ocfs2: Drop struct inode from ocfs2_extent_tree_operations.
[safe/jmp/linux-2.6] / fs / ocfs2 / alloc.c
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * alloc.c
5  *
6  * Extent allocs and frees
7  *
8  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public
12  * License as published by the Free Software Foundation; either
13  * version 2 of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public
21  * License along with this program; if not, write to the
22  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23  * Boston, MA 021110-1307, USA.
24  */
25
26 #include <linux/fs.h>
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/swap.h>
31 #include <linux/quotaops.h>
32
33 #define MLOG_MASK_PREFIX ML_DISK_ALLOC
34 #include <cluster/masklog.h>
35
36 #include "ocfs2.h"
37
38 #include "alloc.h"
39 #include "aops.h"
40 #include "blockcheck.h"
41 #include "dlmglue.h"
42 #include "extent_map.h"
43 #include "inode.h"
44 #include "journal.h"
45 #include "localalloc.h"
46 #include "suballoc.h"
47 #include "sysfile.h"
48 #include "file.h"
49 #include "super.h"
50 #include "uptodate.h"
51 #include "xattr.h"
52
53 #include "buffer_head_io.h"
54
55
56 /*
57  * Operations for a specific extent tree type.
58  *
59  * To implement an on-disk btree (extent tree) type in ocfs2, add
60  * an ocfs2_extent_tree_operations structure and the matching
61  * ocfs2_init_<thingy>_extent_tree() function.  That's pretty much it
62  * for the allocation portion of the extent tree.
63  */
64 struct ocfs2_extent_tree_operations {
65         /*
66          * last_eb_blk is the block number of the right most leaf extent
67          * block.  Most on-disk structures containing an extent tree store
68          * this value for fast access.  The ->eo_set_last_eb_blk() and
69          * ->eo_get_last_eb_blk() operations access this value.  They are
70          *  both required.
71          */
72         void (*eo_set_last_eb_blk)(struct ocfs2_extent_tree *et,
73                                    u64 blkno);
74         u64 (*eo_get_last_eb_blk)(struct ocfs2_extent_tree *et);
75
76         /*
77          * The on-disk structure usually keeps track of how many total
78          * clusters are stored in this extent tree.  This function updates
79          * that value.  new_clusters is the delta, and must be
80          * added to the total.  Required.
81          */
82         void (*eo_update_clusters)(struct ocfs2_extent_tree *et,
83                                    u32 new_clusters);
84
85         /*
86          * If ->eo_insert_check() exists, it is called before rec is
87          * inserted into the extent tree.  It is optional.
88          */
89         int (*eo_insert_check)(struct ocfs2_extent_tree *et,
90                                struct ocfs2_extent_rec *rec);
91         int (*eo_sanity_check)(struct ocfs2_extent_tree *et);
92
93         /*
94          * --------------------------------------------------------------
95          * The remaining are internal to ocfs2_extent_tree and don't have
96          * accessor functions
97          */
98
99         /*
100          * ->eo_fill_root_el() takes et->et_object and sets et->et_root_el.
101          * It is required.
102          */
103         void (*eo_fill_root_el)(struct ocfs2_extent_tree *et);
104
105         /*
106          * ->eo_fill_max_leaf_clusters sets et->et_max_leaf_clusters if
107          * it exists.  If it does not, et->et_max_leaf_clusters is set
108          * to 0 (unlimited).  Optional.
109          */
110         void (*eo_fill_max_leaf_clusters)(struct ocfs2_extent_tree *et);
111 };
112
113
114 /*
115  * Pre-declare ocfs2_dinode_et_ops so we can use it as a sanity check
116  * in the methods.
117  */
118 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et);
119 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et,
120                                          u64 blkno);
121 static void ocfs2_dinode_update_clusters(struct ocfs2_extent_tree *et,
122                                          u32 clusters);
123 static int ocfs2_dinode_insert_check(struct ocfs2_extent_tree *et,
124                                      struct ocfs2_extent_rec *rec);
125 static int ocfs2_dinode_sanity_check(struct ocfs2_extent_tree *et);
126 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et);
127 static struct ocfs2_extent_tree_operations ocfs2_dinode_et_ops = {
128         .eo_set_last_eb_blk     = ocfs2_dinode_set_last_eb_blk,
129         .eo_get_last_eb_blk     = ocfs2_dinode_get_last_eb_blk,
130         .eo_update_clusters     = ocfs2_dinode_update_clusters,
131         .eo_insert_check        = ocfs2_dinode_insert_check,
132         .eo_sanity_check        = ocfs2_dinode_sanity_check,
133         .eo_fill_root_el        = ocfs2_dinode_fill_root_el,
134 };
135
136 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et,
137                                          u64 blkno)
138 {
139         struct ocfs2_dinode *di = et->et_object;
140
141         BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
142         di->i_last_eb_blk = cpu_to_le64(blkno);
143 }
144
145 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et)
146 {
147         struct ocfs2_dinode *di = et->et_object;
148
149         BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
150         return le64_to_cpu(di->i_last_eb_blk);
151 }
152
153 static void ocfs2_dinode_update_clusters(struct ocfs2_extent_tree *et,
154                                          u32 clusters)
155 {
156         struct ocfs2_inode_info *oi = cache_info_to_inode(et->et_ci);
157         struct ocfs2_dinode *di = et->et_object;
158
159         le32_add_cpu(&di->i_clusters, clusters);
160         spin_lock(&oi->ip_lock);
161         oi->ip_clusters = le32_to_cpu(di->i_clusters);
162         spin_unlock(&oi->ip_lock);
163 }
164
165 static int ocfs2_dinode_insert_check(struct ocfs2_extent_tree *et,
166                                      struct ocfs2_extent_rec *rec)
167 {
168         struct ocfs2_inode_info *oi = cache_info_to_inode(et->et_ci);
169         struct ocfs2_super *osb = OCFS2_SB(oi->vfs_inode.i_sb);
170
171         BUG_ON(oi->ip_dyn_features & OCFS2_INLINE_DATA_FL);
172         mlog_bug_on_msg(!ocfs2_sparse_alloc(osb) &&
173                         (oi->ip_clusters != le32_to_cpu(rec->e_cpos)),
174                         "Device %s, asking for sparse allocation: inode %llu, "
175                         "cpos %u, clusters %u\n",
176                         osb->dev_str,
177                         (unsigned long long)oi->ip_blkno,
178                         rec->e_cpos, oi->ip_clusters);
179
180         return 0;
181 }
182
183 static int ocfs2_dinode_sanity_check(struct ocfs2_extent_tree *et)
184 {
185         struct ocfs2_dinode *di = et->et_object;
186
187         BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
188         BUG_ON(!OCFS2_IS_VALID_DINODE(di));
189
190         return 0;
191 }
192
193 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et)
194 {
195         struct ocfs2_dinode *di = et->et_object;
196
197         et->et_root_el = &di->id2.i_list;
198 }
199
200
201 static void ocfs2_xattr_value_fill_root_el(struct ocfs2_extent_tree *et)
202 {
203         struct ocfs2_xattr_value_buf *vb = et->et_object;
204
205         et->et_root_el = &vb->vb_xv->xr_list;
206 }
207
208 static void ocfs2_xattr_value_set_last_eb_blk(struct ocfs2_extent_tree *et,
209                                               u64 blkno)
210 {
211         struct ocfs2_xattr_value_buf *vb = et->et_object;
212
213         vb->vb_xv->xr_last_eb_blk = cpu_to_le64(blkno);
214 }
215
216 static u64 ocfs2_xattr_value_get_last_eb_blk(struct ocfs2_extent_tree *et)
217 {
218         struct ocfs2_xattr_value_buf *vb = et->et_object;
219
220         return le64_to_cpu(vb->vb_xv->xr_last_eb_blk);
221 }
222
223 static void ocfs2_xattr_value_update_clusters(struct ocfs2_extent_tree *et,
224                                               u32 clusters)
225 {
226         struct ocfs2_xattr_value_buf *vb = et->et_object;
227
228         le32_add_cpu(&vb->vb_xv->xr_clusters, clusters);
229 }
230
231 static struct ocfs2_extent_tree_operations ocfs2_xattr_value_et_ops = {
232         .eo_set_last_eb_blk     = ocfs2_xattr_value_set_last_eb_blk,
233         .eo_get_last_eb_blk     = ocfs2_xattr_value_get_last_eb_blk,
234         .eo_update_clusters     = ocfs2_xattr_value_update_clusters,
235         .eo_fill_root_el        = ocfs2_xattr_value_fill_root_el,
236 };
237
238 static void ocfs2_xattr_tree_fill_root_el(struct ocfs2_extent_tree *et)
239 {
240         struct ocfs2_xattr_block *xb = et->et_object;
241
242         et->et_root_el = &xb->xb_attrs.xb_root.xt_list;
243 }
244
245 static void ocfs2_xattr_tree_fill_max_leaf_clusters(struct ocfs2_extent_tree *et)
246 {
247         struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
248         et->et_max_leaf_clusters =
249                 ocfs2_clusters_for_bytes(sb, OCFS2_MAX_XATTR_TREE_LEAF_SIZE);
250 }
251
252 static void ocfs2_xattr_tree_set_last_eb_blk(struct ocfs2_extent_tree *et,
253                                              u64 blkno)
254 {
255         struct ocfs2_xattr_block *xb = et->et_object;
256         struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root;
257
258         xt->xt_last_eb_blk = cpu_to_le64(blkno);
259 }
260
261 static u64 ocfs2_xattr_tree_get_last_eb_blk(struct ocfs2_extent_tree *et)
262 {
263         struct ocfs2_xattr_block *xb = et->et_object;
264         struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root;
265
266         return le64_to_cpu(xt->xt_last_eb_blk);
267 }
268
269 static void ocfs2_xattr_tree_update_clusters(struct ocfs2_extent_tree *et,
270                                              u32 clusters)
271 {
272         struct ocfs2_xattr_block *xb = et->et_object;
273
274         le32_add_cpu(&xb->xb_attrs.xb_root.xt_clusters, clusters);
275 }
276
277 static struct ocfs2_extent_tree_operations ocfs2_xattr_tree_et_ops = {
278         .eo_set_last_eb_blk     = ocfs2_xattr_tree_set_last_eb_blk,
279         .eo_get_last_eb_blk     = ocfs2_xattr_tree_get_last_eb_blk,
280         .eo_update_clusters     = ocfs2_xattr_tree_update_clusters,
281         .eo_fill_root_el        = ocfs2_xattr_tree_fill_root_el,
282         .eo_fill_max_leaf_clusters = ocfs2_xattr_tree_fill_max_leaf_clusters,
283 };
284
285 static void ocfs2_dx_root_set_last_eb_blk(struct ocfs2_extent_tree *et,
286                                           u64 blkno)
287 {
288         struct ocfs2_dx_root_block *dx_root = et->et_object;
289
290         dx_root->dr_last_eb_blk = cpu_to_le64(blkno);
291 }
292
293 static u64 ocfs2_dx_root_get_last_eb_blk(struct ocfs2_extent_tree *et)
294 {
295         struct ocfs2_dx_root_block *dx_root = et->et_object;
296
297         return le64_to_cpu(dx_root->dr_last_eb_blk);
298 }
299
300 static void ocfs2_dx_root_update_clusters(struct ocfs2_extent_tree *et,
301                                           u32 clusters)
302 {
303         struct ocfs2_dx_root_block *dx_root = et->et_object;
304
305         le32_add_cpu(&dx_root->dr_clusters, clusters);
306 }
307
308 static int ocfs2_dx_root_sanity_check(struct ocfs2_extent_tree *et)
309 {
310         struct ocfs2_dx_root_block *dx_root = et->et_object;
311
312         BUG_ON(!OCFS2_IS_VALID_DX_ROOT(dx_root));
313
314         return 0;
315 }
316
317 static void ocfs2_dx_root_fill_root_el(struct ocfs2_extent_tree *et)
318 {
319         struct ocfs2_dx_root_block *dx_root = et->et_object;
320
321         et->et_root_el = &dx_root->dr_list;
322 }
323
324 static struct ocfs2_extent_tree_operations ocfs2_dx_root_et_ops = {
325         .eo_set_last_eb_blk     = ocfs2_dx_root_set_last_eb_blk,
326         .eo_get_last_eb_blk     = ocfs2_dx_root_get_last_eb_blk,
327         .eo_update_clusters     = ocfs2_dx_root_update_clusters,
328         .eo_sanity_check        = ocfs2_dx_root_sanity_check,
329         .eo_fill_root_el        = ocfs2_dx_root_fill_root_el,
330 };
331
332 static void __ocfs2_init_extent_tree(struct ocfs2_extent_tree *et,
333                                      struct inode *inode,
334                                      struct buffer_head *bh,
335                                      ocfs2_journal_access_func access,
336                                      void *obj,
337                                      struct ocfs2_extent_tree_operations *ops)
338 {
339         et->et_ops = ops;
340         et->et_root_bh = bh;
341         et->et_ci = INODE_CACHE(inode);
342         et->et_root_journal_access = access;
343         if (!obj)
344                 obj = (void *)bh->b_data;
345         et->et_object = obj;
346
347         et->et_ops->eo_fill_root_el(et);
348         if (!et->et_ops->eo_fill_max_leaf_clusters)
349                 et->et_max_leaf_clusters = 0;
350         else
351                 et->et_ops->eo_fill_max_leaf_clusters(et);
352 }
353
354 void ocfs2_init_dinode_extent_tree(struct ocfs2_extent_tree *et,
355                                    struct inode *inode,
356                                    struct buffer_head *bh)
357 {
358         __ocfs2_init_extent_tree(et, inode, bh, ocfs2_journal_access_di,
359                                  NULL, &ocfs2_dinode_et_ops);
360 }
361
362 void ocfs2_init_xattr_tree_extent_tree(struct ocfs2_extent_tree *et,
363                                        struct inode *inode,
364                                        struct buffer_head *bh)
365 {
366         __ocfs2_init_extent_tree(et, inode, bh, ocfs2_journal_access_xb,
367                                  NULL, &ocfs2_xattr_tree_et_ops);
368 }
369
370 void ocfs2_init_xattr_value_extent_tree(struct ocfs2_extent_tree *et,
371                                         struct inode *inode,
372                                         struct ocfs2_xattr_value_buf *vb)
373 {
374         __ocfs2_init_extent_tree(et, inode, vb->vb_bh, vb->vb_access, vb,
375                                  &ocfs2_xattr_value_et_ops);
376 }
377
378 void ocfs2_init_dx_root_extent_tree(struct ocfs2_extent_tree *et,
379                                     struct inode *inode,
380                                     struct buffer_head *bh)
381 {
382         __ocfs2_init_extent_tree(et, inode, bh, ocfs2_journal_access_dr,
383                                  NULL, &ocfs2_dx_root_et_ops);
384 }
385
386 static inline void ocfs2_et_set_last_eb_blk(struct ocfs2_extent_tree *et,
387                                             u64 new_last_eb_blk)
388 {
389         et->et_ops->eo_set_last_eb_blk(et, new_last_eb_blk);
390 }
391
392 static inline u64 ocfs2_et_get_last_eb_blk(struct ocfs2_extent_tree *et)
393 {
394         return et->et_ops->eo_get_last_eb_blk(et);
395 }
396
397 static inline void ocfs2_et_update_clusters(struct ocfs2_extent_tree *et,
398                                             u32 clusters)
399 {
400         et->et_ops->eo_update_clusters(et, clusters);
401 }
402
403 static inline int ocfs2_et_root_journal_access(handle_t *handle,
404                                                struct ocfs2_extent_tree *et,
405                                                int type)
406 {
407         return et->et_root_journal_access(handle, et->et_ci, et->et_root_bh,
408                                           type);
409 }
410
411 static inline int ocfs2_et_insert_check(struct ocfs2_extent_tree *et,
412                                         struct ocfs2_extent_rec *rec)
413 {
414         int ret = 0;
415
416         if (et->et_ops->eo_insert_check)
417                 ret = et->et_ops->eo_insert_check(et, rec);
418         return ret;
419 }
420
421 static inline int ocfs2_et_sanity_check(struct ocfs2_extent_tree *et)
422 {
423         int ret = 0;
424
425         if (et->et_ops->eo_sanity_check)
426                 ret = et->et_ops->eo_sanity_check(et);
427         return ret;
428 }
429
430 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc);
431 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
432                                          struct ocfs2_extent_block *eb);
433
434 /*
435  * Structures which describe a path through a btree, and functions to
436  * manipulate them.
437  *
438  * The idea here is to be as generic as possible with the tree
439  * manipulation code.
440  */
441 struct ocfs2_path_item {
442         struct buffer_head              *bh;
443         struct ocfs2_extent_list        *el;
444 };
445
446 #define OCFS2_MAX_PATH_DEPTH    5
447
448 struct ocfs2_path {
449         int                             p_tree_depth;
450         ocfs2_journal_access_func       p_root_access;
451         struct ocfs2_path_item          p_node[OCFS2_MAX_PATH_DEPTH];
452 };
453
454 #define path_root_bh(_path) ((_path)->p_node[0].bh)
455 #define path_root_el(_path) ((_path)->p_node[0].el)
456 #define path_root_access(_path)((_path)->p_root_access)
457 #define path_leaf_bh(_path) ((_path)->p_node[(_path)->p_tree_depth].bh)
458 #define path_leaf_el(_path) ((_path)->p_node[(_path)->p_tree_depth].el)
459 #define path_num_items(_path) ((_path)->p_tree_depth + 1)
460
461 static int ocfs2_find_path(struct ocfs2_caching_info *ci,
462                            struct ocfs2_path *path, u32 cpos);
463 static void ocfs2_adjust_rightmost_records(struct inode *inode,
464                                            handle_t *handle,
465                                            struct ocfs2_path *path,
466                                            struct ocfs2_extent_rec *insert_rec);
467 /*
468  * Reset the actual path elements so that we can re-use the structure
469  * to build another path. Generally, this involves freeing the buffer
470  * heads.
471  */
472 static void ocfs2_reinit_path(struct ocfs2_path *path, int keep_root)
473 {
474         int i, start = 0, depth = 0;
475         struct ocfs2_path_item *node;
476
477         if (keep_root)
478                 start = 1;
479
480         for(i = start; i < path_num_items(path); i++) {
481                 node = &path->p_node[i];
482
483                 brelse(node->bh);
484                 node->bh = NULL;
485                 node->el = NULL;
486         }
487
488         /*
489          * Tree depth may change during truncate, or insert. If we're
490          * keeping the root extent list, then make sure that our path
491          * structure reflects the proper depth.
492          */
493         if (keep_root)
494                 depth = le16_to_cpu(path_root_el(path)->l_tree_depth);
495         else
496                 path_root_access(path) = NULL;
497
498         path->p_tree_depth = depth;
499 }
500
501 static void ocfs2_free_path(struct ocfs2_path *path)
502 {
503         if (path) {
504                 ocfs2_reinit_path(path, 0);
505                 kfree(path);
506         }
507 }
508
509 /*
510  * All the elements of src into dest. After this call, src could be freed
511  * without affecting dest.
512  *
513  * Both paths should have the same root. Any non-root elements of dest
514  * will be freed.
515  */
516 static void ocfs2_cp_path(struct ocfs2_path *dest, struct ocfs2_path *src)
517 {
518         int i;
519
520         BUG_ON(path_root_bh(dest) != path_root_bh(src));
521         BUG_ON(path_root_el(dest) != path_root_el(src));
522         BUG_ON(path_root_access(dest) != path_root_access(src));
523
524         ocfs2_reinit_path(dest, 1);
525
526         for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
527                 dest->p_node[i].bh = src->p_node[i].bh;
528                 dest->p_node[i].el = src->p_node[i].el;
529
530                 if (dest->p_node[i].bh)
531                         get_bh(dest->p_node[i].bh);
532         }
533 }
534
535 /*
536  * Make the *dest path the same as src and re-initialize src path to
537  * have a root only.
538  */
539 static void ocfs2_mv_path(struct ocfs2_path *dest, struct ocfs2_path *src)
540 {
541         int i;
542
543         BUG_ON(path_root_bh(dest) != path_root_bh(src));
544         BUG_ON(path_root_access(dest) != path_root_access(src));
545
546         for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
547                 brelse(dest->p_node[i].bh);
548
549                 dest->p_node[i].bh = src->p_node[i].bh;
550                 dest->p_node[i].el = src->p_node[i].el;
551
552                 src->p_node[i].bh = NULL;
553                 src->p_node[i].el = NULL;
554         }
555 }
556
557 /*
558  * Insert an extent block at given index.
559  *
560  * This will not take an additional reference on eb_bh.
561  */
562 static inline void ocfs2_path_insert_eb(struct ocfs2_path *path, int index,
563                                         struct buffer_head *eb_bh)
564 {
565         struct ocfs2_extent_block *eb = (struct ocfs2_extent_block *)eb_bh->b_data;
566
567         /*
568          * Right now, no root bh is an extent block, so this helps
569          * catch code errors with dinode trees. The assertion can be
570          * safely removed if we ever need to insert extent block
571          * structures at the root.
572          */
573         BUG_ON(index == 0);
574
575         path->p_node[index].bh = eb_bh;
576         path->p_node[index].el = &eb->h_list;
577 }
578
579 static struct ocfs2_path *ocfs2_new_path(struct buffer_head *root_bh,
580                                          struct ocfs2_extent_list *root_el,
581                                          ocfs2_journal_access_func access)
582 {
583         struct ocfs2_path *path;
584
585         BUG_ON(le16_to_cpu(root_el->l_tree_depth) >= OCFS2_MAX_PATH_DEPTH);
586
587         path = kzalloc(sizeof(*path), GFP_NOFS);
588         if (path) {
589                 path->p_tree_depth = le16_to_cpu(root_el->l_tree_depth);
590                 get_bh(root_bh);
591                 path_root_bh(path) = root_bh;
592                 path_root_el(path) = root_el;
593                 path_root_access(path) = access;
594         }
595
596         return path;
597 }
598
599 static struct ocfs2_path *ocfs2_new_path_from_path(struct ocfs2_path *path)
600 {
601         return ocfs2_new_path(path_root_bh(path), path_root_el(path),
602                               path_root_access(path));
603 }
604
605 static struct ocfs2_path *ocfs2_new_path_from_et(struct ocfs2_extent_tree *et)
606 {
607         return ocfs2_new_path(et->et_root_bh, et->et_root_el,
608                               et->et_root_journal_access);
609 }
610
611 /*
612  * Journal the buffer at depth idx.  All idx>0 are extent_blocks,
613  * otherwise it's the root_access function.
614  *
615  * I don't like the way this function's name looks next to
616  * ocfs2_journal_access_path(), but I don't have a better one.
617  */
618 static int ocfs2_path_bh_journal_access(handle_t *handle,
619                                         struct ocfs2_caching_info *ci,
620                                         struct ocfs2_path *path,
621                                         int idx)
622 {
623         ocfs2_journal_access_func access = path_root_access(path);
624
625         if (!access)
626                 access = ocfs2_journal_access;
627
628         if (idx)
629                 access = ocfs2_journal_access_eb;
630
631         return access(handle, ci, path->p_node[idx].bh,
632                       OCFS2_JOURNAL_ACCESS_WRITE);
633 }
634
635 /*
636  * Convenience function to journal all components in a path.
637  */
638 static int ocfs2_journal_access_path(struct ocfs2_caching_info *ci,
639                                      handle_t *handle,
640                                      struct ocfs2_path *path)
641 {
642         int i, ret = 0;
643
644         if (!path)
645                 goto out;
646
647         for(i = 0; i < path_num_items(path); i++) {
648                 ret = ocfs2_path_bh_journal_access(handle, ci, path, i);
649                 if (ret < 0) {
650                         mlog_errno(ret);
651                         goto out;
652                 }
653         }
654
655 out:
656         return ret;
657 }
658
659 /*
660  * Return the index of the extent record which contains cluster #v_cluster.
661  * -1 is returned if it was not found.
662  *
663  * Should work fine on interior and exterior nodes.
664  */
665 int ocfs2_search_extent_list(struct ocfs2_extent_list *el, u32 v_cluster)
666 {
667         int ret = -1;
668         int i;
669         struct ocfs2_extent_rec *rec;
670         u32 rec_end, rec_start, clusters;
671
672         for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
673                 rec = &el->l_recs[i];
674
675                 rec_start = le32_to_cpu(rec->e_cpos);
676                 clusters = ocfs2_rec_clusters(el, rec);
677
678                 rec_end = rec_start + clusters;
679
680                 if (v_cluster >= rec_start && v_cluster < rec_end) {
681                         ret = i;
682                         break;
683                 }
684         }
685
686         return ret;
687 }
688
689 enum ocfs2_contig_type {
690         CONTIG_NONE = 0,
691         CONTIG_LEFT,
692         CONTIG_RIGHT,
693         CONTIG_LEFTRIGHT,
694 };
695
696
697 /*
698  * NOTE: ocfs2_block_extent_contig(), ocfs2_extents_adjacent() and
699  * ocfs2_extent_contig only work properly against leaf nodes!
700  */
701 static int ocfs2_block_extent_contig(struct super_block *sb,
702                                      struct ocfs2_extent_rec *ext,
703                                      u64 blkno)
704 {
705         u64 blk_end = le64_to_cpu(ext->e_blkno);
706
707         blk_end += ocfs2_clusters_to_blocks(sb,
708                                     le16_to_cpu(ext->e_leaf_clusters));
709
710         return blkno == blk_end;
711 }
712
713 static int ocfs2_extents_adjacent(struct ocfs2_extent_rec *left,
714                                   struct ocfs2_extent_rec *right)
715 {
716         u32 left_range;
717
718         left_range = le32_to_cpu(left->e_cpos) +
719                 le16_to_cpu(left->e_leaf_clusters);
720
721         return (left_range == le32_to_cpu(right->e_cpos));
722 }
723
724 static enum ocfs2_contig_type
725         ocfs2_extent_contig(struct inode *inode,
726                             struct ocfs2_extent_rec *ext,
727                             struct ocfs2_extent_rec *insert_rec)
728 {
729         u64 blkno = le64_to_cpu(insert_rec->e_blkno);
730
731         /*
732          * Refuse to coalesce extent records with different flag
733          * fields - we don't want to mix unwritten extents with user
734          * data.
735          */
736         if (ext->e_flags != insert_rec->e_flags)
737                 return CONTIG_NONE;
738
739         if (ocfs2_extents_adjacent(ext, insert_rec) &&
740             ocfs2_block_extent_contig(inode->i_sb, ext, blkno))
741                         return CONTIG_RIGHT;
742
743         blkno = le64_to_cpu(ext->e_blkno);
744         if (ocfs2_extents_adjacent(insert_rec, ext) &&
745             ocfs2_block_extent_contig(inode->i_sb, insert_rec, blkno))
746                 return CONTIG_LEFT;
747
748         return CONTIG_NONE;
749 }
750
751 /*
752  * NOTE: We can have pretty much any combination of contiguousness and
753  * appending.
754  *
755  * The usefulness of APPEND_TAIL is more in that it lets us know that
756  * we'll have to update the path to that leaf.
757  */
758 enum ocfs2_append_type {
759         APPEND_NONE = 0,
760         APPEND_TAIL,
761 };
762
763 enum ocfs2_split_type {
764         SPLIT_NONE = 0,
765         SPLIT_LEFT,
766         SPLIT_RIGHT,
767 };
768
769 struct ocfs2_insert_type {
770         enum ocfs2_split_type   ins_split;
771         enum ocfs2_append_type  ins_appending;
772         enum ocfs2_contig_type  ins_contig;
773         int                     ins_contig_index;
774         int                     ins_tree_depth;
775 };
776
777 struct ocfs2_merge_ctxt {
778         enum ocfs2_contig_type  c_contig_type;
779         int                     c_has_empty_extent;
780         int                     c_split_covers_rec;
781 };
782
783 static int ocfs2_validate_extent_block(struct super_block *sb,
784                                        struct buffer_head *bh)
785 {
786         int rc;
787         struct ocfs2_extent_block *eb =
788                 (struct ocfs2_extent_block *)bh->b_data;
789
790         mlog(0, "Validating extent block %llu\n",
791              (unsigned long long)bh->b_blocknr);
792
793         BUG_ON(!buffer_uptodate(bh));
794
795         /*
796          * If the ecc fails, we return the error but otherwise
797          * leave the filesystem running.  We know any error is
798          * local to this block.
799          */
800         rc = ocfs2_validate_meta_ecc(sb, bh->b_data, &eb->h_check);
801         if (rc) {
802                 mlog(ML_ERROR, "Checksum failed for extent block %llu\n",
803                      (unsigned long long)bh->b_blocknr);
804                 return rc;
805         }
806
807         /*
808          * Errors after here are fatal.
809          */
810
811         if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
812                 ocfs2_error(sb,
813                             "Extent block #%llu has bad signature %.*s",
814                             (unsigned long long)bh->b_blocknr, 7,
815                             eb->h_signature);
816                 return -EINVAL;
817         }
818
819         if (le64_to_cpu(eb->h_blkno) != bh->b_blocknr) {
820                 ocfs2_error(sb,
821                             "Extent block #%llu has an invalid h_blkno "
822                             "of %llu",
823                             (unsigned long long)bh->b_blocknr,
824                             (unsigned long long)le64_to_cpu(eb->h_blkno));
825                 return -EINVAL;
826         }
827
828         if (le32_to_cpu(eb->h_fs_generation) != OCFS2_SB(sb)->fs_generation) {
829                 ocfs2_error(sb,
830                             "Extent block #%llu has an invalid "
831                             "h_fs_generation of #%u",
832                             (unsigned long long)bh->b_blocknr,
833                             le32_to_cpu(eb->h_fs_generation));
834                 return -EINVAL;
835         }
836
837         return 0;
838 }
839
840 int ocfs2_read_extent_block(struct ocfs2_caching_info *ci, u64 eb_blkno,
841                             struct buffer_head **bh)
842 {
843         int rc;
844         struct buffer_head *tmp = *bh;
845
846         rc = ocfs2_read_block(ci, eb_blkno, &tmp,
847                               ocfs2_validate_extent_block);
848
849         /* If ocfs2_read_block() got us a new bh, pass it up. */
850         if (!rc && !*bh)
851                 *bh = tmp;
852
853         return rc;
854 }
855
856
857 /*
858  * How many free extents have we got before we need more meta data?
859  */
860 int ocfs2_num_free_extents(struct ocfs2_super *osb,
861                            struct ocfs2_extent_tree *et)
862 {
863         int retval;
864         struct ocfs2_extent_list *el = NULL;
865         struct ocfs2_extent_block *eb;
866         struct buffer_head *eb_bh = NULL;
867         u64 last_eb_blk = 0;
868
869         mlog_entry_void();
870
871         el = et->et_root_el;
872         last_eb_blk = ocfs2_et_get_last_eb_blk(et);
873
874         if (last_eb_blk) {
875                 retval = ocfs2_read_extent_block(et->et_ci, last_eb_blk,
876                                                  &eb_bh);
877                 if (retval < 0) {
878                         mlog_errno(retval);
879                         goto bail;
880                 }
881                 eb = (struct ocfs2_extent_block *) eb_bh->b_data;
882                 el = &eb->h_list;
883         }
884
885         BUG_ON(el->l_tree_depth != 0);
886
887         retval = le16_to_cpu(el->l_count) - le16_to_cpu(el->l_next_free_rec);
888 bail:
889         brelse(eb_bh);
890
891         mlog_exit(retval);
892         return retval;
893 }
894
895 /* expects array to already be allocated
896  *
897  * sets h_signature, h_blkno, h_suballoc_bit, h_suballoc_slot, and
898  * l_count for you
899  */
900 static int ocfs2_create_new_meta_bhs(handle_t *handle,
901                                      struct ocfs2_extent_tree *et,
902                                      int wanted,
903                                      struct ocfs2_alloc_context *meta_ac,
904                                      struct buffer_head *bhs[])
905 {
906         int count, status, i;
907         u16 suballoc_bit_start;
908         u32 num_got;
909         u64 first_blkno;
910         struct ocfs2_super *osb =
911                 OCFS2_SB(ocfs2_metadata_cache_get_super(et->et_ci));
912         struct ocfs2_extent_block *eb;
913
914         mlog_entry_void();
915
916         count = 0;
917         while (count < wanted) {
918                 status = ocfs2_claim_metadata(osb,
919                                               handle,
920                                               meta_ac,
921                                               wanted - count,
922                                               &suballoc_bit_start,
923                                               &num_got,
924                                               &first_blkno);
925                 if (status < 0) {
926                         mlog_errno(status);
927                         goto bail;
928                 }
929
930                 for(i = count;  i < (num_got + count); i++) {
931                         bhs[i] = sb_getblk(osb->sb, first_blkno);
932                         if (bhs[i] == NULL) {
933                                 status = -EIO;
934                                 mlog_errno(status);
935                                 goto bail;
936                         }
937                         ocfs2_set_new_buffer_uptodate(et->et_ci, bhs[i]);
938
939                         status = ocfs2_journal_access_eb(handle, et->et_ci,
940                                                          bhs[i],
941                                                          OCFS2_JOURNAL_ACCESS_CREATE);
942                         if (status < 0) {
943                                 mlog_errno(status);
944                                 goto bail;
945                         }
946
947                         memset(bhs[i]->b_data, 0, osb->sb->s_blocksize);
948                         eb = (struct ocfs2_extent_block *) bhs[i]->b_data;
949                         /* Ok, setup the minimal stuff here. */
950                         strcpy(eb->h_signature, OCFS2_EXTENT_BLOCK_SIGNATURE);
951                         eb->h_blkno = cpu_to_le64(first_blkno);
952                         eb->h_fs_generation = cpu_to_le32(osb->fs_generation);
953                         eb->h_suballoc_slot = cpu_to_le16(osb->slot_num);
954                         eb->h_suballoc_bit = cpu_to_le16(suballoc_bit_start);
955                         eb->h_list.l_count =
956                                 cpu_to_le16(ocfs2_extent_recs_per_eb(osb->sb));
957
958                         suballoc_bit_start++;
959                         first_blkno++;
960
961                         /* We'll also be dirtied by the caller, so
962                          * this isn't absolutely necessary. */
963                         status = ocfs2_journal_dirty(handle, bhs[i]);
964                         if (status < 0) {
965                                 mlog_errno(status);
966                                 goto bail;
967                         }
968                 }
969
970                 count += num_got;
971         }
972
973         status = 0;
974 bail:
975         if (status < 0) {
976                 for(i = 0; i < wanted; i++) {
977                         brelse(bhs[i]);
978                         bhs[i] = NULL;
979                 }
980         }
981         mlog_exit(status);
982         return status;
983 }
984
985 /*
986  * Helper function for ocfs2_add_branch() and ocfs2_shift_tree_depth().
