ocfs2: ocfs2_rotate_tree_left() no longer needs struct inode.
[safe/jmp/linux-2.6] / fs / ocfs2 / alloc.c
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * alloc.c
5  *
6  * Extent allocs and frees
7  *
8  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public
12  * License as published by the Free Software Foundation; either
13  * version 2 of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public
21  * License along with this program; if not, write to the
22  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23  * Boston, MA 021110-1307, USA.
24  */
25
26 #include <linux/fs.h>
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/swap.h>
31 #include <linux/quotaops.h>
32
33 #define MLOG_MASK_PREFIX ML_DISK_ALLOC
34 #include <cluster/masklog.h>
35
36 #include "ocfs2.h"
37
38 #include "alloc.h"
39 #include "aops.h"
40 #include "blockcheck.h"
41 #include "dlmglue.h"
42 #include "extent_map.h"
43 #include "inode.h"
44 #include "journal.h"
45 #include "localalloc.h"
46 #include "suballoc.h"
47 #include "sysfile.h"
48 #include "file.h"
49 #include "super.h"
50 #include "uptodate.h"
51 #include "xattr.h"
52
53 #include "buffer_head_io.h"
54
55
56 /*
57  * Operations for a specific extent tree type.
58  *
59  * To implement an on-disk btree (extent tree) type in ocfs2, add
60  * an ocfs2_extent_tree_operations structure and the matching
61  * ocfs2_init_<thingy>_extent_tree() function.  That's pretty much it
62  * for the allocation portion of the extent tree.
63  */
64 struct ocfs2_extent_tree_operations {
65         /*
66          * last_eb_blk is the block number of the right most leaf extent
67          * block.  Most on-disk structures containing an extent tree store
68          * this value for fast access.  The ->eo_set_last_eb_blk() and
69          * ->eo_get_last_eb_blk() operations access this value.  They are
70          *  both required.
71          */
72         void (*eo_set_last_eb_blk)(struct ocfs2_extent_tree *et,
73                                    u64 blkno);
74         u64 (*eo_get_last_eb_blk)(struct ocfs2_extent_tree *et);
75
76         /*
77          * The on-disk structure usually keeps track of how many total
78          * clusters are stored in this extent tree.  This function updates
79          * that value.  new_clusters is the delta, and must be
80          * added to the total.  Required.
81          */
82         void (*eo_update_clusters)(struct ocfs2_extent_tree *et,
83                                    u32 new_clusters);
84
85         /*
86          * If ->eo_insert_check() exists, it is called before rec is
87          * inserted into the extent tree.  It is optional.
88          */
89         int (*eo_insert_check)(struct ocfs2_extent_tree *et,
90                                struct ocfs2_extent_rec *rec);
91         int (*eo_sanity_check)(struct ocfs2_extent_tree *et);
92
93         /*
94          * --------------------------------------------------------------
95          * The remaining are internal to ocfs2_extent_tree and don't have
96          * accessor functions
97          */
98
99         /*
100          * ->eo_fill_root_el() takes et->et_object and sets et->et_root_el.
101          * It is required.
102          */
103         void (*eo_fill_root_el)(struct ocfs2_extent_tree *et);
104
105         /*
106          * ->eo_fill_max_leaf_clusters sets et->et_max_leaf_clusters if
107          * it exists.  If it does not, et->et_max_leaf_clusters is set
108          * to 0 (unlimited).  Optional.
109          */
110         void (*eo_fill_max_leaf_clusters)(struct ocfs2_extent_tree *et);
111 };
112
113
114 /*
115  * Pre-declare ocfs2_dinode_et_ops so we can use it as a sanity check
116  * in the methods.
117  */
118 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et);
119 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et,
120                                          u64 blkno);
121 static void ocfs2_dinode_update_clusters(struct ocfs2_extent_tree *et,
122                                          u32 clusters);
123 static int ocfs2_dinode_insert_check(struct ocfs2_extent_tree *et,
124                                      struct ocfs2_extent_rec *rec);
125 static int ocfs2_dinode_sanity_check(struct ocfs2_extent_tree *et);
126 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et);
127 static struct ocfs2_extent_tree_operations ocfs2_dinode_et_ops = {
128         .eo_set_last_eb_blk     = ocfs2_dinode_set_last_eb_blk,
129         .eo_get_last_eb_blk     = ocfs2_dinode_get_last_eb_blk,
130         .eo_update_clusters     = ocfs2_dinode_update_clusters,
131         .eo_insert_check        = ocfs2_dinode_insert_check,
132         .eo_sanity_check        = ocfs2_dinode_sanity_check,
133         .eo_fill_root_el        = ocfs2_dinode_fill_root_el,
134 };
135
136 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et,
137                                          u64 blkno)
138 {
139         struct ocfs2_dinode *di = et->et_object;
140
141         BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
142         di->i_last_eb_blk = cpu_to_le64(blkno);
143 }
144
145 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et)
146 {
147         struct ocfs2_dinode *di = et->et_object;
148
149         BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
150         return le64_to_cpu(di->i_last_eb_blk);
151 }
152
153 static void ocfs2_dinode_update_clusters(struct ocfs2_extent_tree *et,
154                                          u32 clusters)
155 {
156         struct ocfs2_inode_info *oi = cache_info_to_inode(et->et_ci);
157         struct ocfs2_dinode *di = et->et_object;
158
159         le32_add_cpu(&di->i_clusters, clusters);
160         spin_lock(&oi->ip_lock);
161         oi->ip_clusters = le32_to_cpu(di->i_clusters);
162         spin_unlock(&oi->ip_lock);
163 }
164
165 static int ocfs2_dinode_insert_check(struct ocfs2_extent_tree *et,
166                                      struct ocfs2_extent_rec *rec)
167 {
168         struct ocfs2_inode_info *oi = cache_info_to_inode(et->et_ci);
169         struct ocfs2_super *osb = OCFS2_SB(oi->vfs_inode.i_sb);
170
171         BUG_ON(oi->ip_dyn_features & OCFS2_INLINE_DATA_FL);
172         mlog_bug_on_msg(!ocfs2_sparse_alloc(osb) &&
173                         (oi->ip_clusters != le32_to_cpu(rec->e_cpos)),
174                         "Device %s, asking for sparse allocation: inode %llu, "
175                         "cpos %u, clusters %u\n",
176                         osb->dev_str,
177                         (unsigned long long)oi->ip_blkno,
178                         rec->e_cpos, oi->ip_clusters);
179
180         return 0;
181 }
182
183 static int ocfs2_dinode_sanity_check(struct ocfs2_extent_tree *et)
184 {
185         struct ocfs2_dinode *di = et->et_object;
186
187         BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
188         BUG_ON(!OCFS2_IS_VALID_DINODE(di));
189
190         return 0;
191 }
192
193 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et)
194 {
195         struct ocfs2_dinode *di = et->et_object;
196
197         et->et_root_el = &di->id2.i_list;
198 }
199
200
201 static void ocfs2_xattr_value_fill_root_el(struct ocfs2_extent_tree *et)
202 {
203         struct ocfs2_xattr_value_buf *vb = et->et_object;
204
205         et->et_root_el = &vb->vb_xv->xr_list;
206 }
207
208 static void ocfs2_xattr_value_set_last_eb_blk(struct ocfs2_extent_tree *et,
209                                               u64 blkno)
210 {
211         struct ocfs2_xattr_value_buf *vb = et->et_object;
212
213         vb->vb_xv->xr_last_eb_blk = cpu_to_le64(blkno);
214 }
215
216 static u64 ocfs2_xattr_value_get_last_eb_blk(struct ocfs2_extent_tree *et)
217 {
218         struct ocfs2_xattr_value_buf *vb = et->et_object;
219
220         return le64_to_cpu(vb->vb_xv->xr_last_eb_blk);
221 }
222
223 static void ocfs2_xattr_value_update_clusters(struct ocfs2_extent_tree *et,
224                                               u32 clusters)
225 {
226         struct ocfs2_xattr_value_buf *vb = et->et_object;
227
228         le32_add_cpu(&vb->vb_xv->xr_clusters, clusters);
229 }
230
231 static struct ocfs2_extent_tree_operations ocfs2_xattr_value_et_ops = {
232         .eo_set_last_eb_blk     = ocfs2_xattr_value_set_last_eb_blk,
233         .eo_get_last_eb_blk     = ocfs2_xattr_value_get_last_eb_blk,
234         .eo_update_clusters     = ocfs2_xattr_value_update_clusters,
235         .eo_fill_root_el        = ocfs2_xattr_value_fill_root_el,
236 };
237
238 static void ocfs2_xattr_tree_fill_root_el(struct ocfs2_extent_tree *et)
239 {
240         struct ocfs2_xattr_block *xb = et->et_object;
241
242         et->et_root_el = &xb->xb_attrs.xb_root.xt_list;
243 }
244
245 static void ocfs2_xattr_tree_fill_max_leaf_clusters(struct ocfs2_extent_tree *et)
246 {
247         struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
248         et->et_max_leaf_clusters =
249                 ocfs2_clusters_for_bytes(sb, OCFS2_MAX_XATTR_TREE_LEAF_SIZE);
250 }
251
252 static void ocfs2_xattr_tree_set_last_eb_blk(struct ocfs2_extent_tree *et,
253                                              u64 blkno)
254 {
255         struct ocfs2_xattr_block *xb = et->et_object;
256         struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root;
257
258         xt->xt_last_eb_blk = cpu_to_le64(blkno);
259 }
260
261 static u64 ocfs2_xattr_tree_get_last_eb_blk(struct ocfs2_extent_tree *et)
262 {
263         struct ocfs2_xattr_block *xb = et->et_object;
264         struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root;
265
266         return le64_to_cpu(xt->xt_last_eb_blk);
267 }
268
269 static void ocfs2_xattr_tree_update_clusters(struct ocfs2_extent_tree *et,
270                                              u32 clusters)
271 {
272         struct ocfs2_xattr_block *xb = et->et_object;
273
274         le32_add_cpu(&xb->xb_attrs.xb_root.xt_clusters, clusters);
275 }
276
277 static struct ocfs2_extent_tree_operations ocfs2_xattr_tree_et_ops = {
278         .eo_set_last_eb_blk     = ocfs2_xattr_tree_set_last_eb_blk,
279         .eo_get_last_eb_blk     = ocfs2_xattr_tree_get_last_eb_blk,
280         .eo_update_clusters     = ocfs2_xattr_tree_update_clusters,
281         .eo_fill_root_el        = ocfs2_xattr_tree_fill_root_el,
282         .eo_fill_max_leaf_clusters = ocfs2_xattr_tree_fill_max_leaf_clusters,
283 };
284
285 static void ocfs2_dx_root_set_last_eb_blk(struct ocfs2_extent_tree *et,
286                                           u64 blkno)
287 {
288         struct ocfs2_dx_root_block *dx_root = et->et_object;
289
290         dx_root->dr_last_eb_blk = cpu_to_le64(blkno);
291 }
292
293 static u64 ocfs2_dx_root_get_last_eb_blk(struct ocfs2_extent_tree *et)
294 {
295         struct ocfs2_dx_root_block *dx_root = et->et_object;
296
297         return le64_to_cpu(dx_root->dr_last_eb_blk);
298 }
299
300 static void ocfs2_dx_root_update_clusters(struct ocfs2_extent_tree *et,
301                                           u32 clusters)
302 {
303         struct ocfs2_dx_root_block *dx_root = et->et_object;
304
305         le32_add_cpu(&dx_root->dr_clusters, clusters);
306 }
307
308 static int ocfs2_dx_root_sanity_check(struct ocfs2_extent_tree *et)
309 {
310         struct ocfs2_dx_root_block *dx_root = et->et_object;
311
312         BUG_ON(!OCFS2_IS_VALID_DX_ROOT(dx_root));
313
314         return 0;
315 }
316
317 static void ocfs2_dx_root_fill_root_el(struct ocfs2_extent_tree *et)
318 {
319         struct ocfs2_dx_root_block *dx_root = et->et_object;
320
321         et->et_root_el = &dx_root->dr_list;
322 }
323
324 static struct ocfs2_extent_tree_operations ocfs2_dx_root_et_ops = {
325         .eo_set_last_eb_blk     = ocfs2_dx_root_set_last_eb_blk,
326         .eo_get_last_eb_blk     = ocfs2_dx_root_get_last_eb_blk,
327         .eo_update_clusters     = ocfs2_dx_root_update_clusters,
328         .eo_sanity_check        = ocfs2_dx_root_sanity_check,
329         .eo_fill_root_el        = ocfs2_dx_root_fill_root_el,
330 };
331
332 static void __ocfs2_init_extent_tree(struct ocfs2_extent_tree *et,
333                                      struct inode *inode,
334                                      struct buffer_head *bh,
335                                      ocfs2_journal_access_func access,
336                                      void *obj,
337                                      struct ocfs2_extent_tree_operations *ops)
338 {
339         et->et_ops = ops;
340         et->et_root_bh = bh;
341         et->et_ci = INODE_CACHE(inode);
342         et->et_root_journal_access = access;
343         if (!obj)
344                 obj = (void *)bh->b_data;
345         et->et_object = obj;
346
347         et->et_ops->eo_fill_root_el(et);
348         if (!et->et_ops->eo_fill_max_leaf_clusters)
349                 et->et_max_leaf_clusters = 0;
350         else
351                 et->et_ops->eo_fill_max_leaf_clusters(et);
352 }
353
354 void ocfs2_init_dinode_extent_tree(struct ocfs2_extent_tree *et,
355                                    struct inode *inode,
356                                    struct buffer_head *bh)
357 {
358         __ocfs2_init_extent_tree(et, inode, bh, ocfs2_journal_access_di,
359                                  NULL, &ocfs2_dinode_et_ops);
360 }
361
362 void ocfs2_init_xattr_tree_extent_tree(struct ocfs2_extent_tree *et,
363                                        struct inode *inode,
364                                        struct buffer_head *bh)
365 {
366         __ocfs2_init_extent_tree(et, inode, bh, ocfs2_journal_access_xb,
367                                  NULL, &ocfs2_xattr_tree_et_ops);
368 }
369
370 void ocfs2_init_xattr_value_extent_tree(struct ocfs2_extent_tree *et,
371                                         struct inode *inode,
372                                         struct ocfs2_xattr_value_buf *vb)
373 {
374         __ocfs2_init_extent_tree(et, inode, vb->vb_bh, vb->vb_access, vb,
375                                  &ocfs2_xattr_value_et_ops);
376 }
377
378 void ocfs2_init_dx_root_extent_tree(struct ocfs2_extent_tree *et,
379                                     struct inode *inode,
380                                     struct buffer_head *bh)
381 {
382         __ocfs2_init_extent_tree(et, inode, bh, ocfs2_journal_access_dr,
383                                  NULL, &ocfs2_dx_root_et_ops);
384 }
385
386 static inline void ocfs2_et_set_last_eb_blk(struct ocfs2_extent_tree *et,
387                                             u64 new_last_eb_blk)
388 {
389         et->et_ops->eo_set_last_eb_blk(et, new_last_eb_blk);
390 }
391
392 static inline u64 ocfs2_et_get_last_eb_blk(struct ocfs2_extent_tree *et)
393 {
394         return et->et_ops->eo_get_last_eb_blk(et);
395 }
396
397 static inline void ocfs2_et_update_clusters(struct ocfs2_extent_tree *et,
398                                             u32 clusters)
399 {
400         et->et_ops->eo_update_clusters(et, clusters);
401 }
402
403 static inline int ocfs2_et_root_journal_access(handle_t *handle,
404                                                struct ocfs2_extent_tree *et,
405                                                int type)
406 {
407         return et->et_root_journal_access(handle, et->et_ci, et->et_root_bh,
408                                           type);
409 }
410
411 static inline int ocfs2_et_insert_check(struct ocfs2_extent_tree *et,
412                                         struct ocfs2_extent_rec *rec)
413 {
414         int ret = 0;
415
416         if (et->et_ops->eo_insert_check)
417                 ret = et->et_ops->eo_insert_check(et, rec);
418         return ret;
419 }
420
421 static inline int ocfs2_et_sanity_check(struct ocfs2_extent_tree *et)
422 {
423         int ret = 0;
424
425         if (et->et_ops->eo_sanity_check)
426                 ret = et->et_ops->eo_sanity_check(et);
427         return ret;
428 }
429
430 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc);
431 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
432                                          struct ocfs2_extent_block *eb);
433
434 /*
435  * Structures which describe a path through a btree, and functions to
436  * manipulate them.
437  *
438  * The idea here is to be as generic as possible with the tree
439  * manipulation code.
440  */
441 struct ocfs2_path_item {
442         struct buffer_head              *bh;
443         struct ocfs2_extent_list        *el;
444 };
445
446 #define OCFS2_MAX_PATH_DEPTH    5
447
448 struct ocfs2_path {
449         int                             p_tree_depth;
450         ocfs2_journal_access_func       p_root_access;
451         struct ocfs2_path_item          p_node[OCFS2_MAX_PATH_DEPTH];
452 };
453
454 #define path_root_bh(_path) ((_path)->p_node[0].bh)
455 #define path_root_el(_path) ((_path)->p_node[0].el)
456 #define path_root_access(_path)((_path)->p_root_access)
457 #define path_leaf_bh(_path) ((_path)->p_node[(_path)->p_tree_depth].bh)
458 #define path_leaf_el(_path) ((_path)->p_node[(_path)->p_tree_depth].el)
459 #define path_num_items(_path) ((_path)->p_tree_depth + 1)
460
461 static int ocfs2_find_path(struct ocfs2_caching_info *ci,
462                            struct ocfs2_path *path, u32 cpos);
463 static void ocfs2_adjust_rightmost_records(struct inode *inode,
464                                            handle_t *handle,
465                                            struct ocfs2_path *path,
466                                            struct ocfs2_extent_rec *insert_rec);
467 /*
468  * Reset the actual path elements so that we can re-use the structure
469  * to build another path. Generally, this involves freeing the buffer
470  * heads.
471  */
472 static void ocfs2_reinit_path(struct ocfs2_path *path, int keep_root)
473 {
474         int i, start = 0, depth = 0;
475         struct ocfs2_path_item *node;
476
477         if (keep_root)
478                 start = 1;
479
480         for(i = start; i < path_num_items(path); i++) {
481                 node = &path->p_node[i];
482
483                 brelse(node->bh);
484                 node->bh = NULL;
485                 node->el = NULL;
486         }
487
488         /*
489          * Tree depth may change during truncate, or insert. If we're
490          * keeping the root extent list, then make sure that our path
491          * structure reflects the proper depth.
492          */
493         if (keep_root)
494                 depth = le16_to_cpu(path_root_el(path)->l_tree_depth);
495         else
496                 path_root_access(path) = NULL;
497
498         path->p_tree_depth = depth;
499 }
500
501 static void ocfs2_free_path(struct ocfs2_path *path)
502 {
503         if (path) {
504                 ocfs2_reinit_path(path, 0);
505                 kfree(path);
506         }
507 }
508
509 /*
510  * All the elements of src into dest. After this call, src could be freed
511  * without affecting dest.
512  *
513  * Both paths should have the same root. Any non-root elements of dest
514  * will be freed.
515  */
516 static void ocfs2_cp_path(struct ocfs2_path *dest, struct ocfs2_path *src)
517 {
518         int i;
519
520         BUG_ON(path_root_bh(dest) != path_root_bh(src));
521         BUG_ON(path_root_el(dest) != path_root_el(src));
522         BUG_ON(path_root_access(dest) != path_root_access(src));
523
524         ocfs2_reinit_path(dest, 1);
525
526         for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
527                 dest->p_node[i].bh = src->p_node[i].bh;
528                 dest->p_node[i].el = src->p_node[i].el;
529
530                 if (dest->p_node[i].bh)
531                         get_bh(dest->p_node[i].bh);
532         }
533 }
534
535 /*
536  * Make the *dest path the same as src and re-initialize src path to
537  * have a root only.
538  */
539 static void ocfs2_mv_path(struct ocfs2_path *dest, struct ocfs2_path *src)
540 {
541         int i;
542
543         BUG_ON(path_root_bh(dest) != path_root_bh(src));
544         BUG_ON(path_root_access(dest) != path_root_access(src));
545
546         for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
547                 brelse(dest->p_node[i].bh);
548
549                 dest->p_node[i].bh = src->p_node[i].bh;
550                 dest->p_node[i].el = src->p_node[i].el;
551
552                 src->p_node[i].bh = NULL;
553                 src->p_node[i].el = NULL;
554         }
555 }
556
557 /*
558  * Insert an extent block at given index.
559  *
560  * This will not take an additional reference on eb_bh.
561  */
562 static inline void ocfs2_path_insert_eb(struct ocfs2_path *path, int index,
563                                         struct buffer_head *eb_bh)
564 {
565         struct ocfs2_extent_block *eb = (struct ocfs2_extent_block *)eb_bh->b_data;
566
567         /*
568          * Right now, no root bh is an extent block, so this helps
569          * catch code errors with dinode trees. The assertion can be
570          * safely removed if we ever need to insert extent block
571          * structures at the root.
572          */
573         BUG_ON(index == 0);
574
575         path->p_node[index].bh = eb_bh;
576         path->p_node[index].el = &eb->h_list;
577 }
578
579 static struct ocfs2_path *ocfs2_new_path(struct buffer_head *root_bh,
580                                          struct ocfs2_extent_list *root_el,
581                                          ocfs2_journal_access_func access)
582 {
583         struct ocfs2_path *path;
584
585         BUG_ON(le16_to_cpu(root_el->l_tree_depth) >= OCFS2_MAX_PATH_DEPTH);
586
587         path = kzalloc(sizeof(*path), GFP_NOFS);
588         if (path) {
589                 path->p_tree_depth = le16_to_cpu(root_el->l_tree_depth);
590                 get_bh(root_bh);
591                 path_root_bh(path) = root_bh;
592                 path_root_el(path) = root_el;
593                 path_root_access(path) = access;
594         }
595
596         return path;
597 }
598
599 static struct ocfs2_path *ocfs2_new_path_from_path(struct ocfs2_path *path)
600 {
601         return ocfs2_new_path(path_root_bh(path), path_root_el(path),
602                               path_root_access(path));
603 }
604
605 static struct ocfs2_path *ocfs2_new_path_from_et(struct ocfs2_extent_tree *et)
606 {
607         return ocfs2_new_path(et->et_root_bh, et->et_root_el,
608                               et->et_root_journal_access);
609 }
610
611 /*
612  * Journal the buffer at depth idx.  All idx>0 are extent_blocks,
613  * otherwise it's the root_access function.
614  *
615  * I don't like the way this function's name looks next to
616  * ocfs2_journal_access_path(), but I don't have a better one.
617  */
618 static int ocfs2_path_bh_journal_access(handle_t *handle,
619                                         struct ocfs2_caching_info *ci,
620                                         struct ocfs2_path *path,
621                                         int idx)
622 {
623         ocfs2_journal_access_func access = path_root_access(path);
624
625         if (!access)
626                 access = ocfs2_journal_access;
627
628         if (idx)
629                 access = ocfs2_journal_access_eb;
630
631         return access(handle, ci, path->p_node[idx].bh,
632                       OCFS2_JOURNAL_ACCESS_WRITE);
633 }
634
635 /*
636  * Convenience function to journal all components in a path.
637  */
638 static int ocfs2_journal_access_path(struct ocfs2_caching_info *ci,
639                                      handle_t *handle,
640                                      struct ocfs2_path *path)
641 {
642         int i, ret = 0;
643
644         if (!path)
645                 goto out;
646
647         for(i = 0; i < path_num_items(path); i++) {
648                 ret = ocfs2_path_bh_journal_access(handle, ci, path, i);
649                 if (ret < 0) {
650                         mlog_errno(ret);
651                         goto out;
652                 }
653         }
654
655 out:
656         return ret;
657 }
658
659 /*
660  * Return the index of the extent record which contains cluster #v_cluster.
661  * -1 is returned if it was not found.
662  *
663  * Should work fine on interior and exterior nodes.
664  */
665 int ocfs2_search_extent_list(struct ocfs2_extent_list *el, u32 v_cluster)
666 {
667         int ret = -1;
668         int i;
669         struct ocfs2_extent_rec *rec;
670         u32 rec_end, rec_start, clusters;
671
672         for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
673                 rec = &el->l_recs[i];
674
675                 rec_start = le32_to_cpu(rec->e_cpos);
676                 clusters = ocfs2_rec_clusters(el, rec);
677
678                 rec_end = rec_start + clusters;
679
680                 if (v_cluster >= rec_start && v_cluster < rec_end) {
681                         ret = i;
682                         break;
683                 }
684         }
685
686         return ret;
687 }
688
689 enum ocfs2_contig_type {
690         CONTIG_NONE = 0,
691         CONTIG_LEFT,
692         CONTIG_RIGHT,
693         CONTIG_LEFTRIGHT,
694 };
695
696
697 /*
698  * NOTE: ocfs2_block_extent_contig(), ocfs2_extents_adjacent() and
699  * ocfs2_extent_contig only work properly against leaf nodes!
700  */
701 static int ocfs2_block_extent_contig(struct super_block *sb,
702                                      struct ocfs2_extent_rec *ext,
703                                      u64 blkno)
704 {
705         u64 blk_end = le64_to_cpu(ext->e_blkno);
706
707         blk_end += ocfs2_clusters_to_blocks(sb,
708                                     le16_to_cpu(ext->e_leaf_clusters));
709
710         return blkno == blk_end;
711 }
712
713 static int ocfs2_extents_adjacent(struct ocfs2_extent_rec *left,
714                                   struct ocfs2_extent_rec *right)
715 {
716         u32 left_range;
717
718         left_range = le32_to_cpu(left->e_cpos) +
719                 le16_to_cpu(left->e_leaf_clusters);
720
721         return (left_range == le32_to_cpu(right->e_cpos));
722 }
723
724 static enum ocfs2_contig_type
725         ocfs2_extent_contig(struct inode *inode,
726                             struct ocfs2_extent_rec *ext,
727                             struct ocfs2_extent_rec *insert_rec)
728 {
729         u64 blkno = le64_to_cpu(insert_rec->e_blkno);
730
731         /*
732          * Refuse to coalesce extent records with different flag
733          * fields - we don't want to mix unwritten extents with user
734          * data.
735          */
736         if (ext->e_flags != insert_rec->e_flags)
737                 return CONTIG_NONE;
738
739         if (ocfs2_extents_adjacent(ext, insert_rec) &&
740             ocfs2_block_extent_contig(inode->i_sb, ext, blkno))
741                         return CONTIG_RIGHT;
742
743         blkno = le64_to_cpu(ext->e_blkno);
744         if (ocfs2_extents_adjacent(insert_rec, ext) &&
745             ocfs2_block_extent_contig(inode->i_sb, insert_rec, blkno))
746                 return CONTIG_LEFT;
747
748         return CONTIG_NONE;
749 }
750
751 /*
752  * NOTE: We can have pretty much any combination of contiguousness and
753  * appending.
754  *
755  * The usefulness of APPEND_TAIL is more in that it lets us know that
756  * we'll have to update the path to that leaf.
757  */
758 enum ocfs2_append_type {
759         APPEND_NONE = 0,
760         APPEND_TAIL,
761 };
762
763 enum ocfs2_split_type {
764         SPLIT_NONE = 0,
765         SPLIT_LEFT,
766         SPLIT_RIGHT,
767 };
768
769 struct ocfs2_insert_type {
770         enum ocfs2_split_type   ins_split;
771         enum ocfs2_append_type  ins_appending;
772         enum ocfs2_contig_type  ins_contig;
773         int                     ins_contig_index;
774         int                     ins_tree_depth;
775 };
776
777 struct ocfs2_merge_ctxt {
778         enum ocfs2_contig_type  c_contig_type;
779         int                     c_has_empty_extent;
780         int                     c_split_covers_rec;
781 };
782
783 static int ocfs2_validate_extent_block(struct super_block *sb,
784                                        struct buffer_head *bh)
785 {
786         int rc;
787         struct ocfs2_extent_block *eb =
788                 (struct ocfs2_extent_block *)bh->b_data;
789
790         mlog(0, "Validating extent block %llu\n",
791              (unsigned long long)bh->b_blocknr);
792
793         BUG_ON(!buffer_uptodate(bh));
794
795         /*
796          * If the ecc fails, we return the error but otherwise
797          * leave the filesystem running.  We know any error is
798          * local to this block.
799          */
800         rc = ocfs2_validate_meta_ecc(sb, bh->b_data, &eb->h_check);
801         if (rc) {
802                 mlog(ML_ERROR, "Checksum failed for extent block %llu\n",
803                      (unsigned long long)bh->b_blocknr);
804                 return rc;
805         }
806
807         /*
808          * Errors after here are fatal.
809          */
810
811         if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
812                 ocfs2_error(sb,
813                             "Extent block #%llu has bad signature %.*s",
814                             (unsigned long long)bh->b_blocknr, 7,
815                             eb->h_signature);
816                 return -EINVAL;
817         }
818
819         if (le64_to_cpu(eb->h_blkno) != bh->b_blocknr) {
820                 ocfs2_error(sb,
821                             "Extent block #%llu has an invalid h_blkno "
822                             "of %llu",
823                             (unsigned long long)bh->b_blocknr,
824                             (unsigned long long)le64_to_cpu(eb->h_blkno));
825                 return -EINVAL;
826         }
827
828         if (le32_to_cpu(eb->h_fs_generation) != OCFS2_SB(sb)->fs_generation) {
829                 ocfs2_error(sb,
830                             "Extent block #%llu has an invalid "
831                             "h_fs_generation of #%u",
832                             (unsigned long long)bh->b_blocknr,
833                             le32_to_cpu(eb->h_fs_generation));
834                 return -EINVAL;
835         }
836
837         return 0;
838 }
839
840 int ocfs2_read_extent_block(struct ocfs2_caching_info *ci, u64 eb_blkno,
841                             struct buffer_head **bh)
842 {
843         int rc;
844         struct buffer_head *tmp = *bh;
845
846         rc = ocfs2_read_block(ci, eb_blkno, &tmp,
847                               ocfs2_validate_extent_block);
848
849         /* If ocfs2_read_block() got us a new bh, pass it up. */
850         if (!rc && !*bh)
851                 *bh = tmp;
852
853         return rc;
854 }
855
856
857 /*
858  * How many free extents have we got before we need more meta data?
859  */
860 int ocfs2_num_free_extents(struct ocfs2_super *osb,
861                            struct ocfs2_extent_tree *et)
862 {
863         int retval;
864         struct ocfs2_extent_list *el = NULL;
865         struct ocfs2_extent_block *eb;
866         struct buffer_head *eb_bh = NULL;
867         u64 last_eb_blk = 0;
868
869         mlog_entry_void();
870
871         el = et->et_root_el;
872         last_eb_blk = ocfs2_et_get_last_eb_blk(et);
873
874         if (last_eb_blk) {
875                 retval = ocfs2_read_extent_block(et->et_ci, last_eb_blk,
876                                                  &eb_bh);
877                 if (retval < 0) {
878                         mlog_errno(retval);
879                         goto bail;
880                 }
881                 eb = (struct ocfs2_extent_block *) eb_bh->b_data;
882                 el = &eb->h_list;
883         }
884
885         BUG_ON(el->l_tree_depth != 0);
886
887         retval = le16_to_cpu(el->l_count) - le16_to_cpu(el->l_next_free_rec);
888 bail:
889         brelse(eb_bh);
890
891         mlog_exit(retval);
892         return retval;
893 }
894
895 /* expects array to already be allocated
896  *
897  * sets h_signature, h_blkno, h_suballoc_bit, h_suballoc_slot, and
898  * l_count for you
899  */
900 static int ocfs2_create_new_meta_bhs(handle_t *handle,
901                                      struct ocfs2_extent_tree *et,
902                                      int wanted,
903                                      struct ocfs2_alloc_context *meta_ac,
904                                      struct buffer_head *bhs[])
905 {
906         int count, status, i;
907         u16 suballoc_bit_start;
908         u32 num_got;
909         u64 first_blkno;
910         struct ocfs2_super *osb =
911                 OCFS2_SB(ocfs2_metadata_cache_get_super(et->et_ci));
912         struct ocfs2_extent_block *eb;
913
914         mlog_entry_void();
915
916         count = 0;
917         while (count < wanted) {
918                 status = ocfs2_claim_metadata(osb,
919                                               handle,
920                                               meta_ac,
921                                               wanted - count,
922                                               &suballoc_bit_start,
923                                               &num_got,
924                                               &first_blkno);
925                 if (status < 0) {
926                         mlog_errno(status);
927                         goto bail;
928                 }
929
930                 for(i = count;  i < (num_got + count); i++) {
931                         bhs[i] = sb_getblk(osb->sb, first_blkno);
932                         if (bhs[i] == NULL) {
933                                 status = -EIO;
934                                 mlog_errno(status);
935                                 goto bail;
936                         }
937                         ocfs2_set_new_buffer_uptodate(et->et_ci, bhs[i]);
938
939                         status = ocfs2_journal_access_eb(handle, et->et_ci,
940                                                          bhs[i],
941                                                          OCFS2_JOURNAL_ACCESS_CREATE);
942                         if (status < 0) {
943                                 mlog_errno(status);
944                                 goto bail;
945                         }
946
947                         memset(bhs[i]->b_data, 0, osb->sb->s_blocksize);
948                         eb = (struct ocfs2_extent_block *) bhs[i]->b_data;
949                         /* Ok, setup the minimal stuff here. */
950                         strcpy(eb->h_signature, OCFS2_EXTENT_BLOCK_SIGNATURE);
951                         eb->h_blkno = cpu_to_le64(first_blkno);
952                         eb->h_fs_generation = cpu_to_le32(osb->fs_generation);
953                         eb->h_suballoc_slot = cpu_to_le16(osb->slot_num);
954                         eb->h_suballoc_bit = cpu_to_le16(suballoc_bit_start);
955                         eb->h_list.l_count =
956                                 cpu_to_le16(ocfs2_extent_recs_per_eb(osb->sb));
957
958                         suballoc_bit_start++;
959                         first_blkno++;
960
961                         /* We'll also be dirtied by the caller, so
962                          * this isn't absolutely necessary. */
963                         status = ocfs2_journal_dirty(handle, bhs[i]);
964                         if (status < 0) {
965                                 mlog_errno(status);
966                                 goto bail;
967                         }
968                 }
969
970                 count += num_got;
971         }
972
973         status = 0;
974 bail:
975         if (status < 0) {
976                 for(i = 0; i < wanted; i++) {
977                         brelse(bhs[i]);
978                         bhs[i] = NULL;
979                 }
980         }
981         mlog_exit(status);
982         return status;
983 }
984
985 /*
986  * Helper function for ocfs2_add_branch() and ocfs2_shift_tree_depth().
