ocfs2: ocfs2_create_new_meta_bhs() doesn't need struct inode.
[safe/jmp/linux-2.6] / fs / ocfs2 / alloc.c
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * alloc.c
5  *
6  * Extent allocs and frees
7  *
8  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public
12  * License as published by the Free Software Foundation; either
13  * version 2 of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public
21  * License along with this program; if not, write to the
22  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23  * Boston, MA 021110-1307, USA.
24  */
25
26 #include <linux/fs.h>
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/swap.h>
31 #include <linux/quotaops.h>
32
33 #define MLOG_MASK_PREFIX ML_DISK_ALLOC
34 #include <cluster/masklog.h>
35
36 #include "ocfs2.h"
37
38 #include "alloc.h"
39 #include "aops.h"
40 #include "blockcheck.h"
41 #include "dlmglue.h"
42 #include "extent_map.h"
43 #include "inode.h"
44 #include "journal.h"
45 #include "localalloc.h"
46 #include "suballoc.h"
47 #include "sysfile.h"
48 #include "file.h"
49 #include "super.h"
50 #include "uptodate.h"
51 #include "xattr.h"
52
53 #include "buffer_head_io.h"
54
55
56 /*
57  * Operations for a specific extent tree type.
58  *
59  * To implement an on-disk btree (extent tree) type in ocfs2, add
60  * an ocfs2_extent_tree_operations structure and the matching
61  * ocfs2_init_<thingy>_extent_tree() function.  That's pretty much it
62  * for the allocation portion of the extent tree.
63  */
64 struct ocfs2_extent_tree_operations {
65         /*
66          * last_eb_blk is the block number of the right most leaf extent
67          * block.  Most on-disk structures containing an extent tree store
68          * this value for fast access.  The ->eo_set_last_eb_blk() and
69          * ->eo_get_last_eb_blk() operations access this value.  They are
70          *  both required.
71          */
72         void (*eo_set_last_eb_blk)(struct ocfs2_extent_tree *et,
73                                    u64 blkno);
74         u64 (*eo_get_last_eb_blk)(struct ocfs2_extent_tree *et);
75
76         /*
77          * The on-disk structure usually keeps track of how many total
78          * clusters are stored in this extent tree.  This function updates
79          * that value.  new_clusters is the delta, and must be
80          * added to the total.  Required.
81          */
82         void (*eo_update_clusters)(struct inode *inode,
83                                    struct ocfs2_extent_tree *et,
84                                    u32 new_clusters);
85
86         /*
87          * If ->eo_insert_check() exists, it is called before rec is
88          * inserted into the extent tree.  It is optional.
89          */
90         int (*eo_insert_check)(struct inode *inode,
91                                struct ocfs2_extent_tree *et,
92                                struct ocfs2_extent_rec *rec);
93         int (*eo_sanity_check)(struct inode *inode, struct ocfs2_extent_tree *et);
94
95         /*
96          * --------------------------------------------------------------
97          * The remaining are internal to ocfs2_extent_tree and don't have
98          * accessor functions
99          */
100
101         /*
102          * ->eo_fill_root_el() takes et->et_object and sets et->et_root_el.
103          * It is required.
104          */
105         void (*eo_fill_root_el)(struct ocfs2_extent_tree *et);
106
107         /*
108          * ->eo_fill_max_leaf_clusters sets et->et_max_leaf_clusters if
109          * it exists.  If it does not, et->et_max_leaf_clusters is set
110          * to 0 (unlimited).  Optional.
111          */
112         void (*eo_fill_max_leaf_clusters)(struct inode *inode,
113                                           struct ocfs2_extent_tree *et);
114 };
115
116
117 /*
118  * Pre-declare ocfs2_dinode_et_ops so we can use it as a sanity check
119  * in the methods.
120  */
121 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et);
122 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et,
123                                          u64 blkno);
124 static void ocfs2_dinode_update_clusters(struct inode *inode,
125                                          struct ocfs2_extent_tree *et,
126                                          u32 clusters);
127 static int ocfs2_dinode_insert_check(struct inode *inode,
128                                      struct ocfs2_extent_tree *et,
129                                      struct ocfs2_extent_rec *rec);
130 static int ocfs2_dinode_sanity_check(struct inode *inode,
131                                      struct ocfs2_extent_tree *et);
132 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et);
133 static struct ocfs2_extent_tree_operations ocfs2_dinode_et_ops = {
134         .eo_set_last_eb_blk     = ocfs2_dinode_set_last_eb_blk,
135         .eo_get_last_eb_blk     = ocfs2_dinode_get_last_eb_blk,
136         .eo_update_clusters     = ocfs2_dinode_update_clusters,
137         .eo_insert_check        = ocfs2_dinode_insert_check,
138         .eo_sanity_check        = ocfs2_dinode_sanity_check,
139         .eo_fill_root_el        = ocfs2_dinode_fill_root_el,
140 };
141
142 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et,
143                                          u64 blkno)
144 {
145         struct ocfs2_dinode *di = et->et_object;
146
147         BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
148         di->i_last_eb_blk = cpu_to_le64(blkno);
149 }
150
151 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et)
152 {
153         struct ocfs2_dinode *di = et->et_object;
154
155         BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
156         return le64_to_cpu(di->i_last_eb_blk);
157 }
158
159 static void ocfs2_dinode_update_clusters(struct inode *inode,
160                                          struct ocfs2_extent_tree *et,
161                                          u32 clusters)
162 {
163         struct ocfs2_dinode *di = et->et_object;
164
165         le32_add_cpu(&di->i_clusters, clusters);
166         spin_lock(&OCFS2_I(inode)->ip_lock);
167         OCFS2_I(inode)->ip_clusters = le32_to_cpu(di->i_clusters);
168         spin_unlock(&OCFS2_I(inode)->ip_lock);
169 }
170
171 static int ocfs2_dinode_insert_check(struct inode *inode,
172                                      struct ocfs2_extent_tree *et,
173                                      struct ocfs2_extent_rec *rec)
174 {
175         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
176
177         BUG_ON(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL);
178         mlog_bug_on_msg(!ocfs2_sparse_alloc(osb) &&
179                         (OCFS2_I(inode)->ip_clusters !=
180                          le32_to_cpu(rec->e_cpos)),
181                         "Device %s, asking for sparse allocation: inode %llu, "
182                         "cpos %u, clusters %u\n",
183                         osb->dev_str,
184                         (unsigned long long)OCFS2_I(inode)->ip_blkno,
185                         rec->e_cpos,
186                         OCFS2_I(inode)->ip_clusters);
187
188         return 0;
189 }
190
191 static int ocfs2_dinode_sanity_check(struct inode *inode,
192                                      struct ocfs2_extent_tree *et)
193 {
194         struct ocfs2_dinode *di = et->et_object;
195
196         BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
197         BUG_ON(!OCFS2_IS_VALID_DINODE(di));
198
199         return 0;
200 }
201
202 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et)
203 {
204         struct ocfs2_dinode *di = et->et_object;
205
206         et->et_root_el = &di->id2.i_list;
207 }
208
209
210 static void ocfs2_xattr_value_fill_root_el(struct ocfs2_extent_tree *et)
211 {
212         struct ocfs2_xattr_value_buf *vb = et->et_object;
213
214         et->et_root_el = &vb->vb_xv->xr_list;
215 }
216
217 static void ocfs2_xattr_value_set_last_eb_blk(struct ocfs2_extent_tree *et,
218                                               u64 blkno)
219 {
220         struct ocfs2_xattr_value_buf *vb = et->et_object;
221
222         vb->vb_xv->xr_last_eb_blk = cpu_to_le64(blkno);
223 }
224
225 static u64 ocfs2_xattr_value_get_last_eb_blk(struct ocfs2_extent_tree *et)
226 {
227         struct ocfs2_xattr_value_buf *vb = et->et_object;
228
229         return le64_to_cpu(vb->vb_xv->xr_last_eb_blk);
230 }
231
232 static void ocfs2_xattr_value_update_clusters(struct inode *inode,
233                                               struct ocfs2_extent_tree *et,
234                                               u32 clusters)
235 {
236         struct ocfs2_xattr_value_buf *vb = et->et_object;
237
238         le32_add_cpu(&vb->vb_xv->xr_clusters, clusters);
239 }
240
241 static struct ocfs2_extent_tree_operations ocfs2_xattr_value_et_ops = {
242         .eo_set_last_eb_blk     = ocfs2_xattr_value_set_last_eb_blk,
243         .eo_get_last_eb_blk     = ocfs2_xattr_value_get_last_eb_blk,
244         .eo_update_clusters     = ocfs2_xattr_value_update_clusters,
245         .eo_fill_root_el        = ocfs2_xattr_value_fill_root_el,
246 };
247
248 static void ocfs2_xattr_tree_fill_root_el(struct ocfs2_extent_tree *et)
249 {
250         struct ocfs2_xattr_block *xb = et->et_object;
251
252         et->et_root_el = &xb->xb_attrs.xb_root.xt_list;
253 }
254
255 static void ocfs2_xattr_tree_fill_max_leaf_clusters(struct inode *inode,
256                                                     struct ocfs2_extent_tree *et)
257 {
258         et->et_max_leaf_clusters =
259                 ocfs2_clusters_for_bytes(inode->i_sb,
260                                          OCFS2_MAX_XATTR_TREE_LEAF_SIZE);
261 }
262
263 static void ocfs2_xattr_tree_set_last_eb_blk(struct ocfs2_extent_tree *et,
264                                              u64 blkno)
265 {
266         struct ocfs2_xattr_block *xb = et->et_object;
267         struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root;
268
269         xt->xt_last_eb_blk = cpu_to_le64(blkno);
270 }
271
272 static u64 ocfs2_xattr_tree_get_last_eb_blk(struct ocfs2_extent_tree *et)
273 {
274         struct ocfs2_xattr_block *xb = et->et_object;
275         struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root;
276
277         return le64_to_cpu(xt->xt_last_eb_blk);
278 }
279
280 static void ocfs2_xattr_tree_update_clusters(struct inode *inode,
281                                              struct ocfs2_extent_tree *et,
282                                              u32 clusters)
283 {
284         struct ocfs2_xattr_block *xb = et->et_object;
285
286         le32_add_cpu(&xb->xb_attrs.xb_root.xt_clusters, clusters);
287 }
288
289 static struct ocfs2_extent_tree_operations ocfs2_xattr_tree_et_ops = {
290         .eo_set_last_eb_blk     = ocfs2_xattr_tree_set_last_eb_blk,
291         .eo_get_last_eb_blk     = ocfs2_xattr_tree_get_last_eb_blk,
292         .eo_update_clusters     = ocfs2_xattr_tree_update_clusters,
293         .eo_fill_root_el        = ocfs2_xattr_tree_fill_root_el,
294         .eo_fill_max_leaf_clusters = ocfs2_xattr_tree_fill_max_leaf_clusters,
295 };
296
297 static void ocfs2_dx_root_set_last_eb_blk(struct ocfs2_extent_tree *et,
298                                           u64 blkno)
299 {
300         struct ocfs2_dx_root_block *dx_root = et->et_object;
301
302         dx_root->dr_last_eb_blk = cpu_to_le64(blkno);
303 }
304
305 static u64 ocfs2_dx_root_get_last_eb_blk(struct ocfs2_extent_tree *et)
306 {
307         struct ocfs2_dx_root_block *dx_root = et->et_object;
308
309         return le64_to_cpu(dx_root->dr_last_eb_blk);
310 }
311
312 static void ocfs2_dx_root_update_clusters(struct inode *inode,
313                                           struct ocfs2_extent_tree *et,
314                                           u32 clusters)
315 {
316         struct ocfs2_dx_root_block *dx_root = et->et_object;
317
318         le32_add_cpu(&dx_root->dr_clusters, clusters);
319 }
320
321 static int ocfs2_dx_root_sanity_check(struct inode *inode,
322                                       struct ocfs2_extent_tree *et)
323 {
324         struct ocfs2_dx_root_block *dx_root = et->et_object;
325
326         BUG_ON(!OCFS2_IS_VALID_DX_ROOT(dx_root));
327
328         return 0;
329 }
330
331 static void ocfs2_dx_root_fill_root_el(struct ocfs2_extent_tree *et)
332 {
333         struct ocfs2_dx_root_block *dx_root = et->et_object;
334
335         et->et_root_el = &dx_root->dr_list;
336 }
337
338 static struct ocfs2_extent_tree_operations ocfs2_dx_root_et_ops = {
339         .eo_set_last_eb_blk     = ocfs2_dx_root_set_last_eb_blk,
340         .eo_get_last_eb_blk     = ocfs2_dx_root_get_last_eb_blk,
341         .eo_update_clusters     = ocfs2_dx_root_update_clusters,
342         .eo_sanity_check        = ocfs2_dx_root_sanity_check,
343         .eo_fill_root_el        = ocfs2_dx_root_fill_root_el,
344 };
345
346 static void __ocfs2_init_extent_tree(struct ocfs2_extent_tree *et,
347                                      struct inode *inode,
348                                      struct buffer_head *bh,
349                                      ocfs2_journal_access_func access,
350                                      void *obj,
351                                      struct ocfs2_extent_tree_operations *ops)
352 {
353         et->et_ops = ops;
354         et->et_root_bh = bh;
355         et->et_ci = INODE_CACHE(inode);
356         et->et_root_journal_access = access;
357         if (!obj)
358                 obj = (void *)bh->b_data;
359         et->et_object = obj;
360
361         et->et_ops->eo_fill_root_el(et);
362         if (!et->et_ops->eo_fill_max_leaf_clusters)
363                 et->et_max_leaf_clusters = 0;
364         else
365                 et->et_ops->eo_fill_max_leaf_clusters(inode, et);
366 }
367
368 void ocfs2_init_dinode_extent_tree(struct ocfs2_extent_tree *et,
369                                    struct inode *inode,
370                                    struct buffer_head *bh)
371 {
372         __ocfs2_init_extent_tree(et, inode, bh, ocfs2_journal_access_di,
373                                  NULL, &ocfs2_dinode_et_ops);
374 }
375
376 void ocfs2_init_xattr_tree_extent_tree(struct ocfs2_extent_tree *et,
377                                        struct inode *inode,
378                                        struct buffer_head *bh)
379 {
380         __ocfs2_init_extent_tree(et, inode, bh, ocfs2_journal_access_xb,
381                                  NULL, &ocfs2_xattr_tree_et_ops);
382 }
383
384 void ocfs2_init_xattr_value_extent_tree(struct ocfs2_extent_tree *et,
385                                         struct inode *inode,
386                                         struct ocfs2_xattr_value_buf *vb)
387 {
388         __ocfs2_init_extent_tree(et, inode, vb->vb_bh, vb->vb_access, vb,
389                                  &ocfs2_xattr_value_et_ops);
390 }
391
392 void ocfs2_init_dx_root_extent_tree(struct ocfs2_extent_tree *et,
393                                     struct inode *inode,
394                                     struct buffer_head *bh)
395 {
396         __ocfs2_init_extent_tree(et, inode, bh, ocfs2_journal_access_dr,
397                                  NULL, &ocfs2_dx_root_et_ops);
398 }
399
400 static inline void ocfs2_et_set_last_eb_blk(struct ocfs2_extent_tree *et,
401                                             u64 new_last_eb_blk)
402 {
403         et->et_ops->eo_set_last_eb_blk(et, new_last_eb_blk);
404 }
405
406 static inline u64 ocfs2_et_get_last_eb_blk(struct ocfs2_extent_tree *et)
407 {
408         return et->et_ops->eo_get_last_eb_blk(et);
409 }
410
411 static inline void ocfs2_et_update_clusters(struct inode *inode,
412                                             struct ocfs2_extent_tree *et,
413                                             u32 clusters)
414 {
415         et->et_ops->eo_update_clusters(inode, et, clusters);
416 }
417
418 static inline int ocfs2_et_root_journal_access(handle_t *handle,
419                                                struct ocfs2_extent_tree *et,
420                                                int type)
421 {
422         return et->et_root_journal_access(handle, et->et_ci, et->et_root_bh,
423                                           type);
424 }
425
426 static inline int ocfs2_et_insert_check(struct inode *inode,
427                                         struct ocfs2_extent_tree *et,
428                                         struct ocfs2_extent_rec *rec)
429 {
430         int ret = 0;
431
432         if (et->et_ops->eo_insert_check)
433                 ret = et->et_ops->eo_insert_check(inode, et, rec);
434         return ret;
435 }
436
437 static inline int ocfs2_et_sanity_check(struct inode *inode,
438                                         struct ocfs2_extent_tree *et)
439 {
440         int ret = 0;
441
442         if (et->et_ops->eo_sanity_check)
443                 ret = et->et_ops->eo_sanity_check(inode, et);
444         return ret;
445 }
446
447 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc);
448 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
449                                          struct ocfs2_extent_block *eb);
450
451 /*
452  * Structures which describe a path through a btree, and functions to
453  * manipulate them.
454  *
455  * The idea here is to be as generic as possible with the tree
456  * manipulation code.
457  */
458 struct ocfs2_path_item {
459         struct buffer_head              *bh;
460         struct ocfs2_extent_list        *el;
461 };
462
463 #define OCFS2_MAX_PATH_DEPTH    5
464
465 struct ocfs2_path {
466         int                             p_tree_depth;
467         ocfs2_journal_access_func       p_root_access;
468         struct ocfs2_path_item          p_node[OCFS2_MAX_PATH_DEPTH];
469 };
470
471 #define path_root_bh(_path) ((_path)->p_node[0].bh)
472 #define path_root_el(_path) ((_path)->p_node[0].el)
473 #define path_root_access(_path)((_path)->p_root_access)
474 #define path_leaf_bh(_path) ((_path)->p_node[(_path)->p_tree_depth].bh)
475 #define path_leaf_el(_path) ((_path)->p_node[(_path)->p_tree_depth].el)
476 #define path_num_items(_path) ((_path)->p_tree_depth + 1)
477
478 static int ocfs2_find_path(struct ocfs2_caching_info *ci,
479                            struct ocfs2_path *path, u32 cpos);
480 static void ocfs2_adjust_rightmost_records(struct inode *inode,
481                                            handle_t *handle,
482                                            struct ocfs2_path *path,
483                                            struct ocfs2_extent_rec *insert_rec);
484 /*
485  * Reset the actual path elements so that we can re-use the structure
486  * to build another path. Generally, this involves freeing the buffer
487  * heads.
488  */
489 static void ocfs2_reinit_path(struct ocfs2_path *path, int keep_root)
490 {
491         int i, start = 0, depth = 0;
492         struct ocfs2_path_item *node;
493
494         if (keep_root)
495                 start = 1;
496
497         for(i = start; i < path_num_items(path); i++) {
498                 node = &path->p_node[i];
499
500                 brelse(node->bh);
501                 node->bh = NULL;
502                 node->el = NULL;
503         }
504
505         /*
506          * Tree depth may change during truncate, or insert. If we're
507          * keeping the root extent list, then make sure that our path
508          * structure reflects the proper depth.
509          */
510         if (keep_root)
511                 depth = le16_to_cpu(path_root_el(path)->l_tree_depth);
512         else
513                 path_root_access(path) = NULL;
514
515         path->p_tree_depth = depth;
516 }
517
518 static void ocfs2_free_path(struct ocfs2_path *path)
519 {
520         if (path) {
521                 ocfs2_reinit_path(path, 0);
522                 kfree(path);
523         }
524 }
525
526 /*
527  * All the elements of src into dest. After this call, src could be freed
528  * without affecting dest.
529  *
530  * Both paths should have the same root. Any non-root elements of dest
531  * will be freed.
532  */
533 static void ocfs2_cp_path(struct ocfs2_path *dest, struct ocfs2_path *src)
534 {
535         int i;
536
537         BUG_ON(path_root_bh(dest) != path_root_bh(src));
538         BUG_ON(path_root_el(dest) != path_root_el(src));
539         BUG_ON(path_root_access(dest) != path_root_access(src));
540
541         ocfs2_reinit_path(dest, 1);
542
543         for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
544                 dest->p_node[i].bh = src->p_node[i].bh;
545                 dest->p_node[i].el = src->p_node[i].el;
546
547                 if (dest->p_node[i].bh)
548                         get_bh(dest->p_node[i].bh);
549         }
550 }
551
552 /*
553  * Make the *dest path the same as src and re-initialize src path to
554  * have a root only.
555  */
556 static void ocfs2_mv_path(struct ocfs2_path *dest, struct ocfs2_path *src)
557 {
558         int i;
559
560         BUG_ON(path_root_bh(dest) != path_root_bh(src));
561         BUG_ON(path_root_access(dest) != path_root_access(src));
562
563         for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
564                 brelse(dest->p_node[i].bh);
565
566                 dest->p_node[i].bh = src->p_node[i].bh;
567                 dest->p_node[i].el = src->p_node[i].el;
568
569                 src->p_node[i].bh = NULL;
570                 src->p_node[i].el = NULL;
571         }
572 }
573
574 /*
575  * Insert an extent block at given index.
576  *
577  * This will not take an additional reference on eb_bh.
578  */
579 static inline void ocfs2_path_insert_eb(struct ocfs2_path *path, int index,
580                                         struct buffer_head *eb_bh)
581 {
582         struct ocfs2_extent_block *eb = (struct ocfs2_extent_block *)eb_bh->b_data;
583
584         /*
585          * Right now, no root bh is an extent block, so this helps
586          * catch code errors with dinode trees. The assertion can be
587          * safely removed if we ever need to insert extent block
588          * structures at the root.
589          */
590         BUG_ON(index == 0);
591
592         path->p_node[index].bh = eb_bh;
593         path->p_node[index].el = &eb->h_list;
594 }
595
596 static struct ocfs2_path *ocfs2_new_path(struct buffer_head *root_bh,
597                                          struct ocfs2_extent_list *root_el,
598                                          ocfs2_journal_access_func access)
599 {
600         struct ocfs2_path *path;
601
602         BUG_ON(le16_to_cpu(root_el->l_tree_depth) >= OCFS2_MAX_PATH_DEPTH);
603
604         path = kzalloc(sizeof(*path), GFP_NOFS);
605         if (path) {
606                 path->p_tree_depth = le16_to_cpu(root_el->l_tree_depth);
607                 get_bh(root_bh);
608                 path_root_bh(path) = root_bh;
609                 path_root_el(path) = root_el;
610                 path_root_access(path) = access;
611         }
612
613         return path;
614 }
615
616 static struct ocfs2_path *ocfs2_new_path_from_path(struct ocfs2_path *path)
617 {
618         return ocfs2_new_path(path_root_bh(path), path_root_el(path),
619                               path_root_access(path));
620 }
621
622 static struct ocfs2_path *ocfs2_new_path_from_et(struct ocfs2_extent_tree *et)
623 {
624         return ocfs2_new_path(et->et_root_bh, et->et_root_el,
625                               et->et_root_journal_access);
626 }
627
628 /*
629  * Journal the buffer at depth idx.  All idx>0 are extent_blocks,
630  * otherwise it's the root_access function.
631  *
632  * I don't like the way this function's name looks next to
633  * ocfs2_journal_access_path(), but I don't have a better one.
634  */
635 static int ocfs2_path_bh_journal_access(handle_t *handle,
636                                         struct ocfs2_caching_info *ci,
637                                         struct ocfs2_path *path,
638                                         int idx)
639 {
640         ocfs2_journal_access_func access = path_root_access(path);
641
642         if (!access)
643                 access = ocfs2_journal_access;
644
645         if (idx)
646                 access = ocfs2_journal_access_eb;
647
648         return access(handle, ci, path->p_node[idx].bh,
649                       OCFS2_JOURNAL_ACCESS_WRITE);
650 }
651
652 /*
653  * Convenience function to journal all components in a path.
654  */
655 static int ocfs2_journal_access_path(struct ocfs2_caching_info *ci,
656                                      handle_t *handle,
657                                      struct ocfs2_path *path)
658 {
659         int i, ret = 0;
660
661         if (!path)
662                 goto out;
663
664         for(i = 0; i < path_num_items(path); i++) {
665                 ret = ocfs2_path_bh_journal_access(handle, ci, path, i);
666                 if (ret < 0) {
667                         mlog_errno(ret);
668                         goto out;
669                 }
670         }
671
672 out:
673         return ret;
674 }
675
676 /*
677  * Return the index of the extent record which contains cluster #v_cluster.
678  * -1 is returned if it was not found.
679  *
680  * Should work fine on interior and exterior nodes.
681  */
682 int ocfs2_search_extent_list(struct ocfs2_extent_list *el, u32 v_cluster)
683 {
684         int ret = -1;
685         int i;
686         struct ocfs2_extent_rec *rec;
687         u32 rec_end, rec_start, clusters;
688
689         for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
690                 rec = &el->l_recs[i];
691
692                 rec_start = le32_to_cpu(rec->e_cpos);
693                 clusters = ocfs2_rec_clusters(el, rec);
694
695                 rec_end = rec_start + clusters;
696
697                 if (v_cluster >= rec_start && v_cluster < rec_end) {
698                         ret = i;
699                         break;
700                 }
701         }
702
703         return ret;
704 }
705
706 enum ocfs2_contig_type {
707         CONTIG_NONE = 0,
708         CONTIG_LEFT,
709         CONTIG_RIGHT,
710         CONTIG_LEFTRIGHT,
711 };
712
713
714 /*
715  * NOTE: ocfs2_block_extent_contig(), ocfs2_extents_adjacent() and
716  * ocfs2_extent_contig only work properly against leaf nodes!
717  */
718 static int ocfs2_block_extent_contig(struct super_block *sb,
719                                      struct ocfs2_extent_rec *ext,
720                                      u64 blkno)
721 {
722         u64 blk_end = le64_to_cpu(ext->e_blkno);
723
724         blk_end += ocfs2_clusters_to_blocks(sb,
725                                     le16_to_cpu(ext->e_leaf_clusters));
726
727         return blkno == blk_end;
728 }
729
730 static int ocfs2_extents_adjacent(struct ocfs2_extent_rec *left,
731                                   struct ocfs2_extent_rec *right)
732 {
733         u32 left_range;
734
735         left_range = le32_to_cpu(left->e_cpos) +
736                 le16_to_cpu(left->e_leaf_clusters);
737
738         return (left_range == le32_to_cpu(right->e_cpos));
739 }
740
741 static enum ocfs2_contig_type
742         ocfs2_extent_contig(struct inode *inode,
743                             struct ocfs2_extent_rec *ext,
744                             struct ocfs2_extent_rec *insert_rec)
745 {
746         u64 blkno = le64_to_cpu(insert_rec->e_blkno);
747
748         /*
749          * Refuse to coalesce extent records with different flag
750          * fields - we don't want to mix unwritten extents with user
751          * data.
752          */
753         if (ext->e_flags != insert_rec->e_flags)
754                 return CONTIG_NONE;
755
756         if (ocfs2_extents_adjacent(ext, insert_rec) &&
757             ocfs2_block_extent_contig(inode->i_sb, ext, blkno))
758                         return CONTIG_RIGHT;
759
760         blkno = le64_to_cpu(ext->e_blkno);
761         if (ocfs2_extents_adjacent(insert_rec, ext) &&
762             ocfs2_block_extent_contig(inode->i_sb, insert_rec, blkno))
763                 return CONTIG_LEFT;
764
765         return CONTIG_NONE;
766 }
767
768 /*
769  * NOTE: We can have pretty much any combination of contiguousness and
770  * appending.
771  *
772  * The usefulness of APPEND_TAIL is more in that it lets us know that
773  * we'll have to update the path to that leaf.
774  */
775 enum ocfs2_append_type {
776         APPEND_NONE = 0,
777         APPEND_TAIL,
778 };
779
780 enum ocfs2_split_type {
781         SPLIT_NONE = 0,
782         SPLIT_LEFT,
783         SPLIT_RIGHT,
784 };
785
786 struct ocfs2_insert_type {
787         enum ocfs2_split_type   ins_split;
788         enum ocfs2_append_type  ins_appending;
789         enum ocfs2_contig_type  ins_contig;
790         int                     ins_contig_index;
791         int                     ins_tree_depth;
792 };
793
794 struct ocfs2_merge_ctxt {
795         enum ocfs2_contig_type  c_contig_type;
796         int                     c_has_empty_extent;
797         int                     c_split_covers_rec;
798 };
799
800 static int ocfs2_validate_extent_block(struct super_block *sb,
801                                        struct buffer_head *bh)
802 {
803         int rc;
804         struct ocfs2_extent_block *eb =
805                 (struct ocfs2_extent_block *)bh->b_data;
806
807         mlog(0, "Validating extent block %llu\n",
808              (unsigned long long)bh->b_blocknr);
809
810         BUG_ON(!buffer_uptodate(bh));
811
812         /*
813          * If the ecc fails, we return the error but otherwise
814          * leave the filesystem running.  We know any error is
815          * local to this block.
816          */
817         rc = ocfs2_validate_meta_ecc(sb, bh->b_data, &eb->h_check);
818         if (rc) {
819                 mlog(ML_ERROR, "Checksum failed for extent block %llu\n",
820                      (unsigned long long)bh->b_blocknr);
821                 return rc;
822         }
823
824         /*
825          * Errors after here are fatal.
826          */
827
828         if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
829                 ocfs2_error(sb,
830                             "Extent block #%llu has bad signature %.*s",
831                             (unsigned long long)bh->b_blocknr, 7,
832                             eb->h_signature);
833                 return -EINVAL;
834         }
835
836         if (le64_to_cpu(eb->h_blkno) != bh->b_blocknr) {
837                 ocfs2_error(sb,
838                             "Extent block #%llu has an invalid h_blkno "
839                             "of %llu",
840                             (unsigned long long)bh->b_blocknr,
841                             (unsigned long long)le64_to_cpu(eb->h_blkno));
842                 return -EINVAL;
843         }
844
845         if (le32_to_cpu(eb->h_fs_generation) != OCFS2_SB(sb)->fs_generation) {
846                 ocfs2_error(sb,
847                             "Extent block #%llu has an invalid "
848                             "h_fs_generation of #%u",
849                             (unsigned long long)bh->b_blocknr,
850                             le32_to_cpu(eb->h_fs_generation));
851                 return -EINVAL;
852         }
853
854         return 0;
855 }
856
857 int ocfs2_read_extent_block(struct ocfs2_caching_info *ci, u64 eb_blkno,
858                             struct buffer_head **bh)
859 {
860         int rc;
861         struct buffer_head *tmp = *bh;
862
863         rc = ocfs2_read_block(ci, eb_blkno, &tmp,
864                               ocfs2_validate_extent_block);
865
866         /* If ocfs2_read_block() got us a new bh, pass it up. */
867         if (!rc && !*bh)
868                 *bh = tmp;
869
870         return rc;
871 }
872
873
874 /*
875  * How many free extents have we got before we need more meta data?
876  */
877 int ocfs2_num_free_extents(struct ocfs2_super *osb,
878                            struct ocfs2_extent_tree *et)
879 {
880         int retval;
881         struct ocfs2_extent_list *el = NULL;
882         struct ocfs2_extent_block *eb;
883         struct buffer_head *eb_bh = NULL;
884         u64 last_eb_blk = 0;
885
886         mlog_entry_void();
887
888         el = et->et_root_el;
889         last_eb_blk = ocfs2_et_get_last_eb_blk(et);
890
891         if (last_eb_blk) {
892                 retval = ocfs2_read_extent_block(et->et_ci, last_eb_blk,
893                                                  &eb_bh);
894                 if (retval < 0) {
895                         mlog_errno(retval);
896                         goto bail;
897                 }
898                 eb = (struct ocfs2_extent_block *) eb_bh->b_data;
899                 el = &eb->h_list;
900         }
901
902         BUG_ON(el->l_tree_depth != 0);
903
904         retval = le16_to_cpu(el->l_count) - le16_to_cpu(el->l_next_free_rec);
905 bail:
906         brelse(eb_bh);
907
908         mlog_exit(retval);
909         return retval;
910 }
911
912 /* expects array to already be allocated
913  *
914  * sets h_signature, h_blkno, h_suballoc_bit, h_suballoc_slot, and
915  * l_count for you
916  */
917 static int ocfs2_create_new_meta_bhs(handle_t *handle,
918                                      struct ocfs2_extent_tree *et,
919                                      int wanted,
920                                      struct ocfs2_alloc_context *meta_ac,
921                                      struct buffer_head *bhs[])
922 {
923         int count, status, i;
924         u16 suballoc_bit_start;
925         u32 num_got;
926         u64 first_blkno;
927         struct ocfs2_super *osb =
928                 OCFS2_SB(ocfs2_metadata_cache_get_super(et->et_ci));
929         struct ocfs2_extent_block *eb;
930
931         mlog_entry_void();
932
933         count = 0;
934         while (count < wanted) {
935                 status = ocfs2_claim_metadata(osb,
936                                               handle,
937                                               meta_ac,
938                                               wanted - count,
939                                               &suballoc_bit_start,
940                                               &num_got,
941                                               &first_blkno);
942                 if (status < 0) {
943                         mlog_errno(status);
944                         goto bail;
945                 }
946
947                 for(i = count;  i < (num_got + count); i++) {
948                         bhs[i] = sb_getblk(osb->sb, first_blkno);
949                         if (bhs[i] == NULL) {
950                                 status = -EIO;
951                                 mlog_errno(status);
952                                 goto bail;
953                         }
954                         ocfs2_set_new_buffer_uptodate(et->et_ci, bhs[i]);
955
956                         status = ocfs2_journal_access_eb(handle, et->et_ci,
957                                                          bhs[i],
958                                                          OCFS2_JOURNAL_ACCESS_CREATE);
959                         if (status < 0) {
960                                 mlog_errno(status);
961                                 goto bail;
962                         }
963
964                         memset(bhs[i]->b_data, 0, osb->sb->s_blocksize);
965                         eb = (struct ocfs2_extent_block *) bhs[i]->b_data;
966                         /* Ok, setup the minimal stuff here. */
967                         strcpy(eb->h_signature, OCFS2_EXTENT_BLOCK_SIGNATURE);
968                         eb->h_blkno = cpu_to_le64(first_blkno);
969                         eb->h_fs_generation = cpu_to_le32(osb->fs_generation);
970                         eb->h_suballoc_slot = cpu_to_le16(osb->slot_num);
971                         eb->h_suballoc_bit = cpu_to_le16(suballoc_bit_start);
972                         eb->h_list.l_count =
973                                 cpu_to_le16(ocfs2_extent_recs_per_eb(osb->sb));
974
975                         suballoc_bit_start++;
976                         first_blkno++;
977
978                         /* We'll also be dirtied by the caller, so
979                          * this isn't absolutely necessary. */
980                         status = ocfs2_journal_dirty(handle, bhs[i]);
981                         if (status < 0) {
982                                 mlog_errno(status);
983                                 goto bail;
984                         }
985                 }
986
987                 count += num_got;
988         }
989
990         status = 0;
991 bail:
992         if (status < 0) {
993                 for(i = 0; i < wanted; i++) {
994                         brelse(bhs[i]);
995                         bhs[i] = NULL;
996                 }
997         }
998         mlog_exit(status);
999         return status;
1000 }
1001
1002 /*
1003  * Helper function for ocfs2_add_branch() and ocfs2_shift_tree_depth().