987  *
988  * Returns the sum of the rightmost extent rec logical offset and
989  * cluster count.
990  *
991  * ocfs2_add_branch() uses this to determine what logical cluster
992  * value should be populated into the leftmost new branch records.
993  *
994  * ocfs2_shift_tree_depth() uses this to determine the # clusters
995  * value for the new topmost tree record.
996  */
997 static inline u32 ocfs2_sum_rightmost_rec(struct ocfs2_extent_list  *el)
998 {
999         int i;
1000
1001         i = le16_to_cpu(el->l_next_free_rec) - 1;
1002
1003         return le32_to_cpu(el->l_recs[i].e_cpos) +
1004                 ocfs2_rec_clusters(el, &el->l_recs[i]);
1005 }
1006
1007 /*
1008  * Change range of the branches in the right most path according to the leaf
1009  * extent block's rightmost record.
1010  */
1011 static int ocfs2_adjust_rightmost_branch(handle_t *handle,
1012                                          struct inode *inode,
1013                                          struct ocfs2_extent_tree *et)
1014 {
1015         int status;
1016         struct ocfs2_path *path = NULL;
1017         struct ocfs2_extent_list *el;
1018         struct ocfs2_extent_rec *rec;
1019
1020         path = ocfs2_new_path_from_et(et);
1021         if (!path) {
1022                 status = -ENOMEM;
1023                 return status;
1024         }
1025
1026         status = ocfs2_find_path(et->et_ci, path, UINT_MAX);
1027         if (status < 0) {
1028                 mlog_errno(status);
1029                 goto out;
1030         }
1031
1032         status = ocfs2_extend_trans(handle, path_num_items(path) +
1033                                     handle->h_buffer_credits);
1034         if (status < 0) {
1035                 mlog_errno(status);
1036                 goto out;
1037         }
1038
1039         status = ocfs2_journal_access_path(INODE_CACHE(inode), handle, path);
1040         if (status < 0) {
1041                 mlog_errno(status);
1042                 goto out;
1043         }
1044
1045         el = path_leaf_el(path);
1046         rec = &el->l_recs[le32_to_cpu(el->l_next_free_rec) - 1];
1047
1048         ocfs2_adjust_rightmost_records(inode, handle, path, rec);
1049
1050 out:
1051         ocfs2_free_path(path);
1052         return status;
1053 }
1054
1055 /*
1056  * Add an entire tree branch to our inode. eb_bh is the extent block
1057  * to start at, if we don't want to start the branch at the dinode
1058  * structure.
1059  *
1060  * last_eb_bh is required as we have to update it's next_leaf pointer
1061  * for the new last extent block.
1062  *
1063  * the new branch will be 'empty' in the sense that every block will
1064  * contain a single record with cluster count == 0.
1065  */
1066 static int ocfs2_add_branch(struct ocfs2_super *osb,
1067                             handle_t *handle,
1068                             struct inode *inode,
1069                             struct ocfs2_extent_tree *et,
1070                             struct buffer_head *eb_bh,
1071                             struct buffer_head **last_eb_bh,
1072                             struct ocfs2_alloc_context *meta_ac)
1073 {
1074         int status, new_blocks, i;
1075         u64 next_blkno, new_last_eb_blk;
1076         struct buffer_head *bh;
1077         struct buffer_head **new_eb_bhs = NULL;
1078         struct ocfs2_extent_block *eb;
1079         struct ocfs2_extent_list  *eb_el;
1080         struct ocfs2_extent_list  *el;
1081         u32 new_cpos, root_end;
1082
1083         mlog_entry_void();
1084
1085         BUG_ON(!last_eb_bh || !*last_eb_bh);
1086
1087         if (eb_bh) {
1088                 eb = (struct ocfs2_extent_block *) eb_bh->b_data;
1089                 el = &eb->h_list;
1090         } else
1091                 el = et->et_root_el;
1092
1093         /* we never add a branch to a leaf. */
1094         BUG_ON(!el->l_tree_depth);
1095
1096         new_blocks = le16_to_cpu(el->l_tree_depth);
1097
1098         eb = (struct ocfs2_extent_block *)(*last_eb_bh)->b_data;
1099         new_cpos = ocfs2_sum_rightmost_rec(&eb->h_list);
1100         root_end = ocfs2_sum_rightmost_rec(et->et_root_el);
1101
1102         /*
1103          * If there is a gap before the root end and the real end
1104          * of the righmost leaf block, we need to remove the gap
1105          * between new_cpos and root_end first so that the tree
1106          * is consistent after we add a new branch(it will start
1107          * from new_cpos).
1108          */
1109         if (root_end > new_cpos) {
1110                 mlog(0, "adjust the cluster end from %u to %u\n",
1111                      root_end, new_cpos);
1112                 status = ocfs2_adjust_rightmost_branch(handle, inode, et);
1113                 if (status) {
1114                         mlog_errno(status);
1115                         goto bail;
1116                 }
1117         }
1118
1119         /* allocate the number of new eb blocks we need */
1120         new_eb_bhs = kcalloc(new_blocks, sizeof(struct buffer_head *),
1121                              GFP_KERNEL);
1122         if (!new_eb_bhs) {
1123                 status = -ENOMEM;
1124                 mlog_errno(status);
1125                 goto bail;
1126         }
1127
1128         status = ocfs2_create_new_meta_bhs(handle, et, new_blocks,
1129                                            meta_ac, new_eb_bhs);
1130         if (status < 0) {
1131                 mlog_errno(status);
1132                 goto bail;
1133         }
1134
1135         /* Note: new_eb_bhs[new_blocks - 1] is the guy which will be
1136          * linked with the rest of the tree.
1137          * conversly, new_eb_bhs[0] is the new bottommost leaf.
1138          *
1139          * when we leave the loop, new_last_eb_blk will point to the
1140          * newest leaf, and next_blkno will point to the topmost extent
1141          * block. */
1142         next_blkno = new_last_eb_blk = 0;
1143         for(i = 0; i < new_blocks; i++) {
1144                 bh = new_eb_bhs[i];
1145                 eb = (struct ocfs2_extent_block *) bh->b_data;
1146                 /* ocfs2_create_new_meta_bhs() should create it right! */
1147                 BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb));
1148                 eb_el = &eb->h_list;
1149
1150                 status = ocfs2_journal_access_eb(handle, INODE_CACHE(inode), bh,
1151                                                  OCFS2_JOURNAL_ACCESS_CREATE);
1152                 if (status < 0) {
1153                         mlog_errno(status);
1154                         goto bail;
1155                 }
1156
1157                 eb->h_next_leaf_blk = 0;
1158                 eb_el->l_tree_depth = cpu_to_le16(i);
1159                 eb_el->l_next_free_rec = cpu_to_le16(1);
1160                 /*
1161                  * This actually counts as an empty extent as
1162                  * c_clusters == 0
1163                  */
1164                 eb_el->l_recs[0].e_cpos = cpu_to_le32(new_cpos);
1165                 eb_el->l_recs[0].e_blkno = cpu_to_le64(next_blkno);
1166                 /*
1167                  * eb_el isn't always an interior node, but even leaf
1168                  * nodes want a zero'd flags and reserved field so
1169                  * this gets the whole 32 bits regardless of use.
1170                  */
1171                 eb_el->l_recs[0].e_int_clusters = cpu_to_le32(0);
1172                 if (!eb_el->l_tree_depth)
1173                         new_last_eb_blk = le64_to_cpu(eb->h_blkno);
1174
1175                 status = ocfs2_journal_dirty(handle, bh);
1176                 if (status < 0) {
1177                         mlog_errno(status);
1178                         goto bail;
1179                 }
1180
1181                 next_blkno = le64_to_cpu(eb->h_blkno);
1182         }
1183
1184         /* This is a bit hairy. We want to update up to three blocks
1185          * here without leaving any of them in an inconsistent state
1186          * in case of error. We don't have to worry about
1187          * journal_dirty erroring as it won't unless we've aborted the
1188          * handle (in which case we would never be here) so reserving
1189          * the write with journal_access is all we need to do. */
1190         status = ocfs2_journal_access_eb(handle, INODE_CACHE(inode), *last_eb_bh,
1191                                          OCFS2_JOURNAL_ACCESS_WRITE);
1192         if (status < 0) {
1193                 mlog_errno(status);
1194                 goto bail;
1195         }
1196         status = ocfs2_et_root_journal_access(handle, et,
1197                                               OCFS2_JOURNAL_ACCESS_WRITE);
1198         if (status < 0) {
1199                 mlog_errno(status);
1200                 goto bail;
1201         }
1202         if (eb_bh) {
1203                 status = ocfs2_journal_access_eb(handle, INODE_CACHE(inode), eb_bh,
1204                                                  OCFS2_JOURNAL_ACCESS_WRITE);
1205                 if (status < 0) {
1206                         mlog_errno(status);
1207                         goto bail;
1208                 }
1209         }
1210
1211         /* Link the new branch into the rest of the tree (el will
1212          * either be on the root_bh, or the extent block passed in. */
1213         i = le16_to_cpu(el->l_next_free_rec);
1214         el->l_recs[i].e_blkno = cpu_to_le64(next_blkno);
1215         el->l_recs[i].e_cpos = cpu_to_le32(new_cpos);
1216         el->l_recs[i].e_int_clusters = 0;
1217         le16_add_cpu(&el->l_next_free_rec, 1);
1218
1219         /* fe needs a new last extent block pointer, as does the
1220          * next_leaf on the previously last-extent-block. */
1221         ocfs2_et_set_last_eb_blk(et, new_last_eb_blk);
1222
1223         eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
1224         eb->h_next_leaf_blk = cpu_to_le64(new_last_eb_blk);
1225
1226         status = ocfs2_journal_dirty(handle, *last_eb_bh);
1227         if (status < 0)
1228                 mlog_errno(status);
1229         status = ocfs2_journal_dirty(handle, et->et_root_bh);
1230         if (status < 0)
1231                 mlog_errno(status);
1232         if (eb_bh) {
1233                 status = ocfs2_journal_dirty(handle, eb_bh);
1234                 if (status < 0)
1235                         mlog_errno(status);
1236         }
1237
1238         /*
1239          * Some callers want to track the rightmost leaf so pass it
1240          * back here.
1241          */
1242         brelse(*last_eb_bh);
1243         get_bh(new_eb_bhs[0]);
1244         *last_eb_bh = new_eb_bhs[0];
1245
1246         status = 0;
1247 bail:
1248         if (new_eb_bhs) {
1249                 for (i = 0; i < new_blocks; i++)
1250                         brelse(new_eb_bhs[i]);
1251                 kfree(new_eb_bhs);
1252         }
1253
1254         mlog_exit(status);
1255         return status;
1256 }
1257
1258 /*
1259  * adds another level to the allocation tree.
1260  * returns back the new extent block so you can add a branch to it
1261  * after this call.
1262  */
1263 static int ocfs2_shift_tree_depth(struct ocfs2_super *osb,
1264                                   handle_t *handle,
1265                                   struct inode *inode,
1266                                   struct ocfs2_extent_tree *et,
1267                                   struct ocfs2_alloc_context *meta_ac,
1268                                   struct buffer_head **ret_new_eb_bh)
1269 {
1270         int status, i;
1271         u32 new_clusters;
1272         struct buffer_head *new_eb_bh = NULL;
1273         struct ocfs2_extent_block *eb;
1274         struct ocfs2_extent_list  *root_el;
1275         struct ocfs2_extent_list  *eb_el;
1276
1277         mlog_entry_void();
1278
1279         status = ocfs2_create_new_meta_bhs(handle, et, 1, meta_ac,
1280                                            &new_eb_bh);
1281         if (status < 0) {
1282                 mlog_errno(status);
1283                 goto bail;
1284         }
1285
1286         eb = (struct ocfs2_extent_block *) new_eb_bh->b_data;
1287         /* ocfs2_create_new_meta_bhs() should create it right! */
1288         BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb));
1289
1290         eb_el = &eb->h_list;
1291         root_el = et->et_root_el;
1292
1293         status = ocfs2_journal_access_eb(handle, INODE_CACHE(inode), new_eb_bh,
1294                                          OCFS2_JOURNAL_ACCESS_CREATE);
1295         if (status < 0) {
1296                 mlog_errno(status);
1297                 goto bail;
1298         }
1299
1300         /* copy the root extent list data into the new extent block */
1301         eb_el->l_tree_depth = root_el->l_tree_depth;
1302         eb_el->l_next_free_rec = root_el->l_next_free_rec;
1303         for (i = 0; i < le16_to_cpu(root_el->l_next_free_rec); i++)
1304                 eb_el->l_recs[i] = root_el->l_recs[i];
1305
1306         status = ocfs2_journal_dirty(handle, new_eb_bh);
1307         if (status < 0) {
1308                 mlog_errno(status);
1309                 goto bail;
1310         }
1311
1312         status = ocfs2_et_root_journal_access(handle, et,
1313                                               OCFS2_JOURNAL_ACCESS_WRITE);
1314         if (status < 0) {
1315                 mlog_errno(status);
1316                 goto bail;
1317         }
1318
1319         new_clusters = ocfs2_sum_rightmost_rec(eb_el);
1320
1321         /* update root_bh now */
1322         le16_add_cpu(&root_el->l_tree_depth, 1);
1323         root_el->l_recs[0].e_cpos = 0;
1324         root_el->l_recs[0].e_blkno = eb->h_blkno;
1325         root_el->l_recs[0].e_int_clusters = cpu_to_le32(new_clusters);
1326         for (i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++)
1327                 memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
1328         root_el->l_next_free_rec = cpu_to_le16(1);
1329
1330         /* If this is our 1st tree depth shift, then last_eb_blk
1331          * becomes the allocated extent block */
1332         if (root_el->l_tree_depth == cpu_to_le16(1))
1333                 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
1334
1335         status = ocfs2_journal_dirty(handle, et->et_root_bh);
1336         if (status < 0) {
1337                 mlog_errno(status);
1338                 goto bail;
1339         }
1340
1341         *ret_new_eb_bh = new_eb_bh;
1342         new_eb_bh = NULL;
1343         status = 0;
1344 bail:
1345         brelse(new_eb_bh);
1346
1347         mlog_exit(status);
1348         return status;
1349 }
1350
1351 /*
1352  * Should only be called when there is no space left in any of the
1353  * leaf nodes. What we want to do is find the lowest tree depth
1354  * non-leaf extent block with room for new records. There are three
1355  * valid results of this search:
1356  *
1357  * 1) a lowest extent block is found, then we pass it back in
1358  *    *lowest_eb_bh and return '0'
1359  *
1360  * 2) the search fails to find anything, but the root_el has room. We
1361  *    pass NULL back in *lowest_eb_bh, but still return '0'
1362  *
1363  * 3) the search fails to find anything AND the root_el is full, in
1364  *    which case we return > 0
1365  *
1366  * return status < 0 indicates an error.
1367  */
1368 static int ocfs2_find_branch_target(struct ocfs2_super *osb,
1369                                     struct ocfs2_extent_tree *et,
1370                                     struct buffer_head **target_bh)
1371 {
1372         int status = 0, i;
1373         u64 blkno;
1374         struct ocfs2_extent_block *eb;
1375         struct ocfs2_extent_list  *el;
1376         struct buffer_head *bh = NULL;
1377         struct buffer_head *lowest_bh = NULL;
1378
1379         mlog_entry_void();
1380
1381         *target_bh = NULL;
1382
1383         el = et->et_root_el;
1384
1385         while(le16_to_cpu(el->l_tree_depth) > 1) {
1386                 if (le16_to_cpu(el->l_next_free_rec) == 0) {
1387                         ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
1388                                     "Owner %llu has empty "
1389                                     "extent list (next_free_rec == 0)",
1390                                     (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci));
1391                         status = -EIO;
1392                         goto bail;
1393                 }
1394                 i = le16_to_cpu(el->l_next_free_rec) - 1;
1395                 blkno = le64_to_cpu(el->l_recs[i].e_blkno);
1396                 if (!blkno) {
1397                         ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
1398                                     "Owner %llu has extent "
1399                                     "list where extent # %d has no physical "
1400                                     "block start",
1401                                     (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), i);
1402                         status = -EIO;
1403                         goto bail;
1404                 }
1405
1406                 brelse(bh);
1407                 bh = NULL;
1408
1409                 status = ocfs2_read_extent_block(et->et_ci, blkno, &bh);
1410                 if (status < 0) {
1411                         mlog_errno(status);
1412                         goto bail;
1413                 }
1414
1415                 eb = (struct ocfs2_extent_block *) bh->b_data;
1416                 el = &eb->h_list;
1417
1418                 if (le16_to_cpu(el->l_next_free_rec) <
1419                     le16_to_cpu(el->l_count)) {
1420                         brelse(lowest_bh);
1421                         lowest_bh = bh;
1422                         get_bh(lowest_bh);
1423                 }
1424         }
1425
1426         /* If we didn't find one and the fe doesn't have any room,
1427          * then return '1' */
1428         el = et->et_root_el;
1429         if (!lowest_bh && (el->l_next_free_rec == el->l_count))
1430                 status = 1;
1431
1432         *target_bh = lowest_bh;
1433 bail:
1434         brelse(bh);
1435
1436         mlog_exit(status);
1437         return status;
1438 }
1439
1440 /*
1441  * Grow a b-tree so that it has more records.
1442  *
1443  * We might shift the tree depth in which case existing paths should
1444  * be considered invalid.
1445  *
1446  * Tree depth after the grow is returned via *final_depth.
1447  *
1448  * *last_eb_bh will be updated by ocfs2_add_branch().
1449  */
1450 static int ocfs2_grow_tree(struct inode *inode, handle_t *handle,
1451                            struct ocfs2_extent_tree *et, int *final_depth,
1452                            struct buffer_head **last_eb_bh,
1453                            struct ocfs2_alloc_context *meta_ac)
1454 {
1455         int ret, shift;
1456         struct ocfs2_extent_list *el = et->et_root_el;
1457         int depth = le16_to_cpu(el->l_tree_depth);
1458         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1459         struct buffer_head *bh = NULL;
1460
1461         BUG_ON(meta_ac == NULL);
1462
1463         shift = ocfs2_find_branch_target(osb, et, &bh);
1464         if (shift < 0) {
1465                 ret = shift;
1466                 mlog_errno(ret);
1467                 goto out;
1468         }
1469
1470         /* We traveled all the way to the bottom of the allocation tree
1471          * and didn't find room for any more extents - we need to add
1472          * another tree level */
1473         if (shift) {
1474                 BUG_ON(bh);
1475                 mlog(0, "need to shift tree depth (current = %d)\n", depth);
1476
1477                 /* ocfs2_shift_tree_depth will return us a buffer with
1478                  * the new extent block (so we can pass that to
1479                  * ocfs2_add_branch). */
1480                 ret = ocfs2_shift_tree_depth(osb, handle, inode, et,
1481                                              meta_ac, &bh);
1482                 if (ret < 0) {
1483                         mlog_errno(ret);
1484                         goto out;
1485                 }
1486                 depth++;
1487                 if (depth == 1) {
1488                         /*
1489                          * Special case: we have room now if we shifted from
1490                          * tree_depth 0, so no more work needs to be done.
1491                          *
1492                          * We won't be calling add_branch, so pass
1493                          * back *last_eb_bh as the new leaf. At depth
1494                          * zero, it should always be null so there's
1495                          * no reason to brelse.
1496                          */
1497                         BUG_ON(*last_eb_bh);
1498                         get_bh(bh);
1499                         *last_eb_bh = bh;
1500                         goto out;
1501                 }
1502         }
1503
1504         /* call ocfs2_add_branch to add the final part of the tree with
1505          * the new data. */
1506         mlog(0, "add branch. bh = %p\n", bh);
1507         ret = ocfs2_add_branch(osb, handle, inode, et, bh, last_eb_bh,
1508                                meta_ac);
1509         if (ret < 0) {
1510                 mlog_errno(ret);
1511                 goto out;
1512         }
1513
1514 out:
1515         if (final_depth)
1516                 *final_depth = depth;
1517         brelse(bh);
1518         return ret;
1519 }
1520
1521 /*
1522  * This function will discard the rightmost extent record.
1523  */
1524 static void ocfs2_shift_records_right(struct ocfs2_extent_list *el)
1525 {
1526         int next_free = le16_to_cpu(el->l_next_free_rec);
1527         int count = le16_to_cpu(el->l_count);
1528         unsigned int num_bytes;
1529
1530         BUG_ON(!next_free);
1531         /* This will cause us to go off the end of our extent list. */
1532         BUG_ON(next_free >= count);
1533
1534         num_bytes = sizeof(struct ocfs2_extent_rec) * next_free;
1535
1536         memmove(&el->l_recs[1], &el->l_recs[0], num_bytes);
1537 }
1538
1539 static void ocfs2_rotate_leaf(struct ocfs2_extent_list *el,
1540                               struct ocfs2_extent_rec *insert_rec)
1541 {
1542         int i, insert_index, next_free, has_empty, num_bytes;
1543         u32 insert_cpos = le32_to_cpu(insert_rec->e_cpos);
1544         struct ocfs2_extent_rec *rec;
1545
1546         next_free = le16_to_cpu(el->l_next_free_rec);
1547         has_empty = ocfs2_is_empty_extent(&el->l_recs[0]);
1548
1549         BUG_ON(!next_free);
1550
1551         /* The tree code before us didn't allow enough room in the leaf. */
1552         BUG_ON(el->l_next_free_rec == el->l_count && !has_empty);
1553
1554         /*
1555          * The easiest way to approach this is to just remove the
1556          * empty extent and temporarily decrement next_free.
1557          */
1558         if (has_empty) {
1559                 /*
1560                  * If next_free was 1 (only an empty extent), this
1561                  * loop won't execute, which is fine. We still want
1562                  * the decrement above to happen.
1563                  */
1564                 for(i = 0; i < (next_free - 1); i++)
1565                         el->l_recs[i] = el->l_recs[i+1];
1566
1567                 next_free--;
1568         }
1569
1570         /*
1571          * Figure out what the new record index should be.
1572          */
1573         for(i = 0; i < next_free; i++) {
1574                 rec = &el->l_recs[i];
1575
1576                 if (insert_cpos < le32_to_cpu(rec->e_cpos))
1577                         break;
1578         }
1579         insert_index = i;
1580
1581         mlog(0, "ins %u: index %d, has_empty %d, next_free %d, count %d\n",
1582              insert_cpos, insert_index, has_empty, next_free, le16_to_cpu(el->l_count));
1583
1584         BUG_ON(insert_index < 0);
1585         BUG_ON(insert_index >= le16_to_cpu(el->l_count));
1586         BUG_ON(insert_index > next_free);
1587
1588         /*
1589          * No need to memmove if we're just adding to the tail.
1590          */
1591         if (insert_index != next_free) {
1592                 BUG_ON(next_free >= le16_to_cpu(el->l_count));
1593
1594                 num_bytes = next_free - insert_index;
1595                 num_bytes *= sizeof(struct ocfs2_extent_rec);
1596                 memmove(&el->l_recs[insert_index + 1],
1597                         &el->l_recs[insert_index],
1598                         num_bytes);
1599         }
1600
1601         /*
1602          * Either we had an empty extent, and need to re-increment or
1603          * there was no empty extent on a non full rightmost leaf node,
1604          * in which case we still need to increment.
1605          */
1606         next_free++;
1607         el->l_next_free_rec = cpu_to_le16(next_free);
1608         /*
1609          * Make sure none of the math above just messed up our tree.
1610          */
1611         BUG_ON(le16_to_cpu(el->l_next_free_rec) > le16_to_cpu(el->l_count));
1612
1613         el->l_recs[insert_index] = *insert_rec;
1614
1615 }
1616
1617 static void ocfs2_remove_empty_extent(struct ocfs2_extent_list *el)
1618 {
1619         int size, num_recs = le16_to_cpu(el->l_next_free_rec);
1620
1621         BUG_ON(num_recs == 0);
1622
1623         if (ocfs2_is_empty_extent(&el->l_recs[0])) {
1624                 num_recs--;
1625                 size = num_recs * sizeof(struct ocfs2_extent_rec);
1626                 memmove(&el->l_recs[0], &el->l_recs[1], size);
1627                 memset(&el->l_recs[num_recs], 0,
1628                        sizeof(struct ocfs2_extent_rec));
1629                 el->l_next_free_rec = cpu_to_le16(num_recs);
1630         }
1631 }
1632
1633 /*
1634  * Create an empty extent record .
1635  *
1636  * l_next_free_rec may be updated.
1637  *
1638  * If an empty extent already exists do nothing.
1639  */
1640 static void ocfs2_create_empty_extent(struct ocfs2_extent_list *el)
1641 {
1642         int next_free = le16_to_cpu(el->l_next_free_rec);
1643
1644         BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
1645
1646         if (next_free == 0)
1647                 goto set_and_inc;
1648
1649         if (ocfs2_is_empty_extent(&el->l_recs[0]))
1650                 return;
1651
1652         mlog_bug_on_msg(el->l_count == el->l_next_free_rec,
1653                         "Asked to create an empty extent in a full list:\n"
1654                         "count = %u, tree depth = %u",
1655                         le16_to_cpu(el->l_count),
1656                         le16_to_cpu(el->l_tree_depth));
1657
1658         ocfs2_shift_records_right(el);
1659
1660 set_and_inc:
1661         le16_add_cpu(&el->l_next_free_rec, 1);
1662         memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
1663 }
1664
1665 /*
1666  * For a rotation which involves two leaf nodes, the "root node" is
1667  * the lowest level tree node which contains a path to both leafs. This
1668  * resulting set of information can be used to form a complete "subtree"
1669  *
1670  * This function is passed two full paths from the dinode down to a
1671  * pair of adjacent leaves. It's task is to figure out which path
1672  * index contains the subtree root - this can be the root index itself
1673  * in a worst-case rotation.
1674  *
1675  * The array index of the subtree root is passed back.
1676  */
1677 static int ocfs2_find_subtree_root(struct ocfs2_extent_tree *et,
1678                                    struct ocfs2_path *left,
1679                                    struct ocfs2_path *right)
1680 {
1681         int i = 0;
1682
1683         /*
1684          * Check that the caller passed in two paths from the same tree.
1685          */
1686         BUG_ON(path_root_bh(left) != path_root_bh(right));
1687
1688         do {
1689                 i++;
1690
1691                 /*
1692                  * The caller didn't pass two adjacent paths.
1693                  */
1694                 mlog_bug_on_msg(i > left->p_tree_depth,
1695                                 "Owner %llu, left depth %u, right depth %u\n"
1696                                 "left leaf blk %llu, right leaf blk %llu\n",
1697                                 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
1698                                 left->p_tree_depth, right->p_tree_depth,
1699                                 (unsigned long long)path_leaf_bh(left)->b_blocknr,
1700                                 (unsigned long long)path_leaf_bh(right)->b_blocknr);
1701         } while (left->p_node[i].bh->b_blocknr ==
1702                  right->p_node[i].bh->b_blocknr);
1703
1704         return i - 1;
1705 }
1706
1707 typedef void (path_insert_t)(void *, struct buffer_head *);
1708
1709 /*
1710  * Traverse a btree path in search of cpos, starting at root_el.
1711  *
1712  * This code can be called with a cpos larger than the tree, in which
1713  * case it will return the rightmost path.
1714  */
1715 static int __ocfs2_find_path(struct ocfs2_caching_info *ci,
1716                              struct ocfs2_extent_list *root_el, u32 cpos,
1717                              path_insert_t *func, void *data)
1718 {
1719         int i, ret = 0;
1720         u32 range;
1721         u64 blkno;
1722         struct buffer_head *bh = NULL;
1723         struct ocfs2_extent_block *eb;
1724         struct ocfs2_extent_list *el;
1725         struct ocfs2_extent_rec *rec;
1726
1727         el = root_el;
1728         while (el->l_tree_depth) {
1729                 if (le16_to_cpu(el->l_next_free_rec) == 0) {
1730                         ocfs2_error(ocfs2_metadata_cache_get_super(ci),
1731                                     "Owner %llu has empty extent list at "
1732                                     "depth %u\n",
1733                                     (unsigned long long)ocfs2_metadata_cache_owner(ci),
1734                                     le16_to_cpu(el->l_tree_depth));
1735                         ret = -EROFS;
1736                         goto out;
1737
1738                 }
1739
1740                 for(i = 0; i < le16_to_cpu(el->l_next_free_rec) - 1; i++) {
1741                         rec = &el->l_recs[i];
1742
1743                         /*
1744                          * In the case that cpos is off the allocation
1745                          * tree, this should just wind up returning the
1746                          * rightmost record.
1747                          */
1748                         range = le32_to_cpu(rec->e_cpos) +
1749                                 ocfs2_rec_clusters(el, rec);
1750                         if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
1751                             break;
1752                 }
1753
1754                 blkno = le64_to_cpu(el->l_recs[i].e_blkno);
1755                 if (blkno == 0) {
1756                         ocfs2_error(ocfs2_metadata_cache_get_super(ci),
1757                                     "Owner %llu has bad blkno in extent list "
1758                                     "at depth %u (index %d)\n",
1759                                     (unsigned long long)ocfs2_metadata_cache_owner(ci),
1760                                     le16_to_cpu(el->l_tree_depth), i);
1761                         ret = -EROFS;
1762                         goto out;
1763                 }
1764
1765                 brelse(bh);
1766                 bh = NULL;
1767                 ret = ocfs2_read_extent_block(ci, blkno, &bh);
1768                 if (ret) {
1769                         mlog_errno(ret);
1770                         goto out;
1771                 }
1772
1773                 eb = (struct ocfs2_extent_block *) bh->b_data;
1774                 el = &eb->h_list;
1775
1776                 if (le16_to_cpu(el->l_next_free_rec) >
1777                     le16_to_cpu(el->l_count)) {
1778                         ocfs2_error(ocfs2_metadata_cache_get_super(ci),
1779                                     "Owner %llu has bad count in extent list "
1780                                     "at block %llu (next free=%u, count=%u)\n",
1781                                     (unsigned long long)ocfs2_metadata_cache_owner(ci),
1782                                     (unsigned long long)bh->b_blocknr,
1783                                     le16_to_cpu(el->l_next_free_rec),
1784                                     le16_to_cpu(el->l_count));
1785                         ret = -EROFS;
1786                         goto out;
1787                 }
1788
1789                 if (func)
1790                         func(data, bh);
1791         }
1792
1793 out:
1794         /*
1795          * Catch any trailing bh that the loop didn't handle.
1796          */
1797         brelse(bh);
1798
1799         return ret;
1800 }
1801
1802 /*
1803  * Given an initialized path (that is, it has a valid root extent
1804  * list), this function will traverse the btree in search of the path
1805  * which would contain cpos.
1806  *
1807  * The path traveled is recorded in the path structure.
1808  *
1809  * Note that this will not do any comparisons on leaf node extent
1810  * records, so it will work fine in the case that we just added a tree
1811  * branch.
1812  */
1813 struct find_path_data {
1814         int index;
1815         struct ocfs2_path *path;
1816 };
1817 static void find_path_ins(void *data, struct buffer_head *bh)
1818 {
1819         struct find_path_data *fp = data;
1820
1821         get_bh(bh);
1822         ocfs2_path_insert_eb(fp->path, fp->index, bh);
1823         fp->index++;
1824 }
1825 static int ocfs2_find_path(struct ocfs2_caching_info *ci,
1826                            struct ocfs2_path *path, u32 cpos)
1827 {
1828         struct find_path_data data;
1829
1830         data.index = 1;
1831         data.path = path;
1832         return __ocfs2_find_path(ci, path_root_el(path), cpos,
1833                                  find_path_ins, &data);
1834 }
1835
1836 static void find_leaf_ins(void *data, struct buffer_head *bh)
1837 {
1838         struct ocfs2_extent_block *eb =(struct ocfs2_extent_block *)bh->b_data;
1839         struct ocfs2_extent_list *el = &eb->h_list;
1840         struct buffer_head **ret = data;
1841
1842         /* We want to retain only the leaf block. */
1843         if (le16_to_cpu(el->l_tree_depth) == 0) {
1844                 get_bh(bh);
1845                 *ret = bh;
1846         }
1847 }
1848 /*
1849  * Find the leaf block in the tree which would contain cpos. No
1850  * checking of the actual leaf is done.
1851  *
1852  * Some paths want to call this instead of allocating a path structure
1853  * and calling ocfs2_find_path().
1854  *
1855  * This function doesn't handle non btree extent lists.
1856  */
1857 int ocfs2_find_leaf(struct ocfs2_caching_info *ci,
1858                     struct ocfs2_extent_list *root_el, u32 cpos,
1859                     struct buffer_head **leaf_bh)
1860 {
1861         int ret;
1862         struct buffer_head *bh = NULL;
1863
1864         ret = __ocfs2_find_path(ci, root_el, cpos, find_leaf_ins, &bh);
1865         if (ret) {
1866                 mlog_errno(ret);
1867                 goto out;
1868         }
1869
1870         *leaf_bh = bh;
1871 out:
1872         return ret;
1873 }
1874
1875 /*
1876  * Adjust the adjacent records (left_rec, right_rec) involved in a rotation.
1877  *
1878  * Basically, we've moved stuff around at the bottom of the tree and
1879  * we need to fix up the extent records above the changes to reflect
1880  * the new changes.
1881  *
1882  * left_rec: the record on the left.
1883  * left_child_el: is the child list pointed to by left_rec
1884  * right_rec: the record to the right of left_rec
1885  * right_child_el: is the child list pointed to by right_rec
1886  *
1887  * By definition, this only works on interior nodes.