987  *
988  * Returns the sum of the rightmost extent rec logical offset and
989  * cluster count.
990  *
991  * ocfs2_add_branch() uses this to determine what logical cluster
992  * value should be populated into the leftmost new branch records.
993  *
994  * ocfs2_shift_tree_depth() uses this to determine the # clusters
995  * value for the new topmost tree record.
996  */
997 static inline u32 ocfs2_sum_rightmost_rec(struct ocfs2_extent_list  *el)
998 {
999         int i;
1000
1001         i = le16_to_cpu(el->l_next_free_rec) - 1;
1002
1003         return le32_to_cpu(el->l_recs[i].e_cpos) +
1004                 ocfs2_rec_clusters(el, &el->l_recs[i]);
1005 }
1006
1007 /*
1008  * Change range of the branches in the right most path according to the leaf
1009  * extent block's rightmost record.
1010  */
1011 static int ocfs2_adjust_rightmost_branch(handle_t *handle,
1012                                          struct inode *inode,
1013                                          struct ocfs2_extent_tree *et)
1014 {
1015         int status;
1016         struct ocfs2_path *path = NULL;
1017         struct ocfs2_extent_list *el;
1018         struct ocfs2_extent_rec *rec;
1019
1020         path = ocfs2_new_path_from_et(et);
1021         if (!path) {
1022                 status = -ENOMEM;
1023                 return status;
1024         }
1025
1026         status = ocfs2_find_path(et->et_ci, path, UINT_MAX);
1027         if (status < 0) {
1028                 mlog_errno(status);
1029                 goto out;
1030         }
1031
1032         status = ocfs2_extend_trans(handle, path_num_items(path) +
1033                                     handle->h_buffer_credits);
1034         if (status < 0) {
1035                 mlog_errno(status);
1036                 goto out;
1037         }
1038
1039         status = ocfs2_journal_access_path(INODE_CACHE(inode), handle, path);
1040         if (status < 0) {
1041                 mlog_errno(status);
1042                 goto out;
1043         }
1044
1045         el = path_leaf_el(path);
1046         rec = &el->l_recs[le32_to_cpu(el->l_next_free_rec) - 1];
1047
1048         ocfs2_adjust_rightmost_records(inode, handle, path, rec);
1049
1050 out:
1051         ocfs2_free_path(path);
1052         return status;
1053 }
1054
1055 /*
1056  * Add an entire tree branch to our inode. eb_bh is the extent block
1057  * to start at, if we don't want to start the branch at the dinode
1058  * structure.
1059  *
1060  * last_eb_bh is required as we have to update it's next_leaf pointer
1061  * for the new last extent block.
1062  *
1063  * the new branch will be 'empty' in the sense that every block will
1064  * contain a single record with cluster count == 0.
1065  */
1066 static int ocfs2_add_branch(struct ocfs2_super *osb,
1067                             handle_t *handle,
1068                             struct inode *inode,
1069                             struct ocfs2_extent_tree *et,
1070                             struct buffer_head *eb_bh,
1071                             struct buffer_head **last_eb_bh,
1072                             struct ocfs2_alloc_context *meta_ac)
1073 {
1074         int status, new_blocks, i;
1075         u64 next_blkno, new_last_eb_blk;
1076         struct buffer_head *bh;
1077         struct buffer_head **new_eb_bhs = NULL;
1078         struct ocfs2_extent_block *eb;
1079         struct ocfs2_extent_list  *eb_el;
1080         struct ocfs2_extent_list  *el;
1081         u32 new_cpos, root_end;
1082
1083         mlog_entry_void();
1084
1085         BUG_ON(!last_eb_bh || !*last_eb_bh);
1086
1087         if (eb_bh) {
1088                 eb = (struct ocfs2_extent_block *) eb_bh->b_data;
1089                 el = &eb->h_list;
1090         } else
1091                 el = et->et_root_el;
1092
1093         /* we never add a branch to a leaf. */
1094         BUG_ON(!el->l_tree_depth);
1095
1096         new_blocks = le16_to_cpu(el->l_tree_depth);
1097
1098         eb = (struct ocfs2_extent_block *)(*last_eb_bh)->b_data;
1099         new_cpos = ocfs2_sum_rightmost_rec(&eb->h_list);
1100         root_end = ocfs2_sum_rightmost_rec(et->et_root_el);
1101
1102         /*
1103          * If there is a gap before the root end and the real end
1104          * of the righmost leaf block, we need to remove the gap
1105          * between new_cpos and root_end first so that the tree
1106          * is consistent after we add a new branch(it will start
1107          * from new_cpos).
1108          */
1109         if (root_end > new_cpos) {
1110                 mlog(0, "adjust the cluster end from %u to %u\n",
1111                      root_end, new_cpos);
1112                 status = ocfs2_adjust_rightmost_branch(handle, inode, et);
1113                 if (status) {
1114                         mlog_errno(status);
1115                         goto bail;
1116                 }
1117         }
1118
1119         /* allocate the number of new eb blocks we need */
1120         new_eb_bhs = kcalloc(new_blocks, sizeof(struct buffer_head *),
1121                              GFP_KERNEL);
1122         if (!new_eb_bhs) {
1123                 status = -ENOMEM;
1124                 mlog_errno(status);
1125                 goto bail;
1126         }
1127
1128         status = ocfs2_create_new_meta_bhs(handle, et, new_blocks,
1129                                            meta_ac, new_eb_bhs);
1130         if (status < 0) {
1131                 mlog_errno(status);
1132                 goto bail;
1133         }
1134
1135         /* Note: new_eb_bhs[new_blocks - 1] is the guy which will be
1136          * linked with the rest of the tree.
1137          * conversly, new_eb_bhs[0] is the new bottommost leaf.
1138          *
1139          * when we leave the loop, new_last_eb_blk will point to the
1140          * newest leaf, and next_blkno will point to the topmost extent
1141          * block. */
1142         next_blkno = new_last_eb_blk = 0;
1143         for(i = 0; i < new_blocks; i++) {
1144                 bh = new_eb_bhs[i];
1145                 eb = (struct ocfs2_extent_block *) bh->b_data;
1146                 /* ocfs2_create_new_meta_bhs() should create it right! */
1147                 BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb));
1148                 eb_el = &eb->h_list;
1149
1150                 status = ocfs2_journal_access_eb(handle, INODE_CACHE(inode), bh,
1151                                                  OCFS2_JOURNAL_ACCESS_CREATE);
1152                 if (status < 0) {
1153                         mlog_errno(status);
1154                         goto bail;
1155                 }
1156
1157                 eb->h_next_leaf_blk = 0;
1158                 eb_el->l_tree_depth = cpu_to_le16(i);
1159                 eb_el->l_next_free_rec = cpu_to_le16(1);
1160                 /*
1161                  * This actually counts as an empty extent as
1162                  * c_clusters == 0
1163                  */
1164                 eb_el->l_recs[0].e_cpos = cpu_to_le32(new_cpos);
1165                 eb_el->l_recs[0].e_blkno = cpu_to_le64(next_blkno);
1166                 /*
1167                  * eb_el isn't always an interior node, but even leaf
1168                  * nodes want a zero'd flags and reserved field so
1169                  * this gets the whole 32 bits regardless of use.
1170                  */
1171                 eb_el->l_recs[0].e_int_clusters = cpu_to_le32(0);
1172                 if (!eb_el->l_tree_depth)
1173                         new_last_eb_blk = le64_to_cpu(eb->h_blkno);
1174
1175                 status = ocfs2_journal_dirty(handle, bh);
1176                 if (status < 0) {
1177                         mlog_errno(status);
1178                         goto bail;
1179                 }
1180
1181                 next_blkno = le64_to_cpu(eb->h_blkno);
1182         }
1183
1184         /* This is a bit hairy. We want to update up to three blocks
1185          * here without leaving any of them in an inconsistent state
1186          * in case of error. We don't have to worry about
1187          * journal_dirty erroring as it won't unless we've aborted the
1188          * handle (in which case we would never be here) so reserving
1189          * the write with journal_access is all we need to do. */
1190         status = ocfs2_journal_access_eb(handle, INODE_CACHE(inode), *last_eb_bh,
1191                                          OCFS2_JOURNAL_ACCESS_WRITE);
1192         if (status < 0) {
1193                 mlog_errno(status);
1194                 goto bail;
1195         }
1196         status = ocfs2_et_root_journal_access(handle, et,
1197                                               OCFS2_JOURNAL_ACCESS_WRITE);
1198         if (status < 0) {
1199                 mlog_errno(status);
1200                 goto bail;
1201         }
1202         if (eb_bh) {
1203                 status = ocfs2_journal_access_eb(handle, INODE_CACHE(inode), eb_bh,
1204                                                  OCFS2_JOURNAL_ACCESS_WRITE);
1205                 if (status < 0) {
1206                         mlog_errno(status);
1207                         goto bail;
1208                 }
1209         }
1210
1211         /* Link the new branch into the rest of the tree (el will
1212          * either be on the root_bh, or the extent block passed in. */
1213         i = le16_to_cpu(el->l_next_free_rec);
1214         el->l_recs[i].e_blkno = cpu_to_le64(next_blkno);
1215         el->l_recs[i].e_cpos = cpu_to_le32(new_cpos);
1216         el->l_recs[i].e_int_clusters = 0;
1217         le16_add_cpu(&el->l_next_free_rec, 1);
1218
1219         /* fe needs a new last extent block pointer, as does the
1220          * next_leaf on the previously last-extent-block. */
1221         ocfs2_et_set_last_eb_blk(et, new_last_eb_blk);
1222
1223         eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
1224         eb->h_next_leaf_blk = cpu_to_le64(new_last_eb_blk);
1225
1226         status = ocfs2_journal_dirty(handle, *last_eb_bh);
1227         if (status < 0)
1228                 mlog_errno(status);
1229         status = ocfs2_journal_dirty(handle, et->et_root_bh);
1230         if (status < 0)
1231                 mlog_errno(status);
1232         if (eb_bh) {
1233                 status = ocfs2_journal_dirty(handle, eb_bh);
1234                 if (status < 0)
1235                         mlog_errno(status);
1236         }
1237
1238         /*
1239          * Some callers want to track the rightmost leaf so pass it
1240          * back here.
1241          */
1242         brelse(*last_eb_bh);
1243         get_bh(new_eb_bhs[0]);
1244         *last_eb_bh = new_eb_bhs[0];
1245
1246         status = 0;
1247 bail:
1248         if (new_eb_bhs) {
1249                 for (i = 0; i < new_blocks; i++)
1250                         brelse(new_eb_bhs[i]);
1251                 kfree(new_eb_bhs);
1252         }
1253
1254         mlog_exit(status);
1255         return status;
1256 }
1257
1258 /*
1259  * adds another level to the allocation tree.
1260  * returns back the new extent block so you can add a branch to it
1261  * after this call.
1262  */
1263 static int ocfs2_shift_tree_depth(struct ocfs2_super *osb,
1264                                   handle_t *handle,
1265                                   struct inode *inode,
1266                                   struct ocfs2_extent_tree *et,
1267                                   struct ocfs2_alloc_context *meta_ac,
1268                                   struct buffer_head **ret_new_eb_bh)
1269 {
1270         int status, i;
1271         u32 new_clusters;
1272         struct buffer_head *new_eb_bh = NULL;
1273         struct ocfs2_extent_block *eb;
1274         struct ocfs2_extent_list  *root_el;
1275         struct ocfs2_extent_list  *eb_el;
1276
1277         mlog_entry_void();
1278
1279         status = ocfs2_create_new_meta_bhs(handle, et, 1, meta_ac,
1280                                            &new_eb_bh);
1281         if (status < 0) {
1282                 mlog_errno(status);
1283                 goto bail;
1284         }
1285
1286         eb = (struct ocfs2_extent_block *) new_eb_bh->b_data;
1287         /* ocfs2_create_new_meta_bhs() should create it right! */
1288         BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb));
1289
1290         eb_el = &eb->h_list;
1291         root_el = et->et_root_el;
1292
1293         status = ocfs2_journal_access_eb(handle, INODE_CACHE(inode), new_eb_bh,
1294                                          OCFS2_JOURNAL_ACCESS_CREATE);
1295         if (status < 0) {
1296                 mlog_errno(status);
1297                 goto bail;
1298         }
1299
1300         /* copy the root extent list data into the new extent block */
1301         eb_el->l_tree_depth = root_el->l_tree_depth;
1302         eb_el->l_next_free_rec = root_el->l_next_free_rec;
1303         for (i = 0; i < le16_to_cpu(root_el->l_next_free_rec); i++)
1304                 eb_el->l_recs[i] = root_el->l_recs[i];
1305
1306         status = ocfs2_journal_dirty(handle, new_eb_bh);
1307         if (status < 0) {
1308                 mlog_errno(status);
1309                 goto bail;
1310         }
1311
1312         status = ocfs2_et_root_journal_access(handle, et,
1313                                               OCFS2_JOURNAL_ACCESS_WRITE);
1314         if (status < 0) {
1315                 mlog_errno(status);
1316                 goto bail;
1317         }
1318
1319         new_clusters = ocfs2_sum_rightmost_rec(eb_el);
1320
1321         /* update root_bh now */
1322         le16_add_cpu(&root_el->l_tree_depth, 1);
1323         root_el->l_recs[0].e_cpos = 0;
1324         root_el->l_recs[0].e_blkno = eb->h_blkno;
1325         root_el->l_recs[0].e_int_clusters = cpu_to_le32(new_clusters);
1326         for (i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++)
1327                 memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
1328         root_el->l_next_free_rec = cpu_to_le16(1);
1329
1330         /* If this is our 1st tree depth shift, then last_eb_blk
1331          * becomes the allocated extent block */
1332         if (root_el->l_tree_depth == cpu_to_le16(1))
1333                 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
1334
1335         status = ocfs2_journal_dirty(handle, et->et_root_bh);
1336         if (status < 0) {
1337                 mlog_errno(status);
1338                 goto bail;
1339         }
1340
1341         *ret_new_eb_bh = new_eb_bh;
1342         new_eb_bh = NULL;
1343         status = 0;
1344 bail:
1345         brelse(new_eb_bh);
1346
1347         mlog_exit(status);
1348         return status;
1349 }
1350
1351 /*
1352  * Should only be called when there is no space left in any of the
1353  * leaf nodes. What we want to do is find the lowest tree depth
1354  * non-leaf extent block with room for new records. There are three
1355  * valid results of this search:
1356  *
1357  * 1) a lowest extent block is found, then we pass it back in
1358  *    *lowest_eb_bh and return '0'
1359  *
1360  * 2) the search fails to find anything, but the root_el has room. We
1361  *    pass NULL back in *lowest_eb_bh, but still return '0'
1362  *
1363  * 3) the search fails to find anything AND the root_el is full, in
1364  *    which case we return > 0
1365  *
1366  * return status < 0 indicates an error.
1367  */
1368 static int ocfs2_find_branch_target(struct ocfs2_super *osb,
1369                                     struct ocfs2_extent_tree *et,
1370                                     struct buffer_head **target_bh)
1371 {
1372         int status = 0, i;
1373         u64 blkno;
1374         struct ocfs2_extent_block *eb;
1375         struct ocfs2_extent_list  *el;
1376         struct buffer_head *bh = NULL;
1377         struct buffer_head *lowest_bh = NULL;
1378
1379         mlog_entry_void();
1380
1381         *target_bh = NULL;
1382
1383         el = et->et_root_el;
1384
1385         while(le16_to_cpu(el->l_tree_depth) > 1) {
1386                 if (le16_to_cpu(el->l_next_free_rec) == 0) {
1387                         ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
1388                                     "Owner %llu has empty "
1389                                     "extent list (next_free_rec == 0)",
1390                                     (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci));
1391                         status = -EIO;
1392                         goto bail;
1393                 }
1394                 i = le16_to_cpu(el->l_next_free_rec) - 1;
1395                 blkno = le64_to_cpu(el->l_recs[i].e_blkno);
1396                 if (!blkno) {
1397                         ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
1398                                     "Owner %llu has extent "
1399                                     "list where extent # %d has no physical "
1400                                     "block start",
1401                                     (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), i);
1402                         status = -EIO;
1403                         goto bail;
1404                 }
1405
1406                 brelse(bh);
1407                 bh = NULL;
1408
1409                 status = ocfs2_read_extent_block(et->et_ci, blkno, &bh);
1410                 if (status < 0) {
1411                         mlog_errno(status);
1412                         goto bail;
1413                 }
1414
1415                 eb = (struct ocfs2_extent_block *) bh->b_data;
1416                 el = &eb->h_list;
1417
1418                 if (le16_to_cpu(el->l_next_free_rec) <
1419                     le16_to_cpu(el->l_count)) {
1420                         brelse(lowest_bh);
1421                         lowest_bh = bh;
1422                         get_bh(lowest_bh);
1423                 }
1424         }
1425
1426         /* If we didn't find one and the fe doesn't have any room,
1427          * then return '1' */
1428         el = et->et_root_el;
1429         if (!lowest_bh && (el->l_next_free_rec == el->l_count))
1430                 status = 1;
1431
1432         *target_bh = lowest_bh;
1433 bail:
1434         brelse(bh);
1435
1436         mlog_exit(status);
1437         return status;
1438 }
1439
1440 /*
1441  * Grow a b-tree so that it has more records.
1442  *
1443  * We might shift the tree depth in which case existing paths should
1444  * be considered invalid.
1445  *
1446  * Tree depth after the grow is returned via *final_depth.
1447  *
1448  * *last_eb_bh will be updated by ocfs2_add_branch().
1449  */
1450 static int ocfs2_grow_tree(struct inode *inode, handle_t *handle,
1451                            struct ocfs2_extent_tree *et, int *final_depth,
1452                            struct buffer_head **last_eb_bh,
1453                            struct ocfs2_alloc_context *meta_ac)
1454 {
1455         int ret, shift;
1456         struct ocfs2_extent_list *el = et->et_root_el;
1457         int depth = le16_to_cpu(el->l_tree_depth);
1458         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1459         struct buffer_head *bh = NULL;
1460
1461         BUG_ON(meta_ac == NULL);
1462
1463         shift = ocfs2_find_branch_target(osb, et, &bh);
1464         if (shift < 0) {
1465                 ret = shift;
1466                 mlog_errno(ret);
1467                 goto out;
1468         }
1469
1470         /* We traveled all the way to the bottom of the allocation tree
1471          * and didn't find room for any more extents - we need to add
1472          * another tree level */
1473         if (shift) {
1474                 BUG_ON(bh);
1475                 mlog(0, "need to shift tree depth (current = %d)\n", depth);
1476
1477                 /* ocfs2_shift_tree_depth will return us a buffer with
1478                  * the new extent block (so we can pass that to
1479                  * ocfs2_add_branch). */
1480                 ret = ocfs2_shift_tree_depth(osb, handle, inode, et,
1481                                              meta_ac, &bh);
1482                 if (ret < 0) {
1483                         mlog_errno(ret);
1484                         goto out;
1485                 }
1486                 depth++;
1487                 if (depth == 1) {
1488                         /*
1489                          * Special case: we have room now if we shifted from
1490                          * tree_depth 0, so no more work needs to be done.
1491                          *
1492                          * We won't be calling add_branch, so pass
1493                          * back *last_eb_bh as the new leaf. At depth
1494                          * zero, it should always be null so there's
1495                          * no reason to brelse.
1496                          */
1497                         BUG_ON(*last_eb_bh);
1498                         get_bh(bh);
1499                         *last_eb_bh = bh;
1500                         goto out;
1501                 }
1502         }
1503
1504         /* call ocfs2_add_branch to add the final part of the tree with
1505          * the new data. */
1506         mlog(0, "add branch. bh = %p\n", bh);
1507         ret = ocfs2_add_branch(osb, handle, inode, et, bh, last_eb_bh,
1508                                meta_ac);
1509         if (ret < 0) {
1510                 mlog_errno(ret);
1511                 goto out;
1512         }
1513
1514 out:
1515         if (final_depth)
1516                 *final_depth = depth;
1517         brelse(bh);
1518         return ret;
1519 }
1520
1521 /*
1522  * This function will discard the rightmost extent record.
1523  */
1524 static void ocfs2_shift_records_right(struct ocfs2_extent_list *el)
1525 {
1526         int next_free = le16_to_cpu(el->l_next_free_rec);
1527         int count = le16_to_cpu(el->l_count);
1528         unsigned int num_bytes;
1529
1530         BUG_ON(!next_free);
1531         /* This will cause us to go off the end of our extent list. */
1532         BUG_ON(next_free >= count);
1533
1534         num_bytes = sizeof(struct ocfs2_extent_rec) * next_free;
1535
1536         memmove(&el->l_recs[1], &el->l_recs[0], num_bytes);
1537 }
1538
1539 static void ocfs2_rotate_leaf(struct ocfs2_extent_list *el,
1540                               struct ocfs2_extent_rec *insert_rec)
1541 {
1542         int i, insert_index, next_free, has_empty, num_bytes;
1543         u32 insert_cpos = le32_to_cpu(insert_rec->e_cpos);
1544         struct ocfs2_extent_rec *rec;
1545
1546         next_free = le16_to_cpu(el->l_next_free_rec);
1547         has_empty = ocfs2_is_empty_extent(&el->l_recs[0]);
1548
1549         BUG_ON(!next_free);
1550
1551         /* The tree code before us didn't allow enough room in the leaf. */
1552         BUG_ON(el->l_next_free_rec == el->l_count && !has_empty);
1553
1554         /*
1555          * The easiest way to approach this is to just remove the
1556          * empty extent and temporarily decrement next_free.
1557          */
1558         if (has_empty) {
1559                 /*
1560                  * If next_free was 1 (only an empty extent), this
1561                  * loop won't execute, which is fine. We still want
1562                  * the decrement above to happen.
1563                  */
1564                 for(i = 0; i < (next_free - 1); i++)
1565                         el->l_recs[i] = el->l_recs[i+1];
1566
1567                 next_free--;
1568         }
1569
1570         /*
1571          * Figure out what the new record index should be.
1572          */
1573         for(i = 0; i < next_free; i++) {
1574                 rec = &el->l_recs[i];
1575
1576                 if (insert_cpos < le32_to_cpu(rec->e_cpos))
1577                         break;
1578         }
1579         insert_index = i;
1580
1581         mlog(0, "ins %u: index %d, has_empty %d, next_free %d, count %d\n",
1582              insert_cpos, insert_index, has_empty, next_free, le16_to_cpu(el->l_count));
1583
1584         BUG_ON(insert_index < 0);
1585         BUG_ON(insert_index >= le16_to_cpu(el->l_count));
1586         BUG_ON(insert_index > next_free);
1587
1588         /*
1589          * No need to memmove if we're just adding to the tail.
1590          */
1591         if (insert_index != next_free) {
1592                 BUG_ON(next_free >= le16_to_cpu(el->l_count));
1593
1594                 num_bytes = next_free - insert_index;
1595                 num_bytes *= sizeof(struct ocfs2_extent_rec);
1596                 memmove(&el->l_recs[insert_index + 1],
1597                         &el->l_recs[insert_index],
1598                         num_bytes);
1599         }
1600
1601         /*
1602          * Either we had an empty extent, and need to re-increment or
1603          * there was no empty extent on a non full rightmost leaf node,
1604          * in which case we still need to increment.
1605          */
1606         next_free++;
1607         el->l_next_free_rec = cpu_to_le16(next_free);
1608         /*
1609          * Make sure none of the math above just messed up our tree.
1610          */
1611         BUG_ON(le16_to_cpu(el->l_next_free_rec) > le16_to_cpu(el->l_count));
1612
1613         el->l_recs[insert_index] = *insert_rec;
1614
1615 }
1616
1617 static void ocfs2_remove_empty_extent(struct ocfs2_extent_list *el)
1618 {
1619         int size, num_recs = le16_to_cpu(el->l_next_free_rec);
1620
1621         BUG_ON(num_recs == 0);
1622
1623         if (ocfs2_is_empty_extent(&el->l_recs[0])) {
1624                 num_recs--;
1625                 size = num_recs * sizeof(struct ocfs2_extent_rec);
1626                 memmove(&el->l_recs[0], &el->l_recs[1], size);
1627                 memset(&el->l_recs[num_recs], 0,
1628                        sizeof(struct ocfs2_extent_rec));
1629                 el->l_next_free_rec = cpu_to_le16(num_recs);
1630         }
1631 }
1632
1633 /*
1634  * Create an empty extent record .
1635  *
1636  * l_next_free_rec may be updated.
1637  *
1638  * If an empty extent already exists do nothing.
1639  */
1640 static void ocfs2_create_empty_extent(struct ocfs2_extent_list *el)
1641 {
1642         int next_free = le16_to_cpu(el->l_next_free_rec);
1643
1644         BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
1645
1646         if (next_free == 0)
1647                 goto set_and_inc;
1648
1649         if (ocfs2_is_empty_extent(&el->l_recs[0]))
1650                 return;
1651
1652         mlog_bug_on_msg(el->l_count == el->l_next_free_rec,
1653                         "Asked to create an empty extent in a full list:\n"
1654                         "count = %u, tree depth = %u",
1655                         le16_to_cpu(el->l_count),
1656                         le16_to_cpu(el->l_tree_depth));
1657
1658         ocfs2_shift_records_right(el);
1659
1660 set_and_inc:
1661         le16_add_cpu(&el->l_next_free_rec, 1);
1662         memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
1663 }
1664
1665 /*
1666  * For a rotation which involves two leaf nodes, the "root node" is
1667  * the lowest level tree node which contains a path to both leafs. This
1668  * resulting set of information can be used to form a complete "subtree"
1669  *
1670  * This function is passed two full paths from the dinode down to a
1671  * pair of adjacent leaves. It's task is to figure out which path
1672  * index contains the subtree root - this can be the root index itself
1673  * in a worst-case rotation.
1674  *
1675  * The array index of the subtree root is passed back.
1676  */
1677 static int ocfs2_find_subtree_root(struct ocfs2_extent_tree *et,
1678                                    struct ocfs2_path *left,
1679                                    struct ocfs2_path *right)
1680 {
1681         int i = 0;
1682
1683         /*
1684          * Check that the caller passed in two paths from the same tree.
1685          */
1686         BUG_ON(path_root_bh(left) != path_root_bh(right));
1687
1688         do {
1689                 i++;
1690
1691                 /*
1692                  * The caller didn't pass two adjacent paths.
1693                  */
1694                 mlog_bug_on_msg(i > left->p_tree_depth,
1695                                 "Owner %llu, left depth %u, right depth %u\n"
1696                                 "left leaf blk %llu, right leaf blk %llu\n",
1697                                 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
1698                                 left->p_tree_depth, right->p_tree_depth,
1699                                 (unsigned long long)path_leaf_bh(left)->b_blocknr,
1700                                 (unsigned long long)path_leaf_bh(right)->b_blocknr);
1701         } while (left->p_node[i].bh->b_blocknr ==
1702                  right->p_node[i].bh->b_blocknr);
1703
1704         return i - 1;
1705 }
1706
1707 typedef void (path_insert_t)(void *, struct buffer_head *);
1708
1709 /*
1710  * Traverse a btree path in search of cpos, starting at root_el.
1711  *
1712  * This code can be called with a cpos larger than the tree, in which
1713  * case it will return the rightmost path.
1714  */
1715 static int __ocfs2_find_path(struct ocfs2_caching_info *ci,
1716                              struct ocfs2_extent_list *root_el, u32 cpos,
1717                              path_insert_t *func, void *data)
1718 {
1719         int i, ret = 0;
1720         u32 range;
1721         u64 blkno;
1722         struct buffer_head *bh = NULL;
1723         struct ocfs2_extent_block *eb;
1724         struct ocfs2_extent_list *el;
1725         struct ocfs2_extent_rec *rec;
1726
1727         el = root_el;
1728         while (el->l_tree_depth) {
1729                 if (le16_to_cpu(el->l_next_free_rec) == 0) {
1730                         ocfs2_error(ocfs2_metadata_cache_get_super(ci),
1731                                     "Owner %llu has empty extent list at "
1732                                     "depth %u\n",
1733                                     (unsigned long long)ocfs2_metadata_cache_owner(ci),
1734                                     le16_to_cpu(el->l_tree_depth));
1735                         ret = -EROFS;
1736                         goto out;
1737
1738                 }
1739
1740                 for(i = 0; i < le16_to_cpu(el->l_next_free_rec) - 1; i++) {
1741                         rec = &el->l_recs[i];
1742
1743                         /*
1744                          * In the case that cpos is off the allocation
1745                          * tree, this should just wind up returning the
1746                          * rightmost record.
1747                          */
1748                         range = le32_to_cpu(rec->e_cpos) +
1749                                 ocfs2_rec_clusters(el, rec);
1750                         if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
1751                             break;
1752                 }
1753
1754                 blkno = le64_to_cpu(el->l_recs[i].e_blkno);
1755                 if (blkno == 0) {
1756                         ocfs2_error(ocfs2_metadata_cache_get_super(ci),
1757                                     "Owner %llu has bad blkno in extent list "
1758                                     "at depth %u (index %d)\n",
1759                                     (unsigned long long)ocfs2_metadata_cache_owner(ci),
1760                                     le16_to_cpu(el->l_tree_depth), i);
1761                         ret = -EROFS;
1762                         goto out;
1763                 }
1764
1765                 brelse(bh);
1766                 bh = NULL;
1767                 ret = ocfs2_read_extent_block(ci, blkno, &bh);
1768                 if (ret) {
1769                         mlog_errno(ret);
1770                         goto out;
1771                 }
1772
1773                 eb = (struct ocfs2_extent_block *) bh->b_data;
1774                 el = &eb->h_list;
1775
1776                 if (le16_to_cpu(el->l_next_free_rec) >
1777                     le16_to_cpu(el->l_count)) {
1778                         ocfs2_error(ocfs2_metadata_cache_get_super(ci),
1779                                     "Owner %llu has bad count in extent list "
1780                                     "at block %llu (next free=%u, count=%u)\n",
1781                                     (unsigned long long)ocfs2_metadata_cache_owner(ci),
1782                                     (unsigned long long)bh->b_blocknr,
1783                                     le16_to_cpu(el->l_next_free_rec),
1784                                     le16_to_cpu(el->l_count));
1785                         ret = -EROFS;
1786                         goto out;
1787                 }
1788
1789                 if (func)
1790                         func(data, bh);
1791         }
1792
1793 out:
1794         /*
1795          * Catch any trailing bh that the loop didn't handle.
1796          */
1797         brelse(bh);
1798
1799         return ret;
1800 }
1801
1802 /*
1803  * Given an initialized path (that is, it has a valid root extent
1804  * list), this function will traverse the btree in search of the path
1805  * which would contain cpos.
1806  *
1807  * The path traveled is recorded in the path structure.
1808  *
1809  * Note that this will not do any comparisons on leaf node extent
1810  * records, so it will work fine in the case that we just added a tree
1811  * branch.
1812  */
1813 struct find_path_data {
1814         int index;
1815         struct ocfs2_path *path;
1816 };
1817 static void find_path_ins(void *data, struct buffer_head *bh)
1818 {
1819         struct find_path_data *fp = data;
1820
1821         get_bh(bh);
1822         ocfs2_path_insert_eb(fp->path, fp->index, bh);
1823         fp->index++;
1824 }
1825 static int ocfs2_find_path(struct ocfs2_caching_info *ci,
1826                            struct ocfs2_path *path, u32 cpos)
1827 {
1828         struct find_path_data data;
1829
1830         data.index = 1;
1831         data.path = path;
1832         return __ocfs2_find_path(ci, path_root_el(path), cpos,
1833                                  find_path_ins, &data);
1834 }
1835
1836 static void find_leaf_ins(void *data, struct buffer_head *bh)
1837 {
1838         struct ocfs2_extent_block *eb =(struct ocfs2_extent_block *)bh->b_data;
1839         struct ocfs2_extent_list *el = &eb->h_list;
1840         struct buffer_head **ret = data;
1841
1842         /* We want to retain only the leaf block. */
1843         if (le16_to_cpu(el->l_tree_depth) == 0) {
1844                 get_bh(bh);
1845                 *ret = bh;
1846         }
1847 }
1848 /*
1849  * Find the leaf block in the tree which would contain cpos. No
1850  * checking of the actual leaf is done.
1851  *
1852  * Some paths want to call this instead of allocating a path structure
1853  * and calling ocfs2_find_path().
1854  *
1855  * This function doesn't handle non btree extent lists.
1856  */
1857 int ocfs2_find_leaf(struct ocfs2_caching_info *ci,
1858                     struct ocfs2_extent_list *root_el, u32 cpos,
1859                     struct buffer_head **leaf_bh)
1860 {
1861         int ret;
1862         struct buffer_head *bh = NULL;
1863
1864         ret = __ocfs2_find_path(ci, root_el, cpos, find_leaf_ins, &bh);
1865         if (ret) {
1866                 mlog_errno(ret);
1867                 goto out;
1868         }
1869
1870         *leaf_bh = bh;
1871 out:
1872         return ret;
1873 }
1874
1875 /*
1876  * Adjust the adjacent records (left_rec, right_rec) involved in a rotation.
1877  *
1878  * Basically, we've moved stuff around at the bottom of the tree and
1879  * we need to fix up the extent records above the changes to reflect
1880  * the new changes.
1881  *
1882  * left_rec: the record on the left.
1883  * left_child_el: is the child list pointed to by left_rec
1884  * right_rec: the record to the right of left_rec
1885  * right_child_el: is the child list pointed to by right_rec
1886  *
1887  * By definition, this only works on interior nodes.
