ocfs2: Pass ocfs2_caching_info to ocfs2_read_extent_block().
[safe/jmp/linux-2.6] / fs / ocfs2 / alloc.c
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * alloc.c
5  *
6  * Extent allocs and frees
7  *
8  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public
12  * License as published by the Free Software Foundation; either
13  * version 2 of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public
21  * License along with this program; if not, write to the
22  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23  * Boston, MA 021110-1307, USA.
24  */
25
26 #include <linux/fs.h>
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/swap.h>
31 #include <linux/quotaops.h>
32
33 #define MLOG_MASK_PREFIX ML_DISK_ALLOC
34 #include <cluster/masklog.h>
35
36 #include "ocfs2.h"
37
38 #include "alloc.h"
39 #include "aops.h"
40 #include "blockcheck.h"
41 #include "dlmglue.h"
42 #include "extent_map.h"
43 #include "inode.h"
44 #include "journal.h"
45 #include "localalloc.h"
46 #include "suballoc.h"
47 #include "sysfile.h"
48 #include "file.h"
49 #include "super.h"
50 #include "uptodate.h"
51 #include "xattr.h"
52
53 #include "buffer_head_io.h"
54
55
56 /*
57  * Operations for a specific extent tree type.
58  *
59  * To implement an on-disk btree (extent tree) type in ocfs2, add
60  * an ocfs2_extent_tree_operations structure and the matching
61  * ocfs2_init_<thingy>_extent_tree() function.  That's pretty much it
62  * for the allocation portion of the extent tree.
63  */
64 struct ocfs2_extent_tree_operations {
65         /*
66          * last_eb_blk is the block number of the right most leaf extent
67          * block.  Most on-disk structures containing an extent tree store
68          * this value for fast access.  The ->eo_set_last_eb_blk() and
69          * ->eo_get_last_eb_blk() operations access this value.  They are
70          *  both required.
71          */
72         void (*eo_set_last_eb_blk)(struct ocfs2_extent_tree *et,
73                                    u64 blkno);
74         u64 (*eo_get_last_eb_blk)(struct ocfs2_extent_tree *et);
75
76         /*
77          * The on-disk structure usually keeps track of how many total
78          * clusters are stored in this extent tree.  This function updates
79          * that value.  new_clusters is the delta, and must be
80          * added to the total.  Required.
81          */
82         void (*eo_update_clusters)(struct inode *inode,
83                                    struct ocfs2_extent_tree *et,
84                                    u32 new_clusters);
85
86         /*
87          * If ->eo_insert_check() exists, it is called before rec is
88          * inserted into the extent tree.  It is optional.
89          */
90         int (*eo_insert_check)(struct inode *inode,
91                                struct ocfs2_extent_tree *et,
92                                struct ocfs2_extent_rec *rec);
93         int (*eo_sanity_check)(struct inode *inode, struct ocfs2_extent_tree *et);
94
95         /*
96          * --------------------------------------------------------------
97          * The remaining are internal to ocfs2_extent_tree and don't have
98          * accessor functions
99          */
100
101         /*
102          * ->eo_fill_root_el() takes et->et_object and sets et->et_root_el.
103          * It is required.
104          */
105         void (*eo_fill_root_el)(struct ocfs2_extent_tree *et);
106
107         /*
108          * ->eo_fill_max_leaf_clusters sets et->et_max_leaf_clusters if
109          * it exists.  If it does not, et->et_max_leaf_clusters is set
110          * to 0 (unlimited).  Optional.
111          */
112         void (*eo_fill_max_leaf_clusters)(struct inode *inode,
113                                           struct ocfs2_extent_tree *et);
114 };
115
116
117 /*
118  * Pre-declare ocfs2_dinode_et_ops so we can use it as a sanity check
119  * in the methods.
120  */
121 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et);
122 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et,
123                                          u64 blkno);
124 static void ocfs2_dinode_update_clusters(struct inode *inode,
125                                          struct ocfs2_extent_tree *et,
126                                          u32 clusters);
127 static int ocfs2_dinode_insert_check(struct inode *inode,
128                                      struct ocfs2_extent_tree *et,
129                                      struct ocfs2_extent_rec *rec);
130 static int ocfs2_dinode_sanity_check(struct inode *inode,
131                                      struct ocfs2_extent_tree *et);
132 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et);
133 static struct ocfs2_extent_tree_operations ocfs2_dinode_et_ops = {
134         .eo_set_last_eb_blk     = ocfs2_dinode_set_last_eb_blk,
135         .eo_get_last_eb_blk     = ocfs2_dinode_get_last_eb_blk,
136         .eo_update_clusters     = ocfs2_dinode_update_clusters,
137         .eo_insert_check        = ocfs2_dinode_insert_check,
138         .eo_sanity_check        = ocfs2_dinode_sanity_check,
139         .eo_fill_root_el        = ocfs2_dinode_fill_root_el,
140 };
141
142 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et,
143                                          u64 blkno)
144 {
145         struct ocfs2_dinode *di = et->et_object;
146
147         BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
148         di->i_last_eb_blk = cpu_to_le64(blkno);
149 }
150
151 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et)
152 {
153         struct ocfs2_dinode *di = et->et_object;
154
155         BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
156         return le64_to_cpu(di->i_last_eb_blk);
157 }
158
159 static void ocfs2_dinode_update_clusters(struct inode *inode,
160                                          struct ocfs2_extent_tree *et,
161                                          u32 clusters)
162 {
163         struct ocfs2_dinode *di = et->et_object;
164
165         le32_add_cpu(&di->i_clusters, clusters);
166         spin_lock(&OCFS2_I(inode)->ip_lock);
167         OCFS2_I(inode)->ip_clusters = le32_to_cpu(di->i_clusters);
168         spin_unlock(&OCFS2_I(inode)->ip_lock);
169 }
170
171 static int ocfs2_dinode_insert_check(struct inode *inode,
172                                      struct ocfs2_extent_tree *et,
173                                      struct ocfs2_extent_rec *rec)
174 {
175         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
176
177         BUG_ON(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL);
178         mlog_bug_on_msg(!ocfs2_sparse_alloc(osb) &&