1888  */
1889 static void ocfs2_adjust_adjacent_records(struct ocfs2_extent_rec *left_rec,
1890                                   struct ocfs2_extent_list *left_child_el,
1891                                   struct ocfs2_extent_rec *right_rec,
1892                                   struct ocfs2_extent_list *right_child_el)
1893 {
1894         u32 left_clusters, right_end;
1895
1896         /*
1897          * Interior nodes never have holes. Their cpos is the cpos of
1898          * the leftmost record in their child list. Their cluster
1899          * count covers the full theoretical range of their child list
1900          * - the range between their cpos and the cpos of the record
1901          * immediately to their right.
1902          */
1903         left_clusters = le32_to_cpu(right_child_el->l_recs[0].e_cpos);
1904         if (!ocfs2_rec_clusters(right_child_el, &right_child_el->l_recs[0])) {
1905                 BUG_ON(right_child_el->l_tree_depth);
1906                 BUG_ON(le16_to_cpu(right_child_el->l_next_free_rec) <= 1);
1907                 left_clusters = le32_to_cpu(right_child_el->l_recs[1].e_cpos);
1908         }
1909         left_clusters -= le32_to_cpu(left_rec->e_cpos);
1910         left_rec->e_int_clusters = cpu_to_le32(left_clusters);
1911
1912         /*
1913          * Calculate the rightmost cluster count boundary before
1914          * moving cpos - we will need to adjust clusters after
1915          * updating e_cpos to keep the same highest cluster count.
1916          */
1917         right_end = le32_to_cpu(right_rec->e_cpos);
1918         right_end += le32_to_cpu(right_rec->e_int_clusters);
1919
1920         right_rec->e_cpos = left_rec->e_cpos;
1921         le32_add_cpu(&right_rec->e_cpos, left_clusters);
1922
1923         right_end -= le32_to_cpu(right_rec->e_cpos);
1924         right_rec->e_int_clusters = cpu_to_le32(right_end);
1925 }
1926
1927 /*
1928  * Adjust the adjacent root node records involved in a
1929  * rotation. left_el_blkno is passed in as a key so that we can easily
1930  * find it's index in the root list.
1931  */
1932 static void ocfs2_adjust_root_records(struct ocfs2_extent_list *root_el,
1933                                       struct ocfs2_extent_list *left_el,
1934                                       struct ocfs2_extent_list *right_el,
1935                                       u64 left_el_blkno)
1936 {
1937         int i;
1938
1939         BUG_ON(le16_to_cpu(root_el->l_tree_depth) <=
1940                le16_to_cpu(left_el->l_tree_depth));
1941
1942         for(i = 0; i < le16_to_cpu(root_el->l_next_free_rec) - 1; i++) {
1943                 if (le64_to_cpu(root_el->l_recs[i].e_blkno) == left_el_blkno)
1944                         break;
1945         }
1946
1947         /*
1948          * The path walking code should have never returned a root and
1949          * two paths which are not adjacent.
1950          */
1951         BUG_ON(i >= (le16_to_cpu(root_el->l_next_free_rec) - 1));
1952
1953         ocfs2_adjust_adjacent_records(&root_el->l_recs[i], left_el,
1954                                       &root_el->l_recs[i + 1], right_el);
1955 }
1956
1957 /*
1958  * We've changed a leaf block (in right_path) and need to reflect that
1959  * change back up the subtree.
1960  *
1961  * This happens in multiple places:
1962  *   - When we've moved an extent record from the left path leaf to the right
1963  *     path leaf to make room for an empty extent in the left path leaf.
1964  *   - When our insert into the right path leaf is at the leftmost edge
1965  *     and requires an update of the path immediately to it's left. This
1966  *     can occur at the end of some types of rotation and appending inserts.
1967  *   - When we've adjusted the last extent record in the left path leaf and the
1968  *     1st extent record in the right path leaf during cross extent block merge.
1969  */
1970 static void ocfs2_complete_edge_insert(handle_t *handle,
1971                                        struct ocfs2_path *left_path,
1972                                        struct ocfs2_path *right_path,
1973                                        int subtree_index)
1974 {
1975         int ret, i, idx;
1976         struct ocfs2_extent_list *el, *left_el, *right_el;
1977         struct ocfs2_extent_rec *left_rec, *right_rec;
1978         struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
1979
1980         /*
1981          * Update the counts and position values within all the
1982          * interior nodes to reflect the leaf rotation we just did.
1983          *
1984          * The root node is handled below the loop.
1985          *
1986          * We begin the loop with right_el and left_el pointing to the
1987          * leaf lists and work our way up.
1988          *
1989          * NOTE: within this loop, left_el and right_el always refer
1990          * to the *child* lists.
1991          */
1992         left_el = path_leaf_el(left_path);
1993         right_el = path_leaf_el(right_path);
1994         for(i = left_path->p_tree_depth - 1; i > subtree_index; i--) {
1995                 mlog(0, "Adjust records at index %u\n", i);
1996
1997                 /*
1998                  * One nice property of knowing that all of these
1999                  * nodes are below the root is that we only deal with
2000                  * the leftmost right node record and the rightmost
2001                  * left node record.
2002                  */
2003                 el = left_path->p_node[i].el;
2004                 idx = le16_to_cpu(left_el->l_next_free_rec) - 1;
2005                 left_rec = &el->l_recs[idx];
2006
2007                 el = right_path->p_node[i].el;
2008                 right_rec = &el->l_recs[0];
2009
2010                 ocfs2_adjust_adjacent_records(left_rec, left_el, right_rec,
2011                                               right_el);
2012
2013                 ret = ocfs2_journal_dirty(handle, left_path->p_node[i].bh);
2014                 if (ret)
2015                         mlog_errno(ret);
2016
2017                 ret = ocfs2_journal_dirty(handle, right_path->p_node[i].bh);
2018                 if (ret)
2019                         mlog_errno(ret);
2020
2021                 /*
2022                  * Setup our list pointers now so that the current
2023                  * parents become children in the next iteration.
2024                  */
2025                 left_el = left_path->p_node[i].el;
2026                 right_el = right_path->p_node[i].el;
2027         }
2028
2029         /*
2030          * At the root node, adjust the two adjacent records which
2031          * begin our path to the leaves.
2032          */
2033
2034         el = left_path->p_node[subtree_index].el;
2035         left_el = left_path->p_node[subtree_index + 1].el;
2036         right_el = right_path->p_node[subtree_index + 1].el;
2037
2038         ocfs2_adjust_root_records(el, left_el, right_el,
2039                                   left_path->p_node[subtree_index + 1].bh->b_blocknr);
2040
2041         root_bh = left_path->p_node[subtree_index].bh;
2042
2043         ret = ocfs2_journal_dirty(handle, root_bh);
2044         if (ret)
2045                 mlog_errno(ret);
2046 }
2047
2048 static int ocfs2_rotate_subtree_right(handle_t *handle,
2049                                       struct ocfs2_extent_tree *et,
2050                                       struct ocfs2_path *left_path,
2051                                       struct ocfs2_path *right_path,
2052                                       int subtree_index)
2053 {
2054         int ret, i;
2055         struct buffer_head *right_leaf_bh;
2056         struct buffer_head *left_leaf_bh = NULL;
2057         struct buffer_head *root_bh;
2058         struct ocfs2_extent_list *right_el, *left_el;
2059         struct ocfs2_extent_rec move_rec;
2060
2061         left_leaf_bh = path_leaf_bh(left_path);
2062         left_el = path_leaf_el(left_path);
2063
2064         if (left_el->l_next_free_rec != left_el->l_count) {
2065                 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
2066                             "Inode %llu has non-full interior leaf node %llu"
2067                             "(next free = %u)",
2068                             (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2069                             (unsigned long long)left_leaf_bh->b_blocknr,
2070                             le16_to_cpu(left_el->l_next_free_rec));
2071                 return -EROFS;
2072         }
2073
2074         /*
2075          * This extent block may already have an empty record, so we
2076          * return early if so.
2077          */
2078         if (ocfs2_is_empty_extent(&left_el->l_recs[0]))
2079                 return 0;
2080
2081         root_bh = left_path->p_node[subtree_index].bh;
2082         BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
2083
2084         ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
2085                                            subtree_index);
2086         if (ret) {
2087                 mlog_errno(ret);
2088                 goto out;
2089         }
2090
2091         for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
2092                 ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2093                                                    right_path, i);
2094                 if (ret) {
2095                         mlog_errno(ret);
2096                         goto out;
2097                 }
2098
2099                 ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2100                                                    left_path, i);
2101                 if (ret) {
2102                         mlog_errno(ret);
2103                         goto out;
2104                 }
2105         }
2106
2107         right_leaf_bh = path_leaf_bh(right_path);
2108         right_el = path_leaf_el(right_path);
2109
2110         /* This is a code error, not a disk corruption. */
2111         mlog_bug_on_msg(!right_el->l_next_free_rec, "Inode %llu: Rotate fails "
2112                         "because rightmost leaf block %llu is empty\n",
2113                         (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2114                         (unsigned long long)right_leaf_bh->b_blocknr);
2115
2116         ocfs2_create_empty_extent(right_el);
2117
2118         ret = ocfs2_journal_dirty(handle, right_leaf_bh);
2119         if (ret) {
2120                 mlog_errno(ret);
2121                 goto out;
2122         }
2123
2124         /* Do the copy now. */
2125         i = le16_to_cpu(left_el->l_next_free_rec) - 1;
2126         move_rec = left_el->l_recs[i];
2127         right_el->l_recs[0] = move_rec;
2128
2129         /*
2130          * Clear out the record we just copied and shift everything
2131          * over, leaving an empty extent in the left leaf.
2132          *
2133          * We temporarily subtract from next_free_rec so that the
2134          * shift will lose the tail record (which is now defunct).
2135          */
2136         le16_add_cpu(&left_el->l_next_free_rec, -1);
2137         ocfs2_shift_records_right(left_el);
2138         memset(&left_el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2139         le16_add_cpu(&left_el->l_next_free_rec, 1);
2140
2141         ret = ocfs2_journal_dirty(handle, left_leaf_bh);
2142         if (ret) {
2143                 mlog_errno(ret);
2144                 goto out;
2145         }
2146
2147         ocfs2_complete_edge_insert(handle, left_path, right_path,
2148                                    subtree_index);
2149
2150 out:
2151         return ret;
2152 }
2153
2154 /*
2155  * Given a full path, determine what cpos value would return us a path
2156  * containing the leaf immediately to the left of the current one.
2157  *
2158  * Will return zero if the path passed in is already the leftmost path.
2159  */
2160 static int ocfs2_find_cpos_for_left_leaf(struct super_block *sb,
2161                                          struct ocfs2_path *path, u32 *cpos)
2162 {
2163         int i, j, ret = 0;
2164         u64 blkno;
2165         struct ocfs2_extent_list *el;
2166
2167         BUG_ON(path->p_tree_depth == 0);
2168
2169         *cpos = 0;
2170
2171         blkno = path_leaf_bh(path)->b_blocknr;
2172
2173         /* Start at the tree node just above the leaf and work our way up. */
2174         i = path->p_tree_depth - 1;
2175         while (i >= 0) {
2176                 el = path->p_node[i].el;
2177
2178                 /*
2179                  * Find the extent record just before the one in our
2180                  * path.
2181                  */
2182                 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
2183                         if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
2184                                 if (j == 0) {
2185                                         if (i == 0) {
2186                                                 /*
2187                                                  * We've determined that the
2188                                                  * path specified is already
2189                                                  * the leftmost one - return a
2190                                                  * cpos of zero.
2191                                                  */
2192                                                 goto out;
2193                                         }
2194                                         /*
2195                                          * The leftmost record points to our
2196                                          * leaf - we need to travel up the
2197                                          * tree one level.
2198                                          */
2199                                         goto next_node;
2200                                 }
2201
2202                                 *cpos = le32_to_cpu(el->l_recs[j - 1].e_cpos);
2203                                 *cpos = *cpos + ocfs2_rec_clusters(el,
2204                                                            &el->l_recs[j - 1]);
2205                                 *cpos = *cpos - 1;
2206                                 goto out;
2207                         }
2208                 }
2209
2210                 /*
2211                  * If we got here, we never found a valid node where
2212                  * the tree indicated one should be.
2213                  */
2214                 ocfs2_error(sb,
2215                             "Invalid extent tree at extent block %llu\n",
2216                             (unsigned long long)blkno);
2217                 ret = -EROFS;
2218                 goto out;
2219
2220 next_node:
2221                 blkno = path->p_node[i].bh->b_blocknr;
2222                 i--;
2223         }
2224
2225 out:
2226         return ret;
2227 }
2228
2229 /*
2230  * Extend the transaction by enough credits to complete the rotation,
2231  * and still leave at least the original number of credits allocated
2232  * to this transaction.
2233  */
2234 static int ocfs2_extend_rotate_transaction(handle_t *handle, int subtree_depth,
2235                                            int op_credits,
2236                                            struct ocfs2_path *path)
2237 {
2238         int credits = (path->p_tree_depth - subtree_depth) * 2 + 1 + op_credits;
2239
2240         if (handle->h_buffer_credits < credits)
2241                 return ocfs2_extend_trans(handle, credits);
2242
2243         return 0;
2244 }
2245
2246 /*
2247  * Trap the case where we're inserting into the theoretical range past
2248  * the _actual_ left leaf range. Otherwise, we'll rotate a record
2249  * whose cpos is less than ours into the right leaf.
2250  *
2251  * It's only necessary to look at the rightmost record of the left
2252  * leaf because the logic that calls us should ensure that the
2253  * theoretical ranges in the path components above the leaves are
2254  * correct.
2255  */
2256 static int ocfs2_rotate_requires_path_adjustment(struct ocfs2_path *left_path,
2257                                                  u32 insert_cpos)
2258 {
2259         struct ocfs2_extent_list *left_el;
2260         struct ocfs2_extent_rec *rec;
2261         int next_free;
2262
2263         left_el = path_leaf_el(left_path);
2264         next_free = le16_to_cpu(left_el->l_next_free_rec);
2265         rec = &left_el->l_recs[next_free - 1];
2266
2267         if (insert_cpos > le32_to_cpu(rec->e_cpos))
2268                 return 1;
2269         return 0;
2270 }
2271
2272 static int ocfs2_leftmost_rec_contains(struct ocfs2_extent_list *el, u32 cpos)
2273 {
2274         int next_free = le16_to_cpu(el->l_next_free_rec);
2275         unsigned int range;
2276         struct ocfs2_extent_rec *rec;
2277
2278         if (next_free == 0)
2279                 return 0;
2280
2281         rec = &el->l_recs[0];
2282         if (ocfs2_is_empty_extent(rec)) {
2283                 /* Empty list. */
2284                 if (next_free == 1)
2285                         return 0;
2286                 rec = &el->l_recs[1];
2287         }
2288
2289         range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
2290         if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
2291                 return 1;
2292         return 0;
2293 }
2294
2295 /*
2296  * Rotate all the records in a btree right one record, starting at insert_cpos.
2297  *
2298  * The path to the rightmost leaf should be passed in.
2299  *
2300  * The array is assumed to be large enough to hold an entire path (tree depth).
2301  *
2302  * Upon succesful return from this function:
2303  *
2304  * - The 'right_path' array will contain a path to the leaf block
2305  *   whose range contains e_cpos.
2306  * - That leaf block will have a single empty extent in list index 0.
2307  * - In the case that the rotation requires a post-insert update,
2308  *   *ret_left_path will contain a valid path which can be passed to
2309  *   ocfs2_insert_path().
2310  */
2311 static int ocfs2_rotate_tree_right(struct inode *inode, handle_t *handle,
2312                                    struct ocfs2_extent_tree *et,
2313                                    enum ocfs2_split_type split,
2314                                    u32 insert_cpos,
2315                                    struct ocfs2_path *right_path,
2316                                    struct ocfs2_path **ret_left_path)
2317 {
2318         int ret, start, orig_credits = handle->h_buffer_credits;
2319         u32 cpos;
2320         struct ocfs2_path *left_path = NULL;
2321         struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
2322
2323         *ret_left_path = NULL;
2324
2325         left_path = ocfs2_new_path_from_path(right_path);
2326         if (!left_path) {
2327                 ret = -ENOMEM;
2328                 mlog_errno(ret);
2329                 goto out;
2330         }
2331
2332         ret = ocfs2_find_cpos_for_left_leaf(sb, right_path, &cpos);
2333         if (ret) {
2334                 mlog_errno(ret);
2335                 goto out;
2336         }
2337
2338         mlog(0, "Insert: %u, first left path cpos: %u\n", insert_cpos, cpos);
2339
2340         /*
2341          * What we want to do here is:
2342          *
2343          * 1) Start with the rightmost path.
2344          *
2345          * 2) Determine a path to the leaf block directly to the left
2346          *    of that leaf.
2347          *
2348          * 3) Determine the 'subtree root' - the lowest level tree node
2349          *    which contains a path to both leaves.
2350          *
2351          * 4) Rotate the subtree.
2352          *
2353          * 5) Find the next subtree by considering the left path to be
2354          *    the new right path.
2355          *
2356          * The check at the top of this while loop also accepts
2357          * insert_cpos == cpos because cpos is only a _theoretical_
2358          * value to get us the left path - insert_cpos might very well
2359          * be filling that hole.
2360          *
2361          * Stop at a cpos of '0' because we either started at the
2362          * leftmost branch (i.e., a tree with one branch and a
2363          * rotation inside of it), or we've gone as far as we can in
2364          * rotating subtrees.
2365          */
2366         while (cpos && insert_cpos <= cpos) {
2367                 mlog(0, "Rotating a tree: ins. cpos: %u, left path cpos: %u\n",
2368                      insert_cpos, cpos);
2369
2370                 ret = ocfs2_find_path(et->et_ci, left_path, cpos);
2371                 if (ret) {
2372                         mlog_errno(ret);
2373                         goto out;
2374                 }
2375
2376                 mlog_bug_on_msg(path_leaf_bh(left_path) ==
2377                                 path_leaf_bh(right_path),
2378                                 "Owner %llu: error during insert of %u "
2379                                 "(left path cpos %u) results in two identical "
2380                                 "paths ending at %llu\n",
2381                                 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2382                                 insert_cpos, cpos,
2383                                 (unsigned long long)
2384                                 path_leaf_bh(left_path)->b_blocknr);
2385
2386                 if (split == SPLIT_NONE &&
2387                     ocfs2_rotate_requires_path_adjustment(left_path,
2388                                                           insert_cpos)) {
2389
2390                         /*
2391                          * We've rotated the tree as much as we
2392                          * should. The rest is up to
2393                          * ocfs2_insert_path() to complete, after the
2394                          * record insertion. We indicate this
2395                          * situation by returning the left path.
2396                          *
2397                          * The reason we don't adjust the records here
2398                          * before the record insert is that an error
2399                          * later might break the rule where a parent
2400                          * record e_cpos will reflect the actual
2401                          * e_cpos of the 1st nonempty record of the
2402                          * child list.
2403                          */
2404                         *ret_left_path = left_path;
2405                         goto out_ret_path;
2406                 }
2407
2408                 start = ocfs2_find_subtree_root(et, left_path, right_path);
2409
2410                 mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n",
2411                      start,
2412                      (unsigned long long) right_path->p_node[start].bh->b_blocknr,
2413                      right_path->p_tree_depth);
2414
2415                 ret = ocfs2_extend_rotate_transaction(handle, start,
2416                                                       orig_credits, right_path);
2417                 if (ret) {
2418                         mlog_errno(ret);
2419                         goto out;
2420                 }
2421
2422                 ret = ocfs2_rotate_subtree_right(handle, et, left_path,
2423                                                  right_path, start);
2424                 if (ret) {
2425                         mlog_errno(ret);
2426                         goto out;
2427                 }
2428
2429                 if (split != SPLIT_NONE &&
2430                     ocfs2_leftmost_rec_contains(path_leaf_el(right_path),
2431                                                 insert_cpos)) {
2432                         /*
2433                          * A rotate moves the rightmost left leaf
2434                          * record over to the leftmost right leaf
2435                          * slot. If we're doing an extent split
2436                          * instead of a real insert, then we have to
2437                          * check that the extent to be split wasn't
2438                          * just moved over. If it was, then we can
2439                          * exit here, passing left_path back -
2440                          * ocfs2_split_extent() is smart enough to
2441                          * search both leaves.
2442                          */
2443                         *ret_left_path = left_path;
2444                         goto out_ret_path;
2445                 }
2446
2447                 /*
2448                  * There is no need to re-read the next right path
2449                  * as we know that it'll be our current left
2450                  * path. Optimize by copying values instead.
2451                  */
2452                 ocfs2_mv_path(right_path, left_path);
2453
2454                 ret = ocfs2_find_cpos_for_left_leaf(sb, right_path, &cpos);
2455                 if (ret) {
2456                         mlog_errno(ret);
2457                         goto out;
2458                 }
2459         }
2460
2461 out:
2462         ocfs2_free_path(left_path);
2463
2464 out_ret_path:
2465         return ret;
2466 }
2467
2468 static int ocfs2_update_edge_lengths(struct inode *inode, handle_t *handle,
2469                                      int subtree_index, struct ocfs2_path *path)
2470 {
2471         int i, idx, ret;
2472         struct ocfs2_extent_rec *rec;
2473         struct ocfs2_extent_list *el;
2474         struct ocfs2_extent_block *eb;
2475         u32 range;
2476
2477         /*
2478          * In normal tree rotation process, we will never touch the
2479          * tree branch above subtree_index and ocfs2_extend_rotate_transaction
2480          * doesn't reserve the credits for them either.
2481          *
2482          * But we do have a special case here which will update the rightmost
2483          * records for all the bh in the path.
2484          * So we have to allocate extra credits and access them.
2485          */
2486         ret = ocfs2_extend_trans(handle,
2487                                  handle->h_buffer_credits + subtree_index);
2488         if (ret) {
2489                 mlog_errno(ret);
2490                 goto out;
2491         }
2492
2493         ret = ocfs2_journal_access_path(INODE_CACHE(inode), handle, path);
2494         if (ret) {
2495                 mlog_errno(ret);
2496                 goto out;
2497         }
2498
2499         /* Path should always be rightmost. */
2500         eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
2501         BUG_ON(eb->h_next_leaf_blk != 0ULL);
2502
2503         el = &eb->h_list;
2504         BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0);
2505         idx = le16_to_cpu(el->l_next_free_rec) - 1;
2506         rec = &el->l_recs[idx];
2507         range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
2508
2509         for (i = 0; i < path->p_tree_depth; i++) {
2510                 el = path->p_node[i].el;
2511                 idx = le16_to_cpu(el->l_next_free_rec) - 1;
2512                 rec = &el->l_recs[idx];
2513
2514                 rec->e_int_clusters = cpu_to_le32(range);
2515                 le32_add_cpu(&rec->e_int_clusters, -le32_to_cpu(rec->e_cpos));
2516
2517                 ocfs2_journal_dirty(handle, path->p_node[i].bh);
2518         }
2519 out:
2520         return ret;
2521 }
2522
2523 static void ocfs2_unlink_path(handle_t *handle,
2524                               struct ocfs2_extent_tree *et,
2525                               struct ocfs2_cached_dealloc_ctxt *dealloc,
2526                               struct ocfs2_path *path, int unlink_start)
2527 {
2528         int ret, i;
2529         struct ocfs2_extent_block *eb;
2530         struct ocfs2_extent_list *el;
2531         struct buffer_head *bh;
2532
2533         for(i = unlink_start; i < path_num_items(path); i++) {
2534                 bh = path->p_node[i].bh;
2535
2536                 eb = (struct ocfs2_extent_block *)bh->b_data;
2537                 /*
2538                  * Not all nodes might have had their final count
2539                  * decremented by the caller - handle this here.
2540                  */
2541                 el = &eb->h_list;
2542                 if (le16_to_cpu(el->l_next_free_rec) > 1) {
2543                         mlog(ML_ERROR,
2544                              "Inode %llu, attempted to remove extent block "
2545                              "%llu with %u records\n",
2546                              (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2547                              (unsigned long long)le64_to_cpu(eb->h_blkno),
2548                              le16_to_cpu(el->l_next_free_rec));
2549
2550                         ocfs2_journal_dirty(handle, bh);
2551                         ocfs2_remove_from_cache(et->et_ci, bh);
2552                         continue;
2553                 }
2554
2555                 el->l_next_free_rec = 0;
2556                 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2557
2558                 ocfs2_journal_dirty(handle, bh);
2559
2560                 ret = ocfs2_cache_extent_block_free(dealloc, eb);
2561                 if (ret)
2562                         mlog_errno(ret);
2563
2564                 ocfs2_remove_from_cache(et->et_ci, bh);
2565         }
2566 }
2567
2568 static void ocfs2_unlink_subtree(handle_t *handle,
2569                                  struct ocfs2_extent_tree *et,
2570                                  struct ocfs2_path *left_path,
2571                                  struct ocfs2_path *right_path,
2572                                  int subtree_index,
2573                                  struct ocfs2_cached_dealloc_ctxt *dealloc)
2574 {
2575         int i;
2576         struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
2577         struct ocfs2_extent_list *root_el = left_path->p_node[subtree_index].el;
2578         struct ocfs2_extent_list *el;
2579         struct ocfs2_extent_block *eb;
2580
2581         el = path_leaf_el(left_path);
2582
2583         eb = (struct ocfs2_extent_block *)right_path->p_node[subtree_index + 1].bh->b_data;
2584
2585         for(i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++)
2586                 if (root_el->l_recs[i].e_blkno == eb->h_blkno)
2587                         break;
2588
2589         BUG_ON(i >= le16_to_cpu(root_el->l_next_free_rec));
2590
2591         memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
2592         le16_add_cpu(&root_el->l_next_free_rec, -1);
2593
2594         eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2595         eb->h_next_leaf_blk = 0;
2596
2597         ocfs2_journal_dirty(handle, root_bh);
2598         ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2599
2600         ocfs2_unlink_path(handle, et, dealloc, right_path,
2601                           subtree_index + 1);
2602 }
2603
2604 static int ocfs2_rotate_subtree_left(struct inode *inode, handle_t *handle,
2605                                      struct ocfs2_path *left_path,
2606                                      struct ocfs2_path *right_path,
2607                                      int subtree_index,
2608                                      struct ocfs2_cached_dealloc_ctxt *dealloc,
2609                                      int *deleted,
2610                                      struct ocfs2_extent_tree *et)
2611 {
2612         int ret, i, del_right_subtree = 0, right_has_empty = 0;
2613         struct buffer_head *root_bh, *et_root_bh = path_root_bh(right_path);
2614         struct ocfs2_extent_list *right_leaf_el, *left_leaf_el;
2615         struct ocfs2_extent_block *eb;
2616
2617         *deleted = 0;
2618
2619         right_leaf_el = path_leaf_el(right_path);
2620         left_leaf_el = path_leaf_el(left_path);
2621         root_bh = left_path->p_node[subtree_index].bh;
2622         BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
2623
2624         if (!ocfs2_is_empty_extent(&left_leaf_el->l_recs[0]))
2625                 return 0;
2626
2627         eb = (struct ocfs2_extent_block *)path_leaf_bh(right_path)->b_data;
2628         if (ocfs2_is_empty_extent(&right_leaf_el->l_recs[0])) {
2629                 /*
2630                  * It's legal for us to proceed if the right leaf is
2631                  * the rightmost one and it has an empty extent. There
2632                  * are two cases to handle - whether the leaf will be
2633                  * empty after removal or not. If the leaf isn't empty
2634                  * then just remove the empty extent up front. The
2635                  * next block will handle empty leaves by flagging
2636                  * them for unlink.
2637                  *
2638                  * Non rightmost leaves will throw -EAGAIN and the
2639                  * caller can manually move the subtree and retry.
2640                  */
2641
2642                 if (eb->h_next_leaf_blk != 0ULL)
2643                         return -EAGAIN;
2644
2645                 if (le16_to_cpu(right_leaf_el->l_next_free_rec) > 1) {
2646                         ret = ocfs2_journal_access_eb(handle, INODE_CACHE(inode),
2647                                                       path_leaf_bh(right_path),
2648                                                       OCFS2_JOURNAL_ACCESS_WRITE);
2649                         if (ret) {
2650                                 mlog_errno(ret);
2651                                 goto out;
2652                         }
2653
2654                         ocfs2_remove_empty_extent(right_leaf_el);
2655                 } else
2656                         right_has_empty = 1;
2657         }
2658
2659         if (eb->h_next_leaf_blk == 0ULL &&
2660             le16_to_cpu(right_leaf_el->l_next_free_rec) == 1) {
2661                 /*
2662                  * We have to update i_last_eb_blk during the meta
2663                  * data delete.
2664                  */
2665                 ret = ocfs2_et_root_journal_access(handle, et,
2666                                                    OCFS2_JOURNAL_ACCESS_WRITE);
2667                 if (ret) {
2668                         mlog_errno(ret);
2669                         goto out;
2670                 }
2671
2672                 del_right_subtree = 1;
2673         }
2674
2675         /*
2676          * Getting here with an empty extent in the right path implies
2677          * that it's the rightmost path and will be deleted.
2678          */
2679         BUG_ON(right_has_empty && !del_right_subtree);
2680
2681         ret = ocfs2_path_bh_journal_access(handle, INODE_CACHE(inode), right_path,
2682                                            subtree_index);
2683         if (ret) {
2684                 mlog_errno(ret);
2685                 goto out;
2686         }
2687
2688         for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
2689                 ret = ocfs2_path_bh_journal_access(handle, INODE_CACHE(inode),
2690                                                    right_path, i);
2691                 if (ret) {
2692                         mlog_errno(ret);
2693                         goto out;
2694                 }
2695
2696                 ret = ocfs2_path_bh_journal_access(handle, INODE_CACHE(inode),
2697                                                    left_path, i);
2698                 if (ret) {
2699                         mlog_errno(ret);
2700                         goto out;
2701                 }
2702         }
2703
2704         if (!right_has_empty) {
2705                 /*
2706                  * Only do this if we're moving a real
2707                  * record. Otherwise, the action is delayed until
2708                  * after removal of the right path in which case we
2709                  * can do a simple shift to remove the empty extent.
2710                  */
2711                 ocfs2_rotate_leaf(left_leaf_el, &right_leaf_el->l_recs[0]);
2712                 memset(&right_leaf_el->l_recs[0], 0,
2713                        sizeof(struct ocfs2_extent_rec));
2714         }
2715         if (eb->h_next_leaf_blk == 0ULL) {
2716                 /*
2717                  * Move recs over to get rid of empty extent, decrease
2718                  * next_free. This is allowed to remove the last
2719                  * extent in our leaf (setting l_next_free_rec to
2720                  * zero) - the delete code below won't care.
2721                  */
2722                 ocfs2_remove_empty_extent(right_leaf_el);
2723         }
2724
2725         ret = ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2726         if (ret)
2727                 mlog_errno(ret);
2728         ret = ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
2729         if (ret)
2730                 mlog_errno(ret);
2731
2732         if (del_right_subtree) {
2733                 ocfs2_unlink_subtree(handle, et, left_path, right_path,
2734                                      subtree_index, dealloc);
2735                 ret = ocfs2_update_edge_lengths(inode, handle, subtree_index,
2736                                                 left_path);
2737                 if (ret) {
2738                         mlog_errno(ret);
2739                         goto out;
2740                 }
2741
2742                 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2743                 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
2744
2745                 /*
2746                  * Removal of the extent in the left leaf was skipped
2747                  * above so we could delete the right path
2748                  * 1st.
2749                  */
2750                 if (right_has_empty)
2751                         ocfs2_remove_empty_extent(left_leaf_el);
2752
2753                 ret = ocfs2_journal_dirty(handle, et_root_bh);
2754                 if (ret)
2755                         mlog_errno(ret);
2756
2757                 *deleted = 1;
2758         } else
2759                 ocfs2_complete_edge_insert(handle, left_path, right_path,
2760                                            subtree_index);
2761
2762 out:
2763         return ret;
2764 }
2765
2766 /*
2767  * Given a full path, determine what cpos value would return us a path
2768  * containing the leaf immediately to the right of the current one.
2769  *
2770  * Will return zero if the path passed in is already the rightmost path.
2771  *
2772  * This looks similar, but is subtly different to
2773  * ocfs2_find_cpos_for_left_leaf().
2774  */
2775 static int ocfs2_find_cpos_for_right_leaf(struct super_block *sb,
2776                                           struct ocfs2_path *path, u32 *cpos)
2777 {
2778         int i, j, ret = 0;
2779         u64 blkno;
2780         struct ocfs2_extent_list *el;
2781
2782         *cpos = 0;
2783
2784         if (path->p_tree_depth == 0)
2785                 return 0;
2786
2787         blkno = path_leaf_bh(path)->b_blocknr;
2788
2789         /* Start at the tree node just above the leaf and work our way up. */
2790         i = path->p_tree_depth - 1;
2791         while (i >= 0) {
2792                 int next_free;
2793
2794                 el = path->p_node[i].el;
2795
2796                 /*
2797                  * Find the extent record just after the one in our
2798                  * path.
2799                  */
2800                 next_free = le16_to_cpu(el->l_next_free_rec);
2801                 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
2802                         if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
2803                                 if (j == (next_free - 1)) {
2804                                         if (i == 0) {
2805                                                 /*
2806                                                  * We've determined that the
2807                                                  * path specified is already
2808                                                  * the rightmost one - return a
2809                                                  * cpos of zero.
2810                                                  */
2811                                                 goto out;
2812                                         }
2813                                         /*
2814                                          * The rightmost record points to our
2815                                          * leaf - we need to travel up the
2816                                          * tree one level.
2817                                          */
2818                                         goto next_node;
2819                                 }
2820
2821                                 *cpos = le32_to_cpu(el->l_recs[j + 1].e_cpos);
2822                                 goto out;
2823                         }
2824                 }
2825
2826                 /*
2827                  * If we got here, we never found a valid node where
2828                  * the tree indicated one should be.
