el(path);
3021         if (!ocfs2_is_empty_extent(&el->l_recs[0]))
3022                 return 0;
3023
3024         if (path->p_tree_depth == 0) {
3025 rightmost_no_delete:
3026                 /*
3027                  * Inline extents. This is trivially handled, so do
3028                  * it up front.
3029                  */
3030                 ret = ocfs2_rotate_rightmost_leaf_left(inode, handle,
3031                                                        path);
3032                 if (ret)
3033                         mlog_errno(ret);
3034                 goto out;
3035         }
3036
3037         /*
3038          * Handle rightmost branch now. There's several cases:
3039          *  1) simple rotation leaving records in there. That's trivial.
3040          *  2) rotation requiring a branch delete - there's no more
3041          *     records left. Two cases of this:
3042          *     a) There are branches to the left.
3043          *     b) This is also the leftmost (the only) branch.
3044          *
3045          *  1) is handled via ocfs2_rotate_rightmost_leaf_left()
3046          *  2a) we need the left branch so that we can update it with the unlink
3047          *  2b) we need to bring the inode back to inline extents.
3048          */
3049
3050         eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
3051         el = &eb->h_list;
3052         if (eb->h_next_leaf_blk == 0) {
3053                 /*
3054                  * This gets a bit tricky if we're going to delete the
3055                  * rightmost path. Get the other cases out of the way
3056                  * 1st.
3057                  */
3058                 if (le16_to_cpu(el->l_next_free_rec) > 1)
3059                         goto rightmost_no_delete;
3060
3061                 if (le16_to_cpu(el->l_next_free_rec) == 0) {
3062                         ret = -EIO;
3063                         ocfs2_error(inode->i_sb,
3064                                     "Inode %llu has empty extent block at %llu",
3065                                     (unsigned long long)OCFS2_I(inode)->ip_blkno,
3066                                     (unsigned long long)le64_to_cpu(eb->h_blkno));
3067                         goto out;
3068                 }
3069
3070                 /*
3071                  * XXX: The caller can not trust "path" any more after
3072                  * this as it will have been deleted. What do we do?
3073                  *
3074                  * In theory the rotate-for-merge code will never get
3075                  * here because it'll always ask for a rotate in a
3076                  * nonempty list.
3077                  */
3078
3079                 ret = ocfs2_remove_rightmost_path(inode, handle, path,
3080                                                   dealloc, et);
3081                 if (ret)
3082                         mlog_errno(ret);
3083                 goto out;
3084         }
3085
3086         /*
3087          * Now we can loop, remembering the path we get from -EAGAIN
3088          * and restarting from there.
3089          */
3090 try_rotate:
3091         ret = __ocfs2_rotate_tree_left(inode, handle, orig_credits, path,
3092                                        dealloc, &restart_path, et);
3093         if (ret && ret != -EAGAIN) {
3094                 mlog_errno(ret);
3095                 goto out;
3096         }
3097
3098         while (ret == -EAGAIN) {
3099                 tmp_path = restart_path;
3100                 restart_path = NULL;
3101
3102                 ret = __ocfs2_rotate_tree_left(inode, handle, orig_credits,
3103                                                tmp_path, dealloc,
3104                                                &restart_path, et);
3105                 if (ret && ret != -EAGAIN) {
3106                         mlog_errno(ret);
3107                         goto out;
3108                 }
3109
3110                 ocfs2_free_path(tmp_path);
3111                 tmp_path = NULL;
3112
3113                 if (ret == 0)
3114                         goto try_rotate;
3115         }
3116
3117 out:
3118         ocfs2_free_path(tmp_path);
3119         ocfs2_free_path(restart_path);
3120         return ret;
3121 }
3122
3123 static void ocfs2_cleanup_merge(struct ocfs2_extent_list *el,
3124                                 int index)
3125 {
3126         struct ocfs2_extent_rec *rec = &el->l_recs[index];
3127         unsigned int size;
3128
3129         if (rec->e_leaf_clusters == 0) {
3130                 /*
3131                  * We consumed all of the merged-from record. An empty
3132                  * extent cannot exist anywhere but the 1st array
3133                  * position, so move things over if the merged-from
3134                  * record doesn't occupy that position.
3135                  *
3136                  * This creates a new empty extent so the caller
3137                  * should be smart enough to have removed any existing
3138                  * ones.
3139                  */
3140                 if (index > 0) {
3141                         BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
3142                         size = index * sizeof(struct ocfs2_extent_rec);
3143                         memmove(&el->l_recs[1], &el->l_recs[0], size);
3144                 }
3145
3146                 /*
3147                  * Always memset - the caller doesn't check whether it
3148                  * created an empty extent, so there could be junk in
3149                  * the other fields.
3150                  */
3151                 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
3152         }
3153 }
3154
3155 static int ocfs2_get_right_path(struct inode *inode,
3156                                 struct ocfs2_path *left_path,
3157                                 struct ocfs2_path **ret_right_path)
3158 {
3159         int ret;
3160         u32 right_cpos;
3161         struct ocfs2_path *right_path = NULL;
3162         struct ocfs2_extent_list *left_el;
3163
3164         *ret_right_path = NULL;
3165
3166         /* This function shouldn't be called for non-trees. */
3167         BUG_ON(left_path->p_tree_depth == 0);
3168
3169         left_el = path_leaf_el(left_path);
3170         BUG_ON(left_el->l_next_free_rec != left_el->l_count);
3171
3172         ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, left_path,
3173                                              &right_cpos);
3174         if (ret) {
3175                 mlog_errno(ret);
3176                 goto out;
3177         }
3178
3179         /* This function shouldn't be called for the rightmost leaf. */
3180         BUG_ON(right_cpos == 0);
3181
3182         right_path = ocfs2_new_path_from_path(left_path);
3183         if (!right_path) {
3184                 ret = -ENOMEM;
3185                 mlog_errno(ret);
3186                 goto out;
3187         }
3188
3189         ret = ocfs2_find_path(inode, right_path, right_cpos);
3190         if (ret) {
3191                 mlog_errno(ret);
3192                 goto out;
3193         }
3194
3195         *ret_right_path = right_path;
3196 out:
3197         if (ret)
3198                 ocfs2_free_path(right_path);
3199         return ret;
3200 }
3201
3202 /*
3203  * Remove split_rec clusters from the record at index and merge them
3204  * onto the beginning of the record "next" to it.
3205  * For index < l_count - 1, the next means the extent rec at index + 1.
3206  * For index == l_count - 1, the "next" means the 1st extent rec of the
3207  * next extent block.
3208  */
3209 static int ocfs2_merge_rec_right(struct inode *inode,
3210                                  struct ocfs2_path *left_path,
3211                                  handle_t *handle,
3212                                  struct ocfs2_extent_rec *split_rec,
3213                                  int index)
3214 {
3215         int ret, next_free, i;
3216         unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
3217         struct ocfs2_extent_rec *left_rec;
3218         struct ocfs2_extent_rec *right_rec;
3219         struct ocfs2_extent_list *right_el;
3220         struct ocfs2_path *right_path = NULL;
3221         int subtree_index = 0;
3222         struct ocfs2_extent_list *el = path_leaf_el(left_path);
3223         struct buffer_head *bh = path_leaf_bh(left_path);
3224         struct buffer_head *root_bh = NULL;
3225
3226         BUG_ON(index >= le16_to_cpu(el->l_next_free_rec));
3227         left_rec = &el->l_recs[index];
3228
3229         if (index == le16_to_cpu(el->l_next_free_rec) - 1 &&
3230             le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count)) {
3231                 /* we meet with a cross extent block merge. */
3232                 ret = ocfs2_get_right_path(inode, left_path, &right_path);
3233                 if (ret) {
3234                         mlog_errno(ret);
3235                         goto out;
3236                 }
3237
3238                 right_el = path_leaf_el(right_path);
3239                 next_free = le16_to_cpu(right_el->l_next_free_rec);
3240                 BUG_ON(next_free <= 0);
3241                 right_rec = &right_el->l_recs[0];
3242                 if (ocfs2_is_empty_extent(right_rec)) {
3243                         BUG_ON(next_free <= 1);
3244                         right_rec = &right_el->l_recs[1];
3245                 }
3246
3247                 BUG_ON(le32_to_cpu(left_rec->e_cpos) +
3248                        le16_to_cpu(left_rec->e_leaf_clusters) !=
3249                        le32_to_cpu(right_rec->e_cpos));
3250
3251                 subtree_index = ocfs2_find_subtree_root(inode,
3252                                                         left_path, right_path);
3253
3254                 ret = ocfs2_extend_rotate_transaction(handle, subtree_index,
3255                                                       handle->h_buffer_credits,
3256                                                       right_path);
3257                 if (ret) {
3258                         mlog_errno(ret);
3259                         goto out;
3260                 }
3261
3262                 root_bh = left_path->p_node[subtree_index].bh;
3263                 BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
3264
3265                 ret = ocfs2_path_bh_journal_access(handle, inode, right_path,
3266                                                    subtree_index);
3267                 if (ret) {
3268                         mlog_errno(ret);
3269                         goto out;
3270                 }
3271
3272                 for (i = subtree_index + 1;
3273                      i < path_num_items(right_path); i++) {
3274                         ret = ocfs2_path_bh_journal_access(handle, inode,
3275                                                            right_path, i);
3276                         if (ret) {
3277                                 mlog_errno(ret);
3278                                 goto out;
3279                         }
3280
3281                         ret = ocfs2_path_bh_journal_access(handle, inode,
3282                                                            left_path, i);
3283                         if (ret) {
3284                                 mlog_errno(ret);
3285                                 goto out;
3286                         }
3287                 }
3288
3289         } else {
3290                 BUG_ON(index == le16_to_cpu(el->l_next_free_rec) - 1);
3291                 right_rec = &el->l_recs[index + 1];
3292         }
3293
3294         ret = ocfs2_path_bh_journal_access(handle, inode, left_path,
3295                                            path_num_items(left_path) - 1);
3296         if (ret) {
3297                 mlog_errno(ret);
3298                 goto out;
3299         }
3300
3301         le16_add_cpu(&left_rec->e_leaf_clusters, -split_clusters);
3302
3303         le32_add_cpu(&right_rec->e_cpos, -split_clusters);
3304         le64_add_cpu(&right_rec->e_blkno,
3305                      -ocfs2_clusters_to_blocks(inode->i_sb, split_clusters));
3306         le16_add_cpu(&right_rec->e_leaf_clusters, split_clusters);
3307
3308         ocfs2_cleanup_merge(el, index);
3309
3310         ret = ocfs2_journal_dirty(handle, bh);
3311         if (ret)
3312                 mlog_errno(ret);
3313
3314         if (right_path) {
3315                 ret = ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
3316                 if (ret)
3317                         mlog_errno(ret);
3318
3319                 ocfs2_complete_edge_insert(inode, handle, left_path,
3320                                            right_path, subtree_index);
3321         }
3322 out:
3323         if (right_path)
3324                 ocfs2_free_path(right_path);
3325         return ret;
3326 }
3327
3328 static int ocfs2_get_left_path(struct inode *inode,
3329                                struct ocfs2_path *right_path,
3330                                struct ocfs2_path **ret_left_path)
3331 {
3332         int ret;
3333         u32 left_cpos;
3334         struct ocfs2_path *left_path = NULL;
3335
3336         *ret_left_path = NULL;
3337
3338         /* This function shouldn't be called for non-trees. */
3339         BUG_ON(right_path->p_tree_depth == 0);
3340
3341         ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb,
3342                                             right_path, &left_cpos);
3343         if (ret) {
3344                 mlog_errno(ret);
3345                 goto out;
3346         }
3347
3348         /* This function shouldn't be called for the leftmost leaf. */
3349         BUG_ON(left_cpos == 0);
3350
3351         left_path = ocfs2_new_path_from_path(right_path);
3352         if (!left_path) {
3353                 ret = -ENOMEM;
3354                 mlog_errno(ret);
3355                 goto out;
3356         }
3357
3358         ret = ocfs2_find_path(inode, left_path, left_cpos);
3359         if (ret) {
3360                 mlog_errno(ret);
3361                 goto out;
3362         }
3363
3364         *ret_left_path = left_path;
3365 out:
3366         if (ret)
3367                 ocfs2_free_path(left_path);
3368         return ret;
3369 }
3370
3371 /*
3372  * Remove split_rec clusters from the record at index and merge them
3373  * onto the tail of the record "before" it.
3374  * For index > 0, the "before" means the extent rec at index - 1.
3375  *
3376  * For index == 0, the "before" means the last record of the previous
3377  * extent block. And there is also a situation that we may need to
3378  * remove the rightmost leaf extent block in the right_path and change
3379  * the right path to indicate the new rightmost path.
3380  */
3381 static int ocfs2_merge_rec_left(struct inode *inode,
3382                                 struct ocfs2_path *right_path,
3383                                 handle_t *handle,
3384                                 struct ocfs2_extent_rec *split_rec,
3385                                 struct ocfs2_cached_dealloc_ctxt *dealloc,
3386                                 struct ocfs2_extent_tree *et,
3387                                 int index)
3388 {
3389         int ret, i, subtree_index = 0, has_empty_extent = 0;
3390         unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
3391         struct ocfs2_extent_rec *left_rec;
3392         struct ocfs2_extent_rec *right_rec;
3393         struct ocfs2_extent_list *el = path_leaf_el(right_path);
3394         struct buffer_head *bh = path_leaf_bh(right_path);
3395         struct buffer_head *root_bh = NULL;
3396         struct ocfs2_path *left_path = NULL;
3397         struct ocfs2_extent_list *left_el;
3398
3399         BUG_ON(index < 0);
3400
3401         right_rec = &el->l_recs[index];
3402         if (index == 0) {
3403                 /* we meet with a cross extent block merge. */
3404                 ret = ocfs2_get_left_path(inode, right_path, &left_path);
3405                 if (ret) {
3406                         mlog_errno(ret);
3407                         goto out;
3408                 }
3409
3410                 left_el = path_leaf_el(left_path);
3411                 BUG_ON(le16_to_cpu(left_el->l_next_free_rec) !=
3412                        le16_to_cpu(left_el->l_count));
3413
3414                 left_rec = &left_el->l_recs[
3415                                 le16_to_cpu(left_el->l_next_free_rec) - 1];
3416                 BUG_ON(le32_to_cpu(left_rec->e_cpos) +
3417                        le16_to_cpu(left_rec->e_leaf_clusters) !=
3418                        le32_to_cpu(split_rec->e_cpos));
3419
3420                 subtree_index = ocfs2_find_subtree_root(inode,
3421                                                         left_path, right_path);
3422
3423                 ret = ocfs2_extend_rotate_transaction(handle, subtree_index,
3424                                                       handle->h_buffer_credits,
3425                                                       left_path);
3426                 if (ret) {
3427                         mlog_errno(ret);
3428                         goto out;
3429                 }
3430
3431                 root_bh = left_path->p_node[subtree_index].bh;
3432                 BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
3433
3434                 ret = ocfs2_path_bh_journal_access(handle, inode, right_path,
3435                                                    subtree_index);
3436                 if (ret) {
3437                         mlog_errno(ret);
3438                         goto out;
3439                 }
3440
3441                 for (i = subtree_index + 1;
3442                      i < path_num_items(right_path); i++) {
3443                         ret = ocfs2_path_bh_journal_access(handle, inode,
3444                                                            right_path, i);
3445                         if (ret) {
3446                                 mlog_errno(ret);
3447                                 goto out;
3448                         }
3449
3450                         ret = ocfs2_path_bh_journal_access(handle, inode,
3451                                                            left_path, i);
3452                         if (ret) {
3453                                 mlog_errno(ret);
3454                                 goto out;
3455                         }
3456                 }
3457         } else {
3458                 left_rec = &el->l_recs[index - 1];
3459                 if (ocfs2_is_empty_extent(&el->l_recs[0]))
3460                         has_empty_extent = 1;
3461         }
3462
3463         ret = ocfs2_path_bh_journal_access(handle, inode, right_path,
3464                                            path_num_items(right_path) - 1);
3465         if (ret) {
3466                 mlog_errno(ret);
3467                 goto out;
3468         }
3469
3470         if (has_empty_extent && index == 1) {
3471                 /*
3472                  * The easy case - we can just plop the record right in.
3473                  */
3474                 *left_rec = *split_rec;
3475
3476                 has_empty_extent = 0;
3477         } else
3478                 le16_add_cpu(&left_rec->e_leaf_clusters, split_clusters);
3479
3480         le32_add_cpu(&right_rec->e_cpos, split_clusters);
3481         le64_add_cpu(&right_rec->e_blkno,
3482                      ocfs2_clusters_to_blocks(inode->i_sb, split_clusters));
3483         le16_add_cpu(&right_rec->e_leaf_clusters, -split_clusters);
3484
3485         ocfs2_cleanup_merge(el, index);
3486
3487         ret = ocfs2_journal_dirty(handle, bh);
3488         if (ret)
3489                 mlog_errno(ret);
3490
3491         if (left_path) {
3492                 ret = ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
3493                 if (ret)
3494                         mlog_errno(ret);
3495
3496                 /*
3497                  * In the situation that the right_rec is empty and the extent
3498                  * block is empty also,  ocfs2_complete_edge_insert can't handle
3499                  * it and we need to delete the right extent block.
3500                  */
3501                 if (le16_to_cpu(right_rec->e_leaf_clusters) == 0 &&
3502                     le16_to_cpu(el->l_next_free_rec) == 1) {
3503
3504                         ret = ocfs2_remove_rightmost_path(inode, handle,
3505                                                           right_path,
3506                                                           dealloc, et);
3507                         if (ret) {
3508                                 mlog_errno(ret);
3509                                 goto out;
3510                         }
3511
3512                         /* Now the rightmost extent block has been deleted.
3513                          * So we use the new rightmost path.
3514                          */
3515                         ocfs2_mv_path(right_path, left_path);
3516                         left_path = NULL;
3517                 } else
3518                         ocfs2_complete_edge_insert(inode, handle, left_path,
3519                                                    right_path, subtree_index);
3520         }
3521 out:
3522         if (left_path)
3523                 ocfs2_free_path(left_path);
3524         return ret;
3525 }
3526
3527 static int ocfs2_try_to_merge_extent(struct inode *inode,
3528                                      handle_t *handle,
3529                                      struct ocfs2_path *path,
3530                                      int split_index,
3531                                      struct ocfs2_extent_rec *split_rec,
3532                                      struct ocfs2_cached_dealloc_ctxt *dealloc,
3533                                      struct ocfs2_merge_ctxt *ctxt,
3534                                      struct ocfs2_extent_tree *et)
3535
3536 {
3537         int ret = 0;
3538         struct ocfs2_extent_list *el = path_leaf_el(path);
3539         struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
3540
3541         BUG_ON(ctxt->c_contig_type == CONTIG_NONE);
3542
3543         if (ctxt->c_split_covers_rec && ctxt->c_has_empty_extent) {
3544                 /*
3545                  * The merge code will need to create an empty
3546                  * extent to take the place of the newly
3547                  * emptied slot. Remove any pre-existing empty
3548                  * extents - having more than one in a leaf is
3549                  * illegal.
3550                  */
3551                 ret = ocfs2_rotate_tree_left(inode, handle, path,
3552                                              dealloc, et);
3553                 if (ret) {
3554                         mlog_errno(ret);
3555                         goto out;
3556                 }
3557                 split_index--;
3558                 rec = &el->l_recs[split_index];
3559         }
3560
3561         if (ctxt->c_contig_type == CONTIG_LEFTRIGHT) {
3562                 /*
3563                  * Left-right contig implies this.
3564                  */
3565                 BUG_ON(!ctxt->c_split_covers_rec);
3566
3567                 /*
3568                  * Since the leftright insert always covers the entire
3569                  * extent, this call will delete the insert record
3570                  * entirely, resulting in an empty extent record added to
3571                  * the extent block.
3572                  *
3573                  * Since the adding of an empty extent shifts
3574                  * everything back to the right, there's no need to
3575                  * update split_index here.
3576                  *
3577                  * When the split_index is zero, we need to merge it to the
3578                  * prevoius extent block. It is more efficient and easier
3579                  * if we do merge_right first and merge_left later.
3580                  */
3581                 ret = ocfs2_merge_rec_right(inode, path,
3582                                             handle, split_rec,
3583                                             split_index);
3584                 if (ret) {
3585                         mlog_errno(ret);
3586                         goto out;
3587                 }
3588
3589                 /*
3590                  * We can only get this from logic error above.