179                         (OCFS2_I(inode)->ip_clusters !=
180                          le32_to_cpu(rec->e_cpos)),
181                         "Device %s, asking for sparse allocation: inode %llu, "
182                         "cpos %u, clusters %u\n",
183                         osb->dev_str,
184                         (unsigned long long)OCFS2_I(inode)->ip_blkno,
185                         rec->e_cpos,
186                         OCFS2_I(inode)->ip_clusters);
187
188         return 0;
189 }
190
191 static int ocfs2_dinode_sanity_check(struct inode *inode,
192                                      struct ocfs2_extent_tree *et)
193 {
194         struct ocfs2_dinode *di = et->et_object;
195
196         BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
197         BUG_ON(!OCFS2_IS_VALID_DINODE(di));
198
199         return 0;
200 }
201
202 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et)
203 {
204         struct ocfs2_dinode *di = et->et_object;
205
206         et->et_root_el = &di->id2.i_list;
207 }
208
209
210 static void ocfs2_xattr_value_fill_root_el(struct ocfs2_extent_tree *et)
211 {
212         struct ocfs2_xattr_value_buf *vb = et->et_object;
213
214         et->et_root_el = &vb->vb_xv->xr_list;
215 }
216
217 static void ocfs2_xattr_value_set_last_eb_blk(struct ocfs2_extent_tree *et,
218                                               u64 blkno)
219 {
220         struct ocfs2_xattr_value_buf *vb = et->et_object;
221
222         vb->vb_xv->xr_last_eb_blk = cpu_to_le64(blkno);
223 }
224
225 static u64 ocfs2_xattr_value_get_last_eb_blk(struct ocfs2_extent_tree *et)
226 {
227         struct ocfs2_xattr_value_buf *vb = et->et_object;
228
229         return le64_to_cpu(vb->vb_xv->xr_last_eb_blk);
230 }
231
232 static void ocfs2_xattr_value_update_clusters(struct inode *inode,
233                                               struct ocfs2_extent_tree *et,
234                                               u32 clusters)
235 {
236         struct ocfs2_xattr_value_buf *vb = et->et_object;
237
238         le32_add_cpu(&vb->vb_xv->xr_clusters, clusters);
239 }
240
241 static struct ocfs2_extent_tree_operations ocfs2_xattr_value_et_ops = {
242         .eo_set_last_eb_blk     = ocfs2_xattr_value_set_last_eb_blk,
243         .eo_get_last_eb_blk     = ocfs2_xattr_value_get_last_eb_blk,
244         .eo_update_clusters     = ocfs2_xattr_value_update_clusters,
245         .eo_fill_root_el        = ocfs2_xattr_value_fill_root_el,
246 };
247
248 static void ocfs2_xattr_tree_fill_root_el(struct ocfs2_extent_tree *et)
249 {
250         struct ocfs2_xattr_block *xb = et->et_object;
251
252         et->et_root_el = &xb->xb_attrs.xb_root.xt_list;
253 }
254
255 static void ocfs2_xattr_tree_fill_max_leaf_clusters(struct inode *inode,
256                                                     struct ocfs2_extent_tree *et)
257 {
258         et->et_max_leaf_clusters =
259                 ocfs2_clusters_for_bytes(inode->i_sb,
260                                          OCFS2_MAX_XATTR_TREE_LEAF_SIZE);
261 }
262
263 static void ocfs2_xattr_tree_set_last_eb_blk(struct ocfs2_extent_tree *et,
264                                              u64 blkno)
265 {
266         struct ocfs2_xattr_block *xb = et->et_object;
267         struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root;
268
269         xt->xt_last_eb_blk = cpu_to_le64(blkno);
270 }
271
272 static u64 ocfs2_xattr_tree_get_last_eb_blk(struct ocfs2_extent_tree *et)
273 {
274         struct ocfs2_xattr_block *xb = et->et_object;
275         struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root;
276
277         return le64_to_cpu(xt->xt_last_eb_blk);
278 }
279
280 static void ocfs2_xattr_tree_update_clusters(struct inode *inode,
281                                              struct ocfs2_extent_tree *et,
282                                              u32 clusters)
283 {
284         struct ocfs2_xattr_block *xb = et->et_object;
285
286         le32_add_cpu(&xb->xb_attrs.xb_root.xt_clusters, clusters);
287 }
288
289 static struct ocfs2_extent_tree_operations ocfs2_xattr_tree_et_ops = {
290         .eo_set_last_eb_blk     = ocfs2_xattr_tree_set_last_eb_blk,
291         .eo_get_last_eb_blk     = ocfs2_xattr_tree_get_last_eb_blk,
292         .eo_update_clusters     = ocfs2_xattr_tree_update_clusters,
293         .eo_fill_root_el        = ocfs2_xattr_tree_fill_root_el,
294         .eo_fill_max_leaf_clusters = ocfs2_xattr_tree_fill_max_leaf_clusters,
295 };
296
297 static void ocfs2_dx_root_set_last_eb_blk(struct ocfs2_extent_tree *et,
298                                           u64 blkno)
299 {
300         struct ocfs2_dx_root_block *dx_root = et->et_object;
301
302         dx_root->dr_last_eb_blk = cpu_to_le64(blkno);
303 }
304
305 static u64 ocfs2_dx_root_get_last_eb_blk(struct ocfs2_extent_tree *et)
306 {
307         struct ocfs2_dx_root_block *dx_root = et->et_object;
308
309         return le64_to_cpu(dx_root->dr_last_eb_blk);
310 }
311
312 static void ocfs2_dx_root_update_clusters(struct inode *inode,
313                                           struct ocfs2_extent_tree *et,
314                                           u32 clusters)
315 {
316         struct ocfs2_dx_root_block *dx_root = et->et_object;
317
318         le32_add_cpu(&dx_root->dr_clusters, clusters);
319 }
320
321 static int ocfs2_dx_root_sanity_check(struct inode *inode,
322                                       struct ocfs2_extent_tree *et)
323 {
324         struct ocfs2_dx_root_block *dx_root = et->et_object;
325
326         BUG_ON(!OCFS2_IS_VALID_DX_ROOT(dx_root));
327
328         return 0;
329 }
330
331 static void ocfs2_dx_root_fill_root_el(struct ocfs2_extent_tree *et)
332 {
333         struct ocfs2_dx_root_block *dx_root = et->et_object;
334
335         et->et_root_el = &dx_root->dr_list;
336 }
337
338 static struct ocfs2_extent_tree_operations ocfs2_dx_root_et_ops = {
339         .eo_set_last_eb_blk     = ocfs2_dx_root_set_last_eb_blk,
340         .eo_get_last_eb_blk     = ocfs2_dx_root_get_last_eb_blk,
341         .eo_update_clusters     = ocfs2_dx_root_update_clusters,
342         .eo_sanity_check        = ocfs2_dx_root_sanity_check,
343         .eo_fill_root_el        = ocfs2_dx_root_fill_root_el,
344 };
345
346 static void __ocfs2_init_extent_tree(struct ocfs2_extent_tree *et,
347                                      struct inode *inode,
348                                      struct buffer_head *bh,
349                                      ocfs2_journal_access_func access,
350                                      void *obj,
351                                      struct ocfs2_extent_tree_operations *ops)
352 {
353         et->et_ops = ops;