2829                  */
2830                 ocfs2_error(sb,
2831                             "Invalid extent tree at extent block %llu\n",
2832                             (unsigned long long)blkno);
2833                 ret = -EROFS;
2834                 goto out;
2835
2836 next_node:
2837                 blkno = path->p_node[i].bh->b_blocknr;
2838                 i--;
2839         }
2840
2841 out:
2842         return ret;
2843 }
2844
2845 static int ocfs2_rotate_rightmost_leaf_left(struct inode *inode,
2846                                             handle_t *handle,
2847                                             struct ocfs2_path *path)
2848 {
2849         int ret;
2850         struct buffer_head *bh = path_leaf_bh(path);
2851         struct ocfs2_extent_list *el = path_leaf_el(path);
2852
2853         if (!ocfs2_is_empty_extent(&el->l_recs[0]))
2854                 return 0;
2855
2856         ret = ocfs2_path_bh_journal_access(handle, INODE_CACHE(inode), path,
2857                                            path_num_items(path) - 1);
2858         if (ret) {
2859                 mlog_errno(ret);
2860                 goto out;
2861         }
2862
2863         ocfs2_remove_empty_extent(el);
2864
2865         ret = ocfs2_journal_dirty(handle, bh);
2866         if (ret)
2867                 mlog_errno(ret);
2868
2869 out:
2870         return ret;
2871 }
2872
2873 static int __ocfs2_rotate_tree_left(struct inode *inode,
2874                                     handle_t *handle, int orig_credits,
2875                                     struct ocfs2_path *path,
2876                                     struct ocfs2_cached_dealloc_ctxt *dealloc,
2877                                     struct ocfs2_path **empty_extent_path,
2878                                     struct ocfs2_extent_tree *et)
2879 {
2880         int ret, subtree_root, deleted;
2881         u32 right_cpos;
2882         struct ocfs2_path *left_path = NULL;
2883         struct ocfs2_path *right_path = NULL;
2884
2885         BUG_ON(!ocfs2_is_empty_extent(&(path_leaf_el(path)->l_recs[0])));
2886
2887         *empty_extent_path = NULL;
2888
2889         ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, path,
2890                                              &right_cpos);
2891         if (ret) {
2892                 mlog_errno(ret);
2893                 goto out;
2894         }
2895
2896         left_path = ocfs2_new_path_from_path(path);
2897         if (!left_path) {
2898                 ret = -ENOMEM;
2899                 mlog_errno(ret);
2900                 goto out;
2901         }
2902
2903         ocfs2_cp_path(left_path, path);
2904
2905         right_path = ocfs2_new_path_from_path(path);
2906         if (!right_path) {
2907                 ret = -ENOMEM;
2908                 mlog_errno(ret);
2909                 goto out;
2910         }
2911
2912         while (right_cpos) {
2913                 ret = ocfs2_find_path(et->et_ci, right_path, right_cpos);
2914                 if (ret) {
2915                         mlog_errno(ret);
2916                         goto out;
2917                 }
2918
2919                 subtree_root = ocfs2_find_subtree_root(et, left_path,
2920                                                        right_path);
2921
2922                 mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n",
2923                      subtree_root,
2924                      (unsigned long long)
2925                      right_path->p_node[subtree_root].bh->b_blocknr,
2926                      right_path->p_tree_depth);
2927
2928                 ret = ocfs2_extend_rotate_transaction(handle, subtree_root,
2929                                                       orig_credits, left_path);
2930                 if (ret) {
2931                         mlog_errno(ret);
2932                         goto out;
2933                 }
2934
2935                 /*
2936                  * Caller might still want to make changes to the
2937                  * tree root, so re-add it to the journal here.
2938                  */
2939                 ret = ocfs2_path_bh_journal_access(handle, INODE_CACHE(inode),
2940                                                    left_path, 0);
2941                 if (ret) {
2942                         mlog_errno(ret);
2943                         goto out;
2944                 }
2945
2946                 ret = ocfs2_rotate_subtree_left(inode, handle, left_path,
2947                                                 right_path, subtree_root,
2948                                                 dealloc, &deleted, et);
2949                 if (ret == -EAGAIN) {
2950                         /*
2951                          * The rotation has to temporarily stop due to
2952                          * the right subtree having an empty
2953                          * extent. Pass it back to the caller for a
2954                          * fixup.
2955                          */
2956                         *empty_extent_path = right_path;
2957                         right_path = NULL;
2958                         goto out;
2959                 }
2960                 if (ret) {
2961                         mlog_errno(ret);
2962                         goto out;
2963                 }
2964
2965                 /*
2966                  * The subtree rotate might have removed records on
2967                  * the rightmost edge. If so, then rotation is
2968                  * complete.
2969                  */
2970                 if (deleted)
2971                         break;
2972
2973                 ocfs2_mv_path(left_path, right_path);
2974
2975                 ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, left_path,
2976                                                      &right_cpos);
2977                 if (ret) {
2978                         mlog_errno(ret);
2979                         goto out;
2980                 }
2981         }
2982
2983 out:
2984         ocfs2_free_path(right_path);
2985         ocfs2_free_path(left_path);
2986
2987         return ret;
2988 }
2989
2990 static int ocfs2_remove_rightmost_path(struct inode *inode, handle_t *handle,
2991                                 struct ocfs2_path *path,
2992                                 struct ocfs2_cached_dealloc_ctxt *dealloc,
2993                                 struct ocfs2_extent_tree *et)
2994 {
2995         int ret, subtree_index;
2996         u32 cpos;
2997         struct ocfs2_path *left_path = NULL;
2998         struct ocfs2_extent_block *eb;
2999         struct ocfs2_extent_list *el;
3000
3001
3002         ret = ocfs2_et_sanity_check(et);
3003         if (ret)
3004                 goto out;
3005         /*
3006          * There's two ways we handle this depending on
3007          * whether path is the only existing one.
3008          */
3009         ret = ocfs2_extend_rotate_transaction(handle, 0,
3010                                               handle->h_buffer_credits,
3011                                               path);
3012         if (ret) {
3013                 mlog_errno(ret);
3014                 goto out;
3015         }
3016
3017         ret = ocfs2_journal_access_path(et->et_ci, handle, path);
3018         if (ret) {
3019                 mlog_errno(ret);
3020                 goto out;
3021         }
3022
3023         ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci),
3024                                             path, &cpos);
3025         if (ret) {
3026                 mlog_errno(ret);
3027                 goto out;
3028         }
3029
3030         if (cpos) {
3031                 /*
3032                  * We have a path to the left of this one - it needs
3033                  * an update too.
3034                  */
3035                 left_path = ocfs2_new_path_from_path(path);
3036                 if (!left_path) {
3037                         ret = -ENOMEM;
3038                         mlog_errno(ret);
3039                         goto out;
3040                 }
3041
3042                 ret = ocfs2_find_path(et->et_ci, left_path, cpos);
3043                 if (ret) {
3044                         mlog_errno(ret);
3045                         goto out;
3046                 }
3047
3048                 ret = ocfs2_journal_access_path(et->et_ci, handle, left_path);
3049                 if (ret) {
3050                         mlog_errno(ret);
3051                         goto out;
3052                 }
3053
3054                 subtree_index = ocfs2_find_subtree_root(et, left_path, path);
3055
3056                 ocfs2_unlink_subtree(handle, et, left_path, path,
3057                                      subtree_index, dealloc);
3058                 ret = ocfs2_update_edge_lengths(inode, handle, subtree_index,
3059                                                 left_path);
3060                 if (ret) {
3061                         mlog_errno(ret);
3062                         goto out;
3063                 }
3064
3065                 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
3066                 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
3067         } else {
3068                 /*
3069                  * 'path' is also the leftmost path which
3070                  * means it must be the only one. This gets
3071                  * handled differently because we want to
3072                  * revert the inode back to having extents
3073                  * in-line.
3074                  */
3075                 ocfs2_unlink_path(handle, et, dealloc, path, 1);
3076
3077                 el = et->et_root_el;
3078                 el->l_tree_depth = 0;
3079                 el->l_next_free_rec = 0;
3080                 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
3081
3082                 ocfs2_et_set_last_eb_blk(et, 0);
3083         }
3084
3085         ocfs2_journal_dirty(handle, path_root_bh(path));
3086
3087 out:
3088         ocfs2_free_path(left_path);
3089         return ret;
3090 }
3091
3092 /*
3093  * Left rotation of btree records.
3094  *
3095  * In many ways, this is (unsurprisingly) the opposite of right
3096  * rotation. We start at some non-rightmost path containing an empty
3097  * extent in the leaf block. The code works its way to the rightmost
3098  * path by rotating records to the left in every subtree.
3099  *
3100  * This is used by any code which reduces the number of extent records
3101  * in a leaf. After removal, an empty record should be placed in the
3102  * leftmost list position.
3103  *
3104  * This won't handle a length update of the rightmost path records if
3105  * the rightmost tree leaf record is removed so the caller is
3106  * responsible for detecting and correcting that.
3107  */
3108 static int ocfs2_rotate_tree_left(struct inode *inode, handle_t *handle,
3109                                   struct ocfs2_path *path,
3110                                   struct ocfs2_cached_dealloc_ctxt *dealloc,
3111                                   struct ocfs2_extent_tree *et)
3112 {
3113         int ret, orig_credits = handle->h_buffer_credits;
3114         struct ocfs2_path *tmp_path = NULL, *restart_path = NULL;
3115         struct ocfs2_extent_block *eb;
3116         struct ocfs2_extent_list *el;
3117
3118         el = path_leaf_el(path);
3119         if (!ocfs2_is_empty_extent(&el->l_recs[0]))
3120                 return 0;
3121
3122         if (path->p_tree_depth == 0) {
3123 rightmost_no_delete:
3124                 /*
3125                  * Inline extents. This is trivially handled, so do
3126                  * it up front.
3127                  */
3128                 ret = ocfs2_rotate_rightmost_leaf_left(inode, handle,
3129                                                        path);
3130                 if (ret)
3131                         mlog_errno(ret);
3132                 goto out;
3133         }
3134
3135         /*
3136          * Handle rightmost branch now. There's several cases:
3137          *  1) simple rotation leaving records in there. That's trivial.
3138          *  2) rotation requiring a branch delete - there's no more
3139          *     records left. Two cases of this:
3140          *     a) There are branches to the left.
3141          *     b) This is also the leftmost (the only) branch.
3142          *
3143          *  1) is handled via ocfs2_rotate_rightmost_leaf_left()
3144          *  2a) we need the left branch so that we can update it with the unlink
3145          *  2b) we need to bring the inode back to inline extents.
3146          */
3147
3148         eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
3149         el = &eb->h_list;
3150         if (eb->h_next_leaf_blk == 0) {
3151                 /*
3152                  * This gets a bit tricky if we're going to delete the
3153                  * rightmost path. Get the other cases out of the way
3154                  * 1st.
3155                  */
3156                 if (le16_to_cpu(el->l_next_free_rec) > 1)
3157                         goto rightmost_no_delete;
3158
3159                 if (le16_to_cpu(el->l_next_free_rec) == 0) {
3160                         ret = -EIO;
3161                         ocfs2_error(inode->i_sb,
3162                                     "Inode %llu has empty extent block at %llu",
3163                                     (unsigned long long)OCFS2_I(inode)->ip_blkno,
3164                                     (unsigned long long)le64_to_cpu(eb->h_blkno));
3165                         goto out;
3166                 }
3167
3168                 /*
3169                  * XXX: The caller can not trust "path" any more after
3170                  * this as it will have been deleted. What do we do?
3171                  *
3172                  * In theory the rotate-for-merge code will never get
3173                  * here because it'll always ask for a rotate in a
3174                  * nonempty list.
3175                  */
3176
3177                 ret = ocfs2_remove_rightmost_path(inode, handle, path,
3178                                                   dealloc, et);
3179                 if (ret)
3180                         mlog_errno(ret);
3181                 goto out;
3182         }
3183
3184         /*
3185          * Now we can loop, remembering the path we get from -EAGAIN
3186          * and restarting from there.
3187          */
3188 try_rotate:
3189         ret = __ocfs2_rotate_tree_left(inode, handle, orig_credits, path,
3190                                        dealloc, &restart_path, et);
3191         if (ret && ret != -EAGAIN) {
3192                 mlog_errno(ret);
3193                 goto out;
3194         }
3195
3196         while (ret == -EAGAIN) {
3197                 tmp_path = restart_path;
3198                 restart_path = NULL;
3199
3200                 ret = __ocfs2_rotate_tree_left(inode, handle, orig_credits,
3201                                                tmp_path, dealloc,
3202                                                &restart_path, et);
3203                 if (ret && ret != -EAGAIN) {
3204                         mlog_errno(ret);
3205                         goto out;
3206                 }
3207
3208                 ocfs2_free_path(tmp_path);
3209                 tmp_path = NULL;
3210
3211                 if (ret == 0)
3212                         goto try_rotate;
3213         }
3214
3215 out:
3216         ocfs2_free_path(tmp_path);
3217         ocfs2_free_path(restart_path);
3218         return ret;
3219 }
3220
3221 static void ocfs2_cleanup_merge(struct ocfs2_extent_list *el,
3222                                 int index)
3223 {
3224         struct ocfs2_extent_rec *rec = &el->l_recs[index];
3225         unsigned int size;
3226
3227         if (rec->e_leaf_clusters == 0) {
3228                 /*
3229                  * We consumed all of the merged-from record. An empty
3230                  * extent cannot exist anywhere but the 1st array
3231                  * position, so move things over if the merged-from
3232                  * record doesn't occupy that position.
3233                  *
3234                  * This creates a new empty extent so the caller
3235                  * should be smart enough to have removed any existing
3236                  * ones.
3237                  */
3238                 if (index > 0) {
3239                         BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
3240                         size = index * sizeof(struct ocfs2_extent_rec);
3241                         memmove(&el->l_recs[1], &el->l_recs[0], size);
3242                 }
3243
3244                 /*
3245                  * Always memset - the caller doesn't check whether it
3246                  * created an empty extent, so there could be junk in
3247                  * the other fields.
3248                  */
3249                 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
3250         }
3251 }
3252
3253 static int ocfs2_get_right_path(struct inode *inode,
3254                                 struct ocfs2_path *left_path,
3255                                 struct ocfs2_path **ret_right_path)
3256 {
3257         int ret;
3258         u32 right_cpos;
3259         struct ocfs2_path *right_path = NULL;
3260         struct ocfs2_extent_list *left_el;
3261
3262         *ret_right_path = NULL;
3263
3264         /* This function shouldn't be called for non-trees. */
3265         BUG_ON(left_path->p_tree_depth == 0);
3266
3267         left_el = path_leaf_el(left_path);
3268         BUG_ON(left_el->l_next_free_rec != left_el->l_count);
3269
3270         ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, left_path,
3271                                              &right_cpos);
3272         if (ret) {
3273                 mlog_errno(ret);
3274                 goto out;
3275         }
3276
3277         /* This function shouldn't be called for the rightmost leaf. */
3278         BUG_ON(right_cpos == 0);
3279
3280         right_path = ocfs2_new_path_from_path(left_path);
3281         if (!right_path) {
3282                 ret = -ENOMEM;
3283                 mlog_errno(ret);
3284                 goto out;
3285         }
3286
3287         ret = ocfs2_find_path(INODE_CACHE(inode), right_path, right_cpos);
3288         if (ret) {
3289                 mlog_errno(ret);
3290                 goto out;
3291         }
3292
3293         *ret_right_path = right_path;
3294 out:
3295         if (ret)
3296                 ocfs2_free_path(right_path);
3297         return ret;
3298 }
3299
3300 /*
3301  * Remove split_rec clusters from the record at index and merge them
3302  * onto the beginning of the record "next" to it.
3303  * For index < l_count - 1, the next means the extent rec at index + 1.
3304  * For index == l_count - 1, the "next" means the 1st extent rec of the
3305  * next extent block.
3306  */
3307 static int ocfs2_merge_rec_right(struct inode *inode,
3308                                  struct ocfs2_path *left_path,
3309                                  handle_t *handle,
3310                                  struct ocfs2_extent_tree *et,
3311                                  struct ocfs2_extent_rec *split_rec,
3312                                  int index)
3313 {
3314         int ret, next_free, i;
3315         unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
3316         struct ocfs2_extent_rec *left_rec;
3317         struct ocfs2_extent_rec *right_rec;
3318         struct ocfs2_extent_list *right_el;
3319         struct ocfs2_path *right_path = NULL;
3320         int subtree_index = 0;
3321         struct ocfs2_extent_list *el = path_leaf_el(left_path);
3322         struct buffer_head *bh = path_leaf_bh(left_path);
3323         struct buffer_head *root_bh = NULL;
3324
3325         BUG_ON(index >= le16_to_cpu(el->l_next_free_rec));
3326         left_rec = &el->l_recs[index];
3327
3328         if (index == le16_to_cpu(el->l_next_free_rec) - 1 &&
3329             le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count)) {
3330                 /* we meet with a cross extent block merge. */
3331                 ret = ocfs2_get_right_path(inode, left_path, &right_path);
3332                 if (ret) {
3333                         mlog_errno(ret);
3334                         goto out;
3335                 }
3336
3337                 right_el = path_leaf_el(right_path);
3338                 next_free = le16_to_cpu(right_el->l_next_free_rec);
3339                 BUG_ON(next_free <= 0);
3340                 right_rec = &right_el->l_recs[0];
3341                 if (ocfs2_is_empty_extent(right_rec)) {
3342                         BUG_ON(next_free <= 1);
3343                         right_rec = &right_el->l_recs[1];
3344                 }
3345
3346                 BUG_ON(le32_to_cpu(left_rec->e_cpos) +
3347                        le16_to_cpu(left_rec->e_leaf_clusters) !=
3348                        le32_to_cpu(right_rec->e_cpos));
3349
3350                 subtree_index = ocfs2_find_subtree_root(et, left_path,
3351                                                         right_path);
3352
3353                 ret = ocfs2_extend_rotate_transaction(handle, subtree_index,
3354                                                       handle->h_buffer_credits,
3355                                                       right_path);
3356                 if (ret) {
3357                         mlog_errno(ret);
3358                         goto out;
3359                 }
3360
3361                 root_bh = left_path->p_node[subtree_index].bh;
3362                 BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
3363
3364                 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
3365                                                    subtree_index);
3366                 if (ret) {
3367                         mlog_errno(ret);
3368                         goto out;
3369                 }
3370
3371                 for (i = subtree_index + 1;
3372                      i < path_num_items(right_path); i++) {
3373                         ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
3374                                                            right_path, i);
3375                         if (ret) {
3376                                 mlog_errno(ret);
3377                                 goto out;
3378                         }
3379
3380                         ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
3381                                                            left_path, i);
3382                         if (ret) {
3383                                 mlog_errno(ret);
3384                                 goto out;
3385                         }
3386                 }
3387
3388         } else {
3389                 BUG_ON(index == le16_to_cpu(el->l_next_free_rec) - 1);
3390                 right_rec = &el->l_recs[index + 1];
3391         }
3392
3393         ret = ocfs2_path_bh_journal_access(handle, et->et_ci, left_path,
3394                                            path_num_items(left_path) - 1);
3395         if (ret) {
3396                 mlog_errno(ret);
3397                 goto out;
3398         }
3399
3400         le16_add_cpu(&left_rec->e_leaf_clusters, -split_clusters);
3401
3402         le32_add_cpu(&right_rec->e_cpos, -split_clusters);
3403         le64_add_cpu(&right_rec->e_blkno,
3404                      -ocfs2_clusters_to_blocks(ocfs2_metadata_cache_get_super(et->et_ci),
3405                                                split_clusters));
3406         le16_add_cpu(&right_rec->e_leaf_clusters, split_clusters);
3407
3408         ocfs2_cleanup_merge(el, index);
3409
3410         ret = ocfs2_journal_dirty(handle, bh);
3411         if (ret)
3412                 mlog_errno(ret);
3413
3414         if (right_path) {
3415                 ret = ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
3416                 if (ret)
3417                         mlog_errno(ret);
3418
3419                 ocfs2_complete_edge_insert(handle, left_path, right_path,
3420                                            subtree_index);
3421         }
3422 out:
3423         if (right_path)
3424                 ocfs2_free_path(right_path);
3425         return ret;
3426 }
3427
3428 static int ocfs2_get_left_path(struct inode *inode,
3429                                struct ocfs2_path *right_path,
3430                                struct ocfs2_path **ret_left_path)
3431 {
3432         int ret;
3433         u32 left_cpos;
3434         struct ocfs2_path *left_path = NULL;
3435
3436         *ret_left_path = NULL;
3437
3438         /* This function shouldn't be called for non-trees. */
3439         BUG_ON(right_path->p_tree_depth == 0);
3440
3441         ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb,
3442                                             right_path, &left_cpos);
3443         if (ret) {
3444                 mlog_errno(ret);
3445                 goto out;
3446         }
3447
3448         /* This function shouldn't be called for the leftmost leaf. */
3449         BUG_ON(left_cpos == 0);
3450
3451         left_path = ocfs2_new_path_from_path(right_path);
3452         if (!left_path) {
3453                 ret = -ENOMEM;
3454                 mlog_errno(ret);
3455                 goto out;
3456         }
3457
3458         ret = ocfs2_find_path(INODE_CACHE(inode), left_path, left_cpos);
3459         if (ret) {
3460                 mlog_errno(ret);
3461                 goto out;
3462         }
3463
3464         *ret_left_path = left_path;
3465 out:
3466         if (ret)
3467                 ocfs2_free_path(left_path);
3468         return ret;
3469 }
3470
3471 /*
3472  * Remove split_rec clusters from the record at index and merge them
3473  * onto the tail of the record "before" it.
3474  * For index > 0, the "before" means the extent rec at index - 1.
3475  *
3476  * For index == 0, the "before" means the last record of the previous
3477  * extent block. And there is also a situation that we may need to
3478  * remove the rightmost leaf extent block in the right_path and change
3479  * the right path to indicate the new rightmost path.
3480  */
3481 static int ocfs2_merge_rec_left(struct inode *inode,
3482                                 struct ocfs2_path *right_path,
3483                                 handle_t *handle,
3484                                 struct ocfs2_extent_rec *split_rec,
3485                                 struct ocfs2_cached_dealloc_ctxt *dealloc,
3486                                 struct ocfs2_extent_tree *et,
3487                                 int index)
3488 {
3489         int ret, i, subtree_index = 0, has_empty_extent = 0;
3490         unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
3491         struct ocfs2_extent_rec *left_rec;
3492         struct ocfs2_extent_rec *right_rec;
3493         struct ocfs2_extent_list *el = path_leaf_el(right_path);
3494         struct buffer_head *bh = path_leaf_bh(right_path);
3495         struct buffer_head *root_bh = NULL;
3496         struct ocfs2_path *left_path = NULL;
3497         struct ocfs2_extent_list *left_el;
3498
3499         BUG_ON(index < 0);
3500
3501         right_rec = &el->l_recs[index];
3502         if (index == 0) {
3503                 /* we meet with a cross extent block merge. */
3504                 ret = ocfs2_get_left_path(inode, right_path, &left_path);
3505                 if (ret) {
3506                         mlog_errno(ret);
3507                         goto out;
3508                 }
3509
3510                 left_el = path_leaf_el(left_path);
3511                 BUG_ON(le16_to_cpu(left_el->l_next_free_rec) !=
3512                        le16_to_cpu(left_el->l_count));
3513
3514                 left_rec = &left_el->l_recs[
3515                                 le16_to_cpu(left_el->l_next_free_rec) - 1];
3516                 BUG_ON(le32_to_cpu(left_rec->e_cpos) +
3517                        le16_to_cpu(left_rec->e_leaf_clusters) !=
3518                        le32_to_cpu(split_rec->e_cpos));
3519
3520                 subtree_index = ocfs2_find_subtree_root(et, left_path,
3521                                                         right_path);
3522
3523                 ret = ocfs2_extend_rotate_transaction(handle, subtree_index,
3524                                                       handle->h_buffer_credits,
3525                                                       left_path);
3526                 if (ret) {
3527                         mlog_errno(ret);
3528                         goto out;
3529                 }
3530
3531                 root_bh = left_path->p_node[subtree_index].bh;
3532                 BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
3533
3534                 ret = ocfs2_path_bh_journal_access(handle, INODE_CACHE(inode), right_path,
3535                                                    subtree_index);
3536                 if (ret) {
3537                         mlog_errno(ret);
3538                         goto out;
3539                 }
3540
3541                 for (i = subtree_index + 1;
3542                      i < path_num_items(right_path); i++) {
3543                         ret = ocfs2_path_bh_journal_access(handle, INODE_CACHE(inode),
3544                                                            right_path, i);
3545                         if (ret) {
3546                                 mlog_errno(ret);
3547                                 goto out;
3548                         }
3549
3550                         ret = ocfs2_path_bh_journal_access(handle, INODE_CACHE(inode),
3551                                                            left_path, i);
3552                         if (ret) {
3553                                 mlog_errno(ret);
3554                                 goto out;
3555                         }
3556                 }
3557         } else {
3558                 left_rec = &el->l_recs[index - 1];
3559                 if (ocfs2_is_empty_extent(&el->l_recs[0]))
3560                         has_empty_extent = 1;
3561         }
3562
3563         ret = ocfs2_path_bh_journal_access(handle, INODE_CACHE(inode), right_path,
3564                                            path_num_items(right_path) - 1);
3565         if (ret) {
3566                 mlog_errno(ret);
3567                 goto out;
3568         }
3569
3570         if (has_empty_extent && index == 1) {
3571                 /*
3572                  * The easy case - we can just plop the record right in.
3573                  */
3574                 *left_rec = *split_rec;
3575
3576                 has_empty_extent = 0;
3577         } else
3578                 le16_add_cpu(&left_rec->e_leaf_clusters, split_clusters);
3579
3580         le32_add_cpu(&right_rec->e_cpos, split_clusters);
3581         le64_add_cpu(&right_rec->e_blkno,
3582                      ocfs2_clusters_to_blocks(inode->i_sb, split_clusters));
3583         le16_add_cpu(&right_rec->e_leaf_clusters, -split_clusters);
3584
3585         ocfs2_cleanup_merge(el, index);
3586
3587         ret = ocfs2_journal_dirty(handle, bh);
3588         if (ret)
3589                 mlog_errno(ret);
3590
3591         if (left_path) {
3592                 ret = ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
3593                 if (ret)
3594                         mlog_errno(ret);
3595
3596                 /*
3597                  * In the situation that the right_rec is empty and the extent
3598                  * block is empty also,  ocfs2_complete_edge_insert can't handle
3599                  * it and we need to delete the right extent block.
3600                  */
3601                 if (le16_to_cpu(right_rec->e_leaf_clusters) == 0 &&
3602                     le16_to_cpu(el->l_next_free_rec) == 1) {
3603
3604                         ret = ocfs2_remove_rightmost_path(inode, handle,
3605                                                           right_path,
3606                                                           dealloc, et);
3607                         if (ret) {
3608                                 mlog_errno(ret);
3609                                 goto out;
3610                         }
3611
3612                         /* Now the rightmost extent block has been deleted.
3613                          * So we use the new rightmost path.
3614                          */
3615                         ocfs2_mv_path(right_path, left_path);
3616                         left_path = NULL;
3617                 } else
3618                         ocfs2_complete_edge_insert(handle, left_path,
3619                                                    right_path, subtree_index);
3620         }
3621 out:
3622         if (left_path)
3623                 ocfs2_free_path(left_path);
3624         return ret;
3625 }
3626
3627 static int ocfs2_try_to_merge_extent(struct inode *inode,
3628                                      handle_t *handle,
3629                                      struct ocfs2_path *path,
3630                                      int split_index,
3631                                      struct ocfs2_extent_rec *split_rec,
3632                                      struct ocfs2_cached_dealloc_ctxt *dealloc,
3633                                      struct ocfs2_merge_ctxt *ctxt,
3634                                      struct ocfs2_extent_tree *et)
3635
3636 {
3637         int ret = 0;
3638         struct ocfs2_extent_list *el = path_leaf_el(path);
3639         struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
3640
3641         BUG_ON(ctxt->c_contig_type == CONTIG_NONE);
3642
3643         if (ctxt->c_split_covers_rec && ctxt->c_has_empty_extent) {
3644                 /*
3645                  * The merge code will need to create an empty
3646                  * extent to take the place of the newly
3647                  * emptied slot. Remove any pre-existing empty
3648                  * extents - having more than one in a leaf is
3649                  * illegal.
3650                  */
3651                 ret = ocfs2_rotate_tree_left(inode, handle, path,
3652                                              dealloc, et);
3653                 if (ret) {
3654                         mlog_errno(ret);
3655                         goto out;
3656                 }
3657                 split_index--;
3658                 rec = &el->l_recs[split_index];
3659         }
3660
3661         if (ctxt->c_contig_type == CONTIG_LEFTRIGHT) {
3662                 /*
3663                  * Left-right contig implies this.
3664                  */
3665                 BUG_ON(!ctxt->c_split_covers_rec);
3666
3667                 /*
3668                  * Since the leftright insert always covers the entire
3669                  * extent, this call will delete the insert record
3670                  * entirely, resulting in an empty extent record added to
3671                  * the extent block.
3672                  *
3673                  * Since the adding of an empty extent shifts
3674                  * everything back to the right, there's no need to
3675                  * update split_index here.
3676                  *
3677                  * When the split_index is zero, we need to merge it to the
3678                  * prevoius extent block. It is more efficient and easier
3679                  * if we do merge_right first and merge_left later.
3680                  */
3681                 ret = ocfs2_merge_rec_right(inode, path,
3682                                             handle, et, split_rec,
3683                                             split_index);
3684                 if (ret) {
3685                         mlog_errno(ret);
3686                         goto out;
3687                 }
3688
3689                 /*
3690                  * We can only get this from logic error above.
3691                  */
3692                 BUG_ON(!ocfs2_is_empty_extent(&el->l_recs[0]));
3693
3694                 /* The merge left us with an empty extent, remove it. */
3695                 ret = ocfs2_rotate_tree_left(inode, handle, path,
3696                                              dealloc, et);
3697                 if (ret) {
3698                         mlog_errno(ret);
3699                         goto out;
3700                 }
3701
3702                 rec = &el->l_recs[split_index];
3703
3704                 /*
3705                  * Note that we don't pass split_rec here on purpose -
3706                  * we've merged it into the rec already.
3707                  */
3708                 ret = ocfs2_merge_rec_left(inode, path,
3709                                            handle, rec,
3710                                            dealloc, et,
3711                                            split_index);
3712
3713                 if (ret) {
3714                         mlog_errno(ret);
3715                         goto out;
3716                 }
3717
3718                 ret = ocfs2_rotate_tree_left(inode, handle, path,
3719                                              dealloc, et);
3720                 /*
3721                  * Error from this last rotate is not critical, so
3722                  * print but don't bubble it up.
3723                  */
3724                 if (ret)
3725                         mlog_errno(ret);
3726                 ret = 0;
3727         } else {
3728                 /*
3729                  * Merge a record to the left or right.
3730                  *
3731                  * 'contig_type' is relative to the existing record,
3732                  * so for example, if we're "right contig", it's to
3733                  * the record on the left (hence the left merge).
3734                  */
3735                 if (ctxt->c_contig_type == CONTIG_RIGHT) {
3736                         ret = ocfs2_merge_rec_left(inode,
3737                                                    path,
3738                                                    handle, split_rec,
3739                                                    dealloc, et,
3740                                                    split_index);
3741                         if (ret) {
3742                                 mlog_errno(ret);
3743                                 goto out;
3744                         }
3745                 } else {
3746                         ret = ocfs2_merge_rec_right(inode, path, handle,
3747                                                     et, split_rec,
3748                                                     split_index);
3749                         if (ret) {
3750                                 mlog_errno(ret);
3751                                 goto out;
3752                         }
3753                 }
3754
3755                 if (ctxt->c_split_covers_rec) {
3756                         /*
3757                          * The merge may have left an empty extent in
3758                          * our leaf. Try to rotate it away.
3759                          */
3760                         ret = ocfs2_rotate_tree_left(inode, handle, path,
3761                                                      dealloc, et);
3762                         if (ret)
3763                                 mlog_errno(ret);
3764                         ret = 0;
3765                 }
3766         }
3767
3768 out:
3769         return ret;
3770 }
3771
3772 static void ocfs2_subtract_from_rec(struct super_block *sb,
3773                                     enum ocfs2_split_type split,
3774                                     struct ocfs2_extent_rec *rec,
3775                                     struct ocfs2_extent_rec *split_rec)
3776 {
3777         u64 len_blocks;
3778
3779         len_blocks = ocfs2_clusters_to_blocks(sb,
3780                                 le16_to_cpu(split_rec->e_leaf_clusters));
3781
3782         if (split == SPLIT_LEFT) {
3783                 /*
3784                  * Region is on the left edge of the existing
3785                  * record.
3786                  */
3787                 le32_add_cpu(&rec->e_cpos,
3788                              le16_to_cpu(split_rec->e_leaf_clusters));
3789                 le64_add_cpu(&rec->e_blkno, len_blocks);
3790                 le16_add_cpu(&rec->e_leaf_clusters,
3791                              -le16_to_cpu(split_rec->e_leaf_clusters));
3792         } else {
3793                 /*
3794                  * Region is on the right edge of the existing
3795                  * record.
3796                  */
3797                 le16_add_cpu(&rec->e_leaf_clusters,
3798                              -le16_to_cpu(split_rec->e_leaf_clusters));
3799         }
3800 }
3801
3802 /*
3803  * Do the final bits of extent record insertion at the target leaf
3804  * list. If this leaf is part of an allocation tree, it is assumed
3805  * that the tree above has been prepared.
3806  */
3807 static void ocfs2_insert_at_leaf(struct ocfs2_extent_rec *insert_rec,
3808                                  struct ocfs2_extent_list *el,
3809                                  struct ocfs2_insert_type *insert,
3810                                  struct inode *inode)
3811 {
3812         int i = insert->ins_contig_index;
3813         unsigned int range;
3814         struct ocfs2_extent_rec *rec;
3815
3816         BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
3817
3818         if (insert->ins_split != SPLIT_NONE) {
3819                 i = ocfs2_search_extent_list(el, le32_to_cpu(insert_rec->e_cpos));
3820                 BUG_ON(i == -1);
3821                 rec = &el->l_recs[i];
3822                 ocfs2_subtract_from_rec(inode->i_sb, insert->ins_split, rec,
3823                                         insert_rec);
3824                 goto rotate;
3825         }
3826
3827         /*
3828          * Contiguous insert - either left or right.