1004  *
1005  * Returns the sum of the rightmost extent rec logical offset and
1006  * cluster count.
1007  *
1008  * ocfs2_add_branch() uses this to determine what logical cluster
1009  * value should be populated into the leftmost new branch records.
1010  *
1011  * ocfs2_shift_tree_depth() uses this to determine the # clusters
1012  * value for the new topmost tree record.
1013  */
1014 static inline u32 ocfs2_sum_rightmost_rec(struct ocfs2_extent_list  *el)
1015 {
1016         int i;
1017
1018         i = le16_to_cpu(el->l_next_free_rec) - 1;
1019
1020         return le32_to_cpu(el->l_recs[i].e_cpos) +
1021                 ocfs2_rec_clusters(el, &el->l_recs[i]);
1022 }
1023
1024 /*
1025  * Change range of the branches in the right most path according to the leaf
1026  * extent block's rightmost record.
1027  */
1028 static int ocfs2_adjust_rightmost_branch(handle_t *handle,
1029                                          struct inode *inode,
1030                                          struct ocfs2_extent_tree *et)
1031 {
1032         int status;
1033         struct ocfs2_path *path = NULL;
1034         struct ocfs2_extent_list *el;
1035         struct ocfs2_extent_rec *rec;
1036
1037         path = ocfs2_new_path_from_et(et);
1038         if (!path) {
1039                 status = -ENOMEM;
1040                 return status;
1041         }
1042
1043         status = ocfs2_find_path(et->et_ci, path, UINT_MAX);
1044         if (status < 0) {
1045                 mlog_errno(status);
1046                 goto out;
1047         }
1048
1049         status = ocfs2_extend_trans(handle, path_num_items(path) +
1050                                     handle->h_buffer_credits);
1051         if (status < 0) {
1052                 mlog_errno(status);
1053                 goto out;
1054         }
1055
1056         status = ocfs2_journal_access_path(INODE_CACHE(inode), handle, path);
1057         if (status < 0) {
1058                 mlog_errno(status);
1059                 goto out;
1060         }
1061
1062         el = path_leaf_el(path);
1063         rec = &el->l_recs[le32_to_cpu(el->l_next_free_rec) - 1];
1064
1065         ocfs2_adjust_rightmost_records(inode, handle, path, rec);
1066
1067 out:
1068         ocfs2_free_path(path);
1069         return status;
1070 }
1071
1072 /*
1073  * Add an entire tree branch to our inode. eb_bh is the extent block
1074  * to start at, if we don't want to start the branch at the dinode
1075  * structure.
1076  *
1077  * last_eb_bh is required as we have to update it's next_leaf pointer
1078  * for the new last extent block.
1079  *
1080  * the new branch will be 'empty' in the sense that every block will
1081  * contain a single record with cluster count == 0.
1082  */
1083 static int ocfs2_add_branch(struct ocfs2_super *osb,
1084                             handle_t *handle,
1085                             struct inode *inode,
1086                             struct ocfs2_extent_tree *et,
1087                             struct buffer_head *eb_bh,
1088                             struct buffer_head **last_eb_bh,
1089                             struct ocfs2_alloc_context *meta_ac)
1090 {
1091         int status, new_blocks, i;
1092         u64 next_blkno, new_last_eb_blk;
1093         struct buffer_head *bh;
1094         struct buffer_head **new_eb_bhs = NULL;
1095         struct ocfs2_extent_block *eb;
1096         struct ocfs2_extent_list  *eb_el;
1097         struct ocfs2_extent_list  *el;
1098         u32 new_cpos, root_end;
1099
1100         mlog_entry_void();
1101
1102         BUG_ON(!last_eb_bh || !*last_eb_bh);
1103
1104         if (eb_bh) {
1105                 eb = (struct ocfs2_extent_block *) eb_bh->b_data;
1106                 el = &eb->h_list;
1107         } else
1108                 el = et->et_root_el;
1109
1110         /* we never add a branch to a leaf. */
1111         BUG_ON(!el->l_tree_depth);
1112
1113         new_blocks = le16_to_cpu(el->l_tree_depth);
1114
1115         eb = (struct ocfs2_extent_block *)(*last_eb_bh)->b_data;
1116         new_cpos = ocfs2_sum_rightmost_rec(&eb->h_list);
1117         root_end = ocfs2_sum_rightmost_rec(et->et_root_el);
1118
1119         /*
1120          * If there is a gap before the root end and the real end
1121          * of the righmost leaf block, we need to remove the gap
1122          * between new_cpos and root_end first so that the tree
1123          * is consistent after we add a new branch(it will start
1124          * from new_cpos).
1125          */
1126         if (root_end > new_cpos) {
1127                 mlog(0, "adjust the cluster end from %u to %u\n",
1128                      root_end, new_cpos);
1129                 status = ocfs2_adjust_rightmost_branch(handle, inode, et);
1130                 if (status) {
1131                         mlog_errno(status);
1132                         goto bail;
1133                 }
1134         }
1135
1136         /* allocate the number of new eb blocks we need */
1137         new_eb_bhs = kcalloc(new_blocks, sizeof(struct buffer_head *),
1138                              GFP_KERNEL);
1139         if (!new_eb_bhs) {
1140                 status = -ENOMEM;
1141                 mlog_errno(status);
1142                 goto bail;
1143         }
1144
1145         status = ocfs2_create_new_meta_bhs(handle, et, new_blocks,
1146                                            meta_ac, new_eb_bhs);
1147         if (status < 0) {
1148                 mlog_errno(status);
1149                 goto bail;
1150         }
1151
1152         /* Note: new_eb_bhs[new_blocks - 1] is the guy which will be
1153          * linked with the rest of the tree.
1154          * conversly, new_eb_bhs[0] is the new bottommost leaf.
1155          *
1156          * when we leave the loop, new_last_eb_blk will point to the
1157          * newest leaf, and next_blkno will point to the topmost extent
1158          * block. */
1159         next_blkno = new_last_eb_blk = 0;
1160         for(i = 0; i < new_blocks; i++) {
1161                 bh = new_eb_bhs[i];
1162                 eb = (struct ocfs2_extent_block *) bh->b_data;
1163                 /* ocfs2_create_new_meta_bhs() should create it right! */
1164                 BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb));
1165                 eb_el = &eb->h_list;
1166
1167                 status = ocfs2_journal_access_eb(handle, INODE_CACHE(inode), bh,
1168                                                  OCFS2_JOURNAL_ACCESS_CREATE);
1169                 if (status < 0) {
1170                         mlog_errno(status);
1171                         goto bail;
1172                 }
1173
1174                 eb->h_next_leaf_blk = 0;
1175                 eb_el->l_tree_depth = cpu_to_le16(i);
1176                 eb_el->l_next_free_rec = cpu_to_le16(1);
1177                 /*
1178                  * This actually counts as an empty extent as
1179                  * c_clusters == 0
1180                  */
1181                 eb_el->l_recs[0].e_cpos = cpu_to_le32(new_cpos);
1182                 eb_el->l_recs[0].e_blkno = cpu_to_le64(next_blkno);
1183                 /*
1184                  * eb_el isn't always an interior node, but even leaf
1185                  * nodes want a zero'd flags and reserved field so
1186                  * this gets the whole 32 bits regardless of use.
1187                  */
1188                 eb_el->l_recs[0].e_int_clusters = cpu_to_le32(0);
1189                 if (!eb_el->l_tree_depth)
1190                         new_last_eb_blk = le64_to_cpu(eb->h_blkno);
1191
1192                 status = ocfs2_journal_dirty(handle, bh);
1193                 if (status < 0) {
1194                         mlog_errno(status);
1195                         goto bail;
1196                 }
1197
1198                 next_blkno = le64_to_cpu(eb->h_blkno);
1199         }
1200
1201         /* This is a bit hairy. We want to update up to three blocks
1202          * here without leaving any of them in an inconsistent state
1203          * in case of error. We don't have to worry about
1204          * journal_dirty erroring as it won't unless we've aborted the
1205          * handle (in which case we would never be here) so reserving
1206          * the write with journal_access is all we need to do. */
1207         status = ocfs2_journal_access_eb(handle, INODE_CACHE(inode), *last_eb_bh,
1208                                          OCFS2_JOURNAL_ACCESS_WRITE);
1209         if (status < 0) {
1210                 mlog_errno(status);
1211                 goto bail;
1212         }
1213         status = ocfs2_et_root_journal_access(handle, et,
1214                                               OCFS2_JOURNAL_ACCESS_WRITE);
1215         if (status < 0) {
1216                 mlog_errno(status);
1217                 goto bail;
1218         }
1219         if (eb_bh) {
1220                 status = ocfs2_journal_access_eb(handle, INODE_CACHE(inode), eb_bh,
1221                                                  OCFS2_JOURNAL_ACCESS_WRITE);
1222                 if (status < 0) {
1223                         mlog_errno(status);
1224                         goto bail;
1225                 }
1226         }
1227
1228         /* Link the new branch into the rest of the tree (el will
1229          * either be on the root_bh, or the extent block passed in. */
1230         i = le16_to_cpu(el->l_next_free_rec);
1231         el->l_recs[i].e_blkno = cpu_to_le64(next_blkno);
1232         el->l_recs[i].e_cpos = cpu_to_le32(new_cpos);
1233         el->l_recs[i].e_int_clusters = 0;
1234         le16_add_cpu(&el->l_next_free_rec, 1);
1235
1236         /* fe needs a new last extent block pointer, as does the
1237          * next_leaf on the previously last-extent-block. */
1238         ocfs2_et_set_last_eb_blk(et, new_last_eb_blk);
1239
1240         eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
1241         eb->h_next_leaf_blk = cpu_to_le64(new_last_eb_blk);
1242
1243         status = ocfs2_journal_dirty(handle, *last_eb_bh);
1244         if (status < 0)
1245                 mlog_errno(status);
1246         status = ocfs2_journal_dirty(handle, et->et_root_bh);
1247         if (status < 0)
1248                 mlog_errno(status);
1249         if (eb_bh) {
1250                 status = ocfs2_journal_dirty(handle, eb_bh);
1251                 if (status < 0)
1252                         mlog_errno(status);
1253         }
1254
1255         /*
1256          * Some callers want to track the rightmost leaf so pass it
1257          * back here.
1258          */
1259         brelse(*last_eb_bh);
1260         get_bh(new_eb_bhs[0]);
1261         *last_eb_bh = new_eb_bhs[0];
1262
1263         status = 0;
1264 bail:
1265         if (new_eb_bhs) {
1266                 for (i = 0; i < new_blocks; i++)
1267                         brelse(new_eb_bhs[i]);
1268                 kfree(new_eb_bhs);
1269         }
1270
1271         mlog_exit(status);
1272         return status;
1273 }
1274
1275 /*
1276  * adds another level to the allocation tree.
1277  * returns back the new extent block so you can add a branch to it
1278  * after this call.
1279  */
1280 static int ocfs2_shift_tree_depth(struct ocfs2_super *osb,
1281                                   handle_t *handle,
1282                                   struct inode *inode,
1283                                   struct ocfs2_extent_tree *et,
1284                                   struct ocfs2_alloc_context *meta_ac,
1285                                   struct buffer_head **ret_new_eb_bh)
1286 {
1287         int status, i;
1288         u32 new_clusters;
1289         struct buffer_head *new_eb_bh = NULL;
1290         struct ocfs2_extent_block *eb;
1291         struct ocfs2_extent_list  *root_el;
1292         struct ocfs2_extent_list  *eb_el;
1293
1294         mlog_entry_void();
1295
1296         status = ocfs2_create_new_meta_bhs(handle, et, 1, meta_ac,
1297                                            &new_eb_bh);
1298         if (status < 0) {
1299                 mlog_errno(status);
1300                 goto bail;
1301         }
1302
1303         eb = (struct ocfs2_extent_block *) new_eb_bh->b_data;
1304         /* ocfs2_create_new_meta_bhs() should create it right! */
1305         BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb));
1306
1307         eb_el = &eb->h_list;
1308         root_el = et->et_root_el;
1309
1310         status = ocfs2_journal_access_eb(handle, INODE_CACHE(inode), new_eb_bh,
1311                                          OCFS2_JOURNAL_ACCESS_CREATE);
1312         if (status < 0) {
1313                 mlog_errno(status);
1314                 goto bail;
1315         }
1316
1317         /* copy the root extent list data into the new extent block */
1318         eb_el->l_tree_depth = root_el->l_tree_depth;
1319         eb_el->l_next_free_rec = root_el->l_next_free_rec;
1320         for (i = 0; i < le16_to_cpu(root_el->l_next_free_rec); i++)
1321                 eb_el->l_recs[i] = root_el->l_recs[i];
1322
1323         status = ocfs2_journal_dirty(handle, new_eb_bh);
1324         if (status < 0) {
1325                 mlog_errno(status);
1326                 goto bail;
1327         }
1328
1329         status = ocfs2_et_root_journal_access(handle, et,
1330                                               OCFS2_JOURNAL_ACCESS_WRITE);
1331         if (status < 0) {
1332                 mlog_errno(status);
1333                 goto bail;
1334         }
1335
1336         new_clusters = ocfs2_sum_rightmost_rec(eb_el);
1337
1338         /* update root_bh now */
1339         le16_add_cpu(&root_el->l_tree_depth, 1);
1340         root_el->l_recs[0].e_cpos = 0;
1341         root_el->l_recs[0].e_blkno = eb->h_blkno;
1342         root_el->l_recs[0].e_int_clusters = cpu_to_le32(new_clusters);
1343         for (i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++)
1344                 memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
1345         root_el->l_next_free_rec = cpu_to_le16(1);
1346
1347         /* If this is our 1st tree depth shift, then last_eb_blk
1348          * becomes the allocated extent block */
1349         if (root_el->l_tree_depth == cpu_to_le16(1))
1350                 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
1351
1352         status = ocfs2_journal_dirty(handle, et->et_root_bh);
1353         if (status < 0) {
1354                 mlog_errno(status);
1355                 goto bail;
1356         }
1357
1358         *ret_new_eb_bh = new_eb_bh;
1359         new_eb_bh = NULL;
1360         status = 0;
1361 bail:
1362         brelse(new_eb_bh);
1363
1364         mlog_exit(status);
1365         return status;
1366 }
1367
1368 /*
1369  * Should only be called when there is no space left in any of the
1370  * leaf nodes. What we want to do is find the lowest tree depth
1371  * non-leaf extent block with room for new records. There are three
1372  * valid results of this search:
1373  *
1374  * 1) a lowest extent block is found, then we pass it back in
1375  *    *lowest_eb_bh and return '0'
1376  *
1377  * 2) the search fails to find anything, but the root_el has room. We
1378  *    pass NULL back in *lowest_eb_bh, but still return '0'
1379  *
1380  * 3) the search fails to find anything AND the root_el is full, in
1381  *    which case we return > 0
1382  *
1383  * return status < 0 indicates an error.
1384  */
1385 static int ocfs2_find_branch_target(struct ocfs2_super *osb,
1386                                     struct ocfs2_extent_tree *et,
1387                                     struct buffer_head **target_bh)
1388 {
1389         int status = 0, i;
1390         u64 blkno;
1391         struct ocfs2_extent_block *eb;
1392         struct ocfs2_extent_list  *el;
1393         struct buffer_head *bh = NULL;
1394         struct buffer_head *lowest_bh = NULL;
1395
1396         mlog_entry_void();
1397
1398         *target_bh = NULL;
1399
1400         el = et->et_root_el;
1401
1402         while(le16_to_cpu(el->l_tree_depth) > 1) {
1403                 if (le16_to_cpu(el->l_next_free_rec) == 0) {
1404                         ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
1405                                     "Owner %llu has empty "
1406                                     "extent list (next_free_rec == 0)",
1407                                     (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci));
1408                         status = -EIO;
1409                         goto bail;
1410                 }
1411                 i = le16_to_cpu(el->l_next_free_rec) - 1;
1412                 blkno = le64_to_cpu(el->l_recs[i].e_blkno);
1413                 if (!blkno) {
1414                         ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
1415                                     "Owner %llu has extent "
1416                                     "list where extent # %d has no physical "
1417                                     "block start",
1418                                     (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), i);
1419                         status = -EIO;
1420                         goto bail;
1421                 }
1422
1423                 brelse(bh);
1424                 bh = NULL;
1425
1426                 status = ocfs2_read_extent_block(et->et_ci, blkno, &bh);
1427                 if (status < 0) {
1428                         mlog_errno(status);
1429                         goto bail;
1430                 }
1431
1432                 eb = (struct ocfs2_extent_block *) bh->b_data;
1433                 el = &eb->h_list;
1434
1435                 if (le16_to_cpu(el->l_next_free_rec) <
1436                     le16_to_cpu(el->l_count)) {
1437                         brelse(lowest_bh);
1438                         lowest_bh = bh;
1439                         get_bh(lowest_bh);
1440                 }
1441         }
1442
1443         /* If we didn't find one and the fe doesn't have any room,
1444          * then return '1' */
1445         el = et->et_root_el;
1446         if (!lowest_bh && (el->l_next_free_rec == el->l_count))
1447                 status = 1;
1448
1449         *target_bh = lowest_bh;
1450 bail:
1451         brelse(bh);
1452
1453         mlog_exit(status);
1454         return status;
1455 }
1456
1457 /*
1458  * Grow a b-tree so that it has more records.
1459  *
1460  * We might shift the tree depth in which case existing paths should
1461  * be considered invalid.
1462  *
1463  * Tree depth after the grow is returned via *final_depth.
1464  *
1465  * *last_eb_bh will be updated by ocfs2_add_branch().
1466  */
1467 static int ocfs2_grow_tree(struct inode *inode, handle_t *handle,
1468                            struct ocfs2_extent_tree *et, int *final_depth,
1469                            struct buffer_head **last_eb_bh,
1470                            struct ocfs2_alloc_context *meta_ac)
1471 {
1472         int ret, shift;
1473         struct ocfs2_extent_list *el = et->et_root_el;
1474         int depth = le16_to_cpu(el->l_tree_depth);
1475         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1476         struct buffer_head *bh = NULL;
1477
1478         BUG_ON(meta_ac == NULL);
1479
1480         shift = ocfs2_find_branch_target(osb, et, &bh);
1481         if (shift < 0) {
1482                 ret = shift;
1483                 mlog_errno(ret);
1484                 goto out;
1485         }
1486
1487         /* We traveled all the way to the bottom of the allocation tree
1488          * and didn't find room for any more extents - we need to add
1489          * another tree level */
1490         if (shift) {
1491                 BUG_ON(bh);
1492                 mlog(0, "need to shift tree depth (current = %d)\n", depth);
1493
1494                 /* ocfs2_shift_tree_depth will return us a buffer with
1495                  * the new extent block (so we can pass that to
1496                  * ocfs2_add_branch). */
1497                 ret = ocfs2_shift_tree_depth(osb, handle, inode, et,
1498                                              meta_ac, &bh);
1499                 if (ret < 0) {
1500                         mlog_errno(ret);
1501                         goto out;
1502                 }
1503                 depth++;
1504                 if (depth == 1) {
1505                         /*
1506                          * Special case: we have room now if we shifted from
1507                          * tree_depth 0, so no more work needs to be done.
1508                          *
1509                          * We won't be calling add_branch, so pass
1510                          * back *last_eb_bh as the new leaf. At depth
1511                          * zero, it should always be null so there's
1512                          * no reason to brelse.
1513                          */
1514                         BUG_ON(*last_eb_bh);
1515                         get_bh(bh);
1516                         *last_eb_bh = bh;
1517                         goto out;
1518                 }
1519         }
1520
1521         /* call ocfs2_add_branch to add the final part of the tree with
1522          * the new data. */
1523         mlog(0, "add branch. bh = %p\n", bh);
1524         ret = ocfs2_add_branch(osb, handle, inode, et, bh, last_eb_bh,
1525                                meta_ac);
1526         if (ret < 0) {
1527                 mlog_errno(ret);
1528                 goto out;
1529         }
1530
1531 out:
1532         if (final_depth)
1533                 *final_depth = depth;
1534         brelse(bh);
1535         return ret;
1536 }
1537
1538 /*
1539  * This function will discard the rightmost extent record.
1540  */
1541 static void ocfs2_shift_records_right(struct ocfs2_extent_list *el)
1542 {
1543         int next_free = le16_to_cpu(el->l_next_free_rec);
1544         int count = le16_to_cpu(el->l_count);
1545         unsigned int num_bytes;
1546
1547         BUG_ON(!next_free);
1548         /* This will cause us to go off the end of our extent list. */
1549         BUG_ON(next_free >= count);
1550
1551         num_bytes = sizeof(struct ocfs2_extent_rec) * next_free;
1552
1553         memmove(&el->l_recs[1], &el->l_recs[0], num_bytes);
1554 }
1555
1556 static void ocfs2_rotate_leaf(struct ocfs2_extent_list *el,
1557                               struct ocfs2_extent_rec *insert_rec)
1558 {
1559         int i, insert_index, next_free, has_empty, num_bytes;
1560         u32 insert_cpos = le32_to_cpu(insert_rec->e_cpos);
1561         struct ocfs2_extent_rec *rec;
1562
1563         next_free = le16_to_cpu(el->l_next_free_rec);
1564         has_empty = ocfs2_is_empty_extent(&el->l_recs[0]);
1565
1566         BUG_ON(!next_free);
1567
1568         /* The tree code before us didn't allow enough room in the leaf. */
1569         BUG_ON(el->l_next_free_rec == el->l_count && !has_empty);
1570
1571         /*
1572          * The easiest way to approach this is to just remove the
1573          * empty extent and temporarily decrement next_free.
1574          */
1575         if (has_empty) {
1576                 /*
1577                  * If next_free was 1 (only an empty extent), this
1578                  * loop won't execute, which is fine. We still want
1579                  * the decrement above to happen.
1580                  */
1581                 for(i = 0; i < (next_free - 1); i++)
1582                         el->l_recs[i] = el->l_recs[i+1];
1583
1584                 next_free--;
1585         }
1586
1587         /*
1588          * Figure out what the new record index should be.
1589          */
1590         for(i = 0; i < next_free; i++) {
1591                 rec = &el->l_recs[i];
1592
1593                 if (insert_cpos < le32_to_cpu(rec->e_cpos))
1594                         break;
1595         }
1596         insert_index = i;
1597
1598         mlog(0, "ins %u: index %d, has_empty %d, next_free %d, count %d\n",
1599              insert_cpos, insert_index, has_empty, next_free, le16_to_cpu(el->l_count));
1600
1601         BUG_ON(insert_index < 0);
1602         BUG_ON(insert_index >= le16_to_cpu(el->l_count));
1603         BUG_ON(insert_index > next_free);
1604
1605         /*
1606          * No need to memmove if we're just adding to the tail.
1607          */
1608         if (insert_index != next_free) {
1609                 BUG_ON(next_free >= le16_to_cpu(el->l_count));
1610
1611                 num_bytes = next_free - insert_index;
1612                 num_bytes *= sizeof(struct ocfs2_extent_rec);
1613                 memmove(&el->l_recs[insert_index + 1],
1614                         &el->l_recs[insert_index],
1615                         num_bytes);
1616         }
1617
1618         /*
1619          * Either we had an empty extent, and need to re-increment or
1620          * there was no empty extent on a non full rightmost leaf node,
1621          * in which case we still need to increment.
1622          */
1623         next_free++;
1624         el->l_next_free_rec = cpu_to_le16(next_free);
1625         /*
1626          * Make sure none of the math above just messed up our tree.
1627          */
1628         BUG_ON(le16_to_cpu(el->l_next_free_rec) > le16_to_cpu(el->l_count));
1629
1630         el->l_recs[insert_index] = *insert_rec;
1631
1632 }
1633
1634 static void ocfs2_remove_empty_extent(struct ocfs2_extent_list *el)
1635 {
1636         int size, num_recs = le16_to_cpu(el->l_next_free_rec);
1637
1638         BUG_ON(num_recs == 0);
1639
1640         if (ocfs2_is_empty_extent(&el->l_recs[0])) {
1641                 num_recs--;
1642                 size = num_recs * sizeof(struct ocfs2_extent_rec);
1643                 memmove(&el->l_recs[0], &el->l_recs[1], size);
1644                 memset(&el->l_recs[num_recs], 0,
1645                        sizeof(struct ocfs2_extent_rec));
1646                 el->l_next_free_rec = cpu_to_le16(num_recs);
1647         }
1648 }
1649
1650 /*
1651  * Create an empty extent record .
1652  *
1653  * l_next_free_rec may be updated.
1654  *
1655  * If an empty extent already exists do nothing.
1656  */
1657 static void ocfs2_create_empty_extent(struct ocfs2_extent_list *el)
1658 {
1659         int next_free = le16_to_cpu(el->l_next_free_rec);
1660
1661         BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
1662
1663         if (next_free == 0)
1664                 goto set_and_inc;
1665
1666         if (ocfs2_is_empty_extent(&el->l_recs[0]))
1667                 return;
1668
1669         mlog_bug_on_msg(el->l_count == el->l_next_free_rec,
1670                         "Asked to create an empty extent in a full list:\n"
1671                         "count = %u, tree depth = %u",
1672                         le16_to_cpu(el->l_count),
1673                         le16_to_cpu(el->l_tree_depth));
1674
1675         ocfs2_shift_records_right(el);
1676
1677 set_and_inc:
1678         le16_add_cpu(&el->l_next_free_rec, 1);
1679         memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
1680 }
1681
1682 /*
1683  * For a rotation which involves two leaf nodes, the "root node" is
1684  * the lowest level tree node which contains a path to both leafs. This
1685  * resulting set of information can be used to form a complete "subtree"
1686  *
1687  * This function is passed two full paths from the dinode down to a
1688  * pair of adjacent leaves. It's task is to figure out which path
1689  * index contains the subtree root - this can be the root index itself
1690  * in a worst-case rotation.
1691  *
1692  * The array index of the subtree root is passed back.
1693  */
1694 static int ocfs2_find_subtree_root(struct inode *inode,
1695                                    struct ocfs2_path *left,
1696                                    struct ocfs2_path *right)
1697 {
1698         int i = 0;
1699
1700         /*
1701          * Check that the caller passed in two paths from the same tree.
1702          */
1703         BUG_ON(path_root_bh(left) != path_root_bh(right));
1704
1705         do {
1706                 i++;
1707
1708                 /*
1709                  * The caller didn't pass two adjacent paths.
1710                  */
1711                 mlog_bug_on_msg(i > left->p_tree_depth,
1712                                 "Inode %lu, left depth %u, right depth %u\n"
1713                                 "left leaf blk %llu, right leaf blk %llu\n",
1714                                 inode->i_ino, left->p_tree_depth,
1715                                 right->p_tree_depth,
1716                                 (unsigned long long)path_leaf_bh(left)->b_blocknr,
1717                                 (unsigned long long)path_leaf_bh(right)->b_blocknr);
1718         } while (left->p_node[i].bh->b_blocknr ==
1719                  right->p_node[i].bh->b_blocknr);
1720
1721         return i - 1;
1722 }
1723
1724 typedef void (path_insert_t)(void *, struct buffer_head *);
1725
1726 /*
1727  * Traverse a btree path in search of cpos, starting at root_el.
1728  *
1729  * This code can be called with a cpos larger than the tree, in which
1730  * case it will return the rightmost path.
1731  */
1732 static int __ocfs2_find_path(struct ocfs2_caching_info *ci,
1733                              struct ocfs2_extent_list *root_el, u32 cpos,
1734                              path_insert_t *func, void *data)
1735 {
1736         int i, ret = 0;
1737         u32 range;
1738         u64 blkno;
1739         struct buffer_head *bh = NULL;
1740         struct ocfs2_extent_block *eb;
1741         struct ocfs2_extent_list *el;
1742         struct ocfs2_extent_rec *rec;
1743
1744         el = root_el;
1745         while (el->l_tree_depth) {
1746                 if (le16_to_cpu(el->l_next_free_rec) == 0) {
1747                         ocfs2_error(ocfs2_metadata_cache_get_super(ci),
1748                                     "Owner %llu has empty extent list at "
1749                                     "depth %u\n",
1750                                     (unsigned long long)ocfs2_metadata_cache_owner(ci),
1751                                     le16_to_cpu(el->l_tree_depth));
1752                         ret = -EROFS;
1753                         goto out;
1754
1755                 }
1756
1757                 for(i = 0; i < le16_to_cpu(el->l_next_free_rec) - 1; i++) {
1758                         rec = &el->l_recs[i];
1759
1760                         /*
1761                          * In the case that cpos is off the allocation
1762                          * tree, this should just wind up returning the
1763                          * rightmost record.
1764                          */
1765                         range = le32_to_cpu(rec->e_cpos) +
1766                                 ocfs2_rec_clusters(el, rec);
1767                         if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
1768                             break;
1769                 }
1770
1771                 blkno = le64_to_cpu(el->l_recs[i].e_blkno);
1772                 if (blkno == 0) {
1773                         ocfs2_error(ocfs2_metadata_cache_get_super(ci),
1774                                     "Owner %llu has bad blkno in extent list "
1775                                     "at depth %u (index %d)\n",
1776                                     (unsigned long long)ocfs2_metadata_cache_owner(ci),
1777                                     le16_to_cpu(el->l_tree_depth), i);
1778                         ret = -EROFS;
1779                         goto out;
1780                 }
1781
1782                 brelse(bh);
1783                 bh = NULL;
1784                 ret = ocfs2_read_extent_block(ci, blkno, &bh);
1785                 if (ret) {
1786                         mlog_errno(ret);
1787                         goto out;
1788                 }
1789
1790                 eb = (struct ocfs2_extent_block *) bh->b_data;
1791                 el = &eb->h_list;
1792
1793                 if (le16_to_cpu(el->l_next_free_rec) >
1794                     le16_to_cpu(el->l_count)) {
1795                         ocfs2_error(ocfs2_metadata_cache_get_super(ci),
1796                                     "Owner %llu has bad count in extent list "
1797                                     "at block %llu (next free=%u, count=%u)\n",
1798                                     (unsigned long long)ocfs2_metadata_cache_owner(ci),
1799                                     (unsigned long long)bh->b_blocknr,
1800                                     le16_to_cpu(el->l_next_free_rec),
1801                                     le16_to_cpu(el->l_count));
1802                         ret = -EROFS;
1803                         goto out;
1804                 }
1805
1806                 if (func)
1807                         func(data, bh);
1808         }
1809
1810 out:
1811         /*
1812          * Catch any trailing bh that the loop didn't handle.
1813          */
1814         brelse(bh);
1815
1816         return ret;
1817 }
1818
1819 /*
1820  * Given an initialized path (that is, it has a valid root extent
1821  * list), this function will traverse the btree in search of the path
1822  * which would contain cpos.
1823  *
1824  * The path traveled is recorded in the path structure.
1825  *
1826  * Note that this will not do any comparisons on leaf node extent
1827  * records, so it will work fine in the case that we just added a tree
1828  * branch.
1829  */
1830 struct find_path_data {
1831         int index;
1832         struct ocfs2_path *path;
1833 };
1834 static void find_path_ins(void *data, struct buffer_head *bh)
1835 {
1836         struct find_path_data *fp = data;
1837
1838         get_bh(bh);
1839         ocfs2_path_insert_eb(fp->path, fp->index, bh);
1840         fp->index++;
1841 }
1842 static int ocfs2_find_path(struct ocfs2_caching_info *ci,
1843                            struct ocfs2_path *path, u32 cpos)
1844 {
1845         struct find_path_data data;
1846
1847         data.index = 1;
1848         data.path = path;
1849         return __ocfs2_find_path(ci, path_root_el(path), cpos,
1850                                  find_path_ins, &data);
1851 }
1852
1853 static void find_leaf_ins(void *data, struct buffer_head *bh)
1854 {
1855         struct ocfs2_extent_block *eb =(struct ocfs2_extent_block *)bh->b_data;
1856         struct ocfs2_extent_list *el = &eb->h_list;
1857         struct buffer_head **ret = data;
1858
1859         /* We want to retain only the leaf block. */
1860         if (le16_to_cpu(el->l_tree_depth) == 0) {
1861                 get_bh(bh);
1862                 *ret = bh;
1863         }
1864 }
1865 /*
1866  * Find the leaf block in the tree which would contain cpos. No
1867  * checking of the actual leaf is done.
1868  *
1869  * Some paths want to call this instead of allocating a path structure
1870  * and calling ocfs2_find_path().
1871  *
1872  * This function doesn't handle non btree extent lists.
1873  */
1874 int ocfs2_find_leaf(struct ocfs2_caching_info *ci,
1875                     struct ocfs2_extent_list *root_el, u32 cpos,
1876                     struct buffer_head **leaf_bh)
1877 {
1878         int ret;
1879         struct buffer_head *bh = NULL;
1880
1881         ret = __ocfs2_find_path(ci, root_el, cpos, find_leaf_ins, &bh);
1882         if (ret) {
1883                 mlog_errno(ret);
1884                 goto out;
1885         }
1886
1887         *leaf_bh = bh;
1888 out:
1889         return ret;
1890 }
1891
1892 /*
1893  * Adjust the adjacent records (left_rec, right_rec) involved in a rotation.
1894  *
1895  * Basically, we've moved stuff around at the bottom of the tree and
1896  * we need to fix up the extent records above the changes to reflect
1897  * the new changes.
1898  *
1899  * left_rec: the record on the left.
1900  * left_child_el: is the child list pointed to by left_rec
1901  * right_rec: the record to the right of left_rec
1902  * right_child_el: is the child list pointed to by right_rec
1903  *
1904  * By definition, this only works on interior nodes.