354         et->et_root_bh = bh;
355         et->et_ci = INODE_CACHE(inode);
356         et->et_root_journal_access = access;
357         if (!obj)
358                 obj = (void *)bh->b_data;
359         et->et_object = obj;
360
361         et->et_ops->eo_fill_root_el(et);
362         if (!et->et_ops->eo_fill_max_leaf_clusters)
363                 et->et_max_leaf_clusters = 0;
364         else
365                 et->et_ops->eo_fill_max_leaf_clusters(inode, et);
366 }
367
368 void ocfs2_init_dinode_extent_tree(struct ocfs2_extent_tree *et,
369                                    struct inode *inode,
370                                    struct buffer_head *bh)
371 {
372         __ocfs2_init_extent_tree(et, inode, bh, ocfs2_journal_access_di,
373                                  NULL, &ocfs2_dinode_et_ops);
374 }
375
376 void ocfs2_init_xattr_tree_extent_tree(struct ocfs2_extent_tree *et,
377                                        struct inode *inode,
378                                        struct buffer_head *bh)
379 {
380         __ocfs2_init_extent_tree(et, inode, bh, ocfs2_journal_access_xb,
381                                  NULL, &ocfs2_xattr_tree_et_ops);
382 }
383
384 void ocfs2_init_xattr_value_extent_tree(struct ocfs2_extent_tree *et,
385                                         struct inode *inode,
386                                         struct ocfs2_xattr_value_buf *vb)
387 {
388         __ocfs2_init_extent_tree(et, inode, vb->vb_bh, vb->vb_access, vb,
389                                  &ocfs2_xattr_value_et_ops);
390 }
391
392 void ocfs2_init_dx_root_extent_tree(struct ocfs2_extent_tree *et,
393                                     struct inode *inode,
394                                     struct buffer_head *bh)
395 {
396         __ocfs2_init_extent_tree(et, inode, bh, ocfs2_journal_access_dr,
397                                  NULL, &ocfs2_dx_root_et_ops);
398 }
399
400 static inline void ocfs2_et_set_last_eb_blk(struct ocfs2_extent_tree *et,
401                                             u64 new_last_eb_blk)
402 {
403         et->et_ops->eo_set_last_eb_blk(et, new_last_eb_blk);
404 }
405
406 static inline u64 ocfs2_et_get_last_eb_blk(struct ocfs2_extent_tree *et)
407 {
408         return et->et_ops->eo_get_last_eb_blk(et);
409 }
410
411 static inline void ocfs2_et_update_clusters(struct inode *inode,
412                                             struct ocfs2_extent_tree *et,
413                                             u32 clusters)
414 {
415         et->et_ops->eo_update_clusters(inode, et, clusters);
416 }
417
418 static inline int ocfs2_et_root_journal_access(handle_t *handle,
419                                                struct ocfs2_extent_tree *et,
420                                                int type)
421 {
422         return et->et_root_journal_access(handle, et->et_ci, et->et_root_bh,
423                                           type);
424 }
425
426 static inline int ocfs2_et_insert_check(struct inode *inode,
427                                         struct ocfs2_extent_tree *et,
428                                         struct ocfs2_extent_rec *rec)
429 {
430         int ret = 0;
431
432         if (et->et_ops->eo_insert_check)
433                 ret = et->et_ops->eo_insert_check(inode, et, rec);
434         return ret;
435 }
436
437 static inline int ocfs2_et_sanity_check(struct inode *inode,
438                                         struct ocfs2_extent_tree *et)
439 {
440         int ret = 0;
441
442         if (et->et_ops->eo_sanity_check)
443                 ret = et->et_ops->eo_sanity_check(inode, et);
444         return ret;
445 }
446
447 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc);
448 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
449                                          struct ocfs2_extent_block *eb);
450
451 /*
452  * Structures which describe a path through a btree, and functions to
453  * manipulate them.
454  *
455  * The idea here is to be as generic as possible with the tree
456  * manipulation code.
457  */
458 struct ocfs2_path_item {
459         struct buffer_head              *bh;
460         struct ocfs2_extent_list        *el;
461 };
462
463 #define OCFS2_MAX_PATH_DEPTH    5
464
465 struct ocfs2_path {
466         int                             p_tree_depth;
467         ocfs2_journal_access_func       p_root_access;
468         struct ocfs2_path_item          p_node[OCFS2_MAX_PATH_DEPTH];
469 };
470
471 #define path_root_bh(_path) ((_path)->p_node[0].bh)
472 #define path_root_el(_path) ((_path)->p_node[0].el)
473 #define path_root_access(_path)((_path)->p_root_access)
474 #define path_leaf_bh(_path) ((_path)->p_node[(_path)->p_tree_depth].bh)
475 #define path_leaf_el(_path) ((_path)->p_node[(_path)->p_tree_depth].el)
476 #define path_num_items(_path) ((_path)->p_tree_depth + 1)
477
478 static int ocfs2_find_path(struct inode *inode, struct ocfs2_path *path,
479                            u32 cpos);
480 static void ocfs2_adjust_rightmost_records(struct inode *inode,
481                                            handle_t *handle,
482                                            struct ocfs2_path *path,
483                                            struct ocfs2_extent_rec *insert_rec);
484 /*
485  * Reset the actual path elements so that we can re-use the structure
486  * to build another path. Generally, this involves freeing the buffer
487  * heads.
488  */
489 static void ocfs2_reinit_path(struct ocfs2_path *path, int keep_root)
490 {
491         int i, start = 0, depth = 0;
492         struct ocfs2_path_item *node;
493
494         if (keep_root)
495                 start = 1;
496
497         for(i = start; i < path_num_items(path); i++) {
498                 node = &path->p_node[i];
499
500                 brelse(node->bh);
501                 node->bh = NULL;
502                 node->el = NULL;
503         }
504
505         /*
506          * Tree depth may change during truncate, or insert. If we're
507          * keeping the root extent list, then make sure that our path
508          * structure reflects the proper depth.
509          */
510         if (keep_root)
511                 depth = le16_to_cpu(path_root_el(path)->l_tree_depth);
512         else
513                 path_root_access(path) = NULL;
514
515         path->p_tree_depth = depth;
516 }
517
518 static void ocfs2_free_path(struct ocfs2_path *path)
519 {
520         if (path) {
521                 ocfs2_reinit_path(path, 0);
522                 kfree(path);
523         }
524 }
525
526 /*
527  * All the elements of src into dest. After this call, src could be freed
528  * without affecting dest.