3829          */
3830         if (insert->ins_contig != CONTIG_NONE) {
3831                 rec = &el->l_recs[i];
3832                 if (insert->ins_contig == CONTIG_LEFT) {
3833                         rec->e_blkno = insert_rec->e_blkno;
3834                         rec->e_cpos = insert_rec->e_cpos;
3835                 }
3836                 le16_add_cpu(&rec->e_leaf_clusters,
3837                              le16_to_cpu(insert_rec->e_leaf_clusters));
3838                 return;
3839         }
3840
3841         /*
3842          * Handle insert into an empty leaf.
3843          */
3844         if (le16_to_cpu(el->l_next_free_rec) == 0 ||
3845             ((le16_to_cpu(el->l_next_free_rec) == 1) &&
3846              ocfs2_is_empty_extent(&el->l_recs[0]))) {
3847                 el->l_recs[0] = *insert_rec;
3848                 el->l_next_free_rec = cpu_to_le16(1);
3849                 return;
3850         }
3851
3852         /*
3853          * Appending insert.
3854          */
3855         if (insert->ins_appending == APPEND_TAIL) {
3856                 i = le16_to_cpu(el->l_next_free_rec) - 1;
3857                 rec = &el->l_recs[i];
3858                 range = le32_to_cpu(rec->e_cpos)
3859                         + le16_to_cpu(rec->e_leaf_clusters);
3860                 BUG_ON(le32_to_cpu(insert_rec->e_cpos) < range);
3861
3862                 mlog_bug_on_msg(le16_to_cpu(el->l_next_free_rec) >=
3863                                 le16_to_cpu(el->l_count),
3864                                 "inode %lu, depth %u, count %u, next free %u, "
3865                                 "rec.cpos %u, rec.clusters %u, "
3866                                 "insert.cpos %u, insert.clusters %u\n",
3867                                 inode->i_ino,
3868                                 le16_to_cpu(el->l_tree_depth),
3869                                 le16_to_cpu(el->l_count),
3870                                 le16_to_cpu(el->l_next_free_rec),
3871                                 le32_to_cpu(el->l_recs[i].e_cpos),
3872                                 le16_to_cpu(el->l_recs[i].e_leaf_clusters),
3873                                 le32_to_cpu(insert_rec->e_cpos),
3874                                 le16_to_cpu(insert_rec->e_leaf_clusters));
3875                 i++;
3876                 el->l_recs[i] = *insert_rec;
3877                 le16_add_cpu(&el->l_next_free_rec, 1);
3878                 return;
3879         }
3880
3881 rotate:
3882         /*
3883          * Ok, we have to rotate.
3884          *
3885          * At this point, it is safe to assume that inserting into an
3886          * empty leaf and appending to a leaf have both been handled
3887          * above.
3888          *
3889          * This leaf needs to have space, either by the empty 1st
3890          * extent record, or by virtue of an l_next_rec < l_count.
3891          */
3892         ocfs2_rotate_leaf(el, insert_rec);
3893 }
3894
3895 static void ocfs2_adjust_rightmost_records(struct inode *inode,
3896                                            handle_t *handle,
3897                                            struct ocfs2_path *path,
3898                                            struct ocfs2_extent_rec *insert_rec)
3899 {
3900         int ret, i, next_free;
3901         struct buffer_head *bh;
3902         struct ocfs2_extent_list *el;
3903         struct ocfs2_extent_rec *rec;
3904
3905         /*
3906          * Update everything except the leaf block.
3907          */
3908         for (i = 0; i < path->p_tree_depth; i++) {
3909                 bh = path->p_node[i].bh;
3910                 el = path->p_node[i].el;
3911
3912                 next_free = le16_to_cpu(el->l_next_free_rec);
3913                 if (next_free == 0) {
3914                         ocfs2_error(inode->i_sb,
3915                                     "Dinode %llu has a bad extent list",
3916                                     (unsigned long long)OCFS2_I(inode)->ip_blkno);
3917                         ret = -EIO;
3918                         return;
3919                 }
3920
3921                 rec = &el->l_recs[next_free - 1];
3922
3923                 rec->e_int_clusters = insert_rec->e_cpos;
3924                 le32_add_cpu(&rec->e_int_clusters,
3925                              le16_to_cpu(insert_rec->e_leaf_clusters));
3926                 le32_add_cpu(&rec->e_int_clusters,
3927                              -le32_to_cpu(rec->e_cpos));
3928
3929                 ret = ocfs2_journal_dirty(handle, bh);
3930                 if (ret)
3931                         mlog_errno(ret);
3932
3933         }
3934 }
3935
3936 static int ocfs2_append_rec_to_path(struct inode *inode, handle_t *handle,
3937                                     struct ocfs2_extent_rec *insert_rec,
3938                                     struct ocfs2_path *right_path,
3939                                     struct ocfs2_path **ret_left_path)
3940 {
3941         int ret, next_free;
3942         struct ocfs2_extent_list *el;
3943         struct ocfs2_path *left_path = NULL;
3944
3945         *ret_left_path = NULL;
3946
3947         /*
3948          * This shouldn't happen for non-trees. The extent rec cluster
3949          * count manipulation below only works for interior nodes.
3950          */
3951         BUG_ON(right_path->p_tree_depth == 0);
3952
3953         /*
3954          * If our appending insert is at the leftmost edge of a leaf,
3955          * then we might need to update the rightmost records of the
3956          * neighboring path.
3957          */
3958         el = path_leaf_el(right_path);
3959         next_free = le16_to_cpu(el->l_next_free_rec);
3960         if (next_free == 0 ||
3961             (next_free == 1 && ocfs2_is_empty_extent(&el->l_recs[0]))) {
3962                 u32 left_cpos;
3963
3964                 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path,
3965                                                     &left_cpos);
3966                 if (ret) {
3967                         mlog_errno(ret);
3968                         goto out;
3969                 }
3970
3971                 mlog(0, "Append may need a left path update. cpos: %u, "
3972                      "left_cpos: %u\n", le32_to_cpu(insert_rec->e_cpos),
3973                      left_cpos);
3974
3975                 /*
3976                  * No need to worry if the append is already in the
3977                  * leftmost leaf.
3978                  */
3979                 if (left_cpos) {
3980                         left_path = ocfs2_new_path_from_path(right_path);
3981                         if (!left_path) {
3982                                 ret = -ENOMEM;
3983                                 mlog_errno(ret);
3984                                 goto out;
3985                         }
3986
3987                         ret = ocfs2_find_path(INODE_CACHE(inode), left_path,
3988                                               left_cpos);
3989                         if (ret) {
3990                                 mlog_errno(ret);
3991                                 goto out;
3992                         }
3993
3994                         /*
3995                          * ocfs2_insert_path() will pass the left_path to the
3996                          * journal for us.
3997                          */
3998                 }
3999         }
4000
4001         ret = ocfs2_journal_access_path(INODE_CACHE(inode), handle, right_path);
4002         if (ret) {
4003                 mlog_errno(ret);
4004                 goto out;
4005         }
4006
4007         ocfs2_adjust_rightmost_records(inode, handle, right_path, insert_rec);
4008
4009         *ret_left_path = left_path;
4010         ret = 0;
4011 out:
4012         if (ret != 0)
4013                 ocfs2_free_path(left_path);
4014
4015         return ret;
4016 }
4017
4018 static void ocfs2_split_record(struct inode *inode,
4019                                struct ocfs2_path *left_path,
4020                                struct ocfs2_path *right_path,
4021                                struct ocfs2_extent_rec *split_rec,
4022                                enum ocfs2_split_type split)
4023 {
4024         int index;
4025         u32 cpos = le32_to_cpu(split_rec->e_cpos);
4026         struct ocfs2_extent_list *left_el = NULL, *right_el, *insert_el, *el;
4027         struct ocfs2_extent_rec *rec, *tmprec;
4028
4029         right_el = path_leaf_el(right_path);
4030         if (left_path)
4031                 left_el = path_leaf_el(left_path);
4032
4033         el = right_el;
4034         insert_el = right_el;
4035         index = ocfs2_search_extent_list(el, cpos);
4036         if (index != -1) {
4037                 if (index == 0 && left_path) {
4038                         BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
4039
4040                         /*
4041                          * This typically means that the record
4042                          * started in the left path but moved to the
4043                          * right as a result of rotation. We either
4044                          * move the existing record to the left, or we
4045                          * do the later insert there.
4046                          *
4047                          * In this case, the left path should always
4048                          * exist as the rotate code will have passed
4049                          * it back for a post-insert update.
4050                          */
4051
4052                         if (split == SPLIT_LEFT) {
4053                                 /*
4054                                  * It's a left split. Since we know
4055                                  * that the rotate code gave us an
4056                                  * empty extent in the left path, we
4057                                  * can just do the insert there.
4058                                  */
4059                                 insert_el = left_el;
4060                         } else {
4061                                 /*
4062                                  * Right split - we have to move the
4063                                  * existing record over to the left
4064                                  * leaf. The insert will be into the
4065                                  * newly created empty extent in the
4066                                  * right leaf.
4067                                  */
4068                                 tmprec = &right_el->l_recs[index];
4069                                 ocfs2_rotate_leaf(left_el, tmprec);
4070                                 el = left_el;
4071
4072                                 memset(tmprec, 0, sizeof(*tmprec));
4073                                 index = ocfs2_search_extent_list(left_el, cpos);
4074                                 BUG_ON(index == -1);
4075                         }
4076                 }
4077         } else {
4078                 BUG_ON(!left_path);
4079                 BUG_ON(!ocfs2_is_empty_extent(&left_el->l_recs[0]));
4080                 /*
4081                  * Left path is easy - we can just allow the insert to
4082                  * happen.
4083                  */
4084                 el = left_el;
4085                 insert_el = left_el;
4086                 index = ocfs2_search_extent_list(el, cpos);
4087                 BUG_ON(index == -1);
4088         }
4089
4090         rec = &el->l_recs[index];
4091         ocfs2_subtract_from_rec(inode->i_sb, split, rec, split_rec);
4092         ocfs2_rotate_leaf(insert_el, split_rec);
4093 }
4094
4095 /*
4096  * This function only does inserts on an allocation b-tree. For tree
4097  * depth = 0, ocfs2_insert_at_leaf() is called directly.
4098  *
4099  * right_path is the path we want to do the actual insert
4100  * in. left_path should only be passed in if we need to update that
4101  * portion of the tree after an edge insert.
4102  */
4103 static int ocfs2_insert_path(struct inode *inode,
4104                              handle_t *handle,
4105                              struct ocfs2_extent_tree *et,
4106                              struct ocfs2_path *left_path,
4107                              struct ocfs2_path *right_path,
4108                              struct ocfs2_extent_rec *insert_rec,
4109                              struct ocfs2_insert_type *insert)
4110 {
4111         int ret, subtree_index;
4112         struct buffer_head *leaf_bh = path_leaf_bh(right_path);
4113
4114         if (left_path) {
4115                 int credits = handle->h_buffer_credits;
4116
4117                 /*
4118                  * There's a chance that left_path got passed back to
4119                  * us without being accounted for in the
4120                  * journal. Extend our transaction here to be sure we
4121                  * can change those blocks.
4122                  */
4123                 credits += left_path->p_tree_depth;
4124
4125                 ret = ocfs2_extend_trans(handle, credits);
4126                 if (ret < 0) {
4127                         mlog_errno(ret);
4128                         goto out;
4129                 }
4130
4131                 ret = ocfs2_journal_access_path(et->et_ci, handle, left_path);
4132                 if (ret < 0) {
4133                         mlog_errno(ret);
4134                         goto out;
4135                 }
4136         }
4137
4138         /*
4139          * Pass both paths to the journal. The majority of inserts
4140          * will be touching all components anyway.
4141          */
4142         ret = ocfs2_journal_access_path(et->et_ci, handle, right_path);
4143         if (ret < 0) {
4144                 mlog_errno(ret);
4145                 goto out;
4146         }
4147
4148         if (insert->ins_split != SPLIT_NONE) {
4149                 /*
4150                  * We could call ocfs2_insert_at_leaf() for some types
4151                  * of splits, but it's easier to just let one separate
4152                  * function sort it all out.
4153                  */
4154                 ocfs2_split_record(inode, left_path, right_path,
4155                                    insert_rec, insert->ins_split);
4156
4157                 /*
4158                  * Split might have modified either leaf and we don't
4159                  * have a guarantee that the later edge insert will
4160                  * dirty this for us.
4161                  */
4162                 if (left_path)
4163                         ret = ocfs2_journal_dirty(handle,
4164                                                   path_leaf_bh(left_path));
4165                         if (ret)
4166                                 mlog_errno(ret);
4167         } else
4168                 ocfs2_insert_at_leaf(insert_rec, path_leaf_el(right_path),
4169                                      insert, inode);
4170
4171         ret = ocfs2_journal_dirty(handle, leaf_bh);
4172         if (ret)
4173                 mlog_errno(ret);
4174
4175         if (left_path) {
4176                 /*
4177                  * The rotate code has indicated that we need to fix
4178                  * up portions of the tree after the insert.
4179                  *
4180                  * XXX: Should we extend the transaction here?
4181                  */
4182                 subtree_index = ocfs2_find_subtree_root(et, left_path,
4183                                                         right_path);
4184                 ocfs2_complete_edge_insert(handle, left_path, right_path,
4185                                            subtree_index);
4186         }
4187
4188         ret = 0;
4189 out:
4190         return ret;
4191 }
4192
4193 static int ocfs2_do_insert_extent(struct inode *inode,
4194                                   handle_t *handle,
4195                                   struct ocfs2_extent_tree *et,
4196                                   struct ocfs2_extent_rec *insert_rec,
4197                                   struct ocfs2_insert_type *type)
4198 {
4199         int ret, rotate = 0;
4200         u32 cpos;
4201         struct ocfs2_path *right_path = NULL;
4202         struct ocfs2_path *left_path = NULL;
4203         struct ocfs2_extent_list *el;
4204
4205         el = et->et_root_el;
4206
4207         ret = ocfs2_et_root_journal_access(handle, et,
4208                                            OCFS2_JOURNAL_ACCESS_WRITE);
4209         if (ret) {
4210                 mlog_errno(ret);
4211                 goto out;
4212         }
4213
4214         if (le16_to_cpu(el->l_tree_depth) == 0) {
4215                 ocfs2_insert_at_leaf(insert_rec, el, type, inode);
4216                 goto out_update_clusters;
4217         }
4218
4219         right_path = ocfs2_new_path_from_et(et);
4220         if (!right_path) {
4221                 ret = -ENOMEM;
4222                 mlog_errno(ret);
4223                 goto out;
4224         }
4225
4226         /*
4227          * Determine the path to start with. Rotations need the
4228          * rightmost path, everything else can go directly to the
4229          * target leaf.
4230          */
4231         cpos = le32_to_cpu(insert_rec->e_cpos);
4232         if (type->ins_appending == APPEND_NONE &&
4233             type->ins_contig == CONTIG_NONE) {
4234                 rotate = 1;
4235                 cpos = UINT_MAX;
4236         }
4237
4238         ret = ocfs2_find_path(et->et_ci, right_path, cpos);
4239         if (ret) {
4240                 mlog_errno(ret);
4241                 goto out;
4242         }
4243
4244         /*
4245          * Rotations and appends need special treatment - they modify
4246          * parts of the tree's above them.
4247          *
4248          * Both might pass back a path immediate to the left of the
4249          * one being inserted to. This will be cause
4250          * ocfs2_insert_path() to modify the rightmost records of
4251          * left_path to account for an edge insert.
4252          *
4253          * XXX: When modifying this code, keep in mind that an insert
4254          * can wind up skipping both of these two special cases...
4255          */
4256         if (rotate) {
4257                 ret = ocfs2_rotate_tree_right(inode, handle, et, type->ins_split,
4258                                               le32_to_cpu(insert_rec->e_cpos),
4259                                               right_path, &left_path);
4260                 if (ret) {
4261                         mlog_errno(ret);
4262                         goto out;
4263                 }
4264
4265                 /*
4266                  * ocfs2_rotate_tree_right() might have extended the
4267                  * transaction without re-journaling our tree root.
4268                  */
4269                 ret = ocfs2_et_root_journal_access(handle, et,
4270                                                    OCFS2_JOURNAL_ACCESS_WRITE);
4271                 if (ret) {
4272                         mlog_errno(ret);
4273                         goto out;
4274                 }
4275         } else if (type->ins_appending == APPEND_TAIL
4276                    && type->ins_contig != CONTIG_LEFT) {
4277                 ret = ocfs2_append_rec_to_path(inode, handle, insert_rec,
4278                                                right_path, &left_path);
4279                 if (ret) {
4280                         mlog_errno(ret);
4281                         goto out;
4282                 }
4283         }
4284
4285         ret = ocfs2_insert_path(inode, handle, et, left_path, right_path,
4286                                 insert_rec, type);
4287         if (ret) {
4288                 mlog_errno(ret);
4289                 goto out;
4290         }
4291
4292 out_update_clusters:
4293         if (type->ins_split == SPLIT_NONE)
4294                 ocfs2_et_update_clusters(et,
4295                                          le16_to_cpu(insert_rec->e_leaf_clusters));
4296
4297         ret = ocfs2_journal_dirty(handle, et->et_root_bh);
4298         if (ret)
4299                 mlog_errno(ret);
4300
4301 out:
4302         ocfs2_free_path(left_path);
4303         ocfs2_free_path(right_path);
4304
4305         return ret;
4306 }
4307
4308 static enum ocfs2_contig_type
4309 ocfs2_figure_merge_contig_type(struct inode *inode, struct ocfs2_path *path,
4310                                struct ocfs2_extent_list *el, int index,
4311                                struct ocfs2_extent_rec *split_rec)
4312 {
4313         int status;
4314         enum ocfs2_contig_type ret = CONTIG_NONE;
4315         u32 left_cpos, right_cpos;
4316         struct ocfs2_extent_rec *rec = NULL;
4317         struct ocfs2_extent_list *new_el;
4318         struct ocfs2_path *left_path = NULL, *right_path = NULL;
4319         struct buffer_head *bh;
4320         struct ocfs2_extent_block *eb;
4321
4322         if (index > 0) {
4323                 rec = &el->l_recs[index - 1];
4324         } else if (path->p_tree_depth > 0) {
4325                 status = ocfs2_find_cpos_for_left_leaf(inode->i_sb,
4326                                                        path, &left_cpos);
4327                 if (status)
4328                         goto out;
4329
4330                 if (left_cpos != 0) {
4331                         left_path = ocfs2_new_path_from_path(path);
4332                         if (!left_path)
4333                                 goto out;
4334
4335                         status = ocfs2_find_path(INODE_CACHE(inode),
4336                                                  left_path, left_cpos);
4337                         if (status)
4338                                 goto out;
4339
4340                         new_el = path_leaf_el(left_path);
4341
4342                         if (le16_to_cpu(new_el->l_next_free_rec) !=
4343                             le16_to_cpu(new_el->l_count)) {
4344                                 bh = path_leaf_bh(left_path);
4345                                 eb = (struct ocfs2_extent_block *)bh->b_data;
4346                                 ocfs2_error(inode->i_sb,
4347                                             "Extent block #%llu has an "
4348                                             "invalid l_next_free_rec of "
4349                                             "%d.  It should have "
4350                                             "matched the l_count of %d",
4351                                             (unsigned long long)le64_to_cpu(eb->h_blkno),
4352                                             le16_to_cpu(new_el->l_next_free_rec),
4353                                             le16_to_cpu(new_el->l_count));
4354                                 status = -EINVAL;
4355                                 goto out;
4356                         }
4357                         rec = &new_el->l_recs[
4358                                 le16_to_cpu(new_el->l_next_free_rec) - 1];
4359                 }
4360         }
4361
4362         /*
4363          * We're careful to check for an empty extent record here -
4364          * the merge code will know what to do if it sees one.
4365          */
4366         if (rec) {
4367                 if (index == 1 && ocfs2_is_empty_extent(rec)) {
4368                         if (split_rec->e_cpos == el->l_recs[index].e_cpos)
4369                                 ret = CONTIG_RIGHT;
4370                 } else {
4371                         ret = ocfs2_extent_contig(inode, rec, split_rec);
4372                 }
4373         }
4374
4375         rec = NULL;
4376         if (index < (le16_to_cpu(el->l_next_free_rec) - 1))
4377                 rec = &el->l_recs[index + 1];
4378         else if (le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count) &&
4379                  path->p_tree_depth > 0) {
4380                 status = ocfs2_find_cpos_for_right_leaf(inode->i_sb,
4381                                                         path, &right_cpos);
4382                 if (status)
4383                         goto out;
4384
4385                 if (right_cpos == 0)
4386                         goto out;
4387
4388                 right_path = ocfs2_new_path_from_path(path);
4389                 if (!right_path)
4390                         goto out;
4391
4392                 status = ocfs2_find_path(INODE_CACHE(inode), right_path, right_cpos);
4393                 if (status)
4394                         goto out;
4395
4396                 new_el = path_leaf_el(right_path);
4397                 rec = &new_el->l_recs[0];
4398                 if (ocfs2_is_empty_extent(rec)) {
4399                         if (le16_to_cpu(new_el->l_next_free_rec) <= 1) {
4400                                 bh = path_leaf_bh(right_path);
4401                                 eb = (struct ocfs2_extent_block *)bh->b_data;
4402                                 ocfs2_error(inode->i_sb,
4403                                             "Extent block #%llu has an "
4404                                             "invalid l_next_free_rec of %d",
4405                                             (unsigned long long)le64_to_cpu(eb->h_blkno),
4406                                             le16_to_cpu(new_el->l_next_free_rec));
4407                                 status = -EINVAL;
4408                                 goto out;
4409                         }
4410                         rec = &new_el->l_recs[1];
4411                 }
4412         }
4413
4414         if (rec) {
4415                 enum ocfs2_contig_type contig_type;
4416
4417                 contig_type = ocfs2_extent_contig(inode, rec, split_rec);
4418
4419                 if (contig_type == CONTIG_LEFT && ret == CONTIG_RIGHT)
4420                         ret = CONTIG_LEFTRIGHT;
4421                 else if (ret == CONTIG_NONE)
4422                         ret = contig_type;
4423         }
4424
4425 out:
4426         if (left_path)
4427                 ocfs2_free_path(left_path);
4428         if (right_path)
4429                 ocfs2_free_path(right_path);
4430
4431         return ret;
4432 }
4433
4434 static void ocfs2_figure_contig_type(struct inode *inode,
4435                                      struct ocfs2_insert_type *insert,
4436                                      struct ocfs2_extent_list *el,
4437                                      struct ocfs2_extent_rec *insert_rec,
4438                                      struct ocfs2_extent_tree *et)
4439 {
4440         int i;
4441         enum ocfs2_contig_type contig_type = CONTIG_NONE;
4442
4443         BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
4444
4445         for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
4446                 contig_type = ocfs2_extent_contig(inode, &el->l_recs[i],
4447                                                   insert_rec);
4448                 if (contig_type != CONTIG_NONE) {
4449                         insert->ins_contig_index = i;
4450                         break;
4451                 }
4452         }
4453         insert->ins_contig = contig_type;
4454
4455         if (insert->ins_contig != CONTIG_NONE) {
4456                 struct ocfs2_extent_rec *rec =
4457                                 &el->l_recs[insert->ins_contig_index];
4458                 unsigned int len = le16_to_cpu(rec->e_leaf_clusters) +
4459                                    le16_to_cpu(insert_rec->e_leaf_clusters);
4460
4461                 /*
4462                  * Caller might want us to limit the size of extents, don't
4463                  * calculate contiguousness if we might exceed that limit.
4464                  */
4465                 if (et->et_max_leaf_clusters &&
4466                     (len > et->et_max_leaf_clusters))
4467                         insert->ins_contig = CONTIG_NONE;
4468         }
4469 }
4470
4471 /*
4472  * This should only be called against the righmost leaf extent list.
4473  *
4474  * ocfs2_figure_appending_type() will figure out whether we'll have to
4475  * insert at the tail of the rightmost leaf.
4476  *
4477  * This should also work against the root extent list for tree's with 0
4478  * depth. If we consider the root extent list to be the rightmost leaf node
4479  * then the logic here makes sense.
4480  */
4481 static void ocfs2_figure_appending_type(struct ocfs2_insert_type *insert,
4482                                         struct ocfs2_extent_list *el,
4483                                         struct ocfs2_extent_rec *insert_rec)
4484 {
4485         int i;
4486         u32 cpos = le32_to_cpu(insert_rec->e_cpos);
4487         struct ocfs2_extent_rec *rec;
4488
4489         insert->ins_appending = APPEND_NONE;
4490
4491         BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
4492
4493         if (!el->l_next_free_rec)
4494                 goto set_tail_append;
4495
4496         if (ocfs2_is_empty_extent(&el->l_recs[0])) {
4497                 /* Were all records empty? */
4498                 if (le16_to_cpu(el->l_next_free_rec) == 1)
4499                         goto set_tail_append;
4500         }
4501
4502         i = le16_to_cpu(el->l_next_free_rec) - 1;
4503         rec = &el->l_recs[i];
4504
4505         if (cpos >=
4506             (le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)))
4507                 goto set_tail_append;
4508
4509         return;
4510
4511 set_tail_append:
4512         insert->ins_appending = APPEND_TAIL;
4513 }
4514
4515 /*
4516  * Helper function called at the begining of an insert.
4517  *
4518  * This computes a few things that are commonly used in the process of
4519  * inserting into the btree:
4520  *   - Whether the new extent is contiguous with an existing one.
4521  *   - The current tree depth.
4522  *   - Whether the insert is an appending one.
4523  *   - The total # of free records in the tree.
4524  *
4525  * All of the information is stored on the ocfs2_insert_type
4526  * structure.
4527  */
4528 static int ocfs2_figure_insert_type(struct inode *inode,
4529                                     struct ocfs2_extent_tree *et,
4530                                     struct buffer_head **last_eb_bh,
4531                                     struct ocfs2_extent_rec *insert_rec,
4532                                     int *free_records,
4533                                     struct ocfs2_insert_type *insert)
4534 {
4535         int ret;
4536         struct ocfs2_extent_block *eb;
4537         struct ocfs2_extent_list *el;
4538         struct ocfs2_path *path = NULL;
4539         struct buffer_head *bh = NULL;
4540
4541         insert->ins_split = SPLIT_NONE;
4542
4543         el = et->et_root_el;
4544         insert->ins_tree_depth = le16_to_cpu(el->l_tree_depth);
4545
4546         if (el->l_tree_depth) {
4547                 /*
4548                  * If we have tree depth, we read in the
4549                  * rightmost extent block ahead of time as
4550                  * ocfs2_figure_insert_type() and ocfs2_add_branch()
4551                  * may want it later.
4552                  */
4553                 ret = ocfs2_read_extent_block(et->et_ci,
4554                                               ocfs2_et_get_last_eb_blk(et),
4555                                               &bh);
4556                 if (ret) {
4557                         mlog_exit(ret);
4558                         goto out;
4559                 }
4560                 eb = (struct ocfs2_extent_block *) bh->b_data;
4561                 el = &eb->h_list;
4562         }
4563
4564         /*
4565          * Unless we have a contiguous insert, we'll need to know if
4566          * there is room left in our allocation tree for another
4567          * extent record.
4568          *
4569          * XXX: This test is simplistic, we can search for empty
4570          * extent records too.
4571          */
4572         *free_records = le16_to_cpu(el->l_count) -
4573                 le16_to_cpu(el->l_next_free_rec);
4574
4575         if (!insert->ins_tree_depth) {
4576                 ocfs2_figure_contig_type(inode, insert, el, insert_rec, et);
4577                 ocfs2_figure_appending_type(insert, el, insert_rec);
4578                 return 0;
4579         }
4580
4581         path = ocfs2_new_path_from_et(et);
4582         if (!path) {
4583                 ret = -ENOMEM;
4584                 mlog_errno(ret);
4585                 goto out;
4586         }
4587
4588         /*
4589          * In the case that we're inserting past what the tree
4590          * currently accounts for, ocfs2_find_path() will return for
4591          * us the rightmost tree path. This is accounted for below in
4592          * the appending code.
4593          */
4594         ret = ocfs2_find_path(et->et_ci, path, le32_to_cpu(insert_rec->e_cpos));
4595         if (ret) {
4596                 mlog_errno(ret);
4597                 goto out;
4598         }
4599
4600         el = path_leaf_el(path);
4601
4602         /*
4603          * Now that we have the path, there's two things we want to determine:
4604          * 1) Contiguousness (also set contig_index if this is so)
4605          *
4606          * 2) Are we doing an append? We can trivially break this up
4607          *     into two types of appends: simple record append, or a
4608          *     rotate inside the tail leaf.
4609          */
4610         ocfs2_figure_contig_type(inode, insert, el, insert_rec, et);
4611
4612         /*
4613          * The insert code isn't quite ready to deal with all cases of
4614          * left contiguousness. Specifically, if it's an insert into
4615          * the 1st record in a leaf, it will require the adjustment of
4616          * cluster count on the last record of the path directly to it's
4617          * left. For now, just catch that case and fool the layers
4618          * above us. This works just fine for tree_depth == 0, which
4619          * is why we allow that above.
4620          */
4621         if (insert->ins_contig == CONTIG_LEFT &&
4622             insert->ins_contig_index == 0)
4623                 insert->ins_contig = CONTIG_NONE;
4624
4625         /*
4626          * Ok, so we can simply compare against last_eb to figure out
4627          * whether the path doesn't exist. This will only happen in
4628          * the case that we're doing a tail append, so maybe we can
4629          * take advantage of that information somehow.
4630          */
4631         if (ocfs2_et_get_last_eb_blk(et) ==
4632             path_leaf_bh(path)->b_blocknr) {
4633                 /*
4634                  * Ok, ocfs2_find_path() returned us the rightmost
4635                  * tree path. This might be an appending insert. There are
4636                  * two cases:
4637                  *    1) We're doing a true append at the tail:
4638                  *      -This might even be off the end of the leaf
4639                  *    2) We're "appending" by rotating in the tail
4640                  */
4641                 ocfs2_figure_appending_type(insert, el, insert_rec);
4642         }
4643
4644 out:
4645         ocfs2_free_path(path);
4646
4647         if (ret == 0)
4648                 *last_eb_bh = bh;
4649         else
4650                 brelse(bh);
4651         return ret;
4652 }
4653
4654 /*
4655  * Insert an extent into an inode btree.
4656  *
4657  * The caller needs to update fe->i_clusters
4658  */
4659 int ocfs2_insert_extent(struct ocfs2_super *osb,
4660                         handle_t *handle,
4661                         struct inode *inode,
4662                         struct ocfs2_extent_tree *et,
4663                         u32 cpos,
4664                         u64 start_blk,
4665                         u32 new_clusters,
4666                         u8 flags,
4667                         struct ocfs2_alloc_context *meta_ac)
4668 {
4669         int status;
4670         int uninitialized_var(free_records);
4671         struct buffer_head *last_eb_bh = NULL;
4672         struct ocfs2_insert_type insert = {0, };
4673         struct ocfs2_extent_rec rec;
4674
4675         mlog(0, "add %u clusters at position %u to inode %llu\n",
4676              new_clusters, cpos, (unsigned long long)OCFS2_I(inode)->ip_blkno);
4677
4678         memset(&rec, 0, sizeof(rec));
4679         rec.e_cpos = cpu_to_le32(cpos);
4680         rec.e_blkno = cpu_to_le64(start_blk);
4681         rec.e_leaf_clusters = cpu_to_le16(new_clusters);
4682         rec.e_flags = flags;
4683         status = ocfs2_et_insert_check(et, &rec);
4684         if (status) {
4685                 mlog_errno(status);
4686                 goto bail;
4687         }
4688
4689         status = ocfs2_figure_insert_type(inode, et, &last_eb_bh, &rec,
4690                                           &free_records, &insert);
4691         if (status < 0) {
4692                 mlog_errno(status);
4693                 goto bail;
4694         }
4695
4696         mlog(0, "Insert.appending: %u, Insert.Contig: %u, "
4697              "Insert.contig_index: %d, Insert.free_records: %d, "
4698              "Insert.tree_depth: %d\n",
4699              insert.ins_appending, insert.ins_contig, insert.ins_contig_index,
4700              free_records, insert.ins_tree_depth);
4701
4702         if (insert.ins_contig == CONTIG_NONE && free_records == 0) {
4703                 status = ocfs2_grow_tree(inode, handle, et,
4704                                          &insert.ins_tree_depth, &last_eb_bh,
4705                                          meta_ac);
4706                 if (status) {
4707                         mlog_errno(status);
4708                         goto bail;
4709                 }
4710         }
4711
4712         /* Finally, we can add clusters. This might rotate the tree for us. */
4713         status = ocfs2_do_insert_extent(inode, handle, et, &rec, &insert);
4714         if (status < 0)
4715                 mlog_errno(status);
4716         else if (et->et_ops == &ocfs2_dinode_et_ops)
4717                 ocfs2_extent_map_insert_rec(inode, &rec);
4718
4719 bail:
4720         brelse(last_eb_bh);
4721
4722         mlog_exit(status);
4723         return status;
4724 }
4725
4726 /*
4727  * Allcate and add clusters into the extent b-tree.
4728  * The new clusters(clusters_to_add) will be inserted at logical_offset.
4729  * The extent b-tree's root is specified by et, and
4730  * it is not limited to the file storage. Any extent tree can use this
4731  * function if it implements the proper ocfs2_extent_tree.
