ocfs2: Add support for cross extent block
[safe/jmp/linux-2.6] / fs / ocfs2 / alloc.c
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * alloc.c
5  *
6  * Extent allocs and frees
7  *
8  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public
12  * License as published by the Free Software Foundation; either
13  * version 2 of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public
21  * License along with this program; if not, write to the
22  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23  * Boston, MA 021110-1307, USA.
24  */
25
26 #include <linux/fs.h>
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/swap.h>
31
32 #define MLOG_MASK_PREFIX ML_DISK_ALLOC
33 #include <cluster/masklog.h>
34
35 #include "ocfs2.h"
36
37 #include "alloc.h"
38 #include "aops.h"
39 #include "dlmglue.h"
40 #include "extent_map.h"
41 #include "inode.h"
42 #include "journal.h"
43 #include "localalloc.h"
44 #include "suballoc.h"
45 #include "sysfile.h"
46 #include "file.h"
47 #include "super.h"
48 #include "uptodate.h"
49
50 #include "buffer_head_io.h"
51
52 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc);
53 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
54                                          struct ocfs2_extent_block *eb);
55
56 /*
57  * Structures which describe a path through a btree, and functions to
58  * manipulate them.
59  *
60  * The idea here is to be as generic as possible with the tree
61  * manipulation code.
62  */
63 struct ocfs2_path_item {
64         struct buffer_head              *bh;
65         struct ocfs2_extent_list        *el;
66 };
67
68 #define OCFS2_MAX_PATH_DEPTH    5
69
70 struct ocfs2_path {
71         int                     p_tree_depth;
72         struct ocfs2_path_item  p_node[OCFS2_MAX_PATH_DEPTH];
73 };
74
75 #define path_root_bh(_path) ((_path)->p_node[0].bh)
76 #define path_root_el(_path) ((_path)->p_node[0].el)
77 #define path_leaf_bh(_path) ((_path)->p_node[(_path)->p_tree_depth].bh)
78 #define path_leaf_el(_path) ((_path)->p_node[(_path)->p_tree_depth].el)
79 #define path_num_items(_path) ((_path)->p_tree_depth + 1)
80
81 /*
82  * Reset the actual path elements so that we can re-use the structure
83  * to build another path. Generally, this involves freeing the buffer
84  * heads.
85  */
86 static void ocfs2_reinit_path(struct ocfs2_path *path, int keep_root)
87 {
88         int i, start = 0, depth = 0;
89         struct ocfs2_path_item *node;
90
91         if (keep_root)
92                 start = 1;
93
94         for(i = start; i < path_num_items(path); i++) {
95                 node = &path->p_node[i];
96
97                 brelse(node->bh);
98                 node->bh = NULL;
99                 node->el = NULL;
100         }
101
102         /*
103          * Tree depth may change during truncate, or insert. If we're
104          * keeping the root extent list, then make sure that our path
105          * structure reflects the proper depth.
106          */
107         if (keep_root)
108                 depth = le16_to_cpu(path_root_el(path)->l_tree_depth);
109
110         path->p_tree_depth = depth;
111 }
112
113 static void ocfs2_free_path(struct ocfs2_path *path)
114 {
115         if (path) {
116                 ocfs2_reinit_path(path, 0);
117                 kfree(path);
118         }
119 }
120
121 /*
122  * All the elements of src into dest. After this call, src could be freed
123  * without affecting dest.
124  *
125  * Both paths should have the same root. Any non-root elements of dest
126  * will be freed.
127  */
128 static void ocfs2_cp_path(struct ocfs2_path *dest, struct ocfs2_path *src)
129 {
130         int i;
131
132         BUG_ON(path_root_bh(dest) != path_root_bh(src));
133         BUG_ON(path_root_el(dest) != path_root_el(src));
134
135         ocfs2_reinit_path(dest, 1);
136
137         for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
138                 dest->p_node[i].bh = src->p_node[i].bh;
139                 dest->p_node[i].el = src->p_node[i].el;
140
141                 if (dest->p_node[i].bh)
142                         get_bh(dest->p_node[i].bh);
143         }
144 }
145
146 /*
147  * Make the *dest path the same as src and re-initialize src path to
148  * have a root only.
149  */
150 static void ocfs2_mv_path(struct ocfs2_path *dest, struct ocfs2_path *src)
151 {
152         int i;
153
154         BUG_ON(path_root_bh(dest) != path_root_bh(src));
155
156         for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
157                 brelse(dest->p_node[i].bh);
158
159                 dest->p_node[i].bh = src->p_node[i].bh;
160                 dest->p_node[i].el = src->p_node[i].el;
161
162                 src->p_node[i].bh = NULL;
163                 src->p_node[i].el = NULL;
164         }
165 }
166
167 /*
168  * Insert an extent block at given index.
169  *
170  * This will not take an additional reference on eb_bh.
171  */
172 static inline void ocfs2_path_insert_eb(struct ocfs2_path *path, int index,
173                                         struct buffer_head *eb_bh)
174 {
175         struct ocfs2_extent_block *eb = (struct ocfs2_extent_block *)eb_bh->b_data;
176
177         /*
178          * Right now, no root bh is an extent block, so this helps
179          * catch code errors with dinode trees. The assertion can be
180          * safely removed if we ever need to insert extent block
181          * structures at the root.
182          */
183         BUG_ON(index == 0);
184
185         path->p_node[index].bh = eb_bh;
186         path->p_node[index].el = &eb->h_list;
187 }
188
189 static struct ocfs2_path *ocfs2_new_path(struct buffer_head *root_bh,
190                                          struct ocfs2_extent_list *root_el)
191 {
192         struct ocfs2_path *path;
193
194         BUG_ON(le16_to_cpu(root_el->l_tree_depth) >= OCFS2_MAX_PATH_DEPTH);
195
196         path = kzalloc(sizeof(*path), GFP_NOFS);
197         if (path) {
198                 path->p_tree_depth = le16_to_cpu(root_el->l_tree_depth);
199                 get_bh(root_bh);
200                 path_root_bh(path) = root_bh;
201                 path_root_el(path) = root_el;
202         }
203
204         return path;
205 }
206
207 /*
208  * Allocate and initialize a new path based on a disk inode tree.
209  */
210 static struct ocfs2_path *ocfs2_new_inode_path(struct buffer_head *di_bh)
211 {
212         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
213         struct ocfs2_extent_list *el = &di->id2.i_list;
214
215         return ocfs2_new_path(di_bh, el);
216 }
217
218 /*
219  * Convenience function to journal all components in a path.
220  */
221 static int ocfs2_journal_access_path(struct inode *inode, handle_t *handle,
222                                      struct ocfs2_path *path)
223 {
224         int i, ret = 0;
225
226         if (!path)
227                 goto out;
228
229         for(i = 0; i < path_num_items(path); i++) {
230                 ret = ocfs2_journal_access(handle, inode, path->p_node[i].bh,
231                                            OCFS2_JOURNAL_ACCESS_WRITE);
232                 if (ret < 0) {
233                         mlog_errno(ret);
234                         goto out;
235                 }
236         }
237
238 out:
239         return ret;
240 }
241
242 /*
243  * Return the index of the extent record which contains cluster #v_cluster.
244  * -1 is returned if it was not found.
245  *
246  * Should work fine on interior and exterior nodes.
247  */
248 int ocfs2_search_extent_list(struct ocfs2_extent_list *el, u32 v_cluster)
249 {
250         int ret = -1;
251         int i;
252         struct ocfs2_extent_rec *rec;
253         u32 rec_end, rec_start, clusters;
254
255         for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
256                 rec = &el->l_recs[i];
257
258                 rec_start = le32_to_cpu(rec->e_cpos);
259                 clusters = ocfs2_rec_clusters(el, rec);
260
261                 rec_end = rec_start + clusters;
262
263                 if (v_cluster >= rec_start && v_cluster < rec_end) {
264                         ret = i;
265                         break;
266                 }
267         }
268
269         return ret;
270 }
271
272 enum ocfs2_contig_type {
273         CONTIG_NONE = 0,
274         CONTIG_LEFT,
275         CONTIG_RIGHT,
276         CONTIG_LEFTRIGHT,
277 };
278
279
280 /*
281  * NOTE: ocfs2_block_extent_contig(), ocfs2_extents_adjacent() and
282  * ocfs2_extent_contig only work properly against leaf nodes!
283  */
284 static int ocfs2_block_extent_contig(struct super_block *sb,
285                                      struct ocfs2_extent_rec *ext,
286                                      u64 blkno)
287 {
288         u64 blk_end = le64_to_cpu(ext->e_blkno);
289
290         blk_end += ocfs2_clusters_to_blocks(sb,
291                                     le16_to_cpu(ext->e_leaf_clusters));
292
293         return blkno == blk_end;
294 }
295
296 static int ocfs2_extents_adjacent(struct ocfs2_extent_rec *left,
297                                   struct ocfs2_extent_rec *right)
298 {
299         u32 left_range;
300
301         left_range = le32_to_cpu(left->e_cpos) +
302                 le16_to_cpu(left->e_leaf_clusters);
303
304         return (left_range == le32_to_cpu(right->e_cpos));
305 }
306
307 static enum ocfs2_contig_type
308         ocfs2_extent_contig(struct inode *inode,
309                             struct ocfs2_extent_rec *ext,
310                             struct ocfs2_extent_rec *insert_rec)
311 {
312         u64 blkno = le64_to_cpu(insert_rec->e_blkno);
313
314         /*
315          * Refuse to coalesce extent records with different flag
316          * fields - we don't want to mix unwritten extents with user
317          * data.
318          */
319         if (ext->e_flags != insert_rec->e_flags)
320                 return CONTIG_NONE;
321
322         if (ocfs2_extents_adjacent(ext, insert_rec) &&
323             ocfs2_block_extent_contig(inode->i_sb, ext, blkno))
324                         return CONTIG_RIGHT;
325
326         blkno = le64_to_cpu(ext->e_blkno);
327         if (ocfs2_extents_adjacent(insert_rec, ext) &&
328             ocfs2_block_extent_contig(inode->i_sb, insert_rec, blkno))
329                 return CONTIG_LEFT;
330
331         return CONTIG_NONE;
332 }
333
334 /*
335  * NOTE: We can have pretty much any combination of contiguousness and
336  * appending.
337  *
338  * The usefulness of APPEND_TAIL is more in that it lets us know that
339  * we'll have to update the path to that leaf.
340  */
341 enum ocfs2_append_type {
342         APPEND_NONE = 0,
343         APPEND_TAIL,
344 };
345
346 enum ocfs2_split_type {
347         SPLIT_NONE = 0,
348         SPLIT_LEFT,
349         SPLIT_RIGHT,
350 };
351
352 struct ocfs2_insert_type {
353         enum ocfs2_split_type   ins_split;
354         enum ocfs2_append_type  ins_appending;
355         enum ocfs2_contig_type  ins_contig;
356         int                     ins_contig_index;
357         int                     ins_tree_depth;
358 };
359
360 struct ocfs2_merge_ctxt {
361         enum ocfs2_contig_type  c_contig_type;
362         int                     c_has_empty_extent;
363         int                     c_split_covers_rec;
364 };
365
366 /*
367  * How many free extents have we got before we need more meta data?
368  */
369 int ocfs2_num_free_extents(struct ocfs2_super *osb,
370                            struct inode *inode,
371                            struct ocfs2_dinode *fe)
372 {
373         int retval;
374         struct ocfs2_extent_list *el;
375         struct ocfs2_extent_block *eb;
376         struct buffer_head *eb_bh = NULL;
377
378         mlog_entry_void();
379
380         if (!OCFS2_IS_VALID_DINODE(fe)) {
381                 OCFS2_RO_ON_INVALID_DINODE(inode->i_sb, fe);
382                 retval = -EIO;
383                 goto bail;
384         }
385
386         if (fe->i_last_eb_blk) {
387                 retval = ocfs2_read_block(osb, le64_to_cpu(fe->i_last_eb_blk),
388                                           &eb_bh, OCFS2_BH_CACHED, inode);
389                 if (retval < 0) {
390                         mlog_errno(retval);
391                         goto bail;
392                 }
393                 eb = (struct ocfs2_extent_block *) eb_bh->b_data;
394                 el = &eb->h_list;
395         } else
396                 el = &fe->id2.i_list;
397
398         BUG_ON(el->l_tree_depth != 0);
399
400         retval = le16_to_cpu(el->l_count) - le16_to_cpu(el->l_next_free_rec);
401 bail:
402         if (eb_bh)
403                 brelse(eb_bh);
404
405         mlog_exit(retval);
406         return retval;
407 }
408
409 /* expects array to already be allocated
410  *
411  * sets h_signature, h_blkno, h_suballoc_bit, h_suballoc_slot, and
412  * l_count for you
413  */
414 static int ocfs2_create_new_meta_bhs(struct ocfs2_super *osb,
415                                      handle_t *handle,
416                                      struct inode *inode,
417                                      int wanted,
418                                      struct ocfs2_alloc_context *meta_ac,
419                                      struct buffer_head *bhs[])
420 {
421         int count, status, i;
422         u16 suballoc_bit_start;
423         u32 num_got;
424         u64 first_blkno;
425         struct ocfs2_extent_block *eb;
426
427         mlog_entry_void();
428
429         count = 0;
430         while (count < wanted) {
431                 status = ocfs2_claim_metadata(osb,
432                                               handle,
433                                               meta_ac,
434                                               wanted - count,
435                                               &suballoc_bit_start,
436                                               &num_got,
437                                               &first_blkno);
438                 if (status < 0) {
439                         mlog_errno(status);
440                         goto bail;
441                 }
442
443                 for(i = count;  i < (num_got + count); i++) {
444                         bhs[i] = sb_getblk(osb->sb, first_blkno);
445                         if (bhs[i] == NULL) {
446                                 status = -EIO;
447                                 mlog_errno(status);
448                                 goto bail;
449                         }
450                         ocfs2_set_new_buffer_uptodate(inode, bhs[i]);
451
452                         status = ocfs2_journal_access(handle, inode, bhs[i],
453                                                       OCFS2_JOURNAL_ACCESS_CREATE);
454                         if (status < 0) {
455                                 mlog_errno(status);
456                                 goto bail;
457                         }
458
459                         memset(bhs[i]->b_data, 0, osb->sb->s_blocksize);
460                         eb = (struct ocfs2_extent_block *) bhs[i]->b_data;
461                         /* Ok, setup the minimal stuff here. */
462                         strcpy(eb->h_signature, OCFS2_EXTENT_BLOCK_SIGNATURE);
463                         eb->h_blkno = cpu_to_le64(first_blkno);
464                         eb->h_fs_generation = cpu_to_le32(osb->fs_generation);
465                         eb->h_suballoc_slot = cpu_to_le16(osb->slot_num);
466                         eb->h_suballoc_bit = cpu_to_le16(suballoc_bit_start);
467                         eb->h_list.l_count =
468                                 cpu_to_le16(ocfs2_extent_recs_per_eb(osb->sb));
469
470                         suballoc_bit_start++;
471                         first_blkno++;
472
473                         /* We'll also be dirtied by the caller, so
474                          * this isn't absolutely necessary. */
475                         status = ocfs2_journal_dirty(handle, bhs[i]);
476                         if (status < 0) {
477                                 mlog_errno(status);
478                                 goto bail;
479                         }
480                 }
481
482                 count += num_got;
483         }
484
485         status = 0;
486 bail:
487         if (status < 0) {
488                 for(i = 0; i < wanted; i++) {
489                         if (bhs[i])
490                                 brelse(bhs[i]);
491                         bhs[i] = NULL;
492                 }
493         }
494         mlog_exit(status);
495         return status;
496 }
497
498 /*
499  * Helper function for ocfs2_add_branch() and ocfs2_shift_tree_depth().
500  *
501  * Returns the sum of the rightmost extent rec logical offset and
502  * cluster count.
503  *
504  * ocfs2_add_branch() uses this to determine what logical cluster
505  * value should be populated into the leftmost new branch records.
506  *
507  * ocfs2_shift_tree_depth() uses this to determine the # clusters
508  * value for the new topmost tree record.
509  */
510 static inline u32 ocfs2_sum_rightmost_rec(struct ocfs2_extent_list  *el)
511 {
512         int i;
513
514         i = le16_to_cpu(el->l_next_free_rec) - 1;
515
516         return le32_to_cpu(el->l_recs[i].e_cpos) +
517                 ocfs2_rec_clusters(el, &el->l_recs[i]);
518 }
519
520 /*
521  * Add an entire tree branch to our inode. eb_bh is the extent block
522  * to start at, if we don't want to start the branch at the dinode
523  * structure.
524  *
525  * last_eb_bh is required as we have to update it's next_leaf pointer
526  * for the new last extent block.
527  *
528  * the new branch will be 'empty' in the sense that every block will
529  * contain a single record with cluster count == 0.
530  */
531 static int ocfs2_add_branch(struct ocfs2_super *osb,
532                             handle_t *handle,
533                             struct inode *inode,
534                             struct buffer_head *fe_bh,
535                             struct buffer_head *eb_bh,
536                             struct buffer_head **last_eb_bh,
537                             struct ocfs2_alloc_context *meta_ac)
538 {
539         int status, new_blocks, i;
540         u64 next_blkno, new_last_eb_blk;
541         struct buffer_head *bh;
542         struct buffer_head **new_eb_bhs = NULL;
543         struct ocfs2_dinode *fe;
544         struct ocfs2_extent_block *eb;
545         struct ocfs2_extent_list  *eb_el;
546         struct ocfs2_extent_list  *el;
547         u32 new_cpos;
548
549         mlog_entry_void();
550
551         BUG_ON(!last_eb_bh || !*last_eb_bh);
552
553         fe = (struct ocfs2_dinode *) fe_bh->b_data;
554
555         if (eb_bh) {
556                 eb = (struct ocfs2_extent_block *) eb_bh->b_data;
557                 el = &eb->h_list;
558         } else
559                 el = &fe->id2.i_list;
560
561         /* we never add a branch to a leaf. */
562         BUG_ON(!el->l_tree_depth);
563
564         new_blocks = le16_to_cpu(el->l_tree_depth);
565
566         /* allocate the number of new eb blocks we need */
567         new_eb_bhs = kcalloc(new_blocks, sizeof(struct buffer_head *),
568                              GFP_KERNEL);
569         if (!new_eb_bhs) {
570                 status = -ENOMEM;
571                 mlog_errno(status);
572                 goto bail;
573         }
574
575         status = ocfs2_create_new_meta_bhs(osb, handle, inode, new_blocks,
576                                            meta_ac, new_eb_bhs);
577         if (status < 0) {
578                 mlog_errno(status);
579                 goto bail;
580         }
581
582         eb = (struct ocfs2_extent_block *)(*last_eb_bh)->b_data;
583         new_cpos = ocfs2_sum_rightmost_rec(&eb->h_list);
584
585         /* Note: new_eb_bhs[new_blocks - 1] is the guy which will be
586          * linked with the rest of the tree.
587          * conversly, new_eb_bhs[0] is the new bottommost leaf.
588          *
589          * when we leave the loop, new_last_eb_blk will point to the
590          * newest leaf, and next_blkno will point to the topmost extent
591          * block. */
592         next_blkno = new_last_eb_blk = 0;
593         for(i = 0; i < new_blocks; i++) {
594                 bh = new_eb_bhs[i];
595                 eb = (struct ocfs2_extent_block *) bh->b_data;
596                 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
597                         OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
598                         status = -EIO;
599                         goto bail;
600                 }
601                 eb_el = &eb->h_list;
602
603                 status = ocfs2_journal_access(handle, inode, bh,
604                                               OCFS2_JOURNAL_ACCESS_CREATE);
605                 if (status < 0) {
606                         mlog_errno(status);
607                         goto bail;
608                 }
609
610                 eb->h_next_leaf_blk = 0;
611                 eb_el->l_tree_depth = cpu_to_le16(i);
612                 eb_el->l_next_free_rec = cpu_to_le16(1);
613                 /*
614                  * This actually counts as an empty extent as
615                  * c_clusters == 0
616                  */
617                 eb_el->l_recs[0].e_cpos = cpu_to_le32(new_cpos);
618                 eb_el->l_recs[0].e_blkno = cpu_to_le64(next_blkno);
619                 /*
620                  * eb_el isn't always an interior node, but even leaf
621                  * nodes want a zero'd flags and reserved field so
622                  * this gets the whole 32 bits regardless of use.
623                  */
624                 eb_el->l_recs[0].e_int_clusters = cpu_to_le32(0);
625                 if (!eb_el->l_tree_depth)
626                         new_last_eb_blk = le64_to_cpu(eb->h_blkno);
627
628                 status = ocfs2_journal_dirty(handle, bh);
629                 if (status < 0) {
630                         mlog_errno(status);
631                         goto bail;
632                 }
633
634                 next_blkno = le64_to_cpu(eb->h_blkno);
635         }
636
637         /* This is a bit hairy. We want to update up to three blocks
638          * here without leaving any of them in an inconsistent state
639          * in case of error. We don't have to worry about
640          * journal_dirty erroring as it won't unless we've aborted the
641          * handle (in which case we would never be here) so reserving
642          * the write with journal_access is all we need to do. */
643         status = ocfs2_journal_access(handle, inode, *last_eb_bh,
644                                       OCFS2_JOURNAL_ACCESS_WRITE);
645         if (status < 0) {
646                 mlog_errno(status);
647                 goto bail;
648         }
649         status = ocfs2_journal_access(handle, inode, fe_bh,
650                                       OCFS2_JOURNAL_ACCESS_WRITE);
651         if (status < 0) {
652                 mlog_errno(status);
653                 goto bail;
654         }
655         if (eb_bh) {
656                 status = ocfs2_journal_access(handle, inode, eb_bh,
657                                               OCFS2_JOURNAL_ACCESS_WRITE);
658                 if (status < 0) {
659                         mlog_errno(status);
660                         goto bail;
661                 }
662         }
663
664         /* Link the new branch into the rest of the tree (el will
665          * either be on the fe, or the extent block passed in. */
666         i = le16_to_cpu(el->l_next_free_rec);
667         el->l_recs[i].e_blkno = cpu_to_le64(next_blkno);
668         el->l_recs[i].e_cpos = cpu_to_le32(new_cpos);
669         el->l_recs[i].e_int_clusters = 0;
670         le16_add_cpu(&el->l_next_free_rec, 1);
671
672         /* fe needs a new last extent block pointer, as does the
673          * next_leaf on the previously last-extent-block. */
674         fe->i_last_eb_blk = cpu_to_le64(new_last_eb_blk);
675
676         eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
677         eb->h_next_leaf_blk = cpu_to_le64(new_last_eb_blk);
678
679         status = ocfs2_journal_dirty(handle, *last_eb_bh);
680         if (status < 0)
681                 mlog_errno(status);
682         status = ocfs2_journal_dirty(handle, fe_bh);
683         if (status < 0)
684                 mlog_errno(status);
685         if (eb_bh) {
686                 status = ocfs2_journal_dirty(handle, eb_bh);
687                 if (status < 0)
688                         mlog_errno(status);
689         }
690
691         /*
692          * Some callers want to track the rightmost leaf so pass it
693          * back here.
694          */
695         brelse(*last_eb_bh);
696         get_bh(new_eb_bhs[0]);
697         *last_eb_bh = new_eb_bhs[0];
698
699         status = 0;
700 bail:
701         if (new_eb_bhs) {
702                 for (i = 0; i < new_blocks; i++)
703                         if (new_eb_bhs[i])
704                                 brelse(new_eb_bhs[i]);
705                 kfree(new_eb_bhs);
706         }
707
708         mlog_exit(status);
709         return status;
710 }
711
712 /*
713  * adds another level to the allocation tree.
714  * returns back the new extent block so you can add a branch to it
715  * after this call.
716  */
717 static int ocfs2_shift_tree_depth(struct ocfs2_super *osb,
718                                   handle_t *handle,
719                                   struct inode *inode,
720                                   struct buffer_head *fe_bh,
721                                   struct ocfs2_alloc_context *meta_ac,
722                                   struct buffer_head **ret_new_eb_bh)
723 {
724         int status, i;
725         u32 new_clusters;
726         struct buffer_head *new_eb_bh = NULL;
727         struct ocfs2_dinode *fe;
728         struct ocfs2_extent_block *eb;
729         struct ocfs2_extent_list  *fe_el;
730         struct ocfs2_extent_list  *eb_el;
731
732         mlog_entry_void();
733
734         status = ocfs2_create_new_meta_bhs(osb, handle, inode, 1, meta_ac,
735                                            &new_eb_bh);
736         if (status < 0) {
737                 mlog_errno(status);
738                 goto bail;
739         }
740
741         eb = (struct ocfs2_extent_block *) new_eb_bh->b_data;
742         if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
743                 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
744                 status = -EIO;
745                 goto bail;
746         }
747
748         eb_el = &eb->h_list;
749         fe = (struct ocfs2_dinode *) fe_bh->b_data;
750         fe_el = &fe->id2.i_list;
751
752         status = ocfs2_journal_access(handle, inode, new_eb_bh,
753                                       OCFS2_JOURNAL_ACCESS_CREATE);
754         if (status < 0) {
755                 mlog_errno(status);
756                 goto bail;
757         }
758
759         /* copy the fe data into the new extent block */
760         eb_el->l_tree_depth = fe_el->l_tree_depth;
761         eb_el->l_next_free_rec = fe_el->l_next_free_rec;
762         for(i = 0; i < le16_to_cpu(fe_el->l_next_free_rec); i++)
763                 eb_el->l_recs[i] = fe_el->l_recs[i];
764
765         status = ocfs2_journal_dirty(handle, new_eb_bh);
766         if (status < 0) {
767                 mlog_errno(status);
768                 goto bail;
769         }
770
771         status = ocfs2_journal_access(handle, inode, fe_bh,
772                                       OCFS2_JOURNAL_ACCESS_WRITE);
773         if (status < 0) {
774                 mlog_errno(status);
775                 goto bail;
776         }
777
778         new_clusters = ocfs2_sum_rightmost_rec(eb_el);
779
780         /* update fe now */
781         le16_add_cpu(&fe_el->l_tree_depth, 1);
782         fe_el->l_recs[0].e_cpos = 0;
783         fe_el->l_recs[0].e_blkno = eb->h_blkno;
784         fe_el->l_recs[0].e_int_clusters = cpu_to_le32(new_clusters);
785         for(i = 1; i < le16_to_cpu(fe_el->l_next_free_rec); i++)
786                 memset(&fe_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
787         fe_el->l_next_free_rec = cpu_to_le16(1);
788
789         /* If this is our 1st tree depth shift, then last_eb_blk
790          * becomes the allocated extent block */
791         if (fe_el->l_tree_depth == cpu_to_le16(1))
792                 fe->i_last_eb_blk = eb->h_blkno;
793
794         status = ocfs2_journal_dirty(handle, fe_bh);
795         if (status < 0) {
796                 mlog_errno(status);
797                 goto bail;
798         }
799
800         *ret_new_eb_bh = new_eb_bh;
801         new_eb_bh = NULL;
802         status = 0;
803 bail:
804         if (new_eb_bh)
805                 brelse(new_eb_bh);
806
807         mlog_exit(status);
808         return status;
809 }
810
811 /*
812  * Should only be called when there is no space left in any of the
813  * leaf nodes. What we want to do is find the lowest tree depth
814  * non-leaf extent block with room for new records. There are three
815  * valid results of this search:
816  *
817  * 1) a lowest extent block is found, then we pass it back in
818  *    *lowest_eb_bh and return '0'
819  *
820  * 2) the search fails to find anything, but the dinode has room. We
821  *    pass NULL back in *lowest_eb_bh, but still return '0'
822  *
823  * 3) the search fails to find anything AND the dinode is full, in
824  *    which case we return > 0
825  *
826  * return status < 0 indicates an error.
827  */
828 static int ocfs2_find_branch_target(struct ocfs2_super *osb,
829                                     struct inode *inode,
830                                     struct buffer_head *fe_bh,
831                                     struct buffer_head **target_bh)
832 {
833         int status = 0, i;
834         u64 blkno;
835         struct ocfs2_dinode *fe;
836         struct ocfs2_extent_block *eb;
837         struct ocfs2_extent_list  *el;
838         struct buffer_head *bh = NULL;
839         struct buffer_head *lowest_bh = NULL;
840
841         mlog_entry_void();
842
843         *target_bh = NULL;
844
845         fe = (struct ocfs2_dinode *) fe_bh->b_data;
846         el = &fe->id2.i_list;
847
848         while(le16_to_cpu(el->l_tree_depth) > 1) {
849                 if (le16_to_cpu(el->l_next_free_rec) == 0) {
850                         ocfs2_error(inode->i_sb, "Dinode %llu has empty "
851                                     "extent list (next_free_rec == 0)",
852                                     (unsigned long long)OCFS2_I(inode)->ip_blkno);
853                         status = -EIO;
854                         goto bail;
855                 }
856                 i = le16_to_cpu(el->l_next_free_rec) - 1;
857                 blkno = le64_to_cpu(el->l_recs[i].e_blkno);
858                 if (!blkno) {
859                         ocfs2_error(inode->i_sb, "Dinode %llu has extent "
860                                     "list where extent # %d has no physical "
861                                     "block start",
862                                     (unsigned long long)OCFS2_I(inode)->ip_blkno, i);
863                         status = -EIO;
864                         goto bail;
865                 }
866
867                 if (bh) {
868                         brelse(bh);
869                         bh = NULL;
870                 }
871
872                 status = ocfs2_read_block(osb, blkno, &bh, OCFS2_BH_CACHED,
873                                           inode);
874                 if (status < 0) {
875                         mlog_errno(status);
876                         goto bail;
877                 }
878
879                 eb = (struct ocfs2_extent_block *) bh->b_data;
880                 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
881                         OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
882                         status = -EIO;
883                         goto bail;
884                 }
885                 el = &eb->h_list;
886
887                 if (le16_to_cpu(el->l_next_free_rec) <
888                     le16_to_cpu(el->l_count)) {
889                         if (lowest_bh)
890                                 brelse(lowest_bh);
891                         lowest_bh = bh;
892                         get_bh(lowest_bh);
893                 }
894         }
895
896         /* If we didn't find one and the fe doesn't have any room,
897          * then return '1' */
898         if (!lowest_bh
899             && (fe->id2.i_list.l_next_free_rec == fe->id2.i_list.l_count))
900                 status = 1;
901
902         *target_bh = lowest_bh;
903 bail:
904         if (bh)
905                 brelse(bh);
906
907         mlog_exit(status);
908         return status;
909 }
910
911 /*
912  * Grow a b-tree so that it has more records.