529  *
530  * Both paths should have the same root. Any non-root elements of dest
531  * will be freed.
532  */
533 static void ocfs2_cp_path(struct ocfs2_path *dest, struct ocfs2_path *src)
534 {
535         int i;
536
537         BUG_ON(path_root_bh(dest) != path_root_bh(src));
538         BUG_ON(path_root_el(dest) != path_root_el(src));
539         BUG_ON(path_root_access(dest) != path_root_access(src));
540
541         ocfs2_reinit_path(dest, 1);
542
543         for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
544                 dest->p_node[i].bh = src->p_node[i].bh;
545                 dest->p_node[i].el = src->p_node[i].el;
546
547                 if (dest->p_node[i].bh)
548                         get_bh(dest->p_node[i].bh);
549         }
550 }
551
552 /*
553  * Make the *dest path the same as src and re-initialize src path to
554  * have a root only.
555  */
556 static void ocfs2_mv_path(struct ocfs2_path *dest, struct ocfs2_path *src)
557 {
558         int i;
559
560         BUG_ON(path_root_bh(dest) != path_root_bh(src));
561         BUG_ON(path_root_access(dest) != path_root_access(src));
562
563         for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
564                 brelse(dest->p_node[i].bh);
565
566                 dest->p_node[i].bh = src->p_node[i].bh;
567                 dest->p_node[i].el = src->p_node[i].el;
568
569                 src->p_node[i].bh = NULL;
570                 src->p_node[i].el = NULL;
571         }
572 }
573
574 /*
575  * Insert an extent block at given index.
576  *
577  * This will not take an additional reference on eb_bh.
578  */
579 static inline void ocfs2_path_insert_eb(struct ocfs2_path *path, int index,
580                                         struct buffer_head *eb_bh)
581 {
582         struct ocfs2_extent_block *eb = (struct ocfs2_extent_block *)eb_bh->b_data;
583
584         /*
585          * Right now, no root bh is an extent block, so this helps
586          * catch code errors with dinode trees. The assertion can be
587          * safely removed if we ever need to insert extent block
588          * structures at the root.
589          */
590         BUG_ON(index == 0);
591
592         path->p_node[index].bh = eb_bh;
593         path->p_node[index].el = &eb->h_list;
594 }
595
596 static struct ocfs2_path *ocfs2_new_path(struct buffer_head *root_bh,
597                                          struct ocfs2_extent_list *root_el,
598                                          ocfs2_journal_access_func access)
599 {
600         struct ocfs2_path *path;
601
602         BUG_ON(le16_to_cpu(root_el->l_tree_depth) >= OCFS2_MAX_PATH_DEPTH);
603
604         path = kzalloc(sizeof(*path), GFP_NOFS);
605         if (path) {
606                 path->p_tree_depth = le16_to_cpu(root_el->l_tree_depth);
607                 get_bh(root_bh);
608                 path_root_bh(path) = root_bh;
609                 path_root_el(path) = root_el;
610                 path_root_access(path) = access;
611         }
612
613         return path;
614 }
615
616 static struct ocfs2_path *ocfs2_new_path_from_path(struct ocfs2_path *path)
617 {
618         return ocfs2_new_path(path_root_bh(path), path_root_el(path),
619                               path_root_access(path));
620 }
621
622 static struct ocfs2_path *ocfs2_new_path_from_et(struct ocfs2_extent_tree *et)
623 {
624         return ocfs2_new_path(et->et_root_bh, et->et_root_el,
625                               et->et_root_journal_access);
626 }
627
628 /*
629  * Journal the buffer at depth idx.  All idx>0 are extent_blocks,
630  * otherwise it's the root_access function.
631  *
632  * I don't like the way this function's name looks next to
633  * ocfs2_journal_access_path(), but I don't have a better one.
634  */
635 static int ocfs2_path_bh_journal_access(handle_t *handle,
636                                         struct ocfs2_caching_info *ci,
637                                         struct ocfs2_path *path,
638                                         int idx)
639 {
640         ocfs2_journal_access_func access = path_root_access(path);
641
642         if (!access)
643                 access = ocfs2_journal_access;
644
645         if (idx)
646                 access = ocfs2_journal_access_eb;
647
648         return access(handle, ci, path->p_node[idx].bh,
649                       OCFS2_JOURNAL_ACCESS_WRITE);
650 }
651
652 /*
653  * Convenience function to journal all components in a path.
654  */
655 static int ocfs2_journal_access_path(struct ocfs2_caching_info *ci,
656                                      handle_t *handle,
657                                      struct ocfs2_path *path)
658 {
659         int i, ret = 0;
660
661         if (!path)
662                 goto out;
663
664         for(i = 0; i < path_num_items(path); i++) {
665                 ret = ocfs2_path_bh_journal_access(handle, ci, path, i);
666                 if (ret < 0) {
667                         mlog_errno(ret);
668                         goto out;
669                 }
670         }
671
672 out:
673         return ret;
674 }
675
676 /*
677  * Return the index of the extent record which contains cluster #v_cluster.
678  * -1 is returned if it was not found.
679  *
680  * Should work fine on interior and exterior nodes.
681  */
682 int ocfs2_search_extent_list(struct ocfs2_extent_list *el, u32 v_cluster)
683 {
684         int ret = -1;
685         int i;
686         struct ocfs2_extent_rec *rec;
687         u32 rec_end, rec_start, clusters;
688
689         for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
690                 rec = &el->l_recs[i];
691
692                 rec_start = le32_to_cpu(rec->e_cpos);
693                 clusters = ocfs2_rec_clusters(el, rec);
694
695                 rec_end = rec_start + clusters;
696
697                 if (v_cluster >= rec_start && v_cluster < rec_end) {
698                         ret = i;
699                         break;
700                 }
701         }
702
703         return ret;
704 }
705
706 enum ocfs2_contig_type {
707         CONTIG_NONE = 0,
708         CONTIG_LEFT,
709         CONTIG_RIGHT,
710         CONTIG_LEFTRIGHT,
711 };
712
713
714 /*
715  * NOTE: ocfs2_block_extent_contig(), ocfs2_extents_adjacent() and
716  * ocfs2_extent_contig only work properly against leaf nodes!