1905  */
1906 static void ocfs2_adjust_adjacent_records(struct ocfs2_extent_rec *left_rec,
1907                                   struct ocfs2_extent_list *left_child_el,
1908                                   struct ocfs2_extent_rec *right_rec,
1909                                   struct ocfs2_extent_list *right_child_el)
1910 {
1911         u32 left_clusters, right_end;
1912
1913         /*
1914          * Interior nodes never have holes. Their cpos is the cpos of
1915          * the leftmost record in their child list. Their cluster
1916          * count covers the full theoretical range of their child list
1917          * - the range between their cpos and the cpos of the record
1918          * immediately to their right.
1919          */
1920         left_clusters = le32_to_cpu(right_child_el->l_recs[0].e_cpos);
1921         if (!ocfs2_rec_clusters(right_child_el, &right_child_el->l_recs[0])) {
1922                 BUG_ON(right_child_el->l_tree_depth);
1923                 BUG_ON(le16_to_cpu(right_child_el->l_next_free_rec) <= 1);
1924                 left_clusters = le32_to_cpu(right_child_el->l_recs[1].e_cpos);
1925         }
1926         left_clusters -= le32_to_cpu(left_rec->e_cpos);
1927         left_rec->e_int_clusters = cpu_to_le32(left_clusters);
1928
1929         /*
1930          * Calculate the rightmost cluster count boundary before
1931          * moving cpos - we will need to adjust clusters after
1932          * updating e_cpos to keep the same highest cluster count.
1933          */
1934         right_end = le32_to_cpu(right_rec->e_cpos);
1935         right_end += le32_to_cpu(right_rec->e_int_clusters);
1936
1937         right_rec->e_cpos = left_rec->e_cpos;
1938         le32_add_cpu(&right_rec->e_cpos, left_clusters);
1939
1940         right_end -= le32_to_cpu(right_rec->e_cpos);
1941         right_rec->e_int_clusters = cpu_to_le32(right_end);
1942 }
1943
1944 /*
1945  * Adjust the adjacent root node records involved in a
1946  * rotation. left_el_blkno is passed in as a key so that we can easily
1947  * find it's index in the root list.
1948  */
1949 static void ocfs2_adjust_root_records(struct ocfs2_extent_list *root_el,
1950                                       struct ocfs2_extent_list *left_el,
1951                                       struct ocfs2_extent_list *right_el,
1952                                       u64 left_el_blkno)
1953 {
1954         int i;
1955
1956         BUG_ON(le16_to_cpu(root_el->l_tree_depth) <=
1957                le16_to_cpu(left_el->l_tree_depth));
1958
1959         for(i = 0; i < le16_to_cpu(root_el->l_next_free_rec) - 1; i++) {
1960                 if (le64_to_cpu(root_el->l_recs[i].e_blkno) == left_el_blkno)
1961                         break;
1962         }
1963
1964         /*
1965          * The path walking code should have never returned a root and
1966          * two paths which are not adjacent.
1967          */
1968         BUG_ON(i >= (le16_to_cpu(root_el->l_next_free_rec) - 1));
1969
1970         ocfs2_adjust_adjacent_records(&root_el->l_recs[i], left_el,
1971                                       &root_el->l_recs[i + 1], right_el);
1972 }
1973
1974 /*
1975  * We've changed a leaf block (in right_path) and need to reflect that
1976  * change back up the subtree.
1977  *
1978  * This happens in multiple places:
1979  *   - When we've moved an extent record from the left path leaf to the right
1980  *     path leaf to make room for an empty extent in the left path leaf.
1981  *   - When our insert into the right path leaf is at the leftmost edge
1982  *     and requires an update of the path immediately to it's left. This
1983  *     can occur at the end of some types of rotation and appending inserts.
1984  *   - When we've adjusted the last extent record in the left path leaf and the
1985  *     1st extent record in the right path leaf during cross extent block merge.
1986  */
1987 static void ocfs2_complete_edge_insert(struct inode *inode, handle_t *handle,
1988                                        struct ocfs2_path *left_path,
1989                                        struct ocfs2_path *right_path,
1990                                        int subtree_index)
1991 {
1992         int ret, i, idx;
1993         struct ocfs2_extent_list *el, *left_el, *right_el;
1994         struct ocfs2_extent_rec *left_rec, *right_rec;
1995         struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
1996
1997         /*
1998          * Update the counts and position values within all the
1999          * interior nodes to reflect the leaf rotation we just did.
2000          *
2001          * The root node is handled below the loop.
2002          *
2003          * We begin the loop with right_el and left_el pointing to the
2004          * leaf lists and work our way up.
2005          *
2006          * NOTE: within this loop, left_el and right_el always refer
2007          * to the *child* lists.
2008          */
2009         left_el = path_leaf_el(left_path);
2010         right_el = path_leaf_el(right_path);
2011         for(i = left_path->p_tree_depth - 1; i > subtree_index; i--) {
2012                 mlog(0, "Adjust records at index %u\n", i);
2013
2014                 /*
2015                  * One nice property of knowing that all of these
2016                  * nodes are below the root is that we only deal with
2017                  * the leftmost right node record and the rightmost
2018                  * left node record.
2019                  */
2020                 el = left_path->p_node[i].el;
2021                 idx = le16_to_cpu(left_el->l_next_free_rec) - 1;
2022                 left_rec = &el->l_recs[idx];
2023
2024                 el = right_path->p_node[i].el;
2025                 right_rec = &el->l_recs[0];
2026
2027                 ocfs2_adjust_adjacent_records(left_rec, left_el, right_rec,
2028                                               right_el);
2029
2030                 ret = ocfs2_journal_dirty(handle, left_path->p_node[i].bh);
2031                 if (ret)
2032                         mlog_errno(ret);
2033
2034                 ret = ocfs2_journal_dirty(handle, right_path->p_node[i].bh);
2035                 if (ret)
2036                         mlog_errno(ret);
2037
2038                 /*
2039                  * Setup our list pointers now so that the current
2040                  * parents become children in the next iteration.
2041                  */
2042                 left_el = left_path->p_node[i].el;
2043                 right_el = right_path->p_node[i].el;
2044         }
2045
2046         /*
2047          * At the root node, adjust the two adjacent records which
2048          * begin our path to the leaves.
2049          */
2050
2051         el = left_path->p_node[subtree_index].el;
2052         left_el = left_path->p_node[subtree_index + 1].el;
2053         right_el = right_path->p_node[subtree_index + 1].el;
2054
2055         ocfs2_adjust_root_records(el, left_el, right_el,
2056                                   left_path->p_node[subtree_index + 1].bh->b_blocknr);
2057
2058         root_bh = left_path->p_node[subtree_index].bh;
2059
2060         ret = ocfs2_journal_dirty(handle, root_bh);
2061         if (ret)
2062                 mlog_errno(ret);
2063 }
2064
2065 static int ocfs2_rotate_subtree_right(struct inode *inode,
2066                                       handle_t *handle,
2067                                       struct ocfs2_path *left_path,
2068                                       struct ocfs2_path *right_path,
2069                                       int subtree_index)
2070 {
2071         int ret, i;
2072         struct buffer_head *right_leaf_bh;
2073         struct buffer_head *left_leaf_bh = NULL;
2074         struct buffer_head *root_bh;
2075         struct ocfs2_extent_list *right_el, *left_el;
2076         struct ocfs2_extent_rec move_rec;
2077
2078         left_leaf_bh = path_leaf_bh(left_path);
2079         left_el = path_leaf_el(left_path);
2080
2081         if (left_el->l_next_free_rec != left_el->l_count) {
2082                 ocfs2_error(inode->i_sb,
2083                             "Inode %llu has non-full interior leaf node %llu"
2084                             "(next free = %u)",
2085                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
2086                             (unsigned long long)left_leaf_bh->b_blocknr,
2087                             le16_to_cpu(left_el->l_next_free_rec));
2088                 return -EROFS;
2089         }
2090
2091         /*
2092          * This extent block may already have an empty record, so we
2093          * return early if so.
2094          */
2095         if (ocfs2_is_empty_extent(&left_el->l_recs[0]))
2096                 return 0;
2097
2098         root_bh = left_path->p_node[subtree_index].bh;
2099         BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
2100
2101         ret = ocfs2_path_bh_journal_access(handle, INODE_CACHE(inode), right_path,
2102                                            subtree_index);
2103         if (ret) {
2104                 mlog_errno(ret);
2105                 goto out;
2106         }
2107
2108         for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
2109                 ret = ocfs2_path_bh_journal_access(handle, INODE_CACHE(inode),
2110                                                    right_path, i);
2111                 if (ret) {
2112                         mlog_errno(ret);
2113                         goto out;
2114                 }
2115
2116                 ret = ocfs2_path_bh_journal_access(handle, INODE_CACHE(inode),
2117                                                    left_path, i);
2118                 if (ret) {
2119                         mlog_errno(ret);
2120                         goto out;
2121                 }
2122         }
2123
2124         right_leaf_bh = path_leaf_bh(right_path);
2125         right_el = path_leaf_el(right_path);
2126
2127         /* This is a code error, not a disk corruption. */
2128         mlog_bug_on_msg(!right_el->l_next_free_rec, "Inode %llu: Rotate fails "
2129                         "because rightmost leaf block %llu is empty\n",
2130                         (unsigned long long)OCFS2_I(inode)->ip_blkno,
2131                         (unsigned long long)right_leaf_bh->b_blocknr);
2132
2133         ocfs2_create_empty_extent(right_el);
2134
2135         ret = ocfs2_journal_dirty(handle, right_leaf_bh);
2136         if (ret) {
2137                 mlog_errno(ret);
2138                 goto out;
2139         }
2140
2141         /* Do the copy now. */
2142         i = le16_to_cpu(left_el->l_next_free_rec) - 1;
2143         move_rec = left_el->l_recs[i];
2144         right_el->l_recs[0] = move_rec;
2145
2146         /*
2147          * Clear out the record we just copied and shift everything
2148          * over, leaving an empty extent in the left leaf.
2149          *
2150          * We temporarily subtract from next_free_rec so that the
2151          * shift will lose the tail record (which is now defunct).
2152          */
2153         le16_add_cpu(&left_el->l_next_free_rec, -1);
2154         ocfs2_shift_records_right(left_el);
2155         memset(&left_el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2156         le16_add_cpu(&left_el->l_next_free_rec, 1);
2157
2158         ret = ocfs2_journal_dirty(handle, left_leaf_bh);
2159         if (ret) {
2160                 mlog_errno(ret);
2161                 goto out;
2162         }
2163
2164         ocfs2_complete_edge_insert(inode, handle, left_path, right_path,
2165                                 subtree_index);
2166
2167 out:
2168         return ret;
2169 }
2170
2171 /*
2172  * Given a full path, determine what cpos value would return us a path
2173  * containing the leaf immediately to the left of the current one.
2174  *
2175  * Will return zero if the path passed in is already the leftmost path.
2176  */
2177 static int ocfs2_find_cpos_for_left_leaf(struct super_block *sb,
2178                                          struct ocfs2_path *path, u32 *cpos)
2179 {
2180         int i, j, ret = 0;
2181         u64 blkno;
2182         struct ocfs2_extent_list *el;
2183
2184         BUG_ON(path->p_tree_depth == 0);
2185
2186         *cpos = 0;
2187
2188         blkno = path_leaf_bh(path)->b_blocknr;
2189
2190         /* Start at the tree node just above the leaf and work our way up. */
2191         i = path->p_tree_depth - 1;
2192         while (i >= 0) {
2193                 el = path->p_node[i].el;
2194
2195                 /*
2196                  * Find the extent record just before the one in our
2197                  * path.
2198                  */
2199                 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
2200                         if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
2201                                 if (j == 0) {
2202                                         if (i == 0) {
2203                                                 /*
2204                                                  * We've determined that the
2205                                                  * path specified is already
2206                                                  * the leftmost one - return a
2207                                                  * cpos of zero.
2208                                                  */
2209                                                 goto out;
2210                                         }
2211                                         /*
2212                                          * The leftmost record points to our
2213                                          * leaf - we need to travel up the
2214                                          * tree one level.
2215                                          */
2216                                         goto next_node;
2217                                 }
2218
2219                                 *cpos = le32_to_cpu(el->l_recs[j - 1].e_cpos);
2220                                 *cpos = *cpos + ocfs2_rec_clusters(el,
2221                                                            &el->l_recs[j - 1]);
2222                                 *cpos = *cpos - 1;
2223                                 goto out;
2224                         }
2225                 }
2226
2227                 /*
2228                  * If we got here, we never found a valid node where
2229                  * the tree indicated one should be.
2230                  */
2231                 ocfs2_error(sb,
2232                             "Invalid extent tree at extent block %llu\n",
2233                             (unsigned long long)blkno);
2234                 ret = -EROFS;
2235                 goto out;
2236
2237 next_node:
2238                 blkno = path->p_node[i].bh->b_blocknr;
2239                 i--;
2240         }
2241
2242 out:
2243         return ret;
2244 }
2245
2246 /*
2247  * Extend the transaction by enough credits to complete the rotation,
2248  * and still leave at least the original number of credits allocated
2249  * to this transaction.
2250  */
2251 static int ocfs2_extend_rotate_transaction(handle_t *handle, int subtree_depth,
2252                                            int op_credits,
2253                                            struct ocfs2_path *path)
2254 {
2255         int credits = (path->p_tree_depth - subtree_depth) * 2 + 1 + op_credits;
2256
2257         if (handle->h_buffer_credits < credits)
2258                 return ocfs2_extend_trans(handle, credits);
2259
2260         return 0;
2261 }
2262
2263 /*
2264  * Trap the case where we're inserting into the theoretical range past
2265  * the _actual_ left leaf range. Otherwise, we'll rotate a record
2266  * whose cpos is less than ours into the right leaf.
2267  *
2268  * It's only necessary to look at the rightmost record of the left
2269  * leaf because the logic that calls us should ensure that the
2270  * theoretical ranges in the path components above the leaves are
2271  * correct.
2272  */
2273 static int ocfs2_rotate_requires_path_adjustment(struct ocfs2_path *left_path,
2274                                                  u32 insert_cpos)
2275 {
2276         struct ocfs2_extent_list *left_el;
2277         struct ocfs2_extent_rec *rec;
2278         int next_free;
2279
2280         left_el = path_leaf_el(left_path);
2281         next_free = le16_to_cpu(left_el->l_next_free_rec);
2282         rec = &left_el->l_recs[next_free - 1];
2283
2284         if (insert_cpos > le32_to_cpu(rec->e_cpos))
2285                 return 1;
2286         return 0;
2287 }
2288
2289 static int ocfs2_leftmost_rec_contains(struct ocfs2_extent_list *el, u32 cpos)
2290 {
2291         int next_free = le16_to_cpu(el->l_next_free_rec);
2292         unsigned int range;
2293         struct ocfs2_extent_rec *rec;
2294
2295         if (next_free == 0)
2296                 return 0;
2297
2298         rec = &el->l_recs[0];
2299         if (ocfs2_is_empty_extent(rec)) {
2300                 /* Empty list. */
2301                 if (next_free == 1)
2302                         return 0;
2303                 rec = &el->l_recs[1];
2304         }
2305
2306         range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
2307         if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
2308                 return 1;
2309         return 0;
2310 }
2311
2312 /*
2313  * Rotate all the records in a btree right one record, starting at insert_cpos.
2314  *
2315  * The path to the rightmost leaf should be passed in.
2316  *
2317  * The array is assumed to be large enough to hold an entire path (tree depth).
2318  *
2319  * Upon succesful return from this function:
2320  *
2321  * - The 'right_path' array will contain a path to the leaf block
2322  *   whose range contains e_cpos.
2323  * - That leaf block will have a single empty extent in list index 0.
2324  * - In the case that the rotation requires a post-insert update,
2325  *   *ret_left_path will contain a valid path which can be passed to
2326  *   ocfs2_insert_path().
2327  */
2328 static int ocfs2_rotate_tree_right(struct inode *inode,
2329                                    handle_t *handle,
2330                                    enum ocfs2_split_type split,
2331                                    u32 insert_cpos,
2332                                    struct ocfs2_path *right_path,
2333                                    struct ocfs2_path **ret_left_path)
2334 {
2335         int ret, start, orig_credits = handle->h_buffer_credits;
2336         u32 cpos;
2337         struct ocfs2_path *left_path = NULL;
2338
2339         *ret_left_path = NULL;
2340
2341         left_path = ocfs2_new_path_from_path(right_path);
2342         if (!left_path) {
2343                 ret = -ENOMEM;
2344                 mlog_errno(ret);
2345                 goto out;
2346         }
2347
2348         ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path, &cpos);
2349         if (ret) {
2350                 mlog_errno(ret);
2351                 goto out;
2352         }
2353
2354         mlog(0, "Insert: %u, first left path cpos: %u\n", insert_cpos, cpos);
2355
2356         /*
2357          * What we want to do here is:
2358          *
2359          * 1) Start with the rightmost path.
2360          *
2361          * 2) Determine a path to the leaf block directly to the left
2362          *    of that leaf.
2363          *
2364          * 3) Determine the 'subtree root' - the lowest level tree node
2365          *    which contains a path to both leaves.
2366          *
2367          * 4) Rotate the subtree.
2368          *
2369          * 5) Find the next subtree by considering the left path to be
2370          *    the new right path.
2371          *
2372          * The check at the top of this while loop also accepts
2373          * insert_cpos == cpos because cpos is only a _theoretical_
2374          * value to get us the left path - insert_cpos might very well
2375          * be filling that hole.
2376          *
2377          * Stop at a cpos of '0' because we either started at the
2378          * leftmost branch (i.e., a tree with one branch and a
2379          * rotation inside of it), or we've gone as far as we can in
2380          * rotating subtrees.
2381          */
2382         while (cpos && insert_cpos <= cpos) {
2383                 mlog(0, "Rotating a tree: ins. cpos: %u, left path cpos: %u\n",
2384                      insert_cpos, cpos);
2385
2386                 ret = ocfs2_find_path(INODE_CACHE(inode), left_path, cpos);
2387                 if (ret) {
2388                         mlog_errno(ret);
2389                         goto out;
2390                 }
2391
2392                 mlog_bug_on_msg(path_leaf_bh(left_path) ==
2393                                 path_leaf_bh(right_path),
2394                                 "Inode %lu: error during insert of %u "
2395                                 "(left path cpos %u) results in two identical "
2396                                 "paths ending at %llu\n",
2397                                 inode->i_ino, insert_cpos, cpos,
2398                                 (unsigned long long)
2399                                 path_leaf_bh(left_path)->b_blocknr);
2400
2401                 if (split == SPLIT_NONE &&
2402                     ocfs2_rotate_requires_path_adjustment(left_path,
2403                                                           insert_cpos)) {
2404
2405                         /*
2406                          * We've rotated the tree as much as we
2407                          * should. The rest is up to
2408                          * ocfs2_insert_path() to complete, after the
2409                          * record insertion. We indicate this
2410                          * situation by returning the left path.
2411                          *
2412                          * The reason we don't adjust the records here
2413                          * before the record insert is that an error
2414                          * later might break the rule where a parent
2415                          * record e_cpos will reflect the actual
2416                          * e_cpos of the 1st nonempty record of the
2417                          * child list.
2418                          */
2419                         *ret_left_path = left_path;
2420                         goto out_ret_path;
2421                 }
2422
2423                 start = ocfs2_find_subtree_root(inode, left_path, right_path);
2424
2425                 mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n",
2426                      start,
2427                      (unsigned long long) right_path->p_node[start].bh->b_blocknr,
2428                      right_path->p_tree_depth);
2429
2430                 ret = ocfs2_extend_rotate_transaction(handle, start,
2431                                                       orig_credits, right_path);
2432                 if (ret) {
2433                         mlog_errno(ret);
2434                         goto out;
2435                 }
2436
2437                 ret = ocfs2_rotate_subtree_right(inode, handle, left_path,
2438                                                  right_path, start);
2439                 if (ret) {
2440                         mlog_errno(ret);
2441                         goto out;
2442                 }
2443
2444                 if (split != SPLIT_NONE &&
2445                     ocfs2_leftmost_rec_contains(path_leaf_el(right_path),
2446                                                 insert_cpos)) {
2447                         /*
2448                          * A rotate moves the rightmost left leaf
2449                          * record over to the leftmost right leaf
2450                          * slot. If we're doing an extent split
2451                          * instead of a real insert, then we have to
2452                          * check that the extent to be split wasn't
2453                          * just moved over. If it was, then we can
2454                          * exit here, passing left_path back -
2455                          * ocfs2_split_extent() is smart enough to
2456                          * search both leaves.
2457                          */
2458                         *ret_left_path = left_path;
2459                         goto out_ret_path;
2460                 }
2461
2462                 /*
2463                  * There is no need to re-read the next right path
2464                  * as we know that it'll be our current left
2465                  * path. Optimize by copying values instead.
2466                  */
2467                 ocfs2_mv_path(right_path, left_path);
2468
2469                 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path,
2470                                                     &cpos);
2471                 if (ret) {
2472                         mlog_errno(ret);
2473                         goto out;
2474                 }
2475         }
2476
2477 out:
2478         ocfs2_free_path(left_path);
2479
2480 out_ret_path:
2481         return ret;
2482 }
2483
2484 static int ocfs2_update_edge_lengths(struct inode *inode, handle_t *handle,
2485                                      int subtree_index, struct ocfs2_path *path)
2486 {
2487         int i, idx, ret;
2488         struct ocfs2_extent_rec *rec;
2489         struct ocfs2_extent_list *el;
2490         struct ocfs2_extent_block *eb;
2491         u32 range;
2492
2493         /*
2494          * In normal tree rotation process, we will never touch the
2495          * tree branch above subtree_index and ocfs2_extend_rotate_transaction
2496          * doesn't reserve the credits for them either.
2497          *
2498          * But we do have a special case here which will update the rightmost
2499          * records for all the bh in the path.
2500          * So we have to allocate extra credits and access them.
2501          */
2502         ret = ocfs2_extend_trans(handle,
2503                                  handle->h_buffer_credits + subtree_index);
2504         if (ret) {
2505                 mlog_errno(ret);
2506                 goto out;
2507         }
2508
2509         ret = ocfs2_journal_access_path(INODE_CACHE(inode), handle, path);
2510         if (ret) {
2511                 mlog_errno(ret);
2512                 goto out;
2513         }
2514
2515         /* Path should always be rightmost. */
2516         eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
2517         BUG_ON(eb->h_next_leaf_blk != 0ULL);
2518
2519         el = &eb->h_list;
2520         BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0);
2521         idx = le16_to_cpu(el->l_next_free_rec) - 1;
2522         rec = &el->l_recs[idx];
2523         range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
2524
2525         for (i = 0; i < path->p_tree_depth; i++) {
2526                 el = path->p_node[i].el;
2527                 idx = le16_to_cpu(el->l_next_free_rec) - 1;
2528                 rec = &el->l_recs[idx];
2529
2530                 rec->e_int_clusters = cpu_to_le32(range);
2531                 le32_add_cpu(&rec->e_int_clusters, -le32_to_cpu(rec->e_cpos));
2532
2533                 ocfs2_journal_dirty(handle, path->p_node[i].bh);
2534         }
2535 out:
2536         return ret;
2537 }
2538
2539 static void ocfs2_unlink_path(struct inode *inode, handle_t *handle,
2540                               struct ocfs2_cached_dealloc_ctxt *dealloc,
2541                               struct ocfs2_path *path, int unlink_start)
2542 {
2543         int ret, i;
2544         struct ocfs2_extent_block *eb;
2545         struct ocfs2_extent_list *el;
2546         struct buffer_head *bh;
2547
2548         for(i = unlink_start; i < path_num_items(path); i++) {
2549                 bh = path->p_node[i].bh;
2550
2551                 eb = (struct ocfs2_extent_block *)bh->b_data;
2552                 /*
2553                  * Not all nodes might have had their final count
2554                  * decremented by the caller - handle this here.
2555                  */
2556                 el = &eb->h_list;
2557                 if (le16_to_cpu(el->l_next_free_rec) > 1) {
2558                         mlog(ML_ERROR,
2559                              "Inode %llu, attempted to remove extent block "
2560                              "%llu with %u records\n",
2561                              (unsigned long long)OCFS2_I(inode)->ip_blkno,
2562                              (unsigned long long)le64_to_cpu(eb->h_blkno),
2563                              le16_to_cpu(el->l_next_free_rec));
2564
2565                         ocfs2_journal_dirty(handle, bh);
2566                         ocfs2_remove_from_cache(INODE_CACHE(inode), bh);
2567                         continue;
2568                 }
2569
2570                 el->l_next_free_rec = 0;
2571                 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2572
2573                 ocfs2_journal_dirty(handle, bh);
2574
2575                 ret = ocfs2_cache_extent_block_free(dealloc, eb);
2576                 if (ret)
2577                         mlog_errno(ret);
2578
2579                 ocfs2_remove_from_cache(INODE_CACHE(inode), bh);
2580         }
2581 }
2582
2583 static void ocfs2_unlink_subtree(struct inode *inode, handle_t *handle,
2584                                  struct ocfs2_path *left_path,
2585                                  struct ocfs2_path *right_path,
2586                                  int subtree_index,
2587                                  struct ocfs2_cached_dealloc_ctxt *dealloc)
2588 {
2589         int i;
2590         struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
2591         struct ocfs2_extent_list *root_el = left_path->p_node[subtree_index].el;
2592         struct ocfs2_extent_list *el;
2593         struct ocfs2_extent_block *eb;
2594
2595         el = path_leaf_el(left_path);
2596
2597         eb = (struct ocfs2_extent_block *)right_path->p_node[subtree_index + 1].bh->b_data;
2598
2599         for(i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++)
2600                 if (root_el->l_recs[i].e_blkno == eb->h_blkno)
2601                         break;
2602
2603         BUG_ON(i >= le16_to_cpu(root_el->l_next_free_rec));
2604
2605         memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
2606         le16_add_cpu(&root_el->l_next_free_rec, -1);
2607
2608         eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2609         eb->h_next_leaf_blk = 0;
2610
2611         ocfs2_journal_dirty(handle, root_bh);
2612         ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2613
2614         ocfs2_unlink_path(inode, handle, dealloc, right_path,
2615                           subtree_index + 1);
2616 }
2617
2618 static int ocfs2_rotate_subtree_left(struct inode *inode, handle_t *handle,
2619                                      struct ocfs2_path *left_path,
2620                                      struct ocfs2_path *right_path,
2621                                      int subtree_index,
2622                                      struct ocfs2_cached_dealloc_ctxt *dealloc,
2623                                      int *deleted,
2624                                      struct ocfs2_extent_tree *et)
2625 {
2626         int ret, i, del_right_subtree = 0, right_has_empty = 0;
2627         struct buffer_head *root_bh, *et_root_bh = path_root_bh(right_path);
2628         struct ocfs2_extent_list *right_leaf_el, *left_leaf_el;
2629         struct ocfs2_extent_block *eb;
2630
2631         *deleted = 0;
2632
2633         right_leaf_el = path_leaf_el(right_path);
2634         left_leaf_el = path_leaf_el(left_path);
2635         root_bh = left_path->p_node[subtree_index].bh;
2636         BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
2637
2638         if (!ocfs2_is_empty_extent(&left_leaf_el->l_recs[0]))
2639                 return 0;
2640
2641         eb = (struct ocfs2_extent_block *)path_leaf_bh(right_path)->b_data;
2642         if (ocfs2_is_empty_extent(&right_leaf_el->l_recs[0])) {
2643                 /*
2644                  * It's legal for us to proceed if the right leaf is
2645                  * the rightmost one and it has an empty extent. There
2646                  * are two cases to handle - whether the leaf will be
2647                  * empty after removal or not. If the leaf isn't empty
2648                  * then just remove the empty extent up front. The
2649                  * next block will handle empty leaves by flagging
2650                  * them for unlink.
2651                  *
2652                  * Non rightmost leaves will throw -EAGAIN and the
2653                  * caller can manually move the subtree and retry.
2654                  */
2655
2656                 if (eb->h_next_leaf_blk != 0ULL)
2657                         return -EAGAIN;
2658
2659                 if (le16_to_cpu(right_leaf_el->l_next_free_rec) > 1) {
2660                         ret = ocfs2_journal_access_eb(handle, INODE_CACHE(inode),
2661                                                       path_leaf_bh(right_path),
2662                                                       OCFS2_JOURNAL_ACCESS_WRITE);
2663                         if (ret) {
2664                                 mlog_errno(ret);
2665                                 goto out;
2666                         }
2667
2668                         ocfs2_remove_empty_extent(right_leaf_el);
2669                 } else
2670                         right_has_empty = 1;
2671         }
2672
2673         if (eb->h_next_leaf_blk == 0ULL &&
2674             le16_to_cpu(right_leaf_el->l_next_free_rec) == 1) {
2675                 /*
2676                  * We have to update i_last_eb_blk during the meta
2677                  * data delete.
2678                  */
2679                 ret = ocfs2_et_root_journal_access(handle, et,
2680                                                    OCFS2_JOURNAL_ACCESS_WRITE);
2681                 if (ret) {
2682                         mlog_errno(ret);
2683                         goto out;
2684                 }
2685
2686                 del_right_subtree = 1;
2687         }
2688
2689         /*
2690          * Getting here with an empty extent in the right path implies
2691          * that it's the rightmost path and will be deleted.
2692          */
2693         BUG_ON(right_has_empty && !del_right_subtree);
2694
2695         ret = ocfs2_path_bh_journal_access(handle, INODE_CACHE(inode), right_path,
2696                                            subtree_index);
2697         if (ret) {
2698                 mlog_errno(ret);
2699                 goto out;
2700         }
2701
2702         for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
2703                 ret = ocfs2_path_bh_journal_access(handle, INODE_CACHE(inode),
2704                                                    right_path, i);
2705                 if (ret) {
2706                         mlog_errno(ret);
2707                         goto out;
2708                 }
2709
2710                 ret = ocfs2_path_bh_journal_access(handle, INODE_CACHE(inode),
2711                                                    left_path, i);
2712                 if (ret) {
2713                         mlog_errno(ret);
2714                         goto out;
2715                 }
2716         }
2717
2718         if (!right_has_empty) {
2719                 /*
2720                  * Only do this if we're moving a real
2721                  * record. Otherwise, the action is delayed until
2722                  * after removal of the right path in which case we
2723                  * can do a simple shift to remove the empty extent.
2724                  */
2725                 ocfs2_rotate_leaf(left_leaf_el, &right_leaf_el->l_recs[0]);
2726                 memset(&right_leaf_el->l_recs[0], 0,
2727                        sizeof(struct ocfs2_extent_rec));
2728         }
2729         if (eb->h_next_leaf_blk == 0ULL) {
2730                 /*
2731                  * Move recs over to get rid of empty extent, decrease
2732                  * next_free. This is allowed to remove the last
2733                  * extent in our leaf (setting l_next_free_rec to
2734                  * zero) - the delete code below won't care.
2735                  */
2736                 ocfs2_remove_empty_extent(right_leaf_el);
2737         }
2738
2739         ret = ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2740         if (ret)
2741                 mlog_errno(ret);
2742         ret = ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
2743         if (ret)
2744                 mlog_errno(ret);
2745
2746         if (del_right_subtree) {
2747                 ocfs2_unlink_subtree(inode, handle, left_path, right_path,
2748                                      subtree_index, dealloc);
2749                 ret = ocfs2_update_edge_lengths(inode, handle, subtree_index,
2750                                                 left_path);
2751                 if (ret) {
2752                         mlog_errno(ret);
2753                         goto out;
2754                 }
2755
2756                 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2757                 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
2758
2759                 /*
2760                  * Removal of the extent in the left leaf was skipped
2761                  * above so we could delete the right path
2762                  * 1st.
2763                  */
2764                 if (right_has_empty)
2765                         ocfs2_remove_empty_extent(left_leaf_el);
2766
2767                 ret = ocfs2_journal_dirty(handle, et_root_bh);
2768                 if (ret)
2769                         mlog_errno(ret);
2770
2771                 *deleted = 1;
2772         } else
2773                 ocfs2_complete_edge_insert(inode, handle, left_path, right_path,
2774                                            subtree_index);
2775
2776 out:
2777         return ret;
2778 }
2779
2780 /*
2781  * Given a full path, determine what cpos value would return us a path
2782  * containing the leaf immediately to the right of the current one.
2783  *
2784  * Will return zero if the path passed in is already the rightmost path.
2785  *
2786  * This looks similar, but is subtly different to
2787  * ocfs2_find_cpos_for_left_leaf().
2788  */
2789 static int ocfs2_find_cpos_for_right_leaf(struct super_block *sb,
2790                                           struct ocfs2_path *path, u32 *cpos)
2791 {
2792         int i, j, ret = 0;
2793         u64 blkno;
2794         struct ocfs2_extent_list *el;
2795
2796         *cpos = 0;
2797
2798         if (path->p_tree_depth == 0)
2799                 return 0;
2800
2801         blkno = path_leaf_bh(path)->b_blocknr;
2802
2803         /* Start at the tree node just above the leaf and work our way up. */
2804         i = path->p_tree_depth - 1;
2805         while (i >= 0) {
2806                 int next_free;
2807
2808                 el = path->p_node[i].el;
2809
2810                 /*
2811                  * Find the extent record just after the one in our
2812                  * path.
2813                  */
2814                 next_free = le16_to_cpu(el->l_next_free_rec);
2815                 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
2816                         if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
2817                                 if (j == (next_free - 1)) {
2818                                         if (i == 0) {
2819                                                 /*
2820                                                  * We've determined that the
2821                                                  * path specified is already
2822                                                  * the rightmost one - return a
2823                                                  * cpos of zero.
2824                                                  */
2825                                                 goto out;
2826                                         }
2827                                         /*
2828                                          * The rightmost record points to our
2829                                          * leaf - we need to travel up the
2830                                          * tree one level.
2831                                          */
2832                                         goto next_node;
2833                                 }
2834
2835                                 *cpos = le32_to_cpu(el->l_recs[j + 1].e_cpos);
2836                                 goto out;
2837                         }
2838                 }
2839
2840                 /*
2841                  * If we got here, we never found a valid node where
2842                  * the tree indicated one should be.