3591                  */
3592                 BUG_ON(!ocfs2_is_empty_extent(&el->l_recs[0]));
3593
3594                 /* The merge left us with an empty extent, remove it. */
3595                 ret = ocfs2_rotate_tree_left(inode, handle, path,
3596                                              dealloc, et);
3597                 if (ret) {
3598                         mlog_errno(ret);
3599                         goto out;
3600                 }
3601
3602                 rec = &el->l_recs[split_index];
3603
3604                 /*
3605                  * Note that we don't pass split_rec here on purpose -
3606                  * we've merged it into the rec already.
3607                  */
3608                 ret = ocfs2_merge_rec_left(inode, path,
3609                                            handle, rec,
3610                                            dealloc, et,
3611                                            split_index);
3612
3613                 if (ret) {
3614                         mlog_errno(ret);
3615                         goto out;
3616                 }
3617
3618                 ret = ocfs2_rotate_tree_left(inode, handle, path,
3619                                              dealloc, et);
3620                 /*
3621                  * Error from this last rotate is not critical, so
3622                  * print but don't bubble it up.
3623                  */
3624                 if (ret)
3625                         mlog_errno(ret);
3626                 ret = 0;
3627         } else {
3628                 /*
3629                  * Merge a record to the left or right.
3630                  *
3631                  * 'contig_type' is relative to the existing record,
3632                  * so for example, if we're "right contig", it's to
3633                  * the record on the left (hence the left merge).
3634                  */
3635                 if (ctxt->c_contig_type == CONTIG_RIGHT) {
3636                         ret = ocfs2_merge_rec_left(inode,
3637                                                    path,
3638                                                    handle, split_rec,
3639                                                    dealloc, et,
3640                                                    split_index);
3641                         if (ret) {
3642                                 mlog_errno(ret);
3643                                 goto out;
3644                         }
3645                 } else {
3646                         ret = ocfs2_merge_rec_right(inode,
3647                                                     path,
3648                                                     handle, split_rec,
3649                                                     split_index);
3650                         if (ret) {
3651                                 mlog_errno(ret);
3652                                 goto out;
3653                         }
3654                 }
3655
3656                 if (ctxt->c_split_covers_rec) {
3657                         /*
3658                          * The merge may have left an empty extent in
3659                          * our leaf. Try to rotate it away.
3660                          */
3661                         ret = ocfs2_rotate_tree_left(inode, handle, path,
3662                                                      dealloc, et);
3663                         if (ret)
3664                                 mlog_errno(ret);
3665                         ret = 0;
3666                 }
3667         }
3668
3669 out:
3670         return ret;
3671 }
3672
3673 static void ocfs2_subtract_from_rec(struct super_block *sb,
3674                                     enum ocfs2_split_type split,
3675                                     struct ocfs2_extent_rec *rec,
3676                                     struct ocfs2_extent_rec *split_rec)
3677 {
3678         u64 len_blocks;
3679
3680         len_blocks = ocfs2_clusters_to_blocks(sb,
3681                                 le16_to_cpu(split_rec->e_leaf_clusters));
3682
3683         if (split == SPLIT_LEFT) {
3684                 /*
3685                  * Region is on the left edge of the existing
3686                  * record.
3687                  */
3688                 le32_add_cpu(&rec->e_cpos,
3689                              le16_to_cpu(split_rec->e_leaf_clusters));
3690                 le64_add_cpu(&rec->e_blkno, len_blocks);
3691                 le16_add_cpu(&rec->e_leaf_clusters,
3692                              -le16_to_cpu(split_rec->e_leaf_clusters));
3693         } else {
3694                 /*
3695                  * Region is on the right edge of the existing
3696                  * record.
3697                  */
3698                 le16_add_cpu(&rec->e_leaf_clusters,
3699                              -le16_to_cpu(split_rec->e_leaf_clusters));
3700         }
3701 }
3702
3703 /*
3704  * Do the final bits of extent record insertion at the target leaf
3705  * list. If this leaf is part of an allocation tree, it is assumed
3706  * that the tree above has been prepared.
3707  */
3708 static void ocfs2_insert_at_leaf(struct ocfs2_extent_rec *insert_rec,
3709                                  struct ocfs2_extent_list *el,
3710                                  struct ocfs2_insert_type *insert,
3711                                  struct inode *inode)
3712 {
3713         int i = insert->ins_contig_index;
3714         unsigned int range;
3715         struct ocfs2_extent_rec *rec;
3716
3717         BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
3718
3719         if (insert->ins_split != SPLIT_NONE) {
3720                 i = ocfs2_search_extent_list(el, le32_to_cpu(insert_rec->e_cpos));
3721                 BUG_ON(i == -1);
3722                 rec = &el->l_recs[i];
3723                 ocfs2_subtract_from_rec(inode->i_sb, insert->ins_split, rec,
3724                                         insert_rec);
3725                 goto rotate;
3726         }
3727
3728         /*
3729          * Contiguous insert - either left or right.
3730          */
3731         if (insert->ins_contig != CONTIG_NONE) {
3732                 rec = &el->l_recs[i];
3733                 if (insert->ins_contig == CONTIG_LEFT) {
3734                         rec->e_blkno = insert_rec->e_blkno;
3735                         rec->e_cpos = insert_rec->e_cpos;
3736                 }
3737                 le16_add_cpu(&rec->e_leaf_clusters,
3738                              le16_to_cpu(insert_rec->e_leaf_clusters));
3739                 return;
3740         }
3741
3742         /*
3743          * Handle insert into an empty leaf.
3744          */
3745         if (le16_to_cpu(el->l_next_free_rec) == 0 ||
3746             ((le16_to_cpu(el->l_next_free_rec) == 1) &&
3747              ocfs2_is_empty_extent(&el->l_recs[0]))) {
3748                 el->l_recs[0] = *insert_rec;
3749                 el->l_next_free_rec = cpu_to_le16(1);
3750                 return;
3751         }
3752
3753         /*
3754          * Appending insert.
3755          */
3756         if (insert->ins_appending == APPEND_TAIL) {
3757                 i = le16_to_cpu(el->l_next_free_rec) - 1;
3758                 rec = &el->l_recs[i];
3759                 range = le32_to_cpu(rec->e_cpos)
3760                         + le16_to_cpu(rec->e_leaf_clusters);
3761                 BUG_ON(le32_to_cpu(insert_rec->e_cpos) < range);
3762
3763                 mlog_bug_on_msg(le16_to_cpu(el->l_next_free_rec) >=
3764                                 le16_to_cpu(el->l_count),
3765                                 "inode %lu, depth %u, count %u, next free %u, "
3766                                 "rec.cpos %u, rec.clusters %u, "
3767                                 "insert.cpos %u, insert.clusters %u\n",
3768                                 inode->i_ino,
3769                                 le16_to_cpu(el->l_tree_depth),
3770                                 le16_to_cpu(el->l_count),
3771                                 le16_to_cpu(el->l_next_free_rec),
3772                                 le32_to_cpu(el->l_recs[i].e_cpos),
3773                                 le16_to_cpu(el->l_recs[i].e_leaf_clusters),
3774                                 le32_to_cpu(insert_rec->e_cpos),
3775                                 le16_to_cpu(insert_rec->e_leaf_clusters));
3776                 i++;
3777                 el->l_recs[i] = *insert_rec;
3778                 le16_add_cpu(&el->l_next_free_rec, 1);
3779                 return;
3780         }
3781
3782 rotate:
3783         /*
3784          * Ok, we have to rotate.
3785          *
3786          * At this point, it is safe to assume that inserting into an
3787          * empty leaf and appending to a leaf have both been handled
3788          * above.
3789          *
3790          * This leaf needs to have space, either by the empty 1st
3791          * extent record, or by virtue of an l_next_rec < l_count.
3792          */
3793         ocfs2_rotate_leaf(el, insert_rec);
3794 }
3795
3796 static void ocfs2_adjust_rightmost_records(struct inode *inode,
3797                                            handle_t *handle,
3798                                            struct ocfs2_path *path,
3799                                            struct ocfs2_extent_rec *insert_rec)
3800 {
3801         int ret, i, next_free;
3802         struct buffer_head *bh;
3803         struct ocfs2_extent_list *el;
3804         struct ocfs2_extent_rec *rec;
3805
3806         /*
3807          * Update everything except the leaf block.
3808          */
3809         for (i = 0; i < path->p_tree_depth; i++) {
3810                 bh = path->p_node[i].bh;
3811                 el = path->p_node[i].el;
3812
3813                 next_free = le16_to_cpu(el->l_next_free_rec);
3814                 if (next_free == 0) {
3815                         ocfs2_error(inode->i_sb,
3816                                     "Dinode %llu has a bad extent list",
3817                                     (unsigned long long)OCFS2_I(inode)->ip_blkno);
3818                         ret = -EIO;
3819                         return;
3820                 }
3821
3822                 rec = &el->l_recs[next_free - 1];
3823
3824                 rec->e_int_clusters = insert_rec->e_cpos;
3825                 le32_add_cpu(&rec->e_int_clusters,
3826                              le16_to_cpu(insert_rec->e_leaf_clusters));
3827                 le32_add_cpu(&rec->e_int_clusters,
3828                              -le32_to_cpu(rec->e_cpos));
3829
3830                 ret = ocfs2_journal_dirty(handle, bh);
3831                 if (ret)
3832                         mlog_errno(ret);
3833
3834         }
3835 }
3836
3837 static int ocfs2_append_rec_to_path(struct inode *inode, handle_t *handle,
3838                                     struct ocfs2_extent_rec *insert_rec,
3839                                     struct ocfs2_path *right_path,
3840                                     struct ocfs2_path **ret_left_path)
3841 {
3842         int ret, next_free;
3843         struct ocfs2_extent_list *el;
3844         struct ocfs2_path *left_path = NULL;
3845
3846         *ret_left_path = NULL;
3847
3848         /*
3849          * This shouldn't happen for non-trees. The extent rec cluster
3850          * count manipulation below only works for interior nodes.
3851          */
3852         BUG_ON(right_path->p_tree_depth == 0);
3853
3854         /*
3855          * If our appending insert is at the leftmost edge of a leaf,
3856          * then we might need to update the rightmost records of the
3857          * neighboring path.
3858          */
3859         el = path_leaf_el(right_path);
3860         next_free = le16_to_cpu(el->l_next_free_rec);
3861         if (next_free == 0 ||
3862             (next_free == 1 && ocfs2_is_empty_extent(&el->l_recs[0]))) {
3863                 u32 left_cpos;
3864
3865                 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path,
3866                                                     &left_cpos);
3867                 if (ret) {
3868                         mlog_errno(ret);
3869                         goto out;
3870                 }
3871
3872                 mlog(0, "Append may need a left path update. cpos: %u, "
3873                      "left_cpos: %u\n", le32_to_cpu(insert_rec->e_cpos),
3874                      left_cpos);
3875
3876                 /*
3877                  * No need to worry if the append is already in the
3878                  * leftmost leaf.
3879                  */
3880                 if (left_cpos) {
3881                         left_path = ocfs2_new_path_from_path(right_path);
3882                         if (!left_path) {
3883                                 ret = -ENOMEM;
3884                                 mlog_errno(ret);
3885                                 goto out;
3886                         }
3887
3888                         ret = ocfs2_find_path(inode, left_path, left_cpos);
3889                         if (ret) {
3890                                 mlog_errno(ret);
3891                                 goto out;
3892                         }
3893
3894                         /*
3895                          * ocfs2_insert_path() will pass the left_path to the
3896                          * journal for us.
3897                          */
3898                 }
3899         }
3900
3901         ret = ocfs2_journal_access_path(inode, handle, right_path);
3902         if (ret) {
3903                 mlog_errno(ret);
3904                 goto out;
3905         }
3906
3907         ocfs2_adjust_rightmost_records(inode, handle, right_path, insert_rec);
3908
3909         *ret_left_path = left_path;
3910         ret = 0;
3911 out:
3912         if (ret != 0)
3913                 ocfs2_free_path(left_path);
3914
3915         return ret;
3916 }
3917
3918 static void ocfs2_split_record(struct inode *inode,
3919                                struct ocfs2_path *left_path,
3920                                struct ocfs2_path *right_path,
3921                                struct ocfs2_extent_rec *split_rec,
3922                                enum ocfs2_split_type split)
3923 {
3924         int index;
3925         u32 cpos = le32_to_cpu(split_rec->e_cpos);
3926         struct ocfs2_extent_list *left_el = NULL, *right_el, *insert_el, *el;
3927         struct ocfs2_extent_rec *rec, *tmprec;
3928
3929         right_el = path_leaf_el(right_path);
3930         if (left_path)
3931                 left_el = path_leaf_el(left_path);
3932
3933         el = right_el;
3934         insert_el = right_el;
3935         index = ocfs2_search_extent_list(el, cpos);
3936         if (index != -1) {
3937                 if (index == 0 && left_path) {
3938                         BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
3939
3940                         /*
3941                          * This typically means that the record
3942                          * started in the left path but moved to the
3943                          * right as a result of rotation. We either
3944                          * move the existing record to the left, or we
3945                          * do the later insert there.
3946                          *
3947                          * In this case, the left path should always
3948                          * exist as the rotate code will have passed
3949                          * it back for a post-insert update.
3950                          */
3951
3952                         if (split == SPLIT_LEFT) {
3953                                 /*
3954                                  * It's a left split. Since we know
3955                                  * that the rotate code gave us an
3956                                  * empty extent in the left path, we
3957                                  * can just do the insert there.
3958                                  */
3959                                 insert_el = left_el;
3960                         } else {
3961                                 /*
3962                                  * Right split - we have to move the
3963                                  * existing record over to the left
3964                                  * leaf. The insert will be into the
3965                                  * newly created empty extent in the
3966                                  * right leaf.
3967                                  */
3968                                 tmprec = &right_el->l_recs[index];
3969                                 ocfs2_rotate_leaf(left_el, tmprec);
3970                                 el = left_el;
3971
3972                                 memset(tmprec, 0, sizeof(*tmprec));
3973                                 index = ocfs2_search_extent_list(left_el, cpos);
3974                                 BUG_ON(index == -1);
3975                         }
3976                 }
3977         } else {
3978                 BUG_ON(!left_path);
3979                 BUG_ON(!ocfs2_is_empty_extent(&left_el->l_recs[0]));
3980                 /*
3981                  * Left path is easy - we can just allow the insert to
3982                  * happen.
3983                  */
3984                 el = left_el;
3985                 insert_el = left_el;
3986                 index = ocfs2_search_extent_list(el, cpos);
3987                 BUG_ON(index == -1);
3988         }
3989
3990         rec = &el->l_recs[index];
3991         ocfs2_subtract_from_rec(inode->i_sb, split, rec, split_rec);
3992         ocfs2_rotate_leaf(insert_el, split_rec);
3993 }
3994
3995 /*
3996  * This function only does inserts on an allocation b-tree. For tree
3997  * depth = 0, ocfs2_insert_at_leaf() is called directly.
3998  *
3999  * right_path is the path we want to do the actual insert
4000  * in. left_path should only be passed in if we need to update that
4001  * portion of the tree after an edge insert.
4002  */
4003 static int ocfs2_insert_path(struct inode *inode,
4004                              handle_t *handle,
4005                              struct ocfs2_path *left_path,
4006                              struct ocfs2_path *right_path,
4007                              struct ocfs2_extent_rec *insert_rec,
4008                              struct ocfs2_insert_type *insert)
4009 {
4010         int ret, subtree_index;
4011         struct buffer_head *leaf_bh = path_leaf_bh(right_path);
4012
4013         if (left_path) {
4014                 int credits = handle->h_buffer_credits;
4015
4016                 /*
4017                  * There's a chance that left_path got passed back to
4018                  * us without being accounted for in the
4019                  * journal. Extend our transaction here to be sure we
4020                  * can change those blocks.
4021                  */
4022                 credits += left_path->p_tree_depth;
4023
4024                 ret = ocfs2_extend_trans(handle, credits);
4025                 if (ret < 0) {
4026                         mlog_errno(ret);
4027                         goto out;
4028                 }
4029
4030                 ret = ocfs2_journal_access_path(inode, handle, left_path);
4031                 if (ret < 0) {
4032                         mlog_errno(ret);
4033                         goto out;
4034                 }
4035         }
4036
4037         /*
4038          * Pass both paths to the journal. The majority of inserts
4039          * will be touching all components anyway.
4040          */
4041         ret = ocfs2_journal_access_path(inode, handle, right_path);
4042         if (ret < 0) {
4043                 mlog_errno(ret);
4044                 goto out;
4045         }
4046
4047         if (insert->ins_split != SPLIT_NONE) {
4048                 /*
4049                  * We could call ocfs2_insert_at_leaf() for some types
4050                  * of splits, but it's easier to just let one separate
4051                  * function sort it all out.
4052                  */
4053                 ocfs2_split_record(inode, left_path, right_path,
4054                                    insert_rec, insert->ins_split);
4055
4056                 /*
4057                  * Split might have modified either leaf and we don't
4058                  * have a guarantee that the later edge insert will
4059                  * dirty this for us.
4060                  */
4061                 if (left_path)
4062                         ret = ocfs2_journal_dirty(handle,
4063                                                   path_leaf_bh(left_path));
4064                         if (ret)
4065                                 mlog_errno(ret);
4066         } else
4067                 ocfs2_insert_at_leaf(insert_rec, path_leaf_el(right_path),
4068                                      insert, inode);
4069
4070         ret = ocfs2_journal_dirty(handle, leaf_bh);
4071         if (ret)
4072                 mlog_errno(ret);
4073
4074         if (left_path) {
4075                 /*
4076                  * The rotate code has indicated that we need to fix
4077                  * up portions of the tree after the insert.
4078                  *
4079                  * XXX: Should we extend the transaction here?
4080                  */
4081                 subtree_index = ocfs2_find_subtree_root(inode, left_path,
4082                                                         right_path);
4083                 ocfs2_complete_edge_insert(inode, handle, left_path,
4084                                            right_path, subtree_index);
4085         }
4086
4087         ret = 0;
4088 out:
4089         return ret;
4090 }
4091
4092 static int ocfs2_do_insert_extent(struct inode *inode,
4093                                   handle_t *handle,
4094                                   struct ocfs2_extent_tree *et,
4095                                   struct ocfs2_extent_rec *insert_rec,
4096                                   struct ocfs2_insert_type *type)
4097 {
4098         int ret, rotate = 0;
4099         u32 cpos;
4100         struct ocfs2_path *right_path = NULL;
4101         struct ocfs2_path *left_path = NULL;
4102         struct ocfs2_extent_list *el;
4103
4104         el = et->et_root_el;
4105
4106         ret = ocfs2_et_root_journal_access(handle, inode, et,
4107                                            OCFS2_JOURNAL_ACCESS_WRITE);
4108         if (ret) {
4109                 mlog_errno(ret);
4110                 goto out;
4111         }
4112
4113         if (le16_to_cpu(el->l_tree_depth) == 0) {
4114                 ocfs2_insert_at_leaf(insert_rec, el, type, inode);
4115                 goto out_update_clusters;
4116         }
4117
4118         right_path = ocfs2_new_path_from_et(et);
4119         if (!right_path) {
4120                 ret = -ENOMEM;
4121                 mlog_errno(ret);
4122                 goto out;
4123         }
4124
4125         /*
4126          * Determine the path to start with. Rotations need the
4127          * rightmost path, everything else can go directly to the
4128          * target leaf.
4129          */
4130         cpos = le32_to_cpu(insert_rec->e_cpos);
4131         if (type->ins_appending == APPEND_NONE &&
4132             type->ins_contig == CONTIG_NONE) {
4133                 rotate = 1;
4134                 cpos = UINT_MAX;
4135         }
4136
4137         ret = ocfs2_find_path(inode, right_path, cpos);
4138         if (ret) {
4139                 mlog_errno(ret);
4140                 goto out;
4141         }
4142
4143         /*
4144          * Rotations and appends need special treatment - they modify
4145          * parts of the tree's above them.
4146          *
4147          * Both might pass back a path immediate to the left of the
4148          * one being inserted to. This will be cause
4149          * ocfs2_insert_path() to modify the rightmost records of
4150          * left_path to account for an edge insert.