1888  */
1889 static void ocfs2_adjust_adjacent_records(struct ocfs2_extent_rec *left_rec,
1890                                   struct ocfs2_extent_list *left_child_el,
1891                                   struct ocfs2_extent_rec *right_rec,
1892                                   struct ocfs2_extent_list *right_child_el)
1893 {
1894         u32 left_clusters, right_end;
1895
1896         /*
1897          * Interior nodes never have holes. Their cpos is the cpos of
1898          * the leftmost record in their child list. Their cluster
1899          * count covers the full theoretical range of their child list
1900          * - the range between their cpos and the cpos of the record
1901          * immediately to their right.
1902          */
1903         left_clusters = le32_to_cpu(right_child_el->l_recs[0].e_cpos);
1904         if (!ocfs2_rec_clusters(right_child_el, &right_child_el->l_recs[0])) {
1905                 BUG_ON(right_child_el->l_tree_depth);
1906                 BUG_ON(le16_to_cpu(right_child_el->l_next_free_rec) <= 1);
1907                 left_clusters = le32_to_cpu(right_child_el->l_recs[1].e_cpos);
1908         }
1909         left_clusters -= le32_to_cpu(left_rec->e_cpos);
1910         left_rec->e_int_clusters = cpu_to_le32(left_clusters);
1911
1912         /*
1913          * Calculate the rightmost cluster count boundary before
1914          * moving cpos - we will need to adjust clusters after
1915          * updating e_cpos to keep the same highest cluster count.
1916          */
1917         right_end = le32_to_cpu(right_rec->e_cpos);
1918         right_end += le32_to_cpu(right_rec->e_int_clusters);
1919
1920         right_rec->e_cpos = left_rec->e_cpos;
1921         le32_add_cpu(&right_rec->e_cpos, left_clusters);
1922
1923         right_end -= le32_to_cpu(right_rec->e_cpos);
1924         right_rec->e_int_clusters = cpu_to_le32(right_end);
1925 }
1926
1927 /*
1928  * Adjust the adjacent root node records involved in a
1929  * rotation. left_el_blkno is passed in as a key so that we can easily
1930  * find it's index in the root list.
1931  */
1932 static void ocfs2_adjust_root_records(struct ocfs2_extent_list *root_el,
1933                                       struct ocfs2_extent_list *left_el,
1934                                       struct ocfs2_extent_list *right_el,
1935                                       u64 left_el_blkno)
1936 {
1937         int i;
1938
1939         BUG_ON(le16_to_cpu(root_el->l_tree_depth) <=
1940                le16_to_cpu(left_el->l_tree_depth));
1941
1942         for(i = 0; i < le16_to_cpu(root_el->l_next_free_rec) - 1; i++) {
1943                 if (le64_to_cpu(root_el->l_recs[i].e_blkno) == left_el_blkno)
1944                         break;
1945         }
1946
1947         /*
1948          * The path walking code should have never returned a root and
1949          * two paths which are not adjacent.
1950          */
1951         BUG_ON(i >= (le16_to_cpu(root_el->l_next_free_rec) - 1));
1952
1953         ocfs2_adjust_adjacent_records(&root_el->l_recs[i], left_el,
1954                                       &root_el->l_recs[i + 1], right_el);
1955 }
1956
1957 /*
1958  * We've changed a leaf block (in right_path) and need to reflect that
1959  * change back up the subtree.
1960  *
1961  * This happens in multiple places:
1962  *   - When we've moved an extent record from the left path leaf to the right
1963  *     path leaf to make room for an empty extent in the left path leaf.
1964  *   - When our insert into the right path leaf is at the leftmost edge
1965  *     and requires an update of the path immediately to it's left. This
1966  *     can occur at the end of some types of rotation and appending inserts.
1967  *   - When we've adjusted the last extent record in the left path leaf and the
1968  *     1st extent record in the right path leaf during cross extent block merge.
1969  */
1970 static void ocfs2_complete_edge_insert(handle_t *handle,
1971                                        struct ocfs2_path *left_path,
1972                                        struct ocfs2_path *right_path,
1973                                        int subtree_index)
1974 {
1975         int ret, i, idx;
1976         struct ocfs2_extent_list *el, *left_el, *right_el;
1977         struct ocfs2_extent_rec *left_rec, *right_rec;
1978         struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
1979
1980         /*
1981          * Update the counts and position values within all the
1982          * interior nodes to reflect the leaf rotation we just did.
1983          *
1984          * The root node is handled below the loop.
1985          *
1986          * We begin the loop with right_el and left_el pointing to the
1987          * leaf lists and work our way up.
1988          *
1989          * NOTE: within this loop, left_el and right_el always refer
1990          * to the *child* lists.
1991          */
1992         left_el = path_leaf_el(left_path);
1993         right_el = path_leaf_el(right_path);
1994         for(i = left_path->p_tree_depth - 1; i > subtree_index; i--) {
1995                 mlog(0, "Adjust records at index %u\n", i);
1996
1997                 /*
1998                  * One nice property of knowing that all of these
1999                  * nodes are below the root is that we only deal with
2000                  * the leftmost right node record and the rightmost
2001                  * left node record.
2002                  */
2003                 el = left_path->p_node[i].el;
2004                 idx = le16_to_cpu(left_el->l_next_free_rec) - 1;
2005                 left_rec = &el->l_recs[idx];
2006
2007                 el = right_path->p_node[i].el;
2008                 right_rec = &el->l_recs[0];
2009
2010                 ocfs2_adjust_adjacent_records(left_rec, left_el, right_rec,
2011                                               right_el);
2012
2013                 ret = ocfs2_journal_dirty(handle, left_path->p_node[i].bh);
2014                 if (ret)
2015                         mlog_errno(ret);
2016
2017                 ret = ocfs2_journal_dirty(handle, right_path->p_node[i].bh);
2018                 if (ret)
2019                         mlog_errno(ret);
2020
2021                 /*
2022                  * Setup our list pointers now so that the current
2023                  * parents become children in the next iteration.
2024                  */
2025                 left_el = left_path->p_node[i].el;
2026                 right_el = right_path->p_node[i].el;
2027         }
2028
2029         /*
2030          * At the root node, adjust the two adjacent records which
2031          * begin our path to the leaves.
2032          */
2033
2034         el = left_path->p_node[subtree_index].el;
2035         left_el = left_path->p_node[subtree_index + 1].el;
2036         right_el = right_path->p_node[subtree_index + 1].el;
2037
2038         ocfs2_adjust_root_records(el, left_el, right_el,
2039                                   left_path->p_node[subtree_index + 1].bh->b_blocknr);
2040
2041         root_bh = left_path->p_node[subtree_index].bh;
2042
2043         ret = ocfs2_journal_dirty(handle, root_bh);
2044         if (ret)
2045                 mlog_errno(ret);
2046 }
2047
2048 static int ocfs2_rotate_subtree_right(handle_t *handle,
2049                                       struct ocfs2_extent_tree *et,
2050                                       struct ocfs2_path *left_path,
2051                                       struct ocfs2_path *right_path,
2052                                       int subtree_index)
2053 {
2054         int ret, i;
2055         struct buffer_head *right_leaf_bh;
2056         struct buffer_head *left_leaf_bh = NULL;
2057         struct buffer_head *root_bh;
2058         struct ocfs2_extent_list *right_el, *left_el;
2059         struct ocfs2_extent_rec move_rec;
2060
2061         left_leaf_bh = path_leaf_bh(left_path);
2062         left_el = path_leaf_el(left_path);
2063
2064         if (left_el->l_next_free_rec != left_el->l_count) {
2065                 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
2066                             "Inode %llu has non-full interior leaf node %llu"
2067                             "(next free = %u)",
2068                             (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2069                             (unsigned long long)left_leaf_bh->b_blocknr,
2070                             le16_to_cpu(left_el->l_next_free_rec));
2071                 return -EROFS;
2072         }
2073
2074         /*
2075          * This extent block may already have an empty record, so we
2076          * return early if so.
2077          */
2078         if (ocfs2_is_empty_extent(&left_el->l_recs[0]))
2079                 return 0;
2080
2081         root_bh = left_path->p_node[subtree_index].bh;
2082         BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
2083
2084         ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
2085                                            subtree_index);
2086         if (ret) {
2087                 mlog_errno(ret);
2088                 goto out;
2089         }
2090
2091         for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
2092                 ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2093                                                    right_path, i);
2094                 if (ret) {
2095                         mlog_errno(ret);
2096                         goto out;
2097                 }
2098
2099                 ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2100                                                    left_path, i);
2101                 if (ret) {
2102                         mlog_errno(ret);
2103                         goto out;
2104                 }
2105         }
2106
2107         right_leaf_bh = path_leaf_bh(right_path);
2108         right_el = path_leaf_el(right_path);
2109
2110         /* This is a code error, not a disk corruption. */
2111         mlog_bug_on_msg(!right_el->l_next_free_rec, "Inode %llu: Rotate fails "
2112                         "because rightmost leaf block %llu is empty\n",
2113                         (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2114                         (unsigned long long)right_leaf_bh->b_blocknr);
2115
2116         ocfs2_create_empty_extent(right_el);
2117
2118         ret = ocfs2_journal_dirty(handle, right_leaf_bh);
2119         if (ret) {
2120                 mlog_errno(ret);
2121                 goto out;
2122         }
2123
2124         /* Do the copy now. */
2125         i = le16_to_cpu(left_el->l_next_free_rec) - 1;
2126         move_rec = left_el->l_recs[i];
2127         right_el->l_recs[0] = move_rec;
2128
2129         /*
2130          * Clear out the record we just copied and shift everything
2131          * over, leaving an empty extent in the left leaf.
2132          *
2133          * We temporarily subtract from next_free_rec so that the
2134          * shift will lose the tail record (which is now defunct).
2135          */
2136         le16_add_cpu(&left_el->l_next_free_rec, -1);
2137         ocfs2_shift_records_right(left_el);
2138         memset(&left_el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2139         le16_add_cpu(&left_el->l_next_free_rec, 1);
2140
2141         ret = ocfs2_journal_dirty(handle, left_leaf_bh);
2142         if (ret) {
2143                 mlog_errno(ret);
2144                 goto out;
2145         }
2146
2147         ocfs2_complete_edge_insert(handle, left_path, right_path,
2148                                    subtree_index);
2149
2150 out:
2151         return ret;
2152 }
2153
2154 /*
2155  * Given a full path, determine what cpos value would return us a path
2156  * containing the leaf immediately to the left of the current one.
2157  *
2158  * Will return zero if the path passed in is already the leftmost path.
2159  */
2160 static int ocfs2_find_cpos_for_left_leaf(struct super_block *sb,
2161                                          struct ocfs2_path *path, u32 *cpos)
2162 {
2163         int i, j, ret = 0;
2164         u64 blkno;
2165         struct ocfs2_extent_list *el;
2166
2167         BUG_ON(path->p_tree_depth == 0);
2168
2169         *cpos = 0;
2170
2171         blkno = path_leaf_bh(path)->b_blocknr;
2172
2173         /* Start at the tree node just above the leaf and work our way up. */
2174         i = path->p_tree_depth - 1;
2175         while (i >= 0) {
2176                 el = path->p_node[i].el;
2177
2178                 /*
2179                  * Find the extent record just before the one in our
2180                  * path.
2181                  */
2182                 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
2183                         if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
2184                                 if (j == 0) {
2185                                         if (i == 0) {
2186                                                 /*
2187                                                  * We've determined that the
2188                                                  * path specified is already
2189                                                  * the leftmost one - return a
2190                                                  * cpos of zero.
2191                                                  */
2192                                                 goto out;
2193                                         }
2194                                         /*
2195                                          * The leftmost record points to our
2196                                          * leaf - we need to travel up the
2197                                          * tree one level.
2198                                          */
2199                                         goto next_node;
2200                                 }
2201
2202                                 *cpos = le32_to_cpu(el->l_recs[j - 1].e_cpos);
2203                                 *cpos = *cpos + ocfs2_rec_clusters(el,
2204                                                            &el->l_recs[j - 1]);
2205                                 *cpos = *cpos - 1;
2206                                 goto out;
2207                         }
2208                 }
2209
2210                 /*
2211                  * If we got here, we never found a valid node where
2212                  * the tree indicated one should be.
2213                  */
2214                 ocfs2_error(sb,
2215                             "Invalid extent tree at extent block %llu\n",
2216                             (unsigned long long)blkno);
2217                 ret = -EROFS;
2218                 goto out;
2219
2220 next_node:
2221                 blkno = path->p_node[i].bh->b_blocknr;
2222                 i--;
2223         }
2224
2225 out:
2226         return ret;
2227 }
2228
2229 /*
2230  * Extend the transaction by enough credits to complete the rotation,
2231  * and still leave at least the original number of credits allocated
2232  * to this transaction.
2233  */
2234 static int ocfs2_extend_rotate_transaction(handle_t *handle, int subtree_depth,
2235                                            int op_credits,
2236                                            struct ocfs2_path *path)
2237 {
2238         int credits = (path->p_tree_depth - subtree_depth) * 2 + 1 + op_credits;
2239
2240         if (handle->h_buffer_credits < credits)
2241                 return ocfs2_extend_trans(handle, credits);
2242
2243         return 0;
2244 }
2245
2246 /*
2247  * Trap the case where we're inserting into the theoretical range past
2248  * the _actual_ left leaf range. Otherwise, we'll rotate a record
2249  * whose cpos is less than ours into the right leaf.
2250  *
2251  * It's only necessary to look at the rightmost record of the left
2252  * leaf because the logic that calls us should ensure that the
2253  * theoretical ranges in the path components above the leaves are
2254  * correct.
2255  */
2256 static int ocfs2_rotate_requires_path_adjustment(struct ocfs2_path *left_path,
2257                                                  u32 insert_cpos)
2258 {
2259         struct ocfs2_extent_list *left_el;
2260         struct ocfs2_extent_rec *rec;
2261         int next_free;
2262
2263         left_el = path_leaf_el(left_path);
2264         next_free = le16_to_cpu(left_el->l_next_free_rec);
2265         rec = &left_el->l_recs[next_free - 1];
2266
2267         if (insert_cpos > le32_to_cpu(rec->e_cpos))
2268                 return 1;
2269         return 0;
2270 }
2271
2272 static int ocfs2_leftmost_rec_contains(struct ocfs2_extent_list *el, u32 cpos)
2273 {
2274         int next_free = le16_to_cpu(el->l_next_free_rec);
2275         unsigned int range;
2276         struct ocfs2_extent_rec *rec;
2277
2278         if (next_free == 0)
2279                 return 0;
2280
2281         rec = &el->l_recs[0];
2282         if (ocfs2_is_empty_extent(rec)) {
2283                 /* Empty list. */
2284                 if (next_free == 1)
2285                         return 0;
2286                 rec = &el->l_recs[1];
2287         }
2288
2289         range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
2290         if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
2291                 return 1;
2292         return 0;
2293 }
2294
2295 /*
2296  * Rotate all the records in a btree right one record, starting at insert_cpos.
2297  *
2298  * The path to the rightmost leaf should be passed in.
2299  *
2300  * The array is assumed to be large enough to hold an entire path (tree depth).
2301  *
2302  * Upon succesful return from this function:
2303  *
2304  * - The 'right_path' array will contain a path to the leaf block
2305  *   whose range contains e_cpos.
2306  * - That leaf block will have a single empty extent in list index 0.
2307  * - In the case that the rotation requires a post-insert update,
2308  *   *ret_left_path will contain a valid path which can be passed to
2309  *   ocfs2_insert_path().
2310  */
2311 static int ocfs2_rotate_tree_right(handle_t *handle,
2312                                    struct ocfs2_extent_tree *et,
2313                                    enum ocfs2_split_type split,
2314                                    u32 insert_cpos,
2315                                    struct ocfs2_path *right_path,
2316                                    struct ocfs2_path **ret_left_path)
2317 {
2318         int ret, start, orig_credits = handle->h_buffer_credits;
2319         u32 cpos;
2320         struct ocfs2_path *left_path = NULL;
2321         struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
2322
2323         *ret_left_path = NULL;
2324
2325         left_path = ocfs2_new_path_from_path(right_path);
2326         if (!left_path) {
2327                 ret = -ENOMEM;
2328                 mlog_errno(ret);
2329                 goto out;
2330         }
2331
2332         ret = ocfs2_find_cpos_for_left_leaf(sb, right_path, &cpos);
2333         if (ret) {
2334                 mlog_errno(ret);
2335                 goto out;
2336         }
2337
2338         mlog(0, "Insert: %u, first left path cpos: %u\n", insert_cpos, cpos);
2339
2340         /*
2341          * What we want to do here is:
2342          *
2343          * 1) Start with the rightmost path.
2344          *
2345          * 2) Determine a path to the leaf block directly to the left
2346          *    of that leaf.
2347          *
2348          * 3) Determine the 'subtree root' - the lowest level tree node
2349          *    which contains a path to both leaves.
2350          *
2351          * 4) Rotate the subtree.
2352          *
2353          * 5) Find the next subtree by considering the left path to be
2354          *    the new right path.
2355          *
2356          * The check at the top of this while loop also accepts
2357          * insert_cpos == cpos because cpos is only a _theoretical_
2358          * value to get us the left path - insert_cpos might very well
2359          * be filling that hole.
2360          *
2361          * Stop at a cpos of '0' because we either started at the
2362          * leftmost branch (i.e., a tree with one branch and a
2363          * rotation inside of it), or we've gone as far as we can in
2364          * rotating subtrees.
2365          */
2366         while (cpos && insert_cpos <= cpos) {
2367                 mlog(0, "Rotating a tree: ins. cpos: %u, left path cpos: %u\n",
2368                      insert_cpos, cpos);
2369
2370                 ret = ocfs2_find_path(et->et_ci, left_path, cpos);
2371                 if (ret) {
2372                         mlog_errno(ret);
2373                         goto out;
2374                 }
2375
2376                 mlog_bug_on_msg(path_leaf_bh(left_path) ==
2377                                 path_leaf_bh(right_path),
2378                                 "Owner %llu: error during insert of %u "
2379                                 "(left path cpos %u) results in two identical "
2380                                 "paths ending at %llu\n",
2381                                 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2382                                 insert_cpos, cpos,
2383                                 (unsigned long long)
2384                                 path_leaf_bh(left_path)->b_blocknr);
2385
2386                 if (split == SPLIT_NONE &&
2387                     ocfs2_rotate_requires_path_adjustment(left_path,
2388                                                           insert_cpos)) {
2389
2390                         /*
2391                          * We've rotated the tree as much as we
2392                          * should. The rest is up to
2393                          * ocfs2_insert_path() to complete, after the
2394                          * record insertion. We indicate this
2395                          * situation by returning the left path.
2396                          *
2397                          * The reason we don't adjust the records here
2398                          * before the record insert is that an error
2399                          * later might break the rule where a parent
2400                          * record e_cpos will reflect the actual
2401                          * e_cpos of the 1st nonempty record of the
2402                          * child list.
2403                          */
2404                         *ret_left_path = left_path;
2405                         goto out_ret_path;
2406                 }
2407
2408                 start = ocfs2_find_subtree_root(et, left_path, right_path);
2409
2410                 mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n",
2411                      start,
2412                      (unsigned long long) right_path->p_node[start].bh->b_blocknr,
2413                      right_path->p_tree_depth);
2414
2415                 ret = ocfs2_extend_rotate_transaction(handle, start,
2416                                                       orig_credits, right_path);
2417                 if (ret) {
2418                         mlog_errno(ret);
2419                         goto out;
2420                 }
2421
2422                 ret = ocfs2_rotate_subtree_right(handle, et, left_path,
2423                                                  right_path, start);
2424                 if (ret) {
2425                         mlog_errno(ret);
2426                         goto out;
2427                 }
2428
2429                 if (split != SPLIT_NONE &&
2430                     ocfs2_leftmost_rec_contains(path_leaf_el(right_path),
2431                                                 insert_cpos)) {
2432                         /*
2433                          * A rotate moves the rightmost left leaf
2434                          * record over to the leftmost right leaf
2435                          * slot. If we're doing an extent split
2436                          * instead of a real insert, then we have to
2437                          * check that the extent to be split wasn't
2438                          * just moved over. If it was, then we can
2439                          * exit here, passing left_path back -
2440                          * ocfs2_split_extent() is smart enough to
2441                          * search both leaves.
2442                          */
2443                         *ret_left_path = left_path;
2444                         goto out_ret_path;
2445                 }
2446
2447                 /*
2448                  * There is no need to re-read the next right path
2449                  * as we know that it'll be our current left
2450                  * path. Optimize by copying values instead.
2451                  */
2452                 ocfs2_mv_path(right_path, left_path);
2453
2454                 ret = ocfs2_find_cpos_for_left_leaf(sb, right_path, &cpos);
2455                 if (ret) {
2456                         mlog_errno(ret);
2457                         goto out;
2458                 }
2459         }
2460
2461 out:
2462         ocfs2_free_path(left_path);
2463
2464 out_ret_path:
2465         return ret;
2466 }
2467
2468 static int ocfs2_update_edge_lengths(handle_t *handle,
2469                                      struct ocfs2_extent_tree *et,
2470                                      int subtree_index, struct ocfs2_path *path)
2471 {
2472         int i, idx, ret;
2473         struct ocfs2_extent_rec *rec;
2474         struct ocfs2_extent_list *el;
2475         struct ocfs2_extent_block *eb;
2476         u32 range;
2477
2478         /*
2479          * In normal tree rotation process, we will never touch the
2480          * tree branch above subtree_index and ocfs2_extend_rotate_transaction
2481          * doesn't reserve the credits for them either.
2482          *
2483          * But we do have a special case here which will update the rightmost
2484          * records for all the bh in the path.
2485          * So we have to allocate extra credits and access them.
2486          */
2487         ret = ocfs2_extend_trans(handle,
2488                                  handle->h_buffer_credits + subtree_index);
2489         if (ret) {
2490                 mlog_errno(ret);
2491                 goto out;
2492         }
2493
2494         ret = ocfs2_journal_access_path(et->et_ci, handle, path);
2495         if (ret) {
2496                 mlog_errno(ret);
2497                 goto out;
2498         }
2499
2500         /* Path should always be rightmost. */
2501         eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
2502         BUG_ON(eb->h_next_leaf_blk != 0ULL);
2503
2504         el = &eb->h_list;
2505         BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0);
2506         idx = le16_to_cpu(el->l_next_free_rec) - 1;
2507         rec = &el->l_recs[idx];
2508         range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
2509
2510         for (i = 0; i < path->p_tree_depth; i++) {
2511                 el = path->p_node[i].el;
2512                 idx = le16_to_cpu(el->l_next_free_rec) - 1;
2513                 rec = &el->l_recs[idx];
2514
2515                 rec->e_int_clusters = cpu_to_le32(range);
2516                 le32_add_cpu(&rec->e_int_clusters, -le32_to_cpu(rec->e_cpos));
2517
2518                 ocfs2_journal_dirty(handle, path->p_node[i].bh);
2519         }
2520 out:
2521         return ret;
2522 }
2523
2524 static void ocfs2_unlink_path(handle_t *handle,
2525                               struct ocfs2_extent_tree *et,
2526                               struct ocfs2_cached_dealloc_ctxt *dealloc,
2527                               struct ocfs2_path *path, int unlink_start)
2528 {
2529         int ret, i;
2530         struct ocfs2_extent_block *eb;
2531         struct ocfs2_extent_list *el;
2532         struct buffer_head *bh;
2533
2534         for(i = unlink_start; i < path_num_items(path); i++) {
2535                 bh = path->p_node[i].bh;
2536
2537                 eb = (struct ocfs2_extent_block *)bh->b_data;
2538                 /*
2539                  * Not all nodes might have had their final count
2540                  * decremented by the caller - handle this here.
2541                  */
2542                 el = &eb->h_list;
2543                 if (le16_to_cpu(el->l_next_free_rec) > 1) {
2544                         mlog(ML_ERROR,
2545                              "Inode %llu, attempted to remove extent block "
2546                              "%llu with %u records\n",
2547                              (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2548                              (unsigned long long)le64_to_cpu(eb->h_blkno),
2549                              le16_to_cpu(el->l_next_free_rec));
2550
2551                         ocfs2_journal_dirty(handle, bh);
2552                         ocfs2_remove_from_cache(et->et_ci, bh);
2553                         continue;
2554                 }
2555
2556                 el->l_next_free_rec = 0;
2557                 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2558
2559                 ocfs2_journal_dirty(handle, bh);
2560
2561                 ret = ocfs2_cache_extent_block_free(dealloc, eb);
2562                 if (ret)
2563                         mlog_errno(ret);
2564
2565                 ocfs2_remove_from_cache(et->et_ci, bh);
2566         }
2567 }
2568
2569 static void ocfs2_unlink_subtree(handle_t *handle,
2570                                  struct ocfs2_extent_tree *et,
2571                                  struct ocfs2_path *left_path,
2572                                  struct ocfs2_path *right_path,
2573                                  int subtree_index,
2574                                  struct ocfs2_cached_dealloc_ctxt *dealloc)
2575 {
2576         int i;
2577         struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
2578         struct ocfs2_extent_list *root_el = left_path->p_node[subtree_index].el;
2579         struct ocfs2_extent_list *el;
2580         struct ocfs2_extent_block *eb;
2581
2582         el = path_leaf_el(left_path);
2583
2584         eb = (struct ocfs2_extent_block *)right_path->p_node[subtree_index + 1].bh->b_data;
2585
2586         for(i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++)
2587                 if (root_el->l_recs[i].e_blkno == eb->h_blkno)
2588                         break;
2589
2590         BUG_ON(i >= le16_to_cpu(root_el->l_next_free_rec));
2591
2592         memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
2593         le16_add_cpu(&root_el->l_next_free_rec, -1);
2594
2595         eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2596         eb->h_next_leaf_blk = 0;
2597
2598         ocfs2_journal_dirty(handle, root_bh);
2599         ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2600
2601         ocfs2_unlink_path(handle, et, dealloc, right_path,
2602                           subtree_index + 1);
2603 }
2604
2605 static int ocfs2_rotate_subtree_left(handle_t *handle,
2606                                      struct ocfs2_extent_tree *et,
2607                                      struct ocfs2_path *left_path,
2608                                      struct ocfs2_path *right_path,
2609                                      int subtree_index,
2610                                      struct ocfs2_cached_dealloc_ctxt *dealloc,
2611                                      int *deleted)
2612 {
2613         int ret, i, del_right_subtree = 0, right_has_empty = 0;
2614         struct buffer_head *root_bh, *et_root_bh = path_root_bh(right_path);
2615         struct ocfs2_extent_list *right_leaf_el, *left_leaf_el;
2616         struct ocfs2_extent_block *eb;
2617
2618         *deleted = 0;
2619
2620         right_leaf_el = path_leaf_el(right_path);
2621         left_leaf_el = path_leaf_el(left_path);
2622         root_bh = left_path->p_node[subtree_index].bh;
2623         BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
2624
2625         if (!ocfs2_is_empty_extent(&left_leaf_el->l_recs[0]))
2626                 return 0;
2627
2628         eb = (struct ocfs2_extent_block *)path_leaf_bh(right_path)->b_data;
2629         if (ocfs2_is_empty_extent(&right_leaf_el->l_recs[0])) {
2630                 /*
2631                  * It's legal for us to proceed if the right leaf is
2632                  * the rightmost one and it has an empty extent. There
2633                  * are two cases to handle - whether the leaf will be
2634                  * empty after removal or not. If the leaf isn't empty
2635                  * then just remove the empty extent up front. The
2636                  * next block will handle empty leaves by flagging
2637                  * them for unlink.
2638                  *
2639                  * Non rightmost leaves will throw -EAGAIN and the
2640                  * caller can manually move the subtree and retry.
2641                  */
2642
2643                 if (eb->h_next_leaf_blk != 0ULL)
2644                         return -EAGAIN;
2645
2646                 if (le16_to_cpu(right_leaf_el->l_next_free_rec) > 1) {
2647                         ret = ocfs2_journal_access_eb(handle, et->et_ci,
2648                                                       path_leaf_bh(right_path),
2649                                                       OCFS2_JOURNAL_ACCESS_WRITE);
2650                         if (ret) {
2651                                 mlog_errno(ret);
2652                                 goto out;
2653                         }
2654
2655                         ocfs2_remove_empty_extent(right_leaf_el);
2656                 } else
2657                         right_has_empty = 1;
2658         }
2659
2660         if (eb->h_next_leaf_blk == 0ULL &&
2661             le16_to_cpu(right_leaf_el->l_next_free_rec) == 1) {
2662                 /*
2663                  * We have to update i_last_eb_blk during the meta
2664                  * data delete.
2665                  */
2666                 ret = ocfs2_et_root_journal_access(handle, et,
2667                                                    OCFS2_JOURNAL_ACCESS_WRITE);
2668                 if (ret) {
2669                         mlog_errno(ret);
2670                         goto out;
2671                 }
2672
2673                 del_right_subtree = 1;
2674         }
2675
2676         /*
2677          * Getting here with an empty extent in the right path implies
2678          * that it's the rightmost path and will be deleted.
2679          */
2680         BUG_ON(right_has_empty && !del_right_subtree);
2681
2682         ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
2683                                            subtree_index);
2684         if (ret) {
2685                 mlog_errno(ret);
2686                 goto out;
2687         }
2688
2689         for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
2690                 ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2691                                                    right_path, i);
2692                 if (ret) {
2693                         mlog_errno(ret);
2694                         goto out;
2695                 }
2696
2697                 ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2698                                                    left_path, i);
2699                 if (ret) {
2700                         mlog_errno(ret);
2701                         goto out;
2702                 }
2703         }
2704
2705         if (!right_has_empty) {
2706                 /*
2707                  * Only do this if we're moving a real
2708                  * record. Otherwise, the action is delayed until
2709                  * after removal of the right path in which case we
2710                  * can do a simple shift to remove the empty extent.
2711                  */
2712                 ocfs2_rotate_leaf(left_leaf_el, &right_leaf_el->l_recs[0]);
2713                 memset(&right_leaf_el->l_recs[0], 0,
2714                        sizeof(struct ocfs2_extent_rec));
2715         }
2716         if (eb->h_next_leaf_blk == 0ULL) {
2717                 /*
2718                  * Move recs over to get rid of empty extent, decrease
2719                  * next_free. This is allowed to remove the last
2720                  * extent in our leaf (setting l_next_free_rec to
2721                  * zero) - the delete code below won't care.
2722                  */
2723                 ocfs2_remove_empty_extent(right_leaf_el);
2724         }
2725
2726         ret = ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2727         if (ret)
2728                 mlog_errno(ret);
2729         ret = ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
2730         if (ret)
2731                 mlog_errno(ret);
2732
2733         if (del_right_subtree) {
2734                 ocfs2_unlink_subtree(handle, et, left_path, right_path,
2735                                      subtree_index, dealloc);
2736                 ret = ocfs2_update_edge_lengths(handle, et, subtree_index,
2737                                                 left_path);
2738                 if (ret) {
2739                         mlog_errno(ret);
2740                         goto out;
2741                 }
2742
2743                 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2744                 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
2745
2746                 /*
2747                  * Removal of the extent in the left leaf was skipped
2748                  * above so we could delete the right path
2749                  * 1st.
2750                  */
2751                 if (right_has_empty)
2752                         ocfs2_remove_empty_extent(left_leaf_el);
2753
2754                 ret = ocfs2_journal_dirty(handle, et_root_bh);
2755                 if (ret)
2756                         mlog_errno(ret);
2757
2758                 *deleted = 1;
2759         } else
2760                 ocfs2_complete_edge_insert(handle, left_path, right_path,
2761                                            subtree_index);
2762
2763 out:
2764         return ret;
2765 }
2766
2767 /*
2768  * Given a full path, determine what cpos value would return us a path
2769  * containing the leaf immediately to the right of the current one.
2770  *
2771  * Will return zero if the path passed in is already the rightmost path.
2772  *
2773  * This looks similar, but is subtly different to
2774  * ocfs2_find_cpos_for_left_leaf().
2775  */
2776 static int ocfs2_find_cpos_for_right_leaf(struct super_block *sb,
2777                                           struct ocfs2_path *path, u32 *cpos)
2778 {
2779         int i, j, ret = 0;
2780         u64 blkno;
2781         struct ocfs2_extent_list *el;
2782
2783         *cpos = 0;
2784
2785         if (path->p_tree_depth == 0)
2786                 return 0;
2787
2788         blkno = path_leaf_bh(path)->b_blocknr;
2789
2790         /* Start at the tree node just above the leaf and work our way up. */
2791         i = path->p_tree_depth - 1;
2792         while (i >= 0) {
2793                 int next_free;
2794
2795                 el = path->p_node[i].el;
2796
2797                 /*
2798                  * Find the extent record just after the one in our
2799                  * path.
2800                  */
2801                 next_free = le16_to_cpu(el->l_next_free_rec);
2802                 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
2803                         if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
2804                                 if (j == (next_free - 1)) {
2805                                         if (i == 0) {
2806                                                 /*
2807                                                  * We've determined that the
2808                                                  * path specified is already
2809                                                  * the rightmost one - return a
2810                                                  * cpos of zero.
2811                                                  */
2812                                                 goto out;
2813                                         }
2814                                         /*
2815                                          * The rightmost record points to our
2816                                          * leaf - we need to travel up the
2817                                          * tree one level.
2818                                          */
2819                                         goto next_node;
2820                                 }
2821
2822                                 *cpos = le32_to_cpu(el->l_recs[j + 1].e_cpos);
2823                                 goto out;
2824                         }
2825                 }
2826
2827                 /*
2828                  * If we got here, we never found a valid node where
2829                  * the tree indicated one should be.