913  *
914  * We might shift the tree depth in which case existing paths should
915  * be considered invalid.
916  *
917  * Tree depth after the grow is returned via *final_depth.
918  *
919  * *last_eb_bh will be updated by ocfs2_add_branch().
920  */
921 static int ocfs2_grow_tree(struct inode *inode, handle_t *handle,
922                            struct buffer_head *di_bh, int *final_depth,
923                            struct buffer_head **last_eb_bh,
924                            struct ocfs2_alloc_context *meta_ac)
925 {
926         int ret, shift;
927         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
928         int depth = le16_to_cpu(di->id2.i_list.l_tree_depth);
929         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
930         struct buffer_head *bh = NULL;
931
932         BUG_ON(meta_ac == NULL);
933
934         shift = ocfs2_find_branch_target(osb, inode, di_bh, &bh);
935         if (shift < 0) {
936                 ret = shift;
937                 mlog_errno(ret);
938                 goto out;
939         }
940
941         /* We traveled all the way to the bottom of the allocation tree
942          * and didn't find room for any more extents - we need to add
943          * another tree level */
944         if (shift) {
945                 BUG_ON(bh);
946                 mlog(0, "need to shift tree depth (current = %d)\n", depth);
947
948                 /* ocfs2_shift_tree_depth will return us a buffer with
949                  * the new extent block (so we can pass that to
950                  * ocfs2_add_branch). */
951                 ret = ocfs2_shift_tree_depth(osb, handle, inode, di_bh,
952                                              meta_ac, &bh);
953                 if (ret < 0) {
954                         mlog_errno(ret);
955                         goto out;
956                 }
957                 depth++;
958                 if (depth == 1) {
959                         /*
960                          * Special case: we have room now if we shifted from
961                          * tree_depth 0, so no more work needs to be done.
962                          *
963                          * We won't be calling add_branch, so pass
964                          * back *last_eb_bh as the new leaf. At depth
965                          * zero, it should always be null so there's
966                          * no reason to brelse.
967                          */
968                         BUG_ON(*last_eb_bh);
969                         get_bh(bh);
970                         *last_eb_bh = bh;
971                         goto out;
972                 }
973         }
974
975         /* call ocfs2_add_branch to add the final part of the tree with
976          * the new data. */
977         mlog(0, "add branch. bh = %p\n", bh);
978         ret = ocfs2_add_branch(osb, handle, inode, di_bh, bh, last_eb_bh,
979                                meta_ac);
980         if (ret < 0) {
981                 mlog_errno(ret);
982                 goto out;
983         }
984
985 out:
986         if (final_depth)
987                 *final_depth = depth;
988         brelse(bh);
989         return ret;
990 }
991
992 /*
993  * This is only valid for leaf nodes, which are the only ones that can
994  * have empty extents anyway.
995  */
996 static inline int ocfs2_is_empty_extent(struct ocfs2_extent_rec *rec)
997 {
998         return !rec->e_leaf_clusters;
999 }
1000
1001 /*
1002  * This function will discard the rightmost extent record.
1003  */
1004 static void ocfs2_shift_records_right(struct ocfs2_extent_list *el)
1005 {
1006         int next_free = le16_to_cpu(el->l_next_free_rec);
1007         int count = le16_to_cpu(el->l_count);
1008         unsigned int num_bytes;
1009
1010         BUG_ON(!next_free);
1011         /* This will cause us to go off the end of our extent list. */
1012         BUG_ON(next_free >= count);
1013
1014         num_bytes = sizeof(struct ocfs2_extent_rec) * next_free;
1015
1016         memmove(&el->l_recs[1], &el->l_recs[0], num_bytes);
1017 }
1018
1019 static void ocfs2_rotate_leaf(struct ocfs2_extent_list *el,
1020                               struct ocfs2_extent_rec *insert_rec)
1021 {
1022         int i, insert_index, next_free, has_empty, num_bytes;
1023         u32 insert_cpos = le32_to_cpu(insert_rec->e_cpos);
1024         struct ocfs2_extent_rec *rec;
1025
1026         next_free = le16_to_cpu(el->l_next_free_rec);
1027         has_empty = ocfs2_is_empty_extent(&el->l_recs[0]);
1028
1029         BUG_ON(!next_free);
1030
1031         /* The tree code before us didn't allow enough room in the leaf. */
1032         if (el->l_next_free_rec == el->l_count && !has_empty)
1033                 BUG();
1034
1035         /*
1036          * The easiest way to approach this is to just remove the
1037          * empty extent and temporarily decrement next_free.
1038          */
1039         if (has_empty) {
1040                 /*
1041                  * If next_free was 1 (only an empty extent), this
1042                  * loop won't execute, which is fine. We still want
1043                  * the decrement above to happen.
1044                  */
1045                 for(i = 0; i < (next_free - 1); i++)
1046                         el->l_recs[i] = el->l_recs[i+1];
1047
1048                 next_free--;
1049         }
1050
1051         /*
1052          * Figure out what the new record index should be.
1053          */
1054         for(i = 0; i < next_free; i++) {
1055                 rec = &el->l_recs[i];
1056
1057                 if (insert_cpos < le32_to_cpu(rec->e_cpos))
1058                         break;
1059         }
1060         insert_index = i;
1061
1062         mlog(0, "ins %u: index %d, has_empty %d, next_free %d, count %d\n",
1063              insert_cpos, insert_index, has_empty, next_free, le16_to_cpu(el->l_count));
1064
1065         BUG_ON(insert_index < 0);
1066         BUG_ON(insert_index >= le16_to_cpu(el->l_count));
1067         BUG_ON(insert_index > next_free);
1068
1069         /*
1070          * No need to memmove if we're just adding to the tail.
1071          */
1072         if (insert_index != next_free) {
1073                 BUG_ON(next_free >= le16_to_cpu(el->l_count));
1074
1075                 num_bytes = next_free - insert_index;
1076                 num_bytes *= sizeof(struct ocfs2_extent_rec);
1077                 memmove(&el->l_recs[insert_index + 1],
1078                         &el->l_recs[insert_index],
1079                         num_bytes);
1080         }
1081
1082         /*
1083          * Either we had an empty extent, and need to re-increment or
1084          * there was no empty extent on a non full rightmost leaf node,
1085          * in which case we still need to increment.
1086          */
1087         next_free++;
1088         el->l_next_free_rec = cpu_to_le16(next_free);
1089         /*
1090          * Make sure none of the math above just messed up our tree.
1091          */
1092         BUG_ON(le16_to_cpu(el->l_next_free_rec) > le16_to_cpu(el->l_count));
1093
1094         el->l_recs[insert_index] = *insert_rec;
1095
1096 }
1097
1098 static void ocfs2_remove_empty_extent(struct ocfs2_extent_list *el)
1099 {
1100         int size, num_recs = le16_to_cpu(el->l_next_free_rec);
1101
1102         BUG_ON(num_recs == 0);
1103
1104         if (ocfs2_is_empty_extent(&el->l_recs[0])) {
1105                 num_recs--;
1106                 size = num_recs * sizeof(struct ocfs2_extent_rec);
1107                 memmove(&el->l_recs[0], &el->l_recs[1], size);
1108                 memset(&el->l_recs[num_recs], 0,
1109                        sizeof(struct ocfs2_extent_rec));
1110                 el->l_next_free_rec = cpu_to_le16(num_recs);
1111         }
1112 }
1113
1114 /*
1115  * Create an empty extent record .
1116  *
1117  * l_next_free_rec may be updated.
1118  *
1119  * If an empty extent already exists do nothing.
1120  */
1121 static void ocfs2_create_empty_extent(struct ocfs2_extent_list *el)
1122 {
1123         int next_free = le16_to_cpu(el->l_next_free_rec);
1124
1125         BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
1126
1127         if (next_free == 0)
1128                 goto set_and_inc;
1129
1130         if (ocfs2_is_empty_extent(&el->l_recs[0]))
1131                 return;
1132
1133         mlog_bug_on_msg(el->l_count == el->l_next_free_rec,
1134                         "Asked to create an empty extent in a full list:\n"
1135                         "count = %u, tree depth = %u",
1136                         le16_to_cpu(el->l_count),
1137                         le16_to_cpu(el->l_tree_depth));
1138
1139         ocfs2_shift_records_right(el);
1140
1141 set_and_inc:
1142         le16_add_cpu(&el->l_next_free_rec, 1);
1143         memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
1144 }
1145
1146 /*
1147  * For a rotation which involves two leaf nodes, the "root node" is
1148  * the lowest level tree node which contains a path to both leafs. This
1149  * resulting set of information can be used to form a complete "subtree"
1150  *
1151  * This function is passed two full paths from the dinode down to a
1152  * pair of adjacent leaves. It's task is to figure out which path
1153  * index contains the subtree root - this can be the root index itself
1154  * in a worst-case rotation.
1155  *
1156  * The array index of the subtree root is passed back.
1157  */
1158 static int ocfs2_find_subtree_root(struct inode *inode,
1159                                    struct ocfs2_path *left,
1160                                    struct ocfs2_path *right)
1161 {
1162         int i = 0;
1163
1164         /*
1165          * Check that the caller passed in two paths from the same tree.
1166          */
1167         BUG_ON(path_root_bh(left) != path_root_bh(right));
1168
1169         do {
1170                 i++;
1171
1172                 /*
1173                  * The caller didn't pass two adjacent paths.
1174                  */
1175                 mlog_bug_on_msg(i > left->p_tree_depth,
1176                                 "Inode %lu, left depth %u, right depth %u\n"
1177                                 "left leaf blk %llu, right leaf blk %llu\n",
1178                                 inode->i_ino, left->p_tree_depth,
1179                                 right->p_tree_depth,
1180                                 (unsigned long long)path_leaf_bh(left)->b_blocknr,
1181                                 (unsigned long long)path_leaf_bh(right)->b_blocknr);
1182         } while (left->p_node[i].bh->b_blocknr ==
1183                  right->p_node[i].bh->b_blocknr);
1184
1185         return i - 1;
1186 }
1187
1188 typedef void (path_insert_t)(void *, struct buffer_head *);
1189
1190 /*
1191  * Traverse a btree path in search of cpos, starting at root_el.
1192  *
1193  * This code can be called with a cpos larger than the tree, in which
1194  * case it will return the rightmost path.
1195  */
1196 static int __ocfs2_find_path(struct inode *inode,
1197                              struct ocfs2_extent_list *root_el, u32 cpos,
1198                              path_insert_t *func, void *data)
1199 {
1200         int i, ret = 0;
1201         u32 range;
1202         u64 blkno;
1203         struct buffer_head *bh = NULL;
1204         struct ocfs2_extent_block *eb;
1205         struct ocfs2_extent_list *el;
1206         struct ocfs2_extent_rec *rec;
1207         struct ocfs2_inode_info *oi = OCFS2_I(inode);
1208
1209         el = root_el;
1210         while (el->l_tree_depth) {
1211                 if (le16_to_cpu(el->l_next_free_rec) == 0) {
1212                         ocfs2_error(inode->i_sb,
1213                                     "Inode %llu has empty extent list at "
1214                                     "depth %u\n",
1215                                     (unsigned long long)oi->ip_blkno,
1216                                     le16_to_cpu(el->l_tree_depth));
1217                         ret = -EROFS;
1218                         goto out;
1219
1220                 }
1221
1222                 for(i = 0; i < le16_to_cpu(el->l_next_free_rec) - 1; i++) {
1223                         rec = &el->l_recs[i];
1224
1225                         /*
1226                          * In the case that cpos is off the allocation
1227                          * tree, this should just wind up returning the
1228                          * rightmost record.
1229                          */
1230                         range = le32_to_cpu(rec->e_cpos) +
1231                                 ocfs2_rec_clusters(el, rec);
1232                         if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
1233                             break;
1234                 }
1235
1236                 blkno = le64_to_cpu(el->l_recs[i].e_blkno);
1237                 if (blkno == 0) {
1238                         ocfs2_error(inode->i_sb,
1239                                     "Inode %llu has bad blkno in extent list "
1240                                     "at depth %u (index %d)\n",
1241                                     (unsigned long long)oi->ip_blkno,
1242                                     le16_to_cpu(el->l_tree_depth), i);
1243                         ret = -EROFS;
1244                         goto out;
1245                 }
1246
1247                 brelse(bh);
1248                 bh = NULL;
1249                 ret = ocfs2_read_block(OCFS2_SB(inode->i_sb), blkno,
1250                                        &bh, OCFS2_BH_CACHED, inode);
1251                 if (ret) {
1252                         mlog_errno(ret);
1253                         goto out;
1254                 }
1255
1256                 eb = (struct ocfs2_extent_block *) bh->b_data;
1257                 el = &eb->h_list;
1258                 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
1259                         OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
1260                         ret = -EIO;
1261                         goto out;
1262                 }
1263
1264                 if (le16_to_cpu(el->l_next_free_rec) >
1265                     le16_to_cpu(el->l_count)) {
1266                         ocfs2_error(inode->i_sb,
1267                                     "Inode %llu has bad count in extent list "
1268                                     "at block %llu (next free=%u, count=%u)\n",
1269                                     (unsigned long long)oi->ip_blkno,
1270                                     (unsigned long long)bh->b_blocknr,
1271                                     le16_to_cpu(el->l_next_free_rec),
1272                                     le16_to_cpu(el->l_count));
1273                         ret = -EROFS;
1274                         goto out;
1275                 }
1276
1277                 if (func)
1278                         func(data, bh);
1279         }
1280
1281 out:
1282         /*
1283          * Catch any trailing bh that the loop didn't handle.
1284          */
1285         brelse(bh);
1286
1287         return ret;
1288 }
1289
1290 /*
1291  * Given an initialized path (that is, it has a valid root extent
1292  * list), this function will traverse the btree in search of the path
1293  * which would contain cpos.
1294  *
1295  * The path traveled is recorded in the path structure.
1296  *
1297  * Note that this will not do any comparisons on leaf node extent
1298  * records, so it will work fine in the case that we just added a tree
1299  * branch.
1300  */
1301 struct find_path_data {
1302         int index;
1303         struct ocfs2_path *path;
1304 };
1305 static void find_path_ins(void *data, struct buffer_head *bh)
1306 {
1307         struct find_path_data *fp = data;
1308
1309         get_bh(bh);
1310         ocfs2_path_insert_eb(fp->path, fp->index, bh);
1311         fp->index++;
1312 }
1313 static int ocfs2_find_path(struct inode *inode, struct ocfs2_path *path,
1314                            u32 cpos)
1315 {
1316         struct find_path_data data;
1317
1318         data.index = 1;
1319         data.path = path;
1320         return __ocfs2_find_path(inode, path_root_el(path), cpos,
1321                                  find_path_ins, &data);
1322 }
1323
1324 static void find_leaf_ins(void *data, struct buffer_head *bh)
1325 {
1326         struct ocfs2_extent_block *eb =(struct ocfs2_extent_block *)bh->b_data;
1327         struct ocfs2_extent_list *el = &eb->h_list;
1328         struct buffer_head **ret = data;
1329
1330         /* We want to retain only the leaf block. */
1331         if (le16_to_cpu(el->l_tree_depth) == 0) {
1332                 get_bh(bh);
1333                 *ret = bh;
1334         }
1335 }
1336 /*
1337  * Find the leaf block in the tree which would contain cpos. No
1338  * checking of the actual leaf is done.
1339  *
1340  * Some paths want to call this instead of allocating a path structure
1341  * and calling ocfs2_find_path().
1342  *
1343  * This function doesn't handle non btree extent lists.
1344  */
1345 int ocfs2_find_leaf(struct inode *inode, struct ocfs2_extent_list *root_el,
1346                     u32 cpos, struct buffer_head **leaf_bh)
1347 {
1348         int ret;
1349         struct buffer_head *bh = NULL;
1350
1351         ret = __ocfs2_find_path(inode, root_el, cpos, find_leaf_ins, &bh);
1352         if (ret) {
1353                 mlog_errno(ret);
1354                 goto out;
1355         }
1356
1357         *leaf_bh = bh;
1358 out:
1359         return ret;
1360 }
1361
1362 /*
1363  * Adjust the adjacent records (left_rec, right_rec) involved in a rotation.
1364  *
1365  * Basically, we've moved stuff around at the bottom of the tree and
1366  * we need to fix up the extent records above the changes to reflect
1367  * the new changes.
1368  *
1369  * left_rec: the record on the left.
1370  * left_child_el: is the child list pointed to by left_rec
1371  * right_rec: the record to the right of left_rec
1372  * right_child_el: is the child list pointed to by right_rec
1373  *
1374  * By definition, this only works on interior nodes.
1375  */
1376 static void ocfs2_adjust_adjacent_records(struct ocfs2_extent_rec *left_rec,
1377                                   struct ocfs2_extent_list *left_child_el,
1378                                   struct ocfs2_extent_rec *right_rec,
1379                                   struct ocfs2_extent_list *right_child_el)
1380 {
1381         u32 left_clusters, right_end;
1382
1383         /*
1384          * Interior nodes never have holes. Their cpos is the cpos of
1385          * the leftmost record in their child list. Their cluster
1386          * count covers the full theoretical range of their child list
1387          * - the range between their cpos and the cpos of the record
1388          * immediately to their right.
1389          */
1390         left_clusters = le32_to_cpu(right_child_el->l_recs[0].e_cpos);
1391         if (ocfs2_is_empty_extent(&right_child_el->l_recs[0])) {
1392                 BUG_ON(le16_to_cpu(right_child_el->l_next_free_rec) <= 1);
1393                 left_clusters = le32_to_cpu(right_child_el->l_recs[1].e_cpos);
1394         }
1395         left_clusters -= le32_to_cpu(left_rec->e_cpos);
1396         left_rec->e_int_clusters = cpu_to_le32(left_clusters);
1397
1398         /*
1399          * Calculate the rightmost cluster count boundary before
1400          * moving cpos - we will need to adjust clusters after
1401          * updating e_cpos to keep the same highest cluster count.
1402          */
1403         right_end = le32_to_cpu(right_rec->e_cpos);
1404         right_end += le32_to_cpu(right_rec->e_int_clusters);
1405
1406         right_rec->e_cpos = left_rec->e_cpos;
1407         le32_add_cpu(&right_rec->e_cpos, left_clusters);
1408
1409         right_end -= le32_to_cpu(right_rec->e_cpos);
1410         right_rec->e_int_clusters = cpu_to_le32(right_end);
1411 }
1412
1413 /*
1414  * Adjust the adjacent root node records involved in a
1415  * rotation. left_el_blkno is passed in as a key so that we can easily
1416  * find it's index in the root list.
1417  */
1418 static void ocfs2_adjust_root_records(struct ocfs2_extent_list *root_el,
1419                                       struct ocfs2_extent_list *left_el,
1420                                       struct ocfs2_extent_list *right_el,
1421                                       u64 left_el_blkno)
1422 {
1423         int i;
1424
1425         BUG_ON(le16_to_cpu(root_el->l_tree_depth) <=
1426                le16_to_cpu(left_el->l_tree_depth));
1427
1428         for(i = 0; i < le16_to_cpu(root_el->l_next_free_rec) - 1; i++) {
1429                 if (le64_to_cpu(root_el->l_recs[i].e_blkno) == left_el_blkno)
1430                         break;
1431         }
1432
1433         /*
1434          * The path walking code should have never returned a root and
1435          * two paths which are not adjacent.
1436          */
1437         BUG_ON(i >= (le16_to_cpu(root_el->l_next_free_rec) - 1));
1438
1439         ocfs2_adjust_adjacent_records(&root_el->l_recs[i], left_el,
1440                                       &root_el->l_recs[i + 1], right_el);
1441 }
1442
1443 /*
1444  * We've changed a leaf block (in right_path) and need to reflect that
1445  * change back up the subtree.
1446  *
1447  * This happens in multiple places:
1448  *   - When we've moved an extent record from the left path leaf to the right
1449  *     path leaf to make room for an empty extent in the left path leaf.
1450  *   - When our insert into the right path leaf is at the leftmost edge
1451  *     and requires an update of the path immediately to it's left. This
1452  *     can occur at the end of some types of rotation and appending inserts.
1453  *   - When we've adjusted the last extent record in the left path leaf and the
1454  *     1st extent record in the right path leaf during cross extent block merge.
1455  */
1456 static void ocfs2_complete_edge_insert(struct inode *inode, handle_t *handle,
1457                                        struct ocfs2_path *left_path,
1458                                        struct ocfs2_path *right_path,
1459                                        int subtree_index)
1460 {
1461         int ret, i, idx;
1462         struct ocfs2_extent_list *el, *left_el, *right_el;
1463         struct ocfs2_extent_rec *left_rec, *right_rec;
1464         struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
1465
1466         /*
1467          * Update the counts and position values within all the
1468          * interior nodes to reflect the leaf rotation we just did.
1469          *
1470          * The root node is handled below the loop.
1471          *
1472          * We begin the loop with right_el and left_el pointing to the
1473          * leaf lists and work our way up.
1474          *
1475          * NOTE: within this loop, left_el and right_el always refer
1476          * to the *child* lists.
1477          */
1478         left_el = path_leaf_el(left_path);
1479         right_el = path_leaf_el(right_path);
1480         for(i = left_path->p_tree_depth - 1; i > subtree_index; i--) {
1481                 mlog(0, "Adjust records at index %u\n", i);
1482
1483                 /*
1484                  * One nice property of knowing that all of these
1485                  * nodes are below the root is that we only deal with
1486                  * the leftmost right node record and the rightmost
1487                  * left node record.
1488                  */
1489                 el = left_path->p_node[i].el;
1490                 idx = le16_to_cpu(left_el->l_next_free_rec) - 1;
1491                 left_rec = &el->l_recs[idx];
1492
1493                 el = right_path->p_node[i].el;
1494                 right_rec = &el->l_recs[0];
1495
1496                 ocfs2_adjust_adjacent_records(left_rec, left_el, right_rec,
1497                                               right_el);
1498
1499                 ret = ocfs2_journal_dirty(handle, left_path->p_node[i].bh);
1500                 if (ret)
1501                         mlog_errno(ret);
1502
1503                 ret = ocfs2_journal_dirty(handle, right_path->p_node[i].bh);
1504                 if (ret)
1505                         mlog_errno(ret);
1506
1507                 /*
1508                  * Setup our list pointers now so that the current
1509                  * parents become children in the next iteration.
1510                  */
1511                 left_el = left_path->p_node[i].el;
1512                 right_el = right_path->p_node[i].el;
1513         }
1514
1515         /*
1516          * At the root node, adjust the two adjacent records which
1517          * begin our path to the leaves.
1518          */
1519
1520         el = left_path->p_node[subtree_index].el;
1521         left_el = left_path->p_node[subtree_index + 1].el;
1522         right_el = right_path->p_node[subtree_index + 1].el;
1523
1524         ocfs2_adjust_root_records(el, left_el, right_el,
1525                                   left_path->p_node[subtree_index + 1].bh->b_blocknr);
1526
1527         root_bh = left_path->p_node[subtree_index].bh;
1528
1529         ret = ocfs2_journal_dirty(handle, root_bh);
1530         if (ret)
1531                 mlog_errno(ret);
1532 }
1533
1534 static int ocfs2_rotate_subtree_right(struct inode *inode,
1535                                       handle_t *handle,
1536                                       struct ocfs2_path *left_path,
1537                                       struct ocfs2_path *right_path,
1538                                       int subtree_index)
1539 {
1540         int ret, i;
1541         struct buffer_head *right_leaf_bh;
1542         struct buffer_head *left_leaf_bh = NULL;
1543         struct buffer_head *root_bh;
1544         struct ocfs2_extent_list *right_el, *left_el;
1545         struct ocfs2_extent_rec move_rec;
1546
1547         left_leaf_bh = path_leaf_bh(left_path);
1548         left_el = path_leaf_el(left_path);
1549
1550         if (left_el->l_next_free_rec != left_el->l_count) {
1551                 ocfs2_error(inode->i_sb,
1552                             "Inode %llu has non-full interior leaf node %llu"
1553                             "(next free = %u)",
1554                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
1555                             (unsigned long long)left_leaf_bh->b_blocknr,
1556                             le16_to_cpu(left_el->l_next_free_rec));
1557                 return -EROFS;
1558         }
1559
1560         /*
1561          * This extent block may already have an empty record, so we
1562          * return early if so.
1563          */
1564         if (ocfs2_is_empty_extent(&left_el->l_recs[0]))
1565                 return 0;
1566
1567         root_bh = left_path->p_node[subtree_index].bh;
1568         BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
1569
1570         ret = ocfs2_journal_access(handle, inode, root_bh,
1571                                    OCFS2_JOURNAL_ACCESS_WRITE);
1572         if (ret) {
1573                 mlog_errno(ret);
1574                 goto out;
1575         }
1576
1577         for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
1578                 ret = ocfs2_journal_access(handle, inode,
1579                                            right_path->p_node[i].bh,
1580                                            OCFS2_JOURNAL_ACCESS_WRITE);
1581                 if (ret) {
1582                         mlog_errno(ret);
1583                         goto out;
1584                 }
1585
1586                 ret = ocfs2_journal_access(handle, inode,
1587                                            left_path->p_node[i].bh,
1588                                            OCFS2_JOURNAL_ACCESS_WRITE);
1589                 if (ret) {
1590                         mlog_errno(ret);
1591                         goto out;
1592                 }
1593         }
1594
1595         right_leaf_bh = path_leaf_bh(right_path);
1596         right_el = path_leaf_el(right_path);
1597
1598         /* This is a code error, not a disk corruption. */
1599         mlog_bug_on_msg(!right_el->l_next_free_rec, "Inode %llu: Rotate fails "
1600                         "because rightmost leaf block %llu is empty\n",
1601                         (unsigned long long)OCFS2_I(inode)->ip_blkno,
1602                         (unsigned long long)right_leaf_bh->b_blocknr);
1603
1604         ocfs2_create_empty_extent(right_el);
1605
1606         ret = ocfs2_journal_dirty(handle, right_leaf_bh);
1607         if (ret) {
1608                 mlog_errno(ret);
1609                 goto out;
1610         }
1611
1612         /* Do the copy now. */
1613         i = le16_to_cpu(left_el->l_next_free_rec) - 1;
1614         move_rec = left_el->l_recs[i];
1615         right_el->l_recs[0] = move_rec;
1616
1617         /*
1618          * Clear out the record we just copied and shift everything
1619          * over, leaving an empty extent in the left leaf.
1620          *
1621          * We temporarily subtract from next_free_rec so that the
1622          * shift will lose the tail record (which is now defunct).
1623          */
1624         le16_add_cpu(&left_el->l_next_free_rec, -1);
1625         ocfs2_shift_records_right(left_el);
1626         memset(&left_el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
1627         le16_add_cpu(&left_el->l_next_free_rec, 1);
1628
1629         ret = ocfs2_journal_dirty(handle, left_leaf_bh);
1630         if (ret) {
1631                 mlog_errno(ret);
1632                 goto out;
1633         }
1634
1635         ocfs2_complete_edge_insert(inode, handle, left_path, right_path,
1636                                 subtree_index);
1637
1638 out:
1639         return ret;
1640 }
1641
1642 /*
1643  * Given a full path, determine what cpos value would return us a path
1644  * containing the leaf immediately to the left of the current one.
1645  *
1646  * Will return zero if the path passed in is already the leftmost path.
1647  */
1648 static int ocfs2_find_cpos_for_left_leaf(struct super_block *sb,
1649                                          struct ocfs2_path *path, u32 *cpos)
1650 {
1651         int i, j, ret = 0;
1652         u64 blkno;
1653         struct ocfs2_extent_list *el;
1654
1655         BUG_ON(path->p_tree_depth == 0);
1656
1657         *cpos = 0;
1658
1659         blkno = path_leaf_bh(path)->b_blocknr;
1660
1661         /* Start at the tree node just above the leaf and work our way up. */
1662         i = path->p_tree_depth - 1;
1663         while (i >= 0) {
1664                 el = path->p_node[i].el;
1665
1666                 /*
1667                  * Find the extent record just before the one in our
1668                  * path.
1669                  */
1670                 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
1671                         if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
1672                                 if (j == 0) {
1673                                         if (i == 0) {
1674                                                 /*
1675                                                  * We've determined that the
1676                                                  * path specified is already
1677                                                  * the leftmost one - return a
1678                                                  * cpos of zero.
1679                                                  */
1680                                                 goto out;
1681                                         }
1682                                         /*
1683                                          * The leftmost record points to our
1684                                          * leaf - we need to travel up the
1685                                          * tree one level.
1686                                          */
1687                                         goto next_node;
1688                                 }
1689
1690                                 *cpos = le32_to_cpu(el->l_recs[j - 1].e_cpos);
1691                                 *cpos = *cpos + ocfs2_rec_clusters(el,
1692                                                            &el->l_recs[j - 1]);
1693                                 *cpos = *cpos - 1;
1694                                 goto out;
1695                         }
1696                 }
1697
1698                 /*
1699                  * If we got here, we never found a valid node where
1700                  * the tree indicated one should be.