4732  */
4733 int ocfs2_add_clusters_in_btree(struct ocfs2_super *osb,
4734                                 struct inode *inode,
4735                                 u32 *logical_offset,
4736                                 u32 clusters_to_add,
4737                                 int mark_unwritten,
4738                                 struct ocfs2_extent_tree *et,
4739                                 handle_t *handle,
4740                                 struct ocfs2_alloc_context *data_ac,
4741                                 struct ocfs2_alloc_context *meta_ac,
4742                                 enum ocfs2_alloc_restarted *reason_ret)
4743 {
4744         int status = 0;
4745         int free_extents;
4746         enum ocfs2_alloc_restarted reason = RESTART_NONE;
4747         u32 bit_off, num_bits;
4748         u64 block;
4749         u8 flags = 0;
4750
4751         BUG_ON(!clusters_to_add);
4752
4753         if (mark_unwritten)
4754                 flags = OCFS2_EXT_UNWRITTEN;
4755
4756         free_extents = ocfs2_num_free_extents(osb, et);
4757         if (free_extents < 0) {
4758                 status = free_extents;
4759                 mlog_errno(status);
4760                 goto leave;
4761         }
4762
4763         /* there are two cases which could cause us to EAGAIN in the
4764          * we-need-more-metadata case:
4765          * 1) we haven't reserved *any*
4766          * 2) we are so fragmented, we've needed to add metadata too
4767          *    many times. */
4768         if (!free_extents && !meta_ac) {
4769                 mlog(0, "we haven't reserved any metadata!\n");
4770                 status = -EAGAIN;
4771                 reason = RESTART_META;
4772                 goto leave;
4773         } else if ((!free_extents)
4774                    && (ocfs2_alloc_context_bits_left(meta_ac)
4775                        < ocfs2_extend_meta_needed(et->et_root_el))) {
4776                 mlog(0, "filesystem is really fragmented...\n");
4777                 status = -EAGAIN;
4778                 reason = RESTART_META;
4779                 goto leave;
4780         }
4781
4782         status = __ocfs2_claim_clusters(osb, handle, data_ac, 1,
4783                                         clusters_to_add, &bit_off, &num_bits);
4784         if (status < 0) {
4785                 if (status != -ENOSPC)
4786                         mlog_errno(status);
4787                 goto leave;
4788         }
4789
4790         BUG_ON(num_bits > clusters_to_add);
4791
4792         /* reserve our write early -- insert_extent may update the tree root */
4793         status = ocfs2_et_root_journal_access(handle, et,
4794                                               OCFS2_JOURNAL_ACCESS_WRITE);
4795         if (status < 0) {
4796                 mlog_errno(status);
4797                 goto leave;
4798         }
4799
4800         block = ocfs2_clusters_to_blocks(osb->sb, bit_off);
4801         mlog(0, "Allocating %u clusters at block %u for inode %llu\n",
4802              num_bits, bit_off, (unsigned long long)OCFS2_I(inode)->ip_blkno);
4803         status = ocfs2_insert_extent(osb, handle, inode, et,
4804                                      *logical_offset, block,
4805                                      num_bits, flags, meta_ac);
4806         if (status < 0) {
4807                 mlog_errno(status);
4808                 goto leave;
4809         }
4810
4811         status = ocfs2_journal_dirty(handle, et->et_root_bh);
4812         if (status < 0) {
4813                 mlog_errno(status);
4814                 goto leave;
4815         }
4816
4817         clusters_to_add -= num_bits;
4818         *logical_offset += num_bits;
4819
4820         if (clusters_to_add) {
4821                 mlog(0, "need to alloc once more, wanted = %u\n",
4822                      clusters_to_add);
4823                 status = -EAGAIN;
4824                 reason = RESTART_TRANS;
4825         }
4826
4827 leave:
4828         mlog_exit(status);
4829         if (reason_ret)
4830                 *reason_ret = reason;
4831         return status;
4832 }
4833
4834 static void ocfs2_make_right_split_rec(struct super_block *sb,
4835                                        struct ocfs2_extent_rec *split_rec,
4836                                        u32 cpos,
4837                                        struct ocfs2_extent_rec *rec)
4838 {
4839         u32 rec_cpos = le32_to_cpu(rec->e_cpos);
4840         u32 rec_range = rec_cpos + le16_to_cpu(rec->e_leaf_clusters);
4841
4842         memset(split_rec, 0, sizeof(struct ocfs2_extent_rec));
4843
4844         split_rec->e_cpos = cpu_to_le32(cpos);
4845         split_rec->e_leaf_clusters = cpu_to_le16(rec_range - cpos);
4846
4847         split_rec->e_blkno = rec->e_blkno;
4848         le64_add_cpu(&split_rec->e_blkno,
4849                      ocfs2_clusters_to_blocks(sb, cpos - rec_cpos));
4850
4851         split_rec->e_flags = rec->e_flags;
4852 }
4853
4854 static int ocfs2_split_and_insert(struct inode *inode,
4855                                   handle_t *handle,
4856                                   struct ocfs2_path *path,
4857                                   struct ocfs2_extent_tree *et,
4858                                   struct buffer_head **last_eb_bh,
4859                                   int split_index,
4860                                   struct ocfs2_extent_rec *orig_split_rec,
4861                                   struct ocfs2_alloc_context *meta_ac)
4862 {
4863         int ret = 0, depth;
4864         unsigned int insert_range, rec_range, do_leftright = 0;
4865         struct ocfs2_extent_rec tmprec;
4866         struct ocfs2_extent_list *rightmost_el;
4867         struct ocfs2_extent_rec rec;
4868         struct ocfs2_extent_rec split_rec = *orig_split_rec;
4869         struct ocfs2_insert_type insert;
4870         struct ocfs2_extent_block *eb;
4871
4872 leftright:
4873         /*
4874          * Store a copy of the record on the stack - it might move
4875          * around as the tree is manipulated below.
4876          */
4877         rec = path_leaf_el(path)->l_recs[split_index];
4878
4879         rightmost_el = et->et_root_el;
4880
4881         depth = le16_to_cpu(rightmost_el->l_tree_depth);
4882         if (depth) {
4883                 BUG_ON(!(*last_eb_bh));
4884                 eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
4885                 rightmost_el = &eb->h_list;
4886         }
4887
4888         if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
4889             le16_to_cpu(rightmost_el->l_count)) {
4890                 ret = ocfs2_grow_tree(inode, handle, et,
4891                                       &depth, last_eb_bh, meta_ac);
4892                 if (ret) {
4893                         mlog_errno(ret);
4894                         goto out;
4895                 }
4896         }
4897
4898         memset(&insert, 0, sizeof(struct ocfs2_insert_type));
4899         insert.ins_appending = APPEND_NONE;
4900         insert.ins_contig = CONTIG_NONE;
4901         insert.ins_tree_depth = depth;
4902
4903         insert_range = le32_to_cpu(split_rec.e_cpos) +
4904                 le16_to_cpu(split_rec.e_leaf_clusters);
4905         rec_range = le32_to_cpu(rec.e_cpos) +
4906                 le16_to_cpu(rec.e_leaf_clusters);
4907
4908         if (split_rec.e_cpos == rec.e_cpos) {
4909                 insert.ins_split = SPLIT_LEFT;
4910         } else if (insert_range == rec_range) {
4911                 insert.ins_split = SPLIT_RIGHT;
4912         } else {
4913                 /*
4914                  * Left/right split. We fake this as a right split
4915                  * first and then make a second pass as a left split.
4916                  */
4917                 insert.ins_split = SPLIT_RIGHT;
4918
4919                 ocfs2_make_right_split_rec(inode->i_sb, &tmprec, insert_range,
4920                                            &rec);
4921
4922                 split_rec = tmprec;
4923
4924                 BUG_ON(do_leftright);
4925                 do_leftright = 1;
4926         }
4927
4928         ret = ocfs2_do_insert_extent(inode, handle, et, &split_rec, &insert);
4929         if (ret) {
4930                 mlog_errno(ret);
4931                 goto out;
4932         }
4933
4934         if (do_leftright == 1) {
4935                 u32 cpos;
4936                 struct ocfs2_extent_list *el;
4937
4938                 do_leftright++;
4939                 split_rec = *orig_split_rec;
4940
4941                 ocfs2_reinit_path(path, 1);
4942
4943                 cpos = le32_to_cpu(split_rec.e_cpos);
4944                 ret = ocfs2_find_path(et->et_ci, path, cpos);
4945                 if (ret) {
4946                         mlog_errno(ret);
4947                         goto out;
4948                 }
4949
4950                 el = path_leaf_el(path);
4951                 split_index = ocfs2_search_extent_list(el, cpos);
4952                 goto leftright;
4953         }
4954 out:
4955
4956         return ret;
4957 }
4958
4959 static int ocfs2_replace_extent_rec(struct inode *inode,
4960                                     handle_t *handle,
4961                                     struct ocfs2_path *path,
4962                                     struct ocfs2_extent_list *el,
4963                                     int split_index,
4964                                     struct ocfs2_extent_rec *split_rec)
4965 {
4966         int ret;
4967
4968         ret = ocfs2_path_bh_journal_access(handle, INODE_CACHE(inode), path,
4969                                            path_num_items(path) - 1);
4970         if (ret) {
4971                 mlog_errno(ret);
4972                 goto out;
4973         }
4974
4975         el->l_recs[split_index] = *split_rec;
4976
4977         ocfs2_journal_dirty(handle, path_leaf_bh(path));
4978 out:
4979         return ret;
4980 }
4981
4982 /*
4983  * Mark part or all of the extent record at split_index in the leaf
4984  * pointed to by path as written. This removes the unwritten
4985  * extent flag.
4986  *
4987  * Care is taken to handle contiguousness so as to not grow the tree.
4988  *
4989  * meta_ac is not strictly necessary - we only truly need it if growth
4990  * of the tree is required. All other cases will degrade into a less
4991  * optimal tree layout.
4992  *
4993  * last_eb_bh should be the rightmost leaf block for any extent
4994  * btree. Since a split may grow the tree or a merge might shrink it,
4995  * the caller cannot trust the contents of that buffer after this call.
4996  *
4997  * This code is optimized for readability - several passes might be
4998  * made over certain portions of the tree. All of those blocks will
4999  * have been brought into cache (and pinned via the journal), so the
5000  * extra overhead is not expressed in terms of disk reads.
5001  */
5002 static int __ocfs2_mark_extent_written(struct inode *inode,
5003                                        struct ocfs2_extent_tree *et,
5004                                        handle_t *handle,
5005                                        struct ocfs2_path *path,
5006                                        int split_index,
5007                                        struct ocfs2_extent_rec *split_rec,
5008                                        struct ocfs2_alloc_context *meta_ac,
5009                                        struct ocfs2_cached_dealloc_ctxt *dealloc)
5010 {
5011         int ret = 0;
5012         struct ocfs2_extent_list *el = path_leaf_el(path);
5013         struct buffer_head *last_eb_bh = NULL;
5014         struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
5015         struct ocfs2_merge_ctxt ctxt;
5016         struct ocfs2_extent_list *rightmost_el;
5017
5018         if (!(rec->e_flags & OCFS2_EXT_UNWRITTEN)) {
5019                 ret = -EIO;
5020                 mlog_errno(ret);
5021                 goto out;
5022         }
5023
5024         if (le32_to_cpu(rec->e_cpos) > le32_to_cpu(split_rec->e_cpos) ||
5025             ((le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)) <
5026              (le32_to_cpu(split_rec->e_cpos) + le16_to_cpu(split_rec->e_leaf_clusters)))) {
5027                 ret = -EIO;
5028                 mlog_errno(ret);
5029                 goto out;
5030         }
5031
5032         ctxt.c_contig_type = ocfs2_figure_merge_contig_type(inode, path, el,
5033                                                             split_index,
5034                                                             split_rec);
5035
5036         /*
5037          * The core merge / split code wants to know how much room is
5038          * left in this inodes allocation tree, so we pass the
5039          * rightmost extent list.
5040          */
5041         if (path->p_tree_depth) {
5042                 struct ocfs2_extent_block *eb;
5043
5044                 ret = ocfs2_read_extent_block(et->et_ci,
5045                                               ocfs2_et_get_last_eb_blk(et),
5046                                               &last_eb_bh);
5047                 if (ret) {
5048                         mlog_exit(ret);
5049                         goto out;
5050                 }
5051
5052                 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
5053                 rightmost_el = &eb->h_list;
5054         } else
5055                 rightmost_el = path_root_el(path);
5056
5057         if (rec->e_cpos == split_rec->e_cpos &&
5058             rec->e_leaf_clusters == split_rec->e_leaf_clusters)
5059                 ctxt.c_split_covers_rec = 1;
5060         else
5061                 ctxt.c_split_covers_rec = 0;
5062
5063         ctxt.c_has_empty_extent = ocfs2_is_empty_extent(&el->l_recs[0]);
5064
5065         mlog(0, "index: %d, contig: %u, has_empty: %u, split_covers: %u\n",
5066              split_index, ctxt.c_contig_type, ctxt.c_has_empty_extent,
5067              ctxt.c_split_covers_rec);
5068
5069         if (ctxt.c_contig_type == CONTIG_NONE) {
5070                 if (ctxt.c_split_covers_rec)
5071                         ret = ocfs2_replace_extent_rec(inode, handle,
5072                                                        path, el,
5073                                                        split_index, split_rec);
5074                 else
5075                         ret = ocfs2_split_and_insert(inode, handle, path, et,
5076                                                      &last_eb_bh, split_index,
5077                                                      split_rec, meta_ac);
5078                 if (ret)
5079                         mlog_errno(ret);
5080         } else {
5081                 ret = ocfs2_try_to_merge_extent(inode, handle, path,
5082                                                 split_index, split_rec,
5083                                                 dealloc, &ctxt, et);
5084                 if (ret)
5085                         mlog_errno(ret);
5086         }
5087
5088 out:
5089         brelse(last_eb_bh);
5090         return ret;
5091 }
5092
5093 /*
5094  * Mark the already-existing extent at cpos as written for len clusters.
5095  *
5096  * If the existing extent is larger than the request, initiate a
5097  * split. An attempt will be made at merging with adjacent extents.
5098  *
5099  * The caller is responsible for passing down meta_ac if we'll need it.
5100  */
5101 int ocfs2_mark_extent_written(struct inode *inode,
5102                               struct ocfs2_extent_tree *et,
5103                               handle_t *handle, u32 cpos, u32 len, u32 phys,
5104                               struct ocfs2_alloc_context *meta_ac,
5105                               struct ocfs2_cached_dealloc_ctxt *dealloc)
5106 {
5107         int ret, index;
5108         u64 start_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys);
5109         struct ocfs2_extent_rec split_rec;
5110         struct ocfs2_path *left_path = NULL;
5111         struct ocfs2_extent_list *el;
5112
5113         mlog(0, "Inode %lu cpos %u, len %u, phys %u (%llu)\n",
5114              inode->i_ino, cpos, len, phys, (unsigned long long)start_blkno);
5115
5116         if (!ocfs2_writes_unwritten_extents(OCFS2_SB(inode->i_sb))) {
5117                 ocfs2_error(inode->i_sb, "Inode %llu has unwritten extents "
5118                             "that are being written to, but the feature bit "
5119                             "is not set in the super block.",
5120                             (unsigned long long)OCFS2_I(inode)->ip_blkno);
5121                 ret = -EROFS;
5122                 goto out;
5123         }
5124
5125         /*
5126          * XXX: This should be fixed up so that we just re-insert the
5127          * next extent records.
5128          *
5129          * XXX: This is a hack on the extent tree, maybe it should be
5130          * an op?
5131          */
5132         if (et->et_ops == &ocfs2_dinode_et_ops)
5133                 ocfs2_extent_map_trunc(inode, 0);
5134
5135         left_path = ocfs2_new_path_from_et(et);
5136         if (!left_path) {
5137                 ret = -ENOMEM;
5138                 mlog_errno(ret);
5139                 goto out;
5140         }
5141
5142         ret = ocfs2_find_path(et->et_ci, left_path, cpos);
5143         if (ret) {
5144                 mlog_errno(ret);
5145                 goto out;
5146         }
5147         el = path_leaf_el(left_path);
5148
5149         index = ocfs2_search_extent_list(el, cpos);
5150         if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
5151                 ocfs2_error(inode->i_sb,
5152                             "Inode %llu has an extent at cpos %u which can no "
5153                             "longer be found.\n",
5154                             (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
5155                 ret = -EROFS;
5156                 goto out;
5157         }
5158
5159         memset(&split_rec, 0, sizeof(struct ocfs2_extent_rec));
5160         split_rec.e_cpos = cpu_to_le32(cpos);
5161         split_rec.e_leaf_clusters = cpu_to_le16(len);
5162         split_rec.e_blkno = cpu_to_le64(start_blkno);
5163         split_rec.e_flags = path_leaf_el(left_path)->l_recs[index].e_flags;
5164         split_rec.e_flags &= ~OCFS2_EXT_UNWRITTEN;
5165
5166         ret = __ocfs2_mark_extent_written(inode, et, handle, left_path,
5167                                           index, &split_rec, meta_ac,
5168                                           dealloc);
5169         if (ret)
5170                 mlog_errno(ret);
5171
5172 out:
5173         ocfs2_free_path(left_path);
5174         return ret;
5175 }
5176
5177 static int ocfs2_split_tree(struct inode *inode, struct ocfs2_extent_tree *et,
5178                             handle_t *handle, struct ocfs2_path *path,
5179                             int index, u32 new_range,
5180                             struct ocfs2_alloc_context *meta_ac)
5181 {
5182         int ret, depth, credits = handle->h_buffer_credits;
5183         struct buffer_head *last_eb_bh = NULL;
5184         struct ocfs2_extent_block *eb;
5185         struct ocfs2_extent_list *rightmost_el, *el;
5186         struct ocfs2_extent_rec split_rec;
5187         struct ocfs2_extent_rec *rec;
5188         struct ocfs2_insert_type insert;
5189
5190         /*
5191          * Setup the record to split before we grow the tree.
5192          */
5193         el = path_leaf_el(path);
5194         rec = &el->l_recs[index];
5195         ocfs2_make_right_split_rec(inode->i_sb, &split_rec, new_range, rec);
5196
5197         depth = path->p_tree_depth;
5198         if (depth > 0) {
5199                 ret = ocfs2_read_extent_block(et->et_ci,
5200                                               ocfs2_et_get_last_eb_blk(et),
5201                                               &last_eb_bh);
5202                 if (ret < 0) {
5203                         mlog_errno(ret);
5204                         goto out;
5205                 }
5206
5207                 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
5208                 rightmost_el = &eb->h_list;
5209         } else
5210                 rightmost_el = path_leaf_el(path);
5211
5212         credits += path->p_tree_depth +
5213                    ocfs2_extend_meta_needed(et->et_root_el);
5214         ret = ocfs2_extend_trans(handle, credits);
5215         if (ret) {
5216                 mlog_errno(ret);
5217                 goto out;
5218         }
5219
5220         if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
5221             le16_to_cpu(rightmost_el->l_count)) {
5222                 ret = ocfs2_grow_tree(inode, handle, et, &depth, &last_eb_bh,
5223                                       meta_ac);
5224                 if (ret) {
5225                         mlog_errno(ret);
5226                         goto out;
5227                 }
5228         }
5229
5230         memset(&insert, 0, sizeof(struct ocfs2_insert_type));
5231         insert.ins_appending = APPEND_NONE;
5232         insert.ins_contig = CONTIG_NONE;
5233         insert.ins_split = SPLIT_RIGHT;
5234         insert.ins_tree_depth = depth;
5235
5236         ret = ocfs2_do_insert_extent(inode, handle, et, &split_rec, &insert);
5237         if (ret)
5238                 mlog_errno(ret);
5239
5240 out:
5241         brelse(last_eb_bh);
5242         return ret;
5243 }
5244
5245 static int ocfs2_truncate_rec(struct inode *inode, handle_t *handle,
5246                               struct ocfs2_path *path, int index,
5247                               struct ocfs2_cached_dealloc_ctxt *dealloc,
5248                               u32 cpos, u32 len,
5249                               struct ocfs2_extent_tree *et)
5250 {
5251         int ret;
5252         u32 left_cpos, rec_range, trunc_range;
5253         int wants_rotate = 0, is_rightmost_tree_rec = 0;
5254         struct super_block *sb = inode->i_sb;
5255         struct ocfs2_path *left_path = NULL;
5256         struct ocfs2_extent_list *el = path_leaf_el(path);
5257         struct ocfs2_extent_rec *rec;
5258         struct ocfs2_extent_block *eb;
5259
5260         if (ocfs2_is_empty_extent(&el->l_recs[0]) && index > 0) {
5261                 ret = ocfs2_rotate_tree_left(inode, handle, path, dealloc, et);
5262                 if (ret) {
5263                         mlog_errno(ret);
5264                         goto out;
5265                 }
5266
5267                 index--;
5268         }
5269
5270         if (index == (le16_to_cpu(el->l_next_free_rec) - 1) &&
5271             path->p_tree_depth) {
5272                 /*
5273                  * Check whether this is the rightmost tree record. If
5274                  * we remove all of this record or part of its right
5275                  * edge then an update of the record lengths above it
5276                  * will be required.
5277                  */
5278                 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
5279                 if (eb->h_next_leaf_blk == 0)
5280                         is_rightmost_tree_rec = 1;
5281         }
5282
5283         rec = &el->l_recs[index];
5284         if (index == 0 && path->p_tree_depth &&
5285             le32_to_cpu(rec->e_cpos) == cpos) {
5286                 /*
5287                  * Changing the leftmost offset (via partial or whole
5288                  * record truncate) of an interior (or rightmost) path
5289                  * means we have to update the subtree that is formed
5290                  * by this leaf and the one to it's left.
5291                  *
5292                  * There are two cases we can skip:
5293                  *   1) Path is the leftmost one in our inode tree.
5294                  *   2) The leaf is rightmost and will be empty after
5295                  *      we remove the extent record - the rotate code
5296                  *      knows how to update the newly formed edge.
5297                  */
5298
5299                 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path,
5300                                                     &left_cpos);
5301                 if (ret) {
5302                         mlog_errno(ret);
5303                         goto out;
5304                 }
5305
5306                 if (left_cpos && le16_to_cpu(el->l_next_free_rec) > 1) {
5307                         left_path = ocfs2_new_path_from_path(path);
5308                         if (!left_path) {
5309                                 ret = -ENOMEM;
5310                                 mlog_errno(ret);
5311                                 goto out;
5312                         }
5313
5314                         ret = ocfs2_find_path(et->et_ci, left_path,
5315                                               left_cpos);
5316                         if (ret) {
5317                                 mlog_errno(ret);
5318                                 goto out;
5319                         }
5320                 }
5321         }
5322
5323         ret = ocfs2_extend_rotate_transaction(handle, 0,
5324                                               handle->h_buffer_credits,
5325                                               path);
5326         if (ret) {
5327                 mlog_errno(ret);
5328                 goto out;
5329         }
5330
5331         ret = ocfs2_journal_access_path(et->et_ci, handle, path);
5332         if (ret) {
5333                 mlog_errno(ret);
5334                 goto out;
5335         }
5336
5337         ret = ocfs2_journal_access_path(et->et_ci, handle, left_path);
5338         if (ret) {
5339                 mlog_errno(ret);
5340                 goto out;
5341         }
5342
5343         rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
5344         trunc_range = cpos + len;
5345
5346         if (le32_to_cpu(rec->e_cpos) == cpos && rec_range == trunc_range) {
5347                 int next_free;
5348
5349                 memset(rec, 0, sizeof(*rec));
5350                 ocfs2_cleanup_merge(el, index);
5351                 wants_rotate = 1;
5352
5353                 next_free = le16_to_cpu(el->l_next_free_rec);
5354                 if (is_rightmost_tree_rec && next_free > 1) {
5355                         /*
5356                          * We skip the edge update if this path will
5357                          * be deleted by the rotate code.
5358                          */
5359                         rec = &el->l_recs[next_free - 1];
5360                         ocfs2_adjust_rightmost_records(inode, handle, path,
5361                                                        rec);
5362                 }
5363         } else if (le32_to_cpu(rec->e_cpos) == cpos) {
5364                 /* Remove leftmost portion of the record. */
5365                 le32_add_cpu(&rec->e_cpos, len);
5366                 le64_add_cpu(&rec->e_blkno, ocfs2_clusters_to_blocks(sb, len));
5367                 le16_add_cpu(&rec->e_leaf_clusters, -len);
5368         } else if (rec_range == trunc_range) {
5369                 /* Remove rightmost portion of the record */
5370                 le16_add_cpu(&rec->e_leaf_clusters, -len);
5371                 if (is_rightmost_tree_rec)
5372                         ocfs2_adjust_rightmost_records(inode, handle, path, rec);
5373         } else {
5374                 /* Caller should have trapped this. */
5375                 mlog(ML_ERROR, "Inode %llu: Invalid record truncate: (%u, %u) "
5376                      "(%u, %u)\n", (unsigned long long)OCFS2_I(inode)->ip_blkno,
5377                      le32_to_cpu(rec->e_cpos),
5378                      le16_to_cpu(rec->e_leaf_clusters), cpos, len);
5379                 BUG();
5380         }
5381
5382         if (left_path) {
5383                 int subtree_index;
5384
5385                 subtree_index = ocfs2_find_subtree_root(et, left_path, path);
5386                 ocfs2_complete_edge_insert(handle, left_path, path,
5387                                            subtree_index);
5388         }
5389
5390         ocfs2_journal_dirty(handle, path_leaf_bh(path));
5391
5392         ret = ocfs2_rotate_tree_left(inode, handle, path, dealloc, et);
5393         if (ret) {
5394                 mlog_errno(ret);
5395                 goto out;
5396         }
5397
5398 out:
5399         ocfs2_free_path(left_path);
5400         return ret;
5401 }
5402
5403 int ocfs2_remove_extent(struct inode *inode,
5404                         struct ocfs2_extent_tree *et,
5405                         u32 cpos, u32 len, handle_t *handle,
5406                         struct ocfs2_alloc_context *meta_ac,
5407                         struct ocfs2_cached_dealloc_ctxt *dealloc)
5408 {
5409         int ret, index;
5410         u32 rec_range, trunc_range;
5411         struct ocfs2_extent_rec *rec;
5412         struct ocfs2_extent_list *el;
5413         struct ocfs2_path *path = NULL;
5414
5415         ocfs2_extent_map_trunc(inode, 0);
5416
5417         path = ocfs2_new_path_from_et(et);
5418         if (!path) {
5419                 ret = -ENOMEM;
5420                 mlog_errno(ret);
5421                 goto out;
5422         }
5423
5424         ret = ocfs2_find_path(et->et_ci, path, cpos);
5425         if (ret) {
5426                 mlog_errno(ret);
5427                 goto out;
5428         }
5429
5430         el = path_leaf_el(path);
5431         index = ocfs2_search_extent_list(el, cpos);
5432         if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
5433                 ocfs2_error(inode->i_sb,
5434                             "Inode %llu has an extent at cpos %u which can no "
5435                             "longer be found.\n",
5436                             (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
5437                 ret = -EROFS;
5438                 goto out;
5439         }
5440
5441         /*
5442          * We have 3 cases of extent removal:
5443          *   1) Range covers the entire extent rec
5444          *   2) Range begins or ends on one edge of the extent rec
5445          *   3) Range is in the middle of the extent rec (no shared edges)
5446          *
5447          * For case 1 we remove the extent rec and left rotate to
5448          * fill the hole.
5449          *
5450          * For case 2 we just shrink the existing extent rec, with a
5451          * tree update if the shrinking edge is also the edge of an
5452          * extent block.
5453          *
5454          * For case 3 we do a right split to turn the extent rec into
5455          * something case 2 can handle.
5456          */
5457         rec = &el->l_recs[index];
5458         rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
5459         trunc_range = cpos + len;
5460
5461         BUG_ON(cpos < le32_to_cpu(rec->e_cpos) || trunc_range > rec_range);
5462
5463         mlog(0, "Inode %llu, remove (cpos %u, len %u). Existing index %d "
5464              "(cpos %u, len %u)\n",
5465              (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos, len, index,
5466              le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec));
5467
5468         if (le32_to_cpu(rec->e_cpos) == cpos || rec_range == trunc_range) {
5469                 ret = ocfs2_truncate_rec(inode, handle, path, index, dealloc,
5470                                          cpos, len, et);
5471                 if (ret) {
5472                         mlog_errno(ret);
5473                         goto out;
5474                 }
5475         } else {
5476                 ret = ocfs2_split_tree(inode, et, handle, path, index,
5477                                        trunc_range, meta_ac);
5478                 if (ret) {
5479                         mlog_errno(ret);
5480                         goto out;
5481                 }
5482
5483                 /*
5484                  * The split could have manipulated the tree enough to
5485                  * move the record location, so we have to look for it again.
5486                  */
5487                 ocfs2_reinit_path(path, 1);
5488
5489                 ret = ocfs2_find_path(et->et_ci, path, cpos);
5490                 if (ret) {
5491                         mlog_errno(ret);
5492                         goto out;
5493                 }
5494
5495                 el = path_leaf_el(path);
5496                 index = ocfs2_search_extent_list(el, cpos);
5497                 if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
5498                         ocfs2_error(inode->i_sb,
5499                                     "Inode %llu: split at cpos %u lost record.",
5500                                     (unsigned long long)OCFS2_I(inode)->ip_blkno,
5501                                     cpos);
5502                         ret = -EROFS;
5503                         goto out;
5504                 }
5505
5506                 /*
5507                  * Double check our values here. If anything is fishy,
5508                  * it's easier to catch it at the top level.
5509                  */
5510                 rec = &el->l_recs[index];
5511                 rec_range = le32_to_cpu(rec->e_cpos) +
5512                         ocfs2_rec_clusters(el, rec);
5513                 if (rec_range != trunc_range) {
5514                         ocfs2_error(inode->i_sb,
5515                                     "Inode %llu: error after split at cpos %u"
5516                                     "trunc len %u, existing record is (%u,%u)",
5517                                     (unsigned long long)OCFS2_I(inode)->ip_blkno,
5518                                     cpos, len, le32_to_cpu(rec->e_cpos),
5519                                     ocfs2_rec_clusters(el, rec));
5520                         ret = -EROFS;
5521                         goto out;
5522                 }
5523
5524                 ret = ocfs2_truncate_rec(inode, handle, path, index, dealloc,
5525                                          cpos, len, et);
5526                 if (ret) {
5527                         mlog_errno(ret);
5528                         goto out;
5529                 }
5530         }
5531
5532 out:
5533         ocfs2_free_path(path);
5534         return ret;
5535 }
5536
5537 int ocfs2_remove_btree_range(struct inode *inode,
5538                              struct ocfs2_extent_tree *et,
5539                              u32 cpos, u32 phys_cpos, u32 len,
5540                              struct ocfs2_cached_dealloc_ctxt *dealloc)
5541 {
5542         int ret;
5543         u64 phys_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys_cpos);
5544         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
5545         struct inode *tl_inode = osb->osb_tl_inode;
5546         handle_t *handle;
5547         struct ocfs2_alloc_context *meta_ac = NULL;
5548
5549         ret = ocfs2_lock_allocators(inode, et, 0, 1, NULL, &meta_ac);
5550         if (ret) {
5551                 mlog_errno(ret);
5552                 return ret;
5553         }
5554
5555         mutex_lock(&tl_inode->i_mutex);
5556
5557         if (ocfs2_truncate_log_needs_flush(osb)) {
5558                 ret = __ocfs2_flush_truncate_log(osb);
5559                 if (ret < 0) {
5560                         mlog_errno(ret);
5561                         goto out;
5562                 }
5563         }
5564
5565         handle = ocfs2_start_trans(osb, ocfs2_remove_extent_credits(osb->sb));
5566         if (IS_ERR(handle)) {
5567                 ret = PTR_ERR(handle);
5568                 mlog_errno(ret);
5569                 goto out;
5570         }
5571
5572         ret = ocfs2_et_root_journal_access(handle, et,
5573                                            OCFS2_JOURNAL_ACCESS_WRITE);
5574         if (ret) {
5575                 mlog_errno(ret);
5576                 goto out;
5577         }
5578
5579         vfs_dq_free_space_nodirty(inode,
5580                                   ocfs2_clusters_to_bytes(inode->i_sb, len));
5581
5582         ret = ocfs2_remove_extent(inode, et, cpos, len, handle, meta_ac,
5583                                   dealloc);
5584         if (ret) {
5585                 mlog_errno(ret);
5586                 goto out_commit;
5587         }
5588
5589         ocfs2_et_update_clusters(et, -len);
5590
5591         ret = ocfs2_journal_dirty(handle, et->et_root_bh);
5592         if (ret) {
5593                 mlog_errno(ret);
5594                 goto out_commit;
5595         }
5596
5597         ret = ocfs2_truncate_log_append(osb, handle, phys_blkno, len);
5598         if (ret)
5599                 mlog_errno(ret);
5600
5601 out_commit:
5602         ocfs2_commit_trans(osb, handle);
5603 out:
5604         mutex_unlock(&tl_inode->i_mutex);
5605
5606         if (meta_ac)
5607                 ocfs2_free_alloc_context(meta_ac);
5608
5609         return ret;
5610 }
5611
5612 int ocfs2_truncate_log_needs_flush(struct ocfs2_super *osb)
5613 {
5614         struct buffer_head *tl_bh = osb->osb_tl_bh;
5615         struct ocfs2_dinode *di;
5616         struct ocfs2_truncate_log *tl;
5617
5618         di = (struct ocfs2_dinode *) tl_bh->b_data;
5619         tl = &di->id2.i_dealloc;
5620
5621         mlog_bug_on_msg(le16_to_cpu(tl->tl_used) > le16_to_cpu(tl->tl_count),
5622                         "slot %d, invalid truncate log parameters: used = "
5623                         "%u, count = %u\n", osb->slot_num,
5624                         le16_to_cpu(tl->tl_used), le16_to_cpu(tl->tl_count));
5625         return le16_to_cpu(tl->tl_used) == le16_to_cpu(tl->tl_count);
5626 }
5627
5628 static int ocfs2_truncate_log_can_coalesce(struct ocfs2_truncate_log *tl,
5629                                            unsigned int new_start)
5630 {
5631         unsigned int tail_index;
5632         unsigned int current_tail;
5633
5634         /* No records, nothing to coalesce */
5635         if (!le16_to_cpu(tl->tl_used))
5636                 return 0;
5637
5638         tail_index = le16_to_cpu(tl->tl_used) - 1;
5639         current_tail = le32_to_cpu(tl->tl_recs[tail_index].t_start);
5640         current_tail += le32_to_cpu(tl->tl_recs[tail_index].t_clusters);
5641
5642         return current_tail == new_start;
5643 }
5644
5645 int ocfs2_truncate_log_append(struct ocfs2_super *osb,
5646                               handle_t *handle,
5647                               u64 start_blk,
5648                               unsigned int num_clusters)
5649 {
5650         int status, index;
5651         unsigned int start_cluster, tl_count;
5652         struct inode *tl_inode = osb->osb_tl_inode;
5653         struct buffer_head *tl_bh = osb->osb_tl_bh;
5654         struct ocfs2_dinode *di;
5655         struct ocfs2_truncate_log *tl;
5656
5657         mlog_entry("start_blk = %llu, num_clusters = %u\n",
5658                    (unsigned long long)start_blk, num_clusters);
5659
5660         BUG_ON(mutex_trylock(&tl_inode->i_mutex));
5661
5662         start_cluster = ocfs2_blocks_to_clusters(osb->sb, start_blk);
5663
5664         di = (struct ocfs2_dinode *) tl_bh->b_data;
5665
5666         /* tl_bh is loaded from ocfs2_truncate_log_init().  It's validated
5667          * by the underlying call to ocfs2_read_inode_block(), so any
5668          * corruption is a code bug */
5669         BUG_ON(!OCFS2_IS_VALID_DINODE(di));
5670
5671         tl = &di->id2.i_dealloc;
5672         tl_count = le16_to_cpu(tl->tl_count);
5673         mlog_bug_on_msg(tl_count > ocfs2_truncate_recs_per_inode(osb->sb) ||
5674                         tl_count == 0,
5675                         "Truncate record count on #%llu invalid "
5676                         "wanted %u, actual %u\n",
5677                         (unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
5678                         ocfs2_truncate_recs_per_inode(osb->sb),
5679                         le16_to_cpu(tl->tl_count));
5680
5681         /* Caller should have known to flush before calling us. */
5682         index = le16_to_cpu(tl->tl_used);
5683         if (index >= tl_count) {
5684                 status = -ENOSPC;
5685                 mlog_errno(status);
5686                 goto bail;
5687         }
5688
5689         status = ocfs2_journal_access_di(handle, INODE_CACHE(tl_inode), tl_bh,
5690                                          OCFS2_JOURNAL_ACCESS_WRITE);
5691         if (status < 0) {
5692                 mlog_errno(status);
5693                 goto bail;
5694         }
5695
5696         mlog(0, "Log truncate of %u clusters starting at cluster %u to "
5697              "%llu (index = %d)\n", num_clusters, start_cluster,
5698              (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, index);
5699
5700         if (ocfs2_truncate_log_can_coalesce(tl, start_cluster)) {
5701                 /*
5702                  * Move index back to the record we are coalescing with.