2830                  */
2831                 ocfs2_error(sb,
2832                             "Invalid extent tree at extent block %llu\n",
2833                             (unsigned long long)blkno);
2834                 ret = -EROFS;
2835                 goto out;
2836
2837 next_node:
2838                 blkno = path->p_node[i].bh->b_blocknr;
2839                 i--;
2840         }
2841
2842 out:
2843         return ret;
2844 }
2845
2846 static int ocfs2_rotate_rightmost_leaf_left(handle_t *handle,
2847                                             struct ocfs2_extent_tree *et,
2848                                             struct ocfs2_path *path)
2849 {
2850         int ret;
2851         struct buffer_head *bh = path_leaf_bh(path);
2852         struct ocfs2_extent_list *el = path_leaf_el(path);
2853
2854         if (!ocfs2_is_empty_extent(&el->l_recs[0]))
2855                 return 0;
2856
2857         ret = ocfs2_path_bh_journal_access(handle, et->et_ci, path,
2858                                            path_num_items(path) - 1);
2859         if (ret) {
2860                 mlog_errno(ret);
2861                 goto out;
2862         }
2863
2864         ocfs2_remove_empty_extent(el);
2865
2866         ret = ocfs2_journal_dirty(handle, bh);
2867         if (ret)
2868                 mlog_errno(ret);
2869
2870 out:
2871         return ret;
2872 }
2873
2874 static int __ocfs2_rotate_tree_left(handle_t *handle,
2875                                     struct ocfs2_extent_tree *et,
2876                                     int orig_credits,
2877                                     struct ocfs2_path *path,
2878                                     struct ocfs2_cached_dealloc_ctxt *dealloc,
2879                                     struct ocfs2_path **empty_extent_path)
2880 {
2881         int ret, subtree_root, deleted;
2882         u32 right_cpos;
2883         struct ocfs2_path *left_path = NULL;
2884         struct ocfs2_path *right_path = NULL;
2885         struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
2886
2887         BUG_ON(!ocfs2_is_empty_extent(&(path_leaf_el(path)->l_recs[0])));
2888
2889         *empty_extent_path = NULL;
2890
2891         ret = ocfs2_find_cpos_for_right_leaf(sb, path, &right_cpos);
2892         if (ret) {
2893                 mlog_errno(ret);
2894                 goto out;
2895         }
2896
2897         left_path = ocfs2_new_path_from_path(path);
2898         if (!left_path) {
2899                 ret = -ENOMEM;
2900                 mlog_errno(ret);
2901                 goto out;
2902         }
2903
2904         ocfs2_cp_path(left_path, path);
2905
2906         right_path = ocfs2_new_path_from_path(path);
2907         if (!right_path) {
2908                 ret = -ENOMEM;
2909                 mlog_errno(ret);
2910                 goto out;
2911         }
2912
2913         while (right_cpos) {
2914                 ret = ocfs2_find_path(et->et_ci, right_path, right_cpos);
2915                 if (ret) {
2916                         mlog_errno(ret);
2917                         goto out;
2918                 }
2919
2920                 subtree_root = ocfs2_find_subtree_root(et, left_path,
2921                                                        right_path);
2922
2923                 mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n",
2924                      subtree_root,
2925                      (unsigned long long)
2926                      right_path->p_node[subtree_root].bh->b_blocknr,
2927                      right_path->p_tree_depth);
2928
2929                 ret = ocfs2_extend_rotate_transaction(handle, subtree_root,
2930                                                       orig_credits, left_path);
2931                 if (ret) {
2932                         mlog_errno(ret);
2933                         goto out;
2934                 }
2935
2936                 /*
2937                  * Caller might still want to make changes to the
2938                  * tree root, so re-add it to the journal here.
2939                  */
2940                 ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2941                                                    left_path, 0);
2942                 if (ret) {
2943                         mlog_errno(ret);
2944                         goto out;
2945                 }
2946
2947                 ret = ocfs2_rotate_subtree_left(handle, et, left_path,
2948                                                 right_path, subtree_root,
2949                                                 dealloc, &deleted);
2950                 if (ret == -EAGAIN) {
2951                         /*
2952                          * The rotation has to temporarily stop due to
2953                          * the right subtree having an empty
2954                          * extent. Pass it back to the caller for a
2955                          * fixup.
2956                          */
2957                         *empty_extent_path = right_path;
2958                         right_path = NULL;
2959                         goto out;
2960                 }
2961                 if (ret) {
2962                         mlog_errno(ret);
2963                         goto out;
2964                 }
2965
2966                 /*
2967                  * The subtree rotate might have removed records on
2968                  * the rightmost edge. If so, then rotation is
2969                  * complete.
2970                  */
2971                 if (deleted)
2972                         break;
2973
2974                 ocfs2_mv_path(left_path, right_path);
2975
2976                 ret = ocfs2_find_cpos_for_right_leaf(sb, left_path,
2977                                                      &right_cpos);
2978                 if (ret) {
2979                         mlog_errno(ret);
2980                         goto out;
2981                 }
2982         }
2983
2984 out:
2985         ocfs2_free_path(right_path);
2986         ocfs2_free_path(left_path);
2987
2988         return ret;
2989 }
2990
2991 static int ocfs2_remove_rightmost_path(handle_t *handle,
2992                                 struct ocfs2_extent_tree *et,
2993                                 struct ocfs2_path *path,
2994                                 struct ocfs2_cached_dealloc_ctxt *dealloc)
2995 {
2996         int ret, subtree_index;
2997         u32 cpos;
2998         struct ocfs2_path *left_path = NULL;
2999         struct ocfs2_extent_block *eb;
3000         struct ocfs2_extent_list *el;
3001
3002
3003         ret = ocfs2_et_sanity_check(et);
3004         if (ret)
3005                 goto out;
3006         /*
3007          * There's two ways we handle this depending on
3008          * whether path is the only existing one.
3009          */
3010         ret = ocfs2_extend_rotate_transaction(handle, 0,
3011                                               handle->h_buffer_credits,
3012                                               path);
3013         if (ret) {
3014                 mlog_errno(ret);
3015                 goto out;
3016         }
3017
3018         ret = ocfs2_journal_access_path(et->et_ci, handle, path);
3019         if (ret) {
3020                 mlog_errno(ret);
3021                 goto out;
3022         }
3023
3024         ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci),
3025                                             path, &cpos);
3026         if (ret) {
3027                 mlog_errno(ret);
3028                 goto out;
3029         }
3030
3031         if (cpos) {
3032                 /*
3033                  * We have a path to the left of this one - it needs
3034                  * an update too.
3035                  */
3036                 left_path = ocfs2_new_path_from_path(path);
3037                 if (!left_path) {
3038                         ret = -ENOMEM;
3039                         mlog_errno(ret);
3040                         goto out;
3041                 }
3042
3043                 ret = ocfs2_find_path(et->et_ci, left_path, cpos);
3044                 if (ret) {
3045                         mlog_errno(ret);
3046                         goto out;
3047                 }
3048
3049                 ret = ocfs2_journal_access_path(et->et_ci, handle, left_path);
3050                 if (ret) {
3051                         mlog_errno(ret);
3052                         goto out;
3053                 }
3054
3055                 subtree_index = ocfs2_find_subtree_root(et, left_path, path);
3056
3057                 ocfs2_unlink_subtree(handle, et, left_path, path,
3058                                      subtree_index, dealloc);
3059                 ret = ocfs2_update_edge_lengths(handle, et, subtree_index,
3060                                                 left_path);
3061                 if (ret) {
3062                         mlog_errno(ret);
3063                         goto out;
3064                 }
3065
3066                 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
3067                 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
3068         } else {
3069                 /*
3070                  * 'path' is also the leftmost path which
3071                  * means it must be the only one. This gets
3072                  * handled differently because we want to
3073                  * revert the root back to having extents
3074                  * in-line.
3075                  */
3076                 ocfs2_unlink_path(handle, et, dealloc, path, 1);
3077
3078                 el = et->et_root_el;
3079                 el->l_tree_depth = 0;
3080                 el->l_next_free_rec = 0;
3081                 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
3082
3083                 ocfs2_et_set_last_eb_blk(et, 0);
3084         }
3085
3086         ocfs2_journal_dirty(handle, path_root_bh(path));
3087
3088 out:
3089         ocfs2_free_path(left_path);
3090         return ret;
3091 }
3092
3093 /*
3094  * Left rotation of btree records.
3095  *
3096  * In many ways, this is (unsurprisingly) the opposite of right
3097  * rotation. We start at some non-rightmost path containing an empty
3098  * extent in the leaf block. The code works its way to the rightmost
3099  * path by rotating records to the left in every subtree.
3100  *
3101  * This is used by any code which reduces the number of extent records
3102  * in a leaf. After removal, an empty record should be placed in the
3103  * leftmost list position.
3104  *
3105  * This won't handle a length update of the rightmost path records if
3106  * the rightmost tree leaf record is removed so the caller is
3107  * responsible for detecting and correcting that.
3108  */
3109 static int ocfs2_rotate_tree_left(handle_t *handle,
3110                                   struct ocfs2_extent_tree *et,
3111                                   struct ocfs2_path *path,
3112                                   struct ocfs2_cached_dealloc_ctxt *dealloc)
3113 {
3114         int ret, orig_credits = handle->h_buffer_credits;
3115         struct ocfs2_path *tmp_path = NULL, *restart_path = NULL;
3116         struct ocfs2_extent_block *eb;
3117         struct ocfs2_extent_list *el;
3118
3119         el = path_leaf_el(path);
3120         if (!ocfs2_is_empty_extent(&el->l_recs[0]))
3121                 return 0;
3122
3123         if (path->p_tree_depth == 0) {
3124 rightmost_no_delete:
3125                 /*
3126                  * Inline extents. This is trivially handled, so do
3127                  * it up front.
3128                  */
3129                 ret = ocfs2_rotate_rightmost_leaf_left(handle, et, path);
3130                 if (ret)
3131                         mlog_errno(ret);
3132                 goto out;
3133         }
3134
3135         /*
3136          * Handle rightmost branch now. There's several cases:
3137          *  1) simple rotation leaving records in there. That's trivial.
3138          *  2) rotation requiring a branch delete - there's no more
3139          *     records left. Two cases of this:
3140          *     a) There are branches to the left.
3141          *     b) This is also the leftmost (the only) branch.
3142          *
3143          *  1) is handled via ocfs2_rotate_rightmost_leaf_left()
3144          *  2a) we need the left branch so that we can update it with the unlink
3145          *  2b) we need to bring the root back to inline extents.
3146          */
3147
3148         eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
3149         el = &eb->h_list;
3150         if (eb->h_next_leaf_blk == 0) {
3151                 /*
3152                  * This gets a bit tricky if we're going to delete the
3153                  * rightmost path. Get the other cases out of the way
3154                  * 1st.
3155                  */
3156                 if (le16_to_cpu(el->l_next_free_rec) > 1)
3157                         goto rightmost_no_delete;
3158
3159                 if (le16_to_cpu(el->l_next_free_rec) == 0) {
3160                         ret = -EIO;
3161                         ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
3162                                     "Owner %llu has empty extent block at %llu",
3163                                     (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
3164                                     (unsigned long long)le64_to_cpu(eb->h_blkno));
3165                         goto out;
3166                 }
3167
3168                 /*
3169                  * XXX: The caller can not trust "path" any more after
3170                  * this as it will have been deleted. What do we do?
3171                  *
3172                  * In theory the rotate-for-merge code will never get
3173                  * here because it'll always ask for a rotate in a
3174                  * nonempty list.
3175                  */
3176
3177                 ret = ocfs2_remove_rightmost_path(handle, et, path,
3178                                                   dealloc);
3179                 if (ret)
3180                         mlog_errno(ret);
3181                 goto out;
3182         }
3183
3184         /*
3185          * Now we can loop, remembering the path we get from -EAGAIN
3186          * and restarting from there.
3187          */
3188 try_rotate:
3189         ret = __ocfs2_rotate_tree_left(handle, et, orig_credits, path,
3190                                        dealloc, &restart_path);
3191         if (ret && ret != -EAGAIN) {
3192                 mlog_errno(ret);
3193                 goto out;
3194         }
3195
3196         while (ret == -EAGAIN) {
3197                 tmp_path = restart_path;
3198                 restart_path = NULL;
3199
3200                 ret = __ocfs2_rotate_tree_left(handle, et, orig_credits,
3201                                                tmp_path, dealloc,
3202                                                &restart_path);
3203                 if (ret && ret != -EAGAIN) {
3204                         mlog_errno(ret);
3205                         goto out;
3206                 }
3207
3208                 ocfs2_free_path(tmp_path);
3209                 tmp_path = NULL;
3210
3211                 if (ret == 0)
3212                         goto try_rotate;
3213         }
3214
3215 out:
3216         ocfs2_free_path(tmp_path);
3217         ocfs2_free_path(restart_path);
3218         return ret;
3219 }
3220
3221 static void ocfs2_cleanup_merge(struct ocfs2_extent_list *el,
3222                                 int index)
3223 {
3224         struct ocfs2_extent_rec *rec = &el->l_recs[index];
3225         unsigned int size;
3226
3227         if (rec->e_leaf_clusters == 0) {
3228                 /*
3229                  * We consumed all of the merged-from record. An empty
3230                  * extent cannot exist anywhere but the 1st array
3231                  * position, so move things over if the merged-from
3232                  * record doesn't occupy that position.
3233                  *
3234                  * This creates a new empty extent so the caller
3235                  * should be smart enough to have removed any existing
3236                  * ones.
3237                  */
3238                 if (index > 0) {
3239                         BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
3240                         size = index * sizeof(struct ocfs2_extent_rec);
3241                         memmove(&el->l_recs[1], &el->l_recs[0], size);
3242                 }
3243
3244                 /*
3245                  * Always memset - the caller doesn't check whether it
3246                  * created an empty extent, so there could be junk in
3247                  * the other fields.
3248                  */
3249                 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
3250         }
3251 }
3252
3253 static int ocfs2_get_right_path(struct inode *inode,
3254                                 struct ocfs2_path *left_path,
3255                                 struct ocfs2_path **ret_right_path)
3256 {
3257         int ret;
3258         u32 right_cpos;
3259         struct ocfs2_path *right_path = NULL;
3260         struct ocfs2_extent_list *left_el;
3261
3262         *ret_right_path = NULL;
3263
3264         /* This function shouldn't be called for non-trees. */
3265         BUG_ON(left_path->p_tree_depth == 0);
3266
3267         left_el = path_leaf_el(left_path);
3268         BUG_ON(left_el->l_next_free_rec != left_el->l_count);
3269
3270         ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, left_path,
3271                                              &right_cpos);
3272         if (ret) {
3273                 mlog_errno(ret);
3274                 goto out;
3275         }
3276
3277         /* This function shouldn't be called for the rightmost leaf. */
3278         BUG_ON(right_cpos == 0);
3279
3280         right_path = ocfs2_new_path_from_path(left_path);
3281         if (!right_path) {
3282                 ret = -ENOMEM;
3283                 mlog_errno(ret);
3284                 goto out;
3285         }
3286
3287         ret = ocfs2_find_path(INODE_CACHE(inode), right_path, right_cpos);
3288         if (ret) {
3289                 mlog_errno(ret);
3290                 goto out;
3291         }
3292
3293         *ret_right_path = right_path;
3294 out:
3295         if (ret)
3296                 ocfs2_free_path(right_path);
3297         return ret;
3298 }
3299
3300 /*
3301  * Remove split_rec clusters from the record at index and merge them
3302  * onto the beginning of the record "next" to it.
3303  * For index < l_count - 1, the next means the extent rec at index + 1.
3304  * For index == l_count - 1, the "next" means the 1st extent rec of the
3305  * next extent block.
3306  */
3307 static int ocfs2_merge_rec_right(struct inode *inode,
3308                                  struct ocfs2_path *left_path,
3309                                  handle_t *handle,
3310                                  struct ocfs2_extent_tree *et,
3311                                  struct ocfs2_extent_rec *split_rec,
3312                                  int index)
3313 {
3314         int ret, next_free, i;
3315         unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
3316         struct ocfs2_extent_rec *left_rec;
3317         struct ocfs2_extent_rec *right_rec;
3318         struct ocfs2_extent_list *right_el;
3319         struct ocfs2_path *right_path = NULL;
3320         int subtree_index = 0;
3321         struct ocfs2_extent_list *el = path_leaf_el(left_path);
3322         struct buffer_head *bh = path_leaf_bh(left_path);
3323         struct buffer_head *root_bh = NULL;
3324
3325         BUG_ON(index >= le16_to_cpu(el->l_next_free_rec));
3326         left_rec = &el->l_recs[index];
3327
3328         if (index == le16_to_cpu(el->l_next_free_rec) - 1 &&
3329             le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count)) {
3330                 /* we meet with a cross extent block merge. */
3331                 ret = ocfs2_get_right_path(inode, left_path, &right_path);
3332                 if (ret) {
3333                         mlog_errno(ret);
3334                         goto out;
3335                 }
3336
3337                 right_el = path_leaf_el(right_path);
3338                 next_free = le16_to_cpu(right_el->l_next_free_rec);
3339                 BUG_ON(next_free <= 0);
3340                 right_rec = &right_el->l_recs[0];
3341                 if (ocfs2_is_empty_extent(right_rec)) {
3342                         BUG_ON(next_free <= 1);
3343                         right_rec = &right_el->l_recs[1];
3344                 }
3345
3346                 BUG_ON(le32_to_cpu(left_rec->e_cpos) +
3347                        le16_to_cpu(left_rec->e_leaf_clusters) !=
3348                        le32_to_cpu(right_rec->e_cpos));
3349
3350                 subtree_index = ocfs2_find_subtree_root(et, left_path,
3351                                                         right_path);
3352
3353                 ret = ocfs2_extend_rotate_transaction(handle, subtree_index,
3354                                                       handle->h_buffer_credits,
3355                                                       right_path);
3356                 if (ret) {
3357                         mlog_errno(ret);
3358                         goto out;
3359                 }
3360
3361                 root_bh = left_path->p_node[subtree_index].bh;
3362                 BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
3363
3364                 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
3365                                                    subtree_index);
3366                 if (ret) {
3367                         mlog_errno(ret);
3368                         goto out;
3369                 }
3370
3371                 for (i = subtree_index + 1;
3372                      i < path_num_items(right_path); i++) {
3373                         ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
3374                                                            right_path, i);
3375                         if (ret) {
3376                                 mlog_errno(ret);
3377                                 goto out;
3378                         }
3379
3380                         ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
3381                                                            left_path, i);
3382                         if (ret) {
3383                                 mlog_errno(ret);
3384                                 goto out;
3385                         }
3386                 }
3387
3388         } else {
3389                 BUG_ON(index == le16_to_cpu(el->l_next_free_rec) - 1);
3390                 right_rec = &el->l_recs[index + 1];
3391         }
3392
3393         ret = ocfs2_path_bh_journal_access(handle, et->et_ci, left_path,
3394                                            path_num_items(left_path) - 1);
3395         if (ret) {
3396                 mlog_errno(ret);
3397                 goto out;
3398         }
3399
3400         le16_add_cpu(&left_rec->e_leaf_clusters, -split_clusters);
3401
3402         le32_add_cpu(&right_rec->e_cpos, -split_clusters);
3403         le64_add_cpu(&right_rec->e_blkno,
3404                      -ocfs2_clusters_to_blocks(ocfs2_metadata_cache_get_super(et->et_ci),
3405                                                split_clusters));
3406         le16_add_cpu(&right_rec->e_leaf_clusters, split_clusters);
3407
3408         ocfs2_cleanup_merge(el, index);
3409
3410         ret = ocfs2_journal_dirty(handle, bh);
3411         if (ret)
3412                 mlog_errno(ret);
3413
3414         if (right_path) {
3415                 ret = ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
3416                 if (ret)
3417                         mlog_errno(ret);
3418
3419                 ocfs2_complete_edge_insert(handle, left_path, right_path,
3420                                            subtree_index);
3421         }
3422 out:
3423         if (right_path)
3424                 ocfs2_free_path(right_path);
3425         return ret;
3426 }
3427
3428 static int ocfs2_get_left_path(struct inode *inode,
3429                                struct ocfs2_path *right_path,
3430                                struct ocfs2_path **ret_left_path)
3431 {
3432         int ret;
3433         u32 left_cpos;
3434         struct ocfs2_path *left_path = NULL;
3435
3436         *ret_left_path = NULL;
3437
3438         /* This function shouldn't be called for non-trees. */
3439         BUG_ON(right_path->p_tree_depth == 0);
3440
3441         ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb,
3442                                             right_path, &left_cpos);
3443         if (ret) {
3444                 mlog_errno(ret);
3445                 goto out;
3446         }
3447
3448         /* This function shouldn't be called for the leftmost leaf. */
3449         BUG_ON(left_cpos == 0);
3450
3451         left_path = ocfs2_new_path_from_path(right_path);
3452         if (!left_path) {
3453                 ret = -ENOMEM;
3454                 mlog_errno(ret);
3455                 goto out;
3456         }
3457
3458         ret = ocfs2_find_path(INODE_CACHE(inode), left_path, left_cpos);
3459         if (ret) {
3460                 mlog_errno(ret);
3461                 goto out;
3462         }
3463
3464         *ret_left_path = left_path;
3465 out:
3466         if (ret)
3467                 ocfs2_free_path(left_path);
3468         return ret;
3469 }
3470
3471 /*
3472  * Remove split_rec clusters from the record at index and merge them
3473  * onto the tail of the record "before" it.
3474  * For index > 0, the "before" means the extent rec at index - 1.
3475  *
3476  * For index == 0, the "before" means the last record of the previous
3477  * extent block. And there is also a situation that we may need to
3478  * remove the rightmost leaf extent block in the right_path and change
3479  * the right path to indicate the new rightmost path.
3480  */
3481 static int ocfs2_merge_rec_left(struct inode *inode,
3482                                 struct ocfs2_path *right_path,
3483                                 handle_t *handle,
3484                                 struct ocfs2_extent_rec *split_rec,
3485                                 struct ocfs2_cached_dealloc_ctxt *dealloc,
3486                                 struct ocfs2_extent_tree *et,
3487                                 int index)
3488 {
3489         int ret, i, subtree_index = 0, has_empty_extent = 0;
3490         unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
3491         struct ocfs2_extent_rec *left_rec;
3492         struct ocfs2_extent_rec *right_rec;
3493         struct ocfs2_extent_list *el = path_leaf_el(right_path);
3494         struct buffer_head *bh = path_leaf_bh(right_path);
3495         struct buffer_head *root_bh = NULL;
3496         struct ocfs2_path *left_path = NULL;
3497         struct ocfs2_extent_list *left_el;
3498
3499         BUG_ON(index < 0);
3500
3501         right_rec = &el->l_recs[index];
3502         if (index == 0) {
3503                 /* we meet with a cross extent block merge. */
3504                 ret = ocfs2_get_left_path(inode, right_path, &left_path);
3505                 if (ret) {
3506                         mlog_errno(ret);
3507                         goto out;
3508                 }
3509
3510                 left_el = path_leaf_el(left_path);
3511                 BUG_ON(le16_to_cpu(left_el->l_next_free_rec) !=
3512                        le16_to_cpu(left_el->l_count));
3513
3514                 left_rec = &left_el->l_recs[
3515                                 le16_to_cpu(left_el->l_next_free_rec) - 1];
3516                 BUG_ON(le32_to_cpu(left_rec->e_cpos) +
3517                        le16_to_cpu(left_rec->e_leaf_clusters) !=
3518                        le32_to_cpu(split_rec->e_cpos));
3519
3520                 subtree_index = ocfs2_find_subtree_root(et, left_path,
3521                                                         right_path);
3522
3523                 ret = ocfs2_extend_rotate_transaction(handle, subtree_index,
3524                                                       handle->h_buffer_credits,
3525                                                       left_path);
3526                 if (ret) {
3527                         mlog_errno(ret);
3528                         goto out;
3529                 }
3530
3531                 root_bh = left_path->p_node[subtree_index].bh;
3532                 BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
3533
3534                 ret = ocfs2_path_bh_journal_access(handle, INODE_CACHE(inode), right_path,
3535                                                    subtree_index);
3536                 if (ret) {
3537                         mlog_errno(ret);
3538                         goto out;
3539                 }
3540
3541                 for (i = subtree_index + 1;
3542                      i < path_num_items(right_path); i++) {
3543                         ret = ocfs2_path_bh_journal_access(handle, INODE_CACHE(inode),
3544                                                            right_path, i);
3545                         if (ret) {
3546                                 mlog_errno(ret);
3547                                 goto out;
3548                         }
3549
3550                         ret = ocfs2_path_bh_journal_access(handle, INODE_CACHE(inode),
3551                                                            left_path, i);
3552                         if (ret) {
3553                                 mlog_errno(ret);
3554                                 goto out;
3555                         }
3556                 }
3557         } else {
3558                 left_rec = &el->l_recs[index - 1];
3559                 if (ocfs2_is_empty_extent(&el->l_recs[0]))
3560                         has_empty_extent = 1;
3561         }
3562
3563         ret = ocfs2_path_bh_journal_access(handle, INODE_CACHE(inode), right_path,
3564                                            path_num_items(right_path) - 1);
3565         if (ret) {
3566                 mlog_errno(ret);
3567                 goto out;
3568         }
3569
3570         if (has_empty_extent && index == 1) {
3571                 /*
3572                  * The easy case - we can just plop the record right in.
3573                  */
3574                 *left_rec = *split_rec;
3575
3576                 has_empty_extent = 0;
3577         } else
3578                 le16_add_cpu(&left_rec->e_leaf_clusters, split_clusters);
3579
3580         le32_add_cpu(&right_rec->e_cpos, split_clusters);
3581         le64_add_cpu(&right_rec->e_blkno,
3582                      ocfs2_clusters_to_blocks(inode->i_sb, split_clusters));
3583         le16_add_cpu(&right_rec->e_leaf_clusters, -split_clusters);
3584
3585         ocfs2_cleanup_merge(el, index);
3586
3587         ret = ocfs2_journal_dirty(handle, bh);
3588         if (ret)
3589                 mlog_errno(ret);
3590
3591         if (left_path) {
3592                 ret = ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
3593                 if (ret)
3594                         mlog_errno(ret);
3595
3596                 /*
3597                  * In the situation that the right_rec is empty and the extent
3598                  * block is empty also,  ocfs2_complete_edge_insert can't handle
3599                  * it and we need to delete the right extent block.
3600                  */
3601                 if (le16_to_cpu(right_rec->e_leaf_clusters) == 0 &&
3602                     le16_to_cpu(el->l_next_free_rec) == 1) {
3603
3604                         ret = ocfs2_remove_rightmost_path(handle, et,
3605                                                           right_path,
3606                                                           dealloc);
3607                         if (ret) {
3608                                 mlog_errno(ret);
3609                                 goto out;
3610                         }
3611
3612                         /* Now the rightmost extent block has been deleted.
3613                          * So we use the new rightmost path.
3614                          */
3615                         ocfs2_mv_path(right_path, left_path);
3616                         left_path = NULL;
3617                 } else
3618                         ocfs2_complete_edge_insert(handle, left_path,
3619                                                    right_path, subtree_index);
3620         }
3621 out:
3622         if (left_path)
3623                 ocfs2_free_path(left_path);
3624         return ret;
3625 }
3626
3627 static int ocfs2_try_to_merge_extent(struct inode *inode,
3628                                      handle_t *handle,
3629                                      struct ocfs2_path *path,
3630                                      int split_index,
3631                                      struct ocfs2_extent_rec *split_rec,
3632                                      struct ocfs2_cached_dealloc_ctxt *dealloc,
3633                                      struct ocfs2_merge_ctxt *ctxt,
3634                                      struct ocfs2_extent_tree *et)
3635
3636 {
3637         int ret = 0;
3638         struct ocfs2_extent_list *el = path_leaf_el(path);
3639         struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
3640
3641         BUG_ON(ctxt->c_contig_type == CONTIG_NONE);
3642
3643         if (ctxt->c_split_covers_rec && ctxt->c_has_empty_extent) {
3644                 /*
3645                  * The merge code will need to create an empty
3646                  * extent to take the place of the newly
3647                  * emptied slot. Remove any pre-existing empty
3648                  * extents - having more than one in a leaf is
3649                  * illegal.
3650                  */
3651                 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
3652                 if (ret) {
3653                         mlog_errno(ret);
3654                         goto out;
3655                 }
3656                 split_index--;
3657                 rec = &el->l_recs[split_index];
3658         }
3659
3660         if (ctxt->c_contig_type == CONTIG_LEFTRIGHT) {
3661                 /*
3662                  * Left-right contig implies this.
3663                  */
3664                 BUG_ON(!ctxt->c_split_covers_rec);
3665
3666                 /*
3667                  * Since the leftright insert always covers the entire
3668                  * extent, this call will delete the insert record
3669                  * entirely, resulting in an empty extent record added to
3670                  * the extent block.
3671                  *
3672                  * Since the adding of an empty extent shifts
3673                  * everything back to the right, there's no need to
3674                  * update split_index here.
3675                  *
3676                  * When the split_index is zero, we need to merge it to the
3677                  * prevoius extent block. It is more efficient and easier
3678                  * if we do merge_right first and merge_left later.
3679                  */
3680                 ret = ocfs2_merge_rec_right(inode, path,
3681                                             handle, et, split_rec,
3682                                             split_index);
3683                 if (ret) {
3684                         mlog_errno(ret);
3685                         goto out;
3686                 }
3687
3688                 /*
3689                  * We can only get this from logic error above.
3690                  */
3691                 BUG_ON(!ocfs2_is_empty_extent(&el->l_recs[0]));
3692
3693                 /* The merge left us with an empty extent, remove it. */
3694                 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
3695                 if (ret) {
3696                         mlog_errno(ret);
3697                         goto out;
3698                 }
3699
3700                 rec = &el->l_recs[split_index];
3701
3702                 /*
3703                  * Note that we don't pass split_rec here on purpose -
3704                  * we've merged it into the rec already.
3705                  */
3706                 ret = ocfs2_merge_rec_left(inode, path,
3707                                            handle, rec,
3708                                            dealloc, et,
3709                                            split_index);
3710
3711                 if (ret) {
3712                         mlog_errno(ret);
3713                         goto out;
3714                 }
3715
3716                 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
3717                 /*
3718                  * Error from this last rotate is not critical, so
3719                  * print but don't bubble it up.
3720                  */
3721                 if (ret)
3722                         mlog_errno(ret);
3723                 ret = 0;
3724         } else {
3725                 /*
3726                  * Merge a record to the left or right.
3727                  *
3728                  * 'contig_type' is relative to the existing record,
3729                  * so for example, if we're "right contig", it's to
3730                  * the record on the left (hence the left merge).
3731                  */
3732                 if (ctxt->c_contig_type == CONTIG_RIGHT) {
3733                         ret = ocfs2_merge_rec_left(inode,
3734                                                    path,
3735                                                    handle, split_rec,
3736                                                    dealloc, et,
3737                                                    split_index);
3738                         if (ret) {
3739                                 mlog_errno(ret);
3740                                 goto out;
3741                         }
3742                 } else {
3743                         ret = ocfs2_merge_rec_right(inode, path, handle,
3744                                                     et, split_rec,
3745                                                     split_index);
3746                         if (ret) {
3747                                 mlog_errno(ret);
3748                                 goto out;
3749                         }
3750                 }
3751
3752                 if (ctxt->c_split_covers_rec) {
3753                         /*
3754                          * The merge may have left an empty extent in
3755                          * our leaf. Try to rotate it away.
3756                          */
3757                         ret = ocfs2_rotate_tree_left(handle, et, path,
3758                                                      dealloc);
3759                         if (ret)
3760                                 mlog_errno(ret);
3761                         ret = 0;
3762                 }
3763         }
3764
3765 out:
3766         return ret;
3767 }
3768
3769 static void ocfs2_subtract_from_rec(struct super_block *sb,
3770                                     enum ocfs2_split_type split,
3771                                     struct ocfs2_extent_rec *rec,
3772                                     struct ocfs2_extent_rec *split_rec)
3773 {
3774         u64 len_blocks;
3775
3776         len_blocks = ocfs2_clusters_to_blocks(sb,
3777                                 le16_to_cpu(split_rec->e_leaf_clusters));
3778
3779         if (split == SPLIT_LEFT) {
3780                 /*
3781                  * Region is on the left edge of the existing
3782                  * record.
3783                  */
3784                 le32_add_cpu(&rec->e_cpos,
3785                              le16_to_cpu(split_rec->e_leaf_clusters));
3786                 le64_add_cpu(&rec->e_blkno, len_blocks);
3787                 le16_add_cpu(&rec->e_leaf_clusters,
3788                              -le16_to_cpu(split_rec->e_leaf_clusters));
3789         } else {
3790                 /*
3791                  * Region is on the right edge of the existing
3792                  * record.
3793                  */
3794                 le16_add_cpu(&rec->e_leaf_clusters,
3795                              -le16_to_cpu(split_rec->e_leaf_clusters));
3796         }
3797 }
3798
3799 /*
3800  * Do the final bits of extent record insertion at the target leaf
3801  * list. If this leaf is part of an allocation tree, it is assumed
3802  * that the tree above has been prepared.
3803  */
3804 static void ocfs2_insert_at_leaf(struct ocfs2_extent_rec *insert_rec,
3805                                  struct ocfs2_extent_list *el,
3806                                  struct ocfs2_insert_type *insert,
3807                                  struct inode *inode)
3808 {
3809         int i = insert->ins_contig_index;
3810         unsigned int range;
3811         struct ocfs2_extent_rec *rec;
3812
3813         BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
3814
3815         if (insert->ins_split != SPLIT_NONE) {
3816                 i = ocfs2_search_extent_list(el, le32_to_cpu(insert_rec->e_cpos));
3817                 BUG_ON(i == -1);
3818                 rec = &el->l_recs[i];
3819                 ocfs2_subtract_from_rec(inode->i_sb, insert->ins_split, rec,
3820                                         insert_rec);
3821                 goto rotate;
3822         }
3823
3824         /*
3825          * Contiguous insert - either left or right.
3826          */
3827         if (insert->ins_contig != CONTIG_NONE) {
3828                 rec = &el->l_recs[i];
3829                 if (insert->ins_contig == CONTIG_LEFT) {
3830                         rec->e_blkno = insert_rec->e_blkno;
3831                         rec->e_cpos = insert_rec->e_cpos;
3832                 }
3833                 le16_add_cpu(&rec->e_leaf_clusters,
3834                              le16_to_cpu(insert_rec->e_leaf_clusters));
3835                 return;
3836         }
3837
3838         /*
3839          * Handle insert into an empty leaf.