1701                  */
1702                 ocfs2_error(sb,
1703                             "Invalid extent tree at extent block %llu\n",
1704                             (unsigned long long)blkno);
1705                 ret = -EROFS;
1706                 goto out;
1707
1708 next_node:
1709                 blkno = path->p_node[i].bh->b_blocknr;
1710                 i--;
1711         }
1712
1713 out:
1714         return ret;
1715 }
1716
1717 /*
1718  * Extend the transaction by enough credits to complete the rotation,
1719  * and still leave at least the original number of credits allocated
1720  * to this transaction.
1721  */
1722 static int ocfs2_extend_rotate_transaction(handle_t *handle, int subtree_depth,
1723                                            int op_credits,
1724                                            struct ocfs2_path *path)
1725 {
1726         int credits = (path->p_tree_depth - subtree_depth) * 2 + 1 + op_credits;
1727
1728         if (handle->h_buffer_credits < credits)
1729                 return ocfs2_extend_trans(handle, credits);
1730
1731         return 0;
1732 }
1733
1734 /*
1735  * Trap the case where we're inserting into the theoretical range past
1736  * the _actual_ left leaf range. Otherwise, we'll rotate a record
1737  * whose cpos is less than ours into the right leaf.
1738  *
1739  * It's only necessary to look at the rightmost record of the left
1740  * leaf because the logic that calls us should ensure that the
1741  * theoretical ranges in the path components above the leaves are
1742  * correct.
1743  */
1744 static int ocfs2_rotate_requires_path_adjustment(struct ocfs2_path *left_path,
1745                                                  u32 insert_cpos)
1746 {
1747         struct ocfs2_extent_list *left_el;
1748         struct ocfs2_extent_rec *rec;
1749         int next_free;
1750
1751         left_el = path_leaf_el(left_path);
1752         next_free = le16_to_cpu(left_el->l_next_free_rec);
1753         rec = &left_el->l_recs[next_free - 1];
1754
1755         if (insert_cpos > le32_to_cpu(rec->e_cpos))
1756                 return 1;
1757         return 0;
1758 }
1759
1760 static int ocfs2_leftmost_rec_contains(struct ocfs2_extent_list *el, u32 cpos)
1761 {
1762         int next_free = le16_to_cpu(el->l_next_free_rec);
1763         unsigned int range;
1764         struct ocfs2_extent_rec *rec;
1765
1766         if (next_free == 0)
1767                 return 0;
1768
1769         rec = &el->l_recs[0];
1770         if (ocfs2_is_empty_extent(rec)) {
1771                 /* Empty list. */
1772                 if (next_free == 1)
1773                         return 0;
1774                 rec = &el->l_recs[1];
1775         }
1776
1777         range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
1778         if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
1779                 return 1;
1780         return 0;
1781 }
1782
1783 /*
1784  * Rotate all the records in a btree right one record, starting at insert_cpos.
1785  *
1786  * The path to the rightmost leaf should be passed in.
1787  *
1788  * The array is assumed to be large enough to hold an entire path (tree depth).
1789  *
1790  * Upon succesful return from this function:
1791  *
1792  * - The 'right_path' array will contain a path to the leaf block
1793  *   whose range contains e_cpos.
1794  * - That leaf block will have a single empty extent in list index 0.
1795  * - In the case that the rotation requires a post-insert update,
1796  *   *ret_left_path will contain a valid path which can be passed to
1797  *   ocfs2_insert_path().
1798  */
1799 static int ocfs2_rotate_tree_right(struct inode *inode,
1800                                    handle_t *handle,
1801                                    enum ocfs2_split_type split,
1802                                    u32 insert_cpos,
1803                                    struct ocfs2_path *right_path,
1804                                    struct ocfs2_path **ret_left_path)
1805 {
1806         int ret, start, orig_credits = handle->h_buffer_credits;
1807         u32 cpos;
1808         struct ocfs2_path *left_path = NULL;
1809
1810         *ret_left_path = NULL;
1811
1812         left_path = ocfs2_new_path(path_root_bh(right_path),
1813                                    path_root_el(right_path));
1814         if (!left_path) {
1815                 ret = -ENOMEM;
1816                 mlog_errno(ret);
1817                 goto out;
1818         }
1819
1820         ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path, &cpos);
1821         if (ret) {
1822                 mlog_errno(ret);
1823                 goto out;
1824         }
1825
1826         mlog(0, "Insert: %u, first left path cpos: %u\n", insert_cpos, cpos);
1827
1828         /*
1829          * What we want to do here is:
1830          *
1831          * 1) Start with the rightmost path.
1832          *
1833          * 2) Determine a path to the leaf block directly to the left
1834          *    of that leaf.
1835          *
1836          * 3) Determine the 'subtree root' - the lowest level tree node
1837          *    which contains a path to both leaves.
1838          *
1839          * 4) Rotate the subtree.
1840          *
1841          * 5) Find the next subtree by considering the left path to be
1842          *    the new right path.
1843          *
1844          * The check at the top of this while loop also accepts
1845          * insert_cpos == cpos because cpos is only a _theoretical_
1846          * value to get us the left path - insert_cpos might very well
1847          * be filling that hole.
1848          *
1849          * Stop at a cpos of '0' because we either started at the
1850          * leftmost branch (i.e., a tree with one branch and a
1851          * rotation inside of it), or we've gone as far as we can in
1852          * rotating subtrees.
1853          */
1854         while (cpos && insert_cpos <= cpos) {
1855                 mlog(0, "Rotating a tree: ins. cpos: %u, left path cpos: %u\n",
1856                      insert_cpos, cpos);
1857
1858                 ret = ocfs2_find_path(inode, left_path, cpos);
1859                 if (ret) {
1860                         mlog_errno(ret);
1861                         goto out;
1862                 }
1863
1864                 mlog_bug_on_msg(path_leaf_bh(left_path) ==
1865                                 path_leaf_bh(right_path),
1866                                 "Inode %lu: error during insert of %u "
1867                                 "(left path cpos %u) results in two identical "
1868                                 "paths ending at %llu\n",
1869                                 inode->i_ino, insert_cpos, cpos,
1870                                 (unsigned long long)
1871                                 path_leaf_bh(left_path)->b_blocknr);
1872
1873                 if (split == SPLIT_NONE &&
1874                     ocfs2_rotate_requires_path_adjustment(left_path,
1875                                                           insert_cpos)) {
1876
1877                         /*
1878                          * We've rotated the tree as much as we
1879                          * should. The rest is up to
1880                          * ocfs2_insert_path() to complete, after the
1881                          * record insertion. We indicate this
1882                          * situation by returning the left path.
1883                          *
1884                          * The reason we don't adjust the records here
1885                          * before the record insert is that an error
1886                          * later might break the rule where a parent
1887                          * record e_cpos will reflect the actual
1888                          * e_cpos of the 1st nonempty record of the
1889                          * child list.
1890                          */
1891                         *ret_left_path = left_path;
1892                         goto out_ret_path;
1893                 }
1894
1895                 start = ocfs2_find_subtree_root(inode, left_path, right_path);
1896
1897                 mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n",
1898                      start,
1899                      (unsigned long long) right_path->p_node[start].bh->b_blocknr,
1900                      right_path->p_tree_depth);
1901
1902                 ret = ocfs2_extend_rotate_transaction(handle, start,
1903                                                       orig_credits, right_path);
1904                 if (ret) {
1905                         mlog_errno(ret);
1906                         goto out;
1907                 }
1908
1909                 ret = ocfs2_rotate_subtree_right(inode, handle, left_path,
1910                                                  right_path, start);
1911                 if (ret) {
1912                         mlog_errno(ret);
1913                         goto out;
1914                 }
1915
1916                 if (split != SPLIT_NONE &&
1917                     ocfs2_leftmost_rec_contains(path_leaf_el(right_path),
1918                                                 insert_cpos)) {
1919                         /*
1920                          * A rotate moves the rightmost left leaf
1921                          * record over to the leftmost right leaf
1922                          * slot. If we're doing an extent split
1923                          * instead of a real insert, then we have to
1924                          * check that the extent to be split wasn't
1925                          * just moved over. If it was, then we can
1926                          * exit here, passing left_path back -
1927                          * ocfs2_split_extent() is smart enough to
1928                          * search both leaves.
1929                          */
1930                         *ret_left_path = left_path;
1931                         goto out_ret_path;
1932                 }
1933
1934                 /*
1935                  * There is no need to re-read the next right path
1936                  * as we know that it'll be our current left
1937                  * path. Optimize by copying values instead.
1938                  */
1939                 ocfs2_mv_path(right_path, left_path);
1940
1941                 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path,
1942                                                     &cpos);
1943                 if (ret) {
1944                         mlog_errno(ret);
1945                         goto out;
1946                 }
1947         }
1948
1949 out:
1950         ocfs2_free_path(left_path);
1951
1952 out_ret_path:
1953         return ret;
1954 }
1955
1956 static void ocfs2_update_edge_lengths(struct inode *inode, handle_t *handle,
1957                                       struct ocfs2_path *path)
1958 {
1959         int i, idx;
1960         struct ocfs2_extent_rec *rec;
1961         struct ocfs2_extent_list *el;
1962         struct ocfs2_extent_block *eb;
1963         u32 range;
1964
1965         /* Path should always be rightmost. */
1966         eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
1967         BUG_ON(eb->h_next_leaf_blk != 0ULL);
1968
1969         el = &eb->h_list;
1970         BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0);
1971         idx = le16_to_cpu(el->l_next_free_rec) - 1;
1972         rec = &el->l_recs[idx];
1973         range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
1974
1975         for (i = 0; i < path->p_tree_depth; i++) {
1976                 el = path->p_node[i].el;
1977                 idx = le16_to_cpu(el->l_next_free_rec) - 1;
1978                 rec = &el->l_recs[idx];
1979
1980                 rec->e_int_clusters = cpu_to_le32(range);
1981                 le32_add_cpu(&rec->e_int_clusters, -le32_to_cpu(rec->e_cpos));
1982
1983                 ocfs2_journal_dirty(handle, path->p_node[i].bh);
1984         }
1985 }
1986
1987 static void ocfs2_unlink_path(struct inode *inode, handle_t *handle,
1988                               struct ocfs2_cached_dealloc_ctxt *dealloc,
1989                               struct ocfs2_path *path, int unlink_start)
1990 {
1991         int ret, i;
1992         struct ocfs2_extent_block *eb;
1993         struct ocfs2_extent_list *el;
1994         struct buffer_head *bh;
1995
1996         for(i = unlink_start; i < path_num_items(path); i++) {
1997                 bh = path->p_node[i].bh;
1998
1999                 eb = (struct ocfs2_extent_block *)bh->b_data;
2000                 /*
2001                  * Not all nodes might have had their final count
2002                  * decremented by the caller - handle this here.
2003                  */
2004                 el = &eb->h_list;
2005                 if (le16_to_cpu(el->l_next_free_rec) > 1) {
2006                         mlog(ML_ERROR,
2007                              "Inode %llu, attempted to remove extent block "
2008                              "%llu with %u records\n",
2009                              (unsigned long long)OCFS2_I(inode)->ip_blkno,
2010                              (unsigned long long)le64_to_cpu(eb->h_blkno),
2011                              le16_to_cpu(el->l_next_free_rec));
2012
2013                         ocfs2_journal_dirty(handle, bh);
2014                         ocfs2_remove_from_cache(inode, bh);
2015                         continue;
2016                 }
2017
2018                 el->l_next_free_rec = 0;
2019                 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2020
2021                 ocfs2_journal_dirty(handle, bh);
2022
2023                 ret = ocfs2_cache_extent_block_free(dealloc, eb);
2024                 if (ret)
2025                         mlog_errno(ret);
2026
2027                 ocfs2_remove_from_cache(inode, bh);
2028         }
2029 }
2030
2031 static void ocfs2_unlink_subtree(struct inode *inode, handle_t *handle,
2032                                  struct ocfs2_path *left_path,
2033                                  struct ocfs2_path *right_path,
2034                                  int subtree_index,
2035                                  struct ocfs2_cached_dealloc_ctxt *dealloc)
2036 {
2037         int i;
2038         struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
2039         struct ocfs2_extent_list *root_el = left_path->p_node[subtree_index].el;
2040         struct ocfs2_extent_list *el;
2041         struct ocfs2_extent_block *eb;
2042
2043         el = path_leaf_el(left_path);
2044
2045         eb = (struct ocfs2_extent_block *)right_path->p_node[subtree_index + 1].bh->b_data;
2046
2047         for(i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++)
2048                 if (root_el->l_recs[i].e_blkno == eb->h_blkno)
2049                         break;
2050
2051         BUG_ON(i >= le16_to_cpu(root_el->l_next_free_rec));
2052
2053         memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
2054         le16_add_cpu(&root_el->l_next_free_rec, -1);
2055
2056         eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2057         eb->h_next_leaf_blk = 0;
2058
2059         ocfs2_journal_dirty(handle, root_bh);
2060         ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2061
2062         ocfs2_unlink_path(inode, handle, dealloc, right_path,
2063                           subtree_index + 1);
2064 }
2065
2066 static int ocfs2_rotate_subtree_left(struct inode *inode, handle_t *handle,
2067                                      struct ocfs2_path *left_path,
2068                                      struct ocfs2_path *right_path,
2069                                      int subtree_index,
2070                                      struct ocfs2_cached_dealloc_ctxt *dealloc,
2071                                      int *deleted)
2072 {
2073         int ret, i, del_right_subtree = 0, right_has_empty = 0;
2074         struct buffer_head *root_bh, *di_bh = path_root_bh(right_path);
2075         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
2076         struct ocfs2_extent_list *right_leaf_el, *left_leaf_el;
2077         struct ocfs2_extent_block *eb;
2078
2079         *deleted = 0;
2080
2081         right_leaf_el = path_leaf_el(right_path);
2082         left_leaf_el = path_leaf_el(left_path);
2083         root_bh = left_path->p_node[subtree_index].bh;
2084         BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
2085
2086         if (!ocfs2_is_empty_extent(&left_leaf_el->l_recs[0]))
2087                 return 0;
2088
2089         eb = (struct ocfs2_extent_block *)path_leaf_bh(right_path)->b_data;
2090         if (ocfs2_is_empty_extent(&right_leaf_el->l_recs[0])) {
2091                 /*
2092                  * It's legal for us to proceed if the right leaf is
2093                  * the rightmost one and it has an empty extent. There
2094                  * are two cases to handle - whether the leaf will be
2095                  * empty after removal or not. If the leaf isn't empty
2096                  * then just remove the empty extent up front. The
2097                  * next block will handle empty leaves by flagging
2098                  * them for unlink.
2099                  *
2100                  * Non rightmost leaves will throw -EAGAIN and the
2101                  * caller can manually move the subtree and retry.
2102                  */
2103
2104                 if (eb->h_next_leaf_blk != 0ULL)
2105                         return -EAGAIN;
2106
2107                 if (le16_to_cpu(right_leaf_el->l_next_free_rec) > 1) {
2108                         ret = ocfs2_journal_access(handle, inode,
2109                                                    path_leaf_bh(right_path),
2110                                                    OCFS2_JOURNAL_ACCESS_WRITE);
2111                         if (ret) {
2112                                 mlog_errno(ret);
2113                                 goto out;
2114                         }
2115
2116                         ocfs2_remove_empty_extent(right_leaf_el);
2117                 } else
2118                         right_has_empty = 1;
2119         }
2120
2121         if (eb->h_next_leaf_blk == 0ULL &&
2122             le16_to_cpu(right_leaf_el->l_next_free_rec) == 1) {
2123                 /*
2124                  * We have to update i_last_eb_blk during the meta
2125                  * data delete.
2126                  */
2127                 ret = ocfs2_journal_access(handle, inode, di_bh,
2128                                            OCFS2_JOURNAL_ACCESS_WRITE);
2129                 if (ret) {
2130                         mlog_errno(ret);
2131                         goto out;
2132                 }
2133
2134                 del_right_subtree = 1;
2135         }
2136
2137         /*
2138          * Getting here with an empty extent in the right path implies
2139          * that it's the rightmost path and will be deleted.
2140          */
2141         BUG_ON(right_has_empty && !del_right_subtree);
2142
2143         ret = ocfs2_journal_access(handle, inode, root_bh,
2144                                    OCFS2_JOURNAL_ACCESS_WRITE);
2145         if (ret) {
2146                 mlog_errno(ret);
2147                 goto out;
2148         }
2149
2150         for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
2151                 ret = ocfs2_journal_access(handle, inode,
2152                                            right_path->p_node[i].bh,
2153                                            OCFS2_JOURNAL_ACCESS_WRITE);
2154                 if (ret) {
2155                         mlog_errno(ret);
2156                         goto out;
2157                 }
2158
2159                 ret = ocfs2_journal_access(handle, inode,
2160                                            left_path->p_node[i].bh,
2161                                            OCFS2_JOURNAL_ACCESS_WRITE);
2162                 if (ret) {
2163                         mlog_errno(ret);
2164                         goto out;
2165                 }
2166         }
2167
2168         if (!right_has_empty) {
2169                 /*
2170                  * Only do this if we're moving a real
2171                  * record. Otherwise, the action is delayed until
2172                  * after removal of the right path in which case we
2173                  * can do a simple shift to remove the empty extent.
2174                  */
2175                 ocfs2_rotate_leaf(left_leaf_el, &right_leaf_el->l_recs[0]);
2176                 memset(&right_leaf_el->l_recs[0], 0,
2177                        sizeof(struct ocfs2_extent_rec));
2178         }
2179         if (eb->h_next_leaf_blk == 0ULL) {
2180                 /*
2181                  * Move recs over to get rid of empty extent, decrease
2182                  * next_free. This is allowed to remove the last
2183                  * extent in our leaf (setting l_next_free_rec to
2184                  * zero) - the delete code below won't care.
2185                  */
2186                 ocfs2_remove_empty_extent(right_leaf_el);
2187         }
2188
2189         ret = ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2190         if (ret)
2191                 mlog_errno(ret);
2192         ret = ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
2193         if (ret)
2194                 mlog_errno(ret);
2195
2196         if (del_right_subtree) {
2197                 ocfs2_unlink_subtree(inode, handle, left_path, right_path,
2198                                      subtree_index, dealloc);
2199                 ocfs2_update_edge_lengths(inode, handle, left_path);
2200
2201                 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2202                 di->i_last_eb_blk = eb->h_blkno;
2203
2204                 /*
2205                  * Removal of the extent in the left leaf was skipped
2206                  * above so we could delete the right path
2207                  * 1st.
2208                  */
2209                 if (right_has_empty)
2210                         ocfs2_remove_empty_extent(left_leaf_el);
2211
2212                 ret = ocfs2_journal_dirty(handle, di_bh);
2213                 if (ret)
2214                         mlog_errno(ret);
2215
2216                 *deleted = 1;
2217         } else
2218                 ocfs2_complete_edge_insert(inode, handle, left_path, right_path,
2219                                            subtree_index);
2220
2221 out:
2222         return ret;
2223 }
2224
2225 /*
2226  * Given a full path, determine what cpos value would return us a path
2227  * containing the leaf immediately to the right of the current one.
2228  *
2229  * Will return zero if the path passed in is already the rightmost path.
2230  *
2231  * This looks similar, but is subtly different to
2232  * ocfs2_find_cpos_for_left_leaf().
2233  */
2234 static int ocfs2_find_cpos_for_right_leaf(struct super_block *sb,
2235                                           struct ocfs2_path *path, u32 *cpos)
2236 {
2237         int i, j, ret = 0;
2238         u64 blkno;
2239         struct ocfs2_extent_list *el;
2240
2241         *cpos = 0;
2242
2243         if (path->p_tree_depth == 0)
2244                 return 0;
2245
2246         blkno = path_leaf_bh(path)->b_blocknr;
2247
2248         /* Start at the tree node just above the leaf and work our way up. */
2249         i = path->p_tree_depth - 1;
2250         while (i >= 0) {
2251                 int next_free;
2252
2253                 el = path->p_node[i].el;
2254
2255                 /*
2256                  * Find the extent record just after the one in our
2257                  * path.
2258                  */
2259                 next_free = le16_to_cpu(el->l_next_free_rec);
2260                 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
2261                         if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
2262                                 if (j == (next_free - 1)) {
2263                                         if (i == 0) {
2264                                                 /*
2265                                                  * We've determined that the
2266                                                  * path specified is already
2267                                                  * the rightmost one - return a
2268                                                  * cpos of zero.
2269                                                  */
2270                                                 goto out;
2271                                         }
2272                                         /*
2273                                          * The rightmost record points to our
2274                                          * leaf - we need to travel up the
2275                                          * tree one level.
2276                                          */
2277                                         goto next_node;
2278                                 }
2279
2280                                 *cpos = le32_to_cpu(el->l_recs[j + 1].e_cpos);
2281                                 goto out;
2282                         }
2283                 }
2284
2285                 /*
2286                  * If we got here, we never found a valid node where
2287                  * the tree indicated one should be.
2288                  */
2289                 ocfs2_error(sb,
2290                             "Invalid extent tree at extent block %llu\n",
2291                             (unsigned long long)blkno);
2292                 ret = -EROFS;
2293                 goto out;
2294
2295 next_node:
2296                 blkno = path->p_node[i].bh->b_blocknr;
2297                 i--;
2298         }
2299
2300 out:
2301         return ret;
2302 }
2303
2304 static int ocfs2_rotate_rightmost_leaf_left(struct inode *inode,
2305                                             handle_t *handle,
2306                                             struct buffer_head *bh,
2307                                             struct ocfs2_extent_list *el)
2308 {
2309         int ret;
2310
2311         if (!ocfs2_is_empty_extent(&el->l_recs[0]))
2312                 return 0;
2313
2314         ret = ocfs2_journal_access(handle, inode, bh,
2315                                    OCFS2_JOURNAL_ACCESS_WRITE);
2316         if (ret) {
2317                 mlog_errno(ret);
2318                 goto out;
2319         }
2320
2321         ocfs2_remove_empty_extent(el);
2322
2323         ret = ocfs2_journal_dirty(handle, bh);
2324         if (ret)
2325                 mlog_errno(ret);
2326
2327 out:
2328         return ret;
2329 }
2330
2331 static int __ocfs2_rotate_tree_left(struct inode *inode,
2332                                     handle_t *handle, int orig_credits,
2333                                     struct ocfs2_path *path,
2334                                     struct ocfs2_cached_dealloc_ctxt *dealloc,
2335                                     struct ocfs2_path **empty_extent_path)
2336 {
2337         int ret, subtree_root, deleted;
2338         u32 right_cpos;
2339         struct ocfs2_path *left_path = NULL;
2340         struct ocfs2_path *right_path = NULL;
2341
2342         BUG_ON(!ocfs2_is_empty_extent(&(path_leaf_el(path)->l_recs[0])));
2343
2344         *empty_extent_path = NULL;
2345
2346         ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, path,
2347                                              &right_cpos);
2348         if (ret) {
2349                 mlog_errno(ret);
2350                 goto out;
2351         }
2352
2353         left_path = ocfs2_new_path(path_root_bh(path),
2354                                    path_root_el(path));
2355         if (!left_path) {
2356                 ret = -ENOMEM;
2357                 mlog_errno(ret);
2358                 goto out;
2359         }
2360
2361         ocfs2_cp_path(left_path, path);
2362
2363         right_path = ocfs2_new_path(path_root_bh(path),
2364                                     path_root_el(path));
2365         if (!right_path) {
2366                 ret = -ENOMEM;
2367                 mlog_errno(ret);
2368                 goto out;
2369         }
2370
2371         while (right_cpos) {
2372                 ret = ocfs2_find_path(inode, right_path, right_cpos);
2373                 if (ret) {
2374                         mlog_errno(ret);
2375                         goto out;
2376                 }
2377
2378                 subtree_root = ocfs2_find_subtree_root(inode, left_path,
2379                                                        right_path);
2380
2381                 mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n",
2382                      subtree_root,
2383                      (unsigned long long)
2384                      right_path->p_node[subtree_root].bh->b_blocknr,
2385                      right_path->p_tree_depth);
2386
2387                 ret = ocfs2_extend_rotate_transaction(handle, subtree_root,
2388                                                       orig_credits, left_path);
2389                 if (ret) {
2390                         mlog_errno(ret);
2391                         goto out;
2392                 }
2393
2394                 /*
2395                  * Caller might still want to make changes to the
2396                  * tree root, so re-add it to the journal here.
2397                  */
2398                 ret = ocfs2_journal_access(handle, inode,
2399                                            path_root_bh(left_path),
2400                                            OCFS2_JOURNAL_ACCESS_WRITE);
2401                 if (ret) {
2402                         mlog_errno(ret);
2403                         goto out;
2404                 }
2405
2406                 ret = ocfs2_rotate_subtree_left(inode, handle, left_path,
2407                                                 right_path, subtree_root,
2408                                                 dealloc, &deleted);
2409                 if (ret == -EAGAIN) {
2410                         /*
2411                          * The rotation has to temporarily stop due to
2412                          * the right subtree having an empty
2413                          * extent. Pass it back to the caller for a
2414                          * fixup.
2415                          */
2416                         *empty_extent_path = right_path;
2417                         right_path = NULL;
2418                         goto out;
2419                 }
2420                 if (ret) {
2421                         mlog_errno(ret);
2422                         goto out;
2423                 }
2424
2425                 /*
2426                  * The subtree rotate might have removed records on
2427                  * the rightmost edge. If so, then rotation is
2428                  * complete.
2429                  */
2430                 if (deleted)
2431                         break;
2432
2433                 ocfs2_mv_path(left_path, right_path);
2434
2435                 ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, left_path,
2436                                                      &right_cpos);
2437                 if (ret) {
2438                         mlog_errno(ret);
2439                         goto out;
2440                 }
2441         }
2442
2443 out:
2444         ocfs2_free_path(right_path);
2445         ocfs2_free_path(left_path);
2446
2447         return ret;
2448 }
2449
2450 static int ocfs2_remove_rightmost_path(struct inode *inode, handle_t *handle,
2451                                        struct ocfs2_path *path,
2452                                        struct ocfs2_cached_dealloc_ctxt *dealloc)
2453 {
2454         int ret, subtree_index;
2455         u32 cpos;
2456         struct ocfs2_path *left_path = NULL;
2457         struct ocfs2_dinode *di;
2458         struct ocfs2_extent_block *eb;
2459         struct ocfs2_extent_list *el;
2460
2461         /*
2462          * XXX: This code assumes that the root is an inode, which is
2463          * true for now but may change as tree code gets generic.
2464          */
2465         di = (struct ocfs2_dinode *)path_root_bh(path)->b_data;
2466         if (!OCFS2_IS_VALID_DINODE(di)) {
2467                 ret = -EIO;
2468                 ocfs2_error(inode->i_sb,
2469                             "Inode %llu has invalid path root",
2470                             (unsigned long long)OCFS2_I(inode)->ip_blkno);
2471                 goto out;
2472         }
2473
2474         /*
2475          * There's two ways we handle this depending on
2476          * whether path is the only existing one.
2477          */
2478         ret = ocfs2_extend_rotate_transaction(handle, 0,
2479                                               handle->h_buffer_credits,
2480                                               path);
2481         if (ret) {
2482                 mlog_errno(ret);
2483                 goto out;
2484         }
2485
2486         ret = ocfs2_journal_access_path(inode, handle, path);
2487         if (ret) {
2488                 mlog_errno(ret);
2489                 goto out;
2490         }
2491
2492         ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, &cpos);
2493         if (ret) {
2494                 mlog_errno(ret);
2495                 goto out;
2496         }
2497
2498         if (cpos) {
2499                 /*
2500                  * We have a path to the left of this one - it needs
2501                  * an update too.
2502                  */
2503                 left_path = ocfs2_new_path(path_root_bh(path),
2504                                            path_root_el(path));
2505                 if (!left_path) {
2506                         ret = -ENOMEM;
2507                         mlog_errno(ret);
2508                         goto out;
2509                 }
2510
2511                 ret = ocfs2_find_path(inode, left_path, cpos);
2512                 if (ret) {
2513                         mlog_errno(ret);
2514                         goto out;
2515                 }
2516
2517                 ret = ocfs2_journal_access_path(inode, handle, left_path);
2518                 if (ret) {
2519                         mlog_errno(ret);
2520                         goto out;
2521                 }
2522
2523                 subtree_index = ocfs2_find_subtree_root(inode, left_path, path);
2524
2525                 ocfs2_unlink_subtree(inode, handle, left_path, path,
2526                                      subtree_index, dealloc);
2527                 ocfs2_update_edge_lengths(inode, handle, left_path);
2528
2529                 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2530                 di->i_last_eb_blk = eb->h_blkno;
2531         } else {
2532                 /*
2533                  * 'path' is also the leftmost path which
2534                  * means it must be the only one. This gets
2535                  * handled differently because we want to
2536                  * revert the inode back to having extents
2537                  * in-line.
2538                  */
2539                 ocfs2_unlink_path(inode, handle, dealloc, path, 1);
2540
2541                 el = &di->id2.i_list;
2542                 el->l_tree_depth = 0;
2543                 el->l_next_free_rec = 0;
2544                 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2545
2546                 di->i_last_eb_blk = 0;
2547         }
2548
2549         ocfs2_journal_dirty(handle, path_root_bh(path));
2550
2551 out:
2552         ocfs2_free_path(left_path);
2553         return ret;
2554 }
2555
2556 /*
2557  * Left rotation of btree records.
2558  *
2559  * In many ways, this is (unsurprisingly) the opposite of right
2560  * rotation. We start at some non-rightmost path containing an empty
2561  * extent in the leaf block. The code works its way to the rightmost
2562  * path by rotating records to the left in every subtree.