2843                  */
2844                 ocfs2_error(sb,
2845                             "Invalid extent tree at extent block %llu\n",
2846                             (unsigned long long)blkno);
2847                 ret = -EROFS;
2848                 goto out;
2849
2850 next_node:
2851                 blkno = path->p_node[i].bh->b_blocknr;
2852                 i--;
2853         }
2854
2855 out:
2856         return ret;
2857 }
2858
2859 static int ocfs2_rotate_rightmost_leaf_left(struct inode *inode,
2860                                             handle_t *handle,
2861                                             struct ocfs2_path *path)
2862 {
2863         int ret;
2864         struct buffer_head *bh = path_leaf_bh(path);
2865         struct ocfs2_extent_list *el = path_leaf_el(path);
2866
2867         if (!ocfs2_is_empty_extent(&el->l_recs[0]))
2868                 return 0;
2869
2870         ret = ocfs2_path_bh_journal_access(handle, INODE_CACHE(inode), path,
2871                                            path_num_items(path) - 1);
2872         if (ret) {
2873                 mlog_errno(ret);
2874                 goto out;
2875         }
2876
2877         ocfs2_remove_empty_extent(el);
2878
2879         ret = ocfs2_journal_dirty(handle, bh);
2880         if (ret)
2881                 mlog_errno(ret);
2882
2883 out:
2884         return ret;
2885 }
2886
2887 static int __ocfs2_rotate_tree_left(struct inode *inode,
2888                                     handle_t *handle, int orig_credits,
2889                                     struct ocfs2_path *path,
2890                                     struct ocfs2_cached_dealloc_ctxt *dealloc,
2891                                     struct ocfs2_path **empty_extent_path,
2892                                     struct ocfs2_extent_tree *et)
2893 {
2894         int ret, subtree_root, deleted;
2895         u32 right_cpos;
2896         struct ocfs2_path *left_path = NULL;
2897         struct ocfs2_path *right_path = NULL;
2898
2899         BUG_ON(!ocfs2_is_empty_extent(&(path_leaf_el(path)->l_recs[0])));
2900
2901         *empty_extent_path = NULL;
2902
2903         ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, path,
2904                                              &right_cpos);
2905         if (ret) {
2906                 mlog_errno(ret);
2907                 goto out;
2908         }
2909
2910         left_path = ocfs2_new_path_from_path(path);
2911         if (!left_path) {
2912                 ret = -ENOMEM;
2913                 mlog_errno(ret);
2914                 goto out;
2915         }
2916
2917         ocfs2_cp_path(left_path, path);
2918
2919         right_path = ocfs2_new_path_from_path(path);
2920         if (!right_path) {
2921                 ret = -ENOMEM;
2922                 mlog_errno(ret);
2923                 goto out;
2924         }
2925
2926         while (right_cpos) {
2927                 ret = ocfs2_find_path(et->et_ci, right_path, right_cpos);
2928                 if (ret) {
2929                         mlog_errno(ret);
2930                         goto out;
2931                 }
2932
2933                 subtree_root = ocfs2_find_subtree_root(inode, left_path,
2934                                                        right_path);
2935
2936                 mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n",
2937                      subtree_root,
2938                      (unsigned long long)
2939                      right_path->p_node[subtree_root].bh->b_blocknr,
2940                      right_path->p_tree_depth);
2941
2942                 ret = ocfs2_extend_rotate_transaction(handle, subtree_root,
2943                                                       orig_credits, left_path);
2944                 if (ret) {
2945                         mlog_errno(ret);
2946                         goto out;
2947                 }
2948
2949                 /*
2950                  * Caller might still want to make changes to the
2951                  * tree root, so re-add it to the journal here.
2952                  */
2953                 ret = ocfs2_path_bh_journal_access(handle, INODE_CACHE(inode),
2954                                                    left_path, 0);
2955                 if (ret) {
2956                         mlog_errno(ret);
2957                         goto out;
2958                 }
2959
2960                 ret = ocfs2_rotate_subtree_left(inode, handle, left_path,
2961                                                 right_path, subtree_root,
2962                                                 dealloc, &deleted, et);
2963                 if (ret == -EAGAIN) {
2964                         /*
2965                          * The rotation has to temporarily stop due to
2966                          * the right subtree having an empty
2967                          * extent. Pass it back to the caller for a
2968                          * fixup.
2969                          */
2970                         *empty_extent_path = right_path;
2971                         right_path = NULL;
2972                         goto out;
2973                 }
2974                 if (ret) {
2975                         mlog_errno(ret);
2976                         goto out;
2977                 }
2978
2979                 /*
2980                  * The subtree rotate might have removed records on
2981                  * the rightmost edge. If so, then rotation is
2982                  * complete.
2983                  */
2984                 if (deleted)
2985                         break;
2986
2987                 ocfs2_mv_path(left_path, right_path);
2988
2989                 ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, left_path,
2990                                                      &right_cpos);
2991                 if (ret) {
2992                         mlog_errno(ret);
2993                         goto out;
2994                 }
2995         }
2996
2997 out:
2998         ocfs2_free_path(right_path);
2999         ocfs2_free_path(left_path);
3000
3001         return ret;
3002 }
3003
3004 static int ocfs2_remove_rightmost_path(struct inode *inode, handle_t *handle,
3005                                 struct ocfs2_path *path,
3006                                 struct ocfs2_cached_dealloc_ctxt *dealloc,
3007                                 struct ocfs2_extent_tree *et)
3008 {
3009         int ret, subtree_index;
3010         u32 cpos;
3011         struct ocfs2_path *left_path = NULL;
3012         struct ocfs2_extent_block *eb;
3013         struct ocfs2_extent_list *el;
3014
3015
3016         ret = ocfs2_et_sanity_check(inode, et);
3017         if (ret)
3018                 goto out;
3019         /*
3020          * There's two ways we handle this depending on
3021          * whether path is the only existing one.
3022          */
3023         ret = ocfs2_extend_rotate_transaction(handle, 0,
3024                                               handle->h_buffer_credits,
3025                                               path);
3026         if (ret) {
3027                 mlog_errno(ret);
3028                 goto out;
3029         }
3030
3031         ret = ocfs2_journal_access_path(et->et_ci, handle, path);
3032         if (ret) {
3033                 mlog_errno(ret);
3034                 goto out;
3035         }
3036
3037         ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci),
3038                                             path, &cpos);
3039         if (ret) {
3040                 mlog_errno(ret);
3041                 goto out;
3042         }
3043
3044         if (cpos) {
3045                 /*
3046                  * We have a path to the left of this one - it needs
3047                  * an update too.
3048                  */
3049                 left_path = ocfs2_new_path_from_path(path);
3050                 if (!left_path) {
3051                         ret = -ENOMEM;
3052                         mlog_errno(ret);
3053                         goto out;
3054                 }
3055
3056                 ret = ocfs2_find_path(et->et_ci, left_path, cpos);
3057                 if (ret) {
3058                         mlog_errno(ret);
3059                         goto out;
3060                 }
3061
3062                 ret = ocfs2_journal_access_path(et->et_ci, handle, left_path);
3063                 if (ret) {
3064                         mlog_errno(ret);
3065                         goto out;
3066                 }
3067
3068                 subtree_index = ocfs2_find_subtree_root(inode, left_path, path);
3069
3070                 ocfs2_unlink_subtree(inode, handle, left_path, path,
3071                                      subtree_index, dealloc);
3072                 ret = ocfs2_update_edge_lengths(inode, handle, subtree_index,
3073                                                 left_path);
3074                 if (ret) {
3075                         mlog_errno(ret);
3076                         goto out;
3077                 }
3078
3079                 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
3080                 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
3081         } else {
3082                 /*
3083                  * 'path' is also the leftmost path which
3084                  * means it must be the only one. This gets
3085                  * handled differently because we want to
3086                  * revert the inode back to having extents
3087                  * in-line.
3088                  */
3089                 ocfs2_unlink_path(inode, handle, dealloc, path, 1);
3090
3091                 el = et->et_root_el;
3092                 el->l_tree_depth = 0;
3093                 el->l_next_free_rec = 0;
3094                 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
3095
3096                 ocfs2_et_set_last_eb_blk(et, 0);
3097         }
3098
3099         ocfs2_journal_dirty(handle, path_root_bh(path));
3100
3101 out:
3102         ocfs2_free_path(left_path);
3103         return ret;
3104 }
3105
3106 /*
3107  * Left rotation of btree records.
3108  *
3109  * In many ways, this is (unsurprisingly) the opposite of right
3110  * rotation. We start at some non-rightmost path containing an empty
3111  * extent in the leaf block. The code works its way to the rightmost
3112  * path by rotating records to the left in every subtree.
3113  *
3114  * This is used by any code which reduces the number of extent records
3115  * in a leaf. After removal, an empty record should be placed in the
3116  * leftmost list position.
3117  *
3118  * This won't handle a length update of the rightmost path records if
3119  * the rightmost tree leaf record is removed so the caller is
3120  * responsible for detecting and correcting that.
3121  */
3122 static int ocfs2_rotate_tree_left(struct inode *inode, handle_t *handle,
3123                                   struct ocfs2_path *path,
3124                                   struct ocfs2_cached_dealloc_ctxt *dealloc,
3125                                   struct ocfs2_extent_tree *et)
3126 {
3127         int ret, orig_credits = handle->h_buffer_credits;
3128         struct ocfs2_path *tmp_path = NULL, *restart_path = NULL;
3129         struct ocfs2_extent_block *eb;
3130         struct ocfs2_extent_list *el;
3131
3132         el = path_leaf_el(path);
3133         if (!ocfs2_is_empty_extent(&el->l_recs[0]))
3134                 return 0;
3135
3136         if (path->p_tree_depth == 0) {
3137 rightmost_no_delete:
3138                 /*
3139                  * Inline extents. This is trivially handled, so do
3140                  * it up front.
3141                  */
3142                 ret = ocfs2_rotate_rightmost_leaf_left(inode, handle,
3143                                                        path);
3144                 if (ret)
3145                         mlog_errno(ret);
3146                 goto out;
3147         }
3148
3149         /*
3150          * Handle rightmost branch now. There's several cases:
3151          *  1) simple rotation leaving records in there. That's trivial.
3152          *  2) rotation requiring a branch delete - there's no more
3153          *     records left. Two cases of this:
3154          *     a) There are branches to the left.
3155          *     b) This is also the leftmost (the only) branch.
3156          *
3157          *  1) is handled via ocfs2_rotate_rightmost_leaf_left()
3158          *  2a) we need the left branch so that we can update it with the unlink
3159          *  2b) we need to bring the inode back to inline extents.
3160          */
3161
3162         eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
3163         el = &eb->h_list;
3164         if (eb->h_next_leaf_blk == 0) {
3165                 /*
3166                  * This gets a bit tricky if we're going to delete the
3167                  * rightmost path. Get the other cases out of the way
3168                  * 1st.
3169                  */
3170                 if (le16_to_cpu(el->l_next_free_rec) > 1)
3171                         goto rightmost_no_delete;
3172
3173                 if (le16_to_cpu(el->l_next_free_rec) == 0) {
3174                         ret = -EIO;
3175                         ocfs2_error(inode->i_sb,
3176                                     "Inode %llu has empty extent block at %llu",
3177                                     (unsigned long long)OCFS2_I(inode)->ip_blkno,
3178                                     (unsigned long long)le64_to_cpu(eb->h_blkno));
3179                         goto out;
3180                 }
3181
3182                 /*
3183                  * XXX: The caller can not trust "path" any more after
3184                  * this as it will have been deleted. What do we do?
3185                  *
3186                  * In theory the rotate-for-merge code will never get
3187                  * here because it'll always ask for a rotate in a
3188                  * nonempty list.
3189                  */
3190
3191                 ret = ocfs2_remove_rightmost_path(inode, handle, path,
3192                                                   dealloc, et);
3193                 if (ret)
3194                         mlog_errno(ret);
3195                 goto out;
3196         }
3197
3198         /*
3199          * Now we can loop, remembering the path we get from -EAGAIN
3200          * and restarting from there.
3201          */
3202 try_rotate:
3203         ret = __ocfs2_rotate_tree_left(inode, handle, orig_credits, path,
3204                                        dealloc, &restart_path, et);
3205         if (ret && ret != -EAGAIN) {
3206                 mlog_errno(ret);
3207                 goto out;
3208         }
3209
3210         while (ret == -EAGAIN) {
3211                 tmp_path = restart_path;
3212                 restart_path = NULL;
3213
3214                 ret = __ocfs2_rotate_tree_left(inode, handle, orig_credits,
3215                                                tmp_path, dealloc,
3216                                                &restart_path, et);
3217                 if (ret && ret != -EAGAIN) {
3218                         mlog_errno(ret);
3219                         goto out;
3220                 }
3221
3222                 ocfs2_free_path(tmp_path);
3223                 tmp_path = NULL;
3224
3225                 if (ret == 0)
3226                         goto try_rotate;
3227         }
3228
3229 out:
3230         ocfs2_free_path(tmp_path);
3231         ocfs2_free_path(restart_path);
3232         return ret;
3233 }
3234
3235 static void ocfs2_cleanup_merge(struct ocfs2_extent_list *el,
3236                                 int index)
3237 {
3238         struct ocfs2_extent_rec *rec = &el->l_recs[index];
3239         unsigned int size;
3240
3241         if (rec->e_leaf_clusters == 0) {
3242                 /*
3243                  * We consumed all of the merged-from record. An empty
3244                  * extent cannot exist anywhere but the 1st array
3245                  * position, so move things over if the merged-from
3246                  * record doesn't occupy that position.
3247                  *
3248                  * This creates a new empty extent so the caller
3249                  * should be smart enough to have removed any existing
3250                  * ones.
3251                  */
3252                 if (index > 0) {
3253                         BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
3254                         size = index * sizeof(struct ocfs2_extent_rec);
3255                         memmove(&el->l_recs[1], &el->l_recs[0], size);
3256                 }
3257
3258                 /*
3259                  * Always memset - the caller doesn't check whether it
3260                  * created an empty extent, so there could be junk in
3261                  * the other fields.
3262                  */
3263                 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
3264         }
3265 }
3266
3267 static int ocfs2_get_right_path(struct inode *inode,
3268                                 struct ocfs2_path *left_path,
3269                                 struct ocfs2_path **ret_right_path)
3270 {
3271         int ret;
3272         u32 right_cpos;
3273         struct ocfs2_path *right_path = NULL;
3274         struct ocfs2_extent_list *left_el;
3275
3276         *ret_right_path = NULL;
3277
3278         /* This function shouldn't be called for non-trees. */
3279         BUG_ON(left_path->p_tree_depth == 0);
3280
3281         left_el = path_leaf_el(left_path);
3282         BUG_ON(left_el->l_next_free_rec != left_el->l_count);
3283
3284         ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, left_path,
3285                                              &right_cpos);
3286         if (ret) {
3287                 mlog_errno(ret);
3288                 goto out;
3289         }
3290
3291         /* This function shouldn't be called for the rightmost leaf. */
3292         BUG_ON(right_cpos == 0);
3293
3294         right_path = ocfs2_new_path_from_path(left_path);
3295         if (!right_path) {
3296                 ret = -ENOMEM;
3297                 mlog_errno(ret);
3298                 goto out;
3299         }
3300
3301         ret = ocfs2_find_path(INODE_CACHE(inode), right_path, right_cpos);
3302         if (ret) {
3303                 mlog_errno(ret);
3304                 goto out;
3305         }
3306
3307         *ret_right_path = right_path;
3308 out:
3309         if (ret)
3310                 ocfs2_free_path(right_path);
3311         return ret;
3312 }
3313
3314 /*
3315  * Remove split_rec clusters from the record at index and merge them
3316  * onto the beginning of the record "next" to it.
3317  * For index < l_count - 1, the next means the extent rec at index + 1.
3318  * For index == l_count - 1, the "next" means the 1st extent rec of the
3319  * next extent block.
3320  */
3321 static int ocfs2_merge_rec_right(struct inode *inode,
3322                                  struct ocfs2_path *left_path,
3323                                  handle_t *handle,
3324                                  struct ocfs2_extent_rec *split_rec,
3325                                  int index)
3326 {
3327         int ret, next_free, i;
3328         unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
3329         struct ocfs2_extent_rec *left_rec;
3330         struct ocfs2_extent_rec *right_rec;
3331         struct ocfs2_extent_list *right_el;
3332         struct ocfs2_path *right_path = NULL;
3333         int subtree_index = 0;
3334         struct ocfs2_extent_list *el = path_leaf_el(left_path);
3335         struct buffer_head *bh = path_leaf_bh(left_path);
3336         struct buffer_head *root_bh = NULL;
3337
3338         BUG_ON(index >= le16_to_cpu(el->l_next_free_rec));
3339         left_rec = &el->l_recs[index];
3340
3341         if (index == le16_to_cpu(el->l_next_free_rec) - 1 &&
3342             le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count)) {
3343                 /* we meet with a cross extent block merge. */
3344                 ret = ocfs2_get_right_path(inode, left_path, &right_path);
3345                 if (ret) {
3346                         mlog_errno(ret);
3347                         goto out;
3348                 }
3349
3350                 right_el = path_leaf_el(right_path);
3351                 next_free = le16_to_cpu(right_el->l_next_free_rec);
3352                 BUG_ON(next_free <= 0);
3353                 right_rec = &right_el->l_recs[0];
3354                 if (ocfs2_is_empty_extent(right_rec)) {
3355                         BUG_ON(next_free <= 1);
3356                         right_rec = &right_el->l_recs[1];
3357                 }
3358
3359                 BUG_ON(le32_to_cpu(left_rec->e_cpos) +
3360                        le16_to_cpu(left_rec->e_leaf_clusters) !=
3361                        le32_to_cpu(right_rec->e_cpos));
3362
3363                 subtree_index = ocfs2_find_subtree_root(inode,
3364                                                         left_path, right_path);
3365
3366                 ret = ocfs2_extend_rotate_transaction(handle, subtree_index,
3367                                                       handle->h_buffer_credits,
3368                                                       right_path);
3369                 if (ret) {
3370                         mlog_errno(ret);
3371                         goto out;
3372                 }
3373
3374                 root_bh = left_path->p_node[subtree_index].bh;
3375                 BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
3376
3377                 ret = ocfs2_path_bh_journal_access(handle, INODE_CACHE(inode), right_path,
3378                                                    subtree_index);
3379                 if (ret) {
3380                         mlog_errno(ret);
3381                         goto out;
3382                 }
3383
3384                 for (i = subtree_index + 1;
3385                      i < path_num_items(right_path); i++) {
3386                         ret = ocfs2_path_bh_journal_access(handle, INODE_CACHE(inode),
3387                                                            right_path, i);
3388                         if (ret) {
3389                                 mlog_errno(ret);
3390                                 goto out;
3391                         }
3392
3393                         ret = ocfs2_path_bh_journal_access(handle, INODE_CACHE(inode),
3394                                                            left_path, i);
3395                         if (ret) {
3396                                 mlog_errno(ret);
3397                                 goto out;
3398                         }
3399                 }
3400
3401         } else {
3402                 BUG_ON(index == le16_to_cpu(el->l_next_free_rec) - 1);
3403                 right_rec = &el->l_recs[index + 1];
3404         }
3405
3406         ret = ocfs2_path_bh_journal_access(handle, INODE_CACHE(inode), left_path,
3407                                            path_num_items(left_path) - 1);
3408         if (ret) {
3409                 mlog_errno(ret);
3410                 goto out;
3411         }
3412
3413         le16_add_cpu(&left_rec->e_leaf_clusters, -split_clusters);
3414
3415         le32_add_cpu(&right_rec->e_cpos, -split_clusters);
3416         le64_add_cpu(&right_rec->e_blkno,
3417                      -ocfs2_clusters_to_blocks(inode->i_sb, split_clusters));
3418         le16_add_cpu(&right_rec->e_leaf_clusters, split_clusters);
3419
3420         ocfs2_cleanup_merge(el, index);
3421
3422         ret = ocfs2_journal_dirty(handle, bh);
3423         if (ret)
3424                 mlog_errno(ret);
3425
3426         if (right_path) {
3427                 ret = ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
3428                 if (ret)
3429                         mlog_errno(ret);
3430
3431                 ocfs2_complete_edge_insert(inode, handle, left_path,
3432                                            right_path, subtree_index);
3433         }
3434 out:
3435         if (right_path)
3436                 ocfs2_free_path(right_path);
3437         return ret;
3438 }
3439
3440 static int ocfs2_get_left_path(struct inode *inode,
3441                                struct ocfs2_path *right_path,
3442                                struct ocfs2_path **ret_left_path)
3443 {
3444         int ret;
3445         u32 left_cpos;
3446         struct ocfs2_path *left_path = NULL;
3447
3448         *ret_left_path = NULL;
3449
3450         /* This function shouldn't be called for non-trees. */
3451         BUG_ON(right_path->p_tree_depth == 0);
3452
3453         ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb,
3454                                             right_path, &left_cpos);
3455         if (ret) {
3456                 mlog_errno(ret);
3457                 goto out;
3458         }
3459
3460         /* This function shouldn't be called for the leftmost leaf. */
3461         BUG_ON(left_cpos == 0);
3462
3463         left_path = ocfs2_new_path_from_path(right_path);
3464         if (!left_path) {
3465                 ret = -ENOMEM;
3466                 mlog_errno(ret);
3467                 goto out;
3468         }
3469
3470         ret = ocfs2_find_path(INODE_CACHE(inode), left_path, left_cpos);
3471         if (ret) {
3472                 mlog_errno(ret);
3473                 goto out;
3474         }
3475
3476         *ret_left_path = left_path;
3477 out:
3478         if (ret)
3479                 ocfs2_free_path(left_path);
3480         return ret;
3481 }
3482
3483 /*
3484  * Remove split_rec clusters from the record at index and merge them
3485  * onto the tail of the record "before" it.
3486  * For index > 0, the "before" means the extent rec at index - 1.
3487  *
3488  * For index == 0, the "before" means the last record of the previous
3489  * extent block. And there is also a situation that we may need to
3490  * remove the rightmost leaf extent block in the right_path and change
3491  * the right path to indicate the new rightmost path.
3492  */
3493 static int ocfs2_merge_rec_left(struct inode *inode,
3494                                 struct ocfs2_path *right_path,
3495                                 handle_t *handle,
3496                                 struct ocfs2_extent_rec *split_rec,
3497                                 struct ocfs2_cached_dealloc_ctxt *dealloc,
3498                                 struct ocfs2_extent_tree *et,
3499                                 int index)
3500 {
3501         int ret, i, subtree_index = 0, has_empty_extent = 0;
3502         unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
3503         struct ocfs2_extent_rec *left_rec;
3504         struct ocfs2_extent_rec *right_rec;
3505         struct ocfs2_extent_list *el = path_leaf_el(right_path);
3506         struct buffer_head *bh = path_leaf_bh(right_path);
3507         struct buffer_head *root_bh = NULL;
3508         struct ocfs2_path *left_path = NULL;
3509         struct ocfs2_extent_list *left_el;
3510
3511         BUG_ON(index < 0);
3512
3513         right_rec = &el->l_recs[index];
3514         if (index == 0) {
3515                 /* we meet with a cross extent block merge. */
3516                 ret = ocfs2_get_left_path(inode, right_path, &left_path);
3517                 if (ret) {
3518                         mlog_errno(ret);
3519                         goto out;
3520                 }
3521
3522                 left_el = path_leaf_el(left_path);
3523                 BUG_ON(le16_to_cpu(left_el->l_next_free_rec) !=
3524                        le16_to_cpu(left_el->l_count));
3525
3526                 left_rec = &left_el->l_recs[
3527                                 le16_to_cpu(left_el->l_next_free_rec) - 1];
3528                 BUG_ON(le32_to_cpu(left_rec->e_cpos) +
3529                        le16_to_cpu(left_rec->e_leaf_clusters) !=
3530                        le32_to_cpu(split_rec->e_cpos));
3531
3532                 subtree_index = ocfs2_find_subtree_root(inode,
3533                                                         left_path, right_path);
3534
3535                 ret = ocfs2_extend_rotate_transaction(handle, subtree_index,
3536                                                       handle->h_buffer_credits,
3537                                                       left_path);
3538                 if (ret) {
3539                         mlog_errno(ret);
3540                         goto out;
3541                 }
3542
3543                 root_bh = left_path->p_node[subtree_index].bh;
3544                 BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
3545
3546                 ret = ocfs2_path_bh_journal_access(handle, INODE_CACHE(inode), right_path,
3547                                                    subtree_index);
3548                 if (ret) {
3549                         mlog_errno(ret);
3550                         goto out;
3551                 }
3552
3553                 for (i = subtree_index + 1;
3554                      i < path_num_items(right_path); i++) {
3555                         ret = ocfs2_path_bh_journal_access(handle, INODE_CACHE(inode),
3556                                                            right_path, i);
3557                         if (ret) {
3558                                 mlog_errno(ret);
3559                                 goto out;
3560                         }
3561
3562                         ret = ocfs2_path_bh_journal_access(handle, INODE_CACHE(inode),
3563                                                            left_path, i);
3564                         if (ret) {
3565                                 mlog_errno(ret);
3566                                 goto out;
3567                         }
3568                 }
3569         } else {
3570                 left_rec = &el->l_recs[index - 1];
3571                 if (ocfs2_is_empty_extent(&el->l_recs[0]))
3572                         has_empty_extent = 1;
3573         }
3574
3575         ret = ocfs2_path_bh_journal_access(handle, INODE_CACHE(inode), right_path,
3576                                            path_num_items(right_path) - 1);
3577         if (ret) {
3578                 mlog_errno(ret);
3579                 goto out;
3580         }
3581
3582         if (has_empty_extent && index == 1) {
3583                 /*
3584                  * The easy case - we can just plop the record right in.
3585                  */
3586                 *left_rec = *split_rec;
3587
3588                 has_empty_extent = 0;
3589         } else
3590                 le16_add_cpu(&left_rec->e_leaf_clusters, split_clusters);
3591
3592         le32_add_cpu(&right_rec->e_cpos, split_clusters);
3593         le64_add_cpu(&right_rec->e_blkno,
3594                      ocfs2_clusters_to_blocks(inode->i_sb, split_clusters));
3595         le16_add_cpu(&right_rec->e_leaf_clusters, -split_clusters);
3596
3597         ocfs2_cleanup_merge(el, index);
3598
3599         ret = ocfs2_journal_dirty(handle, bh);
3600         if (ret)
3601                 mlog_errno(ret);
3602
3603         if (left_path) {
3604                 ret = ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
3605                 if (ret)
3606                         mlog_errno(ret);
3607
3608                 /*
3609                  * In the situation that the right_rec is empty and the extent
3610                  * block is empty also,  ocfs2_complete_edge_insert can't handle
3611                  * it and we need to delete the right extent block.
3612                  */
3613                 if (le16_to_cpu(right_rec->e_leaf_clusters) == 0 &&
3614                     le16_to_cpu(el->l_next_free_rec) == 1) {
3615
3616                         ret = ocfs2_remove_rightmost_path(inode, handle,
3617                                                           right_path,
3618                                                           dealloc, et);
3619                         if (ret) {
3620                                 mlog_errno(ret);
3621                                 goto out;
3622                         }
3623
3624                         /* Now the rightmost extent block has been deleted.
3625                          * So we use the new rightmost path.
3626                          */
3627                         ocfs2_mv_path(right_path, left_path);
3628                         left_path = NULL;
3629                 } else
3630                         ocfs2_complete_edge_insert(inode, handle, left_path,
3631                                                    right_path, subtree_index);
3632         }
3633 out:
3634         if (left_path)
3635                 ocfs2_free_path(left_path);
3636         return ret;
3637 }
3638
3639 static int ocfs2_try_to_merge_extent(struct inode *inode,
3640                                      handle_t *handle,
3641                                      struct ocfs2_path *path,
3642                                      int split_index,
3643                                      struct ocfs2_extent_rec *split_rec,
3644                                      struct ocfs2_cached_dealloc_ctxt *dealloc,
3645                                      struct ocfs2_merge_ctxt *ctxt,
3646                                      struct ocfs2_extent_tree *et)
3647
3648 {
3649         int ret = 0;
3650         struct ocfs2_extent_list *el = path_leaf_el(path);
3651         struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
3652
3653         BUG_ON(ctxt->c_contig_type == CONTIG_NONE);
3654
3655         if (ctxt->c_split_covers_rec && ctxt->c_has_empty_extent) {
3656                 /*
3657                  * The merge code will need to create an empty
3658                  * extent to take the place of the newly
3659                  * emptied slot. Remove any pre-existing empty
3660                  * extents - having more than one in a leaf is
3661                  * illegal.
3662                  */
3663                 ret = ocfs2_rotate_tree_left(inode, handle, path,
3664                                              dealloc, et);
3665                 if (ret) {
3666                         mlog_errno(ret);
3667                         goto out;
3668                 }
3669                 split_index--;
3670                 rec = &el->l_recs[split_index];
3671         }
3672
3673         if (ctxt->c_contig_type == CONTIG_LEFTRIGHT) {
3674                 /*
3675                  * Left-right contig implies this.
3676                  */
3677                 BUG_ON(!ctxt->c_split_covers_rec);
3678
3679                 /*
3680                  * Since the leftright insert always covers the entire
3681                  * extent, this call will delete the insert record
3682                  * entirely, resulting in an empty extent record added to
3683                  * the extent block.
3684                  *
3685                  * Since the adding of an empty extent shifts
3686                  * everything back to the right, there's no need to
3687                  * update split_index here.
3688                  *
3689                  * When the split_index is zero, we need to merge it to the
3690                  * prevoius extent block. It is more efficient and easier
3691                  * if we do merge_right first and merge_left later.
3692                  */
3693                 ret = ocfs2_merge_rec_right(inode, path,
3694                                             handle, split_rec,
3695                                             split_index);
3696                 if (ret) {
3697                         mlog_errno(ret);
3698                         goto out;
3699                 }
3700
3701                 /*
3702                  * We can only get this from logic error above.
3703                  */
3704                 BUG_ON(!ocfs2_is_empty_extent(&el->l_recs[0]));
3705
3706                 /* The merge left us with an empty extent, remove it. */
3707                 ret = ocfs2_rotate_tree_left(inode, handle, path,
3708                                              dealloc, et);
3709                 if (ret) {
3710                         mlog_errno(ret);
3711                         goto out;
3712                 }
3713
3714                 rec = &el->l_recs[split_index];
3715
3716                 /*
3717                  * Note that we don't pass split_rec here on purpose -
3718                  * we've merged it into the rec already.
3719                  */
3720                 ret = ocfs2_merge_rec_left(inode, path,
3721                                            handle, rec,
3722                                            dealloc, et,
3723                                            split_index);
3724
3725                 if (ret) {
3726                         mlog_errno(ret);
3727                         goto out;
3728                 }
3729
3730                 ret = ocfs2_rotate_tree_left(inode, handle, path,
3731                                              dealloc, et);
3732                 /*
3733                  * Error from this last rotate is not critical, so
3734                  * print but don't bubble it up.
3735                  */
3736                 if (ret)
3737                         mlog_errno(ret);
3738                 ret = 0;
3739         } else {
3740                 /*
3741                  * Merge a record to the left or right.
3742                  *
3743                  * 'contig_type' is relative to the existing record,
3744                  * so for example, if we're "right contig", it's to
3745                  * the record on the left (hence the left merge).
3746                  */
3747                 if (ctxt->c_contig_type == CONTIG_RIGHT) {
3748                         ret = ocfs2_merge_rec_left(inode,
3749                                                    path,
3750                                                    handle, split_rec,
3751                                                    dealloc, et,
3752                                                    split_index);
3753                         if (ret) {
3754                                 mlog_errno(ret);
3755                                 goto out;
3756                         }
3757                 } else {
3758                         ret = ocfs2_merge_rec_right(inode,
3759                                                     path,
3760                                                     handle, split_rec,
3761                                                     split_index);
3762                         if (ret) {
3763                                 mlog_errno(ret);
3764                                 goto out;
3765                         }
3766                 }
3767
3768                 if (ctxt->c_split_covers_rec) {
3769                         /*
3770                          * The merge may have left an empty extent in
3771                          * our leaf. Try to rotate it away.
3772                          */
3773                         ret = ocfs2_rotate_tree_left(inode, handle, path,
3774                                                      dealloc, et);
3775                         if (ret)
3776                                 mlog_errno(ret);
3777                         ret = 0;
3778                 }
3779         }
3780
3781 out:
3782         return ret;
3783 }
3784
3785 static void ocfs2_subtract_from_rec(struct super_block *sb,
3786                                     enum ocfs2_split_type split,
3787                                     struct ocfs2_extent_rec *rec,
3788                                     struct ocfs2_extent_rec *split_rec)
3789 {
3790         u64 len_blocks;
3791
3792         len_blocks = ocfs2_clusters_to_blocks(sb,
3793                                 le16_to_cpu(split_rec->e_leaf_clusters));
3794
3795         if (split == SPLIT_LEFT) {
3796                 /*
3797                  * Region is on the left edge of the existing
3798                  * record.
3799                  */
3800                 le32_add_cpu(&rec->e_cpos,
3801                              le16_to_cpu(split_rec->e_leaf_clusters));
3802                 le64_add_cpu(&rec->e_blkno, len_blocks);
3803                 le16_add_cpu(&rec->e_leaf_clusters,
3804                              -le16_to_cpu(split_rec->e_leaf_clusters));
3805         } else {
3806                 /*
3807                  * Region is on the right edge of the existing
3808                  * record.
3809                  */
3810                 le16_add_cpu(&rec->e_leaf_clusters,
3811                              -le16_to_cpu(split_rec->e_leaf_clusters));
3812         }
3813 }
3814
3815 /*
3816  * Do the final bits of extent record insertion at the target leaf
3817  * list. If this leaf is part of an allocation tree, it is assumed
3818  * that the tree above has been prepared.
3819  */
3820 static void ocfs2_insert_at_leaf(struct ocfs2_extent_rec *insert_rec,
3821                                  struct ocfs2_extent_list *el,
3822                                  struct ocfs2_insert_type *insert,
3823                                  struct inode *inode)
3824 {
3825         int i = insert->ins_contig_index;
3826         unsigned int range;
3827         struct ocfs2_extent_rec *rec;
3828
3829         BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
3830
3831         if (insert->ins_split != SPLIT_NONE) {
3832                 i = ocfs2_search_extent_list(el, le32_to_cpu(insert_rec->e_cpos));
3833                 BUG_ON(i == -1);
3834                 rec = &el->l_recs[i];
3835                 ocfs2_subtract_from_rec(inode->i_sb, insert->ins_split, rec,
3836                                         insert_rec);
3837                 goto rotate;
3838         }
3839
3840         /*
3841          * Contiguous insert - either left or right.