3840          */
3841         if (le16_to_cpu(el->l_next_free_rec) == 0 ||
3842             ((le16_to_cpu(el->l_next_free_rec) == 1) &&
3843              ocfs2_is_empty_extent(&el->l_recs[0]))) {
3844                 el->l_recs[0] = *insert_rec;
3845                 el->l_next_free_rec = cpu_to_le16(1);
3846                 return;
3847         }
3848
3849         /*
3850          * Appending insert.
3851          */
3852         if (insert->ins_appending == APPEND_TAIL) {
3853                 i = le16_to_cpu(el->l_next_free_rec) - 1;
3854                 rec = &el->l_recs[i];
3855                 range = le32_to_cpu(rec->e_cpos)
3856                         + le16_to_cpu(rec->e_leaf_clusters);
3857                 BUG_ON(le32_to_cpu(insert_rec->e_cpos) < range);
3858
3859                 mlog_bug_on_msg(le16_to_cpu(el->l_next_free_rec) >=
3860                                 le16_to_cpu(el->l_count),
3861                                 "inode %lu, depth %u, count %u, next free %u, "
3862                                 "rec.cpos %u, rec.clusters %u, "
3863                                 "insert.cpos %u, insert.clusters %u\n",
3864                                 inode->i_ino,
3865                                 le16_to_cpu(el->l_tree_depth),
3866                                 le16_to_cpu(el->l_count),
3867                                 le16_to_cpu(el->l_next_free_rec),
3868                                 le32_to_cpu(el->l_recs[i].e_cpos),
3869                                 le16_to_cpu(el->l_recs[i].e_leaf_clusters),
3870                                 le32_to_cpu(insert_rec->e_cpos),
3871                                 le16_to_cpu(insert_rec->e_leaf_clusters));
3872                 i++;
3873                 el->l_recs[i] = *insert_rec;
3874                 le16_add_cpu(&el->l_next_free_rec, 1);
3875                 return;
3876         }
3877
3878 rotate:
3879         /*
3880          * Ok, we have to rotate.
3881          *
3882          * At this point, it is safe to assume that inserting into an
3883          * empty leaf and appending to a leaf have both been handled
3884          * above.
3885          *
3886          * This leaf needs to have space, either by the empty 1st
3887          * extent record, or by virtue of an l_next_rec < l_count.
3888          */
3889         ocfs2_rotate_leaf(el, insert_rec);
3890 }
3891
3892 static void ocfs2_adjust_rightmost_records(struct inode *inode,
3893                                            handle_t *handle,
3894                                            struct ocfs2_path *path,
3895                                            struct ocfs2_extent_rec *insert_rec)
3896 {
3897         int ret, i, next_free;
3898         struct buffer_head *bh;
3899         struct ocfs2_extent_list *el;
3900         struct ocfs2_extent_rec *rec;
3901
3902         /*
3903          * Update everything except the leaf block.
3904          */
3905         for (i = 0; i < path->p_tree_depth; i++) {
3906                 bh = path->p_node[i].bh;
3907                 el = path->p_node[i].el;
3908
3909                 next_free = le16_to_cpu(el->l_next_free_rec);
3910                 if (next_free == 0) {
3911                         ocfs2_error(inode->i_sb,
3912                                     "Dinode %llu has a bad extent list",
3913                                     (unsigned long long)OCFS2_I(inode)->ip_blkno);
3914                         ret = -EIO;
3915                         return;
3916                 }
3917
3918                 rec = &el->l_recs[next_free - 1];
3919
3920                 rec->e_int_clusters = insert_rec->e_cpos;
3921                 le32_add_cpu(&rec->e_int_clusters,
3922                              le16_to_cpu(insert_rec->e_leaf_clusters));
3923                 le32_add_cpu(&rec->e_int_clusters,
3924                              -le32_to_cpu(rec->e_cpos));
3925
3926                 ret = ocfs2_journal_dirty(handle, bh);
3927                 if (ret)
3928                         mlog_errno(ret);
3929
3930         }
3931 }
3932
3933 static int ocfs2_append_rec_to_path(struct inode *inode, handle_t *handle,
3934                                     struct ocfs2_extent_rec *insert_rec,
3935                                     struct ocfs2_path *right_path,
3936                                     struct ocfs2_path **ret_left_path)
3937 {
3938         int ret, next_free;
3939         struct ocfs2_extent_list *el;
3940         struct ocfs2_path *left_path = NULL;
3941
3942         *ret_left_path = NULL;
3943
3944         /*
3945          * This shouldn't happen for non-trees. The extent rec cluster
3946          * count manipulation below only works for interior nodes.
3947          */
3948         BUG_ON(right_path->p_tree_depth == 0);
3949
3950         /*
3951          * If our appending insert is at the leftmost edge of a leaf,
3952          * then we might need to update the rightmost records of the
3953          * neighboring path.
3954          */
3955         el = path_leaf_el(right_path);
3956         next_free = le16_to_cpu(el->l_next_free_rec);
3957         if (next_free == 0 ||
3958             (next_free == 1 && ocfs2_is_empty_extent(&el->l_recs[0]))) {
3959                 u32 left_cpos;
3960
3961                 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path,
3962                                                     &left_cpos);
3963                 if (ret) {
3964                         mlog_errno(ret);
3965                         goto out;
3966                 }
3967
3968                 mlog(0, "Append may need a left path update. cpos: %u, "
3969                      "left_cpos: %u\n", le32_to_cpu(insert_rec->e_cpos),
3970                      left_cpos);
3971
3972                 /*
3973                  * No need to worry if the append is already in the
3974                  * leftmost leaf.
3975                  */
3976                 if (left_cpos) {
3977                         left_path = ocfs2_new_path_from_path(right_path);
3978                         if (!left_path) {
3979                                 ret = -ENOMEM;
3980                                 mlog_errno(ret);
3981                                 goto out;
3982                         }
3983
3984                         ret = ocfs2_find_path(INODE_CACHE(inode), left_path,
3985                                               left_cpos);
3986                         if (ret) {
3987                                 mlog_errno(ret);
3988                                 goto out;
3989                         }
3990
3991                         /*
3992                          * ocfs2_insert_path() will pass the left_path to the
3993                          * journal for us.
3994                          */
3995                 }
3996         }
3997
3998         ret = ocfs2_journal_access_path(INODE_CACHE(inode), handle, right_path);
3999         if (ret) {
4000                 mlog_errno(ret);
4001                 goto out;
4002         }
4003
4004         ocfs2_adjust_rightmost_records(inode, handle, right_path, insert_rec);
4005
4006         *ret_left_path = left_path;
4007         ret = 0;
4008 out:
4009         if (ret != 0)
4010                 ocfs2_free_path(left_path);
4011
4012         return ret;
4013 }
4014
4015 static void ocfs2_split_record(struct inode *inode,
4016                                struct ocfs2_path *left_path,
4017                                struct ocfs2_path *right_path,
4018                                struct ocfs2_extent_rec *split_rec,
4019                                enum ocfs2_split_type split)
4020 {
4021         int index;
4022         u32 cpos = le32_to_cpu(split_rec->e_cpos);
4023         struct ocfs2_extent_list *left_el = NULL, *right_el, *insert_el, *el;
4024         struct ocfs2_extent_rec *rec, *tmprec;
4025
4026         right_el = path_leaf_el(right_path);
4027         if (left_path)
4028                 left_el = path_leaf_el(left_path);
4029
4030         el = right_el;
4031         insert_el = right_el;
4032         index = ocfs2_search_extent_list(el, cpos);
4033         if (index != -1) {
4034                 if (index == 0 && left_path) {
4035                         BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
4036
4037                         /*
4038                          * This typically means that the record
4039                          * started in the left path but moved to the
4040                          * right as a result of rotation. We either
4041                          * move the existing record to the left, or we
4042                          * do the later insert there.
4043                          *
4044                          * In this case, the left path should always
4045                          * exist as the rotate code will have passed
4046                          * it back for a post-insert update.
4047                          */
4048
4049                         if (split == SPLIT_LEFT) {
4050                                 /*
4051                                  * It's a left split. Since we know
4052                                  * that the rotate code gave us an
4053                                  * empty extent in the left path, we
4054                                  * can just do the insert there.
4055                                  */
4056                                 insert_el = left_el;
4057                         } else {
4058                                 /*
4059                                  * Right split - we have to move the
4060                                  * existing record over to the left
4061                                  * leaf. The insert will be into the
4062                                  * newly created empty extent in the
4063                                  * right leaf.
4064                                  */
4065                                 tmprec = &right_el->l_recs[index];
4066                                 ocfs2_rotate_leaf(left_el, tmprec);
4067                                 el = left_el;
4068
4069                                 memset(tmprec, 0, sizeof(*tmprec));
4070                                 index = ocfs2_search_extent_list(left_el, cpos);
4071                                 BUG_ON(index == -1);
4072                         }
4073                 }
4074         } else {
4075                 BUG_ON(!left_path);
4076                 BUG_ON(!ocfs2_is_empty_extent(&left_el->l_recs[0]));
4077                 /*
4078                  * Left path is easy - we can just allow the insert to
4079                  * happen.
4080                  */
4081                 el = left_el;
4082                 insert_el = left_el;
4083                 index = ocfs2_search_extent_list(el, cpos);
4084                 BUG_ON(index == -1);
4085         }
4086
4087         rec = &el->l_recs[index];
4088         ocfs2_subtract_from_rec(inode->i_sb, split, rec, split_rec);
4089         ocfs2_rotate_leaf(insert_el, split_rec);
4090 }
4091
4092 /*
4093  * This function only does inserts on an allocation b-tree. For tree
4094  * depth = 0, ocfs2_insert_at_leaf() is called directly.
4095  *
4096  * right_path is the path we want to do the actual insert
4097  * in. left_path should only be passed in if we need to update that
4098  * portion of the tree after an edge insert.
4099  */
4100 static int ocfs2_insert_path(struct inode *inode,
4101                              handle_t *handle,
4102                              struct ocfs2_extent_tree *et,
4103                              struct ocfs2_path *left_path,
4104                              struct ocfs2_path *right_path,
4105                              struct ocfs2_extent_rec *insert_rec,
4106                              struct ocfs2_insert_type *insert)
4107 {
4108         int ret, subtree_index;
4109         struct buffer_head *leaf_bh = path_leaf_bh(right_path);
4110
4111         if (left_path) {
4112                 int credits = handle->h_buffer_credits;
4113
4114                 /*
4115                  * There's a chance that left_path got passed back to
4116                  * us without being accounted for in the
4117                  * journal. Extend our transaction here to be sure we
4118                  * can change those blocks.
4119                  */
4120                 credits += left_path->p_tree_depth;
4121
4122                 ret = ocfs2_extend_trans(handle, credits);
4123                 if (ret < 0) {
4124                         mlog_errno(ret);
4125                         goto out;
4126                 }
4127
4128                 ret = ocfs2_journal_access_path(et->et_ci, handle, left_path);
4129                 if (ret < 0) {
4130                         mlog_errno(ret);
4131                         goto out;
4132                 }
4133         }
4134
4135         /*
4136          * Pass both paths to the journal. The majority of inserts
4137          * will be touching all components anyway.
4138          */
4139         ret = ocfs2_journal_access_path(et->et_ci, handle, right_path);
4140         if (ret < 0) {
4141                 mlog_errno(ret);
4142                 goto out;
4143         }
4144
4145         if (insert->ins_split != SPLIT_NONE) {
4146                 /*
4147                  * We could call ocfs2_insert_at_leaf() for some types
4148                  * of splits, but it's easier to just let one separate
4149                  * function sort it all out.
4150                  */
4151                 ocfs2_split_record(inode, left_path, right_path,
4152                                    insert_rec, insert->ins_split);
4153
4154                 /*
4155                  * Split might have modified either leaf and we don't
4156                  * have a guarantee that the later edge insert will
4157                  * dirty this for us.
4158                  */
4159                 if (left_path)
4160                         ret = ocfs2_journal_dirty(handle,
4161                                                   path_leaf_bh(left_path));
4162                         if (ret)
4163                                 mlog_errno(ret);
4164         } else
4165                 ocfs2_insert_at_leaf(insert_rec, path_leaf_el(right_path),
4166                                      insert, inode);
4167
4168         ret = ocfs2_journal_dirty(handle, leaf_bh);
4169         if (ret)
4170                 mlog_errno(ret);
4171
4172         if (left_path) {
4173                 /*
4174                  * The rotate code has indicated that we need to fix
4175                  * up portions of the tree after the insert.
4176                  *
4177                  * XXX: Should we extend the transaction here?
4178                  */
4179                 subtree_index = ocfs2_find_subtree_root(et, left_path,
4180                                                         right_path);
4181                 ocfs2_complete_edge_insert(handle, left_path, right_path,
4182                                            subtree_index);
4183         }
4184
4185         ret = 0;
4186 out:
4187         return ret;
4188 }
4189
4190 static int ocfs2_do_insert_extent(struct inode *inode,
4191                                   handle_t *handle,
4192                                   struct ocfs2_extent_tree *et,
4193                                   struct ocfs2_extent_rec *insert_rec,
4194                                   struct ocfs2_insert_type *type)
4195 {
4196         int ret, rotate = 0;
4197         u32 cpos;
4198         struct ocfs2_path *right_path = NULL;
4199         struct ocfs2_path *left_path = NULL;
4200         struct ocfs2_extent_list *el;
4201
4202         el = et->et_root_el;
4203
4204         ret = ocfs2_et_root_journal_access(handle, et,
4205                                            OCFS2_JOURNAL_ACCESS_WRITE);
4206         if (ret) {
4207                 mlog_errno(ret);
4208                 goto out;
4209         }
4210
4211         if (le16_to_cpu(el->l_tree_depth) == 0) {
4212                 ocfs2_insert_at_leaf(insert_rec, el, type, inode);
4213                 goto out_update_clusters;
4214         }
4215
4216         right_path = ocfs2_new_path_from_et(et);
4217         if (!right_path) {
4218                 ret = -ENOMEM;
4219                 mlog_errno(ret);
4220                 goto out;
4221         }
4222
4223         /*
4224          * Determine the path to start with. Rotations need the
4225          * rightmost path, everything else can go directly to the
4226          * target leaf.
4227          */
4228         cpos = le32_to_cpu(insert_rec->e_cpos);
4229         if (type->ins_appending == APPEND_NONE &&
4230             type->ins_contig == CONTIG_NONE) {
4231                 rotate = 1;
4232                 cpos = UINT_MAX;
4233         }
4234
4235         ret = ocfs2_find_path(et->et_ci, right_path, cpos);
4236         if (ret) {
4237                 mlog_errno(ret);
4238                 goto out;
4239         }
4240
4241         /*
4242          * Rotations and appends need special treatment - they modify
4243          * parts of the tree's above them.
4244          *
4245          * Both might pass back a path immediate to the left of the
4246          * one being inserted to. This will be cause
4247          * ocfs2_insert_path() to modify the rightmost records of
4248          * left_path to account for an edge insert.
4249          *
4250          * XXX: When modifying this code, keep in mind that an insert
4251          * can wind up skipping both of these two special cases...
4252          */
4253         if (rotate) {
4254                 ret = ocfs2_rotate_tree_right(handle, et, type->ins_split,
4255                                               le32_to_cpu(insert_rec->e_cpos),
4256                                               right_path, &left_path);
4257                 if (ret) {
4258                         mlog_errno(ret);
4259                         goto out;
4260                 }
4261
4262                 /*
4263                  * ocfs2_rotate_tree_right() might have extended the
4264                  * transaction without re-journaling our tree root.
4265                  */
4266                 ret = ocfs2_et_root_journal_access(handle, et,
4267                                                    OCFS2_JOURNAL_ACCESS_WRITE);
4268                 if (ret) {
4269                         mlog_errno(ret);
4270                         goto out;
4271                 }
4272         } else if (type->ins_appending == APPEND_TAIL
4273                    && type->ins_contig != CONTIG_LEFT) {
4274                 ret = ocfs2_append_rec_to_path(inode, handle, insert_rec,
4275                                                right_path, &left_path);
4276                 if (ret) {
4277                         mlog_errno(ret);
4278                         goto out;
4279                 }
4280         }
4281
4282         ret = ocfs2_insert_path(inode, handle, et, left_path, right_path,
4283                                 insert_rec, type);
4284         if (ret) {
4285                 mlog_errno(ret);
4286                 goto out;
4287         }
4288
4289 out_update_clusters:
4290         if (type->ins_split == SPLIT_NONE)
4291                 ocfs2_et_update_clusters(et,
4292                                          le16_to_cpu(insert_rec->e_leaf_clusters));
4293
4294         ret = ocfs2_journal_dirty(handle, et->et_root_bh);
4295         if (ret)
4296                 mlog_errno(ret);
4297
4298 out:
4299         ocfs2_free_path(left_path);
4300         ocfs2_free_path(right_path);
4301
4302         return ret;
4303 }
4304
4305 static enum ocfs2_contig_type
4306 ocfs2_figure_merge_contig_type(struct inode *inode, struct ocfs2_path *path,
4307                                struct ocfs2_extent_list *el, int index,
4308                                struct ocfs2_extent_rec *split_rec)
4309 {
4310         int status;
4311         enum ocfs2_contig_type ret = CONTIG_NONE;
4312         u32 left_cpos, right_cpos;
4313         struct ocfs2_extent_rec *rec = NULL;
4314         struct ocfs2_extent_list *new_el;
4315         struct ocfs2_path *left_path = NULL, *right_path = NULL;
4316         struct buffer_head *bh;
4317         struct ocfs2_extent_block *eb;
4318
4319         if (index > 0) {
4320                 rec = &el->l_recs[index - 1];
4321         } else if (path->p_tree_depth > 0) {
4322                 status = ocfs2_find_cpos_for_left_leaf(inode->i_sb,
4323                                                        path, &left_cpos);
4324                 if (status)
4325                         goto out;
4326
4327                 if (left_cpos != 0) {
4328                         left_path = ocfs2_new_path_from_path(path);
4329                         if (!left_path)
4330                                 goto out;
4331
4332                         status = ocfs2_find_path(INODE_CACHE(inode),
4333                                                  left_path, left_cpos);
4334                         if (status)
4335                                 goto out;
4336
4337                         new_el = path_leaf_el(left_path);
4338
4339                         if (le16_to_cpu(new_el->l_next_free_rec) !=
4340                             le16_to_cpu(new_el->l_count)) {
4341                                 bh = path_leaf_bh(left_path);
4342                                 eb = (struct ocfs2_extent_block *)bh->b_data;
4343                                 ocfs2_error(inode->i_sb,
4344                                             "Extent block #%llu has an "
4345                                             "invalid l_next_free_rec of "
4346                                             "%d.  It should have "
4347                                             "matched the l_count of %d",
4348                                             (unsigned long long)le64_to_cpu(eb->h_blkno),
4349                                             le16_to_cpu(new_el->l_next_free_rec),
4350                                             le16_to_cpu(new_el->l_count));
4351                                 status = -EINVAL;
4352                                 goto out;
4353                         }
4354                         rec = &new_el->l_recs[
4355                                 le16_to_cpu(new_el->l_next_free_rec) - 1];
4356                 }
4357         }
4358
4359         /*
4360          * We're careful to check for an empty extent record here -
4361          * the merge code will know what to do if it sees one.
4362          */
4363         if (rec) {
4364                 if (index == 1 && ocfs2_is_empty_extent(rec)) {
4365                         if (split_rec->e_cpos == el->l_recs[index].e_cpos)
4366                                 ret = CONTIG_RIGHT;
4367                 } else {
4368                         ret = ocfs2_extent_contig(inode, rec, split_rec);
4369                 }
4370         }
4371
4372         rec = NULL;
4373         if (index < (le16_to_cpu(el->l_next_free_rec) - 1))
4374                 rec = &el->l_recs[index + 1];
4375         else if (le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count) &&
4376                  path->p_tree_depth > 0) {
4377                 status = ocfs2_find_cpos_for_right_leaf(inode->i_sb,
4378                                                         path, &right_cpos);
4379                 if (status)
4380                         goto out;
4381
4382                 if (right_cpos == 0)
4383                         goto out;
4384
4385                 right_path = ocfs2_new_path_from_path(path);
4386                 if (!right_path)
4387                         goto out;
4388
4389                 status = ocfs2_find_path(INODE_CACHE(inode), right_path, right_cpos);
4390                 if (status)
4391                         goto out;
4392
4393                 new_el = path_leaf_el(right_path);
4394                 rec = &new_el->l_recs[0];
4395                 if (ocfs2_is_empty_extent(rec)) {
4396                         if (le16_to_cpu(new_el->l_next_free_rec) <= 1) {
4397                                 bh = path_leaf_bh(right_path);
4398                                 eb = (struct ocfs2_extent_block *)bh->b_data;
4399                                 ocfs2_error(inode->i_sb,
4400                                             "Extent block #%llu has an "
4401                                             "invalid l_next_free_rec of %d",
4402                                             (unsigned long long)le64_to_cpu(eb->h_blkno),
4403                                             le16_to_cpu(new_el->l_next_free_rec));
4404                                 status = -EINVAL;
4405                                 goto out;
4406                         }
4407                         rec = &new_el->l_recs[1];
4408                 }
4409         }
4410
4411         if (rec) {
4412                 enum ocfs2_contig_type contig_type;
4413
4414                 contig_type = ocfs2_extent_contig(inode, rec, split_rec);
4415
4416                 if (contig_type == CONTIG_LEFT && ret == CONTIG_RIGHT)
4417                         ret = CONTIG_LEFTRIGHT;
4418                 else if (ret == CONTIG_NONE)
4419                         ret = contig_type;
4420         }
4421
4422 out:
4423         if (left_path)
4424                 ocfs2_free_path(left_path);
4425         if (right_path)
4426                 ocfs2_free_path(right_path);
4427
4428         return ret;
4429 }
4430
4431 static void ocfs2_figure_contig_type(struct inode *inode,
4432                                      struct ocfs2_insert_type *insert,
4433                                      struct ocfs2_extent_list *el,
4434                                      struct ocfs2_extent_rec *insert_rec,
4435                                      struct ocfs2_extent_tree *et)
4436 {
4437         int i;
4438         enum ocfs2_contig_type contig_type = CONTIG_NONE;
4439
4440         BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
4441
4442         for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
4443                 contig_type = ocfs2_extent_contig(inode, &el->l_recs[i],
4444                                                   insert_rec);
4445                 if (contig_type != CONTIG_NONE) {
4446                         insert->ins_contig_index = i;
4447                         break;
4448                 }
4449         }
4450         insert->ins_contig = contig_type;
4451
4452         if (insert->ins_contig != CONTIG_NONE) {
4453                 struct ocfs2_extent_rec *rec =
4454                                 &el->l_recs[insert->ins_contig_index];
4455                 unsigned int len = le16_to_cpu(rec->e_leaf_clusters) +
4456                                    le16_to_cpu(insert_rec->e_leaf_clusters);
4457
4458                 /*
4459                  * Caller might want us to limit the size of extents, don't
4460                  * calculate contiguousness if we might exceed that limit.
4461                  */
4462                 if (et->et_max_leaf_clusters &&
4463                     (len > et->et_max_leaf_clusters))
4464                         insert->ins_contig = CONTIG_NONE;
4465         }
4466 }
4467
4468 /*
4469  * This should only be called against the righmost leaf extent list.
4470  *
4471  * ocfs2_figure_appending_type() will figure out whether we'll have to
4472  * insert at the tail of the rightmost leaf.
4473  *
4474  * This should also work against the root extent list for tree's with 0
4475  * depth. If we consider the root extent list to be the rightmost leaf node
4476  * then the logic here makes sense.
4477  */
4478 static void ocfs2_figure_appending_type(struct ocfs2_insert_type *insert,
4479                                         struct ocfs2_extent_list *el,
4480                                         struct ocfs2_extent_rec *insert_rec)
4481 {
4482         int i;
4483         u32 cpos = le32_to_cpu(insert_rec->e_cpos);
4484         struct ocfs2_extent_rec *rec;
4485
4486         insert->ins_appending = APPEND_NONE;
4487
4488         BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
4489
4490         if (!el->l_next_free_rec)
4491                 goto set_tail_append;
4492
4493         if (ocfs2_is_empty_extent(&el->l_recs[0])) {
4494                 /* Were all records empty? */
4495                 if (le16_to_cpu(el->l_next_free_rec) == 1)
4496                         goto set_tail_append;
4497         }
4498
4499         i = le16_to_cpu(el->l_next_free_rec) - 1;
4500         rec = &el->l_recs[i];
4501
4502         if (cpos >=
4503             (le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)))
4504                 goto set_tail_append;
4505
4506         return;
4507
4508 set_tail_append:
4509         insert->ins_appending = APPEND_TAIL;
4510 }
4511
4512 /*
4513  * Helper function called at the begining of an insert.
4514  *
4515  * This computes a few things that are commonly used in the process of
4516  * inserting into the btree:
4517  *   - Whether the new extent is contiguous with an existing one.
4518  *   - The current tree depth.
4519  *   - Whether the insert is an appending one.
4520  *   - The total # of free records in the tree.
4521  *
4522  * All of the information is stored on the ocfs2_insert_type
4523  * structure.
4524  */
4525 static int ocfs2_figure_insert_type(struct inode *inode,
4526                                     struct ocfs2_extent_tree *et,
4527                                     struct buffer_head **last_eb_bh,
4528                                     struct ocfs2_extent_rec *insert_rec,
4529                                     int *free_records,
4530                                     struct ocfs2_insert_type *insert)
4531 {
4532         int ret;
4533         struct ocfs2_extent_block *eb;
4534         struct ocfs2_extent_list *el;
4535         struct ocfs2_path *path = NULL;
4536         struct buffer_head *bh = NULL;
4537
4538         insert->ins_split = SPLIT_NONE;
4539
4540         el = et->et_root_el;
4541         insert->ins_tree_depth = le16_to_cpu(el->l_tree_depth);
4542
4543         if (el->l_tree_depth) {
4544                 /*
4545                  * If we have tree depth, we read in the
4546                  * rightmost extent block ahead of time as
4547                  * ocfs2_figure_insert_type() and ocfs2_add_branch()
4548                  * may want it later.
4549                  */
4550                 ret = ocfs2_read_extent_block(et->et_ci,
4551                                               ocfs2_et_get_last_eb_blk(et),
4552                                               &bh);
4553                 if (ret) {
4554                         mlog_exit(ret);
4555                         goto out;
4556                 }
4557                 eb = (struct ocfs2_extent_block *) bh->b_data;
4558                 el = &eb->h_list;
4559         }
4560
4561         /*
4562          * Unless we have a contiguous insert, we'll need to know if
4563          * there is room left in our allocation tree for another
4564          * extent record.
4565          *
4566          * XXX: This test is simplistic, we can search for empty
4567          * extent records too.
4568          */
4569         *free_records = le16_to_cpu(el->l_count) -
4570                 le16_to_cpu(el->l_next_free_rec);
4571
4572         if (!insert->ins_tree_depth) {
4573                 ocfs2_figure_contig_type(inode, insert, el, insert_rec, et);
4574                 ocfs2_figure_appending_type(insert, el, insert_rec);
4575                 return 0;
4576         }
4577
4578         path = ocfs2_new_path_from_et(et);
4579         if (!path) {
4580                 ret = -ENOMEM;
4581                 mlog_errno(ret);
4582                 goto out;
4583         }
4584
4585         /*
4586          * In the case that we're inserting past what the tree
4587          * currently accounts for, ocfs2_find_path() will return for
4588          * us the rightmost tree path. This is accounted for below in
4589          * the appending code.
4590          */
4591         ret = ocfs2_find_path(et->et_ci, path, le32_to_cpu(insert_rec->e_cpos));
4592         if (ret) {
4593                 mlog_errno(ret);
4594                 goto out;
4595         }
4596
4597         el = path_leaf_el(path);
4598
4599         /*
4600          * Now that we have the path, there's two things we want to determine:
4601          * 1) Contiguousness (also set contig_index if this is so)
4602          *
4603          * 2) Are we doing an append? We can trivially break this up
4604          *     into two types of appends: simple record append, or a
4605          *     rotate inside the tail leaf.
4606          */
4607         ocfs2_figure_contig_type(inode, insert, el, insert_rec, et);
4608
4609         /*
4610          * The insert code isn't quite ready to deal with all cases of
4611          * left contiguousness. Specifically, if it's an insert into
4612          * the 1st record in a leaf, it will require the adjustment of
4613          * cluster count on the last record of the path directly to it's
4614          * left. For now, just catch that case and fool the layers
4615          * above us. This works just fine for tree_depth == 0, which
4616          * is why we allow that above.
4617          */
4618         if (insert->ins_contig == CONTIG_LEFT &&
4619             insert->ins_contig_index == 0)
4620                 insert->ins_contig = CONTIG_NONE;
4621
4622         /*
4623          * Ok, so we can simply compare against last_eb to figure out
4624          * whether the path doesn't exist. This will only happen in
4625          * the case that we're doing a tail append, so maybe we can
4626          * take advantage of that information somehow.
4627          */
4628         if (ocfs2_et_get_last_eb_blk(et) ==
4629             path_leaf_bh(path)->b_blocknr) {
4630                 /*
4631                  * Ok, ocfs2_find_path() returned us the rightmost
4632                  * tree path. This might be an appending insert. There are
4633                  * two cases:
4634                  *    1) We're doing a true append at the tail:
4635                  *      -This might even be off the end of the leaf
4636                  *    2) We're "appending" by rotating in the tail
4637                  */
4638                 ocfs2_figure_appending_type(insert, el, insert_rec);
4639         }
4640
4641 out:
4642         ocfs2_free_path(path);
4643
4644         if (ret == 0)
4645                 *last_eb_bh = bh;
4646         else
4647                 brelse(bh);
4648         return ret;
4649 }
4650
4651 /*
4652  * Insert an extent into an inode btree.
4653  *
4654  * The caller needs to update fe->i_clusters
4655  */
4656 int ocfs2_insert_extent(struct ocfs2_super *osb,
4657                         handle_t *handle,
4658                         struct inode *inode,
4659                         struct ocfs2_extent_tree *et,
4660                         u32 cpos,
4661                         u64 start_blk,
4662                         u32 new_clusters,
4663                         u8 flags,
4664                         struct ocfs2_alloc_context *meta_ac)
4665 {
4666         int status;
4667         int uninitialized_var(free_records);
4668         struct buffer_head *last_eb_bh = NULL;
4669         struct ocfs2_insert_type insert = {0, };
4670         struct ocfs2_extent_rec rec;
4671
4672         mlog(0, "add %u clusters at position %u to inode %llu\n",
4673              new_clusters, cpos, (unsigned long long)OCFS2_I(inode)->ip_blkno);
4674
4675         memset(&rec, 0, sizeof(rec));
4676         rec.e_cpos = cpu_to_le32(cpos);
4677         rec.e_blkno = cpu_to_le64(start_blk);
4678         rec.e_leaf_clusters = cpu_to_le16(new_clusters);
4679         rec.e_flags = flags;
4680         status = ocfs2_et_insert_check(et, &rec);
4681         if (status) {
4682                 mlog_errno(status);
4683                 goto bail;
4684         }
4685
4686         status = ocfs2_figure_insert_type(inode, et, &last_eb_bh, &rec,
4687                                           &free_records, &insert);
4688         if (status < 0) {
4689                 mlog_errno(status);
4690                 goto bail;
4691         }
4692
4693         mlog(0, "Insert.appending: %u, Insert.Contig: %u, "
4694              "Insert.contig_index: %d, Insert.free_records: %d, "
4695              "Insert.tree_depth: %d\n",
4696              insert.ins_appending, insert.ins_contig, insert.ins_contig_index,
4697              free_records, insert.ins_tree_depth);
4698
4699         if (insert.ins_contig == CONTIG_NONE && free_records == 0) {
4700                 status = ocfs2_grow_tree(inode, handle, et,
4701                                          &insert.ins_tree_depth, &last_eb_bh,
4702                                          meta_ac);
4703                 if (status) {
4704                         mlog_errno(status);
4705                         goto bail;
4706                 }
4707         }
4708
4709         /* Finally, we can add clusters. This might rotate the tree for us. */
4710         status = ocfs2_do_insert_extent(inode, handle, et, &rec, &insert);
4711         if (status < 0)
4712                 mlog_errno(status);
4713         else if (et->et_ops == &ocfs2_dinode_et_ops)
4714                 ocfs2_extent_map_insert_rec(inode, &rec);
4715
4716 bail:
4717         brelse(last_eb_bh);
4718
4719         mlog_exit(status);
4720         return status;
4721 }
4722
4723 /*
4724  * Allcate and add clusters into the extent b-tree.
4725  * The new clusters(clusters_to_add) will be inserted at logical_offset.
4726  * The extent b-tree's root is specified by et, and
4727  * it is not limited to the file storage. Any extent tree can use this
4728  * function if it implements the proper ocfs2_extent_tree.