2563  *
2564  * This is used by any code which reduces the number of extent records
2565  * in a leaf. After removal, an empty record should be placed in the
2566  * leftmost list position.
2567  *
2568  * This won't handle a length update of the rightmost path records if
2569  * the rightmost tree leaf record is removed so the caller is
2570  * responsible for detecting and correcting that.
2571  */
2572 static int ocfs2_rotate_tree_left(struct inode *inode, handle_t *handle,
2573                                   struct ocfs2_path *path,
2574                                   struct ocfs2_cached_dealloc_ctxt *dealloc)
2575 {
2576         int ret, orig_credits = handle->h_buffer_credits;
2577         struct ocfs2_path *tmp_path = NULL, *restart_path = NULL;
2578         struct ocfs2_extent_block *eb;
2579         struct ocfs2_extent_list *el;
2580
2581         el = path_leaf_el(path);
2582         if (!ocfs2_is_empty_extent(&el->l_recs[0]))
2583                 return 0;
2584
2585         if (path->p_tree_depth == 0) {
2586 rightmost_no_delete:
2587                 /*
2588                  * In-inode extents. This is trivially handled, so do
2589                  * it up front.
2590                  */
2591                 ret = ocfs2_rotate_rightmost_leaf_left(inode, handle,
2592                                                        path_leaf_bh(path),
2593                                                        path_leaf_el(path));
2594                 if (ret)
2595                         mlog_errno(ret);
2596                 goto out;
2597         }
2598
2599         /*
2600          * Handle rightmost branch now. There's several cases:
2601          *  1) simple rotation leaving records in there. That's trivial.
2602          *  2) rotation requiring a branch delete - there's no more
2603          *     records left. Two cases of this:
2604          *     a) There are branches to the left.
2605          *     b) This is also the leftmost (the only) branch.
2606          *
2607          *  1) is handled via ocfs2_rotate_rightmost_leaf_left()
2608          *  2a) we need the left branch so that we can update it with the unlink
2609          *  2b) we need to bring the inode back to inline extents.
2610          */
2611
2612         eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
2613         el = &eb->h_list;
2614         if (eb->h_next_leaf_blk == 0) {
2615                 /*
2616                  * This gets a bit tricky if we're going to delete the
2617                  * rightmost path. Get the other cases out of the way
2618                  * 1st.
2619                  */
2620                 if (le16_to_cpu(el->l_next_free_rec) > 1)
2621                         goto rightmost_no_delete;
2622
2623                 if (le16_to_cpu(el->l_next_free_rec) == 0) {
2624                         ret = -EIO;
2625                         ocfs2_error(inode->i_sb,
2626                                     "Inode %llu has empty extent block at %llu",
2627                                     (unsigned long long)OCFS2_I(inode)->ip_blkno,
2628                                     (unsigned long long)le64_to_cpu(eb->h_blkno));
2629                         goto out;
2630                 }
2631
2632                 /*
2633                  * XXX: The caller can not trust "path" any more after
2634                  * this as it will have been deleted. What do we do?
2635                  *
2636                  * In theory the rotate-for-merge code will never get
2637                  * here because it'll always ask for a rotate in a
2638                  * nonempty list.
2639                  */
2640
2641                 ret = ocfs2_remove_rightmost_path(inode, handle, path,
2642                                                   dealloc);
2643                 if (ret)
2644                         mlog_errno(ret);
2645                 goto out;
2646         }
2647
2648         /*
2649          * Now we can loop, remembering the path we get from -EAGAIN
2650          * and restarting from there.
2651          */
2652 try_rotate:
2653         ret = __ocfs2_rotate_tree_left(inode, handle, orig_credits, path,
2654                                        dealloc, &restart_path);
2655         if (ret && ret != -EAGAIN) {
2656                 mlog_errno(ret);
2657                 goto out;
2658         }
2659
2660         while (ret == -EAGAIN) {
2661                 tmp_path = restart_path;
2662                 restart_path = NULL;
2663
2664                 ret = __ocfs2_rotate_tree_left(inode, handle, orig_credits,
2665                                                tmp_path, dealloc,
2666                                                &restart_path);
2667                 if (ret && ret != -EAGAIN) {
2668                         mlog_errno(ret);
2669                         goto out;
2670                 }
2671
2672                 ocfs2_free_path(tmp_path);
2673                 tmp_path = NULL;
2674
2675                 if (ret == 0)
2676                         goto try_rotate;
2677         }
2678
2679 out:
2680         ocfs2_free_path(tmp_path);
2681         ocfs2_free_path(restart_path);
2682         return ret;
2683 }
2684
2685 static void ocfs2_cleanup_merge(struct ocfs2_extent_list *el,
2686                                 int index)
2687 {
2688         struct ocfs2_extent_rec *rec = &el->l_recs[index];
2689         unsigned int size;
2690
2691         if (rec->e_leaf_clusters == 0) {
2692                 /*
2693                  * We consumed all of the merged-from record. An empty
2694                  * extent cannot exist anywhere but the 1st array
2695                  * position, so move things over if the merged-from
2696                  * record doesn't occupy that position.
2697                  *
2698                  * This creates a new empty extent so the caller
2699                  * should be smart enough to have removed any existing
2700                  * ones.
2701                  */
2702                 if (index > 0) {
2703                         BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
2704                         size = index * sizeof(struct ocfs2_extent_rec);
2705                         memmove(&el->l_recs[1], &el->l_recs[0], size);
2706                 }
2707
2708                 /*
2709                  * Always memset - the caller doesn't check whether it
2710                  * created an empty extent, so there could be junk in
2711                  * the other fields.
2712                  */
2713                 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2714         }
2715 }
2716
2717 static int ocfs2_get_right_path(struct inode *inode,
2718                                 struct ocfs2_path *left_path,
2719                                 struct ocfs2_path **ret_right_path)
2720 {
2721         int ret;
2722         u32 right_cpos;
2723         struct ocfs2_path *right_path = NULL;
2724         struct ocfs2_extent_list *left_el;
2725
2726         *ret_right_path = NULL;
2727
2728         /* This function shouldn't be called for non-trees. */
2729         BUG_ON(left_path->p_tree_depth == 0);
2730
2731         left_el = path_leaf_el(left_path);
2732         BUG_ON(left_el->l_next_free_rec != left_el->l_count);
2733
2734         ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, left_path,
2735                                              &right_cpos);
2736         if (ret) {
2737                 mlog_errno(ret);
2738                 goto out;
2739         }
2740
2741         /* This function shouldn't be called for the rightmost leaf. */
2742         BUG_ON(right_cpos == 0);
2743
2744         right_path = ocfs2_new_path(path_root_bh(left_path),
2745                                     path_root_el(left_path));
2746         if (!right_path) {
2747                 ret = -ENOMEM;
2748                 mlog_errno(ret);
2749                 goto out;
2750         }
2751
2752         ret = ocfs2_find_path(inode, right_path, right_cpos);
2753         if (ret) {
2754                 mlog_errno(ret);
2755                 goto out;
2756         }
2757
2758         *ret_right_path = right_path;
2759 out:
2760         if (ret)
2761                 ocfs2_free_path(right_path);
2762         return ret;
2763 }
2764
2765 /*
2766  * Remove split_rec clusters from the record at index and merge them
2767  * onto the beginning of the record "next" to it.
2768  * For index < l_count - 1, the next means the extent rec at index + 1.
2769  * For index == l_count - 1, the "next" means the 1st extent rec of the
2770  * next extent block.
2771  */
2772 static int ocfs2_merge_rec_right(struct inode *inode,
2773                                  struct ocfs2_path *left_path,
2774                                  handle_t *handle,
2775                                  struct ocfs2_extent_rec *split_rec,
2776                                  int index)
2777 {
2778         int ret, next_free, i;
2779         unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
2780         struct ocfs2_extent_rec *left_rec;
2781         struct ocfs2_extent_rec *right_rec;
2782         struct ocfs2_extent_list *right_el;
2783         struct ocfs2_path *right_path = NULL;
2784         int subtree_index = 0;
2785         struct ocfs2_extent_list *el = path_leaf_el(left_path);
2786         struct buffer_head *bh = path_leaf_bh(left_path);
2787         struct buffer_head *root_bh = NULL;
2788
2789         BUG_ON(index >= le16_to_cpu(el->l_next_free_rec));
2790         left_rec = &el->l_recs[index];
2791
2792         if (index == le16_to_cpu(el->l_next_free_rec - 1) &&
2793             le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count)) {
2794                 /* we meet with a cross extent block merge. */
2795                 ret = ocfs2_get_right_path(inode, left_path, &right_path);
2796                 if (ret) {
2797                         mlog_errno(ret);
2798                         goto out;
2799                 }
2800
2801                 right_el = path_leaf_el(right_path);
2802                 next_free = le16_to_cpu(right_el->l_next_free_rec);
2803                 BUG_ON(next_free <= 0);
2804                 right_rec = &right_el->l_recs[0];
2805                 if (ocfs2_is_empty_extent(right_rec)) {
2806                         BUG_ON(le16_to_cpu(next_free) <= 1);
2807                         right_rec = &right_el->l_recs[1];
2808                 }
2809
2810                 BUG_ON(le32_to_cpu(left_rec->e_cpos) +
2811                        le16_to_cpu(left_rec->e_leaf_clusters) !=
2812                        le32_to_cpu(right_rec->e_cpos));
2813
2814                 subtree_index = ocfs2_find_subtree_root(inode,
2815                                                         left_path, right_path);
2816
2817                 ret = ocfs2_extend_rotate_transaction(handle, subtree_index,
2818                                                       handle->h_buffer_credits,
2819                                                       right_path);
2820                 if (ret) {
2821                         mlog_errno(ret);
2822                         goto out;
2823                 }
2824
2825                 root_bh = left_path->p_node[subtree_index].bh;
2826                 BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
2827
2828                 ret = ocfs2_journal_access(handle, inode, root_bh,
2829                                            OCFS2_JOURNAL_ACCESS_WRITE);
2830                 if (ret) {
2831                         mlog_errno(ret);
2832                         goto out;
2833                 }
2834
2835                 for (i = subtree_index + 1;
2836                      i < path_num_items(right_path); i++) {
2837                         ret = ocfs2_journal_access(handle, inode,
2838                                                    right_path->p_node[i].bh,
2839                                                    OCFS2_JOURNAL_ACCESS_WRITE);
2840                         if (ret) {
2841                                 mlog_errno(ret);
2842                                 goto out;
2843                         }
2844
2845                         ret = ocfs2_journal_access(handle, inode,
2846                                                    left_path->p_node[i].bh,
2847                                                    OCFS2_JOURNAL_ACCESS_WRITE);
2848                         if (ret) {
2849                                 mlog_errno(ret);
2850                                 goto out;
2851                         }
2852                 }
2853
2854         } else {
2855                 BUG_ON(index == le16_to_cpu(el->l_next_free_rec) - 1);
2856                 right_rec = &el->l_recs[index + 1];
2857         }
2858
2859         ret = ocfs2_journal_access(handle, inode, bh,
2860                                    OCFS2_JOURNAL_ACCESS_WRITE);
2861         if (ret) {
2862                 mlog_errno(ret);
2863                 goto out;
2864         }
2865
2866         le16_add_cpu(&left_rec->e_leaf_clusters, -split_clusters);
2867
2868         le32_add_cpu(&right_rec->e_cpos, -split_clusters);
2869         le64_add_cpu(&right_rec->e_blkno,
2870                      -ocfs2_clusters_to_blocks(inode->i_sb, split_clusters));
2871         le16_add_cpu(&right_rec->e_leaf_clusters, split_clusters);
2872
2873         ocfs2_cleanup_merge(el, index);
2874
2875         ret = ocfs2_journal_dirty(handle, bh);
2876         if (ret)
2877                 mlog_errno(ret);
2878
2879         if (right_path) {
2880                 ret = ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
2881                 if (ret)
2882                         mlog_errno(ret);
2883
2884                 ocfs2_complete_edge_insert(inode, handle, left_path,
2885                                            right_path, subtree_index);
2886         }
2887 out:
2888         if (right_path)
2889                 ocfs2_free_path(right_path);
2890         return ret;
2891 }
2892
2893 static int ocfs2_get_left_path(struct inode *inode,
2894                                struct ocfs2_path *right_path,
2895                                struct ocfs2_path **ret_left_path)
2896 {
2897         int ret;
2898         u32 left_cpos;
2899         struct ocfs2_path *left_path = NULL;
2900
2901         *ret_left_path = NULL;
2902
2903         /* This function shouldn't be called for non-trees. */
2904         BUG_ON(right_path->p_tree_depth == 0);
2905
2906         ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb,
2907                                             right_path, &left_cpos);
2908         if (ret) {
2909                 mlog_errno(ret);
2910                 goto out;
2911         }
2912
2913         /* This function shouldn't be called for the leftmost leaf. */
2914         BUG_ON(left_cpos == 0);
2915
2916         left_path = ocfs2_new_path(path_root_bh(right_path),
2917                                    path_root_el(right_path));
2918         if (!left_path) {
2919                 ret = -ENOMEM;
2920                 mlog_errno(ret);
2921                 goto out;
2922         }
2923
2924         ret = ocfs2_find_path(inode, left_path, left_cpos);
2925         if (ret) {
2926                 mlog_errno(ret);
2927                 goto out;
2928         }
2929
2930         *ret_left_path = left_path;
2931 out:
2932         if (ret)
2933                 ocfs2_free_path(left_path);
2934         return ret;
2935 }
2936
2937 /*
2938  * Remove split_rec clusters from the record at index and merge them
2939  * onto the tail of the record "before" it.
2940  * For index > 0, the "before" means the extent rec at index - 1.
2941  *
2942  * For index == 0, the "before" means the last record of the previous
2943  * extent block. And there is also a situation that we may need to
2944  * remove the rightmost leaf extent block in the right_path and change
2945  * the right path to indicate the new rightmost path.
2946  */
2947 static int ocfs2_merge_rec_left(struct inode *inode,
2948                                 struct ocfs2_path *right_path,
2949                                 handle_t *handle,
2950                                 struct ocfs2_extent_rec *split_rec,
2951                                 struct ocfs2_cached_dealloc_ctxt *dealloc,
2952                                 int index)
2953 {
2954         int ret, i, subtree_index = 0, has_empty_extent = 0;
2955         unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
2956         struct ocfs2_extent_rec *left_rec;
2957         struct ocfs2_extent_rec *right_rec;
2958         struct ocfs2_extent_list *el = path_leaf_el(right_path);
2959         struct buffer_head *bh = path_leaf_bh(right_path);
2960         struct buffer_head *root_bh = NULL;
2961         struct ocfs2_path *left_path = NULL;
2962         struct ocfs2_extent_list *left_el;
2963
2964         BUG_ON(index < 0);
2965
2966         right_rec = &el->l_recs[index];
2967         if (index == 0) {
2968                 /* we meet with a cross extent block merge. */
2969                 ret = ocfs2_get_left_path(inode, right_path, &left_path);
2970                 if (ret) {
2971                         mlog_errno(ret);
2972                         goto out;
2973                 }
2974
2975                 left_el = path_leaf_el(left_path);
2976                 BUG_ON(le16_to_cpu(left_el->l_next_free_rec) !=
2977                        le16_to_cpu(left_el->l_count));
2978
2979                 left_rec = &left_el->l_recs[
2980                                 le16_to_cpu(left_el->l_next_free_rec) - 1];
2981                 BUG_ON(le32_to_cpu(left_rec->e_cpos) +
2982                        le16_to_cpu(left_rec->e_leaf_clusters) !=
2983                        le32_to_cpu(split_rec->e_cpos));
2984
2985                 subtree_index = ocfs2_find_subtree_root(inode,
2986                                                         left_path, right_path);
2987
2988                 ret = ocfs2_extend_rotate_transaction(handle, subtree_index,
2989                                                       handle->h_buffer_credits,
2990                                                       left_path);
2991                 if (ret) {
2992                         mlog_errno(ret);
2993                         goto out;
2994                 }
2995
2996                 root_bh = left_path->p_node[subtree_index].bh;
2997                 BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
2998
2999                 ret = ocfs2_journal_access(handle, inode, root_bh,
3000                                            OCFS2_JOURNAL_ACCESS_WRITE);
3001                 if (ret) {
3002                         mlog_errno(ret);
3003                         goto out;
3004                 }
3005
3006                 for (i = subtree_index + 1;
3007                      i < path_num_items(right_path); i++) {
3008                         ret = ocfs2_journal_access(handle, inode,
3009                                                    right_path->p_node[i].bh,
3010                                                    OCFS2_JOURNAL_ACCESS_WRITE);
3011                         if (ret) {
3012                                 mlog_errno(ret);
3013                                 goto out;
3014                         }
3015
3016                         ret = ocfs2_journal_access(handle, inode,
3017                                                    left_path->p_node[i].bh,
3018                                                    OCFS2_JOURNAL_ACCESS_WRITE);
3019                         if (ret) {
3020                                 mlog_errno(ret);
3021                                 goto out;
3022                         }
3023                 }
3024         } else {
3025                 left_rec = &el->l_recs[index - 1];
3026                 if (ocfs2_is_empty_extent(&el->l_recs[0]))
3027                         has_empty_extent = 1;
3028         }
3029
3030         ret = ocfs2_journal_access(handle, inode, bh,
3031                                    OCFS2_JOURNAL_ACCESS_WRITE);
3032         if (ret) {
3033                 mlog_errno(ret);
3034                 goto out;
3035         }
3036
3037         if (has_empty_extent && index == 1) {
3038                 /*
3039                  * The easy case - we can just plop the record right in.
3040                  */
3041                 *left_rec = *split_rec;
3042
3043                 has_empty_extent = 0;
3044         } else
3045                 le16_add_cpu(&left_rec->e_leaf_clusters, split_clusters);
3046
3047         le32_add_cpu(&right_rec->e_cpos, split_clusters);
3048         le64_add_cpu(&right_rec->e_blkno,
3049                      ocfs2_clusters_to_blocks(inode->i_sb, split_clusters));
3050         le16_add_cpu(&right_rec->e_leaf_clusters, -split_clusters);
3051
3052         ocfs2_cleanup_merge(el, index);
3053
3054         ret = ocfs2_journal_dirty(handle, bh);
3055         if (ret)
3056                 mlog_errno(ret);
3057
3058         if (left_path) {
3059                 ret = ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
3060                 if (ret)
3061                         mlog_errno(ret);
3062
3063                 /*
3064                  * In the situation that the right_rec is empty and the extent
3065                  * block is empty also,  ocfs2_complete_edge_insert can't handle
3066                  * it and we need to delete the right extent block.
3067                  */
3068                 if (le16_to_cpu(right_rec->e_leaf_clusters) == 0 &&
3069                     le16_to_cpu(el->l_next_free_rec) == 1) {
3070
3071                         ret = ocfs2_remove_rightmost_path(inode, handle,
3072                                                           right_path, dealloc);
3073                         if (ret) {
3074                                 mlog_errno(ret);
3075                                 goto out;
3076                         }
3077
3078                         /* Now the rightmost extent block has been deleted.
3079                          * So we use the new rightmost path.
3080                          */
3081                         ocfs2_mv_path(right_path, left_path);
3082                         left_path = NULL;
3083                 } else
3084                         ocfs2_complete_edge_insert(inode, handle, left_path,
3085                                                    right_path, subtree_index);
3086         }
3087 out:
3088         if (left_path)
3089                 ocfs2_free_path(left_path);
3090         return ret;
3091 }
3092
3093 static int ocfs2_try_to_merge_extent(struct inode *inode,
3094                                      handle_t *handle,
3095                                      struct ocfs2_path *path,
3096                                      int split_index,
3097                                      struct ocfs2_extent_rec *split_rec,
3098                                      struct ocfs2_cached_dealloc_ctxt *dealloc,
3099                                      struct ocfs2_merge_ctxt *ctxt)
3100
3101 {
3102         int ret = 0;
3103         struct ocfs2_extent_list *el = path_leaf_el(path);
3104         struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
3105
3106         BUG_ON(ctxt->c_contig_type == CONTIG_NONE);
3107
3108         if (ctxt->c_split_covers_rec && ctxt->c_has_empty_extent) {
3109                 /*
3110                  * The merge code will need to create an empty
3111                  * extent to take the place of the newly
3112                  * emptied slot. Remove any pre-existing empty
3113                  * extents - having more than one in a leaf is
3114                  * illegal.
3115                  */
3116                 ret = ocfs2_rotate_tree_left(inode, handle, path,
3117                                              dealloc);
3118                 if (ret) {
3119                         mlog_errno(ret);
3120                         goto out;
3121                 }
3122                 split_index--;
3123                 rec = &el->l_recs[split_index];
3124         }
3125
3126         if (ctxt->c_contig_type == CONTIG_LEFTRIGHT) {
3127                 /*
3128                  * Left-right contig implies this.
3129                  */
3130                 BUG_ON(!ctxt->c_split_covers_rec);
3131
3132                 /*
3133                  * Since the leftright insert always covers the entire
3134                  * extent, this call will delete the insert record
3135                  * entirely, resulting in an empty extent record added to
3136                  * the extent block.
3137                  *
3138                  * Since the adding of an empty extent shifts
3139                  * everything back to the right, there's no need to
3140                  * update split_index here.
3141                  *
3142                  * When the split_index is zero, we need to merge it to the
3143                  * prevoius extent block. It is more efficient and easier
3144                  * if we do merge_right first and merge_left later.
3145                  */
3146                 ret = ocfs2_merge_rec_right(inode, path,
3147                                             handle, split_rec,
3148                                             split_index);
3149                 if (ret) {
3150                         mlog_errno(ret);
3151                         goto out;
3152                 }
3153
3154                 /*
3155                  * We can only get this from logic error above.
3156                  */
3157                 BUG_ON(!ocfs2_is_empty_extent(&el->l_recs[0]));
3158
3159                 /* The merge left us with an empty extent, remove it. */
3160                 ret = ocfs2_rotate_tree_left(inode, handle, path, dealloc);
3161                 if (ret) {
3162                         mlog_errno(ret);
3163                         goto out;
3164                 }
3165
3166                 rec = &el->l_recs[split_index];
3167
3168                 /*
3169                  * Note that we don't pass split_rec here on purpose -
3170                  * we've merged it into the rec already.
3171                  */
3172                 ret = ocfs2_merge_rec_left(inode, path,
3173                                            handle, rec,
3174                                            dealloc,
3175                                            split_index);
3176
3177                 if (ret) {
3178                         mlog_errno(ret);
3179                         goto out;
3180                 }
3181
3182                 ret = ocfs2_rotate_tree_left(inode, handle, path,
3183                                              dealloc);
3184                 /*
3185                  * Error from this last rotate is not critical, so
3186                  * print but don't bubble it up.
3187                  */
3188                 if (ret)
3189                         mlog_errno(ret);
3190                 ret = 0;
3191         } else {
3192                 /*
3193                  * Merge a record to the left or right.
3194                  *
3195                  * 'contig_type' is relative to the existing record,
3196                  * so for example, if we're "right contig", it's to
3197                  * the record on the left (hence the left merge).
3198                  */
3199                 if (ctxt->c_contig_type == CONTIG_RIGHT) {
3200                         ret = ocfs2_merge_rec_left(inode,
3201                                                    path,
3202                                                    handle, split_rec,
3203                                                    dealloc,
3204                                                    split_index);
3205                         if (ret) {
3206                                 mlog_errno(ret);
3207                                 goto out;
3208                         }
3209                 } else {
3210                         ret = ocfs2_merge_rec_right(inode,
3211                                                     path,
3212                                                     handle, split_rec,
3213                                                     split_index);
3214                         if (ret) {
3215                                 mlog_errno(ret);
3216                                 goto out;
3217                         }
3218                 }
3219
3220                 if (ctxt->c_split_covers_rec) {
3221                         /*
3222                          * The merge may have left an empty extent in
3223                          * our leaf. Try to rotate it away.
3224                          */
3225                         ret = ocfs2_rotate_tree_left(inode, handle, path,
3226                                                      dealloc);
3227                         if (ret)
3228                                 mlog_errno(ret);
3229                         ret = 0;
3230                 }
3231         }
3232
3233 out:
3234         return ret;
3235 }
3236
3237 static void ocfs2_subtract_from_rec(struct super_block *sb,
3238                                     enum ocfs2_split_type split,
3239                                     struct ocfs2_extent_rec *rec,
3240                                     struct ocfs2_extent_rec *split_rec)
3241 {
3242         u64 len_blocks;
3243
3244         len_blocks = ocfs2_clusters_to_blocks(sb,
3245                                 le16_to_cpu(split_rec->e_leaf_clusters));
3246
3247         if (split == SPLIT_LEFT) {
3248                 /*
3249                  * Region is on the left edge of the existing
3250                  * record.
3251                  */
3252                 le32_add_cpu(&rec->e_cpos,
3253                              le16_to_cpu(split_rec->e_leaf_clusters));
3254                 le64_add_cpu(&rec->e_blkno, len_blocks);
3255                 le16_add_cpu(&rec->e_leaf_clusters,
3256                              -le16_to_cpu(split_rec->e_leaf_clusters));
3257         } else {
3258                 /*
3259                  * Region is on the right edge of the existing
3260                  * record.
3261                  */
3262                 le16_add_cpu(&rec->e_leaf_clusters,
3263                              -le16_to_cpu(split_rec->e_leaf_clusters));
3264         }
3265 }
3266
3267 /*
3268  * Do the final bits of extent record insertion at the target leaf
3269  * list. If this leaf is part of an allocation tree, it is assumed
3270  * that the tree above has been prepared.
3271  */
3272 static void ocfs2_insert_at_leaf(struct ocfs2_extent_rec *insert_rec,
3273                                  struct ocfs2_extent_list *el,
3274                                  struct ocfs2_insert_type *insert,
3275                                  struct inode *inode)
3276 {
3277         int i = insert->ins_contig_index;
3278         unsigned int range;
3279         struct ocfs2_extent_rec *rec;
3280
3281         BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
3282
3283         if (insert->ins_split != SPLIT_NONE) {
3284                 i = ocfs2_search_extent_list(el, le32_to_cpu(insert_rec->e_cpos));
3285                 BUG_ON(i == -1);
3286                 rec = &el->l_recs[i];
3287                 ocfs2_subtract_from_rec(inode->i_sb, insert->ins_split, rec,
3288                                         insert_rec);
3289                 goto rotate;
3290         }
3291
3292         /*
3293          * Contiguous insert - either left or right.
3294          */
3295         if (insert->ins_contig != CONTIG_NONE) {
3296                 rec = &el->l_recs[i];
3297                 if (insert->ins_contig == CONTIG_LEFT) {
3298                         rec->e_blkno = insert_rec->e_blkno;
3299                         rec->e_cpos = insert_rec->e_cpos;
3300                 }
3301                 le16_add_cpu(&rec->e_leaf_clusters,
3302                              le16_to_cpu(insert_rec->e_leaf_clusters));
3303                 return;
3304         }
3305
3306         /*
3307          * Handle insert into an empty leaf.
3308          */
3309         if (le16_to_cpu(el->l_next_free_rec) == 0 ||
3310             ((le16_to_cpu(el->l_next_free_rec) == 1) &&
3311              ocfs2_is_empty_extent(&el->l_recs[0]))) {
3312                 el->l_recs[0] = *insert_rec;
3313                 el->l_next_free_rec = cpu_to_le16(1);
3314                 return;
3315         }
3316
3317         /*
3318          * Appending insert.
3319          */
3320         if (insert->ins_appending == APPEND_TAIL) {
3321                 i = le16_to_cpu(el->l_next_free_rec) - 1;
3322                 rec = &el->l_recs[i];
3323                 range = le32_to_cpu(rec->e_cpos)
3324                         + le16_to_cpu(rec->e_leaf_clusters);
3325                 BUG_ON(le32_to_cpu(insert_rec->e_cpos) < range);
3326
3327                 mlog_bug_on_msg(le16_to_cpu(el->l_next_free_rec) >=
3328                                 le16_to_cpu(el->l_count),
3329                                 "inode %lu, depth %u, count %u, next free %u, "
3330                                 "rec.cpos %u, rec.clusters %u, "
3331                                 "insert.cpos %u, insert.clusters %u\n",
3332                                 inode->i_ino,
3333                                 le16_to_cpu(el->l_tree_depth),
3334                                 le16_to_cpu(el->l_count),
3335                                 le16_to_cpu(el->l_next_free_rec),
3336                                 le32_to_cpu(el->l_recs[i].e_cpos),
3337                                 le16_to_cpu(el->l_recs[i].e_leaf_clusters),
3338                                 le32_to_cpu(insert_rec->e_cpos),
3339                                 le16_to_cpu(insert_rec->e_leaf_clusters));
3340                 i++;
3341                 el->l_recs[i] = *insert_rec;
3342                 le16_add_cpu(&el->l_next_free_rec, 1);
3343                 return;
3344         }
3345
3346 rotate:
3347         /*
3348          * Ok, we have to rotate.
3349          *
3350          * At this point, it is safe to assume that inserting into an
3351          * empty leaf and appending to a leaf have both been handled
3352          * above.
3353          *
3354          * This leaf needs to have space, either by the empty 1st
3355          * extent record, or by virtue of an l_next_rec < l_count.