3842          */
3843         if (insert->ins_contig != CONTIG_NONE) {
3844                 rec = &el->l_recs[i];
3845                 if (insert->ins_contig == CONTIG_LEFT) {
3846                         rec->e_blkno = insert_rec->e_blkno;
3847                         rec->e_cpos = insert_rec->e_cpos;
3848                 }
3849                 le16_add_cpu(&rec->e_leaf_clusters,
3850                              le16_to_cpu(insert_rec->e_leaf_clusters));
3851                 return;
3852         }
3853
3854         /*
3855          * Handle insert into an empty leaf.
3856          */
3857         if (le16_to_cpu(el->l_next_free_rec) == 0 ||
3858             ((le16_to_cpu(el->l_next_free_rec) == 1) &&
3859              ocfs2_is_empty_extent(&el->l_recs[0]))) {
3860                 el->l_recs[0] = *insert_rec;
3861                 el->l_next_free_rec = cpu_to_le16(1);
3862                 return;
3863         }
3864
3865         /*
3866          * Appending insert.
3867          */
3868         if (insert->ins_appending == APPEND_TAIL) {
3869                 i = le16_to_cpu(el->l_next_free_rec) - 1;
3870                 rec = &el->l_recs[i];
3871                 range = le32_to_cpu(rec->e_cpos)
3872                         + le16_to_cpu(rec->e_leaf_clusters);
3873                 BUG_ON(le32_to_cpu(insert_rec->e_cpos) < range);
3874
3875                 mlog_bug_on_msg(le16_to_cpu(el->l_next_free_rec) >=
3876                                 le16_to_cpu(el->l_count),
3877                                 "inode %lu, depth %u, count %u, next free %u, "
3878                                 "rec.cpos %u, rec.clusters %u, "
3879                                 "insert.cpos %u, insert.clusters %u\n",
3880                                 inode->i_ino,
3881                                 le16_to_cpu(el->l_tree_depth),
3882                                 le16_to_cpu(el->l_count),
3883                                 le16_to_cpu(el->l_next_free_rec),
3884                                 le32_to_cpu(el->l_recs[i].e_cpos),
3885                                 le16_to_cpu(el->l_recs[i].e_leaf_clusters),
3886                                 le32_to_cpu(insert_rec->e_cpos),
3887                                 le16_to_cpu(insert_rec->e_leaf_clusters));
3888                 i++;
3889                 el->l_recs[i] = *insert_rec;
3890                 le16_add_cpu(&el->l_next_free_rec, 1);
3891                 return;
3892         }
3893
3894 rotate:
3895         /*
3896          * Ok, we have to rotate.
3897          *
3898          * At this point, it is safe to assume that inserting into an
3899          * empty leaf and appending to a leaf have both been handled
3900          * above.
3901          *
3902          * This leaf needs to have space, either by the empty 1st
3903          * extent record, or by virtue of an l_next_rec < l_count.
3904          */
3905         ocfs2_rotate_leaf(el, insert_rec);
3906 }
3907
3908 static void ocfs2_adjust_rightmost_records(struct inode *inode,
3909                                            handle_t *handle,
3910                                            struct ocfs2_path *path,
3911                                            struct ocfs2_extent_rec *insert_rec)
3912 {
3913         int ret, i, next_free;
3914         struct buffer_head *bh;
3915         struct ocfs2_extent_list *el;
3916         struct ocfs2_extent_rec *rec;
3917
3918         /*
3919          * Update everything except the leaf block.
3920          */
3921         for (i = 0; i < path->p_tree_depth; i++) {
3922                 bh = path->p_node[i].bh;
3923                 el = path->p_node[i].el;
3924
3925                 next_free = le16_to_cpu(el->l_next_free_rec);
3926                 if (next_free == 0) {
3927                         ocfs2_error(inode->i_sb,
3928                                     "Dinode %llu has a bad extent list",
3929                                     (unsigned long long)OCFS2_I(inode)->ip_blkno);
3930                         ret = -EIO;
3931                         return;
3932                 }
3933
3934                 rec = &el->l_recs[next_free - 1];
3935
3936                 rec->e_int_clusters = insert_rec->e_cpos;
3937                 le32_add_cpu(&rec->e_int_clusters,
3938                              le16_to_cpu(insert_rec->e_leaf_clusters));
3939                 le32_add_cpu(&rec->e_int_clusters,
3940                              -le32_to_cpu(rec->e_cpos));
3941
3942                 ret = ocfs2_journal_dirty(handle, bh);
3943                 if (ret)
3944                         mlog_errno(ret);
3945
3946         }
3947 }
3948
3949 static int ocfs2_append_rec_to_path(struct inode *inode, handle_t *handle,
3950                                     struct ocfs2_extent_rec *insert_rec,
3951                                     struct ocfs2_path *right_path,
3952                                     struct ocfs2_path **ret_left_path)
3953 {
3954         int ret, next_free;
3955         struct ocfs2_extent_list *el;
3956         struct ocfs2_path *left_path = NULL;
3957
3958         *ret_left_path = NULL;
3959
3960         /*
3961          * This shouldn't happen for non-trees. The extent rec cluster
3962          * count manipulation below only works for interior nodes.
3963          */
3964         BUG_ON(right_path->p_tree_depth == 0);
3965
3966         /*
3967          * If our appending insert is at the leftmost edge of a leaf,
3968          * then we might need to update the rightmost records of the
3969          * neighboring path.
3970          */
3971         el = path_leaf_el(right_path);
3972         next_free = le16_to_cpu(el->l_next_free_rec);
3973         if (next_free == 0 ||
3974             (next_free == 1 && ocfs2_is_empty_extent(&el->l_recs[0]))) {
3975                 u32 left_cpos;
3976
3977                 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path,
3978                                                     &left_cpos);
3979                 if (ret) {
3980                         mlog_errno(ret);
3981                         goto out;
3982                 }
3983
3984                 mlog(0, "Append may need a left path update. cpos: %u, "
3985                      "left_cpos: %u\n", le32_to_cpu(insert_rec->e_cpos),
3986                      left_cpos);
3987
3988                 /*
3989                  * No need to worry if the append is already in the
3990                  * leftmost leaf.
3991                  */
3992                 if (left_cpos) {
3993                         left_path = ocfs2_new_path_from_path(right_path);
3994                         if (!left_path) {
3995                                 ret = -ENOMEM;
3996                                 mlog_errno(ret);
3997                                 goto out;
3998                         }
3999
4000                         ret = ocfs2_find_path(INODE_CACHE(inode), left_path,
4001                                               left_cpos);
4002                         if (ret) {
4003                                 mlog_errno(ret);
4004                                 goto out;
4005                         }
4006
4007                         /*
4008                          * ocfs2_insert_path() will pass the left_path to the
4009                          * journal for us.
4010                          */
4011                 }
4012         }
4013
4014         ret = ocfs2_journal_access_path(INODE_CACHE(inode), handle, right_path);
4015         if (ret) {
4016                 mlog_errno(ret);
4017                 goto out;
4018         }
4019
4020         ocfs2_adjust_rightmost_records(inode, handle, right_path, insert_rec);
4021
4022         *ret_left_path = left_path;
4023         ret = 0;
4024 out:
4025         if (ret != 0)
4026                 ocfs2_free_path(left_path);
4027
4028         return ret;
4029 }
4030
4031 static void ocfs2_split_record(struct inode *inode,
4032                                struct ocfs2_path *left_path,
4033                                struct ocfs2_path *right_path,
4034                                struct ocfs2_extent_rec *split_rec,
4035                                enum ocfs2_split_type split)
4036 {
4037         int index;
4038         u32 cpos = le32_to_cpu(split_rec->e_cpos);
4039         struct ocfs2_extent_list *left_el = NULL, *right_el, *insert_el, *el;
4040         struct ocfs2_extent_rec *rec, *tmprec;
4041
4042         right_el = path_leaf_el(right_path);
4043         if (left_path)
4044                 left_el = path_leaf_el(left_path);
4045
4046         el = right_el;
4047         insert_el = right_el;
4048         index = ocfs2_search_extent_list(el, cpos);
4049         if (index != -1) {
4050                 if (index == 0 && left_path) {
4051                         BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
4052
4053                         /*
4054                          * This typically means that the record
4055                          * started in the left path but moved to the
4056                          * right as a result of rotation. We either
4057                          * move the existing record to the left, or we
4058                          * do the later insert there.
4059                          *
4060                          * In this case, the left path should always
4061                          * exist as the rotate code will have passed
4062                          * it back for a post-insert update.
4063                          */
4064
4065                         if (split == SPLIT_LEFT) {
4066                                 /*
4067                                  * It's a left split. Since we know
4068                                  * that the rotate code gave us an
4069                                  * empty extent in the left path, we
4070                                  * can just do the insert there.
4071                                  */
4072                                 insert_el = left_el;
4073                         } else {
4074                                 /*
4075                                  * Right split - we have to move the
4076                                  * existing record over to the left
4077                                  * leaf. The insert will be into the
4078                                  * newly created empty extent in the
4079                                  * right leaf.
4080                                  */
4081                                 tmprec = &right_el->l_recs[index];
4082                                 ocfs2_rotate_leaf(left_el, tmprec);
4083                                 el = left_el;
4084
4085                                 memset(tmprec, 0, sizeof(*tmprec));
4086                                 index = ocfs2_search_extent_list(left_el, cpos);
4087                                 BUG_ON(index == -1);
4088                         }
4089                 }
4090         } else {
4091                 BUG_ON(!left_path);
4092                 BUG_ON(!ocfs2_is_empty_extent(&left_el->l_recs[0]));
4093                 /*
4094                  * Left path is easy - we can just allow the insert to
4095                  * happen.
4096                  */
4097                 el = left_el;
4098                 insert_el = left_el;
4099                 index = ocfs2_search_extent_list(el, cpos);
4100                 BUG_ON(index == -1);
4101         }
4102
4103         rec = &el->l_recs[index];
4104         ocfs2_subtract_from_rec(inode->i_sb, split, rec, split_rec);
4105         ocfs2_rotate_leaf(insert_el, split_rec);
4106 }
4107
4108 /*
4109  * This function only does inserts on an allocation b-tree. For tree
4110  * depth = 0, ocfs2_insert_at_leaf() is called directly.
4111  *
4112  * right_path is the path we want to do the actual insert
4113  * in. left_path should only be passed in if we need to update that
4114  * portion of the tree after an edge insert.
4115  */
4116 static int ocfs2_insert_path(struct inode *inode,
4117                              handle_t *handle,
4118                              struct ocfs2_path *left_path,
4119                              struct ocfs2_path *right_path,
4120                              struct ocfs2_extent_rec *insert_rec,
4121                              struct ocfs2_insert_type *insert)
4122 {
4123         int ret, subtree_index;
4124         struct buffer_head *leaf_bh = path_leaf_bh(right_path);
4125
4126         if (left_path) {
4127                 int credits = handle->h_buffer_credits;
4128
4129                 /*
4130                  * There's a chance that left_path got passed back to
4131                  * us without being accounted for in the
4132                  * journal. Extend our transaction here to be sure we
4133                  * can change those blocks.
4134                  */
4135                 credits += left_path->p_tree_depth;
4136
4137                 ret = ocfs2_extend_trans(handle, credits);
4138                 if (ret < 0) {
4139                         mlog_errno(ret);
4140                         goto out;
4141                 }
4142
4143                 ret = ocfs2_journal_access_path(INODE_CACHE(inode), handle, left_path);
4144                 if (ret < 0) {
4145                         mlog_errno(ret);
4146                         goto out;
4147                 }
4148         }
4149
4150         /*
4151          * Pass both paths to the journal. The majority of inserts
4152          * will be touching all components anyway.
4153          */
4154         ret = ocfs2_journal_access_path(INODE_CACHE(inode), handle, right_path);
4155         if (ret < 0) {
4156                 mlog_errno(ret);
4157                 goto out;
4158         }
4159
4160         if (insert->ins_split != SPLIT_NONE) {
4161                 /*
4162                  * We could call ocfs2_insert_at_leaf() for some types
4163                  * of splits, but it's easier to just let one separate
4164                  * function sort it all out.
4165                  */
4166                 ocfs2_split_record(inode, left_path, right_path,
4167                                    insert_rec, insert->ins_split);
4168
4169                 /*
4170                  * Split might have modified either leaf and we don't
4171                  * have a guarantee that the later edge insert will
4172                  * dirty this for us.
4173                  */
4174                 if (left_path)
4175                         ret = ocfs2_journal_dirty(handle,
4176                                                   path_leaf_bh(left_path));
4177                         if (ret)
4178                                 mlog_errno(ret);
4179         } else
4180                 ocfs2_insert_at_leaf(insert_rec, path_leaf_el(right_path),
4181                                      insert, inode);
4182
4183         ret = ocfs2_journal_dirty(handle, leaf_bh);
4184         if (ret)
4185                 mlog_errno(ret);
4186
4187         if (left_path) {
4188                 /*
4189                  * The rotate code has indicated that we need to fix
4190                  * up portions of the tree after the insert.
4191                  *
4192                  * XXX: Should we extend the transaction here?
4193                  */
4194                 subtree_index = ocfs2_find_subtree_root(inode, left_path,
4195                                                         right_path);
4196                 ocfs2_complete_edge_insert(inode, handle, left_path,
4197                                            right_path, subtree_index);
4198         }
4199
4200         ret = 0;
4201 out:
4202         return ret;
4203 }
4204
4205 static int ocfs2_do_insert_extent(struct inode *inode,
4206                                   handle_t *handle,
4207                                   struct ocfs2_extent_tree *et,
4208                                   struct ocfs2_extent_rec *insert_rec,
4209                                   struct ocfs2_insert_type *type)
4210 {
4211         int ret, rotate = 0;
4212         u32 cpos;
4213         struct ocfs2_path *right_path = NULL;
4214         struct ocfs2_path *left_path = NULL;
4215         struct ocfs2_extent_list *el;
4216
4217         el = et->et_root_el;
4218
4219         ret = ocfs2_et_root_journal_access(handle, et,
4220                                            OCFS2_JOURNAL_ACCESS_WRITE);
4221         if (ret) {
4222                 mlog_errno(ret);
4223                 goto out;
4224         }
4225
4226         if (le16_to_cpu(el->l_tree_depth) == 0) {
4227                 ocfs2_insert_at_leaf(insert_rec, el, type, inode);
4228                 goto out_update_clusters;
4229         }
4230
4231         right_path = ocfs2_new_path_from_et(et);
4232         if (!right_path) {
4233                 ret = -ENOMEM;
4234                 mlog_errno(ret);
4235                 goto out;
4236         }
4237
4238         /*
4239          * Determine the path to start with. Rotations need the
4240          * rightmost path, everything else can go directly to the
4241          * target leaf.
4242          */
4243         cpos = le32_to_cpu(insert_rec->e_cpos);
4244         if (type->ins_appending == APPEND_NONE &&
4245             type->ins_contig == CONTIG_NONE) {
4246                 rotate = 1;
4247                 cpos = UINT_MAX;
4248         }
4249
4250         ret = ocfs2_find_path(et->et_ci, right_path, cpos);
4251         if (ret) {
4252                 mlog_errno(ret);
4253                 goto out;
4254         }
4255
4256         /*
4257          * Rotations and appends need special treatment - they modify
4258          * parts of the tree's above them.
4259          *
4260          * Both might pass back a path immediate to the left of the
4261          * one being inserted to. This will be cause
4262          * ocfs2_insert_path() to modify the rightmost records of
4263          * left_path to account for an edge insert.
4264          *
4265          * XXX: When modifying this code, keep in mind that an insert
4266          * can wind up skipping both of these two special cases...
4267          */
4268         if (rotate) {
4269                 ret = ocfs2_rotate_tree_right(inode, handle, type->ins_split,
4270                                               le32_to_cpu(insert_rec->e_cpos),
4271                                               right_path, &left_path);
4272                 if (ret) {
4273                         mlog_errno(ret);
4274                         goto out;
4275                 }
4276
4277                 /*
4278                  * ocfs2_rotate_tree_right() might have extended the
4279                  * transaction without re-journaling our tree root.
4280                  */
4281                 ret = ocfs2_et_root_journal_access(handle, et,
4282                                                    OCFS2_JOURNAL_ACCESS_WRITE);
4283                 if (ret) {
4284                         mlog_errno(ret);
4285                         goto out;
4286                 }
4287         } else if (type->ins_appending == APPEND_TAIL
4288                    && type->ins_contig != CONTIG_LEFT) {
4289                 ret = ocfs2_append_rec_to_path(inode, handle, insert_rec,
4290                                                right_path, &left_path);
4291                 if (ret) {
4292                         mlog_errno(ret);
4293                         goto out;
4294                 }
4295         }
4296
4297         ret = ocfs2_insert_path(inode, handle, left_path, right_path,
4298                                 insert_rec, type);
4299         if (ret) {
4300                 mlog_errno(ret);
4301                 goto out;
4302         }
4303
4304 out_update_clusters:
4305         if (type->ins_split == SPLIT_NONE)
4306                 ocfs2_et_update_clusters(inode, et,
4307                                          le16_to_cpu(insert_rec->e_leaf_clusters));
4308
4309         ret = ocfs2_journal_dirty(handle, et->et_root_bh);
4310         if (ret)
4311                 mlog_errno(ret);
4312
4313 out:
4314         ocfs2_free_path(left_path);
4315         ocfs2_free_path(right_path);
4316
4317         return ret;
4318 }
4319
4320 static enum ocfs2_contig_type
4321 ocfs2_figure_merge_contig_type(struct inode *inode, struct ocfs2_path *path,
4322                                struct ocfs2_extent_list *el, int index,
4323                                struct ocfs2_extent_rec *split_rec)
4324 {
4325         int status;
4326         enum ocfs2_contig_type ret = CONTIG_NONE;
4327         u32 left_cpos, right_cpos;
4328         struct ocfs2_extent_rec *rec = NULL;
4329         struct ocfs2_extent_list *new_el;
4330         struct ocfs2_path *left_path = NULL, *right_path = NULL;
4331         struct buffer_head *bh;
4332         struct ocfs2_extent_block *eb;
4333
4334         if (index > 0) {
4335                 rec = &el->l_recs[index - 1];
4336         } else if (path->p_tree_depth > 0) {
4337                 status = ocfs2_find_cpos_for_left_leaf(inode->i_sb,
4338                                                        path, &left_cpos);
4339                 if (status)
4340                         goto out;
4341
4342                 if (left_cpos != 0) {
4343                         left_path = ocfs2_new_path_from_path(path);
4344                         if (!left_path)
4345                                 goto out;
4346
4347                         status = ocfs2_find_path(INODE_CACHE(inode),
4348                                                  left_path, left_cpos);
4349                         if (status)
4350                                 goto out;
4351
4352                         new_el = path_leaf_el(left_path);
4353
4354                         if (le16_to_cpu(new_el->l_next_free_rec) !=
4355                             le16_to_cpu(new_el->l_count)) {
4356                                 bh = path_leaf_bh(left_path);
4357                                 eb = (struct ocfs2_extent_block *)bh->b_data;
4358                                 ocfs2_error(inode->i_sb,
4359                                             "Extent block #%llu has an "
4360                                             "invalid l_next_free_rec of "
4361                                             "%d.  It should have "
4362                                             "matched the l_count of %d",
4363                                             (unsigned long long)le64_to_cpu(eb->h_blkno),
4364                                             le16_to_cpu(new_el->l_next_free_rec),
4365                                             le16_to_cpu(new_el->l_count));
4366                                 status = -EINVAL;
4367                                 goto out;
4368                         }
4369                         rec = &new_el->l_recs[
4370                                 le16_to_cpu(new_el->l_next_free_rec) - 1];
4371                 }
4372         }
4373
4374         /*
4375          * We're careful to check for an empty extent record here -
4376          * the merge code will know what to do if it sees one.
4377          */
4378         if (rec) {
4379                 if (index == 1 && ocfs2_is_empty_extent(rec)) {
4380                         if (split_rec->e_cpos == el->l_recs[index].e_cpos)
4381                                 ret = CONTIG_RIGHT;
4382                 } else {
4383                         ret = ocfs2_extent_contig(inode, rec, split_rec);
4384                 }
4385         }
4386
4387         rec = NULL;
4388         if (index < (le16_to_cpu(el->l_next_free_rec) - 1))
4389                 rec = &el->l_recs[index + 1];
4390         else if (le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count) &&
4391                  path->p_tree_depth > 0) {
4392                 status = ocfs2_find_cpos_for_right_leaf(inode->i_sb,
4393                                                         path, &right_cpos);
4394                 if (status)
4395                         goto out;
4396
4397                 if (right_cpos == 0)
4398                         goto out;
4399
4400                 right_path = ocfs2_new_path_from_path(path);
4401                 if (!right_path)
4402                         goto out;
4403
4404                 status = ocfs2_find_path(INODE_CACHE(inode), right_path, right_cpos);
4405                 if (status)
4406                         goto out;
4407
4408                 new_el = path_leaf_el(right_path);
4409                 rec = &new_el->l_recs[0];
4410                 if (ocfs2_is_empty_extent(rec)) {
4411                         if (le16_to_cpu(new_el->l_next_free_rec) <= 1) {
4412                                 bh = path_leaf_bh(right_path);
4413                                 eb = (struct ocfs2_extent_block *)bh->b_data;
4414                                 ocfs2_error(inode->i_sb,
4415                                             "Extent block #%llu has an "
4416                                             "invalid l_next_free_rec of %d",
4417                                             (unsigned long long)le64_to_cpu(eb->h_blkno),
4418                                             le16_to_cpu(new_el->l_next_free_rec));
4419                                 status = -EINVAL;
4420                                 goto out;
4421                         }
4422                         rec = &new_el->l_recs[1];
4423                 }
4424         }
4425
4426         if (rec) {
4427                 enum ocfs2_contig_type contig_type;
4428
4429                 contig_type = ocfs2_extent_contig(inode, rec, split_rec);
4430
4431                 if (contig_type == CONTIG_LEFT && ret == CONTIG_RIGHT)
4432                         ret = CONTIG_LEFTRIGHT;
4433                 else if (ret == CONTIG_NONE)
4434                         ret = contig_type;
4435         }
4436
4437 out:
4438         if (left_path)
4439                 ocfs2_free_path(left_path);
4440         if (right_path)
4441                 ocfs2_free_path(right_path);
4442
4443         return ret;
4444 }
4445
4446 static void ocfs2_figure_contig_type(struct inode *inode,
4447                                      struct ocfs2_insert_type *insert,
4448                                      struct ocfs2_extent_list *el,
4449                                      struct ocfs2_extent_rec *insert_rec,
4450                                      struct ocfs2_extent_tree *et)
4451 {
4452         int i;
4453         enum ocfs2_contig_type contig_type = CONTIG_NONE;
4454
4455         BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
4456
4457         for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
4458                 contig_type = ocfs2_extent_contig(inode, &el->l_recs[i],
4459                                                   insert_rec);
4460                 if (contig_type != CONTIG_NONE) {
4461                         insert->ins_contig_index = i;
4462                         break;
4463                 }
4464         }
4465         insert->ins_contig = contig_type;
4466
4467         if (insert->ins_contig != CONTIG_NONE) {
4468                 struct ocfs2_extent_rec *rec =
4469                                 &el->l_recs[insert->ins_contig_index];
4470                 unsigned int len = le16_to_cpu(rec->e_leaf_clusters) +
4471                                    le16_to_cpu(insert_rec->e_leaf_clusters);
4472
4473                 /*
4474                  * Caller might want us to limit the size of extents, don't
4475                  * calculate contiguousness if we might exceed that limit.
4476                  */
4477                 if (et->et_max_leaf_clusters &&
4478                     (len > et->et_max_leaf_clusters))
4479                         insert->ins_contig = CONTIG_NONE;
4480         }
4481 }
4482
4483 /*
4484  * This should only be called against the righmost leaf extent list.
4485  *
4486  * ocfs2_figure_appending_type() will figure out whether we'll have to
4487  * insert at the tail of the rightmost leaf.
4488  *
4489  * This should also work against the root extent list for tree's with 0
4490  * depth. If we consider the root extent list to be the rightmost leaf node
4491  * then the logic here makes sense.
4492  */
4493 static void ocfs2_figure_appending_type(struct ocfs2_insert_type *insert,
4494                                         struct ocfs2_extent_list *el,
4495                                         struct ocfs2_extent_rec *insert_rec)
4496 {
4497         int i;
4498         u32 cpos = le32_to_cpu(insert_rec->e_cpos);
4499         struct ocfs2_extent_rec *rec;
4500
4501         insert->ins_appending = APPEND_NONE;
4502
4503         BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
4504
4505         if (!el->l_next_free_rec)
4506                 goto set_tail_append;
4507
4508         if (ocfs2_is_empty_extent(&el->l_recs[0])) {
4509                 /* Were all records empty? */
4510                 if (le16_to_cpu(el->l_next_free_rec) == 1)
4511                         goto set_tail_append;
4512         }
4513
4514         i = le16_to_cpu(el->l_next_free_rec) - 1;
4515         rec = &el->l_recs[i];
4516
4517         if (cpos >=
4518             (le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)))
4519                 goto set_tail_append;
4520
4521         return;
4522
4523 set_tail_append:
4524         insert->ins_appending = APPEND_TAIL;
4525 }
4526
4527 /*
4528  * Helper function called at the begining of an insert.
4529  *
4530  * This computes a few things that are commonly used in the process of
4531  * inserting into the btree:
4532  *   - Whether the new extent is contiguous with an existing one.
4533  *   - The current tree depth.
4534  *   - Whether the insert is an appending one.
4535  *   - The total # of free records in the tree.
4536  *
4537  * All of the information is stored on the ocfs2_insert_type
4538  * structure.
4539  */
4540 static int ocfs2_figure_insert_type(struct inode *inode,
4541                                     struct ocfs2_extent_tree *et,
4542                                     struct buffer_head **last_eb_bh,
4543                                     struct ocfs2_extent_rec *insert_rec,
4544                                     int *free_records,
4545                                     struct ocfs2_insert_type *insert)
4546 {
4547         int ret;
4548         struct ocfs2_extent_block *eb;
4549         struct ocfs2_extent_list *el;
4550         struct ocfs2_path *path = NULL;
4551         struct buffer_head *bh = NULL;
4552
4553         insert->ins_split = SPLIT_NONE;
4554
4555         el = et->et_root_el;
4556         insert->ins_tree_depth = le16_to_cpu(el->l_tree_depth);
4557
4558         if (el->l_tree_depth) {
4559                 /*
4560                  * If we have tree depth, we read in the
4561                  * rightmost extent block ahead of time as
4562                  * ocfs2_figure_insert_type() and ocfs2_add_branch()
4563                  * may want it later.
4564                  */
4565                 ret = ocfs2_read_extent_block(et->et_ci,
4566                                               ocfs2_et_get_last_eb_blk(et),
4567                                               &bh);
4568                 if (ret) {
4569                         mlog_exit(ret);
4570                         goto out;
4571                 }
4572                 eb = (struct ocfs2_extent_block *) bh->b_data;
4573                 el = &eb->h_list;
4574         }
4575
4576         /*
4577          * Unless we have a contiguous insert, we'll need to know if
4578          * there is room left in our allocation tree for another
4579          * extent record.
4580          *
4581          * XXX: This test is simplistic, we can search for empty
4582          * extent records too.
4583          */
4584         *free_records = le16_to_cpu(el->l_count) -
4585                 le16_to_cpu(el->l_next_free_rec);
4586
4587         if (!insert->ins_tree_depth) {
4588                 ocfs2_figure_contig_type(inode, insert, el, insert_rec, et);
4589                 ocfs2_figure_appending_type(insert, el, insert_rec);
4590                 return 0;
4591         }
4592
4593         path = ocfs2_new_path_from_et(et);
4594         if (!path) {
4595                 ret = -ENOMEM;
4596                 mlog_errno(ret);
4597                 goto out;
4598         }
4599
4600         /*
4601          * In the case that we're inserting past what the tree
4602          * currently accounts for, ocfs2_find_path() will return for
4603          * us the rightmost tree path. This is accounted for below in
4604          * the appending code.
4605          */
4606         ret = ocfs2_find_path(et->et_ci, path, le32_to_cpu(insert_rec->e_cpos));
4607         if (ret) {
4608                 mlog_errno(ret);
4609                 goto out;
4610         }
4611
4612         el = path_leaf_el(path);
4613
4614         /*
4615          * Now that we have the path, there's two things we want to determine:
4616          * 1) Contiguousness (also set contig_index if this is so)
4617          *
4618          * 2) Are we doing an append? We can trivially break this up
4619          *     into two types of appends: simple record append, or a
4620          *     rotate inside the tail leaf.
4621          */
4622         ocfs2_figure_contig_type(inode, insert, el, insert_rec, et);
4623
4624         /*
4625          * The insert code isn't quite ready to deal with all cases of
4626          * left contiguousness. Specifically, if it's an insert into
4627          * the 1st record in a leaf, it will require the adjustment of
4628          * cluster count on the last record of the path directly to it's
4629          * left. For now, just catch that case and fool the layers
4630          * above us. This works just fine for tree_depth == 0, which
4631          * is why we allow that above.
4632          */
4633         if (insert->ins_contig == CONTIG_LEFT &&
4634             insert->ins_contig_index == 0)
4635                 insert->ins_contig = CONTIG_NONE;
4636
4637         /*
4638          * Ok, so we can simply compare against last_eb to figure out
4639          * whether the path doesn't exist. This will only happen in
4640          * the case that we're doing a tail append, so maybe we can
4641          * take advantage of that information somehow.
4642          */
4643         if (ocfs2_et_get_last_eb_blk(et) ==
4644             path_leaf_bh(path)->b_blocknr) {
4645                 /*
4646                  * Ok, ocfs2_find_path() returned us the rightmost
4647                  * tree path. This might be an appending insert. There are
4648                  * two cases:
4649                  *    1) We're doing a true append at the tail:
4650                  *      -This might even be off the end of the leaf
4651                  *    2) We're "appending" by rotating in the tail
4652                  */
4653                 ocfs2_figure_appending_type(insert, el, insert_rec);
4654         }
4655
4656 out:
4657         ocfs2_free_path(path);
4658
4659         if (ret == 0)
4660                 *last_eb_bh = bh;
4661         else
4662                 brelse(bh);
4663         return ret;
4664 }
4665
4666 /*
4667  * Insert an extent into an inode btree.
4668  *
4669  * The caller needs to update fe->i_clusters
4670  */
4671 int ocfs2_insert_extent(struct ocfs2_super *osb,
4672                         handle_t *handle,
4673                         struct inode *inode,
4674                         struct ocfs2_extent_tree *et,
4675                         u32 cpos,
4676                         u64 start_blk,
4677                         u32 new_clusters,
4678                         u8 flags,
4679                         struct ocfs2_alloc_context *meta_ac)
4680 {
4681         int status;
4682         int uninitialized_var(free_records);
4683         struct buffer_head *last_eb_bh = NULL;
4684         struct ocfs2_insert_type insert = {0, };
4685         struct ocfs2_extent_rec rec;
4686
4687         mlog(0, "add %u clusters at position %u to inode %llu\n",
4688              new_clusters, cpos, (unsigned long long)OCFS2_I(inode)->ip_blkno);
4689
4690         memset(&rec, 0, sizeof(rec));
4691         rec.e_cpos = cpu_to_le32(cpos);
4692         rec.e_blkno = cpu_to_le64(start_blk);
4693         rec.e_leaf_clusters = cpu_to_le16(new_clusters);
4694         rec.e_flags = flags;
4695         status = ocfs2_et_insert_check(inode, et, &rec);
4696         if (status) {
4697                 mlog_errno(status);
4698                 goto bail;
4699         }
4700
4701         status = ocfs2_figure_insert_type(inode, et, &last_eb_bh, &rec,
4702                                           &free_records, &insert);
4703         if (status < 0) {
4704                 mlog_errno(status);
4705                 goto bail;
4706         }
4707
4708         mlog(0, "Insert.appending: %u, Insert.Contig: %u, "
4709              "Insert.contig_index: %d, Insert.free_records: %d, "
4710              "Insert.tree_depth: %d\n",
4711              insert.ins_appending, insert.ins_contig, insert.ins_contig_index,
4712              free_records, insert.ins_tree_depth);
4713
4714         if (insert.ins_contig == CONTIG_NONE && free_records == 0) {
4715                 status = ocfs2_grow_tree(inode, handle, et,
4716                                          &insert.ins_tree_depth, &last_eb_bh,
4717                                          meta_ac);
4718                 if (status) {
4719                         mlog_errno(status);
4720                         goto bail;
4721                 }
4722         }
4723
4724         /* Finally, we can add clusters. This might rotate the tree for us. */
4725         status = ocfs2_do_insert_extent(inode, handle, et, &rec, &insert);
4726         if (status < 0)
4727                 mlog_errno(status);
4728         else if (et->et_ops == &ocfs2_dinode_et_ops)
4729                 ocfs2_extent_map_insert_rec(inode, &rec);
4730
4731 bail:
4732         brelse(last_eb_bh);
4733
4734         mlog_exit(status);
4735         return status;
4736 }
4737
4738 /*
4739  * Allcate and add clusters into the extent b-tree.
4740  * The new clusters(clusters_to_add) will be inserted at logical_offset.
4741  * The extent b-tree's root is specified by et, and
4742  * it is not limited to the file storage. Any extent tree can use this
4743  * function if it implements the proper ocfs2_extent_tree.