717  */
718 static int ocfs2_block_extent_contig(struct super_block *sb,
719                                      struct ocfs2_extent_rec *ext,
720                                      u64 blkno)
721 {
722         u64 blk_end = le64_to_cpu(ext->e_blkno);
723
724         blk_end += ocfs2_clusters_to_blocks(sb,
725                                     le16_to_cpu(ext->e_leaf_clusters));
726
727         return blkno == blk_end;
728 }
729
730 static int ocfs2_extents_adjacent(struct ocfs2_extent_rec *left,
731                                   struct ocfs2_extent_rec *right)
732 {
733         u32 left_range;
734
735         left_range = le32_to_cpu(left->e_cpos) +
736                 le16_to_cpu(left->e_leaf_clusters);
737
738         return (left_range == le32_to_cpu(right->e_cpos));
739 }
740
741 static enum ocfs2_contig_type
742         ocfs2_extent_contig(struct inode *inode,
743                             struct ocfs2_extent_rec *ext,
744                             struct ocfs2_extent_rec *insert_rec)
745 {
746         u64 blkno = le64_to_cpu(insert_rec->e_blkno);
747
748         /*
749          * Refuse to coalesce extent records with different flag
750          * fields - we don't want to mix unwritten extents with user
751          * data.
752          */
753         if (ext->e_flags != insert_rec->e_flags)
754                 return CONTIG_NONE;
755
756         if (ocfs2_extents_adjacent(ext, insert_rec) &&
757             ocfs2_block_extent_contig(inode->i_sb, ext, blkno))
758                         return CONTIG_RIGHT;
759
760         blkno = le64_to_cpu(ext->e_blkno);
761         if (ocfs2_extents_adjacent(insert_rec, ext) &&
762             ocfs2_block_extent_contig(inode->i_sb, insert_rec, blkno))
763                 return CONTIG_LEFT;
764
765         return CONTIG_NONE;
766 }
767
768 /*
769  * NOTE: We can have pretty much any combination of contiguousness and
770  * appending.
771  *
772  * The usefulness of APPEND_TAIL is more in that it lets us know that
773  * we'll have to update the path to that leaf.
774  */
775 enum ocfs2_append_type {
776         APPEND_NONE = 0,
777         APPEND_TAIL,
778 };
779
780 enum ocfs2_split_type {
781         SPLIT_NONE = 0,
782         SPLIT_LEFT,
783         SPLIT_RIGHT,
784 };
785
786 struct ocfs2_insert_type {
787         enum ocfs2_split_type   ins_split;
788         enum ocfs2_append_type  ins_appending;
789         enum ocfs2_contig_type  ins_contig;
790         int                     ins_contig_index;
791         int                     ins_tree_depth;
792 };
793
794 struct ocfs2_merge_ctxt {
795         enum ocfs2_contig_type  c_contig_type;
796         int                     c_has_empty_extent;
797         int                     c_split_covers_rec;
798 };
799
800 static int ocfs2_validate_extent_block(struct super_block *sb,
801                                        struct buffer_head *bh)
802 {
803         int rc;
804         struct ocfs2_extent_block *eb =
805                 (struct ocfs2_extent_block *)bh->b_data;
806
807         mlog(0, "Validating extent block %llu\n",
808              (unsigned long long)bh->b_blocknr);
809
810         BUG_ON(!buffer_uptodate(bh));
811
812         /*
813          * If the ecc fails, we return the error but otherwise
814          * leave the filesystem running.  We know any error is
815          * local to this block.
816          */
817         rc = ocfs2_validate_meta_ecc(sb, bh->b_data, &eb->h_check);
818         if (rc) {
819                 mlog(ML_ERROR, "Checksum failed for extent block %llu\n",
820                      (unsigned long long)bh->b_blocknr);
821                 return rc;
822         }
823
824         /*
825          * Errors after here are fatal.
826          */
827
828         if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
829                 ocfs2_error(sb,
830                             "Extent block #%llu has bad signature %.*s",
831                             (unsigned long long)bh->b_blocknr, 7,
832                             eb->h_signature);
833                 return -EINVAL;
834         }
835
836         if (le64_to_cpu(eb->h_blkno) != bh->b_blocknr) {
837                 ocfs2_error(sb,
838                             "Extent block #%llu has an invalid h_blkno "
839                             "of %llu",
840                             (unsigned long long)bh->b_blocknr,
841                             (unsigned long long)le64_to_cpu(eb->h_blkno));
842                 return -EINVAL;
843         }
844
845         if (le32_to_cpu(eb->h_fs_generation) != OCFS2_SB(sb)->fs_generation) {
846                 ocfs2_error(sb,
847                             "Extent block #%llu has an invalid "
848                             "h_fs_generation of #%u",
849                             (unsigned long long)bh->b_blocknr,
850                             le32_to_cpu(eb->h_fs_generation));
851                 return -EINVAL;
852         }
853
854         return 0;
855 }
856
857 int ocfs2_read_extent_block(struct ocfs2_caching_info *ci, u64 eb_blkno,
858                             struct buffer_head **bh)
859 {
860         int rc;
861         struct buffer_head *tmp = *bh;
862
863         rc = ocfs2_read_block(ci, eb_blkno, &tmp,
864                               ocfs2_validate_extent_block);
865
866         /* If ocfs2_read_block() got us a new bh, pass it up. */
867         if (!rc && !*bh)
868                 *bh = tmp;
869
870         return rc;
871 }
872
873
874 /*
875  * How many free extents have we got before we need more meta data?