3356          */
3357         ocfs2_rotate_leaf(el, insert_rec);
3358 }
3359
3360 static inline void ocfs2_update_dinode_clusters(struct inode *inode,
3361                                                 struct ocfs2_dinode *di,
3362                                                 u32 clusters)
3363 {
3364         le32_add_cpu(&di->i_clusters, clusters);
3365         spin_lock(&OCFS2_I(inode)->ip_lock);
3366         OCFS2_I(inode)->ip_clusters = le32_to_cpu(di->i_clusters);
3367         spin_unlock(&OCFS2_I(inode)->ip_lock);
3368 }
3369
3370 static void ocfs2_adjust_rightmost_records(struct inode *inode,
3371                                            handle_t *handle,
3372                                            struct ocfs2_path *path,
3373                                            struct ocfs2_extent_rec *insert_rec)
3374 {
3375         int ret, i, next_free;
3376         struct buffer_head *bh;
3377         struct ocfs2_extent_list *el;
3378         struct ocfs2_extent_rec *rec;
3379
3380         /*
3381          * Update everything except the leaf block.
3382          */
3383         for (i = 0; i < path->p_tree_depth; i++) {
3384                 bh = path->p_node[i].bh;
3385                 el = path->p_node[i].el;
3386
3387                 next_free = le16_to_cpu(el->l_next_free_rec);
3388                 if (next_free == 0) {
3389                         ocfs2_error(inode->i_sb,
3390                                     "Dinode %llu has a bad extent list",
3391                                     (unsigned long long)OCFS2_I(inode)->ip_blkno);
3392                         ret = -EIO;
3393                         return;
3394                 }
3395
3396                 rec = &el->l_recs[next_free - 1];
3397
3398                 rec->e_int_clusters = insert_rec->e_cpos;
3399                 le32_add_cpu(&rec->e_int_clusters,
3400                              le16_to_cpu(insert_rec->e_leaf_clusters));
3401                 le32_add_cpu(&rec->e_int_clusters,
3402                              -le32_to_cpu(rec->e_cpos));
3403
3404                 ret = ocfs2_journal_dirty(handle, bh);
3405                 if (ret)
3406                         mlog_errno(ret);
3407
3408         }
3409 }
3410
3411 static int ocfs2_append_rec_to_path(struct inode *inode, handle_t *handle,
3412                                     struct ocfs2_extent_rec *insert_rec,
3413                                     struct ocfs2_path *right_path,
3414                                     struct ocfs2_path **ret_left_path)
3415 {
3416         int ret, next_free;
3417         struct ocfs2_extent_list *el;
3418         struct ocfs2_path *left_path = NULL;
3419
3420         *ret_left_path = NULL;
3421
3422         /*
3423          * This shouldn't happen for non-trees. The extent rec cluster
3424          * count manipulation below only works for interior nodes.
3425          */
3426         BUG_ON(right_path->p_tree_depth == 0);
3427
3428         /*
3429          * If our appending insert is at the leftmost edge of a leaf,
3430          * then we might need to update the rightmost records of the
3431          * neighboring path.
3432          */
3433         el = path_leaf_el(right_path);
3434         next_free = le16_to_cpu(el->l_next_free_rec);
3435         if (next_free == 0 ||
3436             (next_free == 1 && ocfs2_is_empty_extent(&el->l_recs[0]))) {
3437                 u32 left_cpos;
3438
3439                 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path,
3440                                                     &left_cpos);
3441                 if (ret) {
3442                         mlog_errno(ret);
3443                         goto out;
3444                 }
3445
3446                 mlog(0, "Append may need a left path update. cpos: %u, "
3447                      "left_cpos: %u\n", le32_to_cpu(insert_rec->e_cpos),
3448                      left_cpos);
3449
3450                 /*
3451                  * No need to worry if the append is already in the
3452                  * leftmost leaf.
3453                  */
3454                 if (left_cpos) {
3455                         left_path = ocfs2_new_path(path_root_bh(right_path),
3456                                                    path_root_el(right_path));
3457                         if (!left_path) {
3458                                 ret = -ENOMEM;
3459                                 mlog_errno(ret);
3460                                 goto out;
3461                         }
3462
3463                         ret = ocfs2_find_path(inode, left_path, left_cpos);
3464                         if (ret) {
3465                                 mlog_errno(ret);
3466                                 goto out;
3467                         }
3468
3469                         /*
3470                          * ocfs2_insert_path() will pass the left_path to the
3471                          * journal for us.
3472                          */
3473                 }
3474         }
3475
3476         ret = ocfs2_journal_access_path(inode, handle, right_path);
3477         if (ret) {
3478                 mlog_errno(ret);
3479                 goto out;
3480         }
3481
3482         ocfs2_adjust_rightmost_records(inode, handle, right_path, insert_rec);
3483
3484         *ret_left_path = left_path;
3485         ret = 0;
3486 out:
3487         if (ret != 0)
3488                 ocfs2_free_path(left_path);
3489
3490         return ret;
3491 }
3492
3493 static void ocfs2_split_record(struct inode *inode,
3494                                struct ocfs2_path *left_path,
3495                                struct ocfs2_path *right_path,
3496                                struct ocfs2_extent_rec *split_rec,
3497                                enum ocfs2_split_type split)
3498 {
3499         int index;
3500         u32 cpos = le32_to_cpu(split_rec->e_cpos);
3501         struct ocfs2_extent_list *left_el = NULL, *right_el, *insert_el, *el;
3502         struct ocfs2_extent_rec *rec, *tmprec;
3503
3504         right_el = path_leaf_el(right_path);;
3505         if (left_path)
3506                 left_el = path_leaf_el(left_path);
3507
3508         el = right_el;
3509         insert_el = right_el;
3510         index = ocfs2_search_extent_list(el, cpos);
3511         if (index != -1) {
3512                 if (index == 0 && left_path) {
3513                         BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
3514
3515                         /*
3516                          * This typically means that the record
3517                          * started in the left path but moved to the
3518                          * right as a result of rotation. We either
3519                          * move the existing record to the left, or we
3520                          * do the later insert there.
3521                          *
3522                          * In this case, the left path should always
3523                          * exist as the rotate code will have passed
3524                          * it back for a post-insert update.
3525                          */
3526
3527                         if (split == SPLIT_LEFT) {
3528                                 /*
3529                                  * It's a left split. Since we know
3530                                  * that the rotate code gave us an
3531                                  * empty extent in the left path, we
3532                                  * can just do the insert there.
3533                                  */
3534                                 insert_el = left_el;
3535                         } else {
3536                                 /*
3537                                  * Right split - we have to move the
3538                                  * existing record over to the left
3539                                  * leaf. The insert will be into the
3540                                  * newly created empty extent in the
3541                                  * right leaf.
3542                                  */
3543                                 tmprec = &right_el->l_recs[index];
3544                                 ocfs2_rotate_leaf(left_el, tmprec);
3545                                 el = left_el;
3546
3547                                 memset(tmprec, 0, sizeof(*tmprec));
3548                                 index = ocfs2_search_extent_list(left_el, cpos);
3549                                 BUG_ON(index == -1);
3550                         }
3551                 }
3552         } else {
3553                 BUG_ON(!left_path);
3554                 BUG_ON(!ocfs2_is_empty_extent(&left_el->l_recs[0]));
3555                 /*
3556                  * Left path is easy - we can just allow the insert to
3557                  * happen.
3558                  */
3559                 el = left_el;
3560                 insert_el = left_el;
3561                 index = ocfs2_search_extent_list(el, cpos);
3562                 BUG_ON(index == -1);
3563         }
3564
3565         rec = &el->l_recs[index];
3566         ocfs2_subtract_from_rec(inode->i_sb, split, rec, split_rec);
3567         ocfs2_rotate_leaf(insert_el, split_rec);
3568 }
3569
3570 /*
3571  * This function only does inserts on an allocation b-tree. For dinode
3572  * lists, ocfs2_insert_at_leaf() is called directly.
3573  *
3574  * right_path is the path we want to do the actual insert
3575  * in. left_path should only be passed in if we need to update that
3576  * portion of the tree after an edge insert.
3577  */
3578 static int ocfs2_insert_path(struct inode *inode,
3579                              handle_t *handle,
3580                              struct ocfs2_path *left_path,
3581                              struct ocfs2_path *right_path,
3582                              struct ocfs2_extent_rec *insert_rec,
3583                              struct ocfs2_insert_type *insert)
3584 {
3585         int ret, subtree_index;
3586         struct buffer_head *leaf_bh = path_leaf_bh(right_path);
3587
3588         if (left_path) {
3589                 int credits = handle->h_buffer_credits;
3590
3591                 /*
3592                  * There's a chance that left_path got passed back to
3593                  * us without being accounted for in the
3594                  * journal. Extend our transaction here to be sure we
3595                  * can change those blocks.
3596                  */
3597                 credits += left_path->p_tree_depth;
3598
3599                 ret = ocfs2_extend_trans(handle, credits);
3600                 if (ret < 0) {
3601                         mlog_errno(ret);
3602                         goto out;
3603                 }
3604
3605                 ret = ocfs2_journal_access_path(inode, handle, left_path);
3606                 if (ret < 0) {
3607                         mlog_errno(ret);
3608                         goto out;
3609                 }
3610         }
3611
3612         /*
3613          * Pass both paths to the journal. The majority of inserts
3614          * will be touching all components anyway.
3615          */
3616         ret = ocfs2_journal_access_path(inode, handle, right_path);
3617         if (ret < 0) {
3618                 mlog_errno(ret);
3619                 goto out;
3620         }
3621
3622         if (insert->ins_split != SPLIT_NONE) {
3623                 /*
3624                  * We could call ocfs2_insert_at_leaf() for some types
3625                  * of splits, but it's easier to just let one separate
3626                  * function sort it all out.
3627                  */
3628                 ocfs2_split_record(inode, left_path, right_path,
3629                                    insert_rec, insert->ins_split);
3630
3631                 /*
3632                  * Split might have modified either leaf and we don't
3633                  * have a guarantee that the later edge insert will
3634                  * dirty this for us.
3635                  */
3636                 if (left_path)
3637                         ret = ocfs2_journal_dirty(handle,
3638                                                   path_leaf_bh(left_path));
3639                         if (ret)
3640                                 mlog_errno(ret);
3641         } else
3642                 ocfs2_insert_at_leaf(insert_rec, path_leaf_el(right_path),
3643                                      insert, inode);
3644
3645         ret = ocfs2_journal_dirty(handle, leaf_bh);
3646         if (ret)
3647                 mlog_errno(ret);
3648
3649         if (left_path) {
3650                 /*
3651                  * The rotate code has indicated that we need to fix
3652                  * up portions of the tree after the insert.
3653                  *
3654                  * XXX: Should we extend the transaction here?
3655                  */
3656                 subtree_index = ocfs2_find_subtree_root(inode, left_path,
3657                                                         right_path);
3658                 ocfs2_complete_edge_insert(inode, handle, left_path,
3659                                            right_path, subtree_index);
3660         }
3661
3662         ret = 0;
3663 out:
3664         return ret;
3665 }
3666
3667 static int ocfs2_do_insert_extent(struct inode *inode,
3668                                   handle_t *handle,
3669                                   struct buffer_head *di_bh,
3670                                   struct ocfs2_extent_rec *insert_rec,
3671                                   struct ocfs2_insert_type *type)
3672 {
3673         int ret, rotate = 0;
3674         u32 cpos;
3675         struct ocfs2_path *right_path = NULL;
3676         struct ocfs2_path *left_path = NULL;
3677         struct ocfs2_dinode *di;
3678         struct ocfs2_extent_list *el;
3679
3680         di = (struct ocfs2_dinode *) di_bh->b_data;
3681         el = &di->id2.i_list;
3682
3683         ret = ocfs2_journal_access(handle, inode, di_bh,
3684                                    OCFS2_JOURNAL_ACCESS_WRITE);
3685         if (ret) {
3686                 mlog_errno(ret);
3687                 goto out;
3688         }
3689
3690         if (le16_to_cpu(el->l_tree_depth) == 0) {
3691                 ocfs2_insert_at_leaf(insert_rec, el, type, inode);
3692                 goto out_update_clusters;
3693         }
3694
3695         right_path = ocfs2_new_inode_path(di_bh);
3696         if (!right_path) {
3697                 ret = -ENOMEM;
3698                 mlog_errno(ret);
3699                 goto out;
3700         }
3701
3702         /*
3703          * Determine the path to start with. Rotations need the
3704          * rightmost path, everything else can go directly to the
3705          * target leaf.
3706          */
3707         cpos = le32_to_cpu(insert_rec->e_cpos);
3708         if (type->ins_appending == APPEND_NONE &&
3709             type->ins_contig == CONTIG_NONE) {
3710                 rotate = 1;
3711                 cpos = UINT_MAX;
3712         }
3713
3714         ret = ocfs2_find_path(inode, right_path, cpos);
3715         if (ret) {
3716                 mlog_errno(ret);
3717                 goto out;
3718         }
3719
3720         /*
3721          * Rotations and appends need special treatment - they modify
3722          * parts of the tree's above them.
3723          *
3724          * Both might pass back a path immediate to the left of the
3725          * one being inserted to. This will be cause
3726          * ocfs2_insert_path() to modify the rightmost records of
3727          * left_path to account for an edge insert.
3728          *
3729          * XXX: When modifying this code, keep in mind that an insert
3730          * can wind up skipping both of these two special cases...
3731          */
3732         if (rotate) {
3733                 ret = ocfs2_rotate_tree_right(inode, handle, type->ins_split,
3734                                               le32_to_cpu(insert_rec->e_cpos),
3735                                               right_path, &left_path);
3736                 if (ret) {
3737                         mlog_errno(ret);
3738                         goto out;
3739                 }
3740
3741                 /*
3742                  * ocfs2_rotate_tree_right() might have extended the
3743                  * transaction without re-journaling our tree root.
3744                  */
3745                 ret = ocfs2_journal_access(handle, inode, di_bh,
3746                                            OCFS2_JOURNAL_ACCESS_WRITE);
3747                 if (ret) {
3748                         mlog_errno(ret);
3749                         goto out;
3750                 }
3751         } else if (type->ins_appending == APPEND_TAIL
3752                    && type->ins_contig != CONTIG_LEFT) {
3753                 ret = ocfs2_append_rec_to_path(inode, handle, insert_rec,
3754                                                right_path, &left_path);
3755                 if (ret) {
3756                         mlog_errno(ret);
3757                         goto out;
3758                 }
3759         }
3760
3761         ret = ocfs2_insert_path(inode, handle, left_path, right_path,
3762                                 insert_rec, type);
3763         if (ret) {
3764                 mlog_errno(ret);
3765                 goto out;
3766         }
3767
3768 out_update_clusters:
3769         if (type->ins_split == SPLIT_NONE)
3770                 ocfs2_update_dinode_clusters(inode, di,
3771                                              le16_to_cpu(insert_rec->e_leaf_clusters));
3772
3773         ret = ocfs2_journal_dirty(handle, di_bh);
3774         if (ret)
3775                 mlog_errno(ret);
3776
3777 out:
3778         ocfs2_free_path(left_path);
3779         ocfs2_free_path(right_path);
3780
3781         return ret;
3782 }
3783
3784 static enum ocfs2_contig_type
3785 ocfs2_figure_merge_contig_type(struct inode *inode,
3786                                struct ocfs2_extent_list *el, int index,
3787                                struct ocfs2_extent_rec *split_rec)
3788 {
3789         struct ocfs2_extent_rec *rec;
3790         enum ocfs2_contig_type ret = CONTIG_NONE;
3791
3792         /*
3793          * We're careful to check for an empty extent record here -
3794          * the merge code will know what to do if it sees one.
3795          */
3796
3797         if (index > 0) {
3798                 rec = &el->l_recs[index - 1];
3799                 if (index == 1 && ocfs2_is_empty_extent(rec)) {
3800                         if (split_rec->e_cpos == el->l_recs[index].e_cpos)
3801                                 ret = CONTIG_RIGHT;
3802                 } else {
3803                         ret = ocfs2_extent_contig(inode, rec, split_rec);
3804                 }
3805         }
3806
3807         if (index < (le16_to_cpu(el->l_next_free_rec) - 1)) {
3808                 enum ocfs2_contig_type contig_type;
3809
3810                 rec = &el->l_recs[index + 1];
3811                 contig_type = ocfs2_extent_contig(inode, rec, split_rec);
3812
3813                 if (contig_type == CONTIG_LEFT && ret == CONTIG_RIGHT)
3814                         ret = CONTIG_LEFTRIGHT;
3815                 else if (ret == CONTIG_NONE)
3816                         ret = contig_type;
3817         }
3818
3819         return ret;
3820 }
3821
3822 static void ocfs2_figure_contig_type(struct inode *inode,
3823                                      struct ocfs2_insert_type *insert,
3824                                      struct ocfs2_extent_list *el,
3825                                      struct ocfs2_extent_rec *insert_rec)
3826 {
3827         int i;
3828         enum ocfs2_contig_type contig_type = CONTIG_NONE;
3829
3830         BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
3831
3832         for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
3833                 contig_type = ocfs2_extent_contig(inode, &el->l_recs[i],
3834                                                   insert_rec);
3835                 if (contig_type != CONTIG_NONE) {
3836                         insert->ins_contig_index = i;
3837                         break;
3838                 }
3839         }
3840         insert->ins_contig = contig_type;
3841 }
3842
3843 /*
3844  * This should only be called against the righmost leaf extent list.
3845  *
3846  * ocfs2_figure_appending_type() will figure out whether we'll have to
3847  * insert at the tail of the rightmost leaf.
3848  *
3849  * This should also work against the dinode list for tree's with 0
3850  * depth. If we consider the dinode list to be the rightmost leaf node
3851  * then the logic here makes sense.
3852  */
3853 static void ocfs2_figure_appending_type(struct ocfs2_insert_type *insert,
3854                                         struct ocfs2_extent_list *el,
3855                                         struct ocfs2_extent_rec *insert_rec)
3856 {
3857         int i;
3858         u32 cpos = le32_to_cpu(insert_rec->e_cpos);
3859         struct ocfs2_extent_rec *rec;
3860
3861         insert->ins_appending = APPEND_NONE;
3862
3863         BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
3864
3865         if (!el->l_next_free_rec)
3866                 goto set_tail_append;
3867
3868         if (ocfs2_is_empty_extent(&el->l_recs[0])) {
3869                 /* Were all records empty? */
3870                 if (le16_to_cpu(el->l_next_free_rec) == 1)
3871                         goto set_tail_append;
3872         }
3873
3874         i = le16_to_cpu(el->l_next_free_rec) - 1;
3875         rec = &el->l_recs[i];
3876
3877         if (cpos >=
3878             (le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)))
3879                 goto set_tail_append;
3880
3881         return;
3882
3883 set_tail_append:
3884         insert->ins_appending = APPEND_TAIL;
3885 }
3886
3887 /*
3888  * Helper function called at the begining of an insert.
3889  *
3890  * This computes a few things that are commonly used in the process of
3891  * inserting into the btree:
3892  *   - Whether the new extent is contiguous with an existing one.
3893  *   - The current tree depth.
3894  *   - Whether the insert is an appending one.
3895  *   - The total # of free records in the tree.
3896  *
3897  * All of the information is stored on the ocfs2_insert_type
3898  * structure.
3899  */
3900 static int ocfs2_figure_insert_type(struct inode *inode,
3901                                     struct buffer_head *di_bh,
3902                                     struct buffer_head **last_eb_bh,
3903                                     struct ocfs2_extent_rec *insert_rec,
3904                                     int *free_records,
3905                                     struct ocfs2_insert_type *insert)
3906 {
3907         int ret;
3908         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
3909         struct ocfs2_extent_block *eb;
3910         struct ocfs2_extent_list *el;
3911         struct ocfs2_path *path = NULL;
3912         struct buffer_head *bh = NULL;
3913
3914         insert->ins_split = SPLIT_NONE;
3915
3916         el = &di->id2.i_list;
3917         insert->ins_tree_depth = le16_to_cpu(el->l_tree_depth);
3918
3919         if (el->l_tree_depth) {
3920                 /*
3921                  * If we have tree depth, we read in the
3922                  * rightmost extent block ahead of time as
3923                  * ocfs2_figure_insert_type() and ocfs2_add_branch()
3924                  * may want it later.
3925                  */
3926                 ret = ocfs2_read_block(OCFS2_SB(inode->i_sb),
3927                                        le64_to_cpu(di->i_last_eb_blk), &bh,
3928                                        OCFS2_BH_CACHED, inode);
3929                 if (ret) {
3930                         mlog_exit(ret);
3931                         goto out;
3932                 }
3933                 eb = (struct ocfs2_extent_block *) bh->b_data;
3934                 el = &eb->h_list;
3935         }
3936
3937         /*
3938          * Unless we have a contiguous insert, we'll need to know if
3939          * there is room left in our allocation tree for another
3940          * extent record.
3941          *
3942          * XXX: This test is simplistic, we can search for empty
3943          * extent records too.
3944          */
3945         *free_records = le16_to_cpu(el->l_count) -
3946                 le16_to_cpu(el->l_next_free_rec);
3947
3948         if (!insert->ins_tree_depth) {
3949                 ocfs2_figure_contig_type(inode, insert, el, insert_rec);
3950                 ocfs2_figure_appending_type(insert, el, insert_rec);
3951                 return 0;
3952         }
3953
3954         path = ocfs2_new_inode_path(di_bh);
3955         if (!path) {
3956                 ret = -ENOMEM;
3957                 mlog_errno(ret);
3958                 goto out;
3959         }
3960
3961         /*
3962          * In the case that we're inserting past what the tree
3963          * currently accounts for, ocfs2_find_path() will return for
3964          * us the rightmost tree path. This is accounted for below in
3965          * the appending code.
3966          */
3967         ret = ocfs2_find_path(inode, path, le32_to_cpu(insert_rec->e_cpos));
3968         if (ret) {
3969                 mlog_errno(ret);
3970                 goto out;
3971         }
3972
3973         el = path_leaf_el(path);
3974
3975         /*
3976          * Now that we have the path, there's two things we want to determine:
3977          * 1) Contiguousness (also set contig_index if this is so)
3978          *
3979          * 2) Are we doing an append? We can trivially break this up
3980          *     into two types of appends: simple record append, or a
3981          *     rotate inside the tail leaf.
3982          */
3983         ocfs2_figure_contig_type(inode, insert, el, insert_rec);
3984
3985         /*
3986          * The insert code isn't quite ready to deal with all cases of
3987          * left contiguousness. Specifically, if it's an insert into
3988          * the 1st record in a leaf, it will require the adjustment of
3989          * cluster count on the last record of the path directly to it's
3990          * left. For now, just catch that case and fool the layers
3991          * above us. This works just fine for tree_depth == 0, which
3992          * is why we allow that above.
3993          */
3994         if (insert->ins_contig == CONTIG_LEFT &&
3995             insert->ins_contig_index == 0)
3996                 insert->ins_contig = CONTIG_NONE;
3997
3998         /*
3999          * Ok, so we can simply compare against last_eb to figure out
4000          * whether the path doesn't exist. This will only happen in
4001          * the case that we're doing a tail append, so maybe we can
4002          * take advantage of that information somehow.
4003          */
4004         if (le64_to_cpu(di->i_last_eb_blk) == path_leaf_bh(path)->b_blocknr) {
4005                 /*
4006                  * Ok, ocfs2_find_path() returned us the rightmost
4007                  * tree path. This might be an appending insert. There are
4008                  * two cases:
4009                  *    1) We're doing a true append at the tail:
4010                  *      -This might even be off the end of the leaf
4011                  *    2) We're "appending" by rotating in the tail
4012                  */
4013                 ocfs2_figure_appending_type(insert, el, insert_rec);
4014         }
4015
4016 out:
4017         ocfs2_free_path(path);
4018
4019         if (ret == 0)
4020                 *last_eb_bh = bh;
4021         else
4022                 brelse(bh);
4023         return ret;
4024 }
4025
4026 /*
4027  * Insert an extent into an inode btree.
4028  *
4029  * The caller needs to update fe->i_clusters
4030  */
4031 int ocfs2_insert_extent(struct ocfs2_super *osb,
4032                         handle_t *handle,
4033                         struct inode *inode,
4034                         struct buffer_head *fe_bh,
4035                         u32 cpos,
4036                         u64 start_blk,
4037                         u32 new_clusters,
4038                         u8 flags,
4039                         struct ocfs2_alloc_context *meta_ac)
4040 {
4041         int status;
4042         int uninitialized_var(free_records);
4043         struct buffer_head *last_eb_bh = NULL;
4044         struct ocfs2_insert_type insert = {0, };
4045         struct ocfs2_extent_rec rec;
4046
4047         BUG_ON(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL);
4048
4049         mlog(0, "add %u clusters at position %u to inode %llu\n",
4050              new_clusters, cpos, (unsigned long long)OCFS2_I(inode)->ip_blkno);
4051
4052         mlog_bug_on_msg(!ocfs2_sparse_alloc(osb) &&
4053                         (OCFS2_I(inode)->ip_clusters != cpos),
4054                         "Device %s, asking for sparse allocation: inode %llu, "
4055                         "cpos %u, clusters %u\n",
4056                         osb->dev_str,
4057                         (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos,
4058                         OCFS2_I(inode)->ip_clusters);
4059
4060         memset(&rec, 0, sizeof(rec));
4061         rec.e_cpos = cpu_to_le32(cpos);
4062         rec.e_blkno = cpu_to_le64(start_blk);
4063         rec.e_leaf_clusters = cpu_to_le16(new_clusters);
4064         rec.e_flags = flags;
4065
4066         status = ocfs2_figure_insert_type(inode, fe_bh, &last_eb_bh, &rec,
4067                                           &free_records, &insert);
4068         if (status < 0) {
4069                 mlog_errno(status);
4070                 goto bail;
4071         }
4072
4073         mlog(0, "Insert.appending: %u, Insert.Contig: %u, "
4074              "Insert.contig_index: %d, Insert.free_records: %d, "
4075              "Insert.tree_depth: %d\n",
4076              insert.ins_appending, insert.ins_contig, insert.ins_contig_index,
4077              free_records, insert.ins_tree_depth);
4078
4079         if (insert.ins_contig == CONTIG_NONE && free_records == 0) {
4080                 status = ocfs2_grow_tree(inode, handle, fe_bh,
4081                                          &insert.ins_tree_depth, &last_eb_bh,
4082                                          meta_ac);
4083                 if (status) {
4084                         mlog_errno(status);
4085                         goto bail;
4086                 }
4087         }
4088
4089         /* Finally, we can add clusters. This might rotate the tree for us. */
4090         status = ocfs2_do_insert_extent(inode, handle, fe_bh, &rec, &insert);
4091         if (status < 0)
4092                 mlog_errno(status);
4093         else
4094                 ocfs2_extent_map_insert_rec(inode, &rec);
4095
4096 bail:
4097         if (last_eb_bh)
4098                 brelse(last_eb_bh);
4099
4100         mlog_exit(status);
4101         return status;
4102 }
4103
4104 static void ocfs2_make_right_split_rec(struct super_block *sb,
4105                                        struct ocfs2_extent_rec *split_rec,
4106                                        u32 cpos,
4107                                        struct ocfs2_extent_rec *rec)
4108 {
4109         u32 rec_cpos = le32_to_cpu(rec->e_cpos);
4110         u32 rec_range = rec_cpos + le16_to_cpu(rec->e_leaf_clusters);
4111
4112         memset(split_rec, 0, sizeof(struct ocfs2_extent_rec));
4113
4114         split_rec->e_cpos = cpu_to_le32(cpos);
4115         split_rec->e_leaf_clusters = cpu_to_le16(rec_range - cpos);
4116
4117         split_rec->e_blkno = rec->e_blkno;
4118         le64_add_cpu(&split_rec->e_blkno,
4119                      ocfs2_clusters_to_blocks(sb, cpos - rec_cpos));
4120
4121         split_rec->e_flags = rec->e_flags;
4122 }
4123
4124 static int ocfs2_split_and_insert(struct inode *inode,
4125                                   handle_t *handle,
4126                                   struct ocfs2_path *path,
4127                                   struct buffer_head *di_bh,
4128                                   struct buffer_head **last_eb_bh,
4129                                   int split_index,
4130                                   struct ocfs2_extent_rec *orig_split_rec,
4131                                   struct ocfs2_alloc_context *meta_ac)
4132 {
4133         int ret = 0, depth;
4134         unsigned int insert_range, rec_range, do_leftright = 0;
4135         struct ocfs2_extent_rec tmprec;
4136         struct ocfs2_extent_list *rightmost_el;
4137         struct ocfs2_extent_rec rec;
4138         struct ocfs2_extent_rec split_rec = *orig_split_rec;
4139         struct ocfs2_insert_type insert;
4140         struct ocfs2_extent_block *eb;
4141         struct ocfs2_dinode *di;
4142
4143 leftright:
4144         /*
4145          * Store a copy of the record on the stack - it might move
4146          * around as the tree is manipulated below.
4147          */
4148         rec = path_leaf_el(path)->l_recs[split_index];
4149
4150         di = (struct ocfs2_dinode *)di_bh->b_data;
4151         rightmost_el = &di->id2.i_list;
4152
4153         depth = le16_to_cpu(rightmost_el->l_tree_depth);
4154         if (depth) {
4155                 BUG_ON(!(*last_eb_bh));
4156                 eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
4157                 rightmost_el = &eb->h_list;
4158         }
4159
4160         if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
4161             le16_to_cpu(rightmost_el->l_count)) {
4162                 ret = ocfs2_grow_tree(inode, handle, di_bh, &depth, last_eb_bh,
4163                                       meta_ac);
4164                 if (ret) {
4165                         mlog_errno(ret);
4166                         goto out;
4167                 }
4168         }
4169
4170         memset(&insert, 0, sizeof(struct ocfs2_insert_type));
4171         insert.ins_appending = APPEND_NONE;
4172         insert.ins_contig = CONTIG_NONE;
4173         insert.ins_tree_depth = depth;
4174
4175         insert_range = le32_to_cpu(split_rec.e_cpos) +
4176                 le16_to_cpu(split_rec.e_leaf_clusters);
4177         rec_range = le32_to_cpu(rec.e_cpos) +
4178                 le16_to_cpu(rec.e_leaf_clusters);
4179
4180         if (split_rec.e_cpos == rec.e_cpos) {
4181                 insert.ins_split = SPLIT_LEFT;
4182         } else if (insert_range == rec_range) {
4183                 insert.ins_split = SPLIT_RIGHT;
4184         } else {
4185                 /*
4186                  * Left/right split. We fake this as a right split
4187                  * first and then make a second pass as a left split.