4151          *
4152          * XXX: When modifying this code, keep in mind that an insert
4153          * can wind up skipping both of these two special cases...
4154          */
4155         if (rotate) {
4156                 ret = ocfs2_rotate_tree_right(inode, handle, type->ins_split,
4157                                               le32_to_cpu(insert_rec->e_cpos),
4158                                               right_path, &left_path);
4159                 if (ret) {
4160                         mlog_errno(ret);
4161                         goto out;
4162                 }
4163
4164                 /*
4165                  * ocfs2_rotate_tree_right() might have extended the
4166                  * transaction without re-journaling our tree root.
4167                  */
4168                 ret = ocfs2_et_root_journal_access(handle, inode, et,
4169                                                    OCFS2_JOURNAL_ACCESS_WRITE);
4170                 if (ret) {
4171                         mlog_errno(ret);
4172                         goto out;
4173                 }
4174         } else if (type->ins_appending == APPEND_TAIL
4175                    && type->ins_contig != CONTIG_LEFT) {
4176                 ret = ocfs2_append_rec_to_path(inode, handle, insert_rec,
4177                                                right_path, &left_path);
4178                 if (ret) {
4179                         mlog_errno(ret);
4180                         goto out;
4181                 }
4182         }
4183
4184         ret = ocfs2_insert_path(inode, handle, left_path, right_path,
4185                                 insert_rec, type);
4186         if (ret) {
4187                 mlog_errno(ret);
4188                 goto out;
4189         }
4190
4191 out_update_clusters:
4192         if (type->ins_split == SPLIT_NONE)
4193                 ocfs2_et_update_clusters(inode, et,
4194                                          le16_to_cpu(insert_rec->e_leaf_clusters));
4195
4196         ret = ocfs2_journal_dirty(handle, et->et_root_bh);
4197         if (ret)
4198                 mlog_errno(ret);
4199
4200 out:
4201         ocfs2_free_path(left_path);
4202         ocfs2_free_path(right_path);
4203
4204         return ret;
4205 }
4206
4207 static enum ocfs2_contig_type
4208 ocfs2_figure_merge_contig_type(struct inode *inode, struct ocfs2_path *path,
4209                                struct ocfs2_extent_list *el, int index,
4210                                struct ocfs2_extent_rec *split_rec)
4211 {
4212         int status;
4213         enum ocfs2_contig_type ret = CONTIG_NONE;
4214         u32 left_cpos, right_cpos;
4215         struct ocfs2_extent_rec *rec = NULL;
4216         struct ocfs2_extent_list *new_el;
4217         struct ocfs2_path *left_path = NULL, *right_path = NULL;
4218         struct buffer_head *bh;
4219         struct ocfs2_extent_block *eb;
4220
4221         if (index > 0) {
4222                 rec = &el->l_recs[index - 1];
4223         } else if (path->p_tree_depth > 0) {
4224                 status = ocfs2_find_cpos_for_left_leaf(inode->i_sb,
4225                                                        path, &left_cpos);
4226                 if (status)
4227                         goto out;
4228
4229                 if (left_cpos != 0) {
4230                         left_path = ocfs2_new_path_from_path(path);
4231                         if (!left_path)
4232                                 goto out;
4233
4234                         status = ocfs2_find_path(inode, left_path, left_cpos);
4235                         if (status)
4236                                 goto out;
4237
4238                         new_el = path_leaf_el(left_path);
4239
4240                         if (le16_to_cpu(new_el->l_next_free_rec) !=
4241                             le16_to_cpu(new_el->l_count)) {
4242                                 bh = path_leaf_bh(left_path);
4243                                 eb = (struct ocfs2_extent_block *)bh->b_data;
4244                                 ocfs2_error(inode->i_sb,
4245                                             "Extent block #%llu has an "
4246                                             "invalid l_next_free_rec of "
4247                                             "%d.  It should have "
4248                                             "matched the l_count of %d",
4249                                             (unsigned long long)le64_to_cpu(eb->h_blkno),
4250                                             le16_to_cpu(new_el->l_next_free_rec),
4251                                             le16_to_cpu(new_el->l_count));
4252                                 status = -EINVAL;
4253                                 goto out;
4254                         }
4255                         rec = &new_el->l_recs[
4256                                 le16_to_cpu(new_el->l_next_free_rec) - 1];
4257                 }
4258         }
4259
4260         /*
4261          * We're careful to check for an empty extent record here -
4262          * the merge code will know what to do if it sees one.
4263          */
4264         if (rec) {
4265                 if (index == 1 && ocfs2_is_empty_extent(rec)) {
4266                         if (split_rec->e_cpos == el->l_recs[index].e_cpos)
4267                                 ret = CONTIG_RIGHT;
4268                 } else {
4269                         ret = ocfs2_extent_contig(inode, rec, split_rec);
4270                 }
4271         }
4272
4273         rec = NULL;
4274         if (index < (le16_to_cpu(el->l_next_free_rec) - 1))
4275                 rec = &el->l_recs[index + 1];
4276         else if (le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count) &&
4277                  path->p_tree_depth > 0) {
4278                 status = ocfs2_find_cpos_for_right_leaf(inode->i_sb,
4279                                                         path, &right_cpos);
4280                 if (status)
4281                         goto out;
4282
4283                 if (right_cpos == 0)
4284                         goto out;
4285
4286                 right_path = ocfs2_new_path_from_path(path);
4287                 if (!right_path)
4288                         goto out;
4289
4290                 status = ocfs2_find_path(inode, right_path, right_cpos);
4291                 if (status)
4292                         goto out;
4293
4294                 new_el = path_leaf_el(right_path);
4295                 rec = &new_el->l_recs[0];
4296                 if (ocfs2_is_empty_extent(rec)) {
4297                         if (le16_to_cpu(new_el->l_next_free_rec) <= 1) {
4298                                 bh = path_leaf_bh(right_path);
4299                                 eb = (struct ocfs2_extent_block *)bh->b_data;
4300                                 ocfs2_error(inode->i_sb,
4301                                             "Extent block #%llu has an "
4302                                             "invalid l_next_free_rec of %d",
4303                                             (unsigned long long)le64_to_cpu(eb->h_blkno),
4304                                             le16_to_cpu(new_el->l_next_free_rec));
4305                                 status = -EINVAL;
4306                                 goto out;
4307                         }
4308                         rec = &new_el->l_recs[1];
4309                 }
4310         }
4311
4312         if (rec) {
4313                 enum ocfs2_contig_type contig_type;
4314
4315                 contig_type = ocfs2_extent_contig(inode, rec, split_rec);
4316
4317                 if (contig_type == CONTIG_LEFT && ret == CONTIG_RIGHT)
4318                         ret = CONTIG_LEFTRIGHT;
4319                 else if (ret == CONTIG_NONE)
4320                         ret = contig_type;
4321         }
4322
4323 out:
4324         if (left_path)
4325                 ocfs2_free_path(left_path);
4326         if (right_path)
4327                 ocfs2_free_path(right_path);
4328
4329         return ret;
4330 }
4331
4332 static void ocfs2_figure_contig_type(struct inode *inode,
4333                                      struct ocfs2_insert_type *insert,
4334                                      struct ocfs2_extent_list *el,
4335                                      struct ocfs2_extent_rec *insert_rec,
4336                                      struct ocfs2_extent_tree *et)
4337 {
4338         int i;
4339         enum ocfs2_contig_type contig_type = CONTIG_NONE;
4340
4341         BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
4342
4343         for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
4344                 contig_type = ocfs2_extent_contig(inode, &el->l_recs[i],
4345                                                   insert_rec);
4346                 if (contig_type != CONTIG_NONE) {
4347                         insert->ins_contig_index = i;
4348                         break;
4349                 }
4350         }
4351         insert->ins_contig = contig_type;
4352
4353         if (insert->ins_contig != CONTIG_NONE) {
4354                 struct ocfs2_extent_rec *rec =
4355                                 &el->l_recs[insert->ins_contig_index];
4356                 unsigned int len = le16_to_cpu(rec->e_leaf_clusters) +
4357                                    le16_to_cpu(insert_rec->e_leaf_clusters);
4358
4359                 /*
4360                  * Caller might want us to limit the size of extents, don't
4361                  * calculate contiguousness if we might exceed that limit.
4362                  */
4363                 if (et->et_max_leaf_clusters &&
4364                     (len > et->et_max_leaf_clusters))
4365                         insert->ins_contig = CONTIG_NONE;
4366         }
4367 }
4368
4369 /*
4370  * This should only be called against the righmost leaf extent list.
4371  *
4372  * ocfs2_figure_appending_type() will figure out whether we'll have to
4373  * insert at the tail of the rightmost leaf.
4374  *
4375  * This should also work against the root extent list for tree's with 0
4376  * depth. If we consider the root extent list to be the rightmost leaf node
4377  * then the logic here makes sense.
4378  */
4379 static void ocfs2_figure_appending_type(struct ocfs2_insert_type *insert,
4380                                         struct ocfs2_extent_list *el,
4381                                         struct ocfs2_extent_rec *insert_rec)
4382 {
4383         int i;
4384         u32 cpos = le32_to_cpu(insert_rec->e_cpos);
4385         struct ocfs2_extent_rec *rec;
4386
4387         insert->ins_appending = APPEND_NONE;
4388
4389         BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
4390
4391         if (!el->l_next_free_rec)
4392                 goto set_tail_append;
4393
4394         if (ocfs2_is_empty_extent(&el->l_recs[0])) {
4395                 /* Were all records empty? */
4396                 if (le16_to_cpu(el->l_next_free_rec) == 1)
4397                         goto set_tail_append;
4398         }
4399
4400         i = le16_to_cpu(el->l_next_free_rec) - 1;
4401         rec = &el->l_recs[i];
4402
4403         if (cpos >=
4404             (le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)))
4405                 goto set_tail_append;
4406
4407         return;
4408
4409 set_tail_append:
4410         insert->ins_appending = APPEND_TAIL;
4411 }
4412
4413 /*
4414  * Helper function called at the begining of an insert.
4415  *
4416  * This computes a few things that are commonly used in the process of
4417  * inserting into the btree:
4418  *   - Whether the new extent is contiguous with an existing one.
4419  *   - The current tree depth.
4420  *   - Whether the insert is an appending one.
4421  *   - The total # of free records in the tree.
4422  *
4423  * All of the information is stored on the ocfs2_insert_type
4424  * structure.
4425  */
4426 static int ocfs2_figure_insert_type(struct inode *inode,
4427                                     struct ocfs2_extent_tree *et,
4428                                     struct buffer_head **last_eb_bh,
4429                                     struct ocfs2_extent_rec *insert_rec,
4430                                     int *free_records,
4431                                     struct ocfs2_insert_type *insert)
4432 {
4433         int ret;
4434         struct ocfs2_extent_block *eb;
4435         struct ocfs2_extent_list *el;
4436         struct ocfs2_path *path = NULL;
4437         struct buffer_head *bh = NULL;
4438
4439         insert->ins_split = SPLIT_NONE;
4440
4441         el = et->et_root_el;
4442         insert->ins_tree_depth = le16_to_cpu(el->l_tree_depth);
4443
4444         if (el->l_tree_depth) {
4445                 /*
4446                  * If we have tree depth, we read in the
4447                  * rightmost extent block ahead of time as
4448                  * ocfs2_figure_insert_type() and ocfs2_add_branch()
4449                  * may want it later.
4450                  */
4451                 ret = ocfs2_read_extent_block(inode,
4452                                               ocfs2_et_get_last_eb_blk(et),
4453                                               &bh);
4454                 if (ret) {
4455                         mlog_exit(ret);
4456                         goto out;
4457                 }
4458                 eb = (struct ocfs2_extent_block *) bh->b_data;
4459                 el = &eb->h_list;
4460         }
4461
4462         /*
4463          * Unless we have a contiguous insert, we'll need to know if
4464          * there is room left in our allocation tree for another
4465          * extent record.
4466          *
4467          * XXX: This test is simplistic, we can search for empty
4468          * extent records too.
4469          */
4470         *free_records = le16_to_cpu(el->l_count) -
4471                 le16_to_cpu(el->l_next_free_rec);
4472
4473         if (!insert->ins_tree_depth) {
4474                 ocfs2_figure_contig_type(inode, insert, el, insert_rec, et);
4475                 ocfs2_figure_appending_type(insert, el, insert_rec);
4476                 return 0;
4477         }
4478
4479         path = ocfs2_new_path_from_et(et);
4480         if (!path) {
4481                 ret = -ENOMEM;
4482                 mlog_errno(ret);
4483                 goto out;
4484         }
4485
4486         /*
4487          * In the case that we're inserting past what the tree
4488          * currently accounts for, ocfs2_find_path() will return for
4489          * us the rightmost tree path. This is accounted for below in
4490          * the appending code.
4491          */
4492         ret = ocfs2_find_path(inode, path, le32_to_cpu(insert_rec->e_cpos));
4493         if (ret) {
4494                 mlog_errno(ret);
4495                 goto out;
4496         }
4497
4498         el = path_leaf_el(path);
4499
4500         /*
4501          * Now that we have the path, there's two things we want to determine:
4502          * 1) Contiguousness (also set contig_index if this is so)
4503          *
4504          * 2) Are we doing an append? We can trivially break this up
4505          *     into two types of appends: simple record append, or a
4506          *     rotate inside the tail leaf.
4507          */
4508         ocfs2_figure_contig_type(inode, insert, el, insert_rec, et);
4509
4510         /*
4511          * The insert code isn't quite ready to deal with all cases of
4512          * left contiguousness. Specifically, if it's an insert into
4513          * the 1st record in a leaf, it will require the adjustment of
4514          * cluster count on the last record of the path directly to it's
4515          * left. For now, just catch that case and fool the layers
4516          * above us. This works just fine for tree_depth == 0, which
4517          * is why we allow that above.
4518          */
4519         if (insert->ins_contig == CONTIG_LEFT &&
4520             insert->ins_contig_index == 0)
4521                 insert->ins_contig = CONTIG_NONE;
4522
4523         /*
4524          * Ok, so we can simply compare against last_eb to figure out
4525          * whether the path doesn't exist. This will only happen in
4526          * the case that we're doing a tail append, so maybe we can
4527          * take advantage of that information somehow.
4528          */
4529         if (ocfs2_et_get_last_eb_blk(et) ==
4530             path_leaf_bh(path)->b_blocknr) {
4531                 /*
4532                  * Ok, ocfs2_find_path() returned us the rightmost
4533                  * tree path. This might be an appending insert. There are
4534                  * two cases:
4535                  *    1) We're doing a true append at the tail:
4536                  *      -This might even be off the end of the leaf
4537                  *    2) We're "appending" by rotating in the tail
4538                  */
4539                 ocfs2_figure_appending_type(insert, el, insert_rec);
4540         }
4541
4542 out:
4543         ocfs2_free_path(path);
4544
4545         if (ret == 0)
4546                 *last_eb_bh = bh;
4547         else
4548                 brelse(bh);
4549         return ret;
4550 }
4551
4552 /*
4553  * Insert an extent into an inode btree.
4554  *
4555  * The caller needs to update fe->i_clusters
4556  */
4557 int ocfs2_insert_extent(struct ocfs2_super *osb,
4558                         handle_t *handle,
4559                         struct inode *inode,
4560                         struct ocfs2_extent_tree *et,
4561                         u32 cpos,
4562                         u64 start_blk,
4563                         u32 new_clusters,
4564                         u8 flags,
4565                         struct ocfs2_alloc_context *meta_ac)
4566 {
4567         int status;
4568         int uninitialized_var(free_records);
4569         struct buffer_head *last_eb_bh = NULL;
4570         struct ocfs2_insert_type insert = {0, };
4571         struct ocfs2_extent_rec rec;
4572
4573         mlog(0, "add %u clusters at position %u to inode %llu\n",
4574              new_clusters, cpos, (unsigned long long)OCFS2_I(inode)->ip_blkno);
4575
4576         memset(&rec, 0, sizeof(rec));
4577         rec.e_cpos = cpu_to_le32(cpos);
4578         rec.e_blkno = cpu_to_le64(start_blk);
4579         rec.e_leaf_clusters = cpu_to_le16(new_clusters);
4580         rec.e_flags = flags;
4581         status = ocfs2_et_insert_check(inode, et, &rec);
4582         if (status) {
4583                 mlog_errno(status);
4584                 goto bail;
4585         }
4586
4587         status = ocfs2_figure_insert_type(inode, et, &last_eb_bh, &rec,
4588                                           &free_records, &insert);
4589         if (status < 0) {
4590                 mlog_errno(status);
4591                 goto bail;
4592         }
4593
4594         mlog(0, "Insert.appending: %u, Insert.Contig: %u, "
4595              "Insert.contig_index: %d, Insert.free_records: %d, "
4596              "Insert.tree_depth: %d\n",
4597              insert.ins_appending, insert.ins_contig, insert.ins_contig_index,
4598              free_records, insert.ins_tree_depth);
4599
4600         if (insert.ins_contig == CONTIG_NONE && free_records == 0) {
4601                 status = ocfs2_grow_tree(inode, handle, et,
4602                                          &insert.ins_tree_depth, &last_eb_bh,
4603                                          meta_ac);
4604                 if (status) {
4605                         mlog_errno(status);
4606                         goto bail;
4607                 }
4608         }
4609
4610         /* Finally, we can add clusters. This might rotate the tree for us. */
4611         status = ocfs2_do_insert_extent(inode, handle, et, &rec, &insert);
4612         if (status < 0)
4613                 mlog_errno(status);
4614         else if (et->et_ops == &ocfs2_dinode_et_ops)
4615                 ocfs2_extent_map_insert_rec(inode, &rec);
4616
4617 bail:
4618         brelse(last_eb_bh);
4619
4620         mlog_exit(status);
4621         return status;
4622 }
4623
4624 /*
4625  * Allcate and add clusters into the extent b-tree.
4626  * The new clusters(clusters_to_add) will be inserted at logical_offset.
4627  * The extent b-tree's root is specified by et, and
4628  * it is not limited to the file storage. Any extent tree can use this
4629  * function if it implements the proper ocfs2_extent_tree.