5703                  * ocfs2_truncate_log_can_coalesce() guarantees nonzero
5704                  */
5705                 index--;
5706
5707                 num_clusters += le32_to_cpu(tl->tl_recs[index].t_clusters);
5708                 mlog(0, "Coalesce with index %u (start = %u, clusters = %u)\n",
5709                      index, le32_to_cpu(tl->tl_recs[index].t_start),
5710                      num_clusters);
5711         } else {
5712                 tl->tl_recs[index].t_start = cpu_to_le32(start_cluster);
5713                 tl->tl_used = cpu_to_le16(index + 1);
5714         }
5715         tl->tl_recs[index].t_clusters = cpu_to_le32(num_clusters);
5716
5717         status = ocfs2_journal_dirty(handle, tl_bh);
5718         if (status < 0) {
5719                 mlog_errno(status);
5720                 goto bail;
5721         }
5722
5723 bail:
5724         mlog_exit(status);
5725         return status;
5726 }
5727
5728 static int ocfs2_replay_truncate_records(struct ocfs2_super *osb,
5729                                          handle_t *handle,
5730                                          struct inode *data_alloc_inode,
5731                                          struct buffer_head *data_alloc_bh)
5732 {
5733         int status = 0;
5734         int i;
5735         unsigned int num_clusters;
5736         u64 start_blk;
5737         struct ocfs2_truncate_rec rec;
5738         struct ocfs2_dinode *di;
5739         struct ocfs2_truncate_log *tl;
5740         struct inode *tl_inode = osb->osb_tl_inode;
5741         struct buffer_head *tl_bh = osb->osb_tl_bh;
5742
5743         mlog_entry_void();
5744
5745         di = (struct ocfs2_dinode *) tl_bh->b_data;
5746         tl = &di->id2.i_dealloc;
5747         i = le16_to_cpu(tl->tl_used) - 1;
5748         while (i >= 0) {
5749                 /* Caller has given us at least enough credits to
5750                  * update the truncate log dinode */
5751                 status = ocfs2_journal_access_di(handle, INODE_CACHE(tl_inode), tl_bh,
5752                                                  OCFS2_JOURNAL_ACCESS_WRITE);
5753                 if (status < 0) {
5754                         mlog_errno(status);
5755                         goto bail;
5756                 }
5757
5758                 tl->tl_used = cpu_to_le16(i);
5759
5760                 status = ocfs2_journal_dirty(handle, tl_bh);
5761                 if (status < 0) {
5762                         mlog_errno(status);
5763                         goto bail;
5764                 }
5765
5766                 /* TODO: Perhaps we can calculate the bulk of the
5767                  * credits up front rather than extending like
5768                  * this. */
5769                 status = ocfs2_extend_trans(handle,
5770                                             OCFS2_TRUNCATE_LOG_FLUSH_ONE_REC);
5771                 if (status < 0) {
5772                         mlog_errno(status);
5773                         goto bail;
5774                 }
5775
5776                 rec = tl->tl_recs[i];
5777                 start_blk = ocfs2_clusters_to_blocks(data_alloc_inode->i_sb,
5778                                                     le32_to_cpu(rec.t_start));
5779                 num_clusters = le32_to_cpu(rec.t_clusters);
5780
5781                 /* if start_blk is not set, we ignore the record as
5782                  * invalid. */
5783                 if (start_blk) {
5784                         mlog(0, "free record %d, start = %u, clusters = %u\n",
5785                              i, le32_to_cpu(rec.t_start), num_clusters);
5786
5787                         status = ocfs2_free_clusters(handle, data_alloc_inode,
5788                                                      data_alloc_bh, start_blk,
5789                                                      num_clusters);
5790                         if (status < 0) {
5791                                 mlog_errno(status);
5792                                 goto bail;
5793                         }
5794                 }
5795                 i--;
5796         }
5797
5798 bail:
5799         mlog_exit(status);
5800         return status;
5801 }
5802
5803 /* Expects you to already be holding tl_inode->i_mutex */
5804 int __ocfs2_flush_truncate_log(struct ocfs2_super *osb)
5805 {
5806         int status;
5807         unsigned int num_to_flush;
5808         handle_t *handle;
5809         struct inode *tl_inode = osb->osb_tl_inode;
5810         struct inode *data_alloc_inode = NULL;
5811         struct buffer_head *tl_bh = osb->osb_tl_bh;
5812         struct buffer_head *data_alloc_bh = NULL;
5813         struct ocfs2_dinode *di;
5814         struct ocfs2_truncate_log *tl;
5815
5816         mlog_entry_void();
5817
5818         BUG_ON(mutex_trylock(&tl_inode->i_mutex));
5819
5820         di = (struct ocfs2_dinode *) tl_bh->b_data;
5821
5822         /* tl_bh is loaded from ocfs2_truncate_log_init().  It's validated
5823          * by the underlying call to ocfs2_read_inode_block(), so any
5824          * corruption is a code bug */
5825         BUG_ON(!OCFS2_IS_VALID_DINODE(di));
5826
5827         tl = &di->id2.i_dealloc;
5828         num_to_flush = le16_to_cpu(tl->tl_used);
5829         mlog(0, "Flush %u records from truncate log #%llu\n",
5830              num_to_flush, (unsigned long long)OCFS2_I(tl_inode)->ip_blkno);
5831         if (!num_to_flush) {
5832                 status = 0;
5833                 goto out;
5834         }
5835
5836         data_alloc_inode = ocfs2_get_system_file_inode(osb,
5837                                                        GLOBAL_BITMAP_SYSTEM_INODE,
5838                                                        OCFS2_INVALID_SLOT);
5839         if (!data_alloc_inode) {
5840                 status = -EINVAL;
5841                 mlog(ML_ERROR, "Could not get bitmap inode!\n");
5842                 goto out;
5843         }
5844
5845         mutex_lock(&data_alloc_inode->i_mutex);
5846
5847         status = ocfs2_inode_lock(data_alloc_inode, &data_alloc_bh, 1);
5848         if (status < 0) {
5849                 mlog_errno(status);
5850                 goto out_mutex;
5851         }
5852
5853         handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
5854         if (IS_ERR(handle)) {
5855                 status = PTR_ERR(handle);
5856                 mlog_errno(status);
5857                 goto out_unlock;
5858         }
5859
5860         status = ocfs2_replay_truncate_records(osb, handle, data_alloc_inode,
5861                                                data_alloc_bh);
5862         if (status < 0)
5863                 mlog_errno(status);
5864
5865         ocfs2_commit_trans(osb, handle);
5866
5867 out_unlock:
5868         brelse(data_alloc_bh);
5869         ocfs2_inode_unlock(data_alloc_inode, 1);
5870
5871 out_mutex:
5872         mutex_unlock(&data_alloc_inode->i_mutex);
5873         iput(data_alloc_inode);
5874
5875 out:
5876         mlog_exit(status);
5877         return status;
5878 }
5879
5880 int ocfs2_flush_truncate_log(struct ocfs2_super *osb)
5881 {
5882         int status;
5883         struct inode *tl_inode = osb->osb_tl_inode;
5884
5885         mutex_lock(&tl_inode->i_mutex);
5886         status = __ocfs2_flush_truncate_log(osb);
5887         mutex_unlock(&tl_inode->i_mutex);
5888
5889         return status;
5890 }
5891
5892 static void ocfs2_truncate_log_worker(struct work_struct *work)
5893 {
5894         int status;
5895         struct ocfs2_super *osb =
5896                 container_of(work, struct ocfs2_super,
5897                              osb_truncate_log_wq.work);
5898
5899         mlog_entry_void();
5900
5901         status = ocfs2_flush_truncate_log(osb);
5902         if (status < 0)
5903                 mlog_errno(status);
5904         else
5905                 ocfs2_init_inode_steal_slot(osb);
5906
5907         mlog_exit(status);
5908 }
5909
5910 #define OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL (2 * HZ)
5911 void ocfs2_schedule_truncate_log_flush(struct ocfs2_super *osb,
5912                                        int cancel)
5913 {
5914         if (osb->osb_tl_inode) {
5915                 /* We want to push off log flushes while truncates are
5916                  * still running. */
5917                 if (cancel)
5918                         cancel_delayed_work(&osb->osb_truncate_log_wq);
5919
5920                 queue_delayed_work(ocfs2_wq, &osb->osb_truncate_log_wq,
5921                                    OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL);
5922         }
5923 }
5924
5925 static int ocfs2_get_truncate_log_info(struct ocfs2_super *osb,
5926                                        int slot_num,
5927                                        struct inode **tl_inode,
5928                                        struct buffer_head **tl_bh)
5929 {
5930         int status;
5931         struct inode *inode = NULL;
5932         struct buffer_head *bh = NULL;
5933
5934         inode = ocfs2_get_system_file_inode(osb,
5935                                            TRUNCATE_LOG_SYSTEM_INODE,
5936                                            slot_num);
5937         if (!inode) {
5938                 status = -EINVAL;
5939                 mlog(ML_ERROR, "Could not get load truncate log inode!\n");
5940                 goto bail;
5941         }
5942
5943         status = ocfs2_read_inode_block(inode, &bh);
5944         if (status < 0) {
5945                 iput(inode);
5946                 mlog_errno(status);
5947                 goto bail;
5948         }
5949
5950         *tl_inode = inode;
5951         *tl_bh    = bh;
5952 bail:
5953         mlog_exit(status);
5954         return status;
5955 }
5956
5957 /* called during the 1st stage of node recovery. we stamp a clean
5958  * truncate log and pass back a copy for processing later. if the
5959  * truncate log does not require processing, a *tl_copy is set to
5960  * NULL. */
5961 int ocfs2_begin_truncate_log_recovery(struct ocfs2_super *osb,
5962                                       int slot_num,
5963                                       struct ocfs2_dinode **tl_copy)
5964 {
5965         int status;
5966         struct inode *tl_inode = NULL;
5967         struct buffer_head *tl_bh = NULL;
5968         struct ocfs2_dinode *di;
5969         struct ocfs2_truncate_log *tl;
5970
5971         *tl_copy = NULL;
5972
5973         mlog(0, "recover truncate log from slot %d\n", slot_num);
5974
5975         status = ocfs2_get_truncate_log_info(osb, slot_num, &tl_inode, &tl_bh);
5976         if (status < 0) {
5977                 mlog_errno(status);
5978                 goto bail;
5979         }
5980
5981         di = (struct ocfs2_dinode *) tl_bh->b_data;
5982
5983         /* tl_bh is loaded from ocfs2_get_truncate_log_info().  It's
5984          * validated by the underlying call to ocfs2_read_inode_block(),
5985          * so any corruption is a code bug */
5986         BUG_ON(!OCFS2_IS_VALID_DINODE(di));
5987
5988         tl = &di->id2.i_dealloc;
5989         if (le16_to_cpu(tl->tl_used)) {
5990                 mlog(0, "We'll have %u logs to recover\n",
5991                      le16_to_cpu(tl->tl_used));
5992
5993                 *tl_copy = kmalloc(tl_bh->b_size, GFP_KERNEL);
5994                 if (!(*tl_copy)) {
5995                         status = -ENOMEM;
5996                         mlog_errno(status);
5997                         goto bail;
5998                 }
5999
6000                 /* Assuming the write-out below goes well, this copy
6001                  * will be passed back to recovery for processing. */
6002                 memcpy(*tl_copy, tl_bh->b_data, tl_bh->b_size);
6003
6004                 /* All we need to do to clear the truncate log is set
6005                  * tl_used. */
6006                 tl->tl_used = 0;
6007
6008                 ocfs2_compute_meta_ecc(osb->sb, tl_bh->b_data, &di->i_check);
6009                 status = ocfs2_write_block(osb, tl_bh, INODE_CACHE(tl_inode));
6010                 if (status < 0) {
6011                         mlog_errno(status);
6012                         goto bail;
6013                 }
6014         }
6015
6016 bail:
6017         if (tl_inode)
6018                 iput(tl_inode);
6019         brelse(tl_bh);
6020
6021         if (status < 0 && (*tl_copy)) {
6022                 kfree(*tl_copy);
6023                 *tl_copy = NULL;
6024         }
6025
6026         mlog_exit(status);
6027         return status;
6028 }
6029
6030 int ocfs2_complete_truncate_log_recovery(struct ocfs2_super *osb,
6031                                          struct ocfs2_dinode *tl_copy)
6032 {
6033         int status = 0;
6034         int i;
6035         unsigned int clusters, num_recs, start_cluster;
6036         u64 start_blk;
6037         handle_t *handle;
6038         struct inode *tl_inode = osb->osb_tl_inode;
6039         struct ocfs2_truncate_log *tl;
6040
6041         mlog_entry_void();
6042
6043         if (OCFS2_I(tl_inode)->ip_blkno == le64_to_cpu(tl_copy->i_blkno)) {
6044                 mlog(ML_ERROR, "Asked to recover my own truncate log!\n");
6045                 return -EINVAL;
6046         }
6047
6048         tl = &tl_copy->id2.i_dealloc;
6049         num_recs = le16_to_cpu(tl->tl_used);
6050         mlog(0, "cleanup %u records from %llu\n", num_recs,
6051              (unsigned long long)le64_to_cpu(tl_copy->i_blkno));
6052
6053         mutex_lock(&tl_inode->i_mutex);
6054         for(i = 0; i < num_recs; i++) {
6055                 if (ocfs2_truncate_log_needs_flush(osb)) {
6056                         status = __ocfs2_flush_truncate_log(osb);
6057                         if (status < 0) {
6058                                 mlog_errno(status);
6059                                 goto bail_up;
6060                         }
6061                 }
6062
6063                 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
6064                 if (IS_ERR(handle)) {
6065                         status = PTR_ERR(handle);
6066                         mlog_errno(status);
6067                         goto bail_up;
6068                 }
6069
6070                 clusters = le32_to_cpu(tl->tl_recs[i].t_clusters);
6071                 start_cluster = le32_to_cpu(tl->tl_recs[i].t_start);
6072                 start_blk = ocfs2_clusters_to_blocks(osb->sb, start_cluster);
6073
6074                 status = ocfs2_truncate_log_append(osb, handle,
6075                                                    start_blk, clusters);
6076                 ocfs2_commit_trans(osb, handle);
6077                 if (status < 0) {
6078                         mlog_errno(status);
6079                         goto bail_up;
6080                 }
6081         }
6082
6083 bail_up:
6084         mutex_unlock(&tl_inode->i_mutex);
6085
6086         mlog_exit(status);
6087         return status;
6088 }
6089
6090 void ocfs2_truncate_log_shutdown(struct ocfs2_super *osb)
6091 {
6092         int status;
6093         struct inode *tl_inode = osb->osb_tl_inode;
6094
6095         mlog_entry_void();
6096
6097         if (tl_inode) {
6098                 cancel_delayed_work(&osb->osb_truncate_log_wq);
6099                 flush_workqueue(ocfs2_wq);
6100
6101                 status = ocfs2_flush_truncate_log(osb);
6102                 if (status < 0)
6103                         mlog_errno(status);
6104
6105                 brelse(osb->osb_tl_bh);
6106                 iput(osb->osb_tl_inode);
6107         }
6108
6109         mlog_exit_void();
6110 }
6111
6112 int ocfs2_truncate_log_init(struct ocfs2_super *osb)
6113 {
6114         int status;
6115         struct inode *tl_inode = NULL;
6116         struct buffer_head *tl_bh = NULL;
6117
6118         mlog_entry_void();
6119
6120         status = ocfs2_get_truncate_log_info(osb,
6121                                              osb->slot_num,
6122                                              &tl_inode,
6123                                              &tl_bh);
6124         if (status < 0)
6125                 mlog_errno(status);
6126
6127         /* ocfs2_truncate_log_shutdown keys on the existence of
6128          * osb->osb_tl_inode so we don't set any of the osb variables
6129          * until we're sure all is well. */
6130         INIT_DELAYED_WORK(&osb->osb_truncate_log_wq,
6131                           ocfs2_truncate_log_worker);
6132         osb->osb_tl_bh    = tl_bh;
6133         osb->osb_tl_inode = tl_inode;
6134
6135         mlog_exit(status);
6136         return status;
6137 }
6138
6139 /*
6140  * Delayed de-allocation of suballocator blocks.
6141  *
6142  * Some sets of block de-allocations might involve multiple suballocator inodes.
6143  *
6144  * The locking for this can get extremely complicated, especially when
6145  * the suballocator inodes to delete from aren't known until deep
6146  * within an unrelated codepath.
6147  *
6148  * ocfs2_extent_block structures are a good example of this - an inode
6149  * btree could have been grown by any number of nodes each allocating
6150  * out of their own suballoc inode.
6151  *
6152  * These structures allow the delay of block de-allocation until a
6153  * later time, when locking of multiple cluster inodes won't cause
6154  * deadlock.
6155  */
6156
6157 /*
6158  * Describe a single bit freed from a suballocator.  For the block
6159  * suballocators, it represents one block.  For the global cluster
6160  * allocator, it represents some clusters and free_bit indicates
6161  * clusters number.
6162  */
6163 struct ocfs2_cached_block_free {
6164         struct ocfs2_cached_block_free          *free_next;
6165         u64                                     free_blk;
6166         unsigned int                            free_bit;
6167 };
6168
6169 struct ocfs2_per_slot_free_list {
6170         struct ocfs2_per_slot_free_list         *f_next_suballocator;
6171         int                                     f_inode_type;
6172         int                                     f_slot;
6173         struct ocfs2_cached_block_free          *f_first;
6174 };
6175
6176 static int ocfs2_free_cached_blocks(struct ocfs2_super *osb,
6177                                     int sysfile_type,
6178                                     int slot,
6179                                     struct ocfs2_cached_block_free *head)
6180 {
6181         int ret;
6182         u64 bg_blkno;
6183         handle_t *handle;
6184         struct inode *inode;
6185         struct buffer_head *di_bh = NULL;
6186         struct ocfs2_cached_block_free *tmp;
6187
6188         inode = ocfs2_get_system_file_inode(osb, sysfile_type, slot);
6189         if (!inode) {
6190                 ret = -EINVAL;
6191                 mlog_errno(ret);
6192                 goto out;
6193         }
6194
6195         mutex_lock(&inode->i_mutex);
6196
6197         ret = ocfs2_inode_lock(inode, &di_bh, 1);
6198         if (ret) {
6199                 mlog_errno(ret);
6200                 goto out_mutex;
6201         }
6202
6203         handle = ocfs2_start_trans(osb, OCFS2_SUBALLOC_FREE);
6204         if (IS_ERR(handle)) {
6205                 ret = PTR_ERR(handle);
6206                 mlog_errno(ret);
6207                 goto out_unlock;
6208         }
6209
6210         while (head) {
6211                 bg_blkno = ocfs2_which_suballoc_group(head->free_blk,
6212                                                       head->free_bit);
6213                 mlog(0, "Free bit: (bit %u, blkno %llu)\n",
6214                      head->free_bit, (unsigned long long)head->free_blk);
6215
6216                 ret = ocfs2_free_suballoc_bits(handle, inode, di_bh,
6217                                                head->free_bit, bg_blkno, 1);
6218                 if (ret) {
6219                         mlog_errno(ret);
6220                         goto out_journal;
6221                 }
6222
6223                 ret = ocfs2_extend_trans(handle, OCFS2_SUBALLOC_FREE);
6224                 if (ret) {
6225                         mlog_errno(ret);
6226                         goto out_journal;
6227                 }
6228
6229                 tmp = head;
6230                 head = head->free_next;
6231                 kfree(tmp);
6232         }
6233
6234 out_journal:
6235         ocfs2_commit_trans(osb, handle);
6236
6237 out_unlock:
6238         ocfs2_inode_unlock(inode, 1);
6239         brelse(di_bh);
6240 out_mutex:
6241         mutex_unlock(&inode->i_mutex);
6242         iput(inode);
6243 out:
6244         while(head) {
6245                 /* Premature exit may have left some dangling items. */
6246                 tmp = head;
6247                 head = head->free_next;
6248                 kfree(tmp);
6249         }
6250
6251         return ret;
6252 }
6253
6254 int ocfs2_cache_cluster_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt,
6255                                 u64 blkno, unsigned int bit)
6256 {
6257         int ret = 0;
6258         struct ocfs2_cached_block_free *item;
6259
6260         item = kmalloc(sizeof(*item), GFP_NOFS);
6261         if (item == NULL) {
6262                 ret = -ENOMEM;
6263                 mlog_errno(ret);
6264                 return ret;
6265         }
6266
6267         mlog(0, "Insert clusters: (bit %u, blk %llu)\n",
6268              bit, (unsigned long long)blkno);
6269
6270         item->free_blk = blkno;
6271         item->free_bit = bit;
6272         item->free_next = ctxt->c_global_allocator;
6273
6274         ctxt->c_global_allocator = item;
6275         return ret;
6276 }
6277
6278 static int ocfs2_free_cached_clusters(struct ocfs2_super *osb,
6279                                       struct ocfs2_cached_block_free *head)
6280 {
6281         struct ocfs2_cached_block_free *tmp;
6282         struct inode *tl_inode = osb->osb_tl_inode;
6283         handle_t *handle;
6284         int ret = 0;
6285
6286         mutex_lock(&tl_inode->i_mutex);
6287
6288         while (head) {
6289                 if (ocfs2_truncate_log_needs_flush(osb)) {
6290                         ret = __ocfs2_flush_truncate_log(osb);
6291                         if (ret < 0) {
6292                                 mlog_errno(ret);
6293                                 break;
6294                         }
6295                 }
6296
6297                 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
6298                 if (IS_ERR(handle)) {
6299                         ret = PTR_ERR(handle);
6300                         mlog_errno(ret);
6301                         break;
6302                 }
6303
6304                 ret = ocfs2_truncate_log_append(osb, handle, head->free_blk,
6305                                                 head->free_bit);
6306
6307                 ocfs2_commit_trans(osb, handle);
6308                 tmp = head;
6309                 head = head->free_next;
6310                 kfree(tmp);
6311
6312                 if (ret < 0) {
6313                         mlog_errno(ret);
6314                         break;
6315                 }
6316         }
6317
6318         mutex_unlock(&tl_inode->i_mutex);
6319
6320         while (head) {
6321                 /* Premature exit may have left some dangling items. */
6322                 tmp = head;
6323                 head = head->free_next;
6324                 kfree(tmp);
6325         }
6326
6327         return ret;
6328 }
6329
6330 int ocfs2_run_deallocs(struct ocfs2_super *osb,
6331                        struct ocfs2_cached_dealloc_ctxt *ctxt)
6332 {
6333         int ret = 0, ret2;
6334         struct ocfs2_per_slot_free_list *fl;
6335
6336         if (!ctxt)
6337                 return 0;
6338
6339         while (ctxt->c_first_suballocator) {
6340                 fl = ctxt->c_first_suballocator;
6341
6342                 if (fl->f_first) {
6343                         mlog(0, "Free items: (type %u, slot %d)\n",
6344                              fl->f_inode_type, fl->f_slot);
6345                         ret2 = ocfs2_free_cached_blocks(osb,
6346                                                         fl->f_inode_type,
6347                                                         fl->f_slot,
6348                                                         fl->f_first);
6349                         if (ret2)
6350                                 mlog_errno(ret2);
6351                         if (!ret)
6352                                 ret = ret2;
6353                 }
6354
6355                 ctxt->c_first_suballocator = fl->f_next_suballocator;
6356                 kfree(fl);
6357         }
6358
6359         if (ctxt->c_global_allocator) {
6360                 ret2 = ocfs2_free_cached_clusters(osb,
6361                                                   ctxt->c_global_allocator);
6362                 if (ret2)
6363                         mlog_errno(ret2);
6364                 if (!ret)
6365                         ret = ret2;
6366
6367                 ctxt->c_global_allocator = NULL;
6368         }
6369
6370         return ret;
6371 }
6372
6373 static struct ocfs2_per_slot_free_list *
6374 ocfs2_find_per_slot_free_list(int type,
6375                               int slot,
6376                               struct ocfs2_cached_dealloc_ctxt *ctxt)
6377 {
6378         struct ocfs2_per_slot_free_list *fl = ctxt->c_first_suballocator;
6379
6380         while (fl) {
6381                 if (fl->f_inode_type == type && fl->f_slot == slot)
6382                         return fl;
6383
6384                 fl = fl->f_next_suballocator;
6385         }
6386
6387         fl = kmalloc(sizeof(*fl), GFP_NOFS);
6388         if (fl) {
6389                 fl->f_inode_type = type;
6390                 fl->f_slot = slot;
6391                 fl->f_first = NULL;
6392                 fl->f_next_suballocator = ctxt->c_first_suballocator;
6393
6394                 ctxt->c_first_suballocator = fl;
6395         }
6396         return fl;
6397 }
6398
6399 static int ocfs2_cache_block_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt,
6400                                      int type, int slot, u64 blkno,
6401                                      unsigned int bit)
6402 {
6403         int ret;
6404         struct ocfs2_per_slot_free_list *fl;
6405         struct ocfs2_cached_block_free *item;
6406
6407         fl = ocfs2_find_per_slot_free_list(type, slot, ctxt);
6408         if (fl == NULL) {
6409                 ret = -ENOMEM;
6410                 mlog_errno(ret);
6411                 goto out;
6412         }
6413
6414         item = kmalloc(sizeof(*item), GFP_NOFS);
6415         if (item == NULL) {
6416                 ret = -ENOMEM;
6417                 mlog_errno(ret);
6418                 goto out;
6419         }
6420
6421         mlog(0, "Insert: (type %d, slot %u, bit %u, blk %llu)\n",
6422              type, slot, bit, (unsigned long long)blkno);
6423
6424         item->free_blk = blkno;
6425         item->free_bit = bit;
6426         item->free_next = fl->f_first;
6427
6428         fl->f_first = item;
6429
6430         ret = 0;
6431 out:
6432         return ret;
6433 }
6434
6435 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
6436                                          struct ocfs2_extent_block *eb)
6437 {
6438         return ocfs2_cache_block_dealloc(ctxt, EXTENT_ALLOC_SYSTEM_INODE,
6439                                          le16_to_cpu(eb->h_suballoc_slot),
6440                                          le64_to_cpu(eb->h_blkno),
6441                                          le16_to_cpu(eb->h_suballoc_bit));
6442 }
6443
6444 /* This function will figure out whether the currently last extent
6445  * block will be deleted, and if it will, what the new last extent
6446  * block will be so we can update his h_next_leaf_blk field, as well
6447  * as the dinodes i_last_eb_blk */
6448 static int ocfs2_find_new_last_ext_blk(struct inode *inode,
6449                                        unsigned int clusters_to_del,
6450                                        struct ocfs2_path *path,
6451                                        struct buffer_head **new_last_eb)
6452 {
6453         int next_free, ret = 0;
6454         u32 cpos;
6455         struct ocfs2_extent_rec *rec;
6456         struct ocfs2_extent_block *eb;
6457         struct ocfs2_extent_list *el;
6458         struct buffer_head *bh = NULL;
6459
6460         *new_last_eb = NULL;
6461
6462         /* we have no tree, so of course, no last_eb. */
6463         if (!path->p_tree_depth)
6464                 goto out;
6465
6466         /* trunc to zero special case - this makes tree_depth = 0
6467          * regardless of what it is.  */
6468         if (OCFS2_I(inode)->ip_clusters == clusters_to_del)
6469                 goto out;
6470
6471         el = path_leaf_el(path);
6472         BUG_ON(!el->l_next_free_rec);
6473
6474         /*
6475          * Make sure that this extent list will actually be empty
6476          * after we clear away the data. We can shortcut out if
6477          * there's more than one non-empty extent in the
6478          * list. Otherwise, a check of the remaining extent is
6479          * necessary.
6480          */
6481         next_free = le16_to_cpu(el->l_next_free_rec);
6482         rec = NULL;
6483         if (ocfs2_is_empty_extent(&el->l_recs[0])) {
6484                 if (next_free > 2)
6485                         goto out;
6486
6487                 /* We may have a valid extent in index 1, check it. */
6488                 if (next_free == 2)
6489                         rec = &el->l_recs[1];
6490
6491                 /*
6492                  * Fall through - no more nonempty extents, so we want
6493                  * to delete this leaf.
6494                  */
6495         } else {
6496                 if (next_free > 1)
6497                         goto out;
6498
6499                 rec = &el->l_recs[0];
6500         }
6501
6502         if (rec) {
6503                 /*
6504                  * Check it we'll only be trimming off the end of this
6505                  * cluster.
6506                  */
6507                 if (le16_to_cpu(rec->e_leaf_clusters) > clusters_to_del)
6508                         goto out;
6509         }
6510
6511         ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, &cpos);
6512         if (ret) {
6513                 mlog_errno(ret);
6514                 goto out;
6515         }
6516
6517         ret = ocfs2_find_leaf(INODE_CACHE(inode), path_root_el(path), cpos, &bh);
6518         if (ret) {
6519                 mlog_errno(ret);
6520                 goto out;
6521         }
6522
6523         eb = (struct ocfs2_extent_block *) bh->b_data;
6524         el = &eb->h_list;
6525
6526         /* ocfs2_find_leaf() gets the eb from ocfs2_read_extent_block().
6527          * Any corruption is a code bug. */
6528         BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb));
6529
6530         *new_last_eb = bh;
6531         get_bh(*new_last_eb);
6532         mlog(0, "returning block %llu, (cpos: %u)\n",
6533              (unsigned long long)le64_to_cpu(eb->h_blkno), cpos);
6534 out:
6535         brelse(bh);
6536
6537         return ret;
6538 }
6539
6540 /*
6541  * Trim some clusters off the rightmost edge of a tree. Only called
6542  * during truncate.
6543  *
6544  * The caller needs to:
6545  *   - start journaling of each path component.
6546  *   - compute and fully set up any new last ext block
6547  */
6548 static int ocfs2_trim_tree(struct inode *inode, struct ocfs2_path *path,
6549                            handle_t *handle, struct ocfs2_truncate_context *tc,
6550                            u32 clusters_to_del, u64 *delete_start)
6551 {
6552         int ret, i, index = path->p_tree_depth;
6553         u32 new_edge = 0;
6554         u64 deleted_eb = 0;
6555         struct buffer_head *bh;
6556         struct ocfs2_extent_list *el;
6557         struct ocfs2_extent_rec *rec;
6558
6559         *delete_start = 0;
6560
6561         while (index >= 0) {
6562                 bh = path->p_node[index].bh;
6563                 el = path->p_node[index].el;
6564
6565                 mlog(0, "traveling tree (index = %d, block = %llu)\n",
6566                      index,  (unsigned long long)bh->b_blocknr);
6567
6568                 BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0);
6569
6570                 if (index !=
6571                     (path->p_tree_depth - le16_to_cpu(el->l_tree_depth))) {
6572                         ocfs2_error(inode->i_sb,
6573                                     "Inode %lu has invalid ext. block %llu",
6574                                     inode->i_ino,
6575                                     (unsigned long long)bh->b_blocknr);
6576                         ret = -EROFS;
6577                         goto out;
6578                 }
6579
6580 find_tail_record:
6581                 i = le16_to_cpu(el->l_next_free_rec) - 1;
6582                 rec = &el->l_recs[i];
6583
6584                 mlog(0, "Extent list before: record %d: (%u, %u, %llu), "
6585                      "next = %u\n", i, le32_to_cpu(rec->e_cpos),
6586                      ocfs2_rec_clusters(el, rec),
6587                      (unsigned long long)le64_to_cpu(rec->e_blkno),
6588                      le16_to_cpu(el->l_next_free_rec));
6589
6590                 BUG_ON(ocfs2_rec_clusters(el, rec) < clusters_to_del);
6591
6592                 if (le16_to_cpu(el->l_tree_depth) == 0) {
6593                         /*
6594                          * If the leaf block contains a single empty
6595                          * extent and no records, we can just remove
6596                          * the block.