4188                  */
4189                 insert.ins_split = SPLIT_RIGHT;
4190
4191                 ocfs2_make_right_split_rec(inode->i_sb, &tmprec, insert_range,
4192                                            &rec);
4193
4194                 split_rec = tmprec;
4195
4196                 BUG_ON(do_leftright);
4197                 do_leftright = 1;
4198         }
4199
4200         ret = ocfs2_do_insert_extent(inode, handle, di_bh, &split_rec,
4201                                      &insert);
4202         if (ret) {
4203                 mlog_errno(ret);
4204                 goto out;
4205         }
4206
4207         if (do_leftright == 1) {
4208                 u32 cpos;
4209                 struct ocfs2_extent_list *el;
4210
4211                 do_leftright++;
4212                 split_rec = *orig_split_rec;
4213
4214                 ocfs2_reinit_path(path, 1);
4215
4216                 cpos = le32_to_cpu(split_rec.e_cpos);
4217                 ret = ocfs2_find_path(inode, path, cpos);
4218                 if (ret) {
4219                         mlog_errno(ret);
4220                         goto out;
4221                 }
4222
4223                 el = path_leaf_el(path);
4224                 split_index = ocfs2_search_extent_list(el, cpos);
4225                 goto leftright;
4226         }
4227 out:
4228
4229         return ret;
4230 }
4231
4232 /*
4233  * Mark part or all of the extent record at split_index in the leaf
4234  * pointed to by path as written. This removes the unwritten
4235  * extent flag.
4236  *
4237  * Care is taken to handle contiguousness so as to not grow the tree.
4238  *
4239  * meta_ac is not strictly necessary - we only truly need it if growth
4240  * of the tree is required. All other cases will degrade into a less
4241  * optimal tree layout.
4242  *
4243  * last_eb_bh should be the rightmost leaf block for any inode with a
4244  * btree. Since a split may grow the tree or a merge might shrink it, the caller cannot trust the contents of that buffer after this call.
4245  *
4246  * This code is optimized for readability - several passes might be
4247  * made over certain portions of the tree. All of those blocks will
4248  * have been brought into cache (and pinned via the journal), so the
4249  * extra overhead is not expressed in terms of disk reads.
4250  */
4251 static int __ocfs2_mark_extent_written(struct inode *inode,
4252                                        struct buffer_head *di_bh,
4253                                        handle_t *handle,
4254                                        struct ocfs2_path *path,
4255                                        int split_index,
4256                                        struct ocfs2_extent_rec *split_rec,
4257                                        struct ocfs2_alloc_context *meta_ac,
4258                                        struct ocfs2_cached_dealloc_ctxt *dealloc)
4259 {
4260         int ret = 0;
4261         struct ocfs2_extent_list *el = path_leaf_el(path);
4262         struct buffer_head *last_eb_bh = NULL;
4263         struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
4264         struct ocfs2_merge_ctxt ctxt;
4265         struct ocfs2_extent_list *rightmost_el;
4266
4267         if (!(rec->e_flags & OCFS2_EXT_UNWRITTEN)) {
4268                 ret = -EIO;
4269                 mlog_errno(ret);
4270                 goto out;
4271         }
4272
4273         if (le32_to_cpu(rec->e_cpos) > le32_to_cpu(split_rec->e_cpos) ||
4274             ((le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)) <
4275              (le32_to_cpu(split_rec->e_cpos) + le16_to_cpu(split_rec->e_leaf_clusters)))) {
4276                 ret = -EIO;
4277                 mlog_errno(ret);
4278                 goto out;
4279         }
4280
4281         ctxt.c_contig_type = ocfs2_figure_merge_contig_type(inode, el,
4282                                                             split_index,
4283                                                             split_rec);
4284
4285         /*
4286          * The core merge / split code wants to know how much room is
4287          * left in this inodes allocation tree, so we pass the
4288          * rightmost extent list.
4289          */
4290         if (path->p_tree_depth) {
4291                 struct ocfs2_extent_block *eb;
4292                 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
4293
4294                 ret = ocfs2_read_block(OCFS2_SB(inode->i_sb),
4295                                        le64_to_cpu(di->i_last_eb_blk),
4296                                        &last_eb_bh, OCFS2_BH_CACHED, inode);
4297                 if (ret) {
4298                         mlog_exit(ret);
4299                         goto out;
4300                 }
4301
4302                 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
4303                 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
4304                         OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
4305                         ret = -EROFS;
4306                         goto out;
4307                 }
4308
4309                 rightmost_el = &eb->h_list;
4310         } else
4311                 rightmost_el = path_root_el(path);
4312
4313         if (rec->e_cpos == split_rec->e_cpos &&
4314             rec->e_leaf_clusters == split_rec->e_leaf_clusters)
4315                 ctxt.c_split_covers_rec = 1;
4316         else
4317                 ctxt.c_split_covers_rec = 0;
4318
4319         ctxt.c_has_empty_extent = ocfs2_is_empty_extent(&el->l_recs[0]);
4320
4321         mlog(0, "index: %d, contig: %u, has_empty: %u, split_covers: %u\n",
4322              split_index, ctxt.c_contig_type, ctxt.c_has_empty_extent,
4323              ctxt.c_split_covers_rec);
4324
4325         if (ctxt.c_contig_type == CONTIG_NONE) {
4326                 if (ctxt.c_split_covers_rec)
4327                         el->l_recs[split_index] = *split_rec;
4328                 else
4329                         ret = ocfs2_split_and_insert(inode, handle, path, di_bh,
4330                                                      &last_eb_bh, split_index,
4331                                                      split_rec, meta_ac);
4332                 if (ret)
4333                         mlog_errno(ret);
4334         } else {
4335                 ret = ocfs2_try_to_merge_extent(inode, handle, path,
4336                                                 split_index, split_rec,
4337                                                 dealloc, &ctxt);
4338                 if (ret)
4339                         mlog_errno(ret);
4340         }
4341
4342 out:
4343         brelse(last_eb_bh);
4344         return ret;
4345 }
4346
4347 /*
4348  * Mark the already-existing extent at cpos as written for len clusters.
4349  *
4350  * If the existing extent is larger than the request, initiate a
4351  * split. An attempt will be made at merging with adjacent extents.
4352  *
4353  * The caller is responsible for passing down meta_ac if we'll need it.
4354  */
4355 int ocfs2_mark_extent_written(struct inode *inode, struct buffer_head *di_bh,
4356                               handle_t *handle, u32 cpos, u32 len, u32 phys,
4357                               struct ocfs2_alloc_context *meta_ac,
4358                               struct ocfs2_cached_dealloc_ctxt *dealloc)
4359 {
4360         int ret, index;
4361         u64 start_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys);
4362         struct ocfs2_extent_rec split_rec;
4363         struct ocfs2_path *left_path = NULL;
4364         struct ocfs2_extent_list *el;
4365
4366         mlog(0, "Inode %lu cpos %u, len %u, phys %u (%llu)\n",
4367              inode->i_ino, cpos, len, phys, (unsigned long long)start_blkno);
4368
4369         if (!ocfs2_writes_unwritten_extents(OCFS2_SB(inode->i_sb))) {
4370                 ocfs2_error(inode->i_sb, "Inode %llu has unwritten extents "
4371                             "that are being written to, but the feature bit "
4372                             "is not set in the super block.",
4373                             (unsigned long long)OCFS2_I(inode)->ip_blkno);
4374                 ret = -EROFS;
4375                 goto out;
4376         }
4377
4378         /*
4379          * XXX: This should be fixed up so that we just re-insert the
4380          * next extent records.
4381          */
4382         ocfs2_extent_map_trunc(inode, 0);
4383
4384         left_path = ocfs2_new_inode_path(di_bh);
4385         if (!left_path) {
4386                 ret = -ENOMEM;
4387                 mlog_errno(ret);
4388                 goto out;
4389         }
4390
4391         ret = ocfs2_find_path(inode, left_path, cpos);
4392         if (ret) {
4393                 mlog_errno(ret);
4394                 goto out;
4395         }
4396         el = path_leaf_el(left_path);
4397
4398         index = ocfs2_search_extent_list(el, cpos);
4399         if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
4400                 ocfs2_error(inode->i_sb,
4401                             "Inode %llu has an extent at cpos %u which can no "
4402                             "longer be found.\n",
4403                             (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
4404                 ret = -EROFS;
4405                 goto out;
4406         }
4407
4408         memset(&split_rec, 0, sizeof(struct ocfs2_extent_rec));
4409         split_rec.e_cpos = cpu_to_le32(cpos);
4410         split_rec.e_leaf_clusters = cpu_to_le16(len);
4411         split_rec.e_blkno = cpu_to_le64(start_blkno);
4412         split_rec.e_flags = path_leaf_el(left_path)->l_recs[index].e_flags;
4413         split_rec.e_flags &= ~OCFS2_EXT_UNWRITTEN;
4414
4415         ret = __ocfs2_mark_extent_written(inode, di_bh, handle, left_path,
4416                                           index, &split_rec, meta_ac, dealloc);
4417         if (ret)
4418                 mlog_errno(ret);
4419
4420 out:
4421         ocfs2_free_path(left_path);
4422         return ret;
4423 }
4424
4425 static int ocfs2_split_tree(struct inode *inode, struct buffer_head *di_bh,
4426                             handle_t *handle, struct ocfs2_path *path,
4427                             int index, u32 new_range,
4428                             struct ocfs2_alloc_context *meta_ac)
4429 {
4430         int ret, depth, credits = handle->h_buffer_credits;
4431         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
4432         struct buffer_head *last_eb_bh = NULL;
4433         struct ocfs2_extent_block *eb;
4434         struct ocfs2_extent_list *rightmost_el, *el;
4435         struct ocfs2_extent_rec split_rec;
4436         struct ocfs2_extent_rec *rec;
4437         struct ocfs2_insert_type insert;
4438
4439         /*
4440          * Setup the record to split before we grow the tree.
4441          */
4442         el = path_leaf_el(path);
4443         rec = &el->l_recs[index];
4444         ocfs2_make_right_split_rec(inode->i_sb, &split_rec, new_range, rec);
4445
4446         depth = path->p_tree_depth;
4447         if (depth > 0) {
4448                 ret = ocfs2_read_block(OCFS2_SB(inode->i_sb),
4449                                        le64_to_cpu(di->i_last_eb_blk),
4450                                        &last_eb_bh, OCFS2_BH_CACHED, inode);
4451                 if (ret < 0) {
4452                         mlog_errno(ret);
4453                         goto out;
4454                 }
4455
4456                 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
4457                 rightmost_el = &eb->h_list;
4458         } else
4459                 rightmost_el = path_leaf_el(path);
4460
4461         credits += path->p_tree_depth + ocfs2_extend_meta_needed(di);
4462         ret = ocfs2_extend_trans(handle, credits);
4463         if (ret) {
4464                 mlog_errno(ret);
4465                 goto out;
4466         }
4467
4468         if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
4469             le16_to_cpu(rightmost_el->l_count)) {
4470                 ret = ocfs2_grow_tree(inode, handle, di_bh, &depth, &last_eb_bh,
4471                                       meta_ac);
4472                 if (ret) {
4473                         mlog_errno(ret);
4474                         goto out;
4475                 }
4476         }
4477
4478         memset(&insert, 0, sizeof(struct ocfs2_insert_type));
4479         insert.ins_appending = APPEND_NONE;
4480         insert.ins_contig = CONTIG_NONE;
4481         insert.ins_split = SPLIT_RIGHT;
4482         insert.ins_tree_depth = depth;
4483
4484         ret = ocfs2_do_insert_extent(inode, handle, di_bh, &split_rec, &insert);
4485         if (ret)
4486                 mlog_errno(ret);
4487
4488 out:
4489         brelse(last_eb_bh);
4490         return ret;
4491 }
4492
4493 static int ocfs2_truncate_rec(struct inode *inode, handle_t *handle,
4494                               struct ocfs2_path *path, int index,
4495                               struct ocfs2_cached_dealloc_ctxt *dealloc,
4496                               u32 cpos, u32 len)
4497 {
4498         int ret;
4499         u32 left_cpos, rec_range, trunc_range;
4500         int wants_rotate = 0, is_rightmost_tree_rec = 0;
4501         struct super_block *sb = inode->i_sb;
4502         struct ocfs2_path *left_path = NULL;
4503         struct ocfs2_extent_list *el = path_leaf_el(path);
4504         struct ocfs2_extent_rec *rec;
4505         struct ocfs2_extent_block *eb;
4506
4507         if (ocfs2_is_empty_extent(&el->l_recs[0]) && index > 0) {
4508                 ret = ocfs2_rotate_tree_left(inode, handle, path, dealloc);
4509                 if (ret) {
4510                         mlog_errno(ret);
4511                         goto out;
4512                 }
4513
4514                 index--;
4515         }
4516
4517         if (index == (le16_to_cpu(el->l_next_free_rec) - 1) &&
4518             path->p_tree_depth) {
4519                 /*
4520                  * Check whether this is the rightmost tree record. If
4521                  * we remove all of this record or part of its right
4522                  * edge then an update of the record lengths above it
4523                  * will be required.
4524                  */
4525                 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
4526                 if (eb->h_next_leaf_blk == 0)
4527                         is_rightmost_tree_rec = 1;
4528         }
4529
4530         rec = &el->l_recs[index];
4531         if (index == 0 && path->p_tree_depth &&
4532             le32_to_cpu(rec->e_cpos) == cpos) {
4533                 /*
4534                  * Changing the leftmost offset (via partial or whole
4535                  * record truncate) of an interior (or rightmost) path
4536                  * means we have to update the subtree that is formed
4537                  * by this leaf and the one to it's left.
4538                  *
4539                  * There are two cases we can skip:
4540                  *   1) Path is the leftmost one in our inode tree.
4541                  *   2) The leaf is rightmost and will be empty after
4542                  *      we remove the extent record - the rotate code
4543                  *      knows how to update the newly formed edge.
4544                  */
4545
4546                 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path,
4547                                                     &left_cpos);
4548                 if (ret) {
4549                         mlog_errno(ret);
4550                         goto out;
4551                 }
4552
4553                 if (left_cpos && le16_to_cpu(el->l_next_free_rec) > 1) {
4554                         left_path = ocfs2_new_path(path_root_bh(path),
4555                                                    path_root_el(path));
4556                         if (!left_path) {
4557                                 ret = -ENOMEM;
4558                                 mlog_errno(ret);
4559                                 goto out;
4560                         }
4561
4562                         ret = ocfs2_find_path(inode, left_path, left_cpos);
4563                         if (ret) {
4564                                 mlog_errno(ret);
4565                                 goto out;
4566                         }
4567                 }
4568         }
4569
4570         ret = ocfs2_extend_rotate_transaction(handle, 0,
4571                                               handle->h_buffer_credits,
4572                                               path);
4573         if (ret) {
4574                 mlog_errno(ret);
4575                 goto out;
4576         }
4577
4578         ret = ocfs2_journal_access_path(inode, handle, path);
4579         if (ret) {
4580                 mlog_errno(ret);
4581                 goto out;
4582         }
4583
4584         ret = ocfs2_journal_access_path(inode, handle, left_path);
4585         if (ret) {
4586                 mlog_errno(ret);
4587                 goto out;
4588         }
4589
4590         rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
4591         trunc_range = cpos + len;
4592
4593         if (le32_to_cpu(rec->e_cpos) == cpos && rec_range == trunc_range) {
4594                 int next_free;
4595
4596                 memset(rec, 0, sizeof(*rec));
4597                 ocfs2_cleanup_merge(el, index);
4598                 wants_rotate = 1;
4599
4600                 next_free = le16_to_cpu(el->l_next_free_rec);
4601                 if (is_rightmost_tree_rec && next_free > 1) {
4602                         /*
4603                          * We skip the edge update if this path will
4604                          * be deleted by the rotate code.
4605                          */
4606                         rec = &el->l_recs[next_free - 1];
4607                         ocfs2_adjust_rightmost_records(inode, handle, path,
4608                                                        rec);
4609                 }
4610         } else if (le32_to_cpu(rec->e_cpos) == cpos) {
4611                 /* Remove leftmost portion of the record. */
4612                 le32_add_cpu(&rec->e_cpos, len);
4613                 le64_add_cpu(&rec->e_blkno, ocfs2_clusters_to_blocks(sb, len));
4614                 le16_add_cpu(&rec->e_leaf_clusters, -len);
4615         } else if (rec_range == trunc_range) {
4616                 /* Remove rightmost portion of the record */
4617                 le16_add_cpu(&rec->e_leaf_clusters, -len);
4618                 if (is_rightmost_tree_rec)
4619                         ocfs2_adjust_rightmost_records(inode, handle, path, rec);
4620         } else {
4621                 /* Caller should have trapped this. */
4622                 mlog(ML_ERROR, "Inode %llu: Invalid record truncate: (%u, %u) "
4623                      "(%u, %u)\n", (unsigned long long)OCFS2_I(inode)->ip_blkno,
4624                      le32_to_cpu(rec->e_cpos),
4625                      le16_to_cpu(rec->e_leaf_clusters), cpos, len);
4626                 BUG();
4627         }
4628
4629         if (left_path) {
4630                 int subtree_index;
4631
4632                 subtree_index = ocfs2_find_subtree_root(inode, left_path, path);
4633                 ocfs2_complete_edge_insert(inode, handle, left_path, path,
4634                                            subtree_index);
4635         }
4636
4637         ocfs2_journal_dirty(handle, path_leaf_bh(path));
4638
4639         ret = ocfs2_rotate_tree_left(inode, handle, path, dealloc);
4640         if (ret) {
4641                 mlog_errno(ret);
4642                 goto out;
4643         }
4644
4645 out:
4646         ocfs2_free_path(left_path);
4647         return ret;
4648 }
4649
4650 int ocfs2_remove_extent(struct inode *inode, struct buffer_head *di_bh,
4651                         u32 cpos, u32 len, handle_t *handle,
4652                         struct ocfs2_alloc_context *meta_ac,
4653                         struct ocfs2_cached_dealloc_ctxt *dealloc)
4654 {
4655         int ret, index;
4656         u32 rec_range, trunc_range;
4657         struct ocfs2_extent_rec *rec;
4658         struct ocfs2_extent_list *el;
4659         struct ocfs2_path *path;
4660
4661         ocfs2_extent_map_trunc(inode, 0);
4662
4663         path = ocfs2_new_inode_path(di_bh);
4664         if (!path) {
4665                 ret = -ENOMEM;
4666                 mlog_errno(ret);
4667                 goto out;
4668         }
4669
4670         ret = ocfs2_find_path(inode, path, cpos);
4671         if (ret) {
4672                 mlog_errno(ret);
4673                 goto out;
4674         }
4675
4676         el = path_leaf_el(path);
4677         index = ocfs2_search_extent_list(el, cpos);
4678         if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
4679                 ocfs2_error(inode->i_sb,
4680                             "Inode %llu has an extent at cpos %u which can no "
4681                             "longer be found.\n",
4682                             (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
4683                 ret = -EROFS;
4684                 goto out;
4685         }
4686
4687         /*
4688          * We have 3 cases of extent removal:
4689          *   1) Range covers the entire extent rec
4690          *   2) Range begins or ends on one edge of the extent rec
4691          *   3) Range is in the middle of the extent rec (no shared edges)
4692          *
4693          * For case 1 we remove the extent rec and left rotate to
4694          * fill the hole.
4695          *
4696          * For case 2 we just shrink the existing extent rec, with a
4697          * tree update if the shrinking edge is also the edge of an
4698          * extent block.
4699          *
4700          * For case 3 we do a right split to turn the extent rec into
4701          * something case 2 can handle.
4702          */
4703         rec = &el->l_recs[index];
4704         rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
4705         trunc_range = cpos + len;
4706
4707         BUG_ON(cpos < le32_to_cpu(rec->e_cpos) || trunc_range > rec_range);
4708
4709         mlog(0, "Inode %llu, remove (cpos %u, len %u). Existing index %d "
4710              "(cpos %u, len %u)\n",
4711              (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos, len, index,
4712              le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec));
4713
4714         if (le32_to_cpu(rec->e_cpos) == cpos || rec_range == trunc_range) {
4715                 ret = ocfs2_truncate_rec(inode, handle, path, index, dealloc,
4716                                          cpos, len);
4717                 if (ret) {
4718                         mlog_errno(ret);
4719                         goto out;
4720                 }
4721         } else {
4722                 ret = ocfs2_split_tree(inode, di_bh, handle, path, index,
4723                                        trunc_range, meta_ac);
4724                 if (ret) {
4725                         mlog_errno(ret);
4726                         goto out;
4727                 }
4728
4729                 /*
4730                  * The split could have manipulated the tree enough to
4731                  * move the record location, so we have to look for it again.
4732                  */
4733                 ocfs2_reinit_path(path, 1);
4734
4735                 ret = ocfs2_find_path(inode, path, cpos);
4736                 if (ret) {
4737                         mlog_errno(ret);
4738                         goto out;
4739                 }
4740
4741                 el = path_leaf_el(path);
4742                 index = ocfs2_search_extent_list(el, cpos);
4743                 if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
4744                         ocfs2_error(inode->i_sb,
4745                                     "Inode %llu: split at cpos %u lost record.",
4746                                     (unsigned long long)OCFS2_I(inode)->ip_blkno,
4747                                     cpos);
4748                         ret = -EROFS;
4749                         goto out;
4750                 }
4751
4752                 /*
4753                  * Double check our values here. If anything is fishy,
4754                  * it's easier to catch it at the top level.
4755                  */
4756                 rec = &el->l_recs[index];
4757                 rec_range = le32_to_cpu(rec->e_cpos) +
4758                         ocfs2_rec_clusters(el, rec);
4759                 if (rec_range != trunc_range) {
4760                         ocfs2_error(inode->i_sb,
4761                                     "Inode %llu: error after split at cpos %u"
4762                                     "trunc len %u, existing record is (%u,%u)",
4763                                     (unsigned long long)OCFS2_I(inode)->ip_blkno,
4764                                     cpos, len, le32_to_cpu(rec->e_cpos),
4765                                     ocfs2_rec_clusters(el, rec));
4766                         ret = -EROFS;
4767                         goto out;
4768                 }
4769
4770                 ret = ocfs2_truncate_rec(inode, handle, path, index, dealloc,
4771                                          cpos, len);
4772                 if (ret) {
4773                         mlog_errno(ret);
4774                         goto out;
4775                 }
4776         }
4777
4778 out:
4779         ocfs2_free_path(path);
4780         return ret;
4781 }
4782
4783 int ocfs2_truncate_log_needs_flush(struct ocfs2_super *osb)
4784 {
4785         struct buffer_head *tl_bh = osb->osb_tl_bh;
4786         struct ocfs2_dinode *di;
4787         struct ocfs2_truncate_log *tl;
4788
4789         di = (struct ocfs2_dinode *) tl_bh->b_data;
4790         tl = &di->id2.i_dealloc;
4791
4792         mlog_bug_on_msg(le16_to_cpu(tl->tl_used) > le16_to_cpu(tl->tl_count),
4793                         "slot %d, invalid truncate log parameters: used = "
4794                         "%u, count = %u\n", osb->slot_num,
4795                         le16_to_cpu(tl->tl_used), le16_to_cpu(tl->tl_count));
4796         return le16_to_cpu(tl->tl_used) == le16_to_cpu(tl->tl_count);
4797 }
4798
4799 static int ocfs2_truncate_log_can_coalesce(struct ocfs2_truncate_log *tl,
4800                                            unsigned int new_start)
4801 {
4802         unsigned int tail_index;
4803         unsigned int current_tail;
4804
4805         /* No records, nothing to coalesce */
4806         if (!le16_to_cpu(tl->tl_used))
4807                 return 0;
4808
4809         tail_index = le16_to_cpu(tl->tl_used) - 1;
4810         current_tail = le32_to_cpu(tl->tl_recs[tail_index].t_start);
4811         current_tail += le32_to_cpu(tl->tl_recs[tail_index].t_clusters);
4812
4813         return current_tail == new_start;
4814 }
4815
4816 int ocfs2_truncate_log_append(struct ocfs2_super *osb,
4817                               handle_t *handle,
4818                               u64 start_blk,
4819                               unsigned int num_clusters)
4820 {
4821         int status, index;
4822         unsigned int start_cluster, tl_count;
4823         struct inode *tl_inode = osb->osb_tl_inode;
4824         struct buffer_head *tl_bh = osb->osb_tl_bh;
4825         struct ocfs2_dinode *di;
4826         struct ocfs2_truncate_log *tl;
4827
4828         mlog_entry("start_blk = %llu, num_clusters = %u\n",
4829                    (unsigned long long)start_blk, num_clusters);
4830
4831         BUG_ON(mutex_trylock(&tl_inode->i_mutex));
4832
4833         start_cluster = ocfs2_blocks_to_clusters(osb->sb, start_blk);
4834
4835         di = (struct ocfs2_dinode *) tl_bh->b_data;
4836         tl = &di->id2.i_dealloc;
4837         if (!OCFS2_IS_VALID_DINODE(di)) {
4838                 OCFS2_RO_ON_INVALID_DINODE(osb->sb, di);
4839                 status = -EIO;
4840                 goto bail;
4841         }
4842
4843         tl_count = le16_to_cpu(tl->tl_count);
4844         mlog_bug_on_msg(tl_count > ocfs2_truncate_recs_per_inode(osb->sb) ||
4845                         tl_count == 0,
4846                         "Truncate record count on #%llu invalid "
4847                         "wanted %u, actual %u\n",
4848                         (unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
4849                         ocfs2_truncate_recs_per_inode(osb->sb),
4850                         le16_to_cpu(tl->tl_count));
4851
4852         /* Caller should have known to flush before calling us. */
4853         index = le16_to_cpu(tl->tl_used);
4854         if (index >= tl_count) {
4855                 status = -ENOSPC;
4856                 mlog_errno(status);
4857                 goto bail;
4858         }
4859
4860         status = ocfs2_journal_access(handle, tl_inode, tl_bh,
4861                                       OCFS2_JOURNAL_ACCESS_WRITE);
4862         if (status < 0) {
4863                 mlog_errno(status);
4864                 goto bail;
4865         }
4866
4867         mlog(0, "Log truncate of %u clusters starting at cluster %u to "
4868              "%llu (index = %d)\n", num_clusters, start_cluster,
4869              (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, index);
4870
4871         if (ocfs2_truncate_log_can_coalesce(tl, start_cluster)) {
4872                 /*
4873                  * Move index back to the record we are coalescing with.