4729  */
4730 int ocfs2_add_clusters_in_btree(struct ocfs2_super *osb,
4731                                 struct inode *inode,
4732                                 u32 *logical_offset,
4733                                 u32 clusters_to_add,
4734                                 int mark_unwritten,
4735                                 struct ocfs2_extent_tree *et,
4736                                 handle_t *handle,
4737                                 struct ocfs2_alloc_context *data_ac,
4738                                 struct ocfs2_alloc_context *meta_ac,
4739                                 enum ocfs2_alloc_restarted *reason_ret)
4740 {
4741         int status = 0;
4742         int free_extents;
4743         enum ocfs2_alloc_restarted reason = RESTART_NONE;
4744         u32 bit_off, num_bits;
4745         u64 block;
4746         u8 flags = 0;
4747
4748         BUG_ON(!clusters_to_add);
4749
4750         if (mark_unwritten)
4751                 flags = OCFS2_EXT_UNWRITTEN;
4752
4753         free_extents = ocfs2_num_free_extents(osb, et);
4754         if (free_extents < 0) {
4755                 status = free_extents;
4756                 mlog_errno(status);
4757                 goto leave;
4758         }
4759
4760         /* there are two cases which could cause us to EAGAIN in the
4761          * we-need-more-metadata case:
4762          * 1) we haven't reserved *any*
4763          * 2) we are so fragmented, we've needed to add metadata too
4764          *    many times. */
4765         if (!free_extents && !meta_ac) {
4766                 mlog(0, "we haven't reserved any metadata!\n");
4767                 status = -EAGAIN;
4768                 reason = RESTART_META;
4769                 goto leave;
4770         } else if ((!free_extents)
4771                    && (ocfs2_alloc_context_bits_left(meta_ac)
4772                        < ocfs2_extend_meta_needed(et->et_root_el))) {
4773                 mlog(0, "filesystem is really fragmented...\n");
4774                 status = -EAGAIN;
4775                 reason = RESTART_META;
4776                 goto leave;
4777         }
4778
4779         status = __ocfs2_claim_clusters(osb, handle, data_ac, 1,
4780                                         clusters_to_add, &bit_off, &num_bits);
4781         if (status < 0) {
4782                 if (status != -ENOSPC)
4783                         mlog_errno(status);
4784                 goto leave;
4785         }
4786
4787         BUG_ON(num_bits > clusters_to_add);
4788
4789         /* reserve our write early -- insert_extent may update the tree root */
4790         status = ocfs2_et_root_journal_access(handle, et,
4791                                               OCFS2_JOURNAL_ACCESS_WRITE);
4792         if (status < 0) {
4793                 mlog_errno(status);
4794                 goto leave;
4795         }
4796
4797         block = ocfs2_clusters_to_blocks(osb->sb, bit_off);
4798         mlog(0, "Allocating %u clusters at block %u for inode %llu\n",
4799              num_bits, bit_off, (unsigned long long)OCFS2_I(inode)->ip_blkno);
4800         status = ocfs2_insert_extent(osb, handle, inode, et,
4801                                      *logical_offset, block,
4802                                      num_bits, flags, meta_ac);
4803         if (status < 0) {
4804                 mlog_errno(status);
4805                 goto leave;
4806         }
4807
4808         status = ocfs2_journal_dirty(handle, et->et_root_bh);
4809         if (status < 0) {
4810                 mlog_errno(status);
4811                 goto leave;
4812         }
4813
4814         clusters_to_add -= num_bits;
4815         *logical_offset += num_bits;
4816
4817         if (clusters_to_add) {
4818                 mlog(0, "need to alloc once more, wanted = %u\n",
4819                      clusters_to_add);
4820                 status = -EAGAIN;
4821                 reason = RESTART_TRANS;
4822         }
4823
4824 leave:
4825         mlog_exit(status);
4826         if (reason_ret)
4827                 *reason_ret = reason;
4828         return status;
4829 }
4830
4831 static void ocfs2_make_right_split_rec(struct super_block *sb,
4832                                        struct ocfs2_extent_rec *split_rec,
4833                                        u32 cpos,
4834                                        struct ocfs2_extent_rec *rec)
4835 {
4836         u32 rec_cpos = le32_to_cpu(rec->e_cpos);
4837         u32 rec_range = rec_cpos + le16_to_cpu(rec->e_leaf_clusters);
4838
4839         memset(split_rec, 0, sizeof(struct ocfs2_extent_rec));
4840
4841         split_rec->e_cpos = cpu_to_le32(cpos);
4842         split_rec->e_leaf_clusters = cpu_to_le16(rec_range - cpos);
4843
4844         split_rec->e_blkno = rec->e_blkno;
4845         le64_add_cpu(&split_rec->e_blkno,
4846                      ocfs2_clusters_to_blocks(sb, cpos - rec_cpos));
4847
4848         split_rec->e_flags = rec->e_flags;
4849 }
4850
4851 static int ocfs2_split_and_insert(struct inode *inode,
4852                                   handle_t *handle,
4853                                   struct ocfs2_path *path,
4854                                   struct ocfs2_extent_tree *et,
4855                                   struct buffer_head **last_eb_bh,
4856                                   int split_index,
4857                                   struct ocfs2_extent_rec *orig_split_rec,
4858                                   struct ocfs2_alloc_context *meta_ac)
4859 {
4860         int ret = 0, depth;
4861         unsigned int insert_range, rec_range, do_leftright = 0;
4862         struct ocfs2_extent_rec tmprec;
4863         struct ocfs2_extent_list *rightmost_el;
4864         struct ocfs2_extent_rec rec;
4865         struct ocfs2_extent_rec split_rec = *orig_split_rec;
4866         struct ocfs2_insert_type insert;
4867         struct ocfs2_extent_block *eb;
4868
4869 leftright:
4870         /*
4871          * Store a copy of the record on the stack - it might move
4872          * around as the tree is manipulated below.
4873          */
4874         rec = path_leaf_el(path)->l_recs[split_index];
4875
4876         rightmost_el = et->et_root_el;
4877
4878         depth = le16_to_cpu(rightmost_el->l_tree_depth);
4879         if (depth) {
4880                 BUG_ON(!(*last_eb_bh));
4881                 eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
4882                 rightmost_el = &eb->h_list;
4883         }
4884
4885         if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
4886             le16_to_cpu(rightmost_el->l_count)) {
4887                 ret = ocfs2_grow_tree(inode, handle, et,
4888                                       &depth, last_eb_bh, meta_ac);
4889                 if (ret) {
4890                         mlog_errno(ret);
4891                         goto out;
4892                 }
4893         }
4894
4895         memset(&insert, 0, sizeof(struct ocfs2_insert_type));
4896         insert.ins_appending = APPEND_NONE;
4897         insert.ins_contig = CONTIG_NONE;
4898         insert.ins_tree_depth = depth;
4899
4900         insert_range = le32_to_cpu(split_rec.e_cpos) +
4901                 le16_to_cpu(split_rec.e_leaf_clusters);
4902         rec_range = le32_to_cpu(rec.e_cpos) +
4903                 le16_to_cpu(rec.e_leaf_clusters);
4904
4905         if (split_rec.e_cpos == rec.e_cpos) {
4906                 insert.ins_split = SPLIT_LEFT;
4907         } else if (insert_range == rec_range) {
4908                 insert.ins_split = SPLIT_RIGHT;
4909         } else {
4910                 /*
4911                  * Left/right split. We fake this as a right split
4912                  * first and then make a second pass as a left split.
4913                  */
4914                 insert.ins_split = SPLIT_RIGHT;
4915
4916                 ocfs2_make_right_split_rec(inode->i_sb, &tmprec, insert_range,
4917                                            &rec);
4918
4919                 split_rec = tmprec;
4920
4921                 BUG_ON(do_leftright);
4922                 do_leftright = 1;
4923         }
4924
4925         ret = ocfs2_do_insert_extent(inode, handle, et, &split_rec, &insert);
4926         if (ret) {
4927                 mlog_errno(ret);
4928                 goto out;
4929         }
4930
4931         if (do_leftright == 1) {
4932                 u32 cpos;
4933                 struct ocfs2_extent_list *el;
4934
4935                 do_leftright++;
4936                 split_rec = *orig_split_rec;
4937
4938                 ocfs2_reinit_path(path, 1);
4939
4940                 cpos = le32_to_cpu(split_rec.e_cpos);
4941                 ret = ocfs2_find_path(et->et_ci, path, cpos);
4942                 if (ret) {
4943                         mlog_errno(ret);
4944                         goto out;
4945                 }
4946
4947                 el = path_leaf_el(path);
4948                 split_index = ocfs2_search_extent_list(el, cpos);
4949                 goto leftright;
4950         }
4951 out:
4952
4953         return ret;
4954 }
4955
4956 static int ocfs2_replace_extent_rec(struct inode *inode,
4957                                     handle_t *handle,
4958                                     struct ocfs2_path *path,
4959                                     struct ocfs2_extent_list *el,
4960                                     int split_index,
4961                                     struct ocfs2_extent_rec *split_rec)
4962 {
4963         int ret;
4964
4965         ret = ocfs2_path_bh_journal_access(handle, INODE_CACHE(inode), path,
4966                                            path_num_items(path) - 1);
4967         if (ret) {
4968                 mlog_errno(ret);
4969                 goto out;
4970         }
4971
4972         el->l_recs[split_index] = *split_rec;
4973
4974         ocfs2_journal_dirty(handle, path_leaf_bh(path));
4975 out:
4976         return ret;
4977 }
4978
4979 /*
4980  * Mark part or all of the extent record at split_index in the leaf
4981  * pointed to by path as written. This removes the unwritten
4982  * extent flag.
4983  *
4984  * Care is taken to handle contiguousness so as to not grow the tree.
4985  *
4986  * meta_ac is not strictly necessary - we only truly need it if growth
4987  * of the tree is required. All other cases will degrade into a less
4988  * optimal tree layout.
4989  *
4990  * last_eb_bh should be the rightmost leaf block for any extent
4991  * btree. Since a split may grow the tree or a merge might shrink it,
4992  * the caller cannot trust the contents of that buffer after this call.
4993  *
4994  * This code is optimized for readability - several passes might be
4995  * made over certain portions of the tree. All of those blocks will
4996  * have been brought into cache (and pinned via the journal), so the
4997  * extra overhead is not expressed in terms of disk reads.
4998  */
4999 static int __ocfs2_mark_extent_written(struct inode *inode,
5000                                        struct ocfs2_extent_tree *et,
5001                                        handle_t *handle,
5002                                        struct ocfs2_path *path,
5003                                        int split_index,
5004                                        struct ocfs2_extent_rec *split_rec,
5005                                        struct ocfs2_alloc_context *meta_ac,
5006                                        struct ocfs2_cached_dealloc_ctxt *dealloc)
5007 {
5008         int ret = 0;
5009         struct ocfs2_extent_list *el = path_leaf_el(path);
5010         struct buffer_head *last_eb_bh = NULL;
5011         struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
5012         struct ocfs2_merge_ctxt ctxt;
5013         struct ocfs2_extent_list *rightmost_el;
5014
5015         if (!(rec->e_flags & OCFS2_EXT_UNWRITTEN)) {
5016                 ret = -EIO;
5017                 mlog_errno(ret);
5018                 goto out;
5019         }
5020
5021         if (le32_to_cpu(rec->e_cpos) > le32_to_cpu(split_rec->e_cpos) ||
5022             ((le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)) <
5023              (le32_to_cpu(split_rec->e_cpos) + le16_to_cpu(split_rec->e_leaf_clusters)))) {
5024                 ret = -EIO;
5025                 mlog_errno(ret);
5026                 goto out;
5027         }
5028
5029         ctxt.c_contig_type = ocfs2_figure_merge_contig_type(inode, path, el,
5030                                                             split_index,
5031                                                             split_rec);
5032
5033         /*
5034          * The core merge / split code wants to know how much room is
5035          * left in this inodes allocation tree, so we pass the
5036          * rightmost extent list.
5037          */
5038         if (path->p_tree_depth) {
5039                 struct ocfs2_extent_block *eb;
5040
5041                 ret = ocfs2_read_extent_block(et->et_ci,
5042                                               ocfs2_et_get_last_eb_blk(et),
5043                                               &last_eb_bh);
5044                 if (ret) {
5045                         mlog_exit(ret);
5046                         goto out;
5047                 }
5048
5049                 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
5050                 rightmost_el = &eb->h_list;
5051         } else
5052                 rightmost_el = path_root_el(path);
5053
5054         if (rec->e_cpos == split_rec->e_cpos &&
5055             rec->e_leaf_clusters == split_rec->e_leaf_clusters)
5056                 ctxt.c_split_covers_rec = 1;
5057         else
5058                 ctxt.c_split_covers_rec = 0;
5059
5060         ctxt.c_has_empty_extent = ocfs2_is_empty_extent(&el->l_recs[0]);
5061
5062         mlog(0, "index: %d, contig: %u, has_empty: %u, split_covers: %u\n",
5063              split_index, ctxt.c_contig_type, ctxt.c_has_empty_extent,
5064              ctxt.c_split_covers_rec);
5065
5066         if (ctxt.c_contig_type == CONTIG_NONE) {
5067                 if (ctxt.c_split_covers_rec)
5068                         ret = ocfs2_replace_extent_rec(inode, handle,
5069                                                        path, el,
5070                                                        split_index, split_rec);
5071                 else
5072                         ret = ocfs2_split_and_insert(inode, handle, path, et,
5073                                                      &last_eb_bh, split_index,
5074                                                      split_rec, meta_ac);
5075                 if (ret)
5076                         mlog_errno(ret);
5077         } else {
5078                 ret = ocfs2_try_to_merge_extent(inode, handle, path,
5079                                                 split_index, split_rec,
5080                                                 dealloc, &ctxt, et);
5081                 if (ret)
5082                         mlog_errno(ret);
5083         }
5084
5085 out:
5086         brelse(last_eb_bh);
5087         return ret;
5088 }
5089
5090 /*
5091  * Mark the already-existing extent at cpos as written for len clusters.
5092  *
5093  * If the existing extent is larger than the request, initiate a
5094  * split. An attempt will be made at merging with adjacent extents.
5095  *
5096  * The caller is responsible for passing down meta_ac if we'll need it.
5097  */
5098 int ocfs2_mark_extent_written(struct inode *inode,
5099                               struct ocfs2_extent_tree *et,
5100                               handle_t *handle, u32 cpos, u32 len, u32 phys,
5101                               struct ocfs2_alloc_context *meta_ac,
5102                               struct ocfs2_cached_dealloc_ctxt *dealloc)
5103 {
5104         int ret, index;
5105         u64 start_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys);
5106         struct ocfs2_extent_rec split_rec;
5107         struct ocfs2_path *left_path = NULL;
5108         struct ocfs2_extent_list *el;
5109
5110         mlog(0, "Inode %lu cpos %u, len %u, phys %u (%llu)\n",
5111              inode->i_ino, cpos, len, phys, (unsigned long long)start_blkno);
5112
5113         if (!ocfs2_writes_unwritten_extents(OCFS2_SB(inode->i_sb))) {
5114                 ocfs2_error(inode->i_sb, "Inode %llu has unwritten extents "
5115                             "that are being written to, but the feature bit "
5116                             "is not set in the super block.",
5117                             (unsigned long long)OCFS2_I(inode)->ip_blkno);
5118                 ret = -EROFS;
5119                 goto out;
5120         }
5121
5122         /*
5123          * XXX: This should be fixed up so that we just re-insert the
5124          * next extent records.
5125          *
5126          * XXX: This is a hack on the extent tree, maybe it should be
5127          * an op?
5128          */
5129         if (et->et_ops == &ocfs2_dinode_et_ops)
5130                 ocfs2_extent_map_trunc(inode, 0);
5131
5132         left_path = ocfs2_new_path_from_et(et);
5133         if (!left_path) {
5134                 ret = -ENOMEM;
5135                 mlog_errno(ret);
5136                 goto out;
5137         }
5138
5139         ret = ocfs2_find_path(et->et_ci, left_path, cpos);
5140         if (ret) {
5141                 mlog_errno(ret);
5142                 goto out;
5143         }
5144         el = path_leaf_el(left_path);
5145
5146         index = ocfs2_search_extent_list(el, cpos);
5147         if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
5148                 ocfs2_error(inode->i_sb,
5149                             "Inode %llu has an extent at cpos %u which can no "
5150                             "longer be found.\n",
5151                             (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
5152                 ret = -EROFS;
5153                 goto out;
5154         }
5155
5156         memset(&split_rec, 0, sizeof(struct ocfs2_extent_rec));
5157         split_rec.e_cpos = cpu_to_le32(cpos);
5158         split_rec.e_leaf_clusters = cpu_to_le16(len);
5159         split_rec.e_blkno = cpu_to_le64(start_blkno);
5160         split_rec.e_flags = path_leaf_el(left_path)->l_recs[index].e_flags;
5161         split_rec.e_flags &= ~OCFS2_EXT_UNWRITTEN;
5162
5163         ret = __ocfs2_mark_extent_written(inode, et, handle, left_path,
5164                                           index, &split_rec, meta_ac,
5165                                           dealloc);
5166         if (ret)
5167                 mlog_errno(ret);
5168
5169 out:
5170         ocfs2_free_path(left_path);
5171         return ret;
5172 }
5173
5174 static int ocfs2_split_tree(struct inode *inode, struct ocfs2_extent_tree *et,
5175                             handle_t *handle, struct ocfs2_path *path,
5176                             int index, u32 new_range,
5177                             struct ocfs2_alloc_context *meta_ac)
5178 {
5179         int ret, depth, credits = handle->h_buffer_credits;
5180         struct buffer_head *last_eb_bh = NULL;
5181         struct ocfs2_extent_block *eb;
5182         struct ocfs2_extent_list *rightmost_el, *el;
5183         struct ocfs2_extent_rec split_rec;
5184         struct ocfs2_extent_rec *rec;
5185         struct ocfs2_insert_type insert;
5186
5187         /*
5188          * Setup the record to split before we grow the tree.
5189          */
5190         el = path_leaf_el(path);
5191         rec = &el->l_recs[index];
5192         ocfs2_make_right_split_rec(inode->i_sb, &split_rec, new_range, rec);
5193
5194         depth = path->p_tree_depth;
5195         if (depth > 0) {
5196                 ret = ocfs2_read_extent_block(et->et_ci,
5197                                               ocfs2_et_get_last_eb_blk(et),
5198                                               &last_eb_bh);
5199                 if (ret < 0) {
5200                         mlog_errno(ret);
5201                         goto out;
5202                 }
5203
5204                 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
5205                 rightmost_el = &eb->h_list;
5206         } else
5207                 rightmost_el = path_leaf_el(path);
5208
5209         credits += path->p_tree_depth +
5210                    ocfs2_extend_meta_needed(et->et_root_el);
5211         ret = ocfs2_extend_trans(handle, credits);
5212         if (ret) {
5213                 mlog_errno(ret);
5214                 goto out;
5215         }
5216
5217         if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
5218             le16_to_cpu(rightmost_el->l_count)) {
5219                 ret = ocfs2_grow_tree(inode, handle, et, &depth, &last_eb_bh,
5220                                       meta_ac);
5221                 if (ret) {
5222                         mlog_errno(ret);
5223                         goto out;
5224                 }
5225         }
5226
5227         memset(&insert, 0, sizeof(struct ocfs2_insert_type));
5228         insert.ins_appending = APPEND_NONE;
5229         insert.ins_contig = CONTIG_NONE;
5230         insert.ins_split = SPLIT_RIGHT;
5231         insert.ins_tree_depth = depth;
5232
5233         ret = ocfs2_do_insert_extent(inode, handle, et, &split_rec, &insert);
5234         if (ret)
5235                 mlog_errno(ret);
5236
5237 out:
5238         brelse(last_eb_bh);
5239         return ret;
5240 }
5241
5242 static int ocfs2_truncate_rec(struct inode *inode, handle_t *handle,
5243                               struct ocfs2_path *path, int index,
5244                               struct ocfs2_cached_dealloc_ctxt *dealloc,
5245                               u32 cpos, u32 len,
5246                               struct ocfs2_extent_tree *et)
5247 {
5248         int ret;
5249         u32 left_cpos, rec_range, trunc_range;
5250         int wants_rotate = 0, is_rightmost_tree_rec = 0;
5251         struct super_block *sb = inode->i_sb;
5252         struct ocfs2_path *left_path = NULL;
5253         struct ocfs2_extent_list *el = path_leaf_el(path);
5254         struct ocfs2_extent_rec *rec;
5255         struct ocfs2_extent_block *eb;
5256
5257         if (ocfs2_is_empty_extent(&el->l_recs[0]) && index > 0) {
5258                 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
5259                 if (ret) {
5260                         mlog_errno(ret);
5261                         goto out;
5262                 }
5263
5264                 index--;
5265         }
5266
5267         if (index == (le16_to_cpu(el->l_next_free_rec) - 1) &&
5268             path->p_tree_depth) {
5269                 /*
5270                  * Check whether this is the rightmost tree record. If
5271                  * we remove all of this record or part of its right
5272                  * edge then an update of the record lengths above it
5273                  * will be required.
5274                  */
5275                 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
5276                 if (eb->h_next_leaf_blk == 0)
5277                         is_rightmost_tree_rec = 1;
5278         }
5279
5280         rec = &el->l_recs[index];
5281         if (index == 0 && path->p_tree_depth &&
5282             le32_to_cpu(rec->e_cpos) == cpos) {
5283                 /*
5284                  * Changing the leftmost offset (via partial or whole
5285                  * record truncate) of an interior (or rightmost) path
5286                  * means we have to update the subtree that is formed
5287                  * by this leaf and the one to it's left.
5288                  *
5289                  * There are two cases we can skip:
5290                  *   1) Path is the leftmost one in our inode tree.
5291                  *   2) The leaf is rightmost and will be empty after
5292                  *      we remove the extent record - the rotate code
5293                  *      knows how to update the newly formed edge.
5294                  */
5295
5296                 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path,
5297                                                     &left_cpos);
5298                 if (ret) {
5299                         mlog_errno(ret);
5300                         goto out;
5301                 }
5302
5303                 if (left_cpos && le16_to_cpu(el->l_next_free_rec) > 1) {
5304                         left_path = ocfs2_new_path_from_path(path);
5305                         if (!left_path) {
5306                                 ret = -ENOMEM;
5307                                 mlog_errno(ret);
5308                                 goto out;
5309                         }
5310
5311                         ret = ocfs2_find_path(et->et_ci, left_path,
5312                                               left_cpos);
5313                         if (ret) {
5314                                 mlog_errno(ret);
5315                                 goto out;
5316                         }
5317                 }
5318         }
5319
5320         ret = ocfs2_extend_rotate_transaction(handle, 0,
5321                                               handle->h_buffer_credits,
5322                                               path);
5323         if (ret) {
5324                 mlog_errno(ret);
5325                 goto out;
5326         }
5327
5328         ret = ocfs2_journal_access_path(et->et_ci, handle, path);
5329         if (ret) {
5330                 mlog_errno(ret);
5331                 goto out;
5332         }
5333
5334         ret = ocfs2_journal_access_path(et->et_ci, handle, left_path);
5335         if (ret) {
5336                 mlog_errno(ret);
5337                 goto out;
5338         }
5339
5340         rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
5341         trunc_range = cpos + len;
5342
5343         if (le32_to_cpu(rec->e_cpos) == cpos && rec_range == trunc_range) {
5344                 int next_free;
5345
5346                 memset(rec, 0, sizeof(*rec));
5347                 ocfs2_cleanup_merge(el, index);
5348                 wants_rotate = 1;
5349
5350                 next_free = le16_to_cpu(el->l_next_free_rec);
5351                 if (is_rightmost_tree_rec && next_free > 1) {
5352                         /*
5353                          * We skip the edge update if this path will
5354                          * be deleted by the rotate code.
5355                          */
5356                         rec = &el->l_recs[next_free - 1];
5357                         ocfs2_adjust_rightmost_records(inode, handle, path,
5358                                                        rec);
5359                 }
5360         } else if (le32_to_cpu(rec->e_cpos) == cpos) {
5361                 /* Remove leftmost portion of the record. */
5362                 le32_add_cpu(&rec->e_cpos, len);
5363                 le64_add_cpu(&rec->e_blkno, ocfs2_clusters_to_blocks(sb, len));
5364                 le16_add_cpu(&rec->e_leaf_clusters, -len);
5365         } else if (rec_range == trunc_range) {
5366                 /* Remove rightmost portion of the record */
5367                 le16_add_cpu(&rec->e_leaf_clusters, -len);
5368                 if (is_rightmost_tree_rec)
5369                         ocfs2_adjust_rightmost_records(inode, handle, path, rec);
5370         } else {
5371                 /* Caller should have trapped this. */
5372                 mlog(ML_ERROR, "Inode %llu: Invalid record truncate: (%u, %u) "
5373                      "(%u, %u)\n", (unsigned long long)OCFS2_I(inode)->ip_blkno,
5374                      le32_to_cpu(rec->e_cpos),
5375                      le16_to_cpu(rec->e_leaf_clusters), cpos, len);
5376                 BUG();
5377         }
5378
5379         if (left_path) {
5380                 int subtree_index;
5381
5382                 subtree_index = ocfs2_find_subtree_root(et, left_path, path);
5383                 ocfs2_complete_edge_insert(handle, left_path, path,
5384                                            subtree_index);
5385         }
5386
5387         ocfs2_journal_dirty(handle, path_leaf_bh(path));
5388
5389         ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
5390         if (ret) {
5391                 mlog_errno(ret);
5392                 goto out;
5393         }
5394
5395 out:
5396         ocfs2_free_path(left_path);
5397         return ret;
5398 }
5399
5400 int ocfs2_remove_extent(struct inode *inode,
5401                         struct ocfs2_extent_tree *et,
5402                         u32 cpos, u32 len, handle_t *handle,
5403                         struct ocfs2_alloc_context *meta_ac,
5404                         struct ocfs2_cached_dealloc_ctxt *dealloc)
5405 {
5406         int ret, index;
5407         u32 rec_range, trunc_range;
5408         struct ocfs2_extent_rec *rec;
5409         struct ocfs2_extent_list *el;
5410         struct ocfs2_path *path = NULL;
5411
5412         ocfs2_extent_map_trunc(inode, 0);
5413
5414         path = ocfs2_new_path_from_et(et);
5415         if (!path) {
5416                 ret = -ENOMEM;
5417                 mlog_errno(ret);
5418                 goto out;
5419         }
5420
5421         ret = ocfs2_find_path(et->et_ci, path, cpos);
5422         if (ret) {
5423                 mlog_errno(ret);
5424                 goto out;
5425         }
5426
5427         el = path_leaf_el(path);
5428         index = ocfs2_search_extent_list(el, cpos);
5429         if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
5430                 ocfs2_error(inode->i_sb,
5431                             "Inode %llu has an extent at cpos %u which can no "
5432                             "longer be found.\n",
5433                             (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
5434                 ret = -EROFS;
5435                 goto out;
5436         }
5437
5438         /*
5439          * We have 3 cases of extent removal:
5440          *   1) Range covers the entire extent rec
5441          *   2) Range begins or ends on one edge of the extent rec
5442          *   3) Range is in the middle of the extent rec (no shared edges)
5443          *
5444          * For case 1 we remove the extent rec and left rotate to
5445          * fill the hole.
5446          *
5447          * For case 2 we just shrink the existing extent rec, with a
5448          * tree update if the shrinking edge is also the edge of an
5449          * extent block.
5450          *
5451          * For case 3 we do a right split to turn the extent rec into
5452          * something case 2 can handle.
5453          */
5454         rec = &el->l_recs[index];
5455         rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
5456         trunc_range = cpos + len;
5457
5458         BUG_ON(cpos < le32_to_cpu(rec->e_cpos) || trunc_range > rec_range);
5459
5460         mlog(0, "Inode %llu, remove (cpos %u, len %u). Existing index %d "
5461              "(cpos %u, len %u)\n",
5462              (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos, len, index,
5463              le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec));
5464
5465         if (le32_to_cpu(rec->e_cpos) == cpos || rec_range == trunc_range) {
5466                 ret = ocfs2_truncate_rec(inode, handle, path, index, dealloc,
5467                                          cpos, len, et);
5468                 if (ret) {
5469                         mlog_errno(ret);
5470                         goto out;
5471                 }
5472         } else {
5473                 ret = ocfs2_split_tree(inode, et, handle, path, index,
5474                                        trunc_range, meta_ac);
5475                 if (ret) {
5476                         mlog_errno(ret);
5477                         goto out;
5478                 }
5479
5480                 /*
5481                  * The split could have manipulated the tree enough to
5482                  * move the record location, so we have to look for it again.
5483                  */
5484                 ocfs2_reinit_path(path, 1);
5485
5486                 ret = ocfs2_find_path(et->et_ci, path, cpos);
5487                 if (ret) {
5488                         mlog_errno(ret);
5489                         goto out;
5490                 }
5491
5492                 el = path_leaf_el(path);
5493                 index = ocfs2_search_extent_list(el, cpos);
5494                 if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
5495                         ocfs2_error(inode->i_sb,
5496                                     "Inode %llu: split at cpos %u lost record.",
5497                                     (unsigned long long)OCFS2_I(inode)->ip_blkno,
5498                                     cpos);
5499                         ret = -EROFS;
5500                         goto out;
5501                 }
5502
5503                 /*
5504                  * Double check our values here. If anything is fishy,
5505                  * it's easier to catch it at the top level.
5506                  */
5507                 rec = &el->l_recs[index];
5508                 rec_range = le32_to_cpu(rec->e_cpos) +
5509                         ocfs2_rec_clusters(el, rec);
5510                 if (rec_range != trunc_range) {
5511                         ocfs2_error(inode->i_sb,
5512                                     "Inode %llu: error after split at cpos %u"
5513                                     "trunc len %u, existing record is (%u,%u)",
5514                                     (unsigned long long)OCFS2_I(inode)->ip_blkno,
5515                                     cpos, len, le32_to_cpu(rec->e_cpos),
5516                                     ocfs2_rec_clusters(el, rec));
5517                         ret = -EROFS;
5518                         goto out;
5519                 }
5520
5521                 ret = ocfs2_truncate_rec(inode, handle, path, index, dealloc,
5522                                          cpos, len, et);
5523                 if (ret) {
5524                         mlog_errno(ret);
5525                         goto out;
5526                 }
5527         }
5528
5529 out:
5530         ocfs2_free_path(path);
5531         return ret;
5532 }
5533
5534 int ocfs2_remove_btree_range(struct inode *inode,
5535                              struct ocfs2_extent_tree *et,
5536                              u32 cpos, u32 phys_cpos, u32 len,
5537                              struct ocfs2_cached_dealloc_ctxt *dealloc)
5538 {
5539         int ret;
5540         u64 phys_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys_cpos);
5541         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
5542         struct inode *tl_inode = osb->osb_tl_inode;
5543         handle_t *handle;
5544         struct ocfs2_alloc_context *meta_ac = NULL;
5545
5546         ret = ocfs2_lock_allocators(inode, et, 0, 1, NULL, &meta_ac);
5547         if (ret) {
5548                 mlog_errno(ret);
5549                 return ret;
5550         }
5551
5552         mutex_lock(&tl_inode->i_mutex);
5553
5554         if (ocfs2_truncate_log_needs_flush(osb)) {
5555                 ret = __ocfs2_flush_truncate_log(osb);
5556                 if (ret < 0) {
5557                         mlog_errno(ret);
5558                         goto out;
5559                 }
5560         }
5561
5562         handle = ocfs2_start_trans(osb, ocfs2_remove_extent_credits(osb->sb));
5563         if (IS_ERR(handle)) {
5564                 ret = PTR_ERR(handle);
5565                 mlog_errno(ret);
5566                 goto out;
5567         }
5568
5569         ret = ocfs2_et_root_journal_access(handle, et,
5570                                            OCFS2_JOURNAL_ACCESS_WRITE);
5571         if (ret) {
5572                 mlog_errno(ret);
5573                 goto out;
5574         }
5575
5576         vfs_dq_free_space_nodirty(inode,
5577                                   ocfs2_clusters_to_bytes(inode->i_sb, len));
5578
5579         ret = ocfs2_remove_extent(inode, et, cpos, len, handle, meta_ac,
5580                                   dealloc);
5581         if (ret) {
5582                 mlog_errno(ret);
5583                 goto out_commit;
5584         }
5585
5586         ocfs2_et_update_clusters(et, -len);
5587
5588         ret = ocfs2_journal_dirty(handle, et->et_root_bh);
5589         if (ret) {
5590                 mlog_errno(ret);
5591                 goto out_commit;
5592         }
5593
5594         ret = ocfs2_truncate_log_append(osb, handle, phys_blkno, len);
5595         if (ret)
5596                 mlog_errno(ret);
5597
5598 out_commit:
5599         ocfs2_commit_trans(osb, handle);
5600 out:
5601         mutex_unlock(&tl_inode->i_mutex);
5602
5603         if (meta_ac)
5604                 ocfs2_free_alloc_context(meta_ac);
5605
5606         return ret;
5607 }
5608
5609 int ocfs2_truncate_log_needs_flush(struct ocfs2_super *osb)
5610 {
5611         struct buffer_head *tl_bh = osb->osb_tl_bh;
5612         struct ocfs2_dinode *di;
5613         struct ocfs2_truncate_log *tl;
5614
5615         di = (struct ocfs2_dinode *) tl_bh->b_data;
5616         tl = &di->id2.i_dealloc;
5617
5618         mlog_bug_on_msg(le16_to_cpu(tl->tl_used) > le16_to_cpu(tl->tl_count),
5619                         "slot %d, invalid truncate log parameters: used = "
5620                         "%u, count = %u\n", osb->slot_num,
5621                         le16_to_cpu(tl->tl_used), le16_to_cpu(tl->tl_count));
5622         return le16_to_cpu(tl->tl_used) == le16_to_cpu(tl->tl_count);
5623 }
5624
5625 static int ocfs2_truncate_log_can_coalesce(struct ocfs2_truncate_log *tl,
5626                                            unsigned int new_start)
5627 {
5628         unsigned int tail_index;
5629         unsigned int current_tail;
5630
5631         /* No records, nothing to coalesce */
5632         if (!le16_to_cpu(tl->tl_used))
5633                 return 0;
5634
5635         tail_index = le16_to_cpu(tl->tl_used) - 1;
5636         current_tail = le32_to_cpu(tl->tl_recs[tail_index].t_start);
5637         current_tail += le32_to_cpu(tl->tl_recs[tail_index].t_clusters);
5638
5639         return current_tail == new_start;
5640 }
5641
5642 int ocfs2_truncate_log_append(struct ocfs2_super *osb,
5643                               handle_t *handle,
5644                               u64 start_blk,
5645                               unsigned int num_clusters)
5646 {
5647         int status, index;
5648         unsigned int start_cluster, tl_count;
5649         struct inode *tl_inode = osb->osb_tl_inode;
5650         struct buffer_head *tl_bh = osb->osb_tl_bh;
5651         struct ocfs2_dinode *di;
5652         struct ocfs2_truncate_log *tl;
5653
5654         mlog_entry("start_blk = %llu, num_clusters = %u\n",
5655                    (unsigned long long)start_blk, num_clusters);
5656
5657         BUG_ON(mutex_trylock(&tl_inode->i_mutex));
5658
5659         start_cluster = ocfs2_blocks_to_clusters(osb->sb, start_blk);
5660
5661         di = (struct ocfs2_dinode *) tl_bh->b_data;
5662
5663         /* tl_bh is loaded from ocfs2_truncate_log_init().  It's validated
5664          * by the underlying call to ocfs2_read_inode_block(), so any
5665          * corruption is a code bug */
5666         BUG_ON(!OCFS2_IS_VALID_DINODE(di));
5667
5668         tl = &di->id2.i_dealloc;
5669         tl_count = le16_to_cpu(tl->tl_count);
5670         mlog_bug_on_msg(tl_count > ocfs2_truncate_recs_per_inode(osb->sb) ||
5671                         tl_count == 0,
5672                         "Truncate record count on #%llu invalid "
5673                         "wanted %u, actual %u\n",
5674                         (unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
5675                         ocfs2_truncate_recs_per_inode(osb->sb),
5676                         le16_to_cpu(tl->tl_count));
5677
5678         /* Caller should have known to flush before calling us. */
5679         index = le16_to_cpu(tl->tl_used);
5680         if (index >= tl_count) {
5681                 status = -ENOSPC;
5682                 mlog_errno(status);
5683                 goto bail;
5684         }
5685
5686         status = ocfs2_journal_access_di(handle, INODE_CACHE(tl_inode), tl_bh,
5687                                          OCFS2_JOURNAL_ACCESS_WRITE);
5688         if (status < 0) {
5689                 mlog_errno(status);
5690                 goto bail;
5691         }
5692
5693         mlog(0, "Log truncate of %u clusters starting at cluster %u to "
5694              "%llu (index = %d)\n", num_clusters, start_cluster,
5695              (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, index);
5696
5697         if (ocfs2_truncate_log_can_coalesce(tl, start_cluster)) {
5698                 /*
5699                  * Move index back to the record we are coalescing with.