4744  */
4745 int ocfs2_add_clusters_in_btree(struct ocfs2_super *osb,
4746                                 struct inode *inode,
4747                                 u32 *logical_offset,
4748                                 u32 clusters_to_add,
4749                                 int mark_unwritten,
4750                                 struct ocfs2_extent_tree *et,
4751                                 handle_t *handle,
4752                                 struct ocfs2_alloc_context *data_ac,
4753                                 struct ocfs2_alloc_context *meta_ac,
4754                                 enum ocfs2_alloc_restarted *reason_ret)
4755 {
4756         int status = 0;
4757         int free_extents;
4758         enum ocfs2_alloc_restarted reason = RESTART_NONE;
4759         u32 bit_off, num_bits;
4760         u64 block;
4761         u8 flags = 0;
4762
4763         BUG_ON(!clusters_to_add);
4764
4765         if (mark_unwritten)
4766                 flags = OCFS2_EXT_UNWRITTEN;
4767
4768         free_extents = ocfs2_num_free_extents(osb, et);
4769         if (free_extents < 0) {
4770                 status = free_extents;
4771                 mlog_errno(status);
4772                 goto leave;
4773         }
4774
4775         /* there are two cases which could cause us to EAGAIN in the
4776          * we-need-more-metadata case:
4777          * 1) we haven't reserved *any*
4778          * 2) we are so fragmented, we've needed to add metadata too
4779          *    many times. */
4780         if (!free_extents && !meta_ac) {
4781                 mlog(0, "we haven't reserved any metadata!\n");
4782                 status = -EAGAIN;
4783                 reason = RESTART_META;
4784                 goto leave;
4785         } else if ((!free_extents)
4786                    && (ocfs2_alloc_context_bits_left(meta_ac)
4787                        < ocfs2_extend_meta_needed(et->et_root_el))) {
4788                 mlog(0, "filesystem is really fragmented...\n");
4789                 status = -EAGAIN;
4790                 reason = RESTART_META;
4791                 goto leave;
4792         }
4793
4794         status = __ocfs2_claim_clusters(osb, handle, data_ac, 1,
4795                                         clusters_to_add, &bit_off, &num_bits);
4796         if (status < 0) {
4797                 if (status != -ENOSPC)
4798                         mlog_errno(status);
4799                 goto leave;
4800         }
4801
4802         BUG_ON(num_bits > clusters_to_add);
4803
4804         /* reserve our write early -- insert_extent may update the tree root */
4805         status = ocfs2_et_root_journal_access(handle, et,
4806                                               OCFS2_JOURNAL_ACCESS_WRITE);
4807         if (status < 0) {
4808                 mlog_errno(status);
4809                 goto leave;
4810         }
4811
4812         block = ocfs2_clusters_to_blocks(osb->sb, bit_off);
4813         mlog(0, "Allocating %u clusters at block %u for inode %llu\n",
4814              num_bits, bit_off, (unsigned long long)OCFS2_I(inode)->ip_blkno);
4815         status = ocfs2_insert_extent(osb, handle, inode, et,
4816                                      *logical_offset, block,
4817                                      num_bits, flags, meta_ac);
4818         if (status < 0) {
4819                 mlog_errno(status);
4820                 goto leave;
4821         }
4822
4823         status = ocfs2_journal_dirty(handle, et->et_root_bh);
4824         if (status < 0) {
4825                 mlog_errno(status);
4826                 goto leave;
4827         }
4828
4829         clusters_to_add -= num_bits;
4830         *logical_offset += num_bits;
4831
4832         if (clusters_to_add) {
4833                 mlog(0, "need to alloc once more, wanted = %u\n",
4834                      clusters_to_add);
4835                 status = -EAGAIN;
4836                 reason = RESTART_TRANS;
4837         }
4838
4839 leave:
4840         mlog_exit(status);
4841         if (reason_ret)
4842                 *reason_ret = reason;
4843         return status;
4844 }
4845
4846 static void ocfs2_make_right_split_rec(struct super_block *sb,
4847                                        struct ocfs2_extent_rec *split_rec,
4848                                        u32 cpos,
4849                                        struct ocfs2_extent_rec *rec)
4850 {
4851         u32 rec_cpos = le32_to_cpu(rec->e_cpos);
4852         u32 rec_range = rec_cpos + le16_to_cpu(rec->e_leaf_clusters);
4853
4854         memset(split_rec, 0, sizeof(struct ocfs2_extent_rec));
4855
4856         split_rec->e_cpos = cpu_to_le32(cpos);
4857         split_rec->e_leaf_clusters = cpu_to_le16(rec_range - cpos);
4858
4859         split_rec->e_blkno = rec->e_blkno;
4860         le64_add_cpu(&split_rec->e_blkno,
4861                      ocfs2_clusters_to_blocks(sb, cpos - rec_cpos));
4862
4863         split_rec->e_flags = rec->e_flags;
4864 }
4865
4866 static int ocfs2_split_and_insert(struct inode *inode,
4867                                   handle_t *handle,
4868                                   struct ocfs2_path *path,
4869                                   struct ocfs2_extent_tree *et,
4870                                   struct buffer_head **last_eb_bh,
4871                                   int split_index,
4872                                   struct ocfs2_extent_rec *orig_split_rec,
4873                                   struct ocfs2_alloc_context *meta_ac)
4874 {
4875         int ret = 0, depth;
4876         unsigned int insert_range, rec_range, do_leftright = 0;
4877         struct ocfs2_extent_rec tmprec;
4878         struct ocfs2_extent_list *rightmost_el;
4879         struct ocfs2_extent_rec rec;
4880         struct ocfs2_extent_rec split_rec = *orig_split_rec;
4881         struct ocfs2_insert_type insert;
4882         struct ocfs2_extent_block *eb;
4883
4884 leftright:
4885         /*
4886          * Store a copy of the record on the stack - it might move
4887          * around as the tree is manipulated below.
4888          */
4889         rec = path_leaf_el(path)->l_recs[split_index];
4890
4891         rightmost_el = et->et_root_el;
4892
4893         depth = le16_to_cpu(rightmost_el->l_tree_depth);
4894         if (depth) {
4895                 BUG_ON(!(*last_eb_bh));
4896                 eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
4897                 rightmost_el = &eb->h_list;
4898         }
4899
4900         if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
4901             le16_to_cpu(rightmost_el->l_count)) {
4902                 ret = ocfs2_grow_tree(inode, handle, et,
4903                                       &depth, last_eb_bh, meta_ac);
4904                 if (ret) {
4905                         mlog_errno(ret);
4906                         goto out;
4907                 }
4908         }
4909
4910         memset(&insert, 0, sizeof(struct ocfs2_insert_type));
4911         insert.ins_appending = APPEND_NONE;
4912         insert.ins_contig = CONTIG_NONE;
4913         insert.ins_tree_depth = depth;
4914
4915         insert_range = le32_to_cpu(split_rec.e_cpos) +
4916                 le16_to_cpu(split_rec.e_leaf_clusters);
4917         rec_range = le32_to_cpu(rec.e_cpos) +
4918                 le16_to_cpu(rec.e_leaf_clusters);
4919
4920         if (split_rec.e_cpos == rec.e_cpos) {
4921                 insert.ins_split = SPLIT_LEFT;
4922         } else if (insert_range == rec_range) {
4923                 insert.ins_split = SPLIT_RIGHT;
4924         } else {
4925                 /*
4926                  * Left/right split. We fake this as a right split
4927                  * first and then make a second pass as a left split.
4928                  */
4929                 insert.ins_split = SPLIT_RIGHT;
4930
4931                 ocfs2_make_right_split_rec(inode->i_sb, &tmprec, insert_range,
4932                                            &rec);
4933
4934                 split_rec = tmprec;
4935
4936                 BUG_ON(do_leftright);
4937                 do_leftright = 1;
4938         }
4939
4940         ret = ocfs2_do_insert_extent(inode, handle, et, &split_rec, &insert);
4941         if (ret) {
4942                 mlog_errno(ret);
4943                 goto out;
4944         }
4945
4946         if (do_leftright == 1) {
4947                 u32 cpos;
4948                 struct ocfs2_extent_list *el;
4949
4950                 do_leftright++;
4951                 split_rec = *orig_split_rec;
4952
4953                 ocfs2_reinit_path(path, 1);
4954
4955                 cpos = le32_to_cpu(split_rec.e_cpos);
4956                 ret = ocfs2_find_path(et->et_ci, path, cpos);
4957                 if (ret) {
4958                         mlog_errno(ret);
4959                         goto out;
4960                 }
4961
4962                 el = path_leaf_el(path);
4963                 split_index = ocfs2_search_extent_list(el, cpos);
4964                 goto leftright;
4965         }
4966 out:
4967
4968         return ret;
4969 }
4970
4971 static int ocfs2_replace_extent_rec(struct inode *inode,
4972                                     handle_t *handle,
4973                                     struct ocfs2_path *path,
4974                                     struct ocfs2_extent_list *el,
4975                                     int split_index,
4976                                     struct ocfs2_extent_rec *split_rec)
4977 {
4978         int ret;
4979
4980         ret = ocfs2_path_bh_journal_access(handle, INODE_CACHE(inode), path,
4981                                            path_num_items(path) - 1);
4982         if (ret) {
4983                 mlog_errno(ret);
4984                 goto out;
4985         }
4986
4987         el->l_recs[split_index] = *split_rec;
4988
4989         ocfs2_journal_dirty(handle, path_leaf_bh(path));
4990 out:
4991         return ret;
4992 }
4993
4994 /*
4995  * Mark part or all of the extent record at split_index in the leaf
4996  * pointed to by path as written. This removes the unwritten
4997  * extent flag.
4998  *
4999  * Care is taken to handle contiguousness so as to not grow the tree.
5000  *
5001  * meta_ac is not strictly necessary - we only truly need it if growth
5002  * of the tree is required. All other cases will degrade into a less
5003  * optimal tree layout.
5004  *
5005  * last_eb_bh should be the rightmost leaf block for any extent
5006  * btree. Since a split may grow the tree or a merge might shrink it,
5007  * the caller cannot trust the contents of that buffer after this call.
5008  *
5009  * This code is optimized for readability - several passes might be
5010  * made over certain portions of the tree. All of those blocks will
5011  * have been brought into cache (and pinned via the journal), so the
5012  * extra overhead is not expressed in terms of disk reads.
5013  */
5014 static int __ocfs2_mark_extent_written(struct inode *inode,
5015                                        struct ocfs2_extent_tree *et,
5016                                        handle_t *handle,
5017                                        struct ocfs2_path *path,
5018                                        int split_index,
5019                                        struct ocfs2_extent_rec *split_rec,
5020                                        struct ocfs2_alloc_context *meta_ac,
5021                                        struct ocfs2_cached_dealloc_ctxt *dealloc)
5022 {
5023         int ret = 0;
5024         struct ocfs2_extent_list *el = path_leaf_el(path);
5025         struct buffer_head *last_eb_bh = NULL;
5026         struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
5027         struct ocfs2_merge_ctxt ctxt;
5028         struct ocfs2_extent_list *rightmost_el;
5029
5030         if (!(rec->e_flags & OCFS2_EXT_UNWRITTEN)) {
5031                 ret = -EIO;
5032                 mlog_errno(ret);
5033                 goto out;
5034         }
5035
5036         if (le32_to_cpu(rec->e_cpos) > le32_to_cpu(split_rec->e_cpos) ||
5037             ((le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)) <
5038              (le32_to_cpu(split_rec->e_cpos) + le16_to_cpu(split_rec->e_leaf_clusters)))) {
5039                 ret = -EIO;
5040                 mlog_errno(ret);
5041                 goto out;
5042         }
5043
5044         ctxt.c_contig_type = ocfs2_figure_merge_contig_type(inode, path, el,
5045                                                             split_index,
5046                                                             split_rec);
5047
5048         /*
5049          * The core merge / split code wants to know how much room is
5050          * left in this inodes allocation tree, so we pass the
5051          * rightmost extent list.
5052          */
5053         if (path->p_tree_depth) {
5054                 struct ocfs2_extent_block *eb;
5055
5056                 ret = ocfs2_read_extent_block(et->et_ci,
5057                                               ocfs2_et_get_last_eb_blk(et),
5058                                               &last_eb_bh);
5059                 if (ret) {
5060                         mlog_exit(ret);
5061                         goto out;
5062                 }
5063
5064                 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
5065                 rightmost_el = &eb->h_list;
5066         } else
5067                 rightmost_el = path_root_el(path);
5068
5069         if (rec->e_cpos == split_rec->e_cpos &&
5070             rec->e_leaf_clusters == split_rec->e_leaf_clusters)
5071                 ctxt.c_split_covers_rec = 1;
5072         else
5073                 ctxt.c_split_covers_rec = 0;
5074
5075         ctxt.c_has_empty_extent = ocfs2_is_empty_extent(&el->l_recs[0]);
5076
5077         mlog(0, "index: %d, contig: %u, has_empty: %u, split_covers: %u\n",
5078              split_index, ctxt.c_contig_type, ctxt.c_has_empty_extent,
5079              ctxt.c_split_covers_rec);
5080
5081         if (ctxt.c_contig_type == CONTIG_NONE) {
5082                 if (ctxt.c_split_covers_rec)
5083                         ret = ocfs2_replace_extent_rec(inode, handle,
5084                                                        path, el,
5085                                                        split_index, split_rec);
5086                 else
5087                         ret = ocfs2_split_and_insert(inode, handle, path, et,
5088                                                      &last_eb_bh, split_index,
5089                                                      split_rec, meta_ac);
5090                 if (ret)
5091                         mlog_errno(ret);
5092         } else {
5093                 ret = ocfs2_try_to_merge_extent(inode, handle, path,
5094                                                 split_index, split_rec,
5095                                                 dealloc, &ctxt, et);
5096                 if (ret)
5097                         mlog_errno(ret);
5098         }
5099
5100 out:
5101         brelse(last_eb_bh);
5102         return ret;
5103 }
5104
5105 /*
5106  * Mark the already-existing extent at cpos as written for len clusters.
5107  *
5108  * If the existing extent is larger than the request, initiate a
5109  * split. An attempt will be made at merging with adjacent extents.
5110  *
5111  * The caller is responsible for passing down meta_ac if we'll need it.
5112  */
5113 int ocfs2_mark_extent_written(struct inode *inode,
5114                               struct ocfs2_extent_tree *et,
5115                               handle_t *handle, u32 cpos, u32 len, u32 phys,
5116                               struct ocfs2_alloc_context *meta_ac,
5117                               struct ocfs2_cached_dealloc_ctxt *dealloc)
5118 {
5119         int ret, index;
5120         u64 start_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys);
5121         struct ocfs2_extent_rec split_rec;
5122         struct ocfs2_path *left_path = NULL;
5123         struct ocfs2_extent_list *el;
5124
5125         mlog(0, "Inode %lu cpos %u, len %u, phys %u (%llu)\n",
5126              inode->i_ino, cpos, len, phys, (unsigned long long)start_blkno);
5127
5128         if (!ocfs2_writes_unwritten_extents(OCFS2_SB(inode->i_sb))) {
5129                 ocfs2_error(inode->i_sb, "Inode %llu has unwritten extents "
5130                             "that are being written to, but the feature bit "
5131                             "is not set in the super block.",
5132                             (unsigned long long)OCFS2_I(inode)->ip_blkno);
5133                 ret = -EROFS;
5134                 goto out;
5135         }
5136
5137         /*
5138          * XXX: This should be fixed up so that we just re-insert the
5139          * next extent records.
5140          *
5141          * XXX: This is a hack on the extent tree, maybe it should be
5142          * an op?
5143          */
5144         if (et->et_ops == &ocfs2_dinode_et_ops)
5145                 ocfs2_extent_map_trunc(inode, 0);
5146
5147         left_path = ocfs2_new_path_from_et(et);
5148         if (!left_path) {
5149                 ret = -ENOMEM;
5150                 mlog_errno(ret);
5151                 goto out;
5152         }
5153
5154         ret = ocfs2_find_path(et->et_ci, left_path, cpos);
5155         if (ret) {
5156                 mlog_errno(ret);
5157                 goto out;
5158         }
5159         el = path_leaf_el(left_path);
5160
5161         index = ocfs2_search_extent_list(el, cpos);
5162         if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
5163                 ocfs2_error(inode->i_sb,
5164                             "Inode %llu has an extent at cpos %u which can no "
5165                             "longer be found.\n",
5166                             (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
5167                 ret = -EROFS;
5168                 goto out;
5169         }
5170
5171         memset(&split_rec, 0, sizeof(struct ocfs2_extent_rec));
5172         split_rec.e_cpos = cpu_to_le32(cpos);
5173         split_rec.e_leaf_clusters = cpu_to_le16(len);
5174         split_rec.e_blkno = cpu_to_le64(start_blkno);
5175         split_rec.e_flags = path_leaf_el(left_path)->l_recs[index].e_flags;
5176         split_rec.e_flags &= ~OCFS2_EXT_UNWRITTEN;
5177
5178         ret = __ocfs2_mark_extent_written(inode, et, handle, left_path,
5179                                           index, &split_rec, meta_ac,
5180                                           dealloc);
5181         if (ret)
5182                 mlog_errno(ret);
5183
5184 out:
5185         ocfs2_free_path(left_path);
5186         return ret;
5187 }
5188
5189 static int ocfs2_split_tree(struct inode *inode, struct ocfs2_extent_tree *et,
5190                             handle_t *handle, struct ocfs2_path *path,
5191                             int index, u32 new_range,
5192                             struct ocfs2_alloc_context *meta_ac)
5193 {
5194         int ret, depth, credits = handle->h_buffer_credits;
5195         struct buffer_head *last_eb_bh = NULL;
5196         struct ocfs2_extent_block *eb;
5197         struct ocfs2_extent_list *rightmost_el, *el;
5198         struct ocfs2_extent_rec split_rec;
5199         struct ocfs2_extent_rec *rec;
5200         struct ocfs2_insert_type insert;
5201
5202         /*
5203          * Setup the record to split before we grow the tree.
5204          */
5205         el = path_leaf_el(path);
5206         rec = &el->l_recs[index];
5207         ocfs2_make_right_split_rec(inode->i_sb, &split_rec, new_range, rec);
5208
5209         depth = path->p_tree_depth;
5210         if (depth > 0) {
5211                 ret = ocfs2_read_extent_block(et->et_ci,
5212                                               ocfs2_et_get_last_eb_blk(et),
5213                                               &last_eb_bh);
5214                 if (ret < 0) {
5215                         mlog_errno(ret);
5216                         goto out;
5217                 }
5218
5219                 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
5220                 rightmost_el = &eb->h_list;
5221         } else
5222                 rightmost_el = path_leaf_el(path);
5223
5224         credits += path->p_tree_depth +
5225                    ocfs2_extend_meta_needed(et->et_root_el);
5226         ret = ocfs2_extend_trans(handle, credits);
5227         if (ret) {
5228                 mlog_errno(ret);
5229                 goto out;
5230         }
5231
5232         if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
5233             le16_to_cpu(rightmost_el->l_count)) {
5234                 ret = ocfs2_grow_tree(inode, handle, et, &depth, &last_eb_bh,
5235                                       meta_ac);
5236                 if (ret) {
5237                         mlog_errno(ret);
5238                         goto out;
5239                 }
5240         }
5241
5242         memset(&insert, 0, sizeof(struct ocfs2_insert_type));
5243         insert.ins_appending = APPEND_NONE;
5244         insert.ins_contig = CONTIG_NONE;
5245         insert.ins_split = SPLIT_RIGHT;
5246         insert.ins_tree_depth = depth;
5247
5248         ret = ocfs2_do_insert_extent(inode, handle, et, &split_rec, &insert);
5249         if (ret)
5250                 mlog_errno(ret);
5251
5252 out:
5253         brelse(last_eb_bh);
5254         return ret;
5255 }
5256
5257 static int ocfs2_truncate_rec(struct inode *inode, handle_t *handle,
5258                               struct ocfs2_path *path, int index,
5259                               struct ocfs2_cached_dealloc_ctxt *dealloc,
5260                               u32 cpos, u32 len,
5261                               struct ocfs2_extent_tree *et)
5262 {
5263         int ret;
5264         u32 left_cpos, rec_range, trunc_range;
5265         int wants_rotate = 0, is_rightmost_tree_rec = 0;
5266         struct super_block *sb = inode->i_sb;
5267         struct ocfs2_path *left_path = NULL;
5268         struct ocfs2_extent_list *el = path_leaf_el(path);
5269         struct ocfs2_extent_rec *rec;
5270         struct ocfs2_extent_block *eb;
5271
5272         if (ocfs2_is_empty_extent(&el->l_recs[0]) && index > 0) {
5273                 ret = ocfs2_rotate_tree_left(inode, handle, path, dealloc, et);
5274                 if (ret) {
5275                         mlog_errno(ret);
5276                         goto out;
5277                 }
5278
5279                 index--;
5280         }
5281
5282         if (index == (le16_to_cpu(el->l_next_free_rec) - 1) &&
5283             path->p_tree_depth) {
5284                 /*
5285                  * Check whether this is the rightmost tree record. If
5286                  * we remove all of this record or part of its right
5287                  * edge then an update of the record lengths above it
5288                  * will be required.
5289                  */
5290                 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
5291                 if (eb->h_next_leaf_blk == 0)
5292                         is_rightmost_tree_rec = 1;
5293         }
5294
5295         rec = &el->l_recs[index];
5296         if (index == 0 && path->p_tree_depth &&
5297             le32_to_cpu(rec->e_cpos) == cpos) {
5298                 /*
5299                  * Changing the leftmost offset (via partial or whole
5300                  * record truncate) of an interior (or rightmost) path
5301                  * means we have to update the subtree that is formed
5302                  * by this leaf and the one to it's left.
5303                  *
5304                  * There are two cases we can skip:
5305                  *   1) Path is the leftmost one in our inode tree.
5306                  *   2) The leaf is rightmost and will be empty after
5307                  *      we remove the extent record - the rotate code
5308                  *      knows how to update the newly formed edge.
5309                  */
5310
5311                 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path,
5312                                                     &left_cpos);
5313                 if (ret) {
5314                         mlog_errno(ret);
5315                         goto out;
5316                 }
5317
5318                 if (left_cpos && le16_to_cpu(el->l_next_free_rec) > 1) {
5319                         left_path = ocfs2_new_path_from_path(path);
5320                         if (!left_path) {
5321                                 ret = -ENOMEM;
5322                                 mlog_errno(ret);
5323                                 goto out;
5324                         }
5325
5326                         ret = ocfs2_find_path(et->et_ci, left_path,
5327                                               left_cpos);
5328                         if (ret) {
5329                                 mlog_errno(ret);
5330                                 goto out;
5331                         }
5332                 }
5333         }
5334
5335         ret = ocfs2_extend_rotate_transaction(handle, 0,
5336                                               handle->h_buffer_credits,
5337                                               path);
5338         if (ret) {
5339                 mlog_errno(ret);
5340                 goto out;
5341         }
5342
5343         ret = ocfs2_journal_access_path(et->et_ci, handle, path);
5344         if (ret) {
5345                 mlog_errno(ret);
5346                 goto out;
5347         }
5348
5349         ret = ocfs2_journal_access_path(et->et_ci, handle, left_path);
5350         if (ret) {
5351                 mlog_errno(ret);
5352                 goto out;
5353         }
5354
5355         rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
5356         trunc_range = cpos + len;
5357
5358         if (le32_to_cpu(rec->e_cpos) == cpos && rec_range == trunc_range) {
5359                 int next_free;
5360
5361                 memset(rec, 0, sizeof(*rec));
5362                 ocfs2_cleanup_merge(el, index);
5363                 wants_rotate = 1;
5364
5365                 next_free = le16_to_cpu(el->l_next_free_rec);
5366                 if (is_rightmost_tree_rec && next_free > 1) {
5367                         /*
5368                          * We skip the edge update if this path will
5369                          * be deleted by the rotate code.
5370                          */
5371                         rec = &el->l_recs[next_free - 1];
5372                         ocfs2_adjust_rightmost_records(inode, handle, path,
5373                                                        rec);
5374                 }
5375         } else if (le32_to_cpu(rec->e_cpos) == cpos) {
5376                 /* Remove leftmost portion of the record. */
5377                 le32_add_cpu(&rec->e_cpos, len);
5378                 le64_add_cpu(&rec->e_blkno, ocfs2_clusters_to_blocks(sb, len));
5379                 le16_add_cpu(&rec->e_leaf_clusters, -len);
5380         } else if (rec_range == trunc_range) {
5381                 /* Remove rightmost portion of the record */
5382                 le16_add_cpu(&rec->e_leaf_clusters, -len);
5383                 if (is_rightmost_tree_rec)
5384                         ocfs2_adjust_rightmost_records(inode, handle, path, rec);
5385         } else {
5386                 /* Caller should have trapped this. */
5387                 mlog(ML_ERROR, "Inode %llu: Invalid record truncate: (%u, %u) "
5388                      "(%u, %u)\n", (unsigned long long)OCFS2_I(inode)->ip_blkno,
5389                      le32_to_cpu(rec->e_cpos),
5390                      le16_to_cpu(rec->e_leaf_clusters), cpos, len);
5391                 BUG();
5392         }
5393
5394         if (left_path) {
5395                 int subtree_index;
5396
5397                 subtree_index = ocfs2_find_subtree_root(inode, left_path, path);
5398                 ocfs2_complete_edge_insert(inode, handle, left_path, path,
5399                                            subtree_index);
5400         }
5401
5402         ocfs2_journal_dirty(handle, path_leaf_bh(path));
5403
5404         ret = ocfs2_rotate_tree_left(inode, handle, path, dealloc, et);
5405         if (ret) {
5406                 mlog_errno(ret);
5407                 goto out;
5408         }
5409
5410 out:
5411         ocfs2_free_path(left_path);
5412         return ret;
5413 }
5414
5415 int ocfs2_remove_extent(struct inode *inode,
5416                         struct ocfs2_extent_tree *et,
5417                         u32 cpos, u32 len, handle_t *handle,
5418                         struct ocfs2_alloc_context *meta_ac,
5419                         struct ocfs2_cached_dealloc_ctxt *dealloc)
5420 {
5421         int ret, index;
5422         u32 rec_range, trunc_range;
5423         struct ocfs2_extent_rec *rec;
5424         struct ocfs2_extent_list *el;
5425         struct ocfs2_path *path = NULL;
5426
5427         ocfs2_extent_map_trunc(inode, 0);
5428
5429         path = ocfs2_new_path_from_et(et);
5430         if (!path) {
5431                 ret = -ENOMEM;
5432                 mlog_errno(ret);
5433                 goto out;
5434         }
5435
5436         ret = ocfs2_find_path(et->et_ci, path, cpos);
5437         if (ret) {
5438                 mlog_errno(ret);
5439                 goto out;
5440         }
5441
5442         el = path_leaf_el(path);
5443         index = ocfs2_search_extent_list(el, cpos);
5444         if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
5445                 ocfs2_error(inode->i_sb,
5446                             "Inode %llu has an extent at cpos %u which can no "
5447                             "longer be found.\n",
5448                             (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
5449                 ret = -EROFS;
5450                 goto out;
5451         }
5452
5453         /*
5454          * We have 3 cases of extent removal:
5455          *   1) Range covers the entire extent rec
5456          *   2) Range begins or ends on one edge of the extent rec
5457          *   3) Range is in the middle of the extent rec (no shared edges)
5458          *
5459          * For case 1 we remove the extent rec and left rotate to
5460          * fill the hole.
5461          *
5462          * For case 2 we just shrink the existing extent rec, with a
5463          * tree update if the shrinking edge is also the edge of an
5464          * extent block.
5465          *
5466          * For case 3 we do a right split to turn the extent rec into
5467          * something case 2 can handle.
5468          */
5469         rec = &el->l_recs[index];
5470         rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
5471         trunc_range = cpos + len;
5472
5473         BUG_ON(cpos < le32_to_cpu(rec->e_cpos) || trunc_range > rec_range);
5474
5475         mlog(0, "Inode %llu, remove (cpos %u, len %u). Existing index %d "
5476              "(cpos %u, len %u)\n",
5477              (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos, len, index,
5478              le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec));
5479
5480         if (le32_to_cpu(rec->e_cpos) == cpos || rec_range == trunc_range) {
5481                 ret = ocfs2_truncate_rec(inode, handle, path, index, dealloc,
5482                                          cpos, len, et);
5483                 if (ret) {
5484                         mlog_errno(ret);
5485                         goto out;
5486                 }
5487         } else {
5488                 ret = ocfs2_split_tree(inode, et, handle, path, index,
5489                                        trunc_range, meta_ac);
5490                 if (ret) {
5491                         mlog_errno(ret);
5492                         goto out;
5493                 }
5494
5495                 /*
5496                  * The split could have manipulated the tree enough to
5497                  * move the record location, so we have to look for it again.
5498                  */
5499                 ocfs2_reinit_path(path, 1);
5500
5501                 ret = ocfs2_find_path(et->et_ci, path, cpos);
5502                 if (ret) {
5503                         mlog_errno(ret);
5504                         goto out;
5505                 }
5506
5507                 el = path_leaf_el(path);
5508                 index = ocfs2_search_extent_list(el, cpos);
5509                 if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
5510                         ocfs2_error(inode->i_sb,
5511                                     "Inode %llu: split at cpos %u lost record.",
5512                                     (unsigned long long)OCFS2_I(inode)->ip_blkno,
5513                                     cpos);
5514                         ret = -EROFS;
5515                         goto out;
5516                 }
5517
5518                 /*
5519                  * Double check our values here. If anything is fishy,
5520                  * it's easier to catch it at the top level.
5521                  */
5522                 rec = &el->l_recs[index];
5523                 rec_range = le32_to_cpu(rec->e_cpos) +
5524                         ocfs2_rec_clusters(el, rec);
5525                 if (rec_range != trunc_range) {
5526                         ocfs2_error(inode->i_sb,
5527                                     "Inode %llu: error after split at cpos %u"
5528                                     "trunc len %u, existing record is (%u,%u)",
5529                                     (unsigned long long)OCFS2_I(inode)->ip_blkno,
5530                                     cpos, len, le32_to_cpu(rec->e_cpos),
5531                                     ocfs2_rec_clusters(el, rec));
5532                         ret = -EROFS;
5533                         goto out;
5534                 }
5535
5536                 ret = ocfs2_truncate_rec(inode, handle, path, index, dealloc,
5537                                          cpos, len, et);
5538                 if (ret) {
5539                         mlog_errno(ret);
5540                         goto out;
5541                 }
5542         }
5543
5544 out:
5545         ocfs2_free_path(path);
5546         return ret;
5547 }
5548
5549 int ocfs2_remove_btree_range(struct inode *inode,
5550                              struct ocfs2_extent_tree *et,
5551                              u32 cpos, u32 phys_cpos, u32 len,
5552                              struct ocfs2_cached_dealloc_ctxt *dealloc)
5553 {
5554         int ret;
5555         u64 phys_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys_cpos);
5556         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
5557         struct inode *tl_inode = osb->osb_tl_inode;
5558         handle_t *handle;
5559         struct ocfs2_alloc_context *meta_ac = NULL;
5560
5561         ret = ocfs2_lock_allocators(inode, et, 0, 1, NULL, &meta_ac);
5562         if (ret) {
5563                 mlog_errno(ret);
5564                 return ret;
5565         }
5566
5567         mutex_lock(&tl_inode->i_mutex);
5568
5569         if (ocfs2_truncate_log_needs_flush(osb)) {
5570                 ret = __ocfs2_flush_truncate_log(osb);
5571                 if (ret < 0) {
5572                         mlog_errno(ret);
5573                         goto out;
5574                 }
5575         }
5576
5577         handle = ocfs2_start_trans(osb, ocfs2_remove_extent_credits(osb->sb));
5578         if (IS_ERR(handle)) {
5579                 ret = PTR_ERR(handle);
5580                 mlog_errno(ret);
5581                 goto out;
5582         }
5583
5584         ret = ocfs2_et_root_journal_access(handle, et,
5585                                            OCFS2_JOURNAL_ACCESS_WRITE);
5586         if (ret) {
5587                 mlog_errno(ret);
5588                 goto out;
5589         }
5590
5591         vfs_dq_free_space_nodirty(inode,
5592                                   ocfs2_clusters_to_bytes(inode->i_sb, len));
5593
5594         ret = ocfs2_remove_extent(inode, et, cpos, len, handle, meta_ac,
5595                                   dealloc);
5596         if (ret) {
5597                 mlog_errno(ret);
5598                 goto out_commit;
5599         }
5600
5601         ocfs2_et_update_clusters(inode, et, -len);
5602
5603         ret = ocfs2_journal_dirty(handle, et->et_root_bh);
5604         if (ret) {
5605                 mlog_errno(ret);
5606                 goto out_commit;
5607         }
5608
5609         ret = ocfs2_truncate_log_append(osb, handle, phys_blkno, len);
5610         if (ret)
5611                 mlog_errno(ret);
5612
5613 out_commit:
5614         ocfs2_commit_trans(osb, handle);
5615 out:
5616         mutex_unlock(&tl_inode->i_mutex);
5617
5618         if (meta_ac)
5619                 ocfs2_free_alloc_context(meta_ac);
5620
5621         return ret;
5622 }
5623
5624 int ocfs2_truncate_log_needs_flush(struct ocfs2_super *osb)
5625 {
5626         struct buffer_head *tl_bh = osb->osb_tl_bh;
5627         struct ocfs2_dinode *di;
5628         struct ocfs2_truncate_log *tl;
5629
5630         di = (struct ocfs2_dinode *) tl_bh->b_data;
5631         tl = &di->id2.i_dealloc;
5632
5633         mlog_bug_on_msg(le16_to_cpu(tl->tl_used) > le16_to_cpu(tl->tl_count),
5634                         "slot %d, invalid truncate log parameters: used = "
5635                         "%u, count = %u\n", osb->slot_num,
5636                         le16_to_cpu(tl->tl_used), le16_to_cpu(tl->tl_count));
5637         return le16_to_cpu(tl->tl_used) == le16_to_cpu(tl->tl_count);
5638 }
5639
5640 static int ocfs2_truncate_log_can_coalesce(struct ocfs2_truncate_log *tl,
5641                                            unsigned int new_start)
5642 {
5643         unsigned int tail_index;
5644         unsigned int current_tail;
5645
5646         /* No records, nothing to coalesce */
5647         if (!le16_to_cpu(tl->tl_used))
5648                 return 0;
5649
5650         tail_index = le16_to_cpu(tl->tl_used) - 1;
5651         current_tail = le32_to_cpu(tl->tl_recs[tail_index].t_start);
5652         current_tail += le32_to_cpu(tl->tl_recs[tail_index].t_clusters);
5653
5654         return current_tail == new_start;
5655 }
5656
5657 int ocfs2_truncate_log_append(struct ocfs2_super *osb,
5658                               handle_t *handle,
5659                               u64 start_blk,
5660                               unsigned int num_clusters)
5661 {
5662         int status, index;
5663         unsigned int start_cluster, tl_count;
5664         struct inode *tl_inode = osb->osb_tl_inode;
5665         struct buffer_head *tl_bh = osb->osb_tl_bh;
5666         struct ocfs2_dinode *di;
5667         struct ocfs2_truncate_log *tl;
5668
5669         mlog_entry("start_blk = %llu, num_clusters = %u\n",
5670                    (unsigned long long)start_blk, num_clusters);
5671
5672         BUG_ON(mutex_trylock(&tl_inode->i_mutex));
5673
5674         start_cluster = ocfs2_blocks_to_clusters(osb->sb, start_blk);
5675
5676         di = (struct ocfs2_dinode *) tl_bh->b_data;
5677
5678         /* tl_bh is loaded from ocfs2_truncate_log_init().  It's validated
5679          * by the underlying call to ocfs2_read_inode_block(), so any
5680          * corruption is a code bug */
5681         BUG_ON(!OCFS2_IS_VALID_DINODE(di));
5682
5683         tl = &di->id2.i_dealloc;
5684         tl_count = le16_to_cpu(tl->tl_count);
5685         mlog_bug_on_msg(tl_count > ocfs2_truncate_recs_per_inode(osb->sb) ||
5686                         tl_count == 0,
5687                         "Truncate record count on #%llu invalid "
5688                         "wanted %u, actual %u\n",
5689                         (unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
5690                         ocfs2_truncate_recs_per_inode(osb->sb),
5691                         le16_to_cpu(tl->tl_count));
5692
5693         /* Caller should have known to flush before calling us. */
5694         index = le16_to_cpu(tl->tl_used);
5695         if (index >= tl_count) {
5696                 status = -ENOSPC;
5697                 mlog_errno(status);
5698                 goto bail;
5699         }
5700
5701         status = ocfs2_journal_access_di(handle, INODE_CACHE(tl_inode), tl_bh,
5702                                          OCFS2_JOURNAL_ACCESS_WRITE);
5703         if (status < 0) {
5704                 mlog_errno(status);
5705                 goto bail;
5706         }
5707
5708         mlog(0, "Log truncate of %u clusters starting at cluster %u to "
5709              "%llu (index = %d)\n", num_clusters, start_cluster,
5710              (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, index);
5711
5712         if (ocfs2_truncate_log_can_coalesce(tl, start_cluster)) {
5713                 /*
5714                  * Move index back to the record we are coalescing with.