4630  */
4631 int ocfs2_add_clusters_in_btree(struct ocfs2_super *osb,
4632                                 struct inode *inode,
4633                                 u32 *logical_offset,
4634                                 u32 clusters_to_add,
4635                                 int mark_unwritten,
4636                                 struct ocfs2_extent_tree *et,
4637                                 handle_t *handle,
4638                                 struct ocfs2_alloc_context *data_ac,
4639                                 struct ocfs2_alloc_context *meta_ac,
4640                                 enum ocfs2_alloc_restarted *reason_ret)
4641 {
4642         int status = 0;
4643         int free_extents;
4644         enum ocfs2_alloc_restarted reason = RESTART_NONE;
4645         u32 bit_off, num_bits;
4646         u64 block;
4647         u8 flags = 0;
4648
4649         BUG_ON(!clusters_to_add);
4650
4651         if (mark_unwritten)
4652                 flags = OCFS2_EXT_UNWRITTEN;
4653
4654         free_extents = ocfs2_num_free_extents(osb, inode, et);
4655         if (free_extents < 0) {
4656                 status = free_extents;
4657                 mlog_errno(status);
4658                 goto leave;
4659         }
4660
4661         /* there are two cases which could cause us to EAGAIN in the
4662          * we-need-more-metadata case:
4663          * 1) we haven't reserved *any*
4664          * 2) we are so fragmented, we've needed to add metadata too
4665          *    many times. */
4666         if (!free_extents && !meta_ac) {
4667                 mlog(0, "we haven't reserved any metadata!\n");
4668                 status = -EAGAIN;
4669                 reason = RESTART_META;
4670                 goto leave;
4671         } else if ((!free_extents)
4672                    && (ocfs2_alloc_context_bits_left(meta_ac)
4673                        < ocfs2_extend_meta_needed(et->et_root_el))) {
4674                 mlog(0, "filesystem is really fragmented...\n");
4675                 status = -EAGAIN;
4676                 reason = RESTART_META;
4677                 goto leave;
4678         }
4679
4680         status = __ocfs2_claim_clusters(osb, handle, data_ac, 1,
4681                                         clusters_to_add, &bit_off, &num_bits);
4682         if (status < 0) {
4683                 if (status != -ENOSPC)
4684                         mlog_errno(status);
4685                 goto leave;
4686         }
4687
4688         BUG_ON(num_bits > clusters_to_add);
4689
4690         /* reserve our write early -- insert_extent may update the tree root */
4691         status = ocfs2_et_root_journal_access(handle, inode, et,
4692                                               OCFS2_JOURNAL_ACCESS_WRITE);
4693         if (status < 0) {
4694                 mlog_errno(status);
4695                 goto leave;
4696         }
4697
4698         block = ocfs2_clusters_to_blocks(osb->sb, bit_off);
4699         mlog(0, "Allocating %u clusters at block %u for inode %llu\n",
4700              num_bits, bit_off, (unsigned long long)OCFS2_I(inode)->ip_blkno);
4701         status = ocfs2_insert_extent(osb, handle, inode, et,
4702                                      *logical_offset, block,
4703                                      num_bits, flags, meta_ac);
4704         if (status < 0) {
4705                 mlog_errno(status);
4706                 goto leave;
4707         }
4708
4709         status = ocfs2_journal_dirty(handle, et->et_root_bh);
4710         if (status < 0) {
4711                 mlog_errno(status);
4712                 goto leave;
4713         }
4714
4715         clusters_to_add -= num_bits;
4716         *logical_offset += num_bits;
4717
4718         if (clusters_to_add) {
4719                 mlog(0, "need to alloc once more, wanted = %u\n",
4720                      clusters_to_add);
4721                 status = -EAGAIN;
4722                 reason = RESTART_TRANS;
4723         }
4724
4725 leave:
4726         mlog_exit(status);
4727         if (reason_ret)
4728                 *reason_ret = reason;
4729         return status;
4730 }
4731
4732 static void ocfs2_make_right_split_rec(struct super_block *sb,
4733                                        struct ocfs2_extent_rec *split_rec,
4734                                        u32 cpos,
4735                                        struct ocfs2_extent_rec *rec)
4736 {
4737         u32 rec_cpos = le32_to_cpu(rec->e_cpos);
4738         u32 rec_range = rec_cpos + le16_to_cpu(rec->e_leaf_clusters);
4739
4740         memset(split_rec, 0, sizeof(struct ocfs2_extent_rec));
4741
4742         split_rec->e_cpos = cpu_to_le32(cpos);
4743         split_rec->e_leaf_clusters = cpu_to_le16(rec_range - cpos);
4744
4745         split_rec->e_blkno = rec->e_blkno;
4746         le64_add_cpu(&split_rec->e_blkno,
4747                      ocfs2_clusters_to_blocks(sb, cpos - rec_cpos));
4748
4749         split_rec->e_flags = rec->e_flags;
4750 }
4751
4752 static int ocfs2_split_and_insert(struct inode *inode,
4753                                   handle_t *handle,
4754                                   struct ocfs2_path *path,
4755                                   struct ocfs2_extent_tree *et,
4756                                   struct buffer_head **last_eb_bh,
4757                                   int split_index,
4758                                   struct ocfs2_extent_rec *orig_split_rec,
4759                                   struct ocfs2_alloc_context *meta_ac)
4760 {
4761         int ret = 0, depth;
4762         unsigned int insert_range, rec_range, do_leftright = 0;
4763         struct ocfs2_extent_rec tmprec;
4764         struct ocfs2_extent_list *rightmost_el;
4765         struct ocfs2_extent_rec rec;
4766         struct ocfs2_extent_rec split_rec = *orig_split_rec;
4767         struct ocfs2_insert_type insert;
4768         struct ocfs2_extent_block *eb;
4769
4770 leftright:
4771         /*
4772          * Store a copy of the record on the stack - it might move
4773          * around as the tree is manipulated below.
4774          */
4775         rec = path_leaf_el(path)->l_recs[split_index];
4776
4777         rightmost_el = et->et_root_el;
4778
4779         depth = le16_to_cpu(rightmost_el->l_tree_depth);
4780         if (depth) {
4781                 BUG_ON(!(*last_eb_bh));
4782                 eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
4783                 rightmost_el = &eb->h_list;
4784         }
4785
4786         if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
4787             le16_to_cpu(rightmost_el->l_count)) {
4788                 ret = ocfs2_grow_tree(inode, handle, et,
4789                                       &depth, last_eb_bh, meta_ac);
4790                 if (ret) {
4791                         mlog_errno(ret);
4792                         goto out;
4793                 }
4794         }
4795
4796         memset(&insert, 0, sizeof(struct ocfs2_insert_type));
4797         insert.ins_appending = APPEND_NONE;
4798         insert.ins_contig = CONTIG_NONE;
4799         insert.ins_tree_depth = depth;
4800
4801         insert_range = le32_to_cpu(split_rec.e_cpos) +
4802                 le16_to_cpu(split_rec.e_leaf_clusters);
4803         rec_range = le32_to_cpu(rec.e_cpos) +
4804                 le16_to_cpu(rec.e_leaf_clusters);
4805
4806         if (split_rec.e_cpos == rec.e_cpos) {
4807                 insert.ins_split = SPLIT_LEFT;
4808         } else if (insert_range == rec_range) {
4809                 insert.ins_split = SPLIT_RIGHT;
4810         } else {
4811                 /*
4812                  * Left/right split. We fake this as a right split
4813                  * first and then make a second pass as a left split.
4814                  */
4815                 insert.ins_split = SPLIT_RIGHT;
4816
4817                 ocfs2_make_right_split_rec(inode->i_sb, &tmprec, insert_range,
4818                                            &rec);
4819
4820                 split_rec = tmprec;
4821
4822                 BUG_ON(do_leftright);
4823                 do_leftright = 1;
4824         }
4825
4826         ret = ocfs2_do_insert_extent(inode, handle, et, &split_rec, &insert);
4827         if (ret) {
4828                 mlog_errno(ret);
4829                 goto out;
4830         }
4831
4832         if (do_leftright == 1) {
4833                 u32 cpos;
4834                 struct ocfs2_extent_list *el;
4835
4836                 do_leftright++;
4837                 split_rec = *orig_split_rec;
4838
4839                 ocfs2_reinit_path(path, 1);
4840
4841                 cpos = le32_to_cpu(split_rec.e_cpos);
4842                 ret = ocfs2_find_path(inode, path, cpos);
4843                 if (ret) {
4844                         mlog_errno(ret);
4845                         goto out;
4846                 }
4847
4848                 el = path_leaf_el(path);
4849                 split_index = ocfs2_search_extent_list(el, cpos);
4850                 goto leftright;
4851         }
4852 out:
4853
4854         return ret;
4855 }
4856
4857 static int ocfs2_replace_extent_rec(struct inode *inode,
4858                                     handle_t *handle,
4859                                     struct ocfs2_path *path,
4860                                     struct ocfs2_extent_list *el,
4861                                     int split_index,
4862                                     struct ocfs2_extent_rec *split_rec)
4863 {
4864         int ret;
4865
4866         ret = ocfs2_path_bh_journal_access(handle, inode, path,
4867                                            path_num_items(path) - 1);
4868         if (ret) {
4869                 mlog_errno(ret);
4870                 goto out;
4871         }
4872
4873         el->l_recs[split_index] = *split_rec;
4874
4875         ocfs2_journal_dirty(handle, path_leaf_bh(path));
4876 out:
4877         return ret;
4878 }
4879
4880 /*
4881  * Mark part or all of the extent record at split_index in the leaf
4882  * pointed to by path as written. This removes the unwritten
4883  * extent flag.
4884  *
4885  * Care is taken to handle contiguousness so as to not grow the tree.
4886  *
4887  * meta_ac is not strictly necessary - we only truly need it if growth
4888  * of the tree is required. All other cases will degrade into a less
4889  * optimal tree layout.
4890  *
4891  * last_eb_bh should be the rightmost leaf block for any extent
4892  * btree. Since a split may grow the tree or a merge might shrink it,
4893  * the caller cannot trust the contents of that buffer after this call.
4894  *
4895  * This code is optimized for readability - several passes might be
4896  * made over certain portions of the tree. All of those blocks will
4897  * have been brought into cache (and pinned via the journal), so the
4898  * extra overhead is not expressed in terms of disk reads.
4899  */
4900 static int __ocfs2_mark_extent_written(struct inode *inode,
4901                                        struct ocfs2_extent_tree *et,
4902                                        handle_t *handle,
4903                                        struct ocfs2_path *path,
4904                                        int split_index,
4905                                        struct ocfs2_extent_rec *split_rec,
4906                                        struct ocfs2_alloc_context *meta_ac,
4907                                        struct ocfs2_cached_dealloc_ctxt *dealloc)
4908 {
4909         int ret = 0;
4910         struct ocfs2_extent_list *el = path_leaf_el(path);
4911         struct buffer_head *last_eb_bh = NULL;
4912         struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
4913         struct ocfs2_merge_ctxt ctxt;
4914         struct ocfs2_extent_list *rightmost_el;
4915
4916         if (!(rec->e_flags & OCFS2_EXT_UNWRITTEN)) {
4917                 ret = -EIO;
4918                 mlog_errno(ret);
4919                 goto out;
4920         }
4921
4922         if (le32_to_cpu(rec->e_cpos) > le32_to_cpu(split_rec->e_cpos) ||
4923             ((le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)) <
4924              (le32_to_cpu(split_rec->e_cpos) + le16_to_cpu(split_rec->e_leaf_clusters)))) {
4925                 ret = -EIO;
4926                 mlog_errno(ret);
4927                 goto out;
4928         }
4929
4930         ctxt.c_contig_type = ocfs2_figure_merge_contig_type(inode, path, el,
4931                                                             split_index,
4932                                                             split_rec);
4933
4934         /*
4935          * The core merge / split code wants to know how much room is
4936          * left in this inodes allocation tree, so we pass the
4937          * rightmost extent list.
4938          */
4939         if (path->p_tree_depth) {
4940                 struct ocfs2_extent_block *eb;
4941
4942                 ret = ocfs2_read_extent_block(inode,
4943                                               ocfs2_et_get_last_eb_blk(et),
4944                                               &last_eb_bh);
4945                 if (ret) {
4946                         mlog_exit(ret);
4947                         goto out;
4948                 }
4949
4950                 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
4951                 rightmost_el = &eb->h_list;
4952         } else
4953                 rightmost_el = path_root_el(path);
4954
4955         if (rec->e_cpos == split_rec->e_cpos &&
4956             rec->e_leaf_clusters == split_rec->e_leaf_clusters)
4957                 ctxt.c_split_covers_rec = 1;
4958         else
4959                 ctxt.c_split_covers_rec = 0;
4960
4961         ctxt.c_has_empty_extent = ocfs2_is_empty_extent(&el->l_recs[0]);
4962
4963         mlog(0, "index: %d, contig: %u, has_empty: %u, split_covers: %u\n",
4964              split_index, ctxt.c_contig_type, ctxt.c_has_empty_extent,
4965              ctxt.c_split_covers_rec);
4966
4967         if (ctxt.c_contig_type == CONTIG_NONE) {
4968                 if (ctxt.c_split_covers_rec)
4969                         ret = ocfs2_replace_extent_rec(inode, handle,
4970                                                        path, el,
4971                                                        split_index, split_rec);
4972                 else
4973                         ret = ocfs2_split_and_insert(inode, handle, path, et,
4974                                                      &last_eb_bh, split_index,
4975                                                      split_rec, meta_ac);
4976                 if (ret)
4977                         mlog_errno(ret);
4978         } else {
4979                 ret = ocfs2_try_to_merge_extent(inode, handle, path,
4980                                                 split_index, split_rec,
4981                                                 dealloc, &ctxt, et);
4982                 if (ret)
4983                         mlog_errno(ret);
4984         }
4985
4986 out:
4987         brelse(last_eb_bh);
4988         return ret;
4989 }
4990
4991 /*
4992  * Mark the already-existing extent at cpos as written for len clusters.
4993  *
4994  * If the existing extent is larger than the request, initiate a
4995  * split. An attempt will be made at merging with adjacent extents.
4996  *
4997  * The caller is responsible for passing down meta_ac if we'll need it.
4998  */
4999 int ocfs2_mark_extent_written(struct inode *inode,
5000                               struct ocfs2_extent_tree *et,
5001                               handle_t *handle, u32 cpos, u32 len, u32 phys,
5002                               struct ocfs2_alloc_context *meta_ac,
5003                               struct ocfs2_cached_dealloc_ctxt *dealloc)
5004 {
5005         int ret, index;
5006         u64 start_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys);
5007         struct ocfs2_extent_rec split_rec;
5008         struct ocfs2_path *left_path = NULL;
5009         struct ocfs2_extent_list *el;
5010
5011         mlog(0, "Inode %lu cpos %u, len %u, phys %u (%llu)\n",
5012              inode->i_ino, cpos, len, phys, (unsigned long long)start_blkno);
5013
5014         if (!ocfs2_writes_unwritten_extents(OCFS2_SB(inode->i_sb))) {
5015                 ocfs2_error(inode->i_sb, "Inode %llu has unwritten extents "
5016                             "that are being written to, but the feature bit "
5017                             "is not set in the super block.",
5018                             (unsigned long long)OCFS2_I(inode)->ip_blkno);
5019                 ret = -EROFS;
5020                 goto out;
5021         }
5022
5023         /*
5024          * XXX: This should be fixed up so that we just re-insert the
5025          * next extent records.
5026          *
5027          * XXX: This is a hack on the extent tree, maybe it should be
5028          * an op?
5029          */
5030         if (et->et_ops == &ocfs2_dinode_et_ops)
5031                 ocfs2_extent_map_trunc(inode, 0);
5032
5033         left_path = ocfs2_new_path_from_et(et);
5034         if (!left_path) {
5035                 ret = -ENOMEM;
5036                 mlog_errno(ret);
5037                 goto out;
5038         }
5039
5040         ret = ocfs2_find_path(inode, left_path, cpos);
5041         if (ret) {
5042                 mlog_errno(ret);
5043                 goto out;
5044         }
5045         el = path_leaf_el(left_path);
5046
5047         index = ocfs2_search_extent_list(el, cpos);
5048         if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
5049                 ocfs2_error(inode->i_sb,
5050                             "Inode %llu has an extent at cpos %u which can no "
5051                             "longer be found.\n",
5052                             (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
5053                 ret = -EROFS;
5054                 goto out;
5055         }
5056
5057         memset(&split_rec, 0, sizeof(struct ocfs2_extent_rec));
5058         split_rec.e_cpos = cpu_to_le32(cpos);
5059         split_rec.e_leaf_clusters = cpu_to_le16(len);
5060         split_rec.e_blkno = cpu_to_le64(start_blkno);
5061         split_rec.e_flags = path_leaf_el(left_path)->l_recs[index].e_flags;
5062         split_rec.e_flags &= ~OCFS2_EXT_UNWRITTEN;
5063
5064         ret = __ocfs2_mark_extent_written(inode, et, handle, left_path,
5065                                           index, &split_rec, meta_ac,
5066                                           dealloc);
5067         if (ret)
5068                 mlog_errno(ret);
5069
5070 out:
5071         ocfs2_free_path(left_path);
5072         return ret;
5073 }
5074
5075 static int ocfs2_split_tree(struct inode *inode, struct ocfs2_extent_tree *et,
5076                             handle_t *handle, struct ocfs2_path *path,
5077                             int index, u32 new_range,
5078                             struct ocfs2_alloc_context *meta_ac)
5079 {
5080         int ret, depth, credits = handle->h_buffer_credits;
5081         struct buffer_head *last_eb_bh = NULL;
5082         struct ocfs2_extent_block *eb;
5083         struct ocfs2_extent_list *rightmost_el, *el;
5084         struct ocfs2_extent_rec split_rec;
5085         struct ocfs2_extent_rec *rec;
5086         struct ocfs2_insert_type insert;
5087
5088         /*
5089          * Setup the record to split before we grow the tree.
5090          */
5091         el = path_leaf_el(path);
5092         rec = &el->l_recs[index];
5093         ocfs2_make_right_split_rec(inode->i_sb, &split_rec, new_range, rec);
5094
5095         depth = path->p_tree_depth;
5096         if (depth > 0) {
5097                 ret = ocfs2_read_extent_block(inode,
5098                                               ocfs2_et_get_last_eb_blk(et),
5099                                               &last_eb_bh);
5100                 if (ret < 0) {
5101                         mlog_errno(ret);
5102                         goto out;
5103                 }
5104
5105                 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
5106                 rightmost_el = &eb->h_list;
5107         } else
5108                 rightmost_el = path_leaf_el(path);
5109
5110         credits += path->p_tree_depth +
5111                    ocfs2_extend_meta_needed(et->et_root_el);
5112         ret = ocfs2_extend_trans(handle, credits);
5113         if (ret) {
5114                 mlog_errno(ret);
5115                 goto out;
5116         }
5117
5118         if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
5119             le16_to_cpu(rightmost_el->l_count)) {
5120                 ret = ocfs2_grow_tree(inode, handle, et, &depth, &last_eb_bh,
5121                                       meta_ac);
5122                 if (ret) {
5123                         mlog_errno(ret);
5124                         goto out;
5125                 }
5126         }
5127
5128         memset(&insert, 0, sizeof(struct ocfs2_insert_type));
5129         insert.ins_appending = APPEND_NONE;
5130         insert.ins_contig = CONTIG_NONE;
5131         insert.ins_split = SPLIT_RIGHT;
5132         insert.ins_tree_depth = depth;
5133
5134         ret = ocfs2_do_insert_extent(inode, handle, et, &split_rec, &insert);
5135         if (ret)
5136                 mlog_errno(ret);
5137
5138 out:
5139         brelse(last_eb_bh);
5140         return ret;
5141 }
5142
5143 static int ocfs2_truncate_rec(struct inode *inode, handle_t *handle,
5144                               struct ocfs2_path *path, int index,
5145                               struct ocfs2_cached_dealloc_ctxt *dealloc,
5146                               u32 cpos, u32 len,
5147                               struct ocfs2_extent_tree *et)
5148 {
5149         int ret;
5150         u32 left_cpos, rec_range, trunc_range;
5151         int wants_rotate = 0, is_rightmost_tree_rec = 0;
5152         struct super_block *sb = inode->i_sb;
5153         struct ocfs2_path *left_path = NULL;
5154         struct ocfs2_extent_list *el = path_leaf_el(path);
5155         struct ocfs2_extent_rec *rec;
5156         struct ocfs2_extent_block *eb;
5157
5158         if (ocfs2_is_empty_extent(&el->l_recs[0]) && index > 0) {
5159                 ret = ocfs2_rotate_tree_left(inode, handle, path, dealloc, et);
5160                 if (ret) {
5161                         mlog_errno(ret);
5162                         goto out;
5163                 }
5164
5165                 index--;
5166         }
5167
5168         if (index == (le16_to_cpu(el->l_next_free_rec) - 1) &&
5169             path->p_tree_depth) {
5170                 /*
5171                  * Check whether this is the rightmost tree record. If
5172                  * we remove all of this record or part of its right
5173                  * edge then an update of the record lengths above it
5174                  * will be required.
5175                  */
5176                 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
5177                 if (eb->h_next_leaf_blk == 0)
5178                         is_rightmost_tree_rec = 1;
5179         }
5180
5181         rec = &el->l_recs[index];
5182         if (index == 0 && path->p_tree_depth &&
5183             le32_to_cpu(rec->e_cpos) == cpos) {
5184                 /*
5185                  * Changing the leftmost offset (via partial or whole
5186                  * record truncate) of an interior (or rightmost) path
5187                  * means we have to update the subtree that is formed
5188                  * by this leaf and the one to it's left.
5189                  *
5190                  * There are two cases we can skip:
5191                  *   1) Path is the leftmost one in our inode tree.
5192                  *   2) The leaf is rightmost and will be empty after
5193                  *      we remove the extent record - the rotate code
5194                  *      knows how to update the newly formed edge.