5700                  * ocfs2_truncate_log_can_coalesce() guarantees nonzero
5701                  */
5702                 index--;
5703
5704                 num_clusters += le32_to_cpu(tl->tl_recs[index].t_clusters);
5705                 mlog(0, "Coalesce with index %u (start = %u, clusters = %u)\n",
5706                      index, le32_to_cpu(tl->tl_recs[index].t_start),
5707                      num_clusters);
5708         } else {
5709                 tl->tl_recs[index].t_start = cpu_to_le32(start_cluster);
5710                 tl->tl_used = cpu_to_le16(index + 1);
5711         }
5712         tl->tl_recs[index].t_clusters = cpu_to_le32(num_clusters);
5713
5714         status = ocfs2_journal_dirty(handle, tl_bh);
5715         if (status < 0) {
5716                 mlog_errno(status);
5717                 goto bail;
5718         }
5719
5720 bail:
5721         mlog_exit(status);
5722         return status;
5723 }
5724
5725 static int ocfs2_replay_truncate_records(struct ocfs2_super *osb,
5726                                          handle_t *handle,
5727                                          struct inode *data_alloc_inode,
5728                                          struct buffer_head *data_alloc_bh)
5729 {
5730         int status = 0;
5731         int i;
5732         unsigned int num_clusters;
5733         u64 start_blk;
5734         struct ocfs2_truncate_rec rec;
5735         struct ocfs2_dinode *di;
5736         struct ocfs2_truncate_log *tl;
5737         struct inode *tl_inode = osb->osb_tl_inode;
5738         struct buffer_head *tl_bh = osb->osb_tl_bh;
5739
5740         mlog_entry_void();
5741
5742         di = (struct ocfs2_dinode *) tl_bh->b_data;
5743         tl = &di->id2.i_dealloc;
5744         i = le16_to_cpu(tl->tl_used) - 1;
5745         while (i >= 0) {
5746                 /* Caller has given us at least enough credits to
5747                  * update the truncate log dinode */
5748                 status = ocfs2_journal_access_di(handle, INODE_CACHE(tl_inode), tl_bh,
5749                                                  OCFS2_JOURNAL_ACCESS_WRITE);
5750                 if (status < 0) {
5751                         mlog_errno(status);
5752                         goto bail;
5753                 }
5754
5755                 tl->tl_used = cpu_to_le16(i);
5756
5757                 status = ocfs2_journal_dirty(handle, tl_bh);
5758                 if (status < 0) {
5759                         mlog_errno(status);
5760                         goto bail;
5761                 }
5762
5763                 /* TODO: Perhaps we can calculate the bulk of the
5764                  * credits up front rather than extending like
5765                  * this. */
5766                 status = ocfs2_extend_trans(handle,
5767                                             OCFS2_TRUNCATE_LOG_FLUSH_ONE_REC);
5768                 if (status < 0) {
5769                         mlog_errno(status);
5770                         goto bail;
5771                 }
5772
5773                 rec = tl->tl_recs[i];
5774                 start_blk = ocfs2_clusters_to_blocks(data_alloc_inode->i_sb,
5775                                                     le32_to_cpu(rec.t_start));
5776                 num_clusters = le32_to_cpu(rec.t_clusters);
5777
5778                 /* if start_blk is not set, we ignore the record as
5779                  * invalid. */
5780                 if (start_blk) {
5781                         mlog(0, "free record %d, start = %u, clusters = %u\n",
5782                              i, le32_to_cpu(rec.t_start), num_clusters);
5783
5784                         status = ocfs2_free_clusters(handle, data_alloc_inode,
5785                                                      data_alloc_bh, start_blk,
5786                                                      num_clusters);
5787                         if (status < 0) {
5788                                 mlog_errno(status);
5789                                 goto bail;
5790                         }
5791                 }
5792                 i--;
5793         }
5794
5795 bail:
5796         mlog_exit(status);
5797         return status;
5798 }
5799
5800 /* Expects you to already be holding tl_inode->i_mutex */
5801 int __ocfs2_flush_truncate_log(struct ocfs2_super *osb)
5802 {
5803         int status;
5804         unsigned int num_to_flush;
5805         handle_t *handle;
5806         struct inode *tl_inode = osb->osb_tl_inode;
5807         struct inode *data_alloc_inode = NULL;
5808         struct buffer_head *tl_bh = osb->osb_tl_bh;
5809         struct buffer_head *data_alloc_bh = NULL;
5810         struct ocfs2_dinode *di;
5811         struct ocfs2_truncate_log *tl;
5812
5813         mlog_entry_void();
5814
5815         BUG_ON(mutex_trylock(&tl_inode->i_mutex));
5816
5817         di = (struct ocfs2_dinode *) tl_bh->b_data;
5818
5819         /* tl_bh is loaded from ocfs2_truncate_log_init().  It's validated
5820          * by the underlying call to ocfs2_read_inode_block(), so any
5821          * corruption is a code bug */
5822         BUG_ON(!OCFS2_IS_VALID_DINODE(di));
5823
5824         tl = &di->id2.i_dealloc;
5825         num_to_flush = le16_to_cpu(tl->tl_used);
5826         mlog(0, "Flush %u records from truncate log #%llu\n",
5827              num_to_flush, (unsigned long long)OCFS2_I(tl_inode)->ip_blkno);
5828         if (!num_to_flush) {
5829                 status = 0;
5830                 goto out;
5831         }
5832
5833         data_alloc_inode = ocfs2_get_system_file_inode(osb,
5834                                                        GLOBAL_BITMAP_SYSTEM_INODE,
5835                                                        OCFS2_INVALID_SLOT);
5836         if (!data_alloc_inode) {
5837                 status = -EINVAL;
5838                 mlog(ML_ERROR, "Could not get bitmap inode!\n");
5839                 goto out;
5840         }
5841
5842         mutex_lock(&data_alloc_inode->i_mutex);
5843
5844         status = ocfs2_inode_lock(data_alloc_inode, &data_alloc_bh, 1);
5845         if (status < 0) {
5846                 mlog_errno(status);
5847                 goto out_mutex;
5848         }
5849
5850         handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
5851         if (IS_ERR(handle)) {
5852                 status = PTR_ERR(handle);
5853                 mlog_errno(status);
5854                 goto out_unlock;
5855         }
5856
5857         status = ocfs2_replay_truncate_records(osb, handle, data_alloc_inode,
5858                                                data_alloc_bh);
5859         if (status < 0)
5860                 mlog_errno(status);
5861
5862         ocfs2_commit_trans(osb, handle);
5863
5864 out_unlock:
5865         brelse(data_alloc_bh);
5866         ocfs2_inode_unlock(data_alloc_inode, 1);
5867
5868 out_mutex:
5869         mutex_unlock(&data_alloc_inode->i_mutex);
5870         iput(data_alloc_inode);
5871
5872 out:
5873         mlog_exit(status);
5874         return status;
5875 }
5876
5877 int ocfs2_flush_truncate_log(struct ocfs2_super *osb)
5878 {
5879         int status;
5880         struct inode *tl_inode = osb->osb_tl_inode;
5881
5882         mutex_lock(&tl_inode->i_mutex);
5883         status = __ocfs2_flush_truncate_log(osb);
5884         mutex_unlock(&tl_inode->i_mutex);
5885
5886         return status;
5887 }
5888
5889 static void ocfs2_truncate_log_worker(struct work_struct *work)
5890 {
5891         int status;
5892         struct ocfs2_super *osb =
5893                 container_of(work, struct ocfs2_super,
5894                              osb_truncate_log_wq.work);
5895
5896         mlog_entry_void();
5897
5898         status = ocfs2_flush_truncate_log(osb);
5899         if (status < 0)
5900                 mlog_errno(status);
5901         else
5902                 ocfs2_init_inode_steal_slot(osb);
5903
5904         mlog_exit(status);
5905 }
5906
5907 #define OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL (2 * HZ)
5908 void ocfs2_schedule_truncate_log_flush(struct ocfs2_super *osb,
5909                                        int cancel)
5910 {
5911         if (osb->osb_tl_inode) {
5912                 /* We want to push off log flushes while truncates are
5913                  * still running. */
5914                 if (cancel)
5915                         cancel_delayed_work(&osb->osb_truncate_log_wq);
5916
5917                 queue_delayed_work(ocfs2_wq, &osb->osb_truncate_log_wq,
5918                                    OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL);
5919         }
5920 }
5921
5922 static int ocfs2_get_truncate_log_info(struct ocfs2_super *osb,
5923                                        int slot_num,
5924                                        struct inode **tl_inode,
5925                                        struct buffer_head **tl_bh)
5926 {
5927         int status;
5928         struct inode *inode = NULL;
5929         struct buffer_head *bh = NULL;
5930
5931         inode = ocfs2_get_system_file_inode(osb,
5932                                            TRUNCATE_LOG_SYSTEM_INODE,
5933                                            slot_num);
5934         if (!inode) {
5935                 status = -EINVAL;
5936                 mlog(ML_ERROR, "Could not get load truncate log inode!\n");
5937                 goto bail;
5938         }
5939
5940         status = ocfs2_read_inode_block(inode, &bh);
5941         if (status < 0) {
5942                 iput(inode);
5943                 mlog_errno(status);
5944                 goto bail;
5945         }
5946
5947         *tl_inode = inode;
5948         *tl_bh    = bh;
5949 bail:
5950         mlog_exit(status);
5951         return status;
5952 }
5953
5954 /* called during the 1st stage of node recovery. we stamp a clean
5955  * truncate log and pass back a copy for processing later. if the
5956  * truncate log does not require processing, a *tl_copy is set to
5957  * NULL. */
5958 int ocfs2_begin_truncate_log_recovery(struct ocfs2_super *osb,
5959                                       int slot_num,
5960                                       struct ocfs2_dinode **tl_copy)
5961 {
5962         int status;
5963         struct inode *tl_inode = NULL;
5964         struct buffer_head *tl_bh = NULL;
5965         struct ocfs2_dinode *di;
5966         struct ocfs2_truncate_log *tl;
5967
5968         *tl_copy = NULL;
5969
5970         mlog(0, "recover truncate log from slot %d\n", slot_num);
5971
5972         status = ocfs2_get_truncate_log_info(osb, slot_num, &tl_inode, &tl_bh);
5973         if (status < 0) {
5974                 mlog_errno(status);
5975                 goto bail;
5976         }
5977
5978         di = (struct ocfs2_dinode *) tl_bh->b_data;
5979
5980         /* tl_bh is loaded from ocfs2_get_truncate_log_info().  It's
5981          * validated by the underlying call to ocfs2_read_inode_block(),
5982          * so any corruption is a code bug */
5983         BUG_ON(!OCFS2_IS_VALID_DINODE(di));
5984
5985         tl = &di->id2.i_dealloc;
5986         if (le16_to_cpu(tl->tl_used)) {
5987                 mlog(0, "We'll have %u logs to recover\n",
5988                      le16_to_cpu(tl->tl_used));
5989
5990                 *tl_copy = kmalloc(tl_bh->b_size, GFP_KERNEL);
5991                 if (!(*tl_copy)) {
5992                         status = -ENOMEM;
5993                         mlog_errno(status);
5994                         goto bail;
5995                 }
5996
5997                 /* Assuming the write-out below goes well, this copy
5998                  * will be passed back to recovery for processing. */
5999                 memcpy(*tl_copy, tl_bh->b_data, tl_bh->b_size);
6000
6001                 /* All we need to do to clear the truncate log is set
6002                  * tl_used. */
6003                 tl->tl_used = 0;
6004
6005                 ocfs2_compute_meta_ecc(osb->sb, tl_bh->b_data, &di->i_check);
6006                 status = ocfs2_write_block(osb, tl_bh, INODE_CACHE(tl_inode));
6007                 if (status < 0) {
6008                         mlog_errno(status);
6009                         goto bail;
6010                 }
6011         }
6012
6013 bail:
6014         if (tl_inode)
6015                 iput(tl_inode);
6016         brelse(tl_bh);
6017
6018         if (status < 0 && (*tl_copy)) {
6019                 kfree(*tl_copy);
6020                 *tl_copy = NULL;
6021         }
6022
6023         mlog_exit(status);
6024         return status;
6025 }
6026
6027 int ocfs2_complete_truncate_log_recovery(struct ocfs2_super *osb,
6028                                          struct ocfs2_dinode *tl_copy)
6029 {
6030         int status = 0;
6031         int i;
6032         unsigned int clusters, num_recs, start_cluster;
6033         u64 start_blk;
6034         handle_t *handle;
6035         struct inode *tl_inode = osb->osb_tl_inode;
6036         struct ocfs2_truncate_log *tl;
6037
6038         mlog_entry_void();
6039
6040         if (OCFS2_I(tl_inode)->ip_blkno == le64_to_cpu(tl_copy->i_blkno)) {
6041                 mlog(ML_ERROR, "Asked to recover my own truncate log!\n");
6042                 return -EINVAL;
6043         }
6044
6045         tl = &tl_copy->id2.i_dealloc;
6046         num_recs = le16_to_cpu(tl->tl_used);
6047         mlog(0, "cleanup %u records from %llu\n", num_recs,
6048              (unsigned long long)le64_to_cpu(tl_copy->i_blkno));
6049
6050         mutex_lock(&tl_inode->i_mutex);
6051         for(i = 0; i < num_recs; i++) {
6052                 if (ocfs2_truncate_log_needs_flush(osb)) {
6053                         status = __ocfs2_flush_truncate_log(osb);
6054                         if (status < 0) {
6055                                 mlog_errno(status);
6056                                 goto bail_up;
6057                         }
6058                 }
6059
6060                 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
6061                 if (IS_ERR(handle)) {
6062                         status = PTR_ERR(handle);
6063                         mlog_errno(status);
6064                         goto bail_up;
6065                 }
6066
6067                 clusters = le32_to_cpu(tl->tl_recs[i].t_clusters);
6068                 start_cluster = le32_to_cpu(tl->tl_recs[i].t_start);
6069                 start_blk = ocfs2_clusters_to_blocks(osb->sb, start_cluster);
6070
6071                 status = ocfs2_truncate_log_append(osb, handle,
6072                                                    start_blk, clusters);
6073                 ocfs2_commit_trans(osb, handle);
6074                 if (status < 0) {
6075                         mlog_errno(status);
6076                         goto bail_up;
6077                 }
6078         }
6079
6080 bail_up:
6081         mutex_unlock(&tl_inode->i_mutex);
6082
6083         mlog_exit(status);
6084         return status;
6085 }
6086
6087 void ocfs2_truncate_log_shutdown(struct ocfs2_super *osb)
6088 {
6089         int status;
6090         struct inode *tl_inode = osb->osb_tl_inode;
6091
6092         mlog_entry_void();
6093
6094         if (tl_inode) {
6095                 cancel_delayed_work(&osb->osb_truncate_log_wq);
6096                 flush_workqueue(ocfs2_wq);
6097
6098                 status = ocfs2_flush_truncate_log(osb);
6099                 if (status < 0)
6100                         mlog_errno(status);
6101
6102                 brelse(osb->osb_tl_bh);
6103                 iput(osb->osb_tl_inode);
6104         }
6105
6106         mlog_exit_void();
6107 }
6108
6109 int ocfs2_truncate_log_init(struct ocfs2_super *osb)
6110 {
6111         int status;
6112         struct inode *tl_inode = NULL;
6113         struct buffer_head *tl_bh = NULL;
6114
6115         mlog_entry_void();
6116
6117         status = ocfs2_get_truncate_log_info(osb,
6118                                              osb->slot_num,
6119                                              &tl_inode,
6120                                              &tl_bh);
6121         if (status < 0)
6122                 mlog_errno(status);
6123
6124         /* ocfs2_truncate_log_shutdown keys on the existence of
6125          * osb->osb_tl_inode so we don't set any of the osb variables
6126          * until we're sure all is well. */
6127         INIT_DELAYED_WORK(&osb->osb_truncate_log_wq,
6128                           ocfs2_truncate_log_worker);
6129         osb->osb_tl_bh    = tl_bh;
6130         osb->osb_tl_inode = tl_inode;
6131
6132         mlog_exit(status);
6133         return status;
6134 }
6135
6136 /*
6137  * Delayed de-allocation of suballocator blocks.
6138  *
6139  * Some sets of block de-allocations might involve multiple suballocator inodes.
6140  *
6141  * The locking for this can get extremely complicated, especially when
6142  * the suballocator inodes to delete from aren't known until deep
6143  * within an unrelated codepath.
6144  *
6145  * ocfs2_extent_block structures are a good example of this - an inode
6146  * btree could have been grown by any number of nodes each allocating
6147  * out of their own suballoc inode.
6148  *
6149  * These structures allow the delay of block de-allocation until a
6150  * later time, when locking of multiple cluster inodes won't cause
6151  * deadlock.
6152  */
6153
6154 /*
6155  * Describe a single bit freed from a suballocator.  For the block
6156  * suballocators, it represents one block.  For the global cluster
6157  * allocator, it represents some clusters and free_bit indicates
6158  * clusters number.
6159  */
6160 struct ocfs2_cached_block_free {
6161         struct ocfs2_cached_block_free          *free_next;
6162         u64                                     free_blk;
6163         unsigned int                            free_bit;
6164 };
6165
6166 struct ocfs2_per_slot_free_list {
6167         struct ocfs2_per_slot_free_list         *f_next_suballocator;
6168         int                                     f_inode_type;
6169         int                                     f_slot;
6170         struct ocfs2_cached_block_free          *f_first;
6171 };
6172
6173 static int ocfs2_free_cached_blocks(struct ocfs2_super *osb,
6174                                     int sysfile_type,
6175                                     int slot,
6176                                     struct ocfs2_cached_block_free *head)
6177 {
6178         int ret;
6179         u64 bg_blkno;
6180         handle_t *handle;
6181         struct inode *inode;
6182         struct buffer_head *di_bh = NULL;
6183         struct ocfs2_cached_block_free *tmp;
6184
6185         inode = ocfs2_get_system_file_inode(osb, sysfile_type, slot);
6186         if (!inode) {
6187                 ret = -EINVAL;
6188                 mlog_errno(ret);
6189                 goto out;
6190         }
6191
6192         mutex_lock(&inode->i_mutex);
6193
6194         ret = ocfs2_inode_lock(inode, &di_bh, 1);
6195         if (ret) {
6196                 mlog_errno(ret);
6197                 goto out_mutex;
6198         }
6199
6200         handle = ocfs2_start_trans(osb, OCFS2_SUBALLOC_FREE);
6201         if (IS_ERR(handle)) {
6202                 ret = PTR_ERR(handle);
6203                 mlog_errno(ret);
6204                 goto out_unlock;
6205         }
6206
6207         while (head) {
6208                 bg_blkno = ocfs2_which_suballoc_group(head->free_blk,
6209                                                       head->free_bit);
6210                 mlog(0, "Free bit: (bit %u, blkno %llu)\n",
6211                      head->free_bit, (unsigned long long)head->free_blk);
6212
6213                 ret = ocfs2_free_suballoc_bits(handle, inode, di_bh,
6214                                                head->free_bit, bg_blkno, 1);
6215                 if (ret) {
6216                         mlog_errno(ret);
6217                         goto out_journal;
6218                 }
6219
6220                 ret = ocfs2_extend_trans(handle, OCFS2_SUBALLOC_FREE);
6221                 if (ret) {
6222                         mlog_errno(ret);
6223                         goto out_journal;
6224                 }
6225
6226                 tmp = head;
6227                 head = head->free_next;
6228                 kfree(tmp);
6229         }
6230
6231 out_journal:
6232         ocfs2_commit_trans(osb, handle);
6233
6234 out_unlock:
6235         ocfs2_inode_unlock(inode, 1);
6236         brelse(di_bh);
6237 out_mutex:
6238         mutex_unlock(&inode->i_mutex);
6239         iput(inode);
6240 out:
6241         while(head) {
6242                 /* Premature exit may have left some dangling items. */
6243                 tmp = head;
6244                 head = head->free_next;
6245                 kfree(tmp);
6246         }
6247
6248         return ret;
6249 }
6250
6251 int ocfs2_cache_cluster_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt,
6252                                 u64 blkno, unsigned int bit)
6253 {
6254         int ret = 0;
6255         struct ocfs2_cached_block_free *item;
6256
6257         item = kmalloc(sizeof(*item), GFP_NOFS);
6258         if (item == NULL) {
6259                 ret = -ENOMEM;
6260                 mlog_errno(ret);
6261                 return ret;
6262         }
6263
6264         mlog(0, "Insert clusters: (bit %u, blk %llu)\n",
6265              bit, (unsigned long long)blkno);
6266
6267         item->free_blk = blkno;
6268         item->free_bit = bit;
6269         item->free_next = ctxt->c_global_allocator;
6270
6271         ctxt->c_global_allocator = item;
6272         return ret;
6273 }
6274
6275 static int ocfs2_free_cached_clusters(struct ocfs2_super *osb,
6276                                       struct ocfs2_cached_block_free *head)
6277 {
6278         struct ocfs2_cached_block_free *tmp;
6279         struct inode *tl_inode = osb->osb_tl_inode;
6280         handle_t *handle;
6281         int ret = 0;
6282
6283         mutex_lock(&tl_inode->i_mutex);
6284
6285         while (head) {
6286                 if (ocfs2_truncate_log_needs_flush(osb)) {
6287                         ret = __ocfs2_flush_truncate_log(osb);
6288                         if (ret < 0) {
6289                                 mlog_errno(ret);
6290                                 break;
6291                         }
6292                 }
6293
6294                 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
6295                 if (IS_ERR(handle)) {
6296                         ret = PTR_ERR(handle);
6297                         mlog_errno(ret);
6298                         break;
6299                 }
6300
6301                 ret = ocfs2_truncate_log_append(osb, handle, head->free_blk,
6302                                                 head->free_bit);
6303
6304                 ocfs2_commit_trans(osb, handle);
6305                 tmp = head;
6306                 head = head->free_next;
6307                 kfree(tmp);
6308
6309                 if (ret < 0) {
6310                         mlog_errno(ret);
6311                         break;
6312                 }
6313         }
6314
6315         mutex_unlock(&tl_inode->i_mutex);
6316
6317         while (head) {
6318                 /* Premature exit may have left some dangling items. */
6319                 tmp = head;
6320                 head = head->free_next;
6321                 kfree(tmp);
6322         }
6323
6324         return ret;
6325 }
6326
6327 int ocfs2_run_deallocs(struct ocfs2_super *osb,
6328                        struct ocfs2_cached_dealloc_ctxt *ctxt)
6329 {
6330         int ret = 0, ret2;
6331         struct ocfs2_per_slot_free_list *fl;
6332
6333         if (!ctxt)
6334                 return 0;
6335
6336         while (ctxt->c_first_suballocator) {
6337                 fl = ctxt->c_first_suballocator;
6338
6339                 if (fl->f_first) {
6340                         mlog(0, "Free items: (type %u, slot %d)\n",
6341                              fl->f_inode_type, fl->f_slot);
6342                         ret2 = ocfs2_free_cached_blocks(osb,
6343                                                         fl->f_inode_type,
6344                                                         fl->f_slot,
6345                                                         fl->f_first);
6346                         if (ret2)
6347                                 mlog_errno(ret2);
6348                         if (!ret)
6349                                 ret = ret2;
6350                 }
6351
6352                 ctxt->c_first_suballocator = fl->f_next_suballocator;
6353                 kfree(fl);
6354         }
6355
6356         if (ctxt->c_global_allocator) {
6357                 ret2 = ocfs2_free_cached_clusters(osb,
6358                                                   ctxt->c_global_allocator);
6359                 if (ret2)
6360                         mlog_errno(ret2);
6361                 if (!ret)
6362                         ret = ret2;
6363
6364                 ctxt->c_global_allocator = NULL;
6365         }
6366
6367         return ret;
6368 }
6369
6370 static struct ocfs2_per_slot_free_list *
6371 ocfs2_find_per_slot_free_list(int type,
6372                               int slot,
6373                               struct ocfs2_cached_dealloc_ctxt *ctxt)
6374 {
6375         struct ocfs2_per_slot_free_list *fl = ctxt->c_first_suballocator;
6376
6377         while (fl) {
6378                 if (fl->f_inode_type == type && fl->f_slot == slot)
6379                         return fl;
6380
6381                 fl = fl->f_next_suballocator;
6382         }
6383
6384         fl = kmalloc(sizeof(*fl), GFP_NOFS);
6385         if (fl) {
6386                 fl->f_inode_type = type;
6387                 fl->f_slot = slot;
6388                 fl->f_first = NULL;
6389                 fl->f_next_suballocator = ctxt->c_first_suballocator;
6390
6391                 ctxt->c_first_suballocator = fl;
6392         }
6393         return fl;
6394 }
6395
6396 static int ocfs2_cache_block_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt,
6397                                      int type, int slot, u64 blkno,
6398                                      unsigned int bit)
6399 {
6400         int ret;
6401         struct ocfs2_per_slot_free_list *fl;
6402         struct ocfs2_cached_block_free *item;
6403
6404         fl = ocfs2_find_per_slot_free_list(type, slot, ctxt);
6405         if (fl == NULL) {
6406                 ret = -ENOMEM;
6407                 mlog_errno(ret);
6408                 goto out;
6409         }
6410
6411         item = kmalloc(sizeof(*item), GFP_NOFS);
6412         if (item == NULL) {
6413                 ret = -ENOMEM;
6414                 mlog_errno(ret);
6415                 goto out;
6416         }
6417
6418         mlog(0, "Insert: (type %d, slot %u, bit %u, blk %llu)\n",
6419              type, slot, bit, (unsigned long long)blkno);
6420
6421         item->free_blk = blkno;
6422         item->free_bit = bit;
6423         item->free_next = fl->f_first;
6424
6425         fl->f_first = item;
6426
6427         ret = 0;
6428 out:
6429         return ret;
6430 }
6431
6432 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
6433                                          struct ocfs2_extent_block *eb)
6434 {
6435         return ocfs2_cache_block_dealloc(ctxt, EXTENT_ALLOC_SYSTEM_INODE,
6436                                          le16_to_cpu(eb->h_suballoc_slot),
6437                                          le64_to_cpu(eb->h_blkno),
6438                                          le16_to_cpu(eb->h_suballoc_bit));
6439 }
6440
6441 /* This function will figure out whether the currently last extent
6442  * block will be deleted, and if it will, what the new last extent
6443  * block will be so we can update his h_next_leaf_blk field, as well
6444  * as the dinodes i_last_eb_blk */
6445 static int ocfs2_find_new_last_ext_blk(struct inode *inode,
6446                                        unsigned int clusters_to_del,
6447                                        struct ocfs2_path *path,
6448                                        struct buffer_head **new_last_eb)
6449 {
6450         int next_free, ret = 0;
6451         u32 cpos;
6452         struct ocfs2_extent_rec *rec;
6453         struct ocfs2_extent_block *eb;
6454         struct ocfs2_extent_list *el;
6455         struct buffer_head *bh = NULL;
6456
6457         *new_last_eb = NULL;
6458
6459         /* we have no tree, so of course, no last_eb. */
6460         if (!path->p_tree_depth)
6461                 goto out;
6462
6463         /* trunc to zero special case - this makes tree_depth = 0
6464          * regardless of what it is.  */
6465         if (OCFS2_I(inode)->ip_clusters == clusters_to_del)
6466                 goto out;
6467
6468         el = path_leaf_el(path);
6469         BUG_ON(!el->l_next_free_rec);
6470
6471         /*
6472          * Make sure that this extent list will actually be empty
6473          * after we clear away the data. We can shortcut out if
6474          * there's more than one non-empty extent in the
6475          * list. Otherwise, a check of the remaining extent is
6476          * necessary.
6477          */
6478         next_free = le16_to_cpu(el->l_next_free_rec);
6479         rec = NULL;
6480         if (ocfs2_is_empty_extent(&el->l_recs[0])) {
6481                 if (next_free > 2)
6482                         goto out;
6483
6484                 /* We may have a valid extent in index 1, check it. */
6485                 if (next_free == 2)
6486                         rec = &el->l_recs[1];
6487
6488                 /*
6489                  * Fall through - no more nonempty extents, so we want
6490                  * to delete this leaf.
6491                  */
6492         } else {
6493                 if (next_free > 1)
6494                         goto out;
6495
6496                 rec = &el->l_recs[0];
6497         }
6498
6499         if (rec) {
6500                 /*
6501                  * Check it we'll only be trimming off the end of this
6502                  * cluster.
6503                  */
6504                 if (le16_to_cpu(rec->e_leaf_clusters) > clusters_to_del)
6505                         goto out;
6506         }
6507
6508         ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, &cpos);
6509         if (ret) {
6510                 mlog_errno(ret);
6511                 goto out;
6512         }
6513
6514         ret = ocfs2_find_leaf(INODE_CACHE(inode), path_root_el(path), cpos, &bh);
6515         if (ret) {
6516                 mlog_errno(ret);
6517                 goto out;
6518         }
6519
6520         eb = (struct ocfs2_extent_block *) bh->b_data;
6521         el = &eb->h_list;
6522
6523         /* ocfs2_find_leaf() gets the eb from ocfs2_read_extent_block().
6524          * Any corruption is a code bug. */
6525         BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb));
6526
6527         *new_last_eb = bh;
6528         get_bh(*new_last_eb);
6529         mlog(0, "returning block %llu, (cpos: %u)\n",
6530              (unsigned long long)le64_to_cpu(eb->h_blkno), cpos);
6531 out:
6532         brelse(bh);
6533
6534         return ret;
6535 }
6536
6537 /*
6538  * Trim some clusters off the rightmost edge of a tree. Only called
6539  * during truncate.
6540  *
6541  * The caller needs to:
6542  *   - start journaling of each path component.
6543  *   - compute and fully set up any new last ext block
6544  */
6545 static int ocfs2_trim_tree(struct inode *inode, struct ocfs2_path *path,
6546                            handle_t *handle, struct ocfs2_truncate_context *tc,
6547                            u32 clusters_to_del, u64 *delete_start)
6548 {
6549         int ret, i, index = path->p_tree_depth;
6550         u32 new_edge = 0;
6551         u64 deleted_eb = 0;
6552         struct buffer_head *bh;
6553         struct ocfs2_extent_list *el;
6554         struct ocfs2_extent_rec *rec;
6555
6556         *delete_start = 0;
6557
6558         while (index >= 0) {
6559                 bh = path->p_node[index].bh;
6560                 el = path->p_node[index].el;
6561
6562                 mlog(0, "traveling tree (index = %d, block = %llu)\n",
6563                      index,  (unsigned long long)bh->b_blocknr);
6564
6565                 BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0);
6566
6567                 if (index !=
6568                     (path->p_tree_depth - le16_to_cpu(el->l_tree_depth))) {
6569                         ocfs2_error(inode->i_sb,
6570                                     "Inode %lu has invalid ext. block %llu",
6571                                     inode->i_ino,
6572                                     (unsigned long long)bh->b_blocknr);
6573                         ret = -EROFS;
6574                         goto out;
6575                 }
6576
6577 find_tail_record:
6578                 i = le16_to_cpu(el->l_next_free_rec) - 1;
6579                 rec = &el->l_recs[i];
6580
6581                 mlog(0, "Extent list before: record %d: (%u, %u, %llu), "
6582                      "next = %u\n", i, le32_to_cpu(rec->e_cpos),
6583                      ocfs2_rec_clusters(el, rec),
6584                      (unsigned long long)le64_to_cpu(rec->e_blkno),
6585                      le16_to_cpu(el->l_next_free_rec));
6586
6587                 BUG_ON(ocfs2_rec_clusters(el, rec) < clusters_to_del);
6588
6589                 if (le16_to_cpu(el->l_tree_depth) == 0) {
6590                         /*
6591                          * If the leaf block contains a single empty
6592                          * extent and no records, we can just remove
6593                          * the block.
6594                          */
6595                         if (i == 0 && ocfs2_is_empty_extent(rec)) {
6596                                 memset(rec, 0,
6597                                        sizeof(struct ocfs2_extent_rec));
6598                                 el->l_next_free_rec = cpu_to_le16(0);
6599
6600                                 goto delete;
6601                         }
6602
6603                         /*
6604                          * Remove any empty extents by shifting things
6605                          * left. That should make life much easier on
6606                          * the code below. This condition is rare
6607                          * enough that we shouldn't see a performance
6608                          * hit.