5715                  * ocfs2_truncate_log_can_coalesce() guarantees nonzero
5716                  */
5717                 index--;
5718
5719                 num_clusters += le32_to_cpu(tl->tl_recs[index].t_clusters);
5720                 mlog(0, "Coalesce with index %u (start = %u, clusters = %u)\n",
5721                      index, le32_to_cpu(tl->tl_recs[index].t_start),
5722                      num_clusters);
5723         } else {
5724                 tl->tl_recs[index].t_start = cpu_to_le32(start_cluster);
5725                 tl->tl_used = cpu_to_le16(index + 1);
5726         }
5727         tl->tl_recs[index].t_clusters = cpu_to_le32(num_clusters);
5728
5729         status = ocfs2_journal_dirty(handle, tl_bh);
5730         if (status < 0) {
5731                 mlog_errno(status);
5732                 goto bail;
5733         }
5734
5735 bail:
5736         mlog_exit(status);
5737         return status;
5738 }
5739
5740 static int ocfs2_replay_truncate_records(struct ocfs2_super *osb,
5741                                          handle_t *handle,
5742                                          struct inode *data_alloc_inode,
5743                                          struct buffer_head *data_alloc_bh)
5744 {
5745         int status = 0;
5746         int i;
5747         unsigned int num_clusters;
5748         u64 start_blk;
5749         struct ocfs2_truncate_rec rec;
5750         struct ocfs2_dinode *di;
5751         struct ocfs2_truncate_log *tl;
5752         struct inode *tl_inode = osb->osb_tl_inode;
5753         struct buffer_head *tl_bh = osb->osb_tl_bh;
5754
5755         mlog_entry_void();
5756
5757         di = (struct ocfs2_dinode *) tl_bh->b_data;
5758         tl = &di->id2.i_dealloc;
5759         i = le16_to_cpu(tl->tl_used) - 1;
5760         while (i >= 0) {
5761                 /* Caller has given us at least enough credits to
5762                  * update the truncate log dinode */
5763                 status = ocfs2_journal_access_di(handle, INODE_CACHE(tl_inode), tl_bh,
5764                                                  OCFS2_JOURNAL_ACCESS_WRITE);
5765                 if (status < 0) {
5766                         mlog_errno(status);
5767                         goto bail;
5768                 }
5769
5770                 tl->tl_used = cpu_to_le16(i);
5771
5772                 status = ocfs2_journal_dirty(handle, tl_bh);
5773                 if (status < 0) {
5774                         mlog_errno(status);
5775                         goto bail;
5776                 }
5777
5778                 /* TODO: Perhaps we can calculate the bulk of the
5779                  * credits up front rather than extending like
5780                  * this. */
5781                 status = ocfs2_extend_trans(handle,
5782                                             OCFS2_TRUNCATE_LOG_FLUSH_ONE_REC);
5783                 if (status < 0) {
5784                         mlog_errno(status);
5785                         goto bail;
5786                 }
5787
5788                 rec = tl->tl_recs[i];
5789                 start_blk = ocfs2_clusters_to_blocks(data_alloc_inode->i_sb,
5790                                                     le32_to_cpu(rec.t_start));
5791                 num_clusters = le32_to_cpu(rec.t_clusters);
5792
5793                 /* if start_blk is not set, we ignore the record as
5794                  * invalid. */
5795                 if (start_blk) {
5796                         mlog(0, "free record %d, start = %u, clusters = %u\n",
5797                              i, le32_to_cpu(rec.t_start), num_clusters);
5798
5799                         status = ocfs2_free_clusters(handle, data_alloc_inode,
5800                                                      data_alloc_bh, start_blk,
5801                                                      num_clusters);
5802                         if (status < 0) {
5803                                 mlog_errno(status);
5804                                 goto bail;
5805                         }
5806                 }
5807                 i--;
5808         }
5809
5810 bail:
5811         mlog_exit(status);
5812         return status;
5813 }
5814
5815 /* Expects you to already be holding tl_inode->i_mutex */
5816 int __ocfs2_flush_truncate_log(struct ocfs2_super *osb)
5817 {
5818         int status;
5819         unsigned int num_to_flush;
5820         handle_t *handle;
5821         struct inode *tl_inode = osb->osb_tl_inode;
5822         struct inode *data_alloc_inode = NULL;
5823         struct buffer_head *tl_bh = osb->osb_tl_bh;
5824         struct buffer_head *data_alloc_bh = NULL;
5825         struct ocfs2_dinode *di;
5826         struct ocfs2_truncate_log *tl;
5827
5828         mlog_entry_void();
5829
5830         BUG_ON(mutex_trylock(&tl_inode->i_mutex));
5831
5832         di = (struct ocfs2_dinode *) tl_bh->b_data;
5833
5834         /* tl_bh is loaded from ocfs2_truncate_log_init().  It's validated
5835          * by the underlying call to ocfs2_read_inode_block(), so any
5836          * corruption is a code bug */
5837         BUG_ON(!OCFS2_IS_VALID_DINODE(di));
5838
5839         tl = &di->id2.i_dealloc;
5840         num_to_flush = le16_to_cpu(tl->tl_used);
5841         mlog(0, "Flush %u records from truncate log #%llu\n",
5842              num_to_flush, (unsigned long long)OCFS2_I(tl_inode)->ip_blkno);
5843         if (!num_to_flush) {
5844                 status = 0;
5845                 goto out;
5846         }
5847
5848         data_alloc_inode = ocfs2_get_system_file_inode(osb,
5849                                                        GLOBAL_BITMAP_SYSTEM_INODE,
5850                                                        OCFS2_INVALID_SLOT);
5851         if (!data_alloc_inode) {
5852                 status = -EINVAL;
5853                 mlog(ML_ERROR, "Could not get bitmap inode!\n");
5854                 goto out;
5855         }
5856
5857         mutex_lock(&data_alloc_inode->i_mutex);
5858
5859         status = ocfs2_inode_lock(data_alloc_inode, &data_alloc_bh, 1);
5860         if (status < 0) {
5861                 mlog_errno(status);
5862                 goto out_mutex;
5863         }
5864
5865         handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
5866         if (IS_ERR(handle)) {
5867                 status = PTR_ERR(handle);
5868                 mlog_errno(status);
5869                 goto out_unlock;
5870         }
5871
5872         status = ocfs2_replay_truncate_records(osb, handle, data_alloc_inode,
5873                                                data_alloc_bh);
5874         if (status < 0)
5875                 mlog_errno(status);
5876
5877         ocfs2_commit_trans(osb, handle);
5878
5879 out_unlock:
5880         brelse(data_alloc_bh);
5881         ocfs2_inode_unlock(data_alloc_inode, 1);
5882
5883 out_mutex:
5884         mutex_unlock(&data_alloc_inode->i_mutex);
5885         iput(data_alloc_inode);
5886
5887 out:
5888         mlog_exit(status);
5889         return status;
5890 }
5891
5892 int ocfs2_flush_truncate_log(struct ocfs2_super *osb)
5893 {
5894         int status;
5895         struct inode *tl_inode = osb->osb_tl_inode;
5896
5897         mutex_lock(&tl_inode->i_mutex);
5898         status = __ocfs2_flush_truncate_log(osb);
5899         mutex_unlock(&tl_inode->i_mutex);
5900
5901         return status;
5902 }
5903
5904 static void ocfs2_truncate_log_worker(struct work_struct *work)
5905 {
5906         int status;
5907         struct ocfs2_super *osb =
5908                 container_of(work, struct ocfs2_super,
5909                              osb_truncate_log_wq.work);
5910
5911         mlog_entry_void();
5912
5913         status = ocfs2_flush_truncate_log(osb);
5914         if (status < 0)
5915                 mlog_errno(status);
5916         else
5917                 ocfs2_init_inode_steal_slot(osb);
5918
5919         mlog_exit(status);
5920 }
5921
5922 #define OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL (2 * HZ)
5923 void ocfs2_schedule_truncate_log_flush(struct ocfs2_super *osb,
5924                                        int cancel)
5925 {
5926         if (osb->osb_tl_inode) {
5927                 /* We want to push off log flushes while truncates are
5928                  * still running. */
5929                 if (cancel)
5930                         cancel_delayed_work(&osb->osb_truncate_log_wq);
5931
5932                 queue_delayed_work(ocfs2_wq, &osb->osb_truncate_log_wq,
5933                                    OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL);
5934         }
5935 }
5936
5937 static int ocfs2_get_truncate_log_info(struct ocfs2_super *osb,
5938                                        int slot_num,
5939                                        struct inode **tl_inode,
5940                                        struct buffer_head **tl_bh)
5941 {
5942         int status;
5943         struct inode *inode = NULL;
5944         struct buffer_head *bh = NULL;
5945
5946         inode = ocfs2_get_system_file_inode(osb,
5947                                            TRUNCATE_LOG_SYSTEM_INODE,
5948                                            slot_num);
5949         if (!inode) {
5950                 status = -EINVAL;
5951                 mlog(ML_ERROR, "Could not get load truncate log inode!\n");
5952                 goto bail;
5953         }
5954
5955         status = ocfs2_read_inode_block(inode, &bh);
5956         if (status < 0) {
5957                 iput(inode);
5958                 mlog_errno(status);
5959                 goto bail;
5960         }
5961
5962         *tl_inode = inode;
5963         *tl_bh    = bh;
5964 bail:
5965         mlog_exit(status);
5966         return status;
5967 }
5968
5969 /* called during the 1st stage of node recovery. we stamp a clean
5970  * truncate log and pass back a copy for processing later. if the
5971  * truncate log does not require processing, a *tl_copy is set to
5972  * NULL. */
5973 int ocfs2_begin_truncate_log_recovery(struct ocfs2_super *osb,
5974                                       int slot_num,
5975                                       struct ocfs2_dinode **tl_copy)
5976 {
5977         int status;
5978         struct inode *tl_inode = NULL;
5979         struct buffer_head *tl_bh = NULL;
5980         struct ocfs2_dinode *di;
5981         struct ocfs2_truncate_log *tl;
5982
5983         *tl_copy = NULL;
5984
5985         mlog(0, "recover truncate log from slot %d\n", slot_num);
5986
5987         status = ocfs2_get_truncate_log_info(osb, slot_num, &tl_inode, &tl_bh);
5988         if (status < 0) {
5989                 mlog_errno(status);
5990                 goto bail;
5991         }
5992
5993         di = (struct ocfs2_dinode *) tl_bh->b_data;
5994
5995         /* tl_bh is loaded from ocfs2_get_truncate_log_info().  It's
5996          * validated by the underlying call to ocfs2_read_inode_block(),
5997          * so any corruption is a code bug */
5998         BUG_ON(!OCFS2_IS_VALID_DINODE(di));
5999
6000         tl = &di->id2.i_dealloc;
6001         if (le16_to_cpu(tl->tl_used)) {
6002                 mlog(0, "We'll have %u logs to recover\n",
6003                      le16_to_cpu(tl->tl_used));
6004
6005                 *tl_copy = kmalloc(tl_bh->b_size, GFP_KERNEL);
6006                 if (!(*tl_copy)) {
6007                         status = -ENOMEM;
6008                         mlog_errno(status);
6009                         goto bail;
6010                 }
6011
6012                 /* Assuming the write-out below goes well, this copy
6013                  * will be passed back to recovery for processing. */
6014                 memcpy(*tl_copy, tl_bh->b_data, tl_bh->b_size);
6015
6016                 /* All we need to do to clear the truncate log is set
6017                  * tl_used. */
6018                 tl->tl_used = 0;
6019
6020                 ocfs2_compute_meta_ecc(osb->sb, tl_bh->b_data, &di->i_check);
6021                 status = ocfs2_write_block(osb, tl_bh, INODE_CACHE(tl_inode));
6022                 if (status < 0) {
6023                         mlog_errno(status);
6024                         goto bail;
6025                 }
6026         }
6027
6028 bail:
6029         if (tl_inode)
6030                 iput(tl_inode);
6031         brelse(tl_bh);
6032
6033         if (status < 0 && (*tl_copy)) {
6034                 kfree(*tl_copy);
6035                 *tl_copy = NULL;
6036         }
6037
6038         mlog_exit(status);
6039         return status;
6040 }
6041
6042 int ocfs2_complete_truncate_log_recovery(struct ocfs2_super *osb,
6043                                          struct ocfs2_dinode *tl_copy)
6044 {
6045         int status = 0;
6046         int i;
6047         unsigned int clusters, num_recs, start_cluster;
6048         u64 start_blk;
6049         handle_t *handle;
6050         struct inode *tl_inode = osb->osb_tl_inode;
6051         struct ocfs2_truncate_log *tl;
6052
6053         mlog_entry_void();
6054
6055         if (OCFS2_I(tl_inode)->ip_blkno == le64_to_cpu(tl_copy->i_blkno)) {
6056                 mlog(ML_ERROR, "Asked to recover my own truncate log!\n");
6057                 return -EINVAL;
6058         }
6059
6060         tl = &tl_copy->id2.i_dealloc;
6061         num_recs = le16_to_cpu(tl->tl_used);
6062         mlog(0, "cleanup %u records from %llu\n", num_recs,
6063              (unsigned long long)le64_to_cpu(tl_copy->i_blkno));
6064
6065         mutex_lock(&tl_inode->i_mutex);
6066         for(i = 0; i < num_recs; i++) {
6067                 if (ocfs2_truncate_log_needs_flush(osb)) {
6068                         status = __ocfs2_flush_truncate_log(osb);
6069                         if (status < 0) {
6070                                 mlog_errno(status);
6071                                 goto bail_up;
6072                         }
6073                 }
6074
6075                 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
6076                 if (IS_ERR(handle)) {
6077                         status = PTR_ERR(handle);
6078                         mlog_errno(status);
6079                         goto bail_up;
6080                 }
6081
6082                 clusters = le32_to_cpu(tl->tl_recs[i].t_clusters);
6083                 start_cluster = le32_to_cpu(tl->tl_recs[i].t_start);
6084                 start_blk = ocfs2_clusters_to_blocks(osb->sb, start_cluster);
6085
6086                 status = ocfs2_truncate_log_append(osb, handle,
6087                                                    start_blk, clusters);
6088                 ocfs2_commit_trans(osb, handle);
6089                 if (status < 0) {
6090                         mlog_errno(status);
6091                         goto bail_up;
6092                 }
6093         }
6094
6095 bail_up:
6096         mutex_unlock(&tl_inode->i_mutex);
6097
6098         mlog_exit(status);
6099         return status;
6100 }
6101
6102 void ocfs2_truncate_log_shutdown(struct ocfs2_super *osb)
6103 {
6104         int status;
6105         struct inode *tl_inode = osb->osb_tl_inode;
6106
6107         mlog_entry_void();
6108
6109         if (tl_inode) {
6110                 cancel_delayed_work(&osb->osb_truncate_log_wq);
6111                 flush_workqueue(ocfs2_wq);
6112
6113                 status = ocfs2_flush_truncate_log(osb);
6114                 if (status < 0)
6115                         mlog_errno(status);
6116
6117                 brelse(osb->osb_tl_bh);
6118                 iput(osb->osb_tl_inode);
6119         }
6120
6121         mlog_exit_void();
6122 }
6123
6124 int ocfs2_truncate_log_init(struct ocfs2_super *osb)
6125 {
6126         int status;
6127         struct inode *tl_inode = NULL;
6128         struct buffer_head *tl_bh = NULL;
6129
6130         mlog_entry_void();
6131
6132         status = ocfs2_get_truncate_log_info(osb,
6133                                              osb->slot_num,
6134                                              &tl_inode,
6135                                              &tl_bh);
6136         if (status < 0)
6137                 mlog_errno(status);
6138
6139         /* ocfs2_truncate_log_shutdown keys on the existence of
6140          * osb->osb_tl_inode so we don't set any of the osb variables
6141          * until we're sure all is well. */
6142         INIT_DELAYED_WORK(&osb->osb_truncate_log_wq,
6143                           ocfs2_truncate_log_worker);
6144         osb->osb_tl_bh    = tl_bh;
6145         osb->osb_tl_inode = tl_inode;
6146
6147         mlog_exit(status);
6148         return status;
6149 }
6150
6151 /*
6152  * Delayed de-allocation of suballocator blocks.
6153  *
6154  * Some sets of block de-allocations might involve multiple suballocator inodes.
6155  *
6156  * The locking for this can get extremely complicated, especially when
6157  * the suballocator inodes to delete from aren't known until deep
6158  * within an unrelated codepath.
6159  *
6160  * ocfs2_extent_block structures are a good example of this - an inode
6161  * btree could have been grown by any number of nodes each allocating
6162  * out of their own suballoc inode.
6163  *
6164  * These structures allow the delay of block de-allocation until a
6165  * later time, when locking of multiple cluster inodes won't cause
6166  * deadlock.
6167  */
6168
6169 /*
6170  * Describe a single bit freed from a suballocator.  For the block
6171  * suballocators, it represents one block.  For the global cluster
6172  * allocator, it represents some clusters and free_bit indicates
6173  * clusters number.
6174  */
6175 struct ocfs2_cached_block_free {
6176         struct ocfs2_cached_block_free          *free_next;
6177         u64                                     free_blk;
6178         unsigned int                            free_bit;
6179 };
6180
6181 struct ocfs2_per_slot_free_list {
6182         struct ocfs2_per_slot_free_list         *f_next_suballocator;
6183         int                                     f_inode_type;
6184         int                                     f_slot;
6185         struct ocfs2_cached_block_free          *f_first;
6186 };
6187
6188 static int ocfs2_free_cached_blocks(struct ocfs2_super *osb,
6189                                     int sysfile_type,
6190                                     int slot,
6191                                     struct ocfs2_cached_block_free *head)
6192 {
6193         int ret;
6194         u64 bg_blkno;
6195         handle_t *handle;
6196         struct inode *inode;
6197         struct buffer_head *di_bh = NULL;
6198         struct ocfs2_cached_block_free *tmp;
6199
6200         inode = ocfs2_get_system_file_inode(osb, sysfile_type, slot);
6201         if (!inode) {
6202                 ret = -EINVAL;
6203                 mlog_errno(ret);
6204                 goto out;
6205         }
6206
6207         mutex_lock(&inode->i_mutex);
6208
6209         ret = ocfs2_inode_lock(inode, &di_bh, 1);
6210         if (ret) {
6211                 mlog_errno(ret);
6212                 goto out_mutex;
6213         }
6214
6215         handle = ocfs2_start_trans(osb, OCFS2_SUBALLOC_FREE);
6216         if (IS_ERR(handle)) {
6217                 ret = PTR_ERR(handle);
6218                 mlog_errno(ret);
6219                 goto out_unlock;
6220         }
6221
6222         while (head) {
6223                 bg_blkno = ocfs2_which_suballoc_group(head->free_blk,
6224                                                       head->free_bit);
6225                 mlog(0, "Free bit: (bit %u, blkno %llu)\n",
6226                      head->free_bit, (unsigned long long)head->free_blk);
6227
6228                 ret = ocfs2_free_suballoc_bits(handle, inode, di_bh,
6229                                                head->free_bit, bg_blkno, 1);
6230                 if (ret) {
6231                         mlog_errno(ret);
6232                         goto out_journal;
6233                 }
6234
6235                 ret = ocfs2_extend_trans(handle, OCFS2_SUBALLOC_FREE);
6236                 if (ret) {
6237                         mlog_errno(ret);
6238                         goto out_journal;
6239                 }
6240
6241                 tmp = head;
6242                 head = head->free_next;
6243                 kfree(tmp);
6244         }
6245
6246 out_journal:
6247         ocfs2_commit_trans(osb, handle);
6248
6249 out_unlock:
6250         ocfs2_inode_unlock(inode, 1);
6251         brelse(di_bh);
6252 out_mutex:
6253         mutex_unlock(&inode->i_mutex);
6254         iput(inode);
6255 out:
6256         while(head) {
6257                 /* Premature exit may have left some dangling items. */
6258                 tmp = head;
6259                 head = head->free_next;
6260                 kfree(tmp);
6261         }
6262
6263         return ret;
6264 }
6265
6266 int ocfs2_cache_cluster_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt,
6267                                 u64 blkno, unsigned int bit)
6268 {
6269         int ret = 0;
6270         struct ocfs2_cached_block_free *item;
6271
6272         item = kmalloc(sizeof(*item), GFP_NOFS);
6273         if (item == NULL) {
6274                 ret = -ENOMEM;
6275                 mlog_errno(ret);
6276                 return ret;
6277         }
6278
6279         mlog(0, "Insert clusters: (bit %u, blk %llu)\n",
6280              bit, (unsigned long long)blkno);
6281
6282         item->free_blk = blkno;
6283         item->free_bit = bit;
6284         item->free_next = ctxt->c_global_allocator;
6285
6286         ctxt->c_global_allocator = item;
6287         return ret;
6288 }
6289
6290 static int ocfs2_free_cached_clusters(struct ocfs2_super *osb,
6291                                       struct ocfs2_cached_block_free *head)
6292 {
6293         struct ocfs2_cached_block_free *tmp;
6294         struct inode *tl_inode = osb->osb_tl_inode;
6295         handle_t *handle;
6296         int ret = 0;
6297
6298         mutex_lock(&tl_inode->i_mutex);
6299
6300         while (head) {
6301                 if (ocfs2_truncate_log_needs_flush(osb)) {
6302                         ret = __ocfs2_flush_truncate_log(osb);
6303                         if (ret < 0) {
6304                                 mlog_errno(ret);
6305                                 break;
6306                         }
6307                 }
6308
6309                 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
6310                 if (IS_ERR(handle)) {
6311                         ret = PTR_ERR(handle);
6312                         mlog_errno(ret);
6313                         break;
6314                 }
6315
6316                 ret = ocfs2_truncate_log_append(osb, handle, head->free_blk,
6317                                                 head->free_bit);
6318
6319                 ocfs2_commit_trans(osb, handle);
6320                 tmp = head;
6321                 head = head->free_next;
6322                 kfree(tmp);
6323
6324                 if (ret < 0) {
6325                         mlog_errno(ret);
6326                         break;
6327                 }
6328         }
6329
6330         mutex_unlock(&tl_inode->i_mutex);
6331
6332         while (head) {
6333                 /* Premature exit may have left some dangling items. */
6334                 tmp = head;
6335                 head = head->free_next;
6336                 kfree(tmp);
6337         }
6338
6339         return ret;
6340 }
6341
6342 int ocfs2_run_deallocs(struct ocfs2_super *osb,
6343                        struct ocfs2_cached_dealloc_ctxt *ctxt)
6344 {
6345         int ret = 0, ret2;
6346         struct ocfs2_per_slot_free_list *fl;
6347
6348         if (!ctxt)
6349                 return 0;
6350
6351         while (ctxt->c_first_suballocator) {
6352                 fl = ctxt->c_first_suballocator;
6353
6354                 if (fl->f_first) {
6355                         mlog(0, "Free items: (type %u, slot %d)\n",
6356                              fl->f_inode_type, fl->f_slot);
6357                         ret2 = ocfs2_free_cached_blocks(osb,
6358                                                         fl->f_inode_type,
6359                                                         fl->f_slot,
6360                                                         fl->f_first);
6361                         if (ret2)
6362                                 mlog_errno(ret2);
6363                         if (!ret)
6364                                 ret = ret2;
6365                 }
6366
6367                 ctxt->c_first_suballocator = fl->f_next_suballocator;
6368                 kfree(fl);
6369         }
6370
6371         if (ctxt->c_global_allocator) {
6372                 ret2 = ocfs2_free_cached_clusters(osb,
6373                                                   ctxt->c_global_allocator);
6374                 if (ret2)
6375                         mlog_errno(ret2);
6376                 if (!ret)
6377                         ret = ret2;
6378
6379                 ctxt->c_global_allocator = NULL;
6380         }
6381
6382         return ret;
6383 }
6384
6385 static struct ocfs2_per_slot_free_list *
6386 ocfs2_find_per_slot_free_list(int type,
6387                               int slot,
6388                               struct ocfs2_cached_dealloc_ctxt *ctxt)
6389 {
6390         struct ocfs2_per_slot_free_list *fl = ctxt->c_first_suballocator;
6391
6392         while (fl) {
6393                 if (fl->f_inode_type == type && fl->f_slot == slot)
6394                         return fl;
6395
6396                 fl = fl->f_next_suballocator;
6397         }
6398
6399         fl = kmalloc(sizeof(*fl), GFP_NOFS);
6400         if (fl) {
6401                 fl->f_inode_type = type;
6402                 fl->f_slot = slot;
6403                 fl->f_first = NULL;
6404                 fl->f_next_suballocator = ctxt->c_first_suballocator;
6405
6406                 ctxt->c_first_suballocator = fl;
6407         }
6408         return fl;
6409 }
6410
6411 static int ocfs2_cache_block_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt,
6412                                      int type, int slot, u64 blkno,
6413                                      unsigned int bit)
6414 {
6415         int ret;
6416         struct ocfs2_per_slot_free_list *fl;
6417         struct ocfs2_cached_block_free *item;
6418
6419         fl = ocfs2_find_per_slot_free_list(type, slot, ctxt);
6420         if (fl == NULL) {
6421                 ret = -ENOMEM;
6422                 mlog_errno(ret);
6423                 goto out;
6424         }
6425
6426         item = kmalloc(sizeof(*item), GFP_NOFS);
6427         if (item == NULL) {
6428                 ret = -ENOMEM;
6429                 mlog_errno(ret);
6430                 goto out;
6431         }
6432
6433         mlog(0, "Insert: (type %d, slot %u, bit %u, blk %llu)\n",
6434              type, slot, bit, (unsigned long long)blkno);
6435
6436         item->free_blk = blkno;
6437         item->free_bit = bit;
6438         item->free_next = fl->f_first;
6439
6440         fl->f_first = item;
6441
6442         ret = 0;
6443 out:
6444         return ret;
6445 }
6446
6447 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
6448                                          struct ocfs2_extent_block *eb)
6449 {
6450         return ocfs2_cache_block_dealloc(ctxt, EXTENT_ALLOC_SYSTEM_INODE,
6451                                          le16_to_cpu(eb->h_suballoc_slot),
6452                                          le64_to_cpu(eb->h_blkno),
6453                                          le16_to_cpu(eb->h_suballoc_bit));
6454 }
6455
6456 /* This function will figure out whether the currently last extent
6457  * block will be deleted, and if it will, what the new last extent
6458  * block will be so we can update his h_next_leaf_blk field, as well
6459  * as the dinodes i_last_eb_blk */
6460 static int ocfs2_find_new_last_ext_blk(struct inode *inode,
6461                                        unsigned int clusters_to_del,
6462                                        struct ocfs2_path *path,
6463                                        struct buffer_head **new_last_eb)
6464 {
6465         int next_free, ret = 0;
6466         u32 cpos;
6467         struct ocfs2_extent_rec *rec;
6468         struct ocfs2_extent_block *eb;
6469         struct ocfs2_extent_list *el;
6470         struct buffer_head *bh = NULL;
6471
6472         *new_last_eb = NULL;
6473
6474         /* we have no tree, so of course, no last_eb. */
6475         if (!path->p_tree_depth)
6476                 goto out;
6477
6478         /* trunc to zero special case - this makes tree_depth = 0
6479          * regardless of what it is.  */
6480         if (OCFS2_I(inode)->ip_clusters == clusters_to_del)
6481                 goto out;
6482
6483         el = path_leaf_el(path);
6484         BUG_ON(!el->l_next_free_rec);
6485
6486         /*
6487          * Make sure that this extent list will actually be empty
6488          * after we clear away the data. We can shortcut out if
6489          * there's more than one non-empty extent in the
6490          * list. Otherwise, a check of the remaining extent is
6491          * necessary.
6492          */
6493         next_free = le16_to_cpu(el->l_next_free_rec);
6494         rec = NULL;
6495         if (ocfs2_is_empty_extent(&el->l_recs[0])) {
6496                 if (next_free > 2)
6497                         goto out;
6498
6499                 /* We may have a valid extent in index 1, check it. */
6500                 if (next_free == 2)
6501                         rec = &el->l_recs[1];
6502
6503                 /*
6504                  * Fall through - no more nonempty extents, so we want
6505                  * to delete this leaf.
6506                  */
6507         } else {
6508                 if (next_free > 1)
6509                         goto out;
6510
6511                 rec = &el->l_recs[0];
6512         }
6513
6514         if (rec) {
6515                 /*
6516                  * Check it we'll only be trimming off the end of this
6517                  * cluster.
6518                  */
6519                 if (le16_to_cpu(rec->e_leaf_clusters) > clusters_to_del)
6520                         goto out;
6521         }
6522
6523         ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, &cpos);
6524         if (ret) {
6525                 mlog_errno(ret);
6526                 goto out;
6527         }
6528
6529         ret = ocfs2_find_leaf(INODE_CACHE(inode), path_root_el(path), cpos, &bh);
6530         if (ret) {
6531                 mlog_errno(ret);
6532                 goto out;
6533         }
6534
6535         eb = (struct ocfs2_extent_block *) bh->b_data;
6536         el = &eb->h_list;
6537
6538         /* ocfs2_find_leaf() gets the eb from ocfs2_read_extent_block().
6539          * Any corruption is a code bug. */
6540         BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb));
6541
6542         *new_last_eb = bh;
6543         get_bh(*new_last_eb);
6544         mlog(0, "returning block %llu, (cpos: %u)\n",
6545              (unsigned long long)le64_to_cpu(eb->h_blkno), cpos);
6546 out:
6547         brelse(bh);
6548
6549         return ret;
6550 }
6551
6552 /*
6553  * Trim some clusters off the rightmost edge of a tree. Only called
6554  * during truncate.
6555  *
6556  * The caller needs to:
6557  *   - start journaling of each path component.
6558  *   - compute and fully set up any new last ext block
6559  */
6560 static int ocfs2_trim_tree(struct inode *inode, struct ocfs2_path *path,
6561                            handle_t *handle, struct ocfs2_truncate_context *tc,
6562                            u32 clusters_to_del, u64 *delete_start)
6563 {
6564         int ret, i, index = path->p_tree_depth;
6565         u32 new_edge = 0;
6566         u64 deleted_eb = 0;
6567         struct buffer_head *bh;
6568         struct ocfs2_extent_list *el;
6569         struct ocfs2_extent_rec *rec;
6570
6571         *delete_start = 0;
6572
6573         while (index >= 0) {
6574                 bh = path->p_node[index].bh;
6575                 el = path->p_node[index].el;
6576
6577                 mlog(0, "traveling tree (index = %d, block = %llu)\n",
6578                      index,  (unsigned long long)bh->b_blocknr);
6579
6580                 BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0);
6581
6582                 if (index !=
6583                     (path->p_tree_depth - le16_to_cpu(el->l_tree_depth))) {
6584                         ocfs2_error(inode->i_sb,
6585                                     "Inode %lu has invalid ext. block %llu",
6586                                     inode->i_ino,
6587                                     (unsigned long long)bh->b_blocknr);
6588                         ret = -EROFS;
6589                         goto out;
6590                 }
6591
6592 find_tail_record:
6593                 i = le16_to_cpu(el->l_next_free_rec) - 1;
6594                 rec = &el->l_recs[i];
6595
6596                 mlog(0, "Extent list before: record %d: (%u, %u, %llu), "
6597                      "next = %u\n", i, le32_to_cpu(rec->e_cpos),
6598                      ocfs2_rec_clusters(el, rec),
6599                      (unsigned long long)le64_to_cpu(rec->e_blkno),
6600                      le16_to_cpu(el->l_next_free_rec));
6601
6602                 BUG_ON(ocfs2_rec_clusters(el, rec) < clusters_to_del);
6603
6604                 if (le16_to_cpu(el->l_tree_depth) == 0) {
6605                         /*
6606                          * If the leaf block contains a single empty
6607                          * extent and no records, we can just remove
6608                          * the block.