6597                          */
6598                         if (i == 0 && ocfs2_is_empty_extent(rec)) {
6599                                 memset(rec, 0,
6600                                        sizeof(struct ocfs2_extent_rec));
6601                                 el->l_next_free_rec = cpu_to_le16(0);
6602
6603                                 goto delete;
6604                         }
6605
6606                         /*
6607                          * Remove any empty extents by shifting things
6608                          * left. That should make life much easier on
6609                          * the code below. This condition is rare
6610                          * enough that we shouldn't see a performance
6611                          * hit.
6612                          */
6613                         if (ocfs2_is_empty_extent(&el->l_recs[0])) {
6614                                 le16_add_cpu(&el->l_next_free_rec, -1);
6615
6616                                 for(i = 0;
6617                                     i < le16_to_cpu(el->l_next_free_rec); i++)
6618                                         el->l_recs[i] = el->l_recs[i + 1];
6619
6620                                 memset(&el->l_recs[i], 0,
6621                                        sizeof(struct ocfs2_extent_rec));
6622
6623                                 /*
6624                                  * We've modified our extent list. The
6625                                  * simplest way to handle this change
6626                                  * is to being the search from the
6627                                  * start again.
6628                                  */
6629                                 goto find_tail_record;
6630                         }
6631
6632                         le16_add_cpu(&rec->e_leaf_clusters, -clusters_to_del);
6633
6634                         /*
6635                          * We'll use "new_edge" on our way back up the
6636                          * tree to know what our rightmost cpos is.
6637                          */
6638                         new_edge = le16_to_cpu(rec->e_leaf_clusters);
6639                         new_edge += le32_to_cpu(rec->e_cpos);
6640
6641                         /*
6642                          * The caller will use this to delete data blocks.
6643                          */
6644                         *delete_start = le64_to_cpu(rec->e_blkno)
6645                                 + ocfs2_clusters_to_blocks(inode->i_sb,
6646                                         le16_to_cpu(rec->e_leaf_clusters));
6647
6648                         /*
6649                          * If it's now empty, remove this record.
6650                          */
6651                         if (le16_to_cpu(rec->e_leaf_clusters) == 0) {
6652                                 memset(rec, 0,
6653                                        sizeof(struct ocfs2_extent_rec));
6654                                 le16_add_cpu(&el->l_next_free_rec, -1);
6655                         }
6656                 } else {
6657                         if (le64_to_cpu(rec->e_blkno) == deleted_eb) {
6658                                 memset(rec, 0,
6659                                        sizeof(struct ocfs2_extent_rec));
6660                                 le16_add_cpu(&el->l_next_free_rec, -1);
6661
6662                                 goto delete;
6663                         }
6664
6665                         /* Can this actually happen? */
6666                         if (le16_to_cpu(el->l_next_free_rec) == 0)
6667                                 goto delete;
6668
6669                         /*
6670                          * We never actually deleted any clusters
6671                          * because our leaf was empty. There's no
6672                          * reason to adjust the rightmost edge then.
6673                          */
6674                         if (new_edge == 0)
6675                                 goto delete;
6676
6677                         rec->e_int_clusters = cpu_to_le32(new_edge);
6678                         le32_add_cpu(&rec->e_int_clusters,
6679                                      -le32_to_cpu(rec->e_cpos));
6680
6681                          /*
6682                           * A deleted child record should have been
6683                           * caught above.
6684                           */
6685                          BUG_ON(le32_to_cpu(rec->e_int_clusters) == 0);
6686                 }
6687
6688 delete:
6689                 ret = ocfs2_journal_dirty(handle, bh);
6690                 if (ret) {
6691                         mlog_errno(ret);
6692                         goto out;
6693                 }
6694
6695                 mlog(0, "extent list container %llu, after: record %d: "
6696                      "(%u, %u, %llu), next = %u.\n",
6697                      (unsigned long long)bh->b_blocknr, i,
6698                      le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec),
6699                      (unsigned long long)le64_to_cpu(rec->e_blkno),
6700                      le16_to_cpu(el->l_next_free_rec));
6701
6702                 /*
6703                  * We must be careful to only attempt delete of an
6704                  * extent block (and not the root inode block).
6705                  */
6706                 if (index > 0 && le16_to_cpu(el->l_next_free_rec) == 0) {
6707                         struct ocfs2_extent_block *eb =
6708                                 (struct ocfs2_extent_block *)bh->b_data;
6709
6710                         /*
6711                          * Save this for use when processing the
6712                          * parent block.
6713                          */
6714                         deleted_eb = le64_to_cpu(eb->h_blkno);
6715
6716                         mlog(0, "deleting this extent block.\n");
6717
6718                         ocfs2_remove_from_cache(INODE_CACHE(inode), bh);
6719
6720                         BUG_ON(ocfs2_rec_clusters(el, &el->l_recs[0]));
6721                         BUG_ON(le32_to_cpu(el->l_recs[0].e_cpos));
6722                         BUG_ON(le64_to_cpu(el->l_recs[0].e_blkno));
6723
6724                         ret = ocfs2_cache_extent_block_free(&tc->tc_dealloc, eb);
6725                         /* An error here is not fatal. */
6726                         if (ret < 0)
6727                                 mlog_errno(ret);
6728                 } else {
6729                         deleted_eb = 0;
6730                 }
6731
6732                 index--;
6733         }
6734
6735         ret = 0;
6736 out:
6737         return ret;
6738 }
6739
6740 static int ocfs2_do_truncate(struct ocfs2_super *osb,
6741                              unsigned int clusters_to_del,
6742                              struct inode *inode,
6743                              struct buffer_head *fe_bh,
6744                              handle_t *handle,
6745                              struct ocfs2_truncate_context *tc,
6746                              struct ocfs2_path *path)
6747 {
6748         int status;
6749         struct ocfs2_dinode *fe;
6750         struct ocfs2_extent_block *last_eb = NULL;
6751         struct ocfs2_extent_list *el;
6752         struct buffer_head *last_eb_bh = NULL;
6753         u64 delete_blk = 0;
6754
6755         fe = (struct ocfs2_dinode *) fe_bh->b_data;
6756
6757         status = ocfs2_find_new_last_ext_blk(inode, clusters_to_del,
6758                                              path, &last_eb_bh);
6759         if (status < 0) {
6760                 mlog_errno(status);
6761                 goto bail;
6762         }
6763
6764         /*
6765          * Each component will be touched, so we might as well journal
6766          * here to avoid having to handle errors later.
6767          */
6768         status = ocfs2_journal_access_path(INODE_CACHE(inode), handle, path);
6769         if (status < 0) {
6770                 mlog_errno(status);
6771                 goto bail;
6772         }
6773
6774         if (last_eb_bh) {
6775                 status = ocfs2_journal_access_eb(handle, INODE_CACHE(inode), last_eb_bh,
6776                                                  OCFS2_JOURNAL_ACCESS_WRITE);
6777                 if (status < 0) {
6778                         mlog_errno(status);
6779                         goto bail;
6780                 }
6781
6782                 last_eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
6783         }
6784
6785         el = &(fe->id2.i_list);
6786
6787         /*
6788          * Lower levels depend on this never happening, but it's best
6789          * to check it up here before changing the tree.
6790          */
6791         if (el->l_tree_depth && el->l_recs[0].e_int_clusters == 0) {
6792                 ocfs2_error(inode->i_sb,
6793                             "Inode %lu has an empty extent record, depth %u\n",
6794                             inode->i_ino, le16_to_cpu(el->l_tree_depth));
6795                 status = -EROFS;
6796                 goto bail;
6797         }
6798
6799         vfs_dq_free_space_nodirty(inode,
6800                         ocfs2_clusters_to_bytes(osb->sb, clusters_to_del));
6801         spin_lock(&OCFS2_I(inode)->ip_lock);
6802         OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters) -
6803                                       clusters_to_del;
6804         spin_unlock(&OCFS2_I(inode)->ip_lock);
6805         le32_add_cpu(&fe->i_clusters, -clusters_to_del);
6806         inode->i_blocks = ocfs2_inode_sector_count(inode);
6807
6808         status = ocfs2_trim_tree(inode, path, handle, tc,
6809                                  clusters_to_del, &delete_blk);
6810         if (status) {
6811                 mlog_errno(status);
6812                 goto bail;
6813         }
6814
6815         if (le32_to_cpu(fe->i_clusters) == 0) {
6816                 /* trunc to zero is a special case. */
6817                 el->l_tree_depth = 0;
6818                 fe->i_last_eb_blk = 0;
6819         } else if (last_eb)
6820                 fe->i_last_eb_blk = last_eb->h_blkno;
6821
6822         status = ocfs2_journal_dirty(handle, fe_bh);
6823         if (status < 0) {
6824                 mlog_errno(status);
6825                 goto bail;
6826         }
6827
6828         if (last_eb) {
6829                 /* If there will be a new last extent block, then by
6830                  * definition, there cannot be any leaves to the right of
6831                  * him. */
6832                 last_eb->h_next_leaf_blk = 0;
6833                 status = ocfs2_journal_dirty(handle, last_eb_bh);
6834                 if (status < 0) {
6835                         mlog_errno(status);
6836                         goto bail;
6837                 }
6838         }
6839
6840         if (delete_blk) {
6841                 status = ocfs2_truncate_log_append(osb, handle, delete_blk,
6842                                                    clusters_to_del);
6843                 if (status < 0) {
6844                         mlog_errno(status);
6845                         goto bail;
6846                 }
6847         }
6848         status = 0;
6849 bail:
6850         brelse(last_eb_bh);
6851         mlog_exit(status);
6852         return status;
6853 }
6854
6855 static int ocfs2_zero_func(handle_t *handle, struct buffer_head *bh)
6856 {
6857         set_buffer_uptodate(bh);
6858         mark_buffer_dirty(bh);
6859         return 0;
6860 }
6861
6862 static void ocfs2_map_and_dirty_page(struct inode *inode, handle_t *handle,
6863                                      unsigned int from, unsigned int to,
6864                                      struct page *page, int zero, u64 *phys)
6865 {
6866         int ret, partial = 0;
6867
6868         ret = ocfs2_map_page_blocks(page, phys, inode, from, to, 0);
6869         if (ret)
6870                 mlog_errno(ret);
6871
6872         if (zero)
6873                 zero_user_segment(page, from, to);
6874
6875         /*
6876          * Need to set the buffers we zero'd into uptodate
6877          * here if they aren't - ocfs2_map_page_blocks()
6878          * might've skipped some
6879          */
6880         ret = walk_page_buffers(handle, page_buffers(page),
6881                                 from, to, &partial,
6882                                 ocfs2_zero_func);
6883         if (ret < 0)
6884                 mlog_errno(ret);
6885         else if (ocfs2_should_order_data(inode)) {
6886                 ret = ocfs2_jbd2_file_inode(handle, inode);
6887                 if (ret < 0)
6888                         mlog_errno(ret);
6889         }
6890
6891         if (!partial)
6892                 SetPageUptodate(page);
6893
6894         flush_dcache_page(page);
6895 }
6896
6897 static void ocfs2_zero_cluster_pages(struct inode *inode, loff_t start,
6898                                      loff_t end, struct page **pages,
6899                                      int numpages, u64 phys, handle_t *handle)
6900 {
6901         int i;
6902         struct page *page;
6903         unsigned int from, to = PAGE_CACHE_SIZE;
6904         struct super_block *sb = inode->i_sb;
6905
6906         BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb)));
6907
6908         if (numpages == 0)
6909                 goto out;
6910
6911         to = PAGE_CACHE_SIZE;
6912         for(i = 0; i < numpages; i++) {
6913                 page = pages[i];
6914
6915                 from = start & (PAGE_CACHE_SIZE - 1);
6916                 if ((end >> PAGE_CACHE_SHIFT) == page->index)
6917                         to = end & (PAGE_CACHE_SIZE - 1);
6918
6919                 BUG_ON(from > PAGE_CACHE_SIZE);
6920                 BUG_ON(to > PAGE_CACHE_SIZE);
6921
6922                 ocfs2_map_and_dirty_page(inode, handle, from, to, page, 1,
6923                                          &phys);
6924
6925                 start = (page->index + 1) << PAGE_CACHE_SHIFT;
6926         }
6927 out:
6928         if (pages)
6929                 ocfs2_unlock_and_free_pages(pages, numpages);
6930 }
6931
6932 static int ocfs2_grab_eof_pages(struct inode *inode, loff_t start, loff_t end,
6933                                 struct page **pages, int *num)
6934 {
6935         int numpages, ret = 0;
6936         struct super_block *sb = inode->i_sb;
6937         struct address_space *mapping = inode->i_mapping;
6938         unsigned long index;
6939         loff_t last_page_bytes;
6940
6941         BUG_ON(start > end);
6942
6943         BUG_ON(start >> OCFS2_SB(sb)->s_clustersize_bits !=
6944                (end - 1) >> OCFS2_SB(sb)->s_clustersize_bits);
6945
6946         numpages = 0;
6947         last_page_bytes = PAGE_ALIGN(end);
6948         index = start >> PAGE_CACHE_SHIFT;
6949         do {
6950                 pages[numpages] = grab_cache_page(mapping, index);
6951                 if (!pages[numpages]) {
6952                         ret = -ENOMEM;
6953                         mlog_errno(ret);
6954                         goto out;
6955                 }
6956
6957                 numpages++;
6958                 index++;
6959         } while (index < (last_page_bytes >> PAGE_CACHE_SHIFT));
6960
6961 out:
6962         if (ret != 0) {
6963                 if (pages)
6964                         ocfs2_unlock_and_free_pages(pages, numpages);
6965                 numpages = 0;
6966         }
6967
6968         *num = numpages;
6969
6970         return ret;
6971 }
6972
6973 /*
6974  * Zero the area past i_size but still within an allocated
6975  * cluster. This avoids exposing nonzero data on subsequent file
6976  * extends.
6977  *
6978  * We need to call this before i_size is updated on the inode because
6979  * otherwise block_write_full_page() will skip writeout of pages past
6980  * i_size. The new_i_size parameter is passed for this reason.
6981  */
6982 int ocfs2_zero_range_for_truncate(struct inode *inode, handle_t *handle,
6983                                   u64 range_start, u64 range_end)
6984 {
6985         int ret = 0, numpages;
6986         struct page **pages = NULL;
6987         u64 phys;
6988         unsigned int ext_flags;
6989         struct super_block *sb = inode->i_sb;
6990
6991         /*
6992          * File systems which don't support sparse files zero on every
6993          * extend.
6994          */
6995         if (!ocfs2_sparse_alloc(OCFS2_SB(sb)))
6996                 return 0;
6997
6998         pages = kcalloc(ocfs2_pages_per_cluster(sb),
6999                         sizeof(struct page *), GFP_NOFS);
7000         if (pages == NULL) {
7001                 ret = -ENOMEM;
7002                 mlog_errno(ret);
7003                 goto out;
7004         }
7005
7006         if (range_start == range_end)
7007                 goto out;
7008
7009         ret = ocfs2_extent_map_get_blocks(inode,
7010                                           range_start >> sb->s_blocksize_bits,
7011                                           &phys, NULL, &ext_flags);
7012         if (ret) {
7013                 mlog_errno(ret);
7014                 goto out;
7015         }
7016
7017         /*
7018          * Tail is a hole, or is marked unwritten. In either case, we
7019          * can count on read and write to return/push zero's.
7020          */
7021         if (phys == 0 || ext_flags & OCFS2_EXT_UNWRITTEN)
7022                 goto out;
7023
7024         ret = ocfs2_grab_eof_pages(inode, range_start, range_end, pages,
7025                                    &numpages);
7026         if (ret) {
7027                 mlog_errno(ret);
7028                 goto out;
7029         }
7030
7031         ocfs2_zero_cluster_pages(inode, range_start, range_end, pages,
7032                                  numpages, phys, handle);
7033
7034         /*
7035          * Initiate writeout of the pages we zero'd here. We don't
7036          * wait on them - the truncate_inode_pages() call later will
7037          * do that for us.
7038          */
7039         ret = do_sync_mapping_range(inode->i_mapping, range_start,
7040                                     range_end - 1, SYNC_FILE_RANGE_WRITE);
7041         if (ret)
7042                 mlog_errno(ret);
7043
7044 out:
7045         if (pages)
7046                 kfree(pages);
7047
7048         return ret;
7049 }
7050
7051 static void ocfs2_zero_dinode_id2_with_xattr(struct inode *inode,
7052                                              struct ocfs2_dinode *di)
7053 {
7054         unsigned int blocksize = 1 << inode->i_sb->s_blocksize_bits;
7055         unsigned int xattrsize = le16_to_cpu(di->i_xattr_inline_size);
7056
7057         if (le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_XATTR_FL)
7058                 memset(&di->id2, 0, blocksize -
7059                                     offsetof(struct ocfs2_dinode, id2) -
7060                                     xattrsize);
7061         else
7062                 memset(&di->id2, 0, blocksize -
7063                                     offsetof(struct ocfs2_dinode, id2));
7064 }
7065
7066 void ocfs2_dinode_new_extent_list(struct inode *inode,
7067                                   struct ocfs2_dinode *di)
7068 {
7069         ocfs2_zero_dinode_id2_with_xattr(inode, di);
7070         di->id2.i_list.l_tree_depth = 0;
7071         di->id2.i_list.l_next_free_rec = 0;
7072         di->id2.i_list.l_count = cpu_to_le16(
7073                 ocfs2_extent_recs_per_inode_with_xattr(inode->i_sb, di));
7074 }
7075
7076 void ocfs2_set_inode_data_inline(struct inode *inode, struct ocfs2_dinode *di)
7077 {
7078         struct ocfs2_inode_info *oi = OCFS2_I(inode);
7079         struct ocfs2_inline_data *idata = &di->id2.i_data;
7080
7081         spin_lock(&oi->ip_lock);
7082         oi->ip_dyn_features |= OCFS2_INLINE_DATA_FL;
7083         di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
7084         spin_unlock(&oi->ip_lock);
7085
7086         /*
7087          * We clear the entire i_data structure here so that all
7088          * fields can be properly initialized.
7089          */
7090         ocfs2_zero_dinode_id2_with_xattr(inode, di);
7091
7092         idata->id_count = cpu_to_le16(
7093                         ocfs2_max_inline_data_with_xattr(inode->i_sb, di));
7094 }
7095
7096 int ocfs2_convert_inline_data_to_extents(struct inode *inode,
7097                                          struct buffer_head *di_bh)
7098 {
7099         int ret, i, has_data, num_pages = 0;
7100         handle_t *handle;
7101         u64 uninitialized_var(block);
7102         struct ocfs2_inode_info *oi = OCFS2_I(inode);
7103         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
7104         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
7105         struct ocfs2_alloc_context *data_ac = NULL;
7106         struct page **pages = NULL;
7107         loff_t end = osb->s_clustersize;
7108         struct ocfs2_extent_tree et;
7109         int did_quota = 0;
7110
7111         has_data = i_size_read(inode) ? 1 : 0;
7112
7113         if (has_data) {
7114                 pages = kcalloc(ocfs2_pages_per_cluster(osb->sb),
7115                                 sizeof(struct page *), GFP_NOFS);
7116                 if (pages == NULL) {
7117                         ret = -ENOMEM;
7118                         mlog_errno(ret);
7119                         goto out;
7120                 }
7121
7122                 ret = ocfs2_reserve_clusters(osb, 1, &data_ac);
7123                 if (ret) {
7124                         mlog_errno(ret);
7125                         goto out;
7126                 }
7127         }
7128
7129         handle = ocfs2_start_trans(osb,
7130                                    ocfs2_inline_to_extents_credits(osb->sb));
7131         if (IS_ERR(handle)) {
7132                 ret = PTR_ERR(handle);
7133                 mlog_errno(ret);
7134                 goto out_unlock;
7135         }
7136
7137         ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
7138                                       OCFS2_JOURNAL_ACCESS_WRITE);
7139         if (ret) {
7140                 mlog_errno(ret);
7141                 goto out_commit;
7142         }
7143
7144         if (has_data) {
7145                 u32 bit_off, num;
7146                 unsigned int page_end;
7147                 u64 phys;
7148
7149                 if (vfs_dq_alloc_space_nodirty(inode,
7150                                        ocfs2_clusters_to_bytes(osb->sb, 1))) {
7151                         ret = -EDQUOT;
7152                         goto out_commit;
7153                 }
7154                 did_quota = 1;
7155
7156                 ret = ocfs2_claim_clusters(osb, handle, data_ac, 1, &bit_off,
7157                                            &num);
7158                 if (ret) {
7159                         mlog_errno(ret);
7160                         goto out_commit;
7161                 }
7162
7163                 /*
7164                  * Save two copies, one for insert, and one that can
7165                  * be changed by ocfs2_map_and_dirty_page() below.
7166                  */
7167                 block = phys = ocfs2_clusters_to_blocks(inode->i_sb, bit_off);
7168
7169                 /*
7170                  * Non sparse file systems zero on extend, so no need
7171                  * to do that now.
7172                  */
7173                 if (!ocfs2_sparse_alloc(osb) &&
7174                     PAGE_CACHE_SIZE < osb->s_clustersize)
7175                         end = PAGE_CACHE_SIZE;
7176
7177                 ret = ocfs2_grab_eof_pages(inode, 0, end, pages, &num_pages);
7178                 if (ret) {
7179                         mlog_errno(ret);
7180                         goto out_commit;
7181                 }
7182
7183                 /*
7184                  * This should populate the 1st page for us and mark
7185                  * it up to date.
7186                  */
7187                 ret = ocfs2_read_inline_data(inode, pages[0], di_bh);
7188                 if (ret) {
7189                         mlog_errno(ret);
7190                         goto out_commit;
7191                 }
7192
7193                 page_end = PAGE_CACHE_SIZE;
7194                 if (PAGE_CACHE_SIZE > osb->s_clustersize)
7195                         page_end = osb->s_clustersize;
7196
7197                 for (i = 0; i < num_pages; i++)
7198                         ocfs2_map_and_dirty_page(inode, handle, 0, page_end,
7199                                                  pages[i], i > 0, &phys);
7200         }
7201
7202         spin_lock(&oi->ip_lock);
7203         oi->ip_dyn_features &= ~OCFS2_INLINE_DATA_FL;
7204         di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
7205         spin_unlock(&oi->ip_lock);
7206
7207         ocfs2_dinode_new_extent_list(inode, di);
7208
7209         ocfs2_journal_dirty(handle, di_bh);
7210
7211         if (has_data) {
7212                 /*
7213                  * An error at this point should be extremely rare. If
7214                  * this proves to be false, we could always re-build
7215                  * the in-inode data from our pages.
7216                  */
7217                 ocfs2_init_dinode_extent_tree(&et, inode, di_bh);
7218                 ret = ocfs2_insert_extent(osb, handle, inode, &et,
7219                                           0, block, 1, 0, NULL);
7220                 if (ret) {
7221                         mlog_errno(ret);
7222                         goto out_commit;
7223                 }
7224
7225                 inode->i_blocks = ocfs2_inode_sector_count(inode);
7226         }
7227
7228 out_commit:
7229         if (ret < 0 && did_quota)
7230                 vfs_dq_free_space_nodirty(inode,
7231                                           ocfs2_clusters_to_bytes(osb->sb, 1));
7232
7233         ocfs2_commit_trans(osb, handle);
7234
7235 out_unlock:
7236         if (data_ac)
7237                 ocfs2_free_alloc_context(data_ac);
7238
7239 out:
7240         if (pages) {
7241                 ocfs2_unlock_and_free_pages(pages, num_pages);
7242                 kfree(pages);
7243         }
7244
7245         return ret;
7246 }
7247
7248 /*
7249  * It is expected, that by the time you call this function,
7250  * inode->i_size and fe->i_size have been adjusted.
7251  *
7252  * WARNING: This will kfree the truncate context
7253  */
7254 int ocfs2_commit_truncate(struct ocfs2_super *osb,
7255                           struct inode *inode,
7256                           struct buffer_head *fe_bh,
7257                           struct ocfs2_truncate_context *tc)
7258 {
7259         int status, i, credits, tl_sem = 0;
7260         u32 clusters_to_del, new_highest_cpos, range;
7261         struct ocfs2_extent_list *el;
7262         handle_t *handle = NULL;
7263         struct inode *tl_inode = osb->osb_tl_inode;
7264         struct ocfs2_path *path = NULL;
7265         struct ocfs2_dinode *di = (struct ocfs2_dinode *)fe_bh->b_data;
7266
7267         mlog_entry_void();
7268
7269         new_highest_cpos = ocfs2_clusters_for_bytes(osb->sb,
7270                                                      i_size_read(inode));
7271
7272         path = ocfs2_new_path(fe_bh, &di->id2.i_list,
7273                               ocfs2_journal_access_di);
7274         if (!path) {
7275                 status = -ENOMEM;
7276                 mlog_errno(status);
7277                 goto bail;
7278         }
7279
7280         ocfs2_extent_map_trunc(inode, new_highest_cpos);
7281
7282 start:
7283         /*
7284          * Check that we still have allocation to delete.
7285          */
7286         if (OCFS2_I(inode)->ip_clusters == 0) {
7287                 status = 0;
7288                 goto bail;
7289         }
7290
7291         /*
7292          * Truncate always works against the rightmost tree branch.
7293          */
7294         status = ocfs2_find_path(INODE_CACHE(inode), path, UINT_MAX);
7295         if (status) {
7296                 mlog_errno(status);
7297                 goto bail;
7298         }
7299
7300         mlog(0, "inode->ip_clusters = %u, tree_depth = %u\n",
7301              OCFS2_I(inode)->ip_clusters, path->p_tree_depth);
7302
7303         /*
7304          * By now, el will point to the extent list on the bottom most
7305          * portion of this tree. Only the tail record is considered in
7306          * each pass.
7307          *
7308          * We handle the following cases, in order:
7309          * - empty extent: delete the remaining branch
7310          * - remove the entire record
7311          * - remove a partial record
7312          * - no record needs to be removed (truncate has completed)
7313          */
7314         el = path_leaf_el(path);
7315         if (le16_to_cpu(el->l_next_free_rec) == 0) {
7316                 ocfs2_error(inode->i_sb,
7317                             "Inode %llu has empty extent block at %llu\n",
7318                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
7319                             (unsigned long long)path_leaf_bh(path)->b_blocknr);
7320                 status = -EROFS;
7321                 goto bail;
7322         }
7323
7324         i = le16_to_cpu(el->l_next_free_rec) - 1;
7325         range = le32_to_cpu(el->l_recs[i].e_cpos) +
7326                 ocfs2_rec_clusters(el, &el->l_recs[i]);
7327         if (i == 0 && ocfs2_is_empty_extent(&el->l_recs[i])) {
7328                 clusters_to_del = 0;
7329         } else if (le32_to_cpu(el->l_recs[i].e_cpos) >= new_highest_cpos) {
7330                 clusters_to_del = ocfs2_rec_clusters(el, &el->l_recs[i]);
7331         } else if (range > new_highest_cpos) {
7332                 clusters_to_del = (ocfs2_rec_clusters(el, &el->l_recs[i]) +
7333                                    le32_to_cpu(el->l_recs[i].e_cpos)) -
7334                                   new_highest_cpos;
7335         } else {
7336                 status = 0;
7337                 goto bail;
7338         }
7339
7340         mlog(0, "clusters_to_del = %u in this pass, tail blk=%llu\n",
7341              clusters_to_del, (unsigned long long)path_leaf_bh(path)->b_blocknr);
7342
7343         mutex_lock(&tl_inode->i_mutex);
7344         tl_sem = 1;
7345         /* ocfs2_truncate_log_needs_flush guarantees us at least one
7346          * record is free for use. If there isn't any, we flush to get
7347          * an empty truncate log.  */
7348         if (ocfs2_truncate_log_needs_flush(osb)) {
7349                 status = __ocfs2_flush_truncate_log(osb);
7350                 if (status < 0) {
7351                         mlog_errno(status);
7352                         goto bail;
7353                 }
7354         }
7355
7356         credits = ocfs2_calc_tree_trunc_credits(osb->sb, clusters_to_del,
7357                                                 (struct ocfs2_dinode *)fe_bh->b_data,
7358                                                 el);
7359         handle = ocfs2_start_trans(osb, credits);
7360         if (IS_ERR(handle)) {
7361                 status = PTR_ERR(handle);
7362                 handle = NULL;
7363                 mlog_errno(status);
7364                 goto bail;
7365         }
7366
7367         status = ocfs2_do_truncate(osb, clusters_to_del, inode, fe_bh, handle,
7368                                    tc, path);
7369         if (status < 0) {
7370                 mlog_errno(status);
7371                 goto bail;
7372         }
7373
7374         mutex_unlock(&tl_inode->i_mutex);
7375         tl_sem = 0;
7376
7377         ocfs2_commit_trans(osb, handle);
7378         handle = NULL;
7379
7380         ocfs2_reinit_path(path, 1);
7381
7382         /*
7383          * The check above will catch the case where we've truncated
7384          * away all allocation.
7385          */
7386         goto start;
7387
7388 bail:
7389
7390         ocfs2_schedule_truncate_log_flush(osb, 1);
7391
7392         if (tl_sem)
7393                 mutex_unlock(&tl_inode->i_mutex);
7394
7395         if (handle)
7396                 ocfs2_commit_trans(osb, handle);
7397
7398         ocfs2_run_deallocs(osb, &tc->tc_dealloc);
7399
7400         ocfs2_free_path(path);
7401
7402         /* This will drop the ext_alloc cluster lock for us */
7403         ocfs2_free_truncate_context(tc);
7404
7405         mlog_exit(status);
7406         return status;
7407 }
7408
7409 /*
7410  * Expects the inode to already be locked.
7411  */
7412 int ocfs2_prepare_truncate(struct ocfs2_super *osb,
7413                            struct inode *inode,
7414                            struct buffer_head *fe_bh,
7415                            struct ocfs2_truncate_context **tc)
7416 {
7417         int status;
7418         unsigned int new_i_clusters;
7419         struct ocfs2_dinode *fe;
7420         struct ocfs2_extent_block *eb;
7421         struct buffer_head *last_eb_bh = NULL;
7422
7423         mlog_entry_void();
7424
7425         *tc = NULL;
7426
7427         new_i_clusters = ocfs2_clusters_for_bytes(osb->sb,
7428                                                   i_size_read(inode));
7429         fe = (struct ocfs2_dinode *) fe_bh->b_data;
7430
7431         mlog(0, "fe->i_clusters = %u, new_i_clusters = %u, fe->i_size ="
7432              "%llu\n", le32_to_cpu(fe->i_clusters), new_i_clusters,
7433              (unsigned long long)le64_to_cpu(fe->i_size));
7434
7435         *tc = kzalloc(sizeof(struct ocfs2_truncate_context), GFP_KERNEL);
7436         if (!(*tc)) {
7437                 status = -ENOMEM;
7438                 mlog_errno(status);
7439                 goto bail;
7440         }
7441         ocfs2_init_dealloc_ctxt(&(*tc)->tc_dealloc);
7442
7443         if (fe->id2.i_list.l_tree_depth) {
7444                 status = ocfs2_read_extent_block(INODE_CACHE(inode),
7445                                                  le64_to_cpu(fe->i_last_eb_blk),
7446                                                  &last_eb_bh);
7447                 if (status < 0) {
7448                         mlog_errno(status);
7449                         goto bail;
7450                 }
7451                 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
7452         }
7453
7454         (*tc)->tc_last_eb_bh = last_eb_bh;
7455
7456         status = 0;
7457 bail:
7458         if (status < 0) {
7459                 if (*tc)
7460                         ocfs2_free_truncate_context(*tc);
7461                 *tc = NULL;
7462         }
7463         mlog_exit_void();
7464         return status;
7465 }
7466
7467 /*
7468  * 'start' is inclusive, 'end' is not.
7469  */
7470 int ocfs2_truncate_inline(struct inode *inode, struct buffer_head *di_bh,
7471                           unsigned int start, unsigned int end, int trunc)
7472 {
7473         int ret;
7474         unsigned int numbytes;
7475         handle_t *handle;
7476         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
7477         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
7478         struct ocfs2_inline_data *idata = &di->id2.i_data;
7479
7480         if (end > i_size_read(inode))
7481                 end = i_size_read(inode);
7482
7483         BUG_ON(start >= end);
7484
7485         if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) ||
7486             !(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL) ||
7487             !ocfs2_supports_inline_data(osb)) {
7488                 ocfs2_error(inode->i_sb,
7489                             "Inline data flags for inode %llu don't agree! "
7490                             "Disk: 0x%x, Memory: 0x%x, Superblock: 0x%x\n",
7491                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
7492                             le16_to_cpu(di->i_dyn_features),
7493                             OCFS2_I(inode)->ip_dyn_features,
7494                             osb->s_feature_incompat);
7495                 ret = -EROFS;
7496                 goto out;
7497         }
7498
7499         handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
7500         if (IS_ERR(handle)) {
7501                 ret = PTR_ERR(handle);
7502                 mlog_errno(ret);
7503                 goto out;
7504         }
7505
7506         ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
7507                                       OCFS2_JOURNAL_ACCESS_WRITE);
7508         if (ret) {
7509                 mlog_errno(ret);
7510                 goto out_commit;
7511         }
7512
7513         numbytes = end - start;
7514         memset(idata->id_data + start, 0, numbytes);
7515
7516         /*
7517          * No need to worry about the data page here - it's been
7518          * truncated already and inline data doesn't need it for
7519          * pushing zero's to disk, so we'll let readpage pick it up
7520          * later.
7521          */
7522         if (trunc) {
7523                 i_size_write(inode, start);
7524                 di->i_size = cpu_to_le64(start);
7525         }
7526
7527         inode->i_blocks = ocfs2_inode_sector_count(inode);
7528         inode->i_ctime = inode->i_mtime = CURRENT_TIME;
7529
7530         di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec);
7531         di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
7532
7533         ocfs2_journal_dirty(handle, di_bh);
7534
7535 out_commit:
7536         ocfs2_commit_trans(osb, handle);
7537
7538 out:
7539         return ret;
7540 }
7541
7542 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc)
7543 {
7544         /*
7545          * The caller is responsible for completing deallocation
7546          * before freeing the context.
7547          */
7548         if (tc->tc_dealloc.c_first_suballocator != NULL)
7549                 mlog(ML_NOTICE,
7550                      "Truncate completion has non-empty dealloc context\n");
7551
7552         brelse(tc->tc_last_eb_bh);
7553
7554         kfree(tc);
7555 }