4874                  * ocfs2_truncate_log_can_coalesce() guarantees nonzero
4875                  */
4876                 index--;
4877
4878                 num_clusters += le32_to_cpu(tl->tl_recs[index].t_clusters);
4879                 mlog(0, "Coalesce with index %u (start = %u, clusters = %u)\n",
4880                      index, le32_to_cpu(tl->tl_recs[index].t_start),
4881                      num_clusters);
4882         } else {
4883                 tl->tl_recs[index].t_start = cpu_to_le32(start_cluster);
4884                 tl->tl_used = cpu_to_le16(index + 1);
4885         }
4886         tl->tl_recs[index].t_clusters = cpu_to_le32(num_clusters);
4887
4888         status = ocfs2_journal_dirty(handle, tl_bh);
4889         if (status < 0) {
4890                 mlog_errno(status);
4891                 goto bail;
4892         }
4893
4894 bail:
4895         mlog_exit(status);
4896         return status;
4897 }
4898
4899 static int ocfs2_replay_truncate_records(struct ocfs2_super *osb,
4900                                          handle_t *handle,
4901                                          struct inode *data_alloc_inode,
4902                                          struct buffer_head *data_alloc_bh)
4903 {
4904         int status = 0;
4905         int i;
4906         unsigned int num_clusters;
4907         u64 start_blk;
4908         struct ocfs2_truncate_rec rec;
4909         struct ocfs2_dinode *di;
4910         struct ocfs2_truncate_log *tl;
4911         struct inode *tl_inode = osb->osb_tl_inode;
4912         struct buffer_head *tl_bh = osb->osb_tl_bh;
4913
4914         mlog_entry_void();
4915
4916         di = (struct ocfs2_dinode *) tl_bh->b_data;
4917         tl = &di->id2.i_dealloc;
4918         i = le16_to_cpu(tl->tl_used) - 1;
4919         while (i >= 0) {
4920                 /* Caller has given us at least enough credits to
4921                  * update the truncate log dinode */
4922                 status = ocfs2_journal_access(handle, tl_inode, tl_bh,
4923                                               OCFS2_JOURNAL_ACCESS_WRITE);
4924                 if (status < 0) {
4925                         mlog_errno(status);
4926                         goto bail;
4927                 }
4928
4929                 tl->tl_used = cpu_to_le16(i);
4930
4931                 status = ocfs2_journal_dirty(handle, tl_bh);
4932                 if (status < 0) {
4933                         mlog_errno(status);
4934                         goto bail;
4935                 }
4936
4937                 /* TODO: Perhaps we can calculate the bulk of the
4938                  * credits up front rather than extending like
4939                  * this. */
4940                 status = ocfs2_extend_trans(handle,
4941                                             OCFS2_TRUNCATE_LOG_FLUSH_ONE_REC);
4942                 if (status < 0) {
4943                         mlog_errno(status);
4944                         goto bail;
4945                 }
4946
4947                 rec = tl->tl_recs[i];
4948                 start_blk = ocfs2_clusters_to_blocks(data_alloc_inode->i_sb,
4949                                                     le32_to_cpu(rec.t_start));
4950                 num_clusters = le32_to_cpu(rec.t_clusters);
4951
4952                 /* if start_blk is not set, we ignore the record as
4953                  * invalid. */
4954                 if (start_blk) {
4955                         mlog(0, "free record %d, start = %u, clusters = %u\n",
4956                              i, le32_to_cpu(rec.t_start), num_clusters);
4957
4958                         status = ocfs2_free_clusters(handle, data_alloc_inode,
4959                                                      data_alloc_bh, start_blk,
4960                                                      num_clusters);
4961                         if (status < 0) {
4962                                 mlog_errno(status);
4963                                 goto bail;
4964                         }
4965                 }
4966                 i--;
4967         }
4968
4969 bail:
4970         mlog_exit(status);
4971         return status;
4972 }
4973
4974 /* Expects you to already be holding tl_inode->i_mutex */
4975 int __ocfs2_flush_truncate_log(struct ocfs2_super *osb)
4976 {
4977         int status;
4978         unsigned int num_to_flush;
4979         handle_t *handle;
4980         struct inode *tl_inode = osb->osb_tl_inode;
4981         struct inode *data_alloc_inode = NULL;
4982         struct buffer_head *tl_bh = osb->osb_tl_bh;
4983         struct buffer_head *data_alloc_bh = NULL;
4984         struct ocfs2_dinode *di;
4985         struct ocfs2_truncate_log *tl;
4986
4987         mlog_entry_void();
4988
4989         BUG_ON(mutex_trylock(&tl_inode->i_mutex));
4990
4991         di = (struct ocfs2_dinode *) tl_bh->b_data;
4992         tl = &di->id2.i_dealloc;
4993         if (!OCFS2_IS_VALID_DINODE(di)) {
4994                 OCFS2_RO_ON_INVALID_DINODE(osb->sb, di);
4995                 status = -EIO;
4996                 goto out;
4997         }
4998
4999         num_to_flush = le16_to_cpu(tl->tl_used);
5000         mlog(0, "Flush %u records from truncate log #%llu\n",
5001              num_to_flush, (unsigned long long)OCFS2_I(tl_inode)->ip_blkno);
5002         if (!num_to_flush) {
5003                 status = 0;
5004                 goto out;
5005         }
5006
5007         data_alloc_inode = ocfs2_get_system_file_inode(osb,
5008                                                        GLOBAL_BITMAP_SYSTEM_INODE,
5009                                                        OCFS2_INVALID_SLOT);
5010         if (!data_alloc_inode) {
5011                 status = -EINVAL;
5012                 mlog(ML_ERROR, "Could not get bitmap inode!\n");
5013                 goto out;
5014         }
5015
5016         mutex_lock(&data_alloc_inode->i_mutex);
5017
5018         status = ocfs2_inode_lock(data_alloc_inode, &data_alloc_bh, 1);
5019         if (status < 0) {
5020                 mlog_errno(status);
5021                 goto out_mutex;
5022         }
5023
5024         handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
5025         if (IS_ERR(handle)) {
5026                 status = PTR_ERR(handle);
5027                 mlog_errno(status);
5028                 goto out_unlock;
5029         }
5030
5031         status = ocfs2_replay_truncate_records(osb, handle, data_alloc_inode,
5032                                                data_alloc_bh);
5033         if (status < 0)
5034                 mlog_errno(status);
5035
5036         ocfs2_commit_trans(osb, handle);
5037
5038 out_unlock:
5039         brelse(data_alloc_bh);
5040         ocfs2_inode_unlock(data_alloc_inode, 1);
5041
5042 out_mutex:
5043         mutex_unlock(&data_alloc_inode->i_mutex);
5044         iput(data_alloc_inode);
5045
5046 out:
5047         mlog_exit(status);
5048         return status;
5049 }
5050
5051 int ocfs2_flush_truncate_log(struct ocfs2_super *osb)
5052 {
5053         int status;
5054         struct inode *tl_inode = osb->osb_tl_inode;
5055
5056         mutex_lock(&tl_inode->i_mutex);
5057         status = __ocfs2_flush_truncate_log(osb);
5058         mutex_unlock(&tl_inode->i_mutex);
5059
5060         return status;
5061 }
5062
5063 static void ocfs2_truncate_log_worker(struct work_struct *work)
5064 {
5065         int status;
5066         struct ocfs2_super *osb =
5067                 container_of(work, struct ocfs2_super,
5068                              osb_truncate_log_wq.work);
5069
5070         mlog_entry_void();
5071
5072         status = ocfs2_flush_truncate_log(osb);
5073         if (status < 0)
5074                 mlog_errno(status);
5075
5076         mlog_exit(status);
5077 }
5078
5079 #define OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL (2 * HZ)
5080 void ocfs2_schedule_truncate_log_flush(struct ocfs2_super *osb,
5081                                        int cancel)
5082 {
5083         if (osb->osb_tl_inode) {
5084                 /* We want to push off log flushes while truncates are
5085                  * still running. */
5086                 if (cancel)
5087                         cancel_delayed_work(&osb->osb_truncate_log_wq);
5088
5089                 queue_delayed_work(ocfs2_wq, &osb->osb_truncate_log_wq,
5090                                    OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL);
5091         }
5092 }
5093
5094 static int ocfs2_get_truncate_log_info(struct ocfs2_super *osb,
5095                                        int slot_num,
5096                                        struct inode **tl_inode,
5097                                        struct buffer_head **tl_bh)
5098 {
5099         int status;
5100         struct inode *inode = NULL;
5101         struct buffer_head *bh = NULL;
5102
5103         inode = ocfs2_get_system_file_inode(osb,
5104                                            TRUNCATE_LOG_SYSTEM_INODE,
5105                                            slot_num);
5106         if (!inode) {
5107                 status = -EINVAL;
5108                 mlog(ML_ERROR, "Could not get load truncate log inode!\n");
5109                 goto bail;
5110         }
5111
5112         status = ocfs2_read_block(osb, OCFS2_I(inode)->ip_blkno, &bh,
5113                                   OCFS2_BH_CACHED, inode);
5114         if (status < 0) {
5115                 iput(inode);
5116                 mlog_errno(status);
5117                 goto bail;
5118         }
5119
5120         *tl_inode = inode;
5121         *tl_bh    = bh;
5122 bail:
5123         mlog_exit(status);
5124         return status;
5125 }
5126
5127 /* called during the 1st stage of node recovery. we stamp a clean
5128  * truncate log and pass back a copy for processing later. if the
5129  * truncate log does not require processing, a *tl_copy is set to
5130  * NULL. */
5131 int ocfs2_begin_truncate_log_recovery(struct ocfs2_super *osb,
5132                                       int slot_num,
5133                                       struct ocfs2_dinode **tl_copy)
5134 {
5135         int status;
5136         struct inode *tl_inode = NULL;
5137         struct buffer_head *tl_bh = NULL;
5138         struct ocfs2_dinode *di;
5139         struct ocfs2_truncate_log *tl;
5140
5141         *tl_copy = NULL;
5142
5143         mlog(0, "recover truncate log from slot %d\n", slot_num);
5144
5145         status = ocfs2_get_truncate_log_info(osb, slot_num, &tl_inode, &tl_bh);
5146         if (status < 0) {
5147                 mlog_errno(status);
5148                 goto bail;
5149         }
5150
5151         di = (struct ocfs2_dinode *) tl_bh->b_data;
5152         tl = &di->id2.i_dealloc;
5153         if (!OCFS2_IS_VALID_DINODE(di)) {
5154                 OCFS2_RO_ON_INVALID_DINODE(tl_inode->i_sb, di);
5155                 status = -EIO;
5156                 goto bail;
5157         }
5158
5159         if (le16_to_cpu(tl->tl_used)) {
5160                 mlog(0, "We'll have %u logs to recover\n",
5161                      le16_to_cpu(tl->tl_used));
5162
5163                 *tl_copy = kmalloc(tl_bh->b_size, GFP_KERNEL);
5164                 if (!(*tl_copy)) {
5165                         status = -ENOMEM;
5166                         mlog_errno(status);
5167                         goto bail;
5168                 }
5169
5170                 /* Assuming the write-out below goes well, this copy
5171                  * will be passed back to recovery for processing. */
5172                 memcpy(*tl_copy, tl_bh->b_data, tl_bh->b_size);
5173
5174                 /* All we need to do to clear the truncate log is set
5175                  * tl_used. */
5176                 tl->tl_used = 0;
5177
5178                 status = ocfs2_write_block(osb, tl_bh, tl_inode);
5179                 if (status < 0) {
5180                         mlog_errno(status);
5181                         goto bail;
5182                 }
5183         }
5184
5185 bail:
5186         if (tl_inode)
5187                 iput(tl_inode);
5188         if (tl_bh)
5189                 brelse(tl_bh);
5190
5191         if (status < 0 && (*tl_copy)) {
5192                 kfree(*tl_copy);
5193                 *tl_copy = NULL;
5194         }
5195
5196         mlog_exit(status);
5197         return status;
5198 }
5199
5200 int ocfs2_complete_truncate_log_recovery(struct ocfs2_super *osb,
5201                                          struct ocfs2_dinode *tl_copy)
5202 {
5203         int status = 0;
5204         int i;
5205         unsigned int clusters, num_recs, start_cluster;
5206         u64 start_blk;
5207         handle_t *handle;
5208         struct inode *tl_inode = osb->osb_tl_inode;
5209         struct ocfs2_truncate_log *tl;
5210
5211         mlog_entry_void();
5212
5213         if (OCFS2_I(tl_inode)->ip_blkno == le64_to_cpu(tl_copy->i_blkno)) {
5214                 mlog(ML_ERROR, "Asked to recover my own truncate log!\n");
5215                 return -EINVAL;
5216         }
5217
5218         tl = &tl_copy->id2.i_dealloc;
5219         num_recs = le16_to_cpu(tl->tl_used);
5220         mlog(0, "cleanup %u records from %llu\n", num_recs,
5221              (unsigned long long)le64_to_cpu(tl_copy->i_blkno));
5222
5223         mutex_lock(&tl_inode->i_mutex);
5224         for(i = 0; i < num_recs; i++) {
5225                 if (ocfs2_truncate_log_needs_flush(osb)) {
5226                         status = __ocfs2_flush_truncate_log(osb);
5227                         if (status < 0) {
5228                                 mlog_errno(status);
5229                                 goto bail_up;
5230                         }
5231                 }
5232
5233                 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
5234                 if (IS_ERR(handle)) {
5235                         status = PTR_ERR(handle);
5236                         mlog_errno(status);
5237                         goto bail_up;
5238                 }
5239
5240                 clusters = le32_to_cpu(tl->tl_recs[i].t_clusters);
5241                 start_cluster = le32_to_cpu(tl->tl_recs[i].t_start);
5242                 start_blk = ocfs2_clusters_to_blocks(osb->sb, start_cluster);
5243
5244                 status = ocfs2_truncate_log_append(osb, handle,
5245                                                    start_blk, clusters);
5246                 ocfs2_commit_trans(osb, handle);
5247                 if (status < 0) {
5248                         mlog_errno(status);
5249                         goto bail_up;
5250                 }
5251         }
5252
5253 bail_up:
5254         mutex_unlock(&tl_inode->i_mutex);
5255
5256         mlog_exit(status);
5257         return status;
5258 }
5259
5260 void ocfs2_truncate_log_shutdown(struct ocfs2_super *osb)
5261 {
5262         int status;
5263         struct inode *tl_inode = osb->osb_tl_inode;
5264
5265         mlog_entry_void();
5266
5267         if (tl_inode) {
5268                 cancel_delayed_work(&osb->osb_truncate_log_wq);
5269                 flush_workqueue(ocfs2_wq);
5270
5271                 status = ocfs2_flush_truncate_log(osb);
5272                 if (status < 0)
5273                         mlog_errno(status);
5274
5275                 brelse(osb->osb_tl_bh);
5276                 iput(osb->osb_tl_inode);
5277         }
5278
5279         mlog_exit_void();
5280 }
5281
5282 int ocfs2_truncate_log_init(struct ocfs2_super *osb)
5283 {
5284         int status;
5285         struct inode *tl_inode = NULL;
5286         struct buffer_head *tl_bh = NULL;
5287
5288         mlog_entry_void();
5289
5290         status = ocfs2_get_truncate_log_info(osb,
5291                                              osb->slot_num,
5292                                              &tl_inode,
5293                                              &tl_bh);
5294         if (status < 0)
5295                 mlog_errno(status);
5296
5297         /* ocfs2_truncate_log_shutdown keys on the existence of
5298          * osb->osb_tl_inode so we don't set any of the osb variables
5299          * until we're sure all is well. */
5300         INIT_DELAYED_WORK(&osb->osb_truncate_log_wq,
5301                           ocfs2_truncate_log_worker);
5302         osb->osb_tl_bh    = tl_bh;
5303         osb->osb_tl_inode = tl_inode;
5304
5305         mlog_exit(status);
5306         return status;
5307 }
5308
5309 /*
5310  * Delayed de-allocation of suballocator blocks.
5311  *
5312  * Some sets of block de-allocations might involve multiple suballocator inodes.
5313  *
5314  * The locking for this can get extremely complicated, especially when
5315  * the suballocator inodes to delete from aren't known until deep
5316  * within an unrelated codepath.
5317  *
5318  * ocfs2_extent_block structures are a good example of this - an inode
5319  * btree could have been grown by any number of nodes each allocating
5320  * out of their own suballoc inode.
5321  *
5322  * These structures allow the delay of block de-allocation until a
5323  * later time, when locking of multiple cluster inodes won't cause
5324  * deadlock.
5325  */
5326
5327 /*
5328  * Describes a single block free from a suballocator
5329  */
5330 struct ocfs2_cached_block_free {
5331         struct ocfs2_cached_block_free          *free_next;
5332         u64                                     free_blk;
5333         unsigned int                            free_bit;
5334 };
5335
5336 struct ocfs2_per_slot_free_list {
5337         struct ocfs2_per_slot_free_list         *f_next_suballocator;
5338         int                                     f_inode_type;
5339         int                                     f_slot;
5340         struct ocfs2_cached_block_free          *f_first;
5341 };
5342
5343 static int ocfs2_free_cached_items(struct ocfs2_super *osb,
5344                                    int sysfile_type,
5345                                    int slot,
5346                                    struct ocfs2_cached_block_free *head)
5347 {
5348         int ret;
5349         u64 bg_blkno;
5350         handle_t *handle;
5351         struct inode *inode;
5352         struct buffer_head *di_bh = NULL;
5353         struct ocfs2_cached_block_free *tmp;
5354
5355         inode = ocfs2_get_system_file_inode(osb, sysfile_type, slot);
5356         if (!inode) {
5357                 ret = -EINVAL;
5358                 mlog_errno(ret);
5359                 goto out;
5360         }
5361
5362         mutex_lock(&inode->i_mutex);
5363
5364         ret = ocfs2_inode_lock(inode, &di_bh, 1);
5365         if (ret) {
5366                 mlog_errno(ret);
5367                 goto out_mutex;
5368         }
5369
5370         handle = ocfs2_start_trans(osb, OCFS2_SUBALLOC_FREE);
5371         if (IS_ERR(handle)) {
5372                 ret = PTR_ERR(handle);
5373                 mlog_errno(ret);
5374                 goto out_unlock;
5375         }
5376
5377         while (head) {
5378                 bg_blkno = ocfs2_which_suballoc_group(head->free_blk,
5379                                                       head->free_bit);
5380                 mlog(0, "Free bit: (bit %u, blkno %llu)\n",
5381                      head->free_bit, (unsigned long long)head->free_blk);
5382
5383                 ret = ocfs2_free_suballoc_bits(handle, inode, di_bh,
5384                                                head->free_bit, bg_blkno, 1);
5385                 if (ret) {
5386                         mlog_errno(ret);
5387                         goto out_journal;
5388                 }
5389
5390                 ret = ocfs2_extend_trans(handle, OCFS2_SUBALLOC_FREE);
5391                 if (ret) {
5392                         mlog_errno(ret);
5393                         goto out_journal;
5394                 }
5395
5396                 tmp = head;
5397                 head = head->free_next;
5398                 kfree(tmp);
5399         }
5400
5401 out_journal:
5402         ocfs2_commit_trans(osb, handle);
5403
5404 out_unlock:
5405         ocfs2_inode_unlock(inode, 1);
5406         brelse(di_bh);
5407 out_mutex:
5408         mutex_unlock(&inode->i_mutex);
5409         iput(inode);
5410 out:
5411         while(head) {
5412                 /* Premature exit may have left some dangling items. */
5413                 tmp = head;
5414                 head = head->free_next;
5415                 kfree(tmp);
5416         }
5417
5418         return ret;
5419 }
5420
5421 int ocfs2_run_deallocs(struct ocfs2_super *osb,
5422                        struct ocfs2_cached_dealloc_ctxt *ctxt)
5423 {
5424         int ret = 0, ret2;
5425         struct ocfs2_per_slot_free_list *fl;
5426
5427         if (!ctxt)
5428                 return 0;
5429
5430         while (ctxt->c_first_suballocator) {
5431                 fl = ctxt->c_first_suballocator;
5432
5433                 if (fl->f_first) {
5434                         mlog(0, "Free items: (type %u, slot %d)\n",
5435                              fl->f_inode_type, fl->f_slot);
5436                         ret2 = ocfs2_free_cached_items(osb, fl->f_inode_type,
5437                                                        fl->f_slot, fl->f_first);
5438                         if (ret2)
5439                                 mlog_errno(ret2);
5440                         if (!ret)
5441                                 ret = ret2;
5442                 }
5443
5444                 ctxt->c_first_suballocator = fl->f_next_suballocator;
5445                 kfree(fl);
5446         }
5447
5448         return ret;
5449 }
5450
5451 static struct ocfs2_per_slot_free_list *
5452 ocfs2_find_per_slot_free_list(int type,
5453                               int slot,
5454                               struct ocfs2_cached_dealloc_ctxt *ctxt)
5455 {
5456         struct ocfs2_per_slot_free_list *fl = ctxt->c_first_suballocator;
5457
5458         while (fl) {
5459                 if (fl->f_inode_type == type && fl->f_slot == slot)
5460                         return fl;
5461
5462                 fl = fl->f_next_suballocator;
5463         }
5464
5465         fl = kmalloc(sizeof(*fl), GFP_NOFS);
5466         if (fl) {
5467                 fl->f_inode_type = type;
5468                 fl->f_slot = slot;
5469                 fl->f_first = NULL;
5470                 fl->f_next_suballocator = ctxt->c_first_suballocator;
5471
5472                 ctxt->c_first_suballocator = fl;
5473         }
5474         return fl;
5475 }
5476
5477 static int ocfs2_cache_block_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt,
5478                                      int type, int slot, u64 blkno,
5479                                      unsigned int bit)
5480 {
5481         int ret;
5482         struct ocfs2_per_slot_free_list *fl;
5483         struct ocfs2_cached_block_free *item;
5484
5485         fl = ocfs2_find_per_slot_free_list(type, slot, ctxt);
5486         if (fl == NULL) {
5487                 ret = -ENOMEM;
5488                 mlog_errno(ret);
5489                 goto out;
5490         }
5491
5492         item = kmalloc(sizeof(*item), GFP_NOFS);
5493         if (item == NULL) {
5494                 ret = -ENOMEM;
5495                 mlog_errno(ret);
5496                 goto out;
5497         }
5498
5499         mlog(0, "Insert: (type %d, slot %u, bit %u, blk %llu)\n",
5500              type, slot, bit, (unsigned long long)blkno);
5501
5502         item->free_blk = blkno;
5503         item->free_bit = bit;
5504         item->free_next = fl->f_first;
5505
5506         fl->f_first = item;
5507
5508         ret = 0;
5509 out:
5510         return ret;
5511 }
5512
5513 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
5514                                          struct ocfs2_extent_block *eb)
5515 {
5516         return ocfs2_cache_block_dealloc(ctxt, EXTENT_ALLOC_SYSTEM_INODE,
5517                                          le16_to_cpu(eb->h_suballoc_slot),
5518                                          le64_to_cpu(eb->h_blkno),
5519                                          le16_to_cpu(eb->h_suballoc_bit));
5520 }
5521
5522 /* This function will figure out whether the currently last extent
5523  * block will be deleted, and if it will, what the new last extent
5524  * block will be so we can update his h_next_leaf_blk field, as well
5525  * as the dinodes i_last_eb_blk */
5526 static int ocfs2_find_new_last_ext_blk(struct inode *inode,
5527                                        unsigned int clusters_to_del,
5528                                        struct ocfs2_path *path,
5529                                        struct buffer_head **new_last_eb)
5530 {
5531         int next_free, ret = 0;
5532         u32 cpos;
5533         struct ocfs2_extent_rec *rec;
5534         struct ocfs2_extent_block *eb;
5535         struct ocfs2_extent_list *el;
5536         struct buffer_head *bh = NULL;
5537
5538         *new_last_eb = NULL;
5539
5540         /* we have no tree, so of course, no last_eb. */
5541         if (!path->p_tree_depth)
5542                 goto out;
5543
5544         /* trunc to zero special case - this makes tree_depth = 0
5545          * regardless of what it is.  */
5546         if (OCFS2_I(inode)->ip_clusters == clusters_to_del)
5547                 goto out;
5548
5549         el = path_leaf_el(path);
5550         BUG_ON(!el->l_next_free_rec);
5551
5552         /*
5553          * Make sure that this extent list will actually be empty
5554          * after we clear away the data. We can shortcut out if
5555          * there's more than one non-empty extent in the
5556          * list. Otherwise, a check of the remaining extent is
5557          * necessary.
5558          */
5559         next_free = le16_to_cpu(el->l_next_free_rec);
5560         rec = NULL;
5561         if (ocfs2_is_empty_extent(&el->l_recs[0])) {
5562                 if (next_free > 2)
5563                         goto out;
5564
5565                 /* We may have a valid extent in index 1, check it. */
5566                 if (next_free == 2)
5567                         rec = &el->l_recs[1];
5568
5569                 /*
5570                  * Fall through - no more nonempty extents, so we want
5571                  * to delete this leaf.
5572                  */
5573         } else {
5574                 if (next_free > 1)
5575                         goto out;
5576
5577                 rec = &el->l_recs[0];
5578         }
5579
5580         if (rec) {
5581                 /*
5582                  * Check it we'll only be trimming off the end of this
5583                  * cluster.
5584                  */
5585                 if (le16_to_cpu(rec->e_leaf_clusters) > clusters_to_del)
5586                         goto out;
5587         }
5588
5589         ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, &cpos);
5590         if (ret) {
5591                 mlog_errno(ret);
5592                 goto out;
5593         }
5594
5595         ret = ocfs2_find_leaf(inode, path_root_el(path), cpos, &bh);
5596         if (ret) {
5597                 mlog_errno(ret);
5598                 goto out;
5599         }
5600
5601         eb = (struct ocfs2_extent_block *) bh->b_data;
5602         el = &eb->h_list;
5603         if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
5604                 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
5605                 ret = -EROFS;
5606                 goto out;
5607         }
5608
5609         *new_last_eb = bh;
5610         get_bh(*new_last_eb);
5611         mlog(0, "returning block %llu, (cpos: %u)\n",
5612              (unsigned long long)le64_to_cpu(eb->h_blkno), cpos);
5613 out:
5614         brelse(bh);
5615
5616         return ret;
5617 }
5618
5619 /*
5620  * Trim some clusters off the rightmost edge of a tree. Only called
5621  * during truncate.
5622  *
5623  * The caller needs to:
5624  *   - start journaling of each path component.
5625  *   - compute and fully set up any new last ext block
5626  */
5627 static int ocfs2_trim_tree(struct inode *inode, struct ocfs2_path *path,
5628                            handle_t *handle, struct ocfs2_truncate_context *tc,
5629                            u32 clusters_to_del, u64 *delete_start)
5630 {
5631         int ret, i, index = path->p_tree_depth;
5632         u32 new_edge = 0;
5633         u64 deleted_eb = 0;
5634         struct buffer_head *bh;
5635         struct ocfs2_extent_list *el;
5636         struct ocfs2_extent_rec *rec;
5637
5638         *delete_start = 0;
5639
5640         while (index >= 0) {
5641                 bh = path->p_node[index].bh;
5642                 el = path->p_node[index].el;
5643
5644                 mlog(0, "traveling tree (index = %d, block = %llu)\n",
5645                      index,  (unsigned long long)bh->b_blocknr);
5646
5647                 BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0);
5648
5649                 if (index !=
5650                     (path->p_tree_depth - le16_to_cpu(el->l_tree_depth))) {
5651                         ocfs2_error(inode->i_sb,
5652                                     "Inode %lu has invalid ext. block %llu",
5653                                     inode->i_ino,
5654                                     (unsigned long long)bh->b_blocknr);
5655                         ret = -EROFS;
5656                         goto out;
5657                 }
5658
5659 find_tail_record:
5660                 i = le16_to_cpu(el->l_next_free_rec) - 1;
5661                 rec = &el->l_recs[i];
5662
5663                 mlog(0, "Extent list before: record %d: (%u, %u, %llu), "
5664                      "next = %u\n", i, le32_to_cpu(rec->e_cpos),
5665                      ocfs2_rec_clusters(el, rec),
5666                      (unsigned long long)le64_to_cpu(rec->e_blkno),
5667                      le16_to_cpu(el->l_next_free_rec));
5668
5669                 BUG_ON(ocfs2_rec_clusters(el, rec) < clusters_to_del);
5670
5671                 if (le16_to_cpu(el->l_tree_depth) == 0) {
5672                         /*
5673                          * If the leaf block contains a single empty
5674                          * extent and no records, we can just remove
5675                          * the block.
5676                          */
5677                         if (i == 0 && ocfs2_is_empty_extent(rec)) {
5678                                 memset(rec, 0,
5679                                        sizeof(struct ocfs2_extent_rec));
5680                                 el->l_next_free_rec = cpu_to_le16(0);
5681
5682                                 goto delete;
5683                         }
5684
5685                         /*
5686                          * Remove any empty extents by shifting things
5687                          * left. That should make life much easier on
5688                          * the code below. This condition is rare
5689                          * enough that we shouldn't see a performance
5690                          * hit.
5691                          */
5692                         if (ocfs2_is_empty_extent(&el->l_recs[0])) {
5693                                 le16_add_cpu(&el->l_next_free_rec, -1);
5694
5695                                 for(i = 0;
5696                                     i < le16_to_cpu(el->l_next_free_rec); i++)
5697                                         el->l_recs[i] = el->l_recs[i + 1];
5698
5699                                 memset(&el->l_recs[i], 0,
5700                                        sizeof(struct ocfs2_extent_rec));
5701
5702                                 /*
5703                                  * We've modified our extent list. The
5704                                  * simplest way to handle this change
5705                                  * is to being the search from the
5706                                  * start again.
5707                                  */
5708                                 goto find_tail_record;
5709                         }
5710
5711                         le16_add_cpu(&rec->e_leaf_clusters, -clusters_to_del);
5712
5713                         /*
5714                          * We'll use "new_edge" on our way back up the
5715                          * tree to know what our rightmost cpos is.
5716                          */
5717                         new_edge = le16_to_cpu(rec->e_leaf_clusters);
5718                         new_edge += le32_to_cpu(rec->e_cpos);
5719
5720                         /*
5721                          * The caller will use this to delete data blocks.
5722                          */
5723                         *delete_start = le64_to_cpu(rec->e_blkno)
5724                                 + ocfs2_clusters_to_blocks(inode->i_sb,
5725                                         le16_to_cpu(rec->e_leaf_clusters));
5726
5727                         /*
5728                          * If it's now empty, remove this record.
5729                          */
5730                         if (le16_to_cpu(rec->e_leaf_clusters) == 0) {
5731                                 memset(rec, 0,
5732                                        sizeof(struct ocfs2_extent_rec));
5733                                 le16_add_cpu(&el->l_next_free_rec, -1);
5734                         }
5735                 } else {
5736                         if (le64_to_cpu(rec->e_blkno) == deleted_eb) {
5737                                 memset(rec, 0,
5738                                        sizeof(struct ocfs2_extent_rec));
5739                                 le16_add_cpu(&el->l_next_free_rec, -1);
5740
5741                                 goto delete;
5742                         }
5743
5744                         /* Can this actually happen? */
5745                         if (le16_to_cpu(el->l_next_free_rec) == 0)
5746                                 goto delete;
5747
5748                         /*
5749                          * We never actually deleted any clusters
5750                          * because our leaf was empty. There's no
5751                          * reason to adjust the rightmost edge then.
5752                          */
5753                         if (new_edge == 0)
5754                                 goto delete;
5755
5756                         rec->e_int_clusters = cpu_to_le32(new_edge);
5757                         le32_add_cpu(&rec->e_int_clusters,
5758                                      -le32_to_cpu(rec->e_cpos));
5759
5760                          /*
5761                           * A deleted child record should have been
5762                           * caught above.
5763                           */
5764                          BUG_ON(le32_to_cpu(rec->e_int_clusters) == 0);
5765                 }
5766
5767 delete:
5768                 ret = ocfs2_journal_dirty(handle, bh);
5769                 if (ret) {
5770                         mlog_errno(ret);
5771                         goto out;
5772                 }
5773
5774                 mlog(0, "extent list container %llu, after: record %d: "
5775                      "(%u, %u, %llu), next = %u.\n",
5776                      (unsigned long long)bh->b_blocknr, i,
5777                      le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec),
5778                      (unsigned long long)le64_to_cpu(rec->e_blkno),
5779                      le16_to_cpu(el->l_next_free_rec));
5780
5781                 /*
5782                  * We must be careful to only attempt delete of an
5783                  * extent block (and not the root inode block).