6609                          */
6610                         if (i == 0 && ocfs2_is_empty_extent(rec)) {
6611                                 memset(rec, 0,
6612                                        sizeof(struct ocfs2_extent_rec));
6613                                 el->l_next_free_rec = cpu_to_le16(0);
6614
6615                                 goto delete;
6616                         }
6617
6618                         /*
6619                          * Remove any empty extents by shifting things
6620                          * left. That should make life much easier on
6621                          * the code below. This condition is rare
6622                          * enough that we shouldn't see a performance
6623                          * hit.
6624                          */
6625                         if (ocfs2_is_empty_extent(&el->l_recs[0])) {
6626                                 le16_add_cpu(&el->l_next_free_rec, -1);
6627
6628                                 for(i = 0;
6629                                     i < le16_to_cpu(el->l_next_free_rec); i++)
6630                                         el->l_recs[i] = el->l_recs[i + 1];
6631
6632                                 memset(&el->l_recs[i], 0,
6633                                        sizeof(struct ocfs2_extent_rec));
6634
6635                                 /*
6636                                  * We've modified our extent list. The
6637                                  * simplest way to handle this change
6638                                  * is to being the search from the
6639                                  * start again.
6640                                  */
6641                                 goto find_tail_record;
6642                         }
6643
6644                         le16_add_cpu(&rec->e_leaf_clusters, -clusters_to_del);
6645
6646                         /*
6647                          * We'll use "new_edge" on our way back up the
6648                          * tree to know what our rightmost cpos is.
6649                          */
6650                         new_edge = le16_to_cpu(rec->e_leaf_clusters);
6651                         new_edge += le32_to_cpu(rec->e_cpos);
6652
6653                         /*
6654                          * The caller will use this to delete data blocks.
6655                          */
6656                         *delete_start = le64_to_cpu(rec->e_blkno)
6657                                 + ocfs2_clusters_to_blocks(inode->i_sb,
6658                                         le16_to_cpu(rec->e_leaf_clusters));
6659
6660                         /*
6661                          * If it's now empty, remove this record.
6662                          */
6663                         if (le16_to_cpu(rec->e_leaf_clusters) == 0) {
6664                                 memset(rec, 0,
6665                                        sizeof(struct ocfs2_extent_rec));
6666                                 le16_add_cpu(&el->l_next_free_rec, -1);
6667                         }
6668                 } else {
6669                         if (le64_to_cpu(rec->e_blkno) == deleted_eb) {
6670                                 memset(rec, 0,
6671                                        sizeof(struct ocfs2_extent_rec));
6672                                 le16_add_cpu(&el->l_next_free_rec, -1);
6673
6674                                 goto delete;
6675                         }
6676
6677                         /* Can this actually happen? */
6678                         if (le16_to_cpu(el->l_next_free_rec) == 0)
6679                                 goto delete;
6680
6681                         /*
6682                          * We never actually deleted any clusters
6683                          * because our leaf was empty. There's no
6684                          * reason to adjust the rightmost edge then.
6685                          */
6686                         if (new_edge == 0)
6687                                 goto delete;
6688
6689                         rec->e_int_clusters = cpu_to_le32(new_edge);
6690                         le32_add_cpu(&rec->e_int_clusters,
6691                                      -le32_to_cpu(rec->e_cpos));
6692
6693                          /*
6694                           * A deleted child record should have been
6695                           * caught above.
6696                           */
6697                          BUG_ON(le32_to_cpu(rec->e_int_clusters) == 0);
6698                 }
6699
6700 delete:
6701                 ret = ocfs2_journal_dirty(handle, bh);
6702                 if (ret) {
6703                         mlog_errno(ret);
6704                         goto out;
6705                 }
6706
6707                 mlog(0, "extent list container %llu, after: record %d: "
6708                      "(%u, %u, %llu), next = %u.\n",
6709                      (unsigned long long)bh->b_blocknr, i,
6710                      le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec),
6711                      (unsigned long long)le64_to_cpu(rec->e_blkno),
6712                      le16_to_cpu(el->l_next_free_rec));
6713
6714                 /*
6715                  * We must be careful to only attempt delete of an
6716                  * extent block (and not the root inode block).
6717                  */
6718                 if (index > 0 && le16_to_cpu(el->l_next_free_rec) == 0) {
6719                         struct ocfs2_extent_block *eb =
6720                                 (struct ocfs2_extent_block *)bh->b_data;
6721
6722                         /*
6723                          * Save this for use when processing the
6724                          * parent block.
6725                          */
6726                         deleted_eb = le64_to_cpu(eb->h_blkno);
6727
6728                         mlog(0, "deleting this extent block.\n");
6729
6730                         ocfs2_remove_from_cache(INODE_CACHE(inode), bh);
6731
6732                         BUG_ON(ocfs2_rec_clusters(el, &el->l_recs[0]));
6733                         BUG_ON(le32_to_cpu(el->l_recs[0].e_cpos));
6734                         BUG_ON(le64_to_cpu(el->l_recs[0].e_blkno));
6735
6736                         ret = ocfs2_cache_extent_block_free(&tc->tc_dealloc, eb);
6737                         /* An error here is not fatal. */
6738                         if (ret < 0)
6739                                 mlog_errno(ret);
6740                 } else {
6741                         deleted_eb = 0;
6742                 }
6743
6744                 index--;
6745         }
6746
6747         ret = 0;
6748 out:
6749         return ret;
6750 }
6751
6752 static int ocfs2_do_truncate(struct ocfs2_super *osb,
6753                              unsigned int clusters_to_del,
6754                              struct inode *inode,
6755                              struct buffer_head *fe_bh,
6756                              handle_t *handle,
6757                              struct ocfs2_truncate_context *tc,
6758                              struct ocfs2_path *path)
6759 {
6760         int status;
6761         struct ocfs2_dinode *fe;
6762         struct ocfs2_extent_block *last_eb = NULL;
6763         struct ocfs2_extent_list *el;
6764         struct buffer_head *last_eb_bh = NULL;
6765         u64 delete_blk = 0;
6766
6767         fe = (struct ocfs2_dinode *) fe_bh->b_data;
6768
6769         status = ocfs2_find_new_last_ext_blk(inode, clusters_to_del,
6770                                              path, &last_eb_bh);
6771         if (status < 0) {
6772                 mlog_errno(status);
6773                 goto bail;
6774         }
6775
6776         /*
6777          * Each component will be touched, so we might as well journal
6778          * here to avoid having to handle errors later.
6779          */
6780         status = ocfs2_journal_access_path(INODE_CACHE(inode), handle, path);
6781         if (status < 0) {
6782                 mlog_errno(status);
6783                 goto bail;
6784         }
6785
6786         if (last_eb_bh) {
6787                 status = ocfs2_journal_access_eb(handle, INODE_CACHE(inode), last_eb_bh,
6788                                                  OCFS2_JOURNAL_ACCESS_WRITE);
6789                 if (status < 0) {
6790                         mlog_errno(status);
6791                         goto bail;
6792                 }
6793
6794                 last_eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
6795         }
6796
6797         el = &(fe->id2.i_list);
6798
6799         /*
6800          * Lower levels depend on this never happening, but it's best
6801          * to check it up here before changing the tree.
6802          */
6803         if (el->l_tree_depth && el->l_recs[0].e_int_clusters == 0) {
6804                 ocfs2_error(inode->i_sb,
6805                             "Inode %lu has an empty extent record, depth %u\n",
6806                             inode->i_ino, le16_to_cpu(el->l_tree_depth));
6807                 status = -EROFS;
6808                 goto bail;
6809         }
6810
6811         vfs_dq_free_space_nodirty(inode,
6812                         ocfs2_clusters_to_bytes(osb->sb, clusters_to_del));
6813         spin_lock(&OCFS2_I(inode)->ip_lock);
6814         OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters) -
6815                                       clusters_to_del;
6816         spin_unlock(&OCFS2_I(inode)->ip_lock);
6817         le32_add_cpu(&fe->i_clusters, -clusters_to_del);
6818         inode->i_blocks = ocfs2_inode_sector_count(inode);
6819
6820         status = ocfs2_trim_tree(inode, path, handle, tc,
6821                                  clusters_to_del, &delete_blk);
6822         if (status) {
6823                 mlog_errno(status);
6824                 goto bail;
6825         }
6826
6827         if (le32_to_cpu(fe->i_clusters) == 0) {
6828                 /* trunc to zero is a special case. */
6829                 el->l_tree_depth = 0;
6830                 fe->i_last_eb_blk = 0;
6831         } else if (last_eb)
6832                 fe->i_last_eb_blk = last_eb->h_blkno;
6833
6834         status = ocfs2_journal_dirty(handle, fe_bh);
6835         if (status < 0) {
6836                 mlog_errno(status);
6837                 goto bail;
6838         }
6839
6840         if (last_eb) {
6841                 /* If there will be a new last extent block, then by
6842                  * definition, there cannot be any leaves to the right of
6843                  * him. */
6844                 last_eb->h_next_leaf_blk = 0;
6845                 status = ocfs2_journal_dirty(handle, last_eb_bh);
6846                 if (status < 0) {
6847                         mlog_errno(status);
6848                         goto bail;
6849                 }
6850         }
6851
6852         if (delete_blk) {
6853                 status = ocfs2_truncate_log_append(osb, handle, delete_blk,
6854                                                    clusters_to_del);
6855                 if (status < 0) {
6856                         mlog_errno(status);
6857                         goto bail;
6858                 }
6859         }
6860         status = 0;
6861 bail:
6862         brelse(last_eb_bh);
6863         mlog_exit(status);
6864         return status;
6865 }
6866
6867 static int ocfs2_zero_func(handle_t *handle, struct buffer_head *bh)
6868 {
6869         set_buffer_uptodate(bh);
6870         mark_buffer_dirty(bh);
6871         return 0;
6872 }
6873
6874 static void ocfs2_map_and_dirty_page(struct inode *inode, handle_t *handle,
6875                                      unsigned int from, unsigned int to,
6876                                      struct page *page, int zero, u64 *phys)
6877 {
6878         int ret, partial = 0;
6879
6880         ret = ocfs2_map_page_blocks(page, phys, inode, from, to, 0);
6881         if (ret)
6882                 mlog_errno(ret);
6883
6884         if (zero)
6885                 zero_user_segment(page, from, to);
6886
6887         /*
6888          * Need to set the buffers we zero'd into uptodate
6889          * here if they aren't - ocfs2_map_page_blocks()
6890          * might've skipped some
6891          */
6892         ret = walk_page_buffers(handle, page_buffers(page),
6893                                 from, to, &partial,
6894                                 ocfs2_zero_func);
6895         if (ret < 0)
6896                 mlog_errno(ret);
6897         else if (ocfs2_should_order_data(inode)) {
6898                 ret = ocfs2_jbd2_file_inode(handle, inode);
6899                 if (ret < 0)
6900                         mlog_errno(ret);
6901         }
6902
6903         if (!partial)
6904                 SetPageUptodate(page);
6905
6906         flush_dcache_page(page);
6907 }
6908
6909 static void ocfs2_zero_cluster_pages(struct inode *inode, loff_t start,
6910                                      loff_t end, struct page **pages,
6911                                      int numpages, u64 phys, handle_t *handle)
6912 {
6913         int i;
6914         struct page *page;
6915         unsigned int from, to = PAGE_CACHE_SIZE;
6916         struct super_block *sb = inode->i_sb;
6917
6918         BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb)));
6919
6920         if (numpages == 0)
6921                 goto out;
6922
6923         to = PAGE_CACHE_SIZE;
6924         for(i = 0; i < numpages; i++) {
6925                 page = pages[i];
6926
6927                 from = start & (PAGE_CACHE_SIZE - 1);
6928                 if ((end >> PAGE_CACHE_SHIFT) == page->index)
6929                         to = end & (PAGE_CACHE_SIZE - 1);
6930
6931                 BUG_ON(from > PAGE_CACHE_SIZE);
6932                 BUG_ON(to > PAGE_CACHE_SIZE);
6933
6934                 ocfs2_map_and_dirty_page(inode, handle, from, to, page, 1,
6935                                          &phys);
6936
6937                 start = (page->index + 1) << PAGE_CACHE_SHIFT;
6938         }
6939 out:
6940         if (pages)
6941                 ocfs2_unlock_and_free_pages(pages, numpages);
6942 }
6943
6944 static int ocfs2_grab_eof_pages(struct inode *inode, loff_t start, loff_t end,
6945                                 struct page **pages, int *num)
6946 {
6947         int numpages, ret = 0;
6948         struct super_block *sb = inode->i_sb;
6949         struct address_space *mapping = inode->i_mapping;
6950         unsigned long index;
6951         loff_t last_page_bytes;
6952
6953         BUG_ON(start > end);
6954
6955         BUG_ON(start >> OCFS2_SB(sb)->s_clustersize_bits !=
6956                (end - 1) >> OCFS2_SB(sb)->s_clustersize_bits);
6957
6958         numpages = 0;
6959         last_page_bytes = PAGE_ALIGN(end);
6960         index = start >> PAGE_CACHE_SHIFT;
6961         do {
6962                 pages[numpages] = grab_cache_page(mapping, index);
6963                 if (!pages[numpages]) {
6964                         ret = -ENOMEM;
6965                         mlog_errno(ret);
6966                         goto out;
6967                 }
6968
6969                 numpages++;
6970                 index++;
6971         } while (index < (last_page_bytes >> PAGE_CACHE_SHIFT));
6972
6973 out:
6974         if (ret != 0) {
6975                 if (pages)
6976                         ocfs2_unlock_and_free_pages(pages, numpages);
6977                 numpages = 0;
6978         }
6979
6980         *num = numpages;
6981
6982         return ret;
6983 }
6984
6985 /*
6986  * Zero the area past i_size but still within an allocated
6987  * cluster. This avoids exposing nonzero data on subsequent file
6988  * extends.
6989  *
6990  * We need to call this before i_size is updated on the inode because
6991  * otherwise block_write_full_page() will skip writeout of pages past
6992  * i_size. The new_i_size parameter is passed for this reason.
6993  */
6994 int ocfs2_zero_range_for_truncate(struct inode *inode, handle_t *handle,
6995                                   u64 range_start, u64 range_end)
6996 {
6997         int ret = 0, numpages;
6998         struct page **pages = NULL;
6999         u64 phys;
7000         unsigned int ext_flags;
7001         struct super_block *sb = inode->i_sb;
7002
7003         /*
7004          * File systems which don't support sparse files zero on every
7005          * extend.
7006          */
7007         if (!ocfs2_sparse_alloc(OCFS2_SB(sb)))
7008                 return 0;
7009
7010         pages = kcalloc(ocfs2_pages_per_cluster(sb),
7011                         sizeof(struct page *), GFP_NOFS);
7012         if (pages == NULL) {
7013                 ret = -ENOMEM;
7014                 mlog_errno(ret);
7015                 goto out;
7016         }
7017
7018         if (range_start == range_end)
7019                 goto out;
7020
7021         ret = ocfs2_extent_map_get_blocks(inode,
7022                                           range_start >> sb->s_blocksize_bits,
7023                                           &phys, NULL, &ext_flags);
7024         if (ret) {
7025                 mlog_errno(ret);
7026                 goto out;
7027         }
7028
7029         /*
7030          * Tail is a hole, or is marked unwritten. In either case, we
7031          * can count on read and write to return/push zero's.
7032          */
7033         if (phys == 0 || ext_flags & OCFS2_EXT_UNWRITTEN)
7034                 goto out;
7035
7036         ret = ocfs2_grab_eof_pages(inode, range_start, range_end, pages,
7037                                    &numpages);
7038         if (ret) {
7039                 mlog_errno(ret);
7040                 goto out;
7041         }
7042
7043         ocfs2_zero_cluster_pages(inode, range_start, range_end, pages,
7044                                  numpages, phys, handle);
7045
7046         /*
7047          * Initiate writeout of the pages we zero'd here. We don't
7048          * wait on them - the truncate_inode_pages() call later will
7049          * do that for us.
7050          */
7051         ret = do_sync_mapping_range(inode->i_mapping, range_start,
7052                                     range_end - 1, SYNC_FILE_RANGE_WRITE);
7053         if (ret)
7054                 mlog_errno(ret);
7055
7056 out:
7057         if (pages)
7058                 kfree(pages);
7059
7060         return ret;
7061 }
7062
7063 static void ocfs2_zero_dinode_id2_with_xattr(struct inode *inode,
7064                                              struct ocfs2_dinode *di)
7065 {
7066         unsigned int blocksize = 1 << inode->i_sb->s_blocksize_bits;
7067         unsigned int xattrsize = le16_to_cpu(di->i_xattr_inline_size);
7068
7069         if (le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_XATTR_FL)
7070                 memset(&di->id2, 0, blocksize -
7071                                     offsetof(struct ocfs2_dinode, id2) -
7072                                     xattrsize);
7073         else
7074                 memset(&di->id2, 0, blocksize -
7075                                     offsetof(struct ocfs2_dinode, id2));
7076 }
7077
7078 void ocfs2_dinode_new_extent_list(struct inode *inode,
7079                                   struct ocfs2_dinode *di)
7080 {
7081         ocfs2_zero_dinode_id2_with_xattr(inode, di);
7082         di->id2.i_list.l_tree_depth = 0;
7083         di->id2.i_list.l_next_free_rec = 0;
7084         di->id2.i_list.l_count = cpu_to_le16(
7085                 ocfs2_extent_recs_per_inode_with_xattr(inode->i_sb, di));
7086 }
7087
7088 void ocfs2_set_inode_data_inline(struct inode *inode, struct ocfs2_dinode *di)
7089 {
7090         struct ocfs2_inode_info *oi = OCFS2_I(inode);
7091         struct ocfs2_inline_data *idata = &di->id2.i_data;
7092
7093         spin_lock(&oi->ip_lock);
7094         oi->ip_dyn_features |= OCFS2_INLINE_DATA_FL;
7095         di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
7096         spin_unlock(&oi->ip_lock);
7097
7098         /*
7099          * We clear the entire i_data structure here so that all
7100          * fields can be properly initialized.
7101          */
7102         ocfs2_zero_dinode_id2_with_xattr(inode, di);
7103
7104         idata->id_count = cpu_to_le16(
7105                         ocfs2_max_inline_data_with_xattr(inode->i_sb, di));
7106 }
7107
7108 int ocfs2_convert_inline_data_to_extents(struct inode *inode,
7109                                          struct buffer_head *di_bh)
7110 {
7111         int ret, i, has_data, num_pages = 0;
7112         handle_t *handle;
7113         u64 uninitialized_var(block);
7114         struct ocfs2_inode_info *oi = OCFS2_I(inode);
7115         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
7116         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
7117         struct ocfs2_alloc_context *data_ac = NULL;
7118         struct page **pages = NULL;
7119         loff_t end = osb->s_clustersize;
7120         struct ocfs2_extent_tree et;
7121         int did_quota = 0;
7122
7123         has_data = i_size_read(inode) ? 1 : 0;
7124
7125         if (has_data) {
7126                 pages = kcalloc(ocfs2_pages_per_cluster(osb->sb),
7127                                 sizeof(struct page *), GFP_NOFS);
7128                 if (pages == NULL) {
7129                         ret = -ENOMEM;
7130                         mlog_errno(ret);
7131                         goto out;
7132                 }
7133
7134                 ret = ocfs2_reserve_clusters(osb, 1, &data_ac);
7135                 if (ret) {
7136                         mlog_errno(ret);
7137                         goto out;
7138                 }
7139         }
7140
7141         handle = ocfs2_start_trans(osb,
7142                                    ocfs2_inline_to_extents_credits(osb->sb));
7143         if (IS_ERR(handle)) {
7144                 ret = PTR_ERR(handle);
7145                 mlog_errno(ret);
7146                 goto out_unlock;
7147         }
7148
7149         ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
7150                                       OCFS2_JOURNAL_ACCESS_WRITE);
7151         if (ret) {
7152                 mlog_errno(ret);
7153                 goto out_commit;
7154         }
7155
7156         if (has_data) {
7157                 u32 bit_off, num;
7158                 unsigned int page_end;
7159                 u64 phys;
7160
7161                 if (vfs_dq_alloc_space_nodirty(inode,
7162                                        ocfs2_clusters_to_bytes(osb->sb, 1))) {
7163                         ret = -EDQUOT;
7164                         goto out_commit;
7165                 }
7166                 did_quota = 1;
7167
7168                 ret = ocfs2_claim_clusters(osb, handle, data_ac, 1, &bit_off,
7169                                            &num);
7170                 if (ret) {
7171                         mlog_errno(ret);
7172                         goto out_commit;
7173                 }
7174
7175                 /*
7176                  * Save two copies, one for insert, and one that can
7177                  * be changed by ocfs2_map_and_dirty_page() below.
7178                  */
7179                 block = phys = ocfs2_clusters_to_blocks(inode->i_sb, bit_off);
7180
7181                 /*
7182                  * Non sparse file systems zero on extend, so no need
7183                  * to do that now.
7184                  */
7185                 if (!ocfs2_sparse_alloc(osb) &&
7186                     PAGE_CACHE_SIZE < osb->s_clustersize)
7187                         end = PAGE_CACHE_SIZE;
7188
7189                 ret = ocfs2_grab_eof_pages(inode, 0, end, pages, &num_pages);
7190                 if (ret) {
7191                         mlog_errno(ret);
7192                         goto out_commit;
7193                 }
7194
7195                 /*
7196                  * This should populate the 1st page for us and mark
7197                  * it up to date.
7198                  */
7199                 ret = ocfs2_read_inline_data(inode, pages[0], di_bh);
7200                 if (ret) {
7201                         mlog_errno(ret);
7202                         goto out_commit;
7203                 }
7204
7205                 page_end = PAGE_CACHE_SIZE;
7206                 if (PAGE_CACHE_SIZE > osb->s_clustersize)
7207                         page_end = osb->s_clustersize;
7208
7209                 for (i = 0; i < num_pages; i++)
7210                         ocfs2_map_and_dirty_page(inode, handle, 0, page_end,
7211                                                  pages[i], i > 0, &phys);
7212         }
7213
7214         spin_lock(&oi->ip_lock);
7215         oi->ip_dyn_features &= ~OCFS2_INLINE_DATA_FL;
7216         di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
7217         spin_unlock(&oi->ip_lock);
7218
7219         ocfs2_dinode_new_extent_list(inode, di);
7220
7221         ocfs2_journal_dirty(handle, di_bh);
7222
7223         if (has_data) {
7224                 /*
7225                  * An error at this point should be extremely rare. If
7226                  * this proves to be false, we could always re-build
7227                  * the in-inode data from our pages.
7228                  */
7229                 ocfs2_init_dinode_extent_tree(&et, inode, di_bh);
7230                 ret = ocfs2_insert_extent(osb, handle, inode, &et,
7231                                           0, block, 1, 0, NULL);
7232                 if (ret) {
7233                         mlog_errno(ret);
7234                         goto out_commit;
7235                 }
7236
7237                 inode->i_blocks = ocfs2_inode_sector_count(inode);
7238         }
7239
7240 out_commit:
7241         if (ret < 0 && did_quota)
7242                 vfs_dq_free_space_nodirty(inode,
7243                                           ocfs2_clusters_to_bytes(osb->sb, 1));
7244
7245         ocfs2_commit_trans(osb, handle);
7246
7247 out_unlock:
7248         if (data_ac)
7249                 ocfs2_free_alloc_context(data_ac);
7250
7251 out:
7252         if (pages) {
7253                 ocfs2_unlock_and_free_pages(pages, num_pages);
7254                 kfree(pages);
7255         }
7256
7257         return ret;
7258 }
7259
7260 /*
7261  * It is expected, that by the time you call this function,
7262  * inode->i_size and fe->i_size have been adjusted.
7263  *
7264  * WARNING: This will kfree the truncate context
7265  */
7266 int ocfs2_commit_truncate(struct ocfs2_super *osb,
7267                           struct inode *inode,
7268                           struct buffer_head *fe_bh,
7269                           struct ocfs2_truncate_context *tc)
7270 {
7271         int status, i, credits, tl_sem = 0;
7272         u32 clusters_to_del, new_highest_cpos, range;
7273         struct ocfs2_extent_list *el;
7274         handle_t *handle = NULL;
7275         struct inode *tl_inode = osb->osb_tl_inode;
7276         struct ocfs2_path *path = NULL;
7277         struct ocfs2_dinode *di = (struct ocfs2_dinode *)fe_bh->b_data;
7278
7279         mlog_entry_void();
7280
7281         new_highest_cpos = ocfs2_clusters_for_bytes(osb->sb,
7282                                                      i_size_read(inode));
7283
7284         path = ocfs2_new_path(fe_bh, &di->id2.i_list,
7285                               ocfs2_journal_access_di);
7286         if (!path) {
7287                 status = -ENOMEM;
7288                 mlog_errno(status);
7289                 goto bail;
7290         }
7291
7292         ocfs2_extent_map_trunc(inode, new_highest_cpos);
7293
7294 start:
7295         /*
7296          * Check that we still have allocation to delete.
7297          */
7298         if (OCFS2_I(inode)->ip_clusters == 0) {
7299                 status = 0;
7300                 goto bail;
7301         }
7302
7303         /*
7304          * Truncate always works against the rightmost tree branch.
7305          */
7306         status = ocfs2_find_path(INODE_CACHE(inode), path, UINT_MAX);
7307         if (status) {
7308                 mlog_errno(status);
7309                 goto bail;
7310         }
7311
7312         mlog(0, "inode->ip_clusters = %u, tree_depth = %u\n",
7313              OCFS2_I(inode)->ip_clusters, path->p_tree_depth);
7314
7315         /*
7316          * By now, el will point to the extent list on the bottom most
7317          * portion of this tree. Only the tail record is considered in
7318          * each pass.
7319          *
7320          * We handle the following cases, in order:
7321          * - empty extent: delete the remaining branch
7322          * - remove the entire record
7323          * - remove a partial record
7324          * - no record needs to be removed (truncate has completed)
7325          */
7326         el = path_leaf_el(path);
7327         if (le16_to_cpu(el->l_next_free_rec) == 0) {
7328                 ocfs2_error(inode->i_sb,
7329                             "Inode %llu has empty extent block at %llu\n",
7330                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
7331                             (unsigned long long)path_leaf_bh(path)->b_blocknr);
7332                 status = -EROFS;
7333                 goto bail;
7334         }
7335
7336         i = le16_to_cpu(el->l_next_free_rec) - 1;
7337         range = le32_to_cpu(el->l_recs[i].e_cpos) +
7338                 ocfs2_rec_clusters(el, &el->l_recs[i]);
7339         if (i == 0 && ocfs2_is_empty_extent(&el->l_recs[i])) {
7340                 clusters_to_del = 0;
7341         } else if (le32_to_cpu(el->l_recs[i].e_cpos) >= new_highest_cpos) {
7342                 clusters_to_del = ocfs2_rec_clusters(el, &el->l_recs[i]);
7343         } else if (range > new_highest_cpos) {
7344                 clusters_to_del = (ocfs2_rec_clusters(el, &el->l_recs[i]) +
7345                                    le32_to_cpu(el->l_recs[i].e_cpos)) -
7346                                   new_highest_cpos;
7347         } else {
7348                 status = 0;
7349                 goto bail;
7350         }
7351
7352         mlog(0, "clusters_to_del = %u in this pass, tail blk=%llu\n",
7353              clusters_to_del, (unsigned long long)path_leaf_bh(path)->b_blocknr);
7354
7355         mutex_lock(&tl_inode->i_mutex);
7356         tl_sem = 1;
7357         /* ocfs2_truncate_log_needs_flush guarantees us at least one
7358          * record is free for use. If there isn't any, we flush to get
7359          * an empty truncate log.  */
7360         if (ocfs2_truncate_log_needs_flush(osb)) {
7361                 status = __ocfs2_flush_truncate_log(osb);
7362                 if (status < 0) {
7363                         mlog_errno(status);
7364                         goto bail;
7365                 }
7366         }
7367
7368         credits = ocfs2_calc_tree_trunc_credits(osb->sb, clusters_to_del,
7369                                                 (struct ocfs2_dinode *)fe_bh->b_data,
7370                                                 el);
7371         handle = ocfs2_start_trans(osb, credits);
7372         if (IS_ERR(handle)) {
7373                 status = PTR_ERR(handle);
7374                 handle = NULL;
7375                 mlog_errno(status);
7376                 goto bail;
7377         }
7378
7379         status = ocfs2_do_truncate(osb, clusters_to_del, inode, fe_bh, handle,
7380                                    tc, path);
7381         if (status < 0) {
7382                 mlog_errno(status);
7383                 goto bail;
7384         }
7385
7386         mutex_unlock(&tl_inode->i_mutex);
7387         tl_sem = 0;
7388
7389         ocfs2_commit_trans(osb, handle);
7390         handle = NULL;
7391
7392         ocfs2_reinit_path(path, 1);
7393
7394         /*
7395          * The check above will catch the case where we've truncated
7396          * away all allocation.
7397          */
7398         goto start;
7399
7400 bail:
7401
7402         ocfs2_schedule_truncate_log_flush(osb, 1);
7403
7404         if (tl_sem)
7405                 mutex_unlock(&tl_inode->i_mutex);
7406
7407         if (handle)
7408                 ocfs2_commit_trans(osb, handle);
7409
7410         ocfs2_run_deallocs(osb, &tc->tc_dealloc);
7411
7412         ocfs2_free_path(path);
7413
7414         /* This will drop the ext_alloc cluster lock for us */
7415         ocfs2_free_truncate_context(tc);
7416
7417         mlog_exit(status);
7418         return status;
7419 }
7420
7421 /*
7422  * Expects the inode to already be locked.
7423  */
7424 int ocfs2_prepare_truncate(struct ocfs2_super *osb,
7425                            struct inode *inode,
7426                            struct buffer_head *fe_bh,
7427                            struct ocfs2_truncate_context **tc)
7428 {
7429         int status;
7430         unsigned int new_i_clusters;
7431         struct ocfs2_dinode *fe;
7432         struct ocfs2_extent_block *eb;
7433         struct buffer_head *last_eb_bh = NULL;
7434
7435         mlog_entry_void();
7436
7437         *tc = NULL;
7438
7439         new_i_clusters = ocfs2_clusters_for_bytes(osb->sb,
7440                                                   i_size_read(inode));
7441         fe = (struct ocfs2_dinode *) fe_bh->b_data;
7442
7443         mlog(0, "fe->i_clusters = %u, new_i_clusters = %u, fe->i_size ="
7444              "%llu\n", le32_to_cpu(fe->i_clusters), new_i_clusters,
7445              (unsigned long long)le64_to_cpu(fe->i_size));
7446
7447         *tc = kzalloc(sizeof(struct ocfs2_truncate_context), GFP_KERNEL);
7448         if (!(*tc)) {
7449                 status = -ENOMEM;
7450                 mlog_errno(status);
7451                 goto bail;
7452         }
7453         ocfs2_init_dealloc_ctxt(&(*tc)->tc_dealloc);
7454
7455         if (fe->id2.i_list.l_tree_depth) {
7456                 status = ocfs2_read_extent_block(INODE_CACHE(inode),
7457                                                  le64_to_cpu(fe->i_last_eb_blk),
7458                                                  &last_eb_bh);
7459                 if (status < 0) {
7460                         mlog_errno(status);
7461                         goto bail;
7462                 }
7463                 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
7464         }
7465
7466         (*tc)->tc_last_eb_bh = last_eb_bh;
7467
7468         status = 0;
7469 bail:
7470         if (status < 0) {
7471                 if (*tc)
7472                         ocfs2_free_truncate_context(*tc);
7473                 *tc = NULL;
7474         }
7475         mlog_exit_void();
7476         return status;
7477 }
7478
7479 /*
7480  * 'start' is inclusive, 'end' is not.
7481  */
7482 int ocfs2_truncate_inline(struct inode *inode, struct buffer_head *di_bh,
7483                           unsigned int start, unsigned int end, int trunc)
7484 {
7485         int ret;
7486         unsigned int numbytes;
7487         handle_t *handle;
7488         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
7489         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
7490         struct ocfs2_inline_data *idata = &di->id2.i_data;
7491
7492         if (end > i_size_read(inode))
7493                 end = i_size_read(inode);
7494
7495         BUG_ON(start >= end);
7496
7497         if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) ||
7498             !(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL) ||
7499             !ocfs2_supports_inline_data(osb)) {
7500                 ocfs2_error(inode->i_sb,
7501                             "Inline data flags for inode %llu don't agree! "
7502                             "Disk: 0x%x, Memory: 0x%x, Superblock: 0x%x\n",
7503                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
7504                             le16_to_cpu(di->i_dyn_features),
7505                             OCFS2_I(inode)->ip_dyn_features,
7506                             osb->s_feature_incompat);
7507                 ret = -EROFS;
7508                 goto out;
7509         }
7510
7511         handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
7512         if (IS_ERR(handle)) {
7513                 ret = PTR_ERR(handle);
7514                 mlog_errno(ret);
7515                 goto out;
7516         }
7517
7518         ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
7519                                       OCFS2_JOURNAL_ACCESS_WRITE);
7520         if (ret) {
7521                 mlog_errno(ret);
7522                 goto out_commit;
7523         }
7524
7525         numbytes = end - start;
7526         memset(idata->id_data + start, 0, numbytes);
7527
7528         /*
7529          * No need to worry about the data page here - it's been
7530          * truncated already and inline data doesn't need it for
7531          * pushing zero's to disk, so we'll let readpage pick it up
7532          * later.
7533          */
7534         if (trunc) {
7535                 i_size_write(inode, start);
7536                 di->i_size = cpu_to_le64(start);
7537         }
7538
7539         inode->i_blocks = ocfs2_inode_sector_count(inode);
7540         inode->i_ctime = inode->i_mtime = CURRENT_TIME;
7541
7542         di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec);
7543         di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
7544
7545         ocfs2_journal_dirty(handle, di_bh);
7546
7547 out_commit:
7548         ocfs2_commit_trans(osb, handle);
7549
7550 out:
7551         return ret;
7552 }
7553
7554 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc)
7555 {
7556         /*
7557          * The caller is responsible for completing deallocation
7558          * before freeing the context.
7559          */
7560         if (tc->tc_dealloc.c_first_suballocator != NULL)
7561                 mlog(ML_NOTICE,
7562                      "Truncate completion has non-empty dealloc context\n");
7563
7564         brelse(tc->tc_last_eb_bh);
7565
7566         kfree(tc);
7567 }