5195                  */
5196
5197                 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path,
5198                                                     &left_cpos);
5199                 if (ret) {
5200                         mlog_errno(ret);
5201                         goto out;
5202                 }
5203
5204                 if (left_cpos && le16_to_cpu(el->l_next_free_rec) > 1) {
5205                         left_path = ocfs2_new_path_from_path(path);
5206                         if (!left_path) {
5207                                 ret = -ENOMEM;
5208                                 mlog_errno(ret);
5209                                 goto out;
5210                         }
5211
5212                         ret = ocfs2_find_path(inode, left_path, left_cpos);
5213                         if (ret) {
5214                                 mlog_errno(ret);
5215                                 goto out;
5216                         }
5217                 }
5218         }
5219
5220         ret = ocfs2_extend_rotate_transaction(handle, 0,
5221                                               handle->h_buffer_credits,
5222                                               path);
5223         if (ret) {
5224                 mlog_errno(ret);
5225                 goto out;
5226         }
5227
5228         ret = ocfs2_journal_access_path(inode, handle, path);
5229         if (ret) {
5230                 mlog_errno(ret);
5231                 goto out;
5232         }
5233
5234         ret = ocfs2_journal_access_path(inode, handle, left_path);
5235         if (ret) {
5236                 mlog_errno(ret);
5237                 goto out;
5238         }
5239
5240         rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
5241         trunc_range = cpos + len;
5242
5243         if (le32_to_cpu(rec->e_cpos) == cpos && rec_range == trunc_range) {
5244                 int next_free;
5245
5246                 memset(rec, 0, sizeof(*rec));
5247                 ocfs2_cleanup_merge(el, index);
5248                 wants_rotate = 1;
5249
5250                 next_free = le16_to_cpu(el->l_next_free_rec);
5251                 if (is_rightmost_tree_rec && next_free > 1) {
5252                         /*
5253                          * We skip the edge update if this path will
5254                          * be deleted by the rotate code.
5255                          */
5256                         rec = &el->l_recs[next_free - 1];
5257                         ocfs2_adjust_rightmost_records(inode, handle, path,
5258                                                        rec);
5259                 }
5260         } else if (le32_to_cpu(rec->e_cpos) == cpos) {
5261                 /* Remove leftmost portion of the record. */
5262                 le32_add_cpu(&rec->e_cpos, len);
5263                 le64_add_cpu(&rec->e_blkno, ocfs2_clusters_to_blocks(sb, len));
5264                 le16_add_cpu(&rec->e_leaf_clusters, -len);
5265         } else if (rec_range == trunc_range) {
5266                 /* Remove rightmost portion of the record */
5267                 le16_add_cpu(&rec->e_leaf_clusters, -len);
5268                 if (is_rightmost_tree_rec)
5269                         ocfs2_adjust_rightmost_records(inode, handle, path, rec);
5270         } else {
5271                 /* Caller should have trapped this. */
5272                 mlog(ML_ERROR, "Inode %llu: Invalid record truncate: (%u, %u) "
5273                      "(%u, %u)\n", (unsigned long long)OCFS2_I(inode)->ip_blkno,
5274                      le32_to_cpu(rec->e_cpos),
5275                      le16_to_cpu(rec->e_leaf_clusters), cpos, len);
5276                 BUG();
5277         }
5278
5279         if (left_path) {
5280                 int subtree_index;
5281
5282                 subtree_index = ocfs2_find_subtree_root(inode, left_path, path);
5283                 ocfs2_complete_edge_insert(inode, handle, left_path, path,
5284                                            subtree_index);
5285         }
5286
5287         ocfs2_journal_dirty(handle, path_leaf_bh(path));
5288
5289         ret = ocfs2_rotate_tree_left(inode, handle, path, dealloc, et);
5290         if (ret) {
5291                 mlog_errno(ret);
5292                 goto out;
5293         }
5294
5295 out:
5296         ocfs2_free_path(left_path);
5297         return ret;
5298 }
5299
5300 int ocfs2_remove_extent(struct inode *inode,
5301                         struct ocfs2_extent_tree *et,
5302                         u32 cpos, u32 len, handle_t *handle,
5303                         struct ocfs2_alloc_context *meta_ac,
5304                         struct ocfs2_cached_dealloc_ctxt *dealloc)
5305 {
5306         int ret, index;
5307         u32 rec_range, trunc_range;
5308         struct ocfs2_extent_rec *rec;
5309         struct ocfs2_extent_list *el;
5310         struct ocfs2_path *path = NULL;
5311
5312         ocfs2_extent_map_trunc(inode, 0);
5313
5314         path = ocfs2_new_path_from_et(et);
5315         if (!path) {
5316                 ret = -ENOMEM;
5317                 mlog_errno(ret);
5318                 goto out;
5319         }
5320
5321         ret = ocfs2_find_path(inode, path, cpos);
5322         if (ret) {
5323                 mlog_errno(ret);
5324                 goto out;
5325         }
5326
5327         el = path_leaf_el(path);
5328         index = ocfs2_search_extent_list(el, cpos);
5329         if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
5330                 ocfs2_error(inode->i_sb,
5331                             "Inode %llu has an extent at cpos %u which can no "
5332                             "longer be found.\n",
5333                             (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
5334                 ret = -EROFS;
5335                 goto out;
5336         }
5337
5338         /*
5339          * We have 3 cases of extent removal:
5340          *   1) Range covers the entire extent rec
5341          *   2) Range begins or ends on one edge of the extent rec
5342          *   3) Range is in the middle of the extent rec (no shared edges)
5343          *
5344          * For case 1 we remove the extent rec and left rotate to
5345          * fill the hole.
5346          *
5347          * For case 2 we just shrink the existing extent rec, with a
5348          * tree update if the shrinking edge is also the edge of an
5349          * extent block.
5350          *
5351          * For case 3 we do a right split to turn the extent rec into
5352          * something case 2 can handle.
5353          */
5354         rec = &el->l_recs[index];
5355         rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
5356         trunc_range = cpos + len;
5357
5358         BUG_ON(cpos < le32_to_cpu(rec->e_cpos) || trunc_range > rec_range);
5359
5360         mlog(0, "Inode %llu, remove (cpos %u, len %u). Existing index %d "
5361              "(cpos %u, len %u)\n",
5362              (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos, len, index,
5363              le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec));
5364
5365         if (le32_to_cpu(rec->e_cpos) == cpos || rec_range == trunc_range) {
5366                 ret = ocfs2_truncate_rec(inode, handle, path, index, dealloc,
5367                                          cpos, len, et);
5368                 if (ret) {
5369                         mlog_errno(ret);
5370                         goto out;
5371                 }
5372         } else {
5373                 ret = ocfs2_split_tree(inode, et, handle, path, index,
5374                                        trunc_range, meta_ac);
5375                 if (ret) {
5376                         mlog_errno(ret);
5377                         goto out;
5378                 }
5379
5380                 /*
5381                  * The split could have manipulated the tree enough to
5382                  * move the record location, so we have to look for it again.
5383                  */
5384                 ocfs2_reinit_path(path, 1);
5385
5386                 ret = ocfs2_find_path(inode, path, cpos);
5387                 if (ret) {
5388                         mlog_errno(ret);
5389                         goto out;
5390                 }
5391
5392                 el = path_leaf_el(path);
5393                 index = ocfs2_search_extent_list(el, cpos);
5394                 if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
5395                         ocfs2_error(inode->i_sb,
5396                                     "Inode %llu: split at cpos %u lost record.",
5397                                     (unsigned long long)OCFS2_I(inode)->ip_blkno,
5398                                     cpos);
5399                         ret = -EROFS;
5400                         goto out;
5401                 }
5402
5403                 /*
5404                  * Double check our values here. If anything is fishy,
5405                  * it's easier to catch it at the top level.
5406                  */
5407                 rec = &el->l_recs[index];
5408                 rec_range = le32_to_cpu(rec->e_cpos) +
5409                         ocfs2_rec_clusters(el, rec);
5410                 if (rec_range != trunc_range) {
5411                         ocfs2_error(inode->i_sb,
5412                                     "Inode %llu: error after split at cpos %u"
5413                                     "trunc len %u, existing record is (%u,%u)",
5414                                     (unsigned long long)OCFS2_I(inode)->ip_blkno,
5415                                     cpos, len, le32_to_cpu(rec->e_cpos),
5416                                     ocfs2_rec_clusters(el, rec));
5417                         ret = -EROFS;
5418                         goto out;
5419                 }
5420
5421                 ret = ocfs2_truncate_rec(inode, handle, path, index, dealloc,
5422                                          cpos, len, et);
5423                 if (ret) {
5424                         mlog_errno(ret);
5425                         goto out;
5426                 }
5427         }
5428
5429 out:
5430         ocfs2_free_path(path);
5431         return ret;
5432 }
5433
5434 int ocfs2_remove_btree_range(struct inode *inode,
5435                              struct ocfs2_extent_tree *et,
5436                              u32 cpos, u32 phys_cpos, u32 len,
5437                              struct ocfs2_cached_dealloc_ctxt *dealloc)
5438 {
5439         int ret;
5440         u64 phys_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys_cpos);
5441         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
5442         struct inode *tl_inode = osb->osb_tl_inode;
5443         handle_t *handle;
5444         struct ocfs2_alloc_context *meta_ac = NULL;
5445
5446         ret = ocfs2_lock_allocators(inode, et, 0, 1, NULL, &meta_ac);
5447         if (ret) {
5448                 mlog_errno(ret);
5449                 return ret;
5450         }
5451
5452         mutex_lock(&tl_inode->i_mutex);
5453
5454         if (ocfs2_truncate_log_needs_flush(osb)) {
5455                 ret = __ocfs2_flush_truncate_log(osb);
5456                 if (ret < 0) {
5457                         mlog_errno(ret);
5458                         goto out;
5459                 }
5460         }
5461
5462         handle = ocfs2_start_trans(osb, ocfs2_remove_extent_credits(osb->sb));
5463         if (IS_ERR(handle)) {
5464                 ret = PTR_ERR(handle);
5465                 mlog_errno(ret);
5466                 goto out;
5467         }
5468
5469         ret = ocfs2_et_root_journal_access(handle, inode, et,
5470                                            OCFS2_JOURNAL_ACCESS_WRITE);
5471         if (ret) {
5472                 mlog_errno(ret);
5473                 goto out;
5474         }
5475
5476         vfs_dq_free_space_nodirty(inode,
5477                                   ocfs2_clusters_to_bytes(inode->i_sb, len));
5478
5479         ret = ocfs2_remove_extent(inode, et, cpos, len, handle, meta_ac,
5480                                   dealloc);
5481         if (ret) {
5482                 mlog_errno(ret);
5483                 goto out_commit;
5484         }
5485
5486         ocfs2_et_update_clusters(inode, et, -len);
5487
5488         ret = ocfs2_journal_dirty(handle, et->et_root_bh);
5489         if (ret) {
5490                 mlog_errno(ret);
5491                 goto out_commit;
5492         }
5493
5494         ret = ocfs2_truncate_log_append(osb, handle, phys_blkno, len);
5495         if (ret)
5496                 mlog_errno(ret);
5497
5498 out_commit:
5499         ocfs2_commit_trans(osb, handle);
5500 out:
5501         mutex_unlock(&tl_inode->i_mutex);
5502
5503         if (meta_ac)
5504                 ocfs2_free_alloc_context(meta_ac);
5505
5506         return ret;
5507 }
5508
5509 int ocfs2_truncate_log_needs_flush(struct ocfs2_super *osb)
5510 {
5511         struct buffer_head *tl_bh = osb->osb_tl_bh;
5512         struct ocfs2_dinode *di;
5513         struct ocfs2_truncate_log *tl;
5514
5515         di = (struct ocfs2_dinode *) tl_bh->b_data;
5516         tl = &di->id2.i_dealloc;
5517
5518         mlog_bug_on_msg(le16_to_cpu(tl->tl_used) > le16_to_cpu(tl->tl_count),
5519                         "slot %d, invalid truncate log parameters: used = "
5520                         "%u, count = %u\n", osb->slot_num,
5521                         le16_to_cpu(tl->tl_used), le16_to_cpu(tl->tl_count));
5522         return le16_to_cpu(tl->tl_used) == le16_to_cpu(tl->tl_count);
5523 }
5524
5525 static int ocfs2_truncate_log_can_coalesce(struct ocfs2_truncate_log *tl,
5526                                            unsigned int new_start)
5527 {
5528         unsigned int tail_index;
5529         unsigned int current_tail;
5530
5531         /* No records, nothing to coalesce */
5532         if (!le16_to_cpu(tl->tl_used))
5533                 return 0;
5534
5535         tail_index = le16_to_cpu(tl->tl_used) - 1;
5536         current_tail = le32_to_cpu(tl->tl_recs[tail_index].t_start);
5537         current_tail += le32_to_cpu(tl->tl_recs[tail_index].t_clusters);
5538
5539         return current_tail == new_start;
5540 }
5541
5542 int ocfs2_truncate_log_append(struct ocfs2_super *osb,
5543                               handle_t *handle,
5544                               u64 start_blk,
5545                               unsigned int num_clusters)
5546 {
5547         int status, index;
5548         unsigned int start_cluster, tl_count;
5549         struct inode *tl_inode = osb->osb_tl_inode;
5550         struct buffer_head *tl_bh = osb->osb_tl_bh;
5551         struct ocfs2_dinode *di;
5552         struct ocfs2_truncate_log *tl;
5553
5554         mlog_entry("start_blk = %llu, num_clusters = %u\n",
5555                    (unsigned long long)start_blk, num_clusters);
5556
5557         BUG_ON(mutex_trylock(&tl_inode->i_mutex));
5558
5559         start_cluster = ocfs2_blocks_to_clusters(osb->sb, start_blk);
5560
5561         di = (struct ocfs2_dinode *) tl_bh->b_data;
5562
5563         /* tl_bh is loaded from ocfs2_truncate_log_init().  It's validated
5564          * by the underlying call to ocfs2_read_inode_block(), so any
5565          * corruption is a code bug */
5566         BUG_ON(!OCFS2_IS_VALID_DINODE(di));
5567
5568         tl = &di->id2.i_dealloc;
5569         tl_count = le16_to_cpu(tl->tl_count);
5570         mlog_bug_on_msg(tl_count > ocfs2_truncate_recs_per_inode(osb->sb) ||
5571                         tl_count == 0,
5572                         "Truncate record count on #%llu invalid "
5573                         "wanted %u, actual %u\n",
5574                         (unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
5575                         ocfs2_truncate_recs_per_inode(osb->sb),
5576                         le16_to_cpu(tl->tl_count));
5577
5578         /* Caller should have known to flush before calling us. */
5579         index = le16_to_cpu(tl->tl_used);
5580         if (index >= tl_count) {
5581                 status = -ENOSPC;
5582                 mlog_errno(status);
5583                 goto bail;
5584         }
5585
5586         status = ocfs2_journal_access_di(handle, tl_inode, tl_bh,
5587                                          OCFS2_JOURNAL_ACCESS_WRITE);
5588         if (status < 0) {
5589                 mlog_errno(status);
5590                 goto bail;
5591         }
5592
5593         mlog(0, "Log truncate of %u clusters starting at cluster %u to "
5594              "%llu (index = %d)\n", num_clusters, start_cluster,
5595              (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, index);
5596
5597         if (ocfs2_truncate_log_can_coalesce(tl, start_cluster)) {
5598                 /*
5599                  * Move index back to the record we are coalescing with.