5784                  */
5785                 if (index > 0 && le16_to_cpu(el->l_next_free_rec) == 0) {
5786                         struct ocfs2_extent_block *eb =
5787                                 (struct ocfs2_extent_block *)bh->b_data;
5788
5789                         /*
5790                          * Save this for use when processing the
5791                          * parent block.
5792                          */
5793                         deleted_eb = le64_to_cpu(eb->h_blkno);
5794
5795                         mlog(0, "deleting this extent block.\n");
5796
5797                         ocfs2_remove_from_cache(inode, bh);
5798
5799                         BUG_ON(ocfs2_rec_clusters(el, &el->l_recs[0]));
5800                         BUG_ON(le32_to_cpu(el->l_recs[0].e_cpos));
5801                         BUG_ON(le64_to_cpu(el->l_recs[0].e_blkno));
5802
5803                         ret = ocfs2_cache_extent_block_free(&tc->tc_dealloc, eb);
5804                         /* An error here is not fatal. */
5805                         if (ret < 0)
5806                                 mlog_errno(ret);
5807                 } else {
5808                         deleted_eb = 0;
5809                 }
5810
5811                 index--;
5812         }
5813
5814         ret = 0;
5815 out:
5816         return ret;
5817 }
5818
5819 static int ocfs2_do_truncate(struct ocfs2_super *osb,
5820                              unsigned int clusters_to_del,
5821                              struct inode *inode,
5822                              struct buffer_head *fe_bh,
5823                              handle_t *handle,
5824                              struct ocfs2_truncate_context *tc,
5825                              struct ocfs2_path *path)
5826 {
5827         int status;
5828         struct ocfs2_dinode *fe;
5829         struct ocfs2_extent_block *last_eb = NULL;
5830         struct ocfs2_extent_list *el;
5831         struct buffer_head *last_eb_bh = NULL;
5832         u64 delete_blk = 0;
5833
5834         fe = (struct ocfs2_dinode *) fe_bh->b_data;
5835
5836         status = ocfs2_find_new_last_ext_blk(inode, clusters_to_del,
5837                                              path, &last_eb_bh);
5838         if (status < 0) {
5839                 mlog_errno(status);
5840                 goto bail;
5841         }
5842
5843         /*
5844          * Each component will be touched, so we might as well journal
5845          * here to avoid having to handle errors later.
5846          */
5847         status = ocfs2_journal_access_path(inode, handle, path);
5848         if (status < 0) {
5849                 mlog_errno(status);
5850                 goto bail;
5851         }
5852
5853         if (last_eb_bh) {
5854                 status = ocfs2_journal_access(handle, inode, last_eb_bh,
5855                                               OCFS2_JOURNAL_ACCESS_WRITE);
5856                 if (status < 0) {
5857                         mlog_errno(status);
5858                         goto bail;
5859                 }
5860
5861                 last_eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
5862         }
5863
5864         el = &(fe->id2.i_list);
5865
5866         /*
5867          * Lower levels depend on this never happening, but it's best
5868          * to check it up here before changing the tree.
5869          */
5870         if (el->l_tree_depth && el->l_recs[0].e_int_clusters == 0) {
5871                 ocfs2_error(inode->i_sb,
5872                             "Inode %lu has an empty extent record, depth %u\n",
5873                             inode->i_ino, le16_to_cpu(el->l_tree_depth));
5874                 status = -EROFS;
5875                 goto bail;
5876         }
5877
5878         spin_lock(&OCFS2_I(inode)->ip_lock);
5879         OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters) -
5880                                       clusters_to_del;
5881         spin_unlock(&OCFS2_I(inode)->ip_lock);
5882         le32_add_cpu(&fe->i_clusters, -clusters_to_del);
5883         inode->i_blocks = ocfs2_inode_sector_count(inode);
5884
5885         status = ocfs2_trim_tree(inode, path, handle, tc,
5886                                  clusters_to_del, &delete_blk);
5887         if (status) {
5888                 mlog_errno(status);
5889                 goto bail;
5890         }
5891
5892         if (le32_to_cpu(fe->i_clusters) == 0) {
5893                 /* trunc to zero is a special case. */
5894                 el->l_tree_depth = 0;
5895                 fe->i_last_eb_blk = 0;
5896         } else if (last_eb)
5897                 fe->i_last_eb_blk = last_eb->h_blkno;
5898
5899         status = ocfs2_journal_dirty(handle, fe_bh);
5900         if (status < 0) {
5901                 mlog_errno(status);
5902                 goto bail;
5903         }
5904
5905         if (last_eb) {
5906                 /* If there will be a new last extent block, then by
5907                  * definition, there cannot be any leaves to the right of
5908                  * him. */
5909                 last_eb->h_next_leaf_blk = 0;
5910                 status = ocfs2_journal_dirty(handle, last_eb_bh);
5911                 if (status < 0) {
5912                         mlog_errno(status);
5913                         goto bail;
5914                 }
5915         }
5916
5917         if (delete_blk) {
5918                 status = ocfs2_truncate_log_append(osb, handle, delete_blk,
5919                                                    clusters_to_del);
5920                 if (status < 0) {
5921                         mlog_errno(status);
5922                         goto bail;
5923                 }
5924         }
5925         status = 0;
5926 bail:
5927
5928         mlog_exit(status);
5929         return status;
5930 }
5931
5932 static int ocfs2_writeback_zero_func(handle_t *handle, struct buffer_head *bh)
5933 {
5934         set_buffer_uptodate(bh);
5935         mark_buffer_dirty(bh);
5936         return 0;
5937 }
5938
5939 static int ocfs2_ordered_zero_func(handle_t *handle, struct buffer_head *bh)
5940 {
5941         set_buffer_uptodate(bh);
5942         mark_buffer_dirty(bh);
5943         return ocfs2_journal_dirty_data(handle, bh);
5944 }
5945
5946 static void ocfs2_map_and_dirty_page(struct inode *inode, handle_t *handle,
5947                                      unsigned int from, unsigned int to,
5948                                      struct page *page, int zero, u64 *phys)
5949 {
5950         int ret, partial = 0;
5951
5952         ret = ocfs2_map_page_blocks(page, phys, inode, from, to, 0);
5953         if (ret)
5954                 mlog_errno(ret);
5955
5956         if (zero)
5957                 zero_user_segment(page, from, to);
5958
5959         /*
5960          * Need to set the buffers we zero'd into uptodate
5961          * here if they aren't - ocfs2_map_page_blocks()
5962          * might've skipped some
5963          */
5964         if (ocfs2_should_order_data(inode)) {
5965                 ret = walk_page_buffers(handle,
5966                                         page_buffers(page),
5967                                         from, to, &partial,
5968                                         ocfs2_ordered_zero_func);
5969                 if (ret < 0)
5970                         mlog_errno(ret);
5971         } else {
5972                 ret = walk_page_buffers(handle, page_buffers(page),
5973                                         from, to, &partial,
5974                                         ocfs2_writeback_zero_func);
5975                 if (ret < 0)
5976                         mlog_errno(ret);
5977         }
5978
5979         if (!partial)
5980                 SetPageUptodate(page);
5981
5982         flush_dcache_page(page);
5983 }
5984
5985 static void ocfs2_zero_cluster_pages(struct inode *inode, loff_t start,
5986                                      loff_t end, struct page **pages,
5987                                      int numpages, u64 phys, handle_t *handle)
5988 {
5989         int i;
5990         struct page *page;
5991         unsigned int from, to = PAGE_CACHE_SIZE;
5992         struct super_block *sb = inode->i_sb;
5993
5994         BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb)));
5995
5996         if (numpages == 0)
5997                 goto out;
5998
5999         to = PAGE_CACHE_SIZE;
6000         for(i = 0; i < numpages; i++) {
6001                 page = pages[i];
6002
6003                 from = start & (PAGE_CACHE_SIZE - 1);
6004                 if ((end >> PAGE_CACHE_SHIFT) == page->index)
6005                         to = end & (PAGE_CACHE_SIZE - 1);
6006
6007                 BUG_ON(from > PAGE_CACHE_SIZE);
6008                 BUG_ON(to > PAGE_CACHE_SIZE);
6009
6010                 ocfs2_map_and_dirty_page(inode, handle, from, to, page, 1,
6011                                          &phys);
6012
6013                 start = (page->index + 1) << PAGE_CACHE_SHIFT;
6014         }
6015 out:
6016         if (pages)
6017                 ocfs2_unlock_and_free_pages(pages, numpages);
6018 }
6019
6020 static int ocfs2_grab_eof_pages(struct inode *inode, loff_t start, loff_t end,
6021                                 struct page **pages, int *num)
6022 {
6023         int numpages, ret = 0;
6024         struct super_block *sb = inode->i_sb;
6025         struct address_space *mapping = inode->i_mapping;
6026         unsigned long index;
6027         loff_t last_page_bytes;
6028
6029         BUG_ON(start > end);
6030
6031         BUG_ON(start >> OCFS2_SB(sb)->s_clustersize_bits !=
6032                (end - 1) >> OCFS2_SB(sb)->s_clustersize_bits);
6033
6034         numpages = 0;
6035         last_page_bytes = PAGE_ALIGN(end);
6036         index = start >> PAGE_CACHE_SHIFT;
6037         do {
6038                 pages[numpages] = grab_cache_page(mapping, index);
6039                 if (!pages[numpages]) {
6040                         ret = -ENOMEM;
6041                         mlog_errno(ret);
6042                         goto out;
6043                 }
6044
6045                 numpages++;
6046                 index++;
6047         } while (index < (last_page_bytes >> PAGE_CACHE_SHIFT));
6048
6049 out:
6050         if (ret != 0) {
6051                 if (pages)
6052                         ocfs2_unlock_and_free_pages(pages, numpages);
6053                 numpages = 0;
6054         }
6055
6056         *num = numpages;
6057
6058         return ret;
6059 }
6060
6061 /*
6062  * Zero the area past i_size but still within an allocated
6063  * cluster. This avoids exposing nonzero data on subsequent file
6064  * extends.
6065  *
6066  * We need to call this before i_size is updated on the inode because
6067  * otherwise block_write_full_page() will skip writeout of pages past
6068  * i_size. The new_i_size parameter is passed for this reason.
6069  */
6070 int ocfs2_zero_range_for_truncate(struct inode *inode, handle_t *handle,
6071                                   u64 range_start, u64 range_end)
6072 {
6073         int ret = 0, numpages;
6074         struct page **pages = NULL;
6075         u64 phys;
6076         unsigned int ext_flags;
6077         struct super_block *sb = inode->i_sb;
6078
6079         /*
6080          * File systems which don't support sparse files zero on every
6081          * extend.
6082          */
6083         if (!ocfs2_sparse_alloc(OCFS2_SB(sb)))
6084                 return 0;
6085
6086         pages = kcalloc(ocfs2_pages_per_cluster(sb),
6087                         sizeof(struct page *), GFP_NOFS);
6088         if (pages == NULL) {
6089                 ret = -ENOMEM;
6090                 mlog_errno(ret);
6091                 goto out;
6092         }
6093
6094         if (range_start == range_end)
6095                 goto out;
6096
6097         ret = ocfs2_extent_map_get_blocks(inode,
6098                                           range_start >> sb->s_blocksize_bits,
6099                                           &phys, NULL, &ext_flags);
6100         if (ret) {
6101                 mlog_errno(ret);
6102                 goto out;
6103         }
6104
6105         /*
6106          * Tail is a hole, or is marked unwritten. In either case, we
6107          * can count on read and write to return/push zero's.
6108          */
6109         if (phys == 0 || ext_flags & OCFS2_EXT_UNWRITTEN)
6110                 goto out;
6111
6112         ret = ocfs2_grab_eof_pages(inode, range_start, range_end, pages,
6113                                    &numpages);
6114         if (ret) {
6115                 mlog_errno(ret);
6116                 goto out;
6117         }
6118
6119         ocfs2_zero_cluster_pages(inode, range_start, range_end, pages,
6120                                  numpages, phys, handle);
6121
6122         /*
6123          * Initiate writeout of the pages we zero'd here. We don't
6124          * wait on them - the truncate_inode_pages() call later will
6125          * do that for us.
6126          */
6127         ret = do_sync_mapping_range(inode->i_mapping, range_start,
6128                                     range_end - 1, SYNC_FILE_RANGE_WRITE);
6129         if (ret)
6130                 mlog_errno(ret);
6131
6132 out:
6133         if (pages)
6134                 kfree(pages);
6135
6136         return ret;
6137 }
6138
6139 static void ocfs2_zero_dinode_id2(struct inode *inode, struct ocfs2_dinode *di)
6140 {
6141         unsigned int blocksize = 1 << inode->i_sb->s_blocksize_bits;
6142
6143         memset(&di->id2, 0, blocksize - offsetof(struct ocfs2_dinode, id2));
6144 }
6145
6146 void ocfs2_dinode_new_extent_list(struct inode *inode,
6147                                   struct ocfs2_dinode *di)
6148 {
6149         ocfs2_zero_dinode_id2(inode, di);
6150         di->id2.i_list.l_tree_depth = 0;
6151         di->id2.i_list.l_next_free_rec = 0;
6152         di->id2.i_list.l_count = cpu_to_le16(ocfs2_extent_recs_per_inode(inode->i_sb));
6153 }
6154
6155 void ocfs2_set_inode_data_inline(struct inode *inode, struct ocfs2_dinode *di)
6156 {
6157         struct ocfs2_inode_info *oi = OCFS2_I(inode);
6158         struct ocfs2_inline_data *idata = &di->id2.i_data;
6159
6160         spin_lock(&oi->ip_lock);
6161         oi->ip_dyn_features |= OCFS2_INLINE_DATA_FL;
6162         di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
6163         spin_unlock(&oi->ip_lock);
6164
6165         /*
6166          * We clear the entire i_data structure here so that all
6167          * fields can be properly initialized.
6168          */
6169         ocfs2_zero_dinode_id2(inode, di);
6170
6171         idata->id_count = cpu_to_le16(ocfs2_max_inline_data(inode->i_sb));
6172 }
6173
6174 int ocfs2_convert_inline_data_to_extents(struct inode *inode,
6175                                          struct buffer_head *di_bh)
6176 {
6177         int ret, i, has_data, num_pages = 0;
6178         handle_t *handle;
6179         u64 uninitialized_var(block);
6180         struct ocfs2_inode_info *oi = OCFS2_I(inode);
6181         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
6182         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
6183         struct ocfs2_alloc_context *data_ac = NULL;
6184         struct page **pages = NULL;
6185         loff_t end = osb->s_clustersize;
6186
6187         has_data = i_size_read(inode) ? 1 : 0;
6188
6189         if (has_data) {
6190                 pages = kcalloc(ocfs2_pages_per_cluster(osb->sb),
6191                                 sizeof(struct page *), GFP_NOFS);
6192                 if (pages == NULL) {
6193                         ret = -ENOMEM;
6194                         mlog_errno(ret);
6195                         goto out;
6196                 }
6197
6198                 ret = ocfs2_reserve_clusters(osb, 1, &data_ac);
6199                 if (ret) {
6200                         mlog_errno(ret);
6201                         goto out;
6202                 }
6203         }
6204
6205         handle = ocfs2_start_trans(osb, OCFS2_INLINE_TO_EXTENTS_CREDITS);
6206         if (IS_ERR(handle)) {
6207                 ret = PTR_ERR(handle);
6208                 mlog_errno(ret);
6209                 goto out_unlock;
6210         }
6211
6212         ret = ocfs2_journal_access(handle, inode, di_bh,
6213                                    OCFS2_JOURNAL_ACCESS_WRITE);
6214         if (ret) {
6215                 mlog_errno(ret);
6216                 goto out_commit;
6217         }
6218
6219         if (has_data) {
6220                 u32 bit_off, num;
6221                 unsigned int page_end;
6222                 u64 phys;
6223
6224                 ret = ocfs2_claim_clusters(osb, handle, data_ac, 1, &bit_off,
6225                                            &num);
6226                 if (ret) {
6227                         mlog_errno(ret);
6228                         goto out_commit;
6229                 }
6230
6231                 /*
6232                  * Save two copies, one for insert, and one that can
6233                  * be changed by ocfs2_map_and_dirty_page() below.
6234                  */
6235                 block = phys = ocfs2_clusters_to_blocks(inode->i_sb, bit_off);
6236
6237                 /*
6238                  * Non sparse file systems zero on extend, so no need
6239                  * to do that now.
6240                  */
6241                 if (!ocfs2_sparse_alloc(osb) &&
6242                     PAGE_CACHE_SIZE < osb->s_clustersize)
6243                         end = PAGE_CACHE_SIZE;
6244
6245                 ret = ocfs2_grab_eof_pages(inode, 0, end, pages, &num_pages);
6246                 if (ret) {
6247                         mlog_errno(ret);
6248                         goto out_commit;
6249                 }
6250
6251                 /*
6252                  * This should populate the 1st page for us and mark
6253                  * it up to date.
6254                  */
6255                 ret = ocfs2_read_inline_data(inode, pages[0], di_bh);
6256                 if (ret) {
6257                         mlog_errno(ret);
6258                         goto out_commit;
6259                 }
6260
6261                 page_end = PAGE_CACHE_SIZE;
6262                 if (PAGE_CACHE_SIZE > osb->s_clustersize)
6263                         page_end = osb->s_clustersize;
6264
6265                 for (i = 0; i < num_pages; i++)
6266                         ocfs2_map_and_dirty_page(inode, handle, 0, page_end,
6267                                                  pages[i], i > 0, &phys);
6268         }
6269
6270         spin_lock(&oi->ip_lock);
6271         oi->ip_dyn_features &= ~OCFS2_INLINE_DATA_FL;
6272         di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
6273         spin_unlock(&oi->ip_lock);
6274
6275         ocfs2_dinode_new_extent_list(inode, di);
6276
6277         ocfs2_journal_dirty(handle, di_bh);
6278
6279         if (has_data) {
6280                 /*
6281                  * An error at this point should be extremely rare. If
6282                  * this proves to be false, we could always re-build
6283                  * the in-inode data from our pages.
6284                  */
6285                 ret = ocfs2_insert_extent(osb, handle, inode, di_bh,
6286                                           0, block, 1, 0, NULL);
6287                 if (ret) {
6288                         mlog_errno(ret);
6289                         goto out_commit;
6290                 }
6291
6292                 inode->i_blocks = ocfs2_inode_sector_count(inode);
6293         }
6294
6295 out_commit:
6296         ocfs2_commit_trans(osb, handle);
6297
6298 out_unlock:
6299         if (data_ac)
6300                 ocfs2_free_alloc_context(data_ac);
6301
6302 out:
6303         if (pages) {
6304                 ocfs2_unlock_and_free_pages(pages, num_pages);
6305                 kfree(pages);
6306         }
6307
6308         return ret;
6309 }
6310
6311 /*
6312  * It is expected, that by the time you call this function,
6313  * inode->i_size and fe->i_size have been adjusted.
6314  *
6315  * WARNING: This will kfree the truncate context
6316  */
6317 int ocfs2_commit_truncate(struct ocfs2_super *osb,
6318                           struct inode *inode,
6319                           struct buffer_head *fe_bh,
6320                           struct ocfs2_truncate_context *tc)
6321 {
6322         int status, i, credits, tl_sem = 0;
6323         u32 clusters_to_del, new_highest_cpos, range;
6324         struct ocfs2_extent_list *el;
6325         handle_t *handle = NULL;
6326         struct inode *tl_inode = osb->osb_tl_inode;
6327         struct ocfs2_path *path = NULL;
6328
6329         mlog_entry_void();
6330
6331         new_highest_cpos = ocfs2_clusters_for_bytes(osb->sb,
6332                                                      i_size_read(inode));
6333
6334         path = ocfs2_new_inode_path(fe_bh);
6335         if (!path) {
6336                 status = -ENOMEM;
6337                 mlog_errno(status);
6338                 goto bail;
6339         }
6340
6341         ocfs2_extent_map_trunc(inode, new_highest_cpos);
6342
6343 start:
6344         /*
6345          * Check that we still have allocation to delete.
6346          */
6347         if (OCFS2_I(inode)->ip_clusters == 0) {
6348                 status = 0;
6349                 goto bail;
6350         }
6351
6352         /*
6353          * Truncate always works against the rightmost tree branch.
6354          */
6355         status = ocfs2_find_path(inode, path, UINT_MAX);
6356         if (status) {
6357                 mlog_errno(status);
6358                 goto bail;
6359         }
6360
6361         mlog(0, "inode->ip_clusters = %u, tree_depth = %u\n",
6362              OCFS2_I(inode)->ip_clusters, path->p_tree_depth);
6363
6364         /*
6365          * By now, el will point to the extent list on the bottom most
6366          * portion of this tree. Only the tail record is considered in
6367          * each pass.
6368          *
6369          * We handle the following cases, in order:
6370          * - empty extent: delete the remaining branch
6371          * - remove the entire record
6372          * - remove a partial record
6373          * - no record needs to be removed (truncate has completed)
6374          */
6375         el = path_leaf_el(path);
6376         if (le16_to_cpu(el->l_next_free_rec) == 0) {
6377                 ocfs2_error(inode->i_sb,
6378                             "Inode %llu has empty extent block at %llu\n",
6379                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
6380                             (unsigned long long)path_leaf_bh(path)->b_blocknr);
6381                 status = -EROFS;
6382                 goto bail;
6383         }
6384
6385         i = le16_to_cpu(el->l_next_free_rec) - 1;
6386         range = le32_to_cpu(el->l_recs[i].e_cpos) +
6387                 ocfs2_rec_clusters(el, &el->l_recs[i]);
6388         if (i == 0 && ocfs2_is_empty_extent(&el->l_recs[i])) {
6389                 clusters_to_del = 0;
6390         } else if (le32_to_cpu(el->l_recs[i].e_cpos) >= new_highest_cpos) {
6391                 clusters_to_del = ocfs2_rec_clusters(el, &el->l_recs[i]);
6392         } else if (range > new_highest_cpos) {
6393                 clusters_to_del = (ocfs2_rec_clusters(el, &el->l_recs[i]) +
6394                                    le32_to_cpu(el->l_recs[i].e_cpos)) -
6395                                   new_highest_cpos;
6396         } else {
6397                 status = 0;
6398                 goto bail;
6399         }
6400
6401         mlog(0, "clusters_to_del = %u in this pass, tail blk=%llu\n",
6402              clusters_to_del, (unsigned long long)path_leaf_bh(path)->b_blocknr);
6403
6404         mutex_lock(&tl_inode->i_mutex);
6405         tl_sem = 1;
6406         /* ocfs2_truncate_log_needs_flush guarantees us at least one
6407          * record is free for use. If there isn't any, we flush to get
6408          * an empty truncate log.  */
6409         if (ocfs2_truncate_log_needs_flush(osb)) {
6410                 status = __ocfs2_flush_truncate_log(osb);
6411                 if (status < 0) {
6412                         mlog_errno(status);
6413                         goto bail;
6414                 }
6415         }
6416
6417         credits = ocfs2_calc_tree_trunc_credits(osb->sb, clusters_to_del,
6418                                                 (struct ocfs2_dinode *)fe_bh->b_data,
6419                                                 el);
6420         handle = ocfs2_start_trans(osb, credits);
6421         if (IS_ERR(handle)) {
6422                 status = PTR_ERR(handle);
6423                 handle = NULL;
6424                 mlog_errno(status);
6425                 goto bail;
6426         }
6427
6428         status = ocfs2_do_truncate(osb, clusters_to_del, inode, fe_bh, handle,
6429                                    tc, path);
6430         if (status < 0) {
6431                 mlog_errno(status);
6432                 goto bail;
6433         }
6434
6435         mutex_unlock(&tl_inode->i_mutex);
6436         tl_sem = 0;
6437
6438         ocfs2_commit_trans(osb, handle);
6439         handle = NULL;
6440
6441         ocfs2_reinit_path(path, 1);
6442
6443         /*
6444          * The check above will catch the case where we've truncated
6445          * away all allocation.
6446          */
6447         goto start;
6448
6449 bail:
6450
6451         ocfs2_schedule_truncate_log_flush(osb, 1);
6452
6453         if (tl_sem)
6454                 mutex_unlock(&tl_inode->i_mutex);
6455
6456         if (handle)
6457                 ocfs2_commit_trans(osb, handle);
6458
6459         ocfs2_run_deallocs(osb, &tc->tc_dealloc);
6460
6461         ocfs2_free_path(path);
6462
6463         /* This will drop the ext_alloc cluster lock for us */
6464         ocfs2_free_truncate_context(tc);
6465
6466         mlog_exit(status);
6467         return status;
6468 }
6469
6470 /*
6471  * Expects the inode to already be locked.
6472  */
6473 int ocfs2_prepare_truncate(struct ocfs2_super *osb,
6474                            struct inode *inode,
6475                            struct buffer_head *fe_bh,
6476                            struct ocfs2_truncate_context **tc)
6477 {
6478         int status;
6479         unsigned int new_i_clusters;
6480         struct ocfs2_dinode *fe;
6481         struct ocfs2_extent_block *eb;
6482         struct buffer_head *last_eb_bh = NULL;
6483
6484         mlog_entry_void();
6485
6486         *tc = NULL;
6487
6488         new_i_clusters = ocfs2_clusters_for_bytes(osb->sb,
6489                                                   i_size_read(inode));
6490         fe = (struct ocfs2_dinode *) fe_bh->b_data;
6491
6492         mlog(0, "fe->i_clusters = %u, new_i_clusters = %u, fe->i_size ="
6493              "%llu\n", le32_to_cpu(fe->i_clusters), new_i_clusters,
6494              (unsigned long long)le64_to_cpu(fe->i_size));
6495
6496         *tc = kzalloc(sizeof(struct ocfs2_truncate_context), GFP_KERNEL);
6497         if (!(*tc)) {
6498                 status = -ENOMEM;
6499                 mlog_errno(status);
6500                 goto bail;
6501         }
6502         ocfs2_init_dealloc_ctxt(&(*tc)->tc_dealloc);
6503
6504         if (fe->id2.i_list.l_tree_depth) {
6505                 status = ocfs2_read_block(osb, le64_to_cpu(fe->i_last_eb_blk),
6506                                           &last_eb_bh, OCFS2_BH_CACHED, inode);
6507                 if (status < 0) {
6508                         mlog_errno(status);
6509                         goto bail;
6510                 }
6511                 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
6512                 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
6513                         OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
6514
6515                         brelse(last_eb_bh);
6516                         status = -EIO;
6517                         goto bail;
6518                 }
6519         }
6520
6521         (*tc)->tc_last_eb_bh = last_eb_bh;
6522
6523         status = 0;
6524 bail:
6525         if (status < 0) {
6526                 if (*tc)
6527                         ocfs2_free_truncate_context(*tc);
6528                 *tc = NULL;
6529         }
6530         mlog_exit_void();
6531         return status;
6532 }
6533
6534 /*
6535  * 'start' is inclusive, 'end' is not.
6536  */
6537 int ocfs2_truncate_inline(struct inode *inode, struct buffer_head *di_bh,
6538                           unsigned int start, unsigned int end, int trunc)
6539 {
6540         int ret;
6541         unsigned int numbytes;
6542         handle_t *handle;
6543         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
6544         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
6545         struct ocfs2_inline_data *idata = &di->id2.i_data;
6546
6547         if (end > i_size_read(inode))
6548                 end = i_size_read(inode);
6549
6550         BUG_ON(start >= end);
6551
6552         if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) ||
6553             !(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL) ||
6554             !ocfs2_supports_inline_data(osb)) {
6555                 ocfs2_error(inode->i_sb,
6556                             "Inline data flags for inode %llu don't agree! "
6557                             "Disk: 0x%x, Memory: 0x%x, Superblock: 0x%x\n",
6558                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
6559                             le16_to_cpu(di->i_dyn_features),
6560                             OCFS2_I(inode)->ip_dyn_features,
6561                             osb->s_feature_incompat);
6562                 ret = -EROFS;
6563                 goto out;
6564         }
6565
6566         handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
6567         if (IS_ERR(handle)) {
6568                 ret = PTR_ERR(handle);
6569                 mlog_errno(ret);
6570                 goto out;
6571         }
6572
6573         ret = ocfs2_journal_access(handle, inode, di_bh,
6574                                    OCFS2_JOURNAL_ACCESS_WRITE);
6575         if (ret) {
6576                 mlog_errno(ret);
6577                 goto out_commit;
6578         }
6579
6580         numbytes = end - start;
6581         memset(idata->id_data + start, 0, numbytes);
6582
6583         /*
6584          * No need to worry about the data page here - it's been
6585          * truncated already and inline data doesn't need it for
6586          * pushing zero's to disk, so we'll let readpage pick it up
6587          * later.
6588          */
6589         if (trunc) {
6590                 i_size_write(inode, start);
6591                 di->i_size = cpu_to_le64(start);
6592         }
6593
6594         inode->i_blocks = ocfs2_inode_sector_count(inode);
6595         inode->i_ctime = inode->i_mtime = CURRENT_TIME;
6596
6597         di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec);
6598         di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
6599
6600         ocfs2_journal_dirty(handle, di_bh);
6601
6602 out_commit:
6603         ocfs2_commit_trans(osb, handle);
6604
6605 out:
6606         return ret;
6607 }
6608
6609 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc)
6610 {
6611         /*
6612          * The caller is responsible for completing deallocation
6613          * before freeing the context.
6614          */
6615         if (tc->tc_dealloc.c_first_suballocator != NULL)
6616                 mlog(ML_NOTICE,
6617                      "Truncate completion has non-empty dealloc context\n");
6618
6619         if (tc->tc_last_eb_bh)
6620                 brelse(tc->tc_last_eb_bh);
6621
6622         kfree(tc);
6623 }