876  */
877 int ocfs2_num_free_extents(struct ocfs2_super *osb,
878                            struct ocfs2_extent_tree *et)
879 {
880         int retval;
881         struct ocfs2_extent_list *el = NULL;
882         struct ocfs2_extent_block *eb;
883         struct buffer_head *eb_bh = NULL;
884         u64 last_eb_blk = 0;
885
886         mlog_entry_void();
887
888         el = et->et_root_el;
889         last_eb_blk = ocfs2_et_get_last_eb_blk(et);
890
891         if (last_eb_blk) {
892                 retval = ocfs2_read_extent_block(et->et_ci, last_eb_blk,
893                                                  &eb_bh);
894                 if (retval < 0) {
895                         mlog_errno(retval);
896                         goto bail;
897                 }
898                 eb = (struct ocfs2_extent_block *) eb_bh->b_data;
899                 el = &eb->h_list;
900         }
901
902         BUG_ON(el->l_tree_depth != 0);
903
904         retval = le16_to_cpu(el->l_count) - le16_to_cpu(el->l_next_free_rec);
905 bail:
906         brelse(eb_bh);
907
908         mlog_exit(retval);
909         return retval;
910 }
911
912 /* expects array to already be allocated
913  *
914  * sets h_signature, h_blkno, h_suballoc_bit, h_suballoc_slot, and
915  * l_count for you
916  */
917 static int ocfs2_create_new_meta_bhs(struct ocfs2_super *osb,
918                                      handle_t *handle,
919                                      struct inode *inode,
920                                      int wanted,
921                                      struct ocfs2_alloc_context *meta_ac,
922                                      struct buffer_head *bhs[])
923 {
924         int count, status, i;
925         u16 suballoc_bit_start;
926         u32 num_got;
927         u64 first_blkno;
928         struct ocfs2_extent_block *eb;
929
930         mlog_entry_void();
931
932         count = 0;
933         while (count < wanted) {
934                 status = ocfs2_claim_metadata(osb,
935                                               handle,
936                                               meta_ac,
937                                               wanted - count,
938                                               &suballoc_bit_start,
939                                               &num_got,
940                                               &first_blkno);
941                 if (status < 0) {
942                         mlog_errno(status);
943                         goto bail;
944                 }
945
946                 for(i = count;  i < (num_got + count); i++) {
947                         bhs[i] = sb_getblk(osb->sb, first_blkno);
948                         if (bhs[i] == NULL) {
949                                 status = -EIO;
950                                 mlog_errno(status);
951                                 goto bail;
952                         }
953                         ocfs2_set_new_buffer_uptodate(INODE_CACHE(inode),
954                                                       bhs[i]);
955
956                         status = ocfs2_journal_access_eb(handle, INODE_CACHE(inode), bhs[i],
957                                                          OCFS2_JOURNAL_ACCESS_CREATE);
958                         if (status < 0) {
959                                 mlog_errno(status);
960                                 goto bail;
961                         }
962
963                         memset(bhs[i]->b_data, 0, osb->sb->s_blocksize);
964                         eb = (struct ocfs2_extent_block *) bhs[i]->b_data;
965                         /* Ok, setup the minimal stuff here. */
966                         strcpy(eb->h_signature, OCFS2_EXTENT_BLOCK_SIGNATURE);
967                         eb->h_blkno = cpu_to_le64(first_blkno);
968                         eb->h_fs_generation = cpu_to_le32(osb->fs_generation);
969                         eb->h_suballoc_slot = cpu_to_le16(osb->slot_num);
970                         eb->h_suballoc_bit = cpu_to_le16(suballoc_bit_start);
971                         eb->h_list.l_count =
972                                 cpu_to_le16(ocfs2_extent_recs_per_eb(osb->sb));
973
974                         suballoc_bit_start++;
975                         first_blkno++;
976
977                         /* We'll also be dirtied by the caller, so
978                          * this isn't absolutely necessary. */
979                         status = ocfs2_journal_dirty(handle, bhs[i]);
980                         if (status < 0) {
981                                 mlog_errno(status);
982                                 goto bail;
983                         }
984                 }
985
986                 count += num_got;
987         }
988
989         status = 0;
990 bail:
991         if (status < 0) {
992                 for(i = 0; i < wanted; i++) {
993                         brelse(bhs[i]);
994                         bhs[i] = NULL;
995                 }
996         }
997         mlog_exit(status);
998         return status;
999 }
1000
1001 /*
1002  * Helper function for ocfs2_add_branch() and ocfs2_shift_tree_depth().
1003  *
1004  * Returns the sum of the rightmost extent rec logical offset and
1005  * cluster count.
1006  *
1007  * ocfs2_add_branch() uses this to determine what logical cluster
1008  * value should be populated into the leftmost new branch records.
1009  *
1010  * ocfs2_shift_tree_depth() uses this to determine the # clusters
1011  * value for the new topmost tree record.
1012  */
1013 static inline u32 ocfs2_sum_rightmost_rec(struct ocfs2_extent_list  *el)
1014 {
1015         int i;
1016
1017         i = le16_to_cpu(el->l_next_free_rec) - 1;
1018
1019         return le32_to_cpu(el->l_recs[i].e_cpos) +
1020                 ocfs2_rec_clusters(el, &el->l_recs[i]);
1021 }
1022
1023 /*
1024  * Change range of the branches in the right most path according to the leaf
1025  * extent block's rightmost record.
1026  */
1027 static int ocfs2_adjust_rightmost_branch(handle_t *handle,
1028                                          struct inode *inode,
1029                                          struct ocfs2_extent_tree *et)
1030 {
1031         int status;
1032         struct ocfs2_path *path = NULL;
1033         struct ocfs2_extent_list *el;
1034         struct ocfs2_extent_rec *rec;
1035
1036         path = ocfs2_new_path_from_et(et);
1037         if (!path) {
1038                 status = -ENOMEM;
1039                 return status;
1040         }
1041
1042         status = ocfs2_find_path(inode, path, UINT_MAX);
1043         if (status < 0) {
1044                 mlog_errno(status);
1045                 goto out;
1046         }
1047
1048         status = ocfs2_extend_trans(handle, path_num_items(path) +
1049                                     handle->h_buffer_credits);
1050         if (status < 0) {
1051                 mlog_errno(status);
1052                 goto out;
1053         }
1054
1055         status = ocfs2_journal_access_path(INODE_CACHE(inode), handle, path);
1056         if (status < 0) {
1057                 mlog_errno(status);
1058                 goto out;
1059         }
1060
1061         el = path_leaf_el(path);
1062         rec = &el->l_recs[le32_to_cpu(el->l_next_free_rec) - 1];
1063
1064         ocfs2_adjust_rightmost_records(inode, handle, path, rec);
1065
1066 out:
1067         ocfs2_free_path(path);
1068         return status;
1069 }
1070
1071 /*
1072  * Add an entire tree branch to our inode. eb_bh is the extent block
1073  * to start at, if we don't want to start the branch at the dinode
1074  * structure.
1075  *
1076  * last_eb_bh is required as we have to update it's next_leaf pointer
1077  * for the new last extent block.
1078  *
1079  * the new branch will be 'empty' in the sense that every block will
1080  * contain a single record with cluster count == 0.