5600                  * ocfs2_truncate_log_can_coalesce() guarantees nonzero
5601                  */
5602                 index--;
5603
5604                 num_clusters += le32_to_cpu(tl->tl_recs[index].t_clusters);
5605                 mlog(0, "Coalesce with index %u (start = %u, clusters = %u)\n",
5606                      index, le32_to_cpu(tl->tl_recs[index].t_start),
5607                      num_clusters);
5608         } else {
5609                 tl->tl_recs[index].t_start = cpu_to_le32(start_cluster);
5610                 tl->tl_used = cpu_to_le16(index + 1);
5611         }
5612         tl->tl_recs[index].t_clusters = cpu_to_le32(num_clusters);
5613
5614         status = ocfs2_journal_dirty(handle, tl_bh);
5615         if (status < 0) {
5616                 mlog_errno(status);
5617                 goto bail;
5618         }
5619
5620 bail:
5621         mlog_exit(status);
5622         return status;
5623 }
5624
5625 static int ocfs2_replay_truncate_records(struct ocfs2_super *osb,
5626                                          handle_t *handle,
5627                                          struct inode *data_alloc_inode,
5628                                          struct buffer_head *data_alloc_bh)
5629 {
5630         int status = 0;
5631         int i;
5632         unsigned int num_clusters;
5633         u64 start_blk;
5634         struct ocfs2_truncate_rec rec;
5635         struct ocfs2_dinode *di;
5636         struct ocfs2_truncate_log *tl;
5637         struct inode *tl_inode = osb->osb_tl_inode;
5638         struct buffer_head *tl_bh = osb->osb_tl_bh;
5639
5640         mlog_entry_void();
5641
5642         di = (struct ocfs2_dinode *) tl_bh->b_data;
5643         tl = &di->id2.i_dealloc;
5644         i = le16_to_cpu(tl->tl_used) - 1;
5645         while (i >= 0) {
5646                 /* Caller has given us at least enough credits to
5647                  * update the truncate log dinode */
5648                 status = ocfs2_journal_access_di(handle, tl_inode, tl_bh,
5649                                                  OCFS2_JOURNAL_ACCESS_WRITE);
5650                 if (status < 0) {
5651                         mlog_errno(status);
5652                         goto bail;
5653                 }
5654
5655                 tl->tl_used = cpu_to_le16(i);
5656
5657                 status = ocfs2_journal_dirty(handle, tl_bh);
5658                 if (status < 0) {
5659                         mlog_errno(status);
5660                         goto bail;
5661                 }
5662
5663                 /* TODO: Perhaps we can calculate the bulk of the
5664                  * credits up front rather than extending like
5665                  * this. */
5666                 status = ocfs2_extend_trans(handle,
5667                                             OCFS2_TRUNCATE_LOG_FLUSH_ONE_REC);
5668                 if (status < 0) {
5669                         mlog_errno(status);
5670                         goto bail;
5671                 }
5672
5673                 rec = tl->tl_recs[i];
5674                 start_blk = ocfs2_clusters_to_blocks(data_alloc_inode->i_sb,
5675                                                     le32_to_cpu(rec.t_start));
5676                 num_clusters = le32_to_cpu(rec.t_clusters);
5677
5678                 /* if start_blk is not set, we ignore the record as
5679                  * invalid. */
5680                 if (start_blk) {
5681                         mlog(0, "free record %d, start = %u, clusters = %u\n",
5682                              i, le32_to_cpu(rec.t_start), num_clusters);
5683
5684                         status = ocfs2_free_clusters(handle, data_alloc_inode,
5685                                                      data_alloc_bh, start_blk,
5686                                                      num_clusters);
5687                         if (status < 0) {
5688                                 mlog_errno(status);
5689                                 goto bail;
5690                         }
5691                 }
5692                 i--;
5693         }
5694
5695 bail:
5696         mlog_exit(status);
5697         return status;
5698 }
5699
5700 /* Expects you to already be holding tl_inode->i_mutex */
5701 int __ocfs2_flush_truncate_log(struct ocfs2_super *osb)
5702 {
5703         int status;
5704         unsigned int num_to_flush;
5705         handle_t *handle;
5706         struct inode *tl_inode = osb->osb_tl_inode;
5707         struct inode *data_alloc_inode = NULL;
5708         struct buffer_head *tl_bh = osb->osb_tl_bh;
5709         struct buffer_head *data_alloc_bh = NULL;
5710         struct ocfs2_dinode *di;
5711         struct ocfs2_truncate_log *tl;
5712
5713         mlog_entry_void();
5714
5715         BUG_ON(mutex_trylock(&tl_inode->i_mutex));
5716
5717         di = (struct ocfs2_dinode *) tl_bh->b_data;
5718
5719         /* tl_bh is loaded from ocfs2_truncate_log_init().  It's validated
5720          * by the underlying call to ocfs2_read_inode_block(), so any
5721          * corruption is a code bug */
5722         BUG_ON(!OCFS2_IS_VALID_DINODE(di));
5723
5724         tl = &di->id2.i_dealloc;
5725         num_to_flush = le16_to_cpu(tl->tl_used);
5726         mlog(0, "Flush %u records from truncate log #%llu\n",
5727              num_to_flush, (unsigned long long)OCFS2_I(tl_inode)->ip_blkno);
5728         if (!num_to_flush) {
5729                 status = 0;
5730                 goto out;
5731         }
5732
5733         data_alloc_inode = ocfs2_get_system_file_inode(osb,
5734                                                        GLOBAL_BITMAP_SYSTEM_INODE,
5735                                                        OCFS2_INVALID_SLOT);
5736         if (!data_alloc_inode) {
5737                 status = -EINVAL;
5738                 mlog(ML_ERROR, "Could not get bitmap inode!\n");
5739                 goto out;
5740         }
5741
5742         mutex_lock(&data_alloc_inode->i_mutex);
5743
5744         status = ocfs2_inode_lock(data_alloc_inode, &data_alloc_bh, 1);
5745         if (status < 0) {
5746                 mlog_errno(status);
5747                 goto out_mutex;
5748         }
5749
5750         handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
5751         if (IS_ERR(handle)) {
5752                 status = PTR_ERR(handle);
5753                 mlog_errno(status);
5754                 goto out_unlock;
5755         }
5756
5757         status = ocfs2_replay_truncate_records(osb, handle, data_alloc_inode,
5758                                                data_alloc_bh);
5759         if (status < 0)
5760                 mlog_errno(status);
5761
5762         ocfs2_commit_trans(osb, handle);
5763
5764 out_unlock:
5765         brelse(data_alloc_bh);
5766         ocfs2_inode_unlock(data_alloc_inode, 1);
5767
5768 out_mutex:
5769         mutex_unlock(&data_alloc_inode->i_mutex);
5770         iput(data_alloc_inode);
5771
5772 out:
5773         mlog_exit(status);
5774         return status;
5775 }
5776
5777 int ocfs2_flush_truncate_log(struct ocfs2_super *osb)
5778 {
5779         int status;
5780         struct inode *tl_inode = osb->osb_tl_inode;
5781
5782         mutex_lock(&tl_inode->i_mutex);
5783         status = __ocfs2_flush_truncate_log(osb);
5784         mutex_unlock(&tl_inode->i_mutex);
5785
5786         return status;
5787 }
5788
5789 static void ocfs2_truncate_log_worker(struct work_struct *work)
5790 {
5791         int status;
5792         struct ocfs2_super *osb =
5793                 container_of(work, struct ocfs2_super,
5794                              osb_truncate_log_wq.work);
5795
5796         mlog_entry_void();
5797
5798         status = ocfs2_flush_truncate_log(osb);
5799         if (status < 0)
5800                 mlog_errno(status);
5801         else
5802                 ocfs2_init_inode_steal_slot(osb);
5803
5804         mlog_exit(status);
5805 }
5806
5807 #define OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL (2 * HZ)
5808 void ocfs2_schedule_truncate_log_flush(struct ocfs2_super *osb,
5809                                        int cancel)
5810 {
5811         if (osb->osb_tl_inode) {
5812                 /* We want to push off log flushes while truncates are
5813                  * still running. */
5814                 if (cancel)
5815                         cancel_delayed_work(&osb->osb_truncate_log_wq);
5816
5817                 queue_delayed_work(ocfs2_wq, &osb->osb_truncate_log_wq,
5818                                    OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL);
5819         }
5820 }
5821
5822 static int ocfs2_get_truncate_log_info(struct ocfs2_super *osb,
5823                                        int slot_num,
5824                                        struct inode **tl_inode,
5825                                        struct buffer_head **tl_bh)
5826 {
5827         int status;
5828         struct inode *inode = NULL;
5829         struct buffer_head *bh = NULL;
5830
5831         inode = ocfs2_get_system_file_inode(osb,
5832                                            TRUNCATE_LOG_SYSTEM_INODE,
5833                                            slot_num);
5834         if (!inode) {
5835                 status = -EINVAL;
5836                 mlog(ML_ERROR, "Could not get load truncate log inode!\n");
5837                 goto bail;
5838         }
5839
5840         status = ocfs2_read_inode_block(inode, &bh);
5841         if (status < 0) {
5842                 iput(inode);
5843                 mlog_errno(status);
5844                 goto bail;
5845         }
5846
5847         *tl_inode = inode;
5848         *tl_bh    = bh;
5849 bail:
5850         mlog_exit(status);
5851         return status;
5852 }
5853
5854 /* called during the 1st stage of node recovery. we stamp a clean
5855  * truncate log and pass back a copy for processing later. if the
5856  * truncate log does not require processing, a *tl_copy is set to
5857  * NULL. */
5858 int ocfs2_begin_truncate_log_recovery(struct ocfs2_super *osb,
5859                                       int slot_num,
5860                                       struct ocfs2_dinode **tl_copy)
5861 {
5862         int status;
5863         struct inode *tl_inode = NULL;
5864         struct buffer_head *tl_bh = NULL;
5865         struct ocfs2_dinode *di;
5866         struct ocfs2_truncate_log *tl;
5867
5868         *tl_copy = NULL;
5869
5870         mlog(0, "recover truncate log from slot %d\n", slot_num);
5871
5872         status = ocfs2_get_truncate_log_info(osb, slot_num, &tl_inode, &tl_bh);
5873         if (status < 0) {
5874                 mlog_errno(status);
5875                 goto bail;
5876         }
5877
5878         di = (struct ocfs2_dinode *) tl_bh->b_data;
5879
5880         /* tl_bh is loaded from ocfs2_get_truncate_log_info().  It's
5881          * validated by the underlying call to ocfs2_read_inode_block(),
5882          * so any corruption is a code bug */
5883         BUG_ON(!OCFS2_IS_VALID_DINODE(di));
5884
5885         tl = &di->id2.i_dealloc;
5886         if (le16_to_cpu(tl->tl_used)) {
5887                 mlog(0, "We'll have %u logs to recover\n",
5888                      le16_to_cpu(tl->tl_used));
5889
5890                 *tl_copy = kmalloc(tl_bh->b_size, GFP_KERNEL);
5891                 if (!(*tl_copy)) {
5892                         status = -ENOMEM;
5893                         mlog_errno(status);
5894                         goto bail;
5895                 }
5896
5897                 /* Assuming the write-out below goes well, this copy
5898                  * will be passed back to recovery for processing. */
5899                 memcpy(*tl_copy, tl_bh->b_data, tl_bh->b_size);
5900
5901                 /* All we need to do to clear the truncate log is set
5902                  * tl_used. */
5903                 tl->tl_used = 0;
5904
5905                 ocfs2_compute_meta_ecc(osb->sb, tl_bh->b_data, &di->i_check);
5906                 status = ocfs2_write_block(osb, tl_bh, tl_inode);
5907                 if (status < 0) {
5908                         mlog_errno(status);
5909                         goto bail;
5910                 }
5911         }
5912
5913 bail:
5914         if (tl_inode)
5915                 iput(tl_inode);
5916         brelse(tl_bh);
5917
5918         if (status < 0 && (*tl_copy)) {
5919                 kfree(*tl_copy);
5920                 *tl_copy = NULL;
5921         }
5922
5923         mlog_exit(status);
5924         return status;
5925 }
5926
5927 int ocfs2_complete_truncate_log_recovery(struct ocfs2_super *osb,
5928                                          struct ocfs2_dinode *tl_copy)
5929 {
5930         int status = 0;
5931         int i;
5932         unsigned int clusters, num_recs, start_cluster;
5933         u64 start_blk;
5934         handle_t *handle;
5935         struct inode *tl_inode = osb->osb_tl_inode;
5936         struct ocfs2_truncate_log *tl;
5937
5938         mlog_entry_void();
5939
5940         if (OCFS2_I(tl_inode)->ip_blkno == le64_to_cpu(tl_copy->i_blkno)) {
5941                 mlog(ML_ERROR, "Asked to recover my own truncate log!\n");
5942                 return -EINVAL;
5943         }
5944
5945         tl = &tl_copy->id2.i_dealloc;
5946         num_recs = le16_to_cpu(tl->tl_used);
5947         mlog(0, "cleanup %u records from %llu\n", num_recs,
5948              (unsigned long long)le64_to_cpu(tl_copy->i_blkno));
5949
5950         mutex_lock(&tl_inode->i_mutex);
5951         for(i = 0; i < num_recs; i++) {
5952                 if (ocfs2_truncate_log_needs_flush(osb)) {
5953                         status = __ocfs2_flush_truncate_log(osb);
5954                         if (status < 0) {
5955                                 mlog_errno(status);
5956                                 goto bail_up;
5957                         }
5958                 }
5959
5960                 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
5961                 if (IS_ERR(handle)) {
5962                         status = PTR_ERR(handle);
5963                         mlog_errno(status);
5964                         goto bail_up;
5965                 }
5966
5967                 clusters = le32_to_cpu(tl->tl_recs[i].t_clusters);
5968                 start_cluster = le32_to_cpu(tl->tl_recs[i].t_start);
5969                 start_blk = ocfs2_clusters_to_blocks(osb->sb, start_cluster);
5970
5971                 status = ocfs2_truncate_log_append(osb, handle,
5972                                                    start_blk, clusters);
5973                 ocfs2_commit_trans(osb, handle);
5974                 if (status < 0) {
5975                         mlog_errno(status);
5976                         goto bail_up;
5977                 }
5978         }
5979
5980 bail_up:
5981         mutex_unlock(&tl_inode->i_mutex);
5982
5983         mlog_exit(status);
5984         return status;
5985 }
5986
5987 void ocfs2_truncate_log_shutdown(struct ocfs2_super *osb)
5988 {
5989         int status;
5990         struct inode *tl_inode = osb->osb_tl_inode;
5991
5992         mlog_entry_void();
5993
5994         if (tl_inode) {
5995                 cancel_delayed_work(&osb->osb_truncate_log_wq);
5996                 flush_workqueue(ocfs2_wq);
5997
5998                 status = ocfs2_flush_truncate_log(osb);
5999                 if (status < 0)
6000                         mlog_errno(status);
6001
6002                 brelse(osb->osb_tl_bh);
6003                 iput(osb->osb_tl_inode);
6004         }
6005
6006         mlog_exit_void();
6007 }
6008
6009 int ocfs2_truncate_log_init(struct ocfs2_super *osb)
6010 {
6011         int status;
6012         struct inode *tl_inode = NULL;
6013         struct buffer_head *tl_bh = NULL;
6014
6015         mlog_entry_void();
6016
6017         status = ocfs2_get_truncate_log_info(osb,
6018                                              osb->slot_num,
6019                                              &tl_inode,
6020                                              &tl_bh);
6021         if (status < 0)
6022                 mlog_errno(status);
6023
6024         /* ocfs2_truncate_log_shutdown keys on the existence of
6025          * osb->osb_tl_inode so we don't set any of the osb variables
6026          * until we're sure all is well. */
6027         INIT_DELAYED_WORK(&osb->osb_truncate_log_wq,
6028                           ocfs2_truncate_log_worker);
6029         osb->osb_tl_bh    = tl_bh;
6030         osb->osb_tl_inode = tl_inode;
6031
6032         mlog_exit(status);
6033         return status;
6034 }
6035
6036 /*
6037  * Delayed de-allocation of suballocator blocks.
6038  *
6039  * Some sets of block de-allocations might involve multiple suballocator inodes.
6040  *
6041  * The locking for this can get extremely complicated, especially when
6042  * the suballocator inodes to delete from aren't known until deep
6043  * within an unrelated codepath.
6044  *
6045  * ocfs2_extent_block structures are a good example of this - an inode
6046  * btree could have been grown by any number of nodes each allocating
6047  * out of their own suballoc inode.
6048  *
6049  * These structures allow the delay of block de-allocation until a
6050  * later time, when locking of multiple cluster inodes won't cause
6051  * deadlock.
6052  */
6053
6054 /*
6055  * Describe a single bit freed from a suballocator.  For the block
6056  * suballocators, it represents one block.  For the global cluster
6057  * allocator, it represents some clusters and free_bit indicates
6058  * clusters number.
6059  */
6060 struct ocfs2_cached_block_free {
6061         struct ocfs2_cached_block_free          *free_next;
6062         u64                                     free_blk;
6063         unsigned int                            free_bit;
6064 };
6065
6066 struct ocfs2_per_slot_free_list {
6067         struct ocfs2_per_slot_free_list         *f_next_suballocator;
6068         int                                     f_inode_type;
6069         int                                     f_slot;
6070         struct ocfs2_cached_block_free          *f_first;
6071 };
6072
6073 static int ocfs2_free_cached_blocks(struct ocfs2_super *osb,
6074                                     int sysfile_type,
6075                                     int slot,
6076                                     struct ocfs2_cached_block_free *head)
6077 {
6078         int ret;
6079         u64 bg_blkno;
6080         handle_t *handle;
6081         struct inode *inode;
6082         struct buffer_head *di_bh = NULL;
6083         struct ocfs2_cached_block_free *tmp;
6084
6085         inode = ocfs2_get_system_file_inode(osb, sysfile_type, slot);
6086         if (!inode) {
6087                 ret = -EINVAL;
6088                 mlog_errno(ret);
6089                 goto out;
6090         }
6091
6092         mutex_lock(&inode->i_mutex);
6093
6094         ret = ocfs2_inode_lock(inode, &di_bh, 1);
6095         if (ret) {
6096                 mlog_errno(ret);
6097                 goto out_mutex;
6098         }
6099
6100         handle = ocfs2_start_trans(osb, OCFS2_SUBALLOC_FREE);
6101         if (IS_ERR(handle)) {
6102                 ret = PTR_ERR(handle);
6103                 mlog_errno(ret);
6104                 goto out_unlock;
6105         }
6106
6107         while (head) {
6108                 bg_blkno = ocfs2_which_suballoc_group(head->free_blk,
6109                                                       head->free_bit);
6110                 mlog(0, "Free bit: (bit %u, blkno %llu)\n",
6111                      head->free_bit, (unsigned long long)head->free_blk);
6112
6113                 ret = ocfs2_free_suballoc_bits(handle, inode, di_bh,
6114                                                head->free_bit, bg_blkno, 1);
6115                 if (ret) {
6116                         mlog_errno(ret);
6117                         goto out_journal;
6118                 }
6119
6120                 ret = ocfs2_extend_trans(handle, OCFS2_SUBALLOC_FREE);
6121                 if (ret) {
6122                         mlog_errno(ret);
6123                         goto out_journal;
6124                 }
6125
6126                 tmp = head;
6127                 head = head->free_next;
6128                 kfree(tmp);
6129         }
6130
6131 out_journal:
6132         ocfs2_commit_trans(osb, handle);
6133
6134 out_unlock:
6135         ocfs2_inode_unlock(inode, 1);
6136         brelse(di_bh);
6137 out_mutex:
6138         mutex_unlock(&inode->i_mutex);
6139         iput(inode);
6140 out:
6141         while(head) {
6142                 /* Premature exit may have left some dangling items. */
6143                 tmp = head;
6144                 head = head->free_next;
6145                 kfree(tmp);
6146         }
6147
6148         return ret;
6149 }
6150
6151 int ocfs2_cache_cluster_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt,
6152                                 u64 blkno, unsigned int bit)
6153 {
6154         int ret = 0;
6155         struct ocfs2_cached_block_free *item;
6156
6157         item = kmalloc(sizeof(*item), GFP_NOFS);
6158         if (item == NULL) {
6159                 ret = -ENOMEM;
6160                 mlog_errno(ret);
6161                 return ret;
6162         }
6163
6164         mlog(0, "Insert clusters: (bit %u, blk %llu)\n",
6165              bit, (unsigned long long)blkno);
6166
6167         item->free_blk = blkno;
6168         item->free_bit = bit;
6169         item->free_next = ctxt->c_global_allocator;
6170
6171         ctxt->c_global_allocator = item;
6172         return ret;
6173 }
6174
6175 static int ocfs2_free_cached_clusters(struct ocfs2_super *osb,
6176                                       struct ocfs2_cached_block_free *head)
6177 {
6178         struct ocfs2_cached_block_free *tmp;
6179         struct inode *tl_inode = osb->osb_tl_inode;
6180         handle_t *handle;
6181         int ret = 0;
6182
6183         mutex_lock(&tl_inode->i_mutex);
6184
6185         while (head) {
6186                 if (ocfs2_truncate_log_needs_flush(osb)) {
6187                         ret = __ocfs2_flush_truncate_log(osb);
6188                         if (ret < 0) {
6189                                 mlog_errno(ret);
6190                                 break;
6191                         }
6192                 }
6193
6194                 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
6195                 if (IS_ERR(handle)) {
6196                         ret = PTR_ERR(handle);
6197                         mlog_errno(ret);
6198                         break;
6199                 }
6200
6201                 ret = ocfs2_truncate_log_append(osb, handle, head->free_blk,
6202                                                 head->free_bit);
6203
6204                 ocfs2_commit_trans(osb, handle);
6205                 tmp = head;
6206                 head = head->free_next;
6207                 kfree(tmp);
6208
6209                 if (ret < 0) {
6210                         mlog_errno(ret);
6211                         break;
6212                 }
6213         }
6214
6215         mutex_unlock(&tl_inode->i_mutex);
6216
6217         while (head) {
6218                 /* Premature exit may have left some dangling items. */
6219                 tmp = head;
6220                 head = head->free_next;
6221                 kfree(tmp);
6222         }
6223
6224         return ret;
6225 }
6226
6227 int ocfs2_run_deallocs(struct ocfs2_super *osb,
6228                        struct ocfs2_cached_dealloc_ctxt *ctxt)
6229 {
6230         int ret = 0, ret2;
6231         struct ocfs2_per_slot_free_list *fl;
6232
6233         if (!ctxt)
6234                 return 0;
6235
6236         while (ctxt->c_first_suballocator) {
6237                 fl = ctxt->c_first_suballocator;
6238
6239                 if (fl->f_first) {
6240                         mlog(0, "Free items: (type %u, slot %d)\n",
6241                              fl->f_inode_type, fl->f_slot);
6242                         ret2 = ocfs2_free_cached_blocks(osb,
6243                                                         fl->f_inode_type,
6244                                                         fl->f_slot,
6245                                                         fl->f_first);
6246                         if (ret2)
6247                                 mlog_errno(ret2);
6248                         if (!ret)
6249                                 ret = ret2;
6250                 }
6251
6252                 ctxt->c_first_suballocator = fl->f_next_suballocator;
6253                 kfree(fl);
6254         }
6255
6256         if (ctxt->c_global_allocator) {
6257                 ret2 = ocfs2_free_cached_clusters(osb,
6258                                                   ctxt->c_global_allocator);
6259                 if (ret2)
6260                         mlog_errno(ret2);
6261                 if (!ret)
6262                         ret = ret2;
6263
6264                 ctxt->c_global_allocator = NULL;
6265         }
6266
6267         return ret;
6268 }
6269
6270 static struct ocfs2_per_slot_free_list *
6271 ocfs2_find_per_slot_free_list(int type,
6272                               int slot,
6273                               struct ocfs2_cached_dealloc_ctxt *ctxt)
6274 {
6275         struct ocfs2_per_slot_free_list *fl = ctxt->c_first_suballocator;
6276
6277         while (fl) {
6278                 if (fl->f_inode_type == type && fl->f_slot == slot)
6279                         return fl;
6280
6281                 fl = fl->f_next_suballocator;
6282         }
6283
6284         fl = kmalloc(sizeof(*fl), GFP_NOFS);
6285         if (fl) {
6286                 fl->f_inode_type = type;
6287                 fl->f_slot = slot;
6288                 fl->f_first = NULL;
6289                 fl->f_next_suballocator = ctxt->c_first_suballocator;
6290
6291                 ctxt->c_first_suballocator = fl;
6292         }
6293         return fl;
6294 }
6295
6296 static int ocfs2_cache_block_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt,
6297                                      int type, int slot, u64 blkno,
6298                                      unsigned int bit)
6299 {
6300         int ret;
6301         struct ocfs2_per_slot_free_list *fl;
6302         struct ocfs2_cached_block_free *item;
6303
6304         fl = ocfs2_find_per_slot_free_list(type, slot, ctxt);
6305         if (fl == NULL) {
6306                 ret = -ENOMEM;
6307                 mlog_errno(ret);
6308                 goto out;
6309         }
6310
6311         item = kmalloc(sizeof(*item), GFP_NOFS);
6312         if (item == NULL) {
6313                 ret = -ENOMEM;
6314                 mlog_errno(ret);
6315                 goto out;
6316         }
6317
6318         mlog(0, "Insert: (type %d, slot %u, bit %u, blk %llu)\n",
6319              type, slot, bit, (unsigned long long)blkno);
6320
6321         item->free_blk = blkno;
6322         item->free_bit = bit;
6323         item->free_next = fl->f_first;
6324
6325         fl->f_first = item;
6326
6327         ret = 0;
6328 out:
6329         return ret;
6330 }
6331
6332 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
6333                                          struct ocfs2_extent_block *eb)
6334 {
6335         return ocfs2_cache_block_dealloc(ctxt, EXTENT_ALLOC_SYSTEM_INODE,
6336                                          le16_to_cpu(eb->h_suballoc_slot),
6337                                          le64_to_cpu(eb->h_blkno),
6338                                          le16_to_cpu(eb->h_suballoc_bit));
6339 }
6340
6341 /* This function will figure out whether the currently last extent
6342  * block will be deleted, and if it will, what the new last extent
6343  * block will be so we can update his h_next_leaf_blk field, as well
6344  * as the dinodes i_last_eb_blk */
6345 static int ocfs2_find_new_last_ext_blk(struct inode *inode,
6346                                        unsigned int clusters_to_del,
6347                                        struct ocfs2_path *path,
6348                                        struct buffer_head **new_last_eb)
6349 {
6350         int next_free, ret = 0;
6351         u32 cpos;
6352         struct ocfs2_extent_rec *rec;
6353         struct ocfs2_extent_block *eb;
6354         struct ocfs2_extent_list *el;
6355         struct buffer_head *bh = NULL;
6356
6357         *new_last_eb = NULL;
6358
6359         /* we have no tree, so of course, no last_eb. */
6360         if (!path->p_tree_depth)
6361                 goto out;
6362
6363         /* trunc to zero special case - this makes tree_depth = 0
6364          * regardless of what it is.  */
6365         if (OCFS2_I(inode)->ip_clusters == clusters_to_del)
6366                 goto out;
6367
6368         el = path_leaf_el(path);
6369         BUG_ON(!el->l_next_free_rec);
6370
6371         /*
6372          * Make sure that this extent list will actually be empty
6373          * after we clear away the data. We can shortcut out if
6374          * there's more than one non-empty extent in the
6375          * list. Otherwise, a check of the remaining extent is
6376          * necessary.