6609                          */
6610                         if (ocfs2_is_empty_extent(&el->l_recs[0])) {
6611                                 le16_add_cpu(&el->l_next_free_rec, -1);
6612
6613                                 for(i = 0;
6614                                     i < le16_to_cpu(el->l_next_free_rec); i++)
6615                                         el->l_recs[i] = el->l_recs[i + 1];
6616
6617                                 memset(&el->l_recs[i], 0,
6618                                        sizeof(struct ocfs2_extent_rec));
6619
6620                                 /*
6621                                  * We've modified our extent list. The
6622                                  * simplest way to handle this change
6623                                  * is to being the search from the
6624                                  * start again.
6625                                  */
6626                                 goto find_tail_record;
6627                         }
6628
6629                         le16_add_cpu(&rec->e_leaf_clusters, -clusters_to_del);
6630
6631                         /*
6632                          * We'll use "new_edge" on our way back up the
6633                          * tree to know what our rightmost cpos is.
6634                          */
6635                         new_edge = le16_to_cpu(rec->e_leaf_clusters);
6636                         new_edge += le32_to_cpu(rec->e_cpos);
6637
6638                         /*
6639                          * The caller will use this to delete data blocks.
6640                          */
6641                         *delete_start = le64_to_cpu(rec->e_blkno)
6642                                 + ocfs2_clusters_to_blocks(inode->i_sb,
6643                                         le16_to_cpu(rec->e_leaf_clusters));
6644
6645                         /*
6646                          * If it's now empty, remove this record.
6647                          */
6648                         if (le16_to_cpu(rec->e_leaf_clusters) == 0) {
6649                                 memset(rec, 0,
6650                                        sizeof(struct ocfs2_extent_rec));
6651                                 le16_add_cpu(&el->l_next_free_rec, -1);
6652                         }
6653                 } else {
6654                         if (le64_to_cpu(rec->e_blkno) == deleted_eb) {
6655                                 memset(rec, 0,
6656                                        sizeof(struct ocfs2_extent_rec));
6657                                 le16_add_cpu(&el->l_next_free_rec, -1);
6658
6659                                 goto delete;
6660                         }
6661
6662                         /* Can this actually happen? */
6663                         if (le16_to_cpu(el->l_next_free_rec) == 0)
6664                                 goto delete;
6665
6666                         /*
6667                          * We never actually deleted any clusters
6668                          * because our leaf was empty. There's no
6669                          * reason to adjust the rightmost edge then.
6670                          */
6671                         if (new_edge == 0)
6672                                 goto delete;
6673
6674                         rec->e_int_clusters = cpu_to_le32(new_edge);
6675                         le32_add_cpu(&rec->e_int_clusters,
6676                                      -le32_to_cpu(rec->e_cpos));
6677
6678                          /*
6679                           * A deleted child record should have been
6680                           * caught above.
6681                           */
6682                          BUG_ON(le32_to_cpu(rec->e_int_clusters) == 0);
6683                 }
6684
6685 delete:
6686                 ret = ocfs2_journal_dirty(handle, bh);
6687                 if (ret) {
6688                         mlog_errno(ret);
6689                         goto out;
6690                 }
6691
6692                 mlog(0, "extent list container %llu, after: record %d: "
6693                      "(%u, %u, %llu), next = %u.\n",
6694                      (unsigned long long)bh->b_blocknr, i,
6695                      le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec),
6696                      (unsigned long long)le64_to_cpu(rec->e_blkno),
6697                      le16_to_cpu(el->l_next_free_rec));
6698
6699                 /*
6700                  * We must be careful to only attempt delete of an
6701                  * extent block (and not the root inode block).
6702                  */
6703                 if (index > 0 && le16_to_cpu(el->l_next_free_rec) == 0) {
6704                         struct ocfs2_extent_block *eb =
6705                                 (struct ocfs2_extent_block *)bh->b_data;
6706
6707                         /*
6708                          * Save this for use when processing the
6709                          * parent block.
6710                          */
6711                         deleted_eb = le64_to_cpu(eb->h_blkno);
6712
6713                         mlog(0, "deleting this extent block.\n");
6714
6715                         ocfs2_remove_from_cache(INODE_CACHE(inode), bh);
6716
6717                         BUG_ON(ocfs2_rec_clusters(el, &el->l_recs[0]));
6718                         BUG_ON(le32_to_cpu(el->l_recs[0].e_cpos));
6719                         BUG_ON(le64_to_cpu(el->l_recs[0].e_blkno));
6720
6721                         ret = ocfs2_cache_extent_block_free(&tc->tc_dealloc, eb);
6722                         /* An error here is not fatal. */
6723                         if (ret < 0)
6724                                 mlog_errno(ret);
6725                 } else {
6726                         deleted_eb = 0;
6727                 }
6728
6729                 index--;
6730         }
6731
6732         ret = 0;
6733 out:
6734         return ret;
6735 }
6736
6737 static int ocfs2_do_truncate(struct ocfs2_super *osb,
6738                              unsigned int clusters_to_del,
6739                              struct inode *inode,
6740                              struct buffer_head *fe_bh,
6741                              handle_t *handle,
6742                              struct ocfs2_truncate_context *tc,
6743                              struct ocfs2_path *path)
6744 {
6745         int status;
6746         struct ocfs2_dinode *fe;
6747         struct ocfs2_extent_block *last_eb = NULL;
6748         struct ocfs2_extent_list *el;
6749         struct buffer_head *last_eb_bh = NULL;
6750         u64 delete_blk = 0;
6751
6752         fe = (struct ocfs2_dinode *) fe_bh->b_data;
6753
6754         status = ocfs2_find_new_last_ext_blk(inode, clusters_to_del,
6755                                              path, &last_eb_bh);
6756         if (status < 0) {
6757                 mlog_errno(status);
6758                 goto bail;
6759         }
6760
6761         /*
6762          * Each component will be touched, so we might as well journal
6763          * here to avoid having to handle errors later.
6764          */
6765         status = ocfs2_journal_access_path(INODE_CACHE(inode), handle, path);
6766         if (status < 0) {
6767                 mlog_errno(status);
6768                 goto bail;
6769         }
6770
6771         if (last_eb_bh) {
6772                 status = ocfs2_journal_access_eb(handle, INODE_CACHE(inode), last_eb_bh,
6773                                                  OCFS2_JOURNAL_ACCESS_WRITE);
6774                 if (status < 0) {
6775                         mlog_errno(status);
6776                         goto bail;
6777                 }
6778
6779                 last_eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
6780         }
6781
6782         el = &(fe->id2.i_list);
6783
6784         /*
6785          * Lower levels depend on this never happening, but it's best
6786          * to check it up here before changing the tree.
6787          */
6788         if (el->l_tree_depth && el->l_recs[0].e_int_clusters == 0) {
6789                 ocfs2_error(inode->i_sb,
6790                             "Inode %lu has an empty extent record, depth %u\n",
6791                             inode->i_ino, le16_to_cpu(el->l_tree_depth));
6792                 status = -EROFS;
6793                 goto bail;
6794         }
6795
6796         vfs_dq_free_space_nodirty(inode,
6797                         ocfs2_clusters_to_bytes(osb->sb, clusters_to_del));
6798         spin_lock(&OCFS2_I(inode)->ip_lock);
6799         OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters) -
6800                                       clusters_to_del;
6801         spin_unlock(&OCFS2_I(inode)->ip_lock);
6802         le32_add_cpu(&fe->i_clusters, -clusters_to_del);
6803         inode->i_blocks = ocfs2_inode_sector_count(inode);
6804
6805         status = ocfs2_trim_tree(inode, path, handle, tc,
6806                                  clusters_to_del, &delete_blk);
6807         if (status) {
6808                 mlog_errno(status);
6809                 goto bail;
6810         }
6811
6812         if (le32_to_cpu(fe->i_clusters) == 0) {
6813                 /* trunc to zero is a special case. */
6814                 el->l_tree_depth = 0;
6815                 fe->i_last_eb_blk = 0;
6816         } else if (last_eb)
6817                 fe->i_last_eb_blk = last_eb->h_blkno;
6818
6819         status = ocfs2_journal_dirty(handle, fe_bh);
6820         if (status < 0) {
6821                 mlog_errno(status);
6822                 goto bail;
6823         }
6824
6825         if (last_eb) {
6826                 /* If there will be a new last extent block, then by
6827                  * definition, there cannot be any leaves to the right of
6828                  * him. */
6829                 last_eb->h_next_leaf_blk = 0;
6830                 status = ocfs2_journal_dirty(handle, last_eb_bh);
6831                 if (status < 0) {
6832                         mlog_errno(status);
6833                         goto bail;
6834                 }
6835         }
6836
6837         if (delete_blk) {
6838                 status = ocfs2_truncate_log_append(osb, handle, delete_blk,
6839                                                    clusters_to_del);
6840                 if (status < 0) {
6841                         mlog_errno(status);
6842                         goto bail;
6843                 }
6844         }
6845         status = 0;
6846 bail:
6847         brelse(last_eb_bh);
6848         mlog_exit(status);
6849         return status;
6850 }
6851
6852 static int ocfs2_zero_func(handle_t *handle, struct buffer_head *bh)
6853 {
6854         set_buffer_uptodate(bh);
6855         mark_buffer_dirty(bh);
6856         return 0;
6857 }
6858
6859 static void ocfs2_map_and_dirty_page(struct inode *inode, handle_t *handle,
6860                                      unsigned int from, unsigned int to,
6861                                      struct page *page, int zero, u64 *phys)
6862 {
6863         int ret, partial = 0;
6864
6865         ret = ocfs2_map_page_blocks(page, phys, inode, from, to, 0);
6866         if (ret)
6867                 mlog_errno(ret);
6868
6869         if (zero)
6870                 zero_user_segment(page, from, to);
6871
6872         /*
6873          * Need to set the buffers we zero'd into uptodate
6874          * here if they aren't - ocfs2_map_page_blocks()
6875          * might've skipped some
6876          */
6877         ret = walk_page_buffers(handle, page_buffers(page),
6878                                 from, to, &partial,
6879                                 ocfs2_zero_func);
6880         if (ret < 0)
6881                 mlog_errno(ret);
6882         else if (ocfs2_should_order_data(inode)) {
6883                 ret = ocfs2_jbd2_file_inode(handle, inode);
6884                 if (ret < 0)
6885                         mlog_errno(ret);
6886         }
6887
6888         if (!partial)
6889                 SetPageUptodate(page);
6890
6891         flush_dcache_page(page);
6892 }
6893
6894 static void ocfs2_zero_cluster_pages(struct inode *inode, loff_t start,
6895                                      loff_t end, struct page **pages,
6896                                      int numpages, u64 phys, handle_t *handle)
6897 {
6898         int i;
6899         struct page *page;
6900         unsigned int from, to = PAGE_CACHE_SIZE;
6901         struct super_block *sb = inode->i_sb;
6902
6903         BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb)));
6904
6905         if (numpages == 0)
6906                 goto out;
6907
6908         to = PAGE_CACHE_SIZE;
6909         for(i = 0; i < numpages; i++) {
6910                 page = pages[i];
6911
6912                 from = start & (PAGE_CACHE_SIZE - 1);
6913                 if ((end >> PAGE_CACHE_SHIFT) == page->index)
6914                         to = end & (PAGE_CACHE_SIZE - 1);
6915
6916                 BUG_ON(from > PAGE_CACHE_SIZE);
6917                 BUG_ON(to > PAGE_CACHE_SIZE);
6918
6919                 ocfs2_map_and_dirty_page(inode, handle, from, to, page, 1,
6920                                          &phys);
6921
6922                 start = (page->index + 1) << PAGE_CACHE_SHIFT;
6923         }
6924 out:
6925         if (pages)
6926                 ocfs2_unlock_and_free_pages(pages, numpages);
6927 }
6928
6929 static int ocfs2_grab_eof_pages(struct inode *inode, loff_t start, loff_t end,
6930                                 struct page **pages, int *num)
6931 {
6932         int numpages, ret = 0;
6933         struct super_block *sb = inode->i_sb;
6934         struct address_space *mapping = inode->i_mapping;
6935         unsigned long index;
6936         loff_t last_page_bytes;
6937
6938         BUG_ON(start > end);
6939
6940         BUG_ON(start >> OCFS2_SB(sb)->s_clustersize_bits !=
6941                (end - 1) >> OCFS2_SB(sb)->s_clustersize_bits);
6942
6943         numpages = 0;
6944         last_page_bytes = PAGE_ALIGN(end);
6945         index = start >> PAGE_CACHE_SHIFT;
6946         do {
6947                 pages[numpages] = grab_cache_page(mapping, index);
6948                 if (!pages[numpages]) {
6949                         ret = -ENOMEM;
6950                         mlog_errno(ret);
6951                         goto out;
6952                 }
6953
6954                 numpages++;
6955                 index++;
6956         } while (index < (last_page_bytes >> PAGE_CACHE_SHIFT));
6957
6958 out:
6959         if (ret != 0) {
6960                 if (pages)
6961                         ocfs2_unlock_and_free_pages(pages, numpages);
6962                 numpages = 0;
6963         }
6964
6965         *num = numpages;
6966
6967         return ret;
6968 }
6969
6970 /*
6971  * Zero the area past i_size but still within an allocated
6972  * cluster. This avoids exposing nonzero data on subsequent file
6973  * extends.
6974  *
6975  * We need to call this before i_size is updated on the inode because
6976  * otherwise block_write_full_page() will skip writeout of pages past
6977  * i_size. The new_i_size parameter is passed for this reason.
6978  */
6979 int ocfs2_zero_range_for_truncate(struct inode *inode, handle_t *handle,
6980                                   u64 range_start, u64 range_end)
6981 {
6982         int ret = 0, numpages;
6983         struct page **pages = NULL;
6984         u64 phys;
6985         unsigned int ext_flags;
6986         struct super_block *sb = inode->i_sb;
6987
6988         /*
6989          * File systems which don't support sparse files zero on every
6990          * extend.
6991          */
6992         if (!ocfs2_sparse_alloc(OCFS2_SB(sb)))
6993                 return 0;
6994
6995         pages = kcalloc(ocfs2_pages_per_cluster(sb),
6996                         sizeof(struct page *), GFP_NOFS);
6997         if (pages == NULL) {
6998                 ret = -ENOMEM;
6999                 mlog_errno(ret);
7000                 goto out;
7001         }
7002
7003         if (range_start == range_end)
7004                 goto out;
7005
7006         ret = ocfs2_extent_map_get_blocks(inode,
7007                                           range_start >> sb->s_blocksize_bits,
7008                                           &phys, NULL, &ext_flags);
7009         if (ret) {
7010                 mlog_errno(ret);
7011                 goto out;
7012         }
7013
7014         /*
7015          * Tail is a hole, or is marked unwritten. In either case, we
7016          * can count on read and write to return/push zero's.
7017          */
7018         if (phys == 0 || ext_flags & OCFS2_EXT_UNWRITTEN)
7019                 goto out;
7020
7021         ret = ocfs2_grab_eof_pages(inode, range_start, range_end, pages,
7022                                    &numpages);
7023         if (ret) {
7024                 mlog_errno(ret);
7025                 goto out;
7026         }
7027
7028         ocfs2_zero_cluster_pages(inode, range_start, range_end, pages,
7029                                  numpages, phys, handle);
7030
7031         /*
7032          * Initiate writeout of the pages we zero'd here. We don't
7033          * wait on them - the truncate_inode_pages() call later will
7034          * do that for us.
7035          */
7036         ret = do_sync_mapping_range(inode->i_mapping, range_start,
7037                                     range_end - 1, SYNC_FILE_RANGE_WRITE);
7038         if (ret)
7039                 mlog_errno(ret);
7040
7041 out:
7042         if (pages)
7043                 kfree(pages);
7044
7045         return ret;
7046 }
7047
7048 static void ocfs2_zero_dinode_id2_with_xattr(struct inode *inode,
7049                                              struct ocfs2_dinode *di)
7050 {
7051         unsigned int blocksize = 1 << inode->i_sb->s_blocksize_bits;
7052         unsigned int xattrsize = le16_to_cpu(di->i_xattr_inline_size);
7053
7054         if (le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_XATTR_FL)
7055                 memset(&di->id2, 0, blocksize -
7056                                     offsetof(struct ocfs2_dinode, id2) -
7057                                     xattrsize);
7058         else
7059                 memset(&di->id2, 0, blocksize -
7060                                     offsetof(struct ocfs2_dinode, id2));
7061 }
7062
7063 void ocfs2_dinode_new_extent_list(struct inode *inode,
7064                                   struct ocfs2_dinode *di)
7065 {
7066         ocfs2_zero_dinode_id2_with_xattr(inode, di);
7067         di->id2.i_list.l_tree_depth = 0;
7068         di->id2.i_list.l_next_free_rec = 0;
7069         di->id2.i_list.l_count = cpu_to_le16(
7070                 ocfs2_extent_recs_per_inode_with_xattr(inode->i_sb, di));
7071 }
7072
7073 void ocfs2_set_inode_data_inline(struct inode *inode, struct ocfs2_dinode *di)
7074 {
7075         struct ocfs2_inode_info *oi = OCFS2_I(inode);
7076         struct ocfs2_inline_data *idata = &di->id2.i_data;
7077
7078         spin_lock(&oi->ip_lock);
7079         oi->ip_dyn_features |= OCFS2_INLINE_DATA_FL;
7080         di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
7081         spin_unlock(&oi->ip_lock);
7082
7083         /*
7084          * We clear the entire i_data structure here so that all
7085          * fields can be properly initialized.
7086          */
7087         ocfs2_zero_dinode_id2_with_xattr(inode, di);
7088
7089         idata->id_count = cpu_to_le16(
7090                         ocfs2_max_inline_data_with_xattr(inode->i_sb, di));
7091 }
7092
7093 int ocfs2_convert_inline_data_to_extents(struct inode *inode,
7094                                          struct buffer_head *di_bh)
7095 {
7096         int ret, i, has_data, num_pages = 0;
7097         handle_t *handle;
7098         u64 uninitialized_var(block);
7099         struct ocfs2_inode_info *oi = OCFS2_I(inode);
7100         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
7101         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
7102         struct ocfs2_alloc_context *data_ac = NULL;
7103         struct page **pages = NULL;
7104         loff_t end = osb->s_clustersize;
7105         struct ocfs2_extent_tree et;
7106         int did_quota = 0;
7107
7108         has_data = i_size_read(inode) ? 1 : 0;
7109
7110         if (has_data) {
7111                 pages = kcalloc(ocfs2_pages_per_cluster(osb->sb),
7112                                 sizeof(struct page *), GFP_NOFS);
7113                 if (pages == NULL) {
7114                         ret = -ENOMEM;
7115                         mlog_errno(ret);
7116                         goto out;
7117                 }
7118
7119                 ret = ocfs2_reserve_clusters(osb, 1, &data_ac);
7120                 if (ret) {
7121                         mlog_errno(ret);
7122                         goto out;
7123                 }
7124         }
7125
7126         handle = ocfs2_start_trans(osb,
7127                                    ocfs2_inline_to_extents_credits(osb->sb));
7128         if (IS_ERR(handle)) {
7129                 ret = PTR_ERR(handle);
7130                 mlog_errno(ret);
7131                 goto out_unlock;
7132         }
7133
7134         ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
7135                                       OCFS2_JOURNAL_ACCESS_WRITE);
7136         if (ret) {
7137                 mlog_errno(ret);
7138                 goto out_commit;
7139         }
7140
7141         if (has_data) {
7142                 u32 bit_off, num;
7143                 unsigned int page_end;
7144                 u64 phys;
7145
7146                 if (vfs_dq_alloc_space_nodirty(inode,
7147                                        ocfs2_clusters_to_bytes(osb->sb, 1))) {
7148                         ret = -EDQUOT;
7149                         goto out_commit;
7150                 }
7151                 did_quota = 1;
7152
7153                 ret = ocfs2_claim_clusters(osb, handle, data_ac, 1, &bit_off,
7154                                            &num);
7155                 if (ret) {
7156                         mlog_errno(ret);
7157                         goto out_commit;
7158                 }
7159
7160                 /*
7161                  * Save two copies, one for insert, and one that can
7162                  * be changed by ocfs2_map_and_dirty_page() below.
7163                  */
7164                 block = phys = ocfs2_clusters_to_blocks(inode->i_sb, bit_off);
7165
7166                 /*
7167                  * Non sparse file systems zero on extend, so no need
7168                  * to do that now.
7169                  */
7170                 if (!ocfs2_sparse_alloc(osb) &&
7171                     PAGE_CACHE_SIZE < osb->s_clustersize)
7172                         end = PAGE_CACHE_SIZE;
7173
7174                 ret = ocfs2_grab_eof_pages(inode, 0, end, pages, &num_pages);
7175                 if (ret) {
7176                         mlog_errno(ret);
7177                         goto out_commit;
7178                 }
7179
7180                 /*
7181                  * This should populate the 1st page for us and mark
7182                  * it up to date.
7183                  */
7184                 ret = ocfs2_read_inline_data(inode, pages[0], di_bh);
7185                 if (ret) {
7186                         mlog_errno(ret);
7187                         goto out_commit;
7188                 }
7189
7190                 page_end = PAGE_CACHE_SIZE;
7191                 if (PAGE_CACHE_SIZE > osb->s_clustersize)
7192                         page_end = osb->s_clustersize;
7193
7194                 for (i = 0; i < num_pages; i++)
7195                         ocfs2_map_and_dirty_page(inode, handle, 0, page_end,
7196                                                  pages[i], i > 0, &phys);
7197         }
7198
7199         spin_lock(&oi->ip_lock);
7200         oi->ip_dyn_features &= ~OCFS2_INLINE_DATA_FL;
7201         di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
7202         spin_unlock(&oi->ip_lock);
7203
7204         ocfs2_dinode_new_extent_list(inode, di);
7205
7206         ocfs2_journal_dirty(handle, di_bh);
7207
7208         if (has_data) {
7209                 /*
7210                  * An error at this point should be extremely rare. If
7211                  * this proves to be false, we could always re-build
7212                  * the in-inode data from our pages.
7213                  */
7214                 ocfs2_init_dinode_extent_tree(&et, inode, di_bh);
7215                 ret = ocfs2_insert_extent(osb, handle, inode, &et,
7216                                           0, block, 1, 0, NULL);
7217                 if (ret) {
7218                         mlog_errno(ret);
7219                         goto out_commit;
7220                 }
7221
7222                 inode->i_blocks = ocfs2_inode_sector_count(inode);
7223         }
7224
7225 out_commit:
7226         if (ret < 0 && did_quota)
7227                 vfs_dq_free_space_nodirty(inode,
7228                                           ocfs2_clusters_to_bytes(osb->sb, 1));
7229
7230         ocfs2_commit_trans(osb, handle);
7231
7232 out_unlock:
7233         if (data_ac)
7234                 ocfs2_free_alloc_context(data_ac);
7235
7236 out:
7237         if (pages) {
7238                 ocfs2_unlock_and_free_pages(pages, num_pages);
7239                 kfree(pages);
7240         }
7241
7242         return ret;
7243 }
7244
7245 /*
7246  * It is expected, that by the time you call this function,
7247  * inode->i_size and fe->i_size have been adjusted.
7248  *
7249  * WARNING: This will kfree the truncate context
7250  */
7251 int ocfs2_commit_truncate(struct ocfs2_super *osb,
7252                           struct inode *inode,
7253                           struct buffer_head *fe_bh,
7254                           struct ocfs2_truncate_context *tc)
7255 {
7256         int status, i, credits, tl_sem = 0;
7257         u32 clusters_to_del, new_highest_cpos, range;
7258         struct ocfs2_extent_list *el;
7259         handle_t *handle = NULL;
7260         struct inode *tl_inode = osb->osb_tl_inode;
7261         struct ocfs2_path *path = NULL;
7262         struct ocfs2_dinode *di = (struct ocfs2_dinode *)fe_bh->b_data;
7263
7264         mlog_entry_void();
7265
7266         new_highest_cpos = ocfs2_clusters_for_bytes(osb->sb,
7267                                                      i_size_read(inode));
7268
7269         path = ocfs2_new_path(fe_bh, &di->id2.i_list,
7270                               ocfs2_journal_access_di);
7271         if (!path) {
7272                 status = -ENOMEM;
7273                 mlog_errno(status);
7274                 goto bail;
7275         }
7276
7277         ocfs2_extent_map_trunc(inode, new_highest_cpos);
7278
7279 start:
7280         /*
7281          * Check that we still have allocation to delete.
7282          */
7283         if (OCFS2_I(inode)->ip_clusters == 0) {
7284                 status = 0;
7285                 goto bail;
7286         }
7287
7288         /*
7289          * Truncate always works against the rightmost tree branch.
7290          */
7291         status = ocfs2_find_path(INODE_CACHE(inode), path, UINT_MAX);
7292         if (status) {
7293                 mlog_errno(status);
7294                 goto bail;
7295         }
7296
7297         mlog(0, "inode->ip_clusters = %u, tree_depth = %u\n",
7298              OCFS2_I(inode)->ip_clusters, path->p_tree_depth);
7299
7300         /*
7301          * By now, el will point to the extent list on the bottom most
7302          * portion of this tree. Only the tail record is considered in
7303          * each pass.
7304          *
7305          * We handle the following cases, in order:
7306          * - empty extent: delete the remaining branch
7307          * - remove the entire record
7308          * - remove a partial record
7309          * - no record needs to be removed (truncate has completed)
7310          */
7311         el = path_leaf_el(path);
7312         if (le16_to_cpu(el->l_next_free_rec) == 0) {
7313                 ocfs2_error(inode->i_sb,
7314                             "Inode %llu has empty extent block at %llu\n",
7315                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
7316                             (unsigned long long)path_leaf_bh(path)->b_blocknr);
7317                 status = -EROFS;
7318                 goto bail;
7319         }
7320
7321         i = le16_to_cpu(el->l_next_free_rec) - 1;
7322         range = le32_to_cpu(el->l_recs[i].e_cpos) +
7323                 ocfs2_rec_clusters(el, &el->l_recs[i]);
7324         if (i == 0 && ocfs2_is_empty_extent(&el->l_recs[i])) {
7325                 clusters_to_del = 0;
7326         } else if (le32_to_cpu(el->l_recs[i].e_cpos) >= new_highest_cpos) {
7327                 clusters_to_del = ocfs2_rec_clusters(el, &el->l_recs[i]);
7328         } else if (range > new_highest_cpos) {
7329                 clusters_to_del = (ocfs2_rec_clusters(el, &el->l_recs[i]) +
7330                                    le32_to_cpu(el->l_recs[i].e_cpos)) -
7331                                   new_highest_cpos;
7332         } else {
7333                 status = 0;
7334                 goto bail;
7335         }
7336
7337         mlog(0, "clusters_to_del = %u in this pass, tail blk=%llu\n",
7338              clusters_to_del, (unsigned long long)path_leaf_bh(path)->b_blocknr);
7339
7340         mutex_lock(&tl_inode->i_mutex);
7341         tl_sem = 1;
7342         /* ocfs2_truncate_log_needs_flush guarantees us at least one
7343          * record is free for use. If there isn't any, we flush to get
7344          * an empty truncate log.  */
7345         if (ocfs2_truncate_log_needs_flush(osb)) {
7346                 status = __ocfs2_flush_truncate_log(osb);
7347                 if (status < 0) {
7348                         mlog_errno(status);
7349                         goto bail;
7350                 }
7351         }
7352
7353         credits = ocfs2_calc_tree_trunc_credits(osb->sb, clusters_to_del,
7354                                                 (struct ocfs2_dinode *)fe_bh->b_data,
7355                                                 el);
7356         handle = ocfs2_start_trans(osb, credits);
7357         if (IS_ERR(handle)) {
7358                 status = PTR_ERR(handle);
7359                 handle = NULL;
7360                 mlog_errno(status);
7361                 goto bail;
7362         }
7363
7364         status = ocfs2_do_truncate(osb, clusters_to_del, inode, fe_bh, handle,
7365                                    tc, path);
7366         if (status < 0) {
7367                 mlog_errno(status);
7368                 goto bail;
7369         }
7370
7371         mutex_unlock(&tl_inode->i_mutex);
7372         tl_sem = 0;
7373
7374         ocfs2_commit_trans(osb, handle);
7375         handle = NULL;
7376
7377         ocfs2_reinit_path(path, 1);
7378
7379         /*
7380          * The check above will catch the case where we've truncated
7381          * away all allocation.
7382          */
7383         goto start;
7384
7385 bail:
7386
7387         ocfs2_schedule_truncate_log_flush(osb, 1);
7388
7389         if (tl_sem)
7390                 mutex_unlock(&tl_inode->i_mutex);
7391
7392         if (handle)
7393                 ocfs2_commit_trans(osb, handle);
7394
7395         ocfs2_run_deallocs(osb, &tc->tc_dealloc);
7396
7397         ocfs2_free_path(path);
7398
7399         /* This will drop the ext_alloc cluster lock for us */
7400         ocfs2_free_truncate_context(tc);
7401
7402         mlog_exit(status);
7403         return status;
7404 }
7405
7406 /*
7407  * Expects the inode to already be locked.
7408  */
7409 int ocfs2_prepare_truncate(struct ocfs2_super *osb,
7410                            struct inode *inode,
7411                            struct buffer_head *fe_bh,
7412                            struct ocfs2_truncate_context **tc)
7413 {
7414         int status;
7415         unsigned int new_i_clusters;
7416         struct ocfs2_dinode *fe;
7417         struct ocfs2_extent_block *eb;
7418         struct buffer_head *last_eb_bh = NULL;
7419
7420         mlog_entry_void();
7421
7422         *tc = NULL;
7423
7424         new_i_clusters = ocfs2_clusters_for_bytes(osb->sb,
7425                                                   i_size_read(inode));
7426         fe = (struct ocfs2_dinode *) fe_bh->b_data;
7427
7428         mlog(0, "fe->i_clusters = %u, new_i_clusters = %u, fe->i_size ="
7429              "%llu\n", le32_to_cpu(fe->i_clusters), new_i_clusters,
7430              (unsigned long long)le64_to_cpu(fe->i_size));
7431
7432         *tc = kzalloc(sizeof(struct ocfs2_truncate_context), GFP_KERNEL);
7433         if (!(*tc)) {
7434                 status = -ENOMEM;
7435                 mlog_errno(status);
7436                 goto bail;
7437         }
7438         ocfs2_init_dealloc_ctxt(&(*tc)->tc_dealloc);
7439
7440         if (fe->id2.i_list.l_tree_depth) {
7441                 status = ocfs2_read_extent_block(INODE_CACHE(inode),
7442                                                  le64_to_cpu(fe->i_last_eb_blk),
7443                                                  &last_eb_bh);
7444                 if (status < 0) {
7445                         mlog_errno(status);
7446                         goto bail;
7447                 }
7448                 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
7449         }
7450
7451         (*tc)->tc_last_eb_bh = last_eb_bh;
7452
7453         status = 0;
7454 bail:
7455         if (status < 0) {
7456                 if (*tc)
7457                         ocfs2_free_truncate_context(*tc);
7458                 *tc = NULL;
7459         }
7460         mlog_exit_void();
7461         return status;
7462 }
7463
7464 /*
7465  * 'start' is inclusive, 'end' is not.
7466  */
7467 int ocfs2_truncate_inline(struct inode *inode, struct buffer_head *di_bh,
7468                           unsigned int start, unsigned int end, int trunc)
7469 {
7470         int ret;
7471         unsigned int numbytes;
7472         handle_t *handle;
7473         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
7474         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
7475         struct ocfs2_inline_data *idata = &di->id2.i_data;
7476
7477         if (end > i_size_read(inode))
7478                 end = i_size_read(inode);
7479
7480         BUG_ON(start >= end);
7481
7482         if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) ||
7483             !(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL) ||
7484             !ocfs2_supports_inline_data(osb)) {
7485                 ocfs2_error(inode->i_sb,
7486                             "Inline data flags for inode %llu don't agree! "
7487                             "Disk: 0x%x, Memory: 0x%x, Superblock: 0x%x\n",
7488                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
7489                             le16_to_cpu(di->i_dyn_features),
7490                             OCFS2_I(inode)->ip_dyn_features,
7491                             osb->s_feature_incompat);
7492                 ret = -EROFS;
7493                 goto out;
7494         }
7495
7496         handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
7497         if (IS_ERR(handle)) {
7498                 ret = PTR_ERR(handle);
7499                 mlog_errno(ret);
7500                 goto out;
7501         }
7502
7503         ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
7504                                       OCFS2_JOURNAL_ACCESS_WRITE);
7505         if (ret) {
7506                 mlog_errno(ret);
7507                 goto out_commit;
7508         }
7509
7510         numbytes = end - start;
7511         memset(idata->id_data + start, 0, numbytes);
7512
7513         /*
7514          * No need to worry about the data page here - it's been
7515          * truncated already and inline data doesn't need it for
7516          * pushing zero's to disk, so we'll let readpage pick it up
7517          * later.
7518          */
7519         if (trunc) {
7520                 i_size_write(inode, start);
7521                 di->i_size = cpu_to_le64(start);
7522         }
7523
7524         inode->i_blocks = ocfs2_inode_sector_count(inode);
7525         inode->i_ctime = inode->i_mtime = CURRENT_TIME;
7526
7527         di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec);
7528         di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
7529
7530         ocfs2_journal_dirty(handle, di_bh);
7531
7532 out_commit:
7533         ocfs2_commit_trans(osb, handle);
7534
7535 out:
7536         return ret;
7537 }
7538
7539 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc)
7540 {
7541         /*
7542          * The caller is responsible for completing deallocation
7543          * before freeing the context.
7544          */
7545         if (tc->tc_dealloc.c_first_suballocator != NULL)
7546                 mlog(ML_NOTICE,
7547                      "Truncate completion has non-empty dealloc context\n");
7548
7549         brelse(tc->tc_last_eb_bh);
7550
7551         kfree(tc);
7552 }