1081  */
1082 static int ocfs2_add_branch(struct ocfs2_super *osb,
1083                             handle_t *handle,
1084                             struct inode *inode,
1085                             struct ocfs2_extent_tree *et,
1086                             struct buffer_head *eb_bh,
1087                             struct buffer_head **last_eb_bh,
1088                             struct ocfs2_alloc_context *meta_ac)
1089 {
1090         int status, new_blocks, i;
1091         u64 next_blkno, new_last_eb_blk;
1092         struct buffer_head *bh;
1093         struct buffer_head **new_eb_bhs = NULL;
1094         struct ocfs2_extent_block *eb;
1095         struct ocfs2_extent_list  *eb_el;
1096         struct ocfs2_extent_list  *el;
1097         u32 new_cpos, root_end;
1098
1099         mlog_entry_void();
1100
1101         BUG_ON(!last_eb_bh || !*last_eb_bh);
1102
1103         if (eb_bh) {
1104                 eb = (struct ocfs2_extent_block *) eb_bh->b_data;
1105                 el = &eb->h_list;
1106         } else
1107                 el = et->et_root_el;
1108
1109         /* we never add a branch to a leaf. */
1110         BUG_ON(!el->l_tree_depth);
1111
1112         new_blocks = le16_to_cpu(el->l_tree_depth);
1113
1114         eb = (struct ocfs2_extent_block *)(*last_eb_bh)->b_data;
1115         new_cpos = ocfs2_sum_rightmost_rec(&eb->h_list);
1116         root_end = ocfs2_sum_rightmost_rec(et->et_root_el);
1117
1118         /*
1119          * If there is a gap before the root end and the real end
1120          * of the righmost leaf block, we need to remove the gap
1121          * between new_cpos and root_end first so that the tree
1122          * is consistent after we add a new branch(it will start
1123          * from new_cpos).
1124          */
1125         if (root_end > new_cpos) {
1126                 mlog(0, "adjust the cluster end from %u to %u\n",
1127                      root_end, new_cpos);
1128                 status = ocfs2_adjust_rightmost_branch(handle, inode, et);
1129                 if (status) {
1130                         mlog_errno(status);
1131                         goto bail;
1132                 }
1133         }
1134
1135         /* allocate the number of new eb blocks we need */
1136         new_eb_bhs = kcalloc(new_blocks, sizeof(struct buffer_head *),
1137                              GFP_KERNEL);
1138         if (!new_eb_bhs) {
1139                 status = -ENOMEM;
1140                 mlog_errno(status);
1141                 goto bail;
1142         }
1143
1144         status = ocfs2_create_new_meta_bhs(osb, handle, inode, new_blocks,
1145                                            meta_ac, new_eb_bhs);
1146         if (status < 0) {
1147                 mlog_errno(status);
1148                 goto bail;
1149         }
1150
1151         /* Note: new_eb_bhs[new_blocks - 1] is the guy which will be
1152          * linked with the rest of the tree.
1153          * conversly, new_eb_bhs[0] is the new bottommost leaf.
1154          *
1155          * when we leave the loop, new_last_eb_blk will point to the
1156          * newest leaf, and next_blkno will point to the topmost extent
1157          * block. */
1158         next_blkno = new_last_eb_blk = 0;
1159         for(i = 0; i < new_blocks; i++) {
1160                 bh = new_eb_bhs[i];
1161                 eb = (struct ocfs2_extent_block *) bh->b_data;
1162                 /* ocfs2_create_new_meta_bhs() should create it right! */
1163                 BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb));
1164                 eb_el = &eb->h_list;
1165
1166                 status = ocfs2_journal_access_eb(handle, INODE_CACHE(inode), bh,
1167                                                  OCFS2_JOURNAL_ACCESS_CREATE);
1168                 if (status < 0) {
1169                         mlog_errno(status);
1170                         goto bail;
1171                 }
1172
1173                 eb->h_next_leaf_blk = 0;
1174                 eb_el->l_tree_depth = cpu_to_le16(i);
1175                 eb_el->l_next_free_rec = cpu_to_le16(1);
1176                 /*
1177                  * This actually counts as an empty extent as
1178                  * c_clusters == 0
1179                  */
1180                 eb_el->l_recs[0].e_cpos = cpu_to_le32(new_cpos);
1181                 eb_el->l_recs[0].e_blkno = cpu_to_le64(next_blkno);
1182                 /*
1183                  * eb_el isn't always an interior node, but even leaf
1184                  * nodes want a zero'd flags and reserved field so
1185                  * this gets the whole 32 bits regardless of use.
1186                  */
1187                 eb_el->l_recs[0].e_int_clusters = cpu_to_le32(0);
1188                 if (!eb_el->l_tree_depth)
1189                         new_last_eb_blk = le64_to_cpu(eb->h_blkno);
1190
1191                 status = ocfs2_journal_dirty(handle, bh);
1192                 if (status < 0) {
1193                         mlog_errno(status);
1194                         goto bail;
1195                 }
1196
1197                 next_blkno = le64_to_cpu(eb->h_blkno);
1198         }
1199
1200         /* This is a bit hairy. We want to update up to three blocks
1201          * here without leaving any of them in an inconsistent state
1202          * in case of error. We don't have to worry about
1203          * journal_dirty erroring as it won't unless we've aborted the
1204          * handle (in which case we would never be here) so reserving
1205          * the write with journal_access is all we need to do. */
1206         status = ocfs2_journal_access_eb(handle, INODE_CACHE(inode), *last_eb_bh,
1207                                          OCFS2_JOURNAL_ACCESS_WRITE);
1208         if (status < 0) {
1209                 mlog_errno(status);
1210                 goto bail;
1211         }
1212         status = ocfs2_et_root_journal_access(handle, et,
1213                                               OCFS2_JOURNAL_ACCESS_WRITE);
1214         if (status < 0) {
1215                 mlog_errno(status);
1216                 goto bail;
1217         }
1218         if (eb_bh) {
1219                 status = ocfs2_journal_access_eb(handle, INODE_CACHE(inode), eb_bh,
1220                                                  OCFS2_JOURNAL_ACCESS_WRITE);
1221                 if (status < 0) {
1222                         mlog_errno(status);
1223                         goto bail;
1224                 }
1225         }
1226
1227         /* Link the new branch into the rest of the tree (el will
1228          * either be on the root_bh, or the extent block passed in. */
1229         i = le16_to_cpu(el->l_next_free_rec);
1230         el->l_recs[i].e_blkno = cpu_to_le64(next_blkno);
1231         el->l_recs[i].e_cpos = cpu_to_le32(new_cpos);
1232         el->l_recs[i].e_int_clusters = 0;
1233         le16_add_cpu(&el->l_next_free_rec, 1);
1234
1235         /* fe needs a new last extent block pointer, as does the
1236          * next_leaf on the previously last-extent-block. */
1237         ocfs2_et_set_last_eb_blk(et, new_last_eb_blk);
1238
1239         eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
1240         eb->h_next_leaf_blk = cpu_to_le64(new_last_eb_blk);
1241
1242         status = ocfs2_journal_dirty(handle, *last_eb_bh);
1243         if (status < 0)
1244                 mlog_errno(status);
1245         status = ocfs2_journal_dirty(handle, et->et_root_bh);
1246         if (status < 0)
1247                 mlog_errno(status);
1248         if (eb_bh) {
1249                 status = ocfs2_journal_dirty(handle, eb_bh);
1250                 if (status < 0)
1251                         mlog_errno(status);
1252         }
1253
1254         /*
1255          * Some callers want to track the rightmost leaf so pass it
1256          * back here.