6377          */
6378         next_free = le16_to_cpu(el->l_next_free_rec);
6379         rec = NULL;
6380         if (ocfs2_is_empty_extent(&el->l_recs[0])) {
6381                 if (next_free > 2)
6382                         goto out;
6383
6384                 /* We may have a valid extent in index 1, check it. */
6385                 if (next_free == 2)
6386                         rec = &el->l_recs[1];
6387
6388                 /*
6389                  * Fall through - no more nonempty extents, so we want
6390                  * to delete this leaf.
6391                  */
6392         } else {
6393                 if (next_free > 1)
6394                         goto out;
6395
6396                 rec = &el->l_recs[0];
6397         }
6398
6399         if (rec) {
6400                 /*
6401                  * Check it we'll only be trimming off the end of this
6402                  * cluster.
6403                  */
6404                 if (le16_to_cpu(rec->e_leaf_clusters) > clusters_to_del)
6405                         goto out;
6406         }
6407
6408         ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, &cpos);
6409         if (ret) {
6410                 mlog_errno(ret);
6411                 goto out;
6412         }
6413
6414         ret = ocfs2_find_leaf(inode, path_root_el(path), cpos, &bh);
6415         if (ret) {
6416                 mlog_errno(ret);
6417                 goto out;
6418         }
6419
6420         eb = (struct ocfs2_extent_block *) bh->b_data;
6421         el = &eb->h_list;
6422
6423         /* ocfs2_find_leaf() gets the eb from ocfs2_read_extent_block().
6424          * Any corruption is a code bug. */
6425         BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb));
6426
6427         *new_last_eb = bh;
6428         get_bh(*new_last_eb);
6429         mlog(0, "returning block %llu, (cpos: %u)\n",
6430              (unsigned long long)le64_to_cpu(eb->h_blkno), cpos);
6431 out:
6432         brelse(bh);
6433
6434         return ret;
6435 }
6436
6437 /*
6438  * Trim some clusters off the rightmost edge of a tree. Only called
6439  * during truncate.
6440  *
6441  * The caller needs to:
6442  *   - start journaling of each path component.
6443  *   - compute and fully set up any new last ext block
6444  */
6445 static int ocfs2_trim_tree(struct inode *inode, struct ocfs2_path *path,
6446                            handle_t *handle, struct ocfs2_truncate_context *tc,
6447                            u32 clusters_to_del, u64 *delete_start)
6448 {
6449         int ret, i, index = path->p_tree_depth;
6450         u32 new_edge = 0;
6451         u64 deleted_eb = 0;
6452         struct buffer_head *bh;
6453         struct ocfs2_extent_list *el;
6454         struct ocfs2_extent_rec *rec;
6455
6456         *delete_start = 0;
6457
6458         while (index >= 0) {
6459                 bh = path->p_node[index].bh;
6460                 el = path->p_node[index].el;
6461
6462                 mlog(0, "traveling tree (index = %d, block = %llu)\n",
6463                      index,  (unsigned long long)bh->b_blocknr);
6464
6465                 BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0);
6466
6467                 if (index !=
6468                     (path->p_tree_depth - le16_to_cpu(el->l_tree_depth))) {
6469                         ocfs2_error(inode->i_sb,
6470                                     "Inode %lu has invalid ext. block %llu",
6471                                     inode->i_ino,
6472                                     (unsigned long long)bh->b_blocknr);
6473                         ret = -EROFS;
6474                         goto out;
6475                 }
6476
6477 find_tail_record:
6478                 i = le16_to_cpu(el->l_next_free_rec) - 1;
6479                 rec = &el->l_recs[i];
6480
6481                 mlog(0, "Extent list before: record %d: (%u, %u, %llu), "
6482                      "next = %u\n", i, le32_to_cpu(rec->e_cpos),
6483                      ocfs2_rec_clusters(el, rec),
6484                      (unsigned long long)le64_to_cpu(rec->e_blkno),
6485                      le16_to_cpu(el->l_next_free_rec));
6486
6487                 BUG_ON(ocfs2_rec_clusters(el, rec) < clusters_to_del);
6488
6489                 if (le16_to_cpu(el->l_tree_depth) == 0) {
6490                         /*
6491                          * If the leaf block contains a single empty
6492                          * extent and no records, we can just remove
6493                          * the block.
6494                          */
6495                         if (i == 0 && ocfs2_is_empty_extent(rec)) {
6496                                 memset(rec, 0,
6497                                        sizeof(struct ocfs2_extent_rec));
6498                                 el->l_next_free_rec = cpu_to_le16(0);
6499
6500                                 goto delete;
6501                         }
6502
6503                         /*
6504                          * Remove any empty extents by shifting things
6505                          * left. That should make life much easier on
6506                          * the code below. This condition is rare
6507                          * enough that we shouldn't see a performance
6508                          * hit.
6509                          */
6510                         if (ocfs2_is_empty_extent(&el->l_recs[0])) {
6511                                 le16_add_cpu(&el->l_next_free_rec, -1);
6512
6513                                 for(i = 0;
6514                                     i < le16_to_cpu(el->l_next_free_rec); i++)
6515                                         el->l_recs[i] = el->l_recs[i + 1];
6516
6517                                 memset(&el->l_recs[i], 0,
6518                                        sizeof(struct ocfs2_extent_rec));
6519
6520                                 /*
6521                                  * We've modified our extent list. The
6522                                  * simplest way to handle this change
6523                                  * is to being the search from the
6524                                  * start again.
6525                                  */
6526                                 goto find_tail_record;
6527                         }
6528
6529                         le16_add_cpu(&rec->e_leaf_clusters, -clusters_to_del);
6530
6531                         /*
6532                          * We'll use "new_edge" on our way back up the
6533                          * tree to know what our rightmost cpos is.
6534                          */
6535                         new_edge = le16_to_cpu(rec->e_leaf_clusters);
6536                         new_edge += le32_to_cpu(rec->e_cpos);
6537
6538                         /*
6539                          * The caller will use this to delete data blocks.
6540                          */
6541                         *delete_start = le64_to_cpu(rec->e_blkno)
6542                                 + ocfs2_clusters_to_blocks(inode->i_sb,
6543                                         le16_to_cpu(rec->e_leaf_clusters));
6544
6545                         /*
6546                          * If it's now empty, remove this record.
6547                          */
6548                         if (le16_to_cpu(rec->e_leaf_clusters) == 0) {
6549                                 memset(rec, 0,
6550                                        sizeof(struct ocfs2_extent_rec));
6551                                 le16_add_cpu(&el->l_next_free_rec, -1);
6552                         }
6553                 } else {
6554                         if (le64_to_cpu(rec->e_blkno) == deleted_eb) {
6555                                 memset(rec, 0,
6556                                        sizeof(struct ocfs2_extent_rec));
6557                                 le16_add_cpu(&el->l_next_free_rec, -1);
6558
6559                                 goto delete;
6560                         }
6561
6562                         /* Can this actually happen? */
6563                         if (le16_to_cpu(el->l_next_free_rec) == 0)
6564                                 goto delete;
6565
6566                         /*
6567                          * We never actually deleted any clusters
6568                          * because our leaf was empty. There's no
6569                          * reason to adjust the rightmost edge then.
6570                          */
6571                         if (new_edge == 0)
6572                                 goto delete;
6573
6574                         rec->e_int_clusters = cpu_to_le32(new_edge);
6575                         le32_add_cpu(&rec->e_int_clusters,
6576                                      -le32_to_cpu(rec->e_cpos));
6577
6578                          /*
6579                           * A deleted child record should have been
6580                           * caught above.
6581                           */
6582                          BUG_ON(le32_to_cpu(rec->e_int_clusters) == 0);
6583                 }
6584
6585 delete:
6586                 ret = ocfs2_journal_dirty(handle, bh);
6587                 if (ret) {
6588                         mlog_errno(ret);
6589                         goto out;
6590                 }
6591
6592                 mlog(0, "extent list container %llu, after: record %d: "
6593                      "(%u, %u, %llu), next = %u.\n",
6594                      (unsigned long long)bh->b_blocknr, i,
6595                      le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec),
6596                      (unsigned long long)le64_to_cpu(rec->e_blkno),
6597                      le16_to_cpu(el->l_next_free_rec));
6598
6599                 /*
6600                  * We must be careful to only attempt delete of an
6601                  * extent block (and not the root inode block).
6602                  */
6603                 if (index > 0 && le16_to_cpu(el->l_next_free_rec) == 0) {
6604                         struct ocfs2_extent_block *eb =
6605                                 (struct ocfs2_extent_block *)bh->b_data;
6606
6607                         /*
6608                          * Save this for use when processing the
6609                          * parent block.
6610                          */
6611                         deleted_eb = le64_to_cpu(eb->h_blkno);
6612
6613                         mlog(0, "deleting this extent block.\n");
6614
6615                         ocfs2_remove_from_cache(inode, bh);
6616
6617                         BUG_ON(ocfs2_rec_clusters(el, &el->l_recs[0]));
6618                         BUG_ON(le32_to_cpu(el->l_recs[0].e_cpos));
6619                         BUG_ON(le64_to_cpu(el->l_recs[0].e_blkno));
6620
6621                         ret = ocfs2_cache_extent_block_free(&tc->tc_dealloc, eb);
6622                         /* An error here is not fatal. */
6623                         if (ret < 0)
6624                                 mlog_errno(ret);
6625                 } else {
6626                         deleted_eb = 0;
6627                 }
6628
6629                 index--;
6630         }
6631
6632         ret = 0;
6633 out:
6634         return ret;
6635 }
6636
6637 static int ocfs2_do_truncate(struct ocfs2_super *osb,
6638                              unsigned int clusters_to_del,
6639                              struct inode *inode,
6640                              struct buffer_head *fe_bh,
6641                              handle_t *handle,
6642                              struct ocfs2_truncate_context *tc,
6643                              struct ocfs2_path *path)
6644 {
6645         int status;
6646         struct ocfs2_dinode *fe;
6647         struct ocfs2_extent_block *last_eb = NULL;
6648         struct ocfs2_extent_list *el;
6649         struct buffer_head *last_eb_bh = NULL;
6650         u64 delete_blk = 0;
6651
6652         fe = (struct ocfs2_dinode *) fe_bh->b_data;
6653
6654         status = ocfs2_find_new_last_ext_blk(inode, clusters_to_del,
6655                                              path, &last_eb_bh);
6656         if (status < 0) {
6657                 mlog_errno(status);
6658                 goto bail;
6659         }
6660
6661         /*
6662          * Each component will be touched, so we might as well journal
6663          * here to avoid having to handle errors later.
6664          */
6665         status = ocfs2_journal_access_path(inode, handle, path);
6666         if (status < 0) {
6667                 mlog_errno(status);
6668                 goto bail;
6669         }
6670
6671         if (last_eb_bh) {
6672                 status = ocfs2_journal_access_eb(handle, inode, last_eb_bh,
6673                                                  OCFS2_JOURNAL_ACCESS_WRITE);
6674                 if (status < 0) {
6675                         mlog_errno(status);
6676                         goto bail;
6677                 }
6678
6679                 last_eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
6680         }
6681
6682         el = &(fe->id2.i_list);
6683
6684         /*
6685          * Lower levels depend on this never happening, but it's best
6686          * to check it up here before changing the tree.
6687          */
6688         if (el->l_tree_depth && el->l_recs[0].e_int_clusters == 0) {
6689                 ocfs2_error(inode->i_sb,
6690                             "Inode %lu has an empty extent record, depth %u\n",
6691                             inode->i_ino, le16_to_cpu(el->l_tree_depth));
6692                 status = -EROFS;
6693                 goto bail;
6694         }
6695
6696         vfs_dq_free_space_nodirty(inode,
6697                         ocfs2_clusters_to_bytes(osb->sb, clusters_to_del));
6698         spin_lock(&OCFS2_I(inode)->ip_lock);
6699         OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters) -
6700                                       clusters_to_del;
6701         spin_unlock(&OCFS2_I(inode)->ip_lock);
6702         le32_add_cpu(&fe->i_clusters, -clusters_to_del);
6703         inode->i_blocks = ocfs2_inode_sector_count(inode);
6704
6705         status = ocfs2_trim_tree(inode, path, handle, tc,
6706                                  clusters_to_del, &delete_blk);
6707         if (status) {
6708                 mlog_errno(status);
6709                 goto bail;
6710         }
6711
6712         if (le32_to_cpu(fe->i_clusters) == 0) {
6713                 /* trunc to zero is a special case. */
6714                 el->l_tree_depth = 0;
6715                 fe->i_last_eb_blk = 0;
6716         } else if (last_eb)
6717                 fe->i_last_eb_blk = last_eb->h_blkno;
6718
6719         status = ocfs2_journal_dirty(handle, fe_bh);
6720         if (status < 0) {
6721                 mlog_errno(status);
6722                 goto bail;
6723         }
6724
6725         if (last_eb) {
6726                 /* If there will be a new last extent block, then by
6727                  * definition, there cannot be any leaves to the right of
6728                  * him. */
6729                 last_eb->h_next_leaf_blk = 0;
6730                 status = ocfs2_journal_dirty(handle, last_eb_bh);
6731                 if (status < 0) {
6732                         mlog_errno(status);
6733                         goto bail;
6734                 }
6735         }
6736
6737         if (delete_blk) {
6738                 status = ocfs2_truncate_log_append(osb, handle, delete_blk,
6739                                                    clusters_to_del);
6740                 if (status < 0) {
6741                         mlog_errno(status);
6742                         goto bail;
6743                 }
6744         }
6745         status = 0;
6746 bail:
6747
6748         mlog_exit(status);
6749         return status;
6750 }
6751
6752 static int ocfs2_zero_func(handle_t *handle, struct buffer_head *bh)
6753 {
6754         set_buffer_uptodate(bh);
6755         mark_buffer_dirty(bh);
6756         return 0;
6757 }
6758
6759 static void ocfs2_map_and_dirty_page(struct inode *inode, handle_t *handle,
6760                                      unsigned int from, unsigned int to,
6761                                      struct page *page, int zero, u64 *phys)
6762 {
6763         int ret, partial = 0;
6764
6765         ret = ocfs2_map_page_blocks(page, phys, inode, from, to, 0);
6766         if (ret)
6767                 mlog_errno(ret);
6768
6769         if (zero)
6770                 zero_user_segment(page, from, to);
6771
6772         /*
6773          * Need to set the buffers we zero'd into uptodate
6774          * here if they aren't - ocfs2_map_page_blocks()
6775          * might've skipped some
6776          */
6777         ret = walk_page_buffers(handle, page_buffers(page),
6778                                 from, to, &partial,
6779                                 ocfs2_zero_func);
6780         if (ret < 0)
6781                 mlog_errno(ret);
6782         else if (ocfs2_should_order_data(inode)) {
6783                 ret = ocfs2_jbd2_file_inode(handle, inode);
6784                 if (ret < 0)
6785                         mlog_errno(ret);
6786         }
6787
6788         if (!partial)
6789                 SetPageUptodate(page);
6790
6791         flush_dcache_page(page);
6792 }
6793
6794 static void ocfs2_zero_cluster_pages(struct inode *inode, loff_t start,
6795                                      loff_t end, struct page **pages,
6796                                      int numpages, u64 phys, handle_t *handle)
6797 {
6798         int i;
6799         struct page *page;
6800         unsigned int from, to = PAGE_CACHE_SIZE;
6801         struct super_block *sb = inode->i_sb;
6802
6803         BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb)));
6804
6805         if (numpages == 0)
6806                 goto out;
6807
6808         to = PAGE_CACHE_SIZE;
6809         for(i = 0; i < numpages; i++) {
6810                 page = pages[i];
6811
6812                 from = start & (PAGE_CACHE_SIZE - 1);
6813                 if ((end >> PAGE_CACHE_SHIFT) == page->index)
6814                         to = end & (PAGE_CACHE_SIZE - 1);
6815
6816                 BUG_ON(from > PAGE_CACHE_SIZE);
6817                 BUG_ON(to > PAGE_CACHE_SIZE);
6818
6819                 ocfs2_map_and_dirty_page(inode, handle, from, to, page, 1,
6820                                          &phys);
6821
6822                 start = (page->index + 1) << PAGE_CACHE_SHIFT;
6823         }
6824 out:
6825         if (pages)
6826                 ocfs2_unlock_and_free_pages(pages, numpages);
6827 }
6828
6829 static int ocfs2_grab_eof_pages(struct inode *inode, loff_t start, loff_t end,
6830                                 struct page **pages, int *num)
6831 {
6832         int numpages, ret = 0;
6833         struct super_block *sb = inode->i_sb;
6834         struct address_space *mapping = inode->i_mapping;
6835         unsigned long index;
6836         loff_t last_page_bytes;
6837
6838         BUG_ON(start > end);
6839
6840         BUG_ON(start >> OCFS2_SB(sb)->s_clustersize_bits !=
6841                (end - 1) >> OCFS2_SB(sb)->s_clustersize_bits);
6842
6843         numpages = 0;
6844         last_page_bytes = PAGE_ALIGN(end);
6845         index = start >> PAGE_CACHE_SHIFT;
6846         do {
6847                 pages[numpages] = grab_cache_page(mapping, index);
6848                 if (!pages[numpages]) {
6849                         ret = -ENOMEM;
6850                         mlog_errno(ret);
6851                         goto out;
6852                 }
6853
6854                 numpages++;
6855                 index++;
6856         } while (index < (last_page_bytes >> PAGE_CACHE_SHIFT));
6857
6858 out:
6859         if (ret != 0) {
6860                 if (pages)
6861                         ocfs2_unlock_and_free_pages(pages, numpages);
6862                 numpages = 0;
6863         }
6864
6865         *num = numpages;
6866
6867         return ret;
6868 }
6869
6870 /*
6871  * Zero the area past i_size but still within an allocated
6872  * cluster. This avoids exposing nonzero data on subsequent file
6873  * extends.
6874  *
6875  * We need to call this before i_size is updated on the inode because
6876  * otherwise block_write_full_page() will skip writeout of pages past
6877  * i_size. The new_i_size parameter is passed for this reason.
6878  */
6879 int ocfs2_zero_range_for_truncate(struct inode *inode, handle_t *handle,
6880                                   u64 range_start, u64 range_end)
6881 {
6882         int ret = 0, numpages;
6883         struct page **pages = NULL;
6884         u64 phys;
6885         unsigned int ext_flags;
6886         struct super_block *sb = inode->i_sb;
6887
6888         /*
6889          * File systems which don't support sparse files zero on every
6890          * extend.
6891          */
6892         if (!ocfs2_sparse_alloc(OCFS2_SB(sb)))
6893                 return 0;
6894
6895         pages = kcalloc(ocfs2_pages_per_cluster(sb),
6896                         sizeof(struct page *), GFP_NOFS);
6897         if (pages == NULL) {
6898                 ret = -ENOMEM;
6899                 mlog_errno(ret);
6900                 goto out;
6901         }
6902
6903         if (range_start == range_end)
6904                 goto out;
6905
6906         ret = ocfs2_extent_map_get_blocks(inode,
6907                                           range_start >> sb->s_blocksize_bits,
6908                                           &phys, NULL, &ext_flags);
6909         if (ret) {
6910                 mlog_errno(ret);
6911                 goto out;
6912         }
6913
6914         /*
6915          * Tail is a hole, or is marked unwritten. In either case, we
6916          * can count on read and write to return/push zero's.
6917          */
6918         if (phys == 0 || ext_flags & OCFS2_EXT_UNWRITTEN)
6919                 goto out;
6920
6921         ret = ocfs2_grab_eof_pages(inode, range_start, range_end, pages,
6922                                    &numpages);
6923         if (ret) {
6924                 mlog_errno(ret);
6925                 goto out;
6926         }
6927
6928         ocfs2_zero_cluster_pages(inode, range_start, range_end, pages,
6929                                  numpages, phys, handle);
6930
6931         /*
6932          * Initiate writeout of the pages we zero'd here. We don't
6933          * wait on them - the truncate_inode_pages() call later will
6934          * do that for us.
6935          */
6936         ret = do_sync_mapping_range(inode->i_mapping, range_start,
6937                                     range_end - 1, SYNC_FILE_RANGE_WRITE);
6938         if (ret)
6939                 mlog_errno(ret);
6940
6941 out:
6942         if (pages)
6943                 kfree(pages);
6944
6945         return ret;
6946 }
6947
6948 static void ocfs2_zero_dinode_id2_with_xattr(struct inode *inode,
6949                                              struct ocfs2_dinode *di)
6950 {
6951         unsigned int blocksize = 1 << inode->i_sb->s_blocksize_bits;
6952         unsigned int xattrsize = le16_to_cpu(di->i_xattr_inline_size);
6953
6954         if (le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_XATTR_FL)
6955                 memset(&di->id2, 0, blocksize -
6956                                     offsetof(struct ocfs2_dinode, id2) -
6957                                     xattrsize);
6958         else
6959                 memset(&di->id2, 0, blocksize -
6960                                     offsetof(struct ocfs2_dinode, id2));
6961 }
6962
6963 void ocfs2_dinode_new_extent_list(struct inode *inode,
6964                                   struct ocfs2_dinode *di)
6965 {
6966         ocfs2_zero_dinode_id2_with_xattr(inode, di);
6967         di->id2.i_list.l_tree_depth = 0;
6968         di->id2.i_list.l_next_free_rec = 0;
6969         di->id2.i_list.l_count = cpu_to_le16(
6970                 ocfs2_extent_recs_per_inode_with_xattr(inode->i_sb, di));
6971 }
6972
6973 void ocfs2_set_inode_data_inline(struct inode *inode, struct ocfs2_dinode *di)
6974 {
6975         struct ocfs2_inode_info *oi = OCFS2_I(inode);
6976         struct ocfs2_inline_data *idata = &di->id2.i_data;
6977
6978         spin_lock(&oi->ip_lock);
6979         oi->ip_dyn_features |= OCFS2_INLINE_DATA_FL;
6980         di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
6981         spin_unlock(&oi->ip_lock);
6982
6983         /*
6984          * We clear the entire i_data structure here so that all
6985          * fields can be properly initialized.
6986          */
6987         ocfs2_zero_dinode_id2_with_xattr(inode, di);
6988
6989         idata->id_count = cpu_to_le16(
6990                         ocfs2_max_inline_data_with_xattr(inode->i_sb, di));
6991 }
6992
6993 int ocfs2_convert_inline_data_to_extents(struct inode *inode,
6994                                          struct buffer_head *di_bh)
6995 {
6996         int ret, i, has_data, num_pages = 0;
6997         handle_t *handle;
6998         u64 uninitialized_var(block);
6999         struct ocfs2_inode_info *oi = OCFS2_I(inode);
7000         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
7001         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
7002         struct ocfs2_alloc_context *data_ac = NULL;
7003         struct page **pages = NULL;
7004         loff_t end = osb->s_clustersize;
7005         struct ocfs2_extent_tree et;
7006         int did_quota = 0;
7007
7008         has_data = i_size_read(inode) ? 1 : 0;
7009
7010         if (has_data) {
7011                 pages = kcalloc(ocfs2_pages_per_cluster(osb->sb),
7012                                 sizeof(struct page *), GFP_NOFS);
7013                 if (pages == NULL) {
7014                         ret = -ENOMEM;
7015                         mlog_errno(ret);
7016                         goto out;
7017                 }
7018
7019                 ret = ocfs2_reserve_clusters(osb, 1, &data_ac);
7020                 if (ret) {
7021                         mlog_errno(ret);
7022                         goto out;
7023                 }
7024         }
7025
7026         handle = ocfs2_start_trans(osb,
7027                                    ocfs2_inline_to_extents_credits(osb->sb));
7028         if (IS_ERR(handle)) {
7029                 ret = PTR_ERR(handle);
7030                 mlog_errno(ret);
7031                 goto out_unlock;
7032         }
7033
7034         ret = ocfs2_journal_access_di(handle, inode, di_bh,
7035                                       OCFS2_JOURNAL_ACCESS_WRITE);
7036         if (ret) {
7037                 mlog_errno(ret);
7038                 goto out_commit;
7039         }
7040
7041         if (has_data) {
7042                 u32 bit_off, num;
7043                 unsigned int page_end;
7044                 u64 phys;
7045
7046                 if (vfs_dq_alloc_space_nodirty(inode,
7047                                        ocfs2_clusters_to_bytes(osb->sb, 1))) {
7048                         ret = -EDQUOT;
7049                         goto out_commit;
7050                 }
7051                 did_quota = 1;
7052
7053                 ret = ocfs2_claim_clusters(osb, handle, data_ac, 1, &bit_off,
7054                                            &num);
7055                 if (ret) {
7056                         mlog_errno(ret);
7057                         goto out_commit;
7058                 }
7059
7060                 /*
7061                  * Save two copies, one for insert, and one that can
7062                  * be changed by ocfs2_map_and_dirty_page() below.
7063                  */
7064                 block = phys = ocfs2_clusters_to_blocks(inode->i_sb, bit_off);
7065
7066                 /*
7067                  * Non sparse file systems zero on extend, so no need
7068                  * to do that now.
7069                  */
7070                 if (!ocfs2_sparse_alloc(osb) &&
7071                     PAGE_CACHE_SIZE < osb->s_clustersize)
7072                         end = PAGE_CACHE_SIZE;
7073
7074                 ret = ocfs2_grab_eof_pages(inode, 0, end, pages, &num_pages);
7075                 if (ret) {
7076                         mlog_errno(ret);
7077                         goto out_commit;
7078                 }
7079
7080                 /*
7081                  * This should populate the 1st page for us and mark
7082                  * it up to date.
7083                  */
7084                 ret = ocfs2_read_inline_data(inode, pages[0], di_bh);
7085                 if (ret) {
7086                         mlog_errno(ret);
7087                         goto out_commit;
7088                 }
7089
7090                 page_end = PAGE_CACHE_SIZE;
7091                 if (PAGE_CACHE_SIZE > osb->s_clustersize)
7092                         page_end = osb->s_clustersize;
7093
7094                 for (i = 0; i < num_pages; i++)
7095                         ocfs2_map_and_dirty_page(inode, handle, 0, page_end,
7096                                                  pages[i], i > 0, &phys);
7097         }
7098
7099         spin_lock(&oi->ip_lock);
7100         oi->ip_dyn_features &= ~OCFS2_INLINE_DATA_FL;
7101         di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
7102         spin_unlock(&oi->ip_lock);
7103
7104         ocfs2_dinode_new_extent_list(inode, di);
7105
7106         ocfs2_journal_dirty(handle, di_bh);
7107
7108         if (has_data) {
7109                 /*
7110                  * An error at this point should be extremely rare. If
7111                  * this proves to be false, we could always re-build
7112                  * the in-inode data from our pages.
7113                  */
7114                 ocfs2_init_dinode_extent_tree(&et, inode, di_bh);
7115                 ret = ocfs2_insert_extent(osb, handle, inode, &et,
7116                                           0, block, 1, 0, NULL);
7117                 if (ret) {
7118                         mlog_errno(ret);
7119                         goto out_commit;
7120                 }
7121
7122                 inode->i_blocks = ocfs2_inode_sector_count(inode);
7123         }
7124
7125 out_commit:
7126         if (ret < 0 && did_quota)
7127                 vfs_dq_free_space_nodirty(inode,
7128                                           ocfs2_clusters_to_bytes(osb->sb, 1));
7129
7130         ocfs2_commit_trans(osb, handle);
7131
7132 out_unlock:
7133         if (data_ac)
7134                 ocfs2_free_alloc_context(data_ac);
7135
7136 out:
7137         if (pages) {
7138                 ocfs2_unlock_and_free_pages(pages, num_pages);
7139                 kfree(pages);
7140         }
7141
7142         return ret;
7143 }
7144
7145 /*
7146  * It is expected, that by the time you call this function,
7147  * inode->i_size and fe->i_size have been adjusted.
7148  *
7149  * WARNING: This will kfree the truncate context
7150  */
7151 int ocfs2_commit_truncate(struct ocfs2_super *osb,
7152                           struct inode *inode,
7153                           struct buffer_head *fe_bh,
7154                           struct ocfs2_truncate_context *tc)
7155 {
7156         int status, i, credits, tl_sem = 0;
7157         u32 clusters_to_del, new_highest_cpos, range;
7158         struct ocfs2_extent_list *el;
7159         handle_t *handle = NULL;
7160         struct inode *tl_inode = osb->osb_tl_inode;
7161         struct ocfs2_path *path = NULL;
7162         struct ocfs2_dinode *di = (struct ocfs2_dinode *)fe_bh->b_data;
7163
7164         mlog_entry_void();
7165
7166         new_highest_cpos = ocfs2_clusters_for_bytes(osb->sb,
7167                                                      i_size_read(inode));
7168
7169         path = ocfs2_new_path(fe_bh, &di->id2.i_list,
7170                               ocfs2_journal_access_di);
7171         if (!path) {
7172                 status = -ENOMEM;
7173                 mlog_errno(status);
7174                 goto bail;
7175         }
7176
7177         ocfs2_extent_map_trunc(inode, new_highest_cpos);
7178
7179 start:
7180         /*
7181          * Check that we still have allocation to delete.
7182          */
7183         if (OCFS2_I(inode)->ip_clusters == 0) {
7184                 status = 0;
7185                 goto bail;
7186         }
7187
7188         /*
7189          * Truncate always works against the rightmost tree branch.
7190          */
7191         status = ocfs2_find_path(inode, path, UINT_MAX);
7192         if (status) {
7193                 mlog_errno(status);
7194                 goto bail;
7195         }
7196
7197         mlog(0, "inode->ip_clusters = %u, tree_depth = %u\n",
7198              OCFS2_I(inode)->ip_clusters, path->p_tree_depth);
7199
7200         /*
7201          * By now, el will point to the extent list on the bottom most
7202          * portion of this tree. Only the tail record is considered in
7203          * each pass.
7204          *
7205          * We handle the following cases, in order:
7206          * - empty extent: delete the remaining branch
7207          * - remove the entire record
7208          * - remove a partial record
7209          * - no record needs to be removed (truncate has completed)
7210          */
7211         el = path_leaf_el(path);
7212         if (le16_to_cpu(el->l_next_free_rec) == 0) {
7213                 ocfs2_error(inode->i_sb,
7214                             "Inode %llu has empty extent block at %llu\n",
7215                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
7216                             (unsigned long long)path_leaf_bh(path)->b_blocknr);
7217                 status = -EROFS;
7218                 goto bail;
7219         }
7220
7221         i = le16_to_cpu(el->l_next_free_rec) - 1;
7222         range = le32_to_cpu(el->l_recs[i].e_cpos) +
7223                 ocfs2_rec_clusters(el, &el->l_recs[i]);
7224         if (i == 0 && ocfs2_is_empty_extent(&el->l_recs[i])) {
7225                 clusters_to_del = 0;
7226         } else if (le32_to_cpu(el->l_recs[i].e_cpos) >= new_highest_cpos) {
7227                 clusters_to_del = ocfs2_rec_clusters(el, &el->l_recs[i]);
7228         } else if (range > new_highest_cpos) {
7229                 clusters_to_del = (ocfs2_rec_clusters(el, &el->l_recs[i]) +
7230                                    le32_to_cpu(el->l_recs[i].e_cpos)) -
7231                                   new_highest_cpos;
7232         } else {
7233                 status = 0;
7234                 goto bail;
7235         }
7236
7237         mlog(0, "clusters_to_del = %u in this pass, tail blk=%llu\n",
7238              clusters_to_del, (unsigned long long)path_leaf_bh(path)->b_blocknr);
7239
7240         mutex_lock(&tl_inode->i_mutex);
7241         tl_sem = 1;
7242         /* ocfs2_truncate_log_needs_flush guarantees us at least one
7243          * record is free for use. If there isn't any, we flush to get
7244          * an empty truncate log.  */
7245         if (ocfs2_truncate_log_needs_flush(osb)) {
7246                 status = __ocfs2_flush_truncate_log(osb);
7247                 if (status < 0) {
7248                         mlog_errno(status);
7249                         goto bail;
7250                 }
7251         }
7252
7253         credits = ocfs2_calc_tree_trunc_credits(osb->sb, clusters_to_del,
7254                                                 (struct ocfs2_dinode *)fe_bh->b_data,
7255                                                 el);
7256         handle = ocfs2_start_trans(osb, credits);
7257         if (IS_ERR(handle)) {
7258                 status = PTR_ERR(handle);
7259                 handle = NULL;
7260                 mlog_errno(status);
7261                 goto bail;
7262         }
7263
7264         status = ocfs2_do_truncate(osb, clusters_to_del, inode, fe_bh, handle,
7265                                    tc, path);
7266         if (status < 0) {
7267                 mlog_errno(status);
7268                 goto bail;
7269         }
7270
7271         mutex_unlock(&tl_inode->i_mutex);
7272         tl_sem = 0;
7273
7274         ocfs2_commit_trans(osb, handle);
7275         handle = NULL;
7276
7277         ocfs2_reinit_path(path, 1);
7278
7279         /*
7280          * The check above will catch the case where we've truncated
7281          * away all allocation.
7282          */
7283         goto start;
7284
7285 bail:
7286
7287         ocfs2_schedule_truncate_log_flush(osb, 1);
7288
7289         if (tl_sem)
7290                 mutex_unlock(&tl_inode->i_mutex);
7291
7292         if (handle)
7293                 ocfs2_commit_trans(osb, handle);
7294
7295         ocfs2_run_deallocs(osb, &tc->tc_dealloc);
7296
7297         ocfs2_free_path(path);
7298
7299         /* This will drop the ext_alloc cluster lock for us */
7300         ocfs2_free_truncate_context(tc);
7301
7302         mlog_exit(status);
7303         return status;
7304 }
7305
7306 /*
7307  * Expects the inode to already be locked.
7308  */
7309 int ocfs2_prepare_truncate(struct ocfs2_super *osb,
7310                            struct inode *inode,
7311                            struct buffer_head *fe_bh,
7312                            struct ocfs2_truncate_context **tc)
7313 {
7314         int status;
7315         unsigned int new_i_clusters;
7316         struct ocfs2_dinode *fe;
7317         struct ocfs2_extent_block *eb;
7318         struct buffer_head *last_eb_bh = NULL;
7319
7320         mlog_entry_void();
7321
7322         *tc = NULL;
7323
7324         new_i_clusters = ocfs2_clusters_for_bytes(osb->sb,
7325                                                   i_size_read(inode));
7326         fe = (struct ocfs2_dinode *) fe_bh->b_data;
7327
7328         mlog(0, "fe->i_clusters = %u, new_i_clusters = %u, fe->i_size ="
7329              "%llu\n", le32_to_cpu(fe->i_clusters), new_i_clusters,
7330              (unsigned long long)le64_to_cpu(fe->i_size));
7331
7332         *tc = kzalloc(sizeof(struct ocfs2_truncate_context), GFP_KERNEL);
7333         if (!(*tc)) {
7334                 status = -ENOMEM;
7335                 mlog_errno(status);
7336                 goto bail;
7337         }
7338         ocfs2_init_dealloc_ctxt(&(*tc)->tc_dealloc);
7339
7340         if (fe->id2.i_list.l_tree_depth) {
7341                 status = ocfs2_read_extent_block(inode,
7342                                                  le64_to_cpu(fe->i_last_eb_blk),
7343                                                  &last_eb_bh);
7344                 if (status < 0) {
7345                         mlog_errno(status);
7346                         goto bail;
7347                 }
7348                 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
7349         }
7350
7351         (*tc)->tc_last_eb_bh = last_eb_bh;
7352
7353         status = 0;
7354 bail:
7355         if (status < 0) {
7356                 if (*tc)
7357                         ocfs2_free_truncate_context(*tc);
7358                 *tc = NULL;
7359         }
7360         mlog_exit_void();
7361         return status;
7362 }
7363
7364 /*
7365  * 'start' is inclusive, 'end' is not.
7366  */
7367 int ocfs2_truncate_inline(struct inode *inode, struct buffer_head *di_bh,
7368                           unsigned int start, unsigned int end, int trunc)
7369 {
7370         int ret;
7371         unsigned int numbytes;
7372         handle_t *handle;
7373         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
7374         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
7375         struct ocfs2_inline_data *idata = &di->id2.i_data;
7376
7377         if (end > i_size_read(inode))
7378                 end = i_size_read(inode);
7379
7380         BUG_ON(start >= end);
7381
7382         if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) ||
7383             !(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL) ||
7384             !ocfs2_supports_inline_data(osb)) {
7385                 ocfs2_error(inode->i_sb,
7386                             "Inline data flags for inode %llu don't agree! "
7387                             "Disk: 0x%x, Memory: 0x%x, Superblock: 0x%x\n",
7388                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
7389                             le16_to_cpu(di->i_dyn_features),
7390                             OCFS2_I(inode)->ip_dyn_features,
7391                             osb->s_feature_incompat);
7392                 ret = -EROFS;
7393                 goto out;
7394         }
7395
7396         handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
7397         if (IS_ERR(handle)) {
7398                 ret = PTR_ERR(handle);
7399                 mlog_errno(ret);
7400                 goto out;
7401         }
7402
7403         ret = ocfs2_journal_access_di(handle, inode, di_bh,
7404                                       OCFS2_JOURNAL_ACCESS_WRITE);
7405         if (ret) {
7406                 mlog_errno(ret);
7407                 goto out_commit;
7408         }
7409
7410         numbytes = end - start;
7411         memset(idata->id_data + start, 0, numbytes);
7412
7413         /*
7414          * No need to worry about the data page here - it's been
7415          * truncated already and inline data doesn't need it for
7416          * pushing zero's to disk, so we'll let readpage pick it up
7417          * later.
7418          */
7419         if (trunc) {
7420                 i_size_write(inode, start);
7421                 di->i_size = cpu_to_le64(start);
7422         }
7423
7424         inode->i_blocks = ocfs2_inode_sector_count(inode);
7425         inode->i_ctime = inode->i_mtime = CURRENT_TIME;
7426
7427         di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec);
7428         di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
7429
7430         ocfs2_journal_dirty(handle, di_bh);
7431
7432 out_commit:
7433         ocfs2_commit_trans(osb, handle);
7434
7435 out:
7436         return ret;
7437 }
7438
7439 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc)
7440 {
7441         /*
7442          * The caller is responsible for completing deallocation
7443          * before freeing the context.
7444          */
7445         if (tc->tc_dealloc.c_first_suballocator != NULL)
7446                 mlog(ML_NOTICE,
7447                      "Truncate completion has non-empty dealloc context\n");
7448
7449         brelse(tc->tc_last_eb_bh);
7450
7451         kfree(tc);
7452 }