1257          */
1258         brelse(*last_eb_bh);
1259         get_bh(new_eb_bhs[0]);
1260         *last_eb_bh = new_eb_bhs[0];
1261
1262         status = 0;
1263 bail:
1264         if (new_eb_bhs) {
1265                 for (i = 0; i < new_blocks; i++)
1266                         brelse(new_eb_bhs[i]);
1267                 kfree(new_eb_bhs);
1268         }
1269
1270         mlog_exit(status);
1271         return status;
1272 }
1273
1274 /*
1275  * adds another level to the allocation tree.
1276  * returns back the new extent block so you can add a branch to it
1277  * after this call.
1278  */
1279 static int ocfs2_shift_tree_depth(struct ocfs2_super *osb,
1280                                   handle_t *handle,
1281                                   struct inode *inode,
1282                                   struct ocfs2_extent_tree *et,
1283                                   struct ocfs2_alloc_context *meta_ac,
1284                                   struct buffer_head **ret_new_eb_bh)
1285 {
1286         int status, i;
1287         u32 new_clusters;
1288         struct buffer_head *new_eb_bh = NULL;
1289         struct ocfs2_extent_block *eb;
1290         struct ocfs2_extent_list  *root_el;
1291         struct ocfs2_extent_list  *eb_el;
1292
1293         mlog_entry_void();
1294
1295         status = ocfs2_create_new_meta_bhs(osb, handle, inode, 1, meta_ac,
1296                                            &new_eb_bh);
1297         if (status < 0) {
1298                 mlog_errno(status);
1299                 goto bail;
1300         }
1301
1302         eb = (struct ocfs2_extent_block *) new_eb_bh->b_data;
1303         /* ocfs2_create_new_meta_bhs() should create it right! */
1304         BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb));
1305
1306         eb_el = &eb->h_list;
1307         root_el = et->et_root_el;
1308
1309         status = ocfs2_journal_access_eb(handle, INODE_CACHE(inode), new_eb_bh,
1310                                          OCFS2_JOURNAL_ACCESS_CREATE);
1311         if (status < 0) {
1312                 mlog_errno(status);
1313                 goto bail;
1314         }
1315
1316         /* copy the root extent list data into the new extent block */
1317         eb_el->l_tree_depth = root_el->l_tree_depth;
1318         eb_el->l_next_free_rec = root_el->l_next_free_rec;
1319         for (i = 0; i < le16_to_cpu(root_el->l_next_free_rec); i++)
1320                 eb_el->l_recs[i] = root_el->l_recs[i];
1321
1322         status = ocfs2_journal_dirty(handle, new_eb_bh);
1323         if (status < 0) {
1324                 mlog_errno(status);
1325                 goto bail;
1326         }
1327
1328         status = ocfs2_et_root_journal_access(handle, et,
1329                                               OCFS2_JOURNAL_ACCESS_WRITE);
1330         if (status < 0) {
1331                 mlog_errno(status);
1332                 goto bail;
1333         }
1334
1335         new_clusters = ocfs2_sum_rightmost_rec(eb_el);
1336
1337         /* update root_bh now */
1338         le16_add_cpu(&root_el->l_tree_depth, 1);
1339         root_el->l_recs[0].e_cpos = 0;
1340         root_el->l_recs[0].e_blkno = eb->h_blkno;
1341         root_el->l_recs[0].e_int_clusters = cpu_to_le32(new_clusters);
1342         for (i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++)
1343                 memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
1344         root_el->l_next_free_rec = cpu_to_le16(1);
1345
1346         /* If this is our 1st tree depth shift, then last_eb_blk
1347          * becomes the allocated extent block */
1348         if (root_el->l_tree_depth == cpu_to_le16(1))
1349                 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
1350
1351         status = ocfs2_journal_dirty(handle, et->et_root_bh);
1352         if (status < 0) {
1353                 mlog_errno(status);
1354                 goto bail;
1355         }
1356
1357         *ret_new_eb_bh = new_eb_bh;
1358         new_eb_bh = NULL;
1359         status = 0;
1360 bail:
1361         brelse(new_eb_bh);
1362
1363         mlog_exit(status);
1364         return status;
1365 }
1366
1367 /*
1368  * Should only be called when there is no space left in any of the
1369  * leaf nodes. What we want to do is find the lowest tree depth
1370  * non-leaf extent block with room for new records. There are three
1371  * valid results of this search:
1372  *
1373  * 1) a lowest extent block is found, then we pass it back in
1374  *    *lowest_eb_bh and return '0'
1375  *
1376  * 2) the search fails to find anything, but the root_el has room. We
1377  *    pass NULL back in *lowest_eb_bh, but still return '0'
1378  *
1379  * 3) the search fails to find anything AND the root_el is full, in
1380  *    which case we return > 0
1381  *
1382  * return status < 0 indicates an error.
1383  */
1384 static int ocfs2_find_branch_target(struct ocfs2_super *osb,
1385                                     struct ocfs2_extent_tree *et,
1386                                     struct buffer_head **target_bh)
1387 {
1388         int status = 0, i;
1389         u64 blkno;
1390         struct ocfs2_extent_block *eb;
1391         struct ocfs2_extent_list  *el;
1392         struct buffer_head *bh = NULL;
1393         struct buffer_head *lowest_bh = NULL;
1394
1395         mlog_entry_void();
1396
1397         *target_bh = NULL;
1398
1399         el = et->et_root_el;
1400
1401         while(le16_to_cpu(el->l_tree_depth) > 1) {
1402                 if (le16_to_cpu(el->l_next_free_rec) == 0) {
1403                         ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
1404                                     "Owner %llu has empty "
1405                                     "extent list (next_free_rec == 0)",
1406                                     (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci));
1407                         status = -EIO;
1408                         goto bail;
1409                 }
1410                 i = le16_to_cpu(el->l_next_free_rec) - 1;
1411                 blkno = le64_to_cpu(el->l_recs[i].e_blkno);
1412                 if (!blkno) {
1413                         ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
1414                                     "Owner %llu has extent "
1415                                     "list where extent # %d has no physical "
1416                                     "block start",
1417                                     (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), i);
1418                         status = -EIO;
1419                         goto bail;
1420                 }
1421
1422                 brelse(bh);
1423                 bh = NULL;
1424
1425                 status = ocfs2_read_extent_block(et->et_ci, blkno, &bh);
1426                 if (status < 0) {
1427                         mlog_errno(status);
1428                         goto bail;
1429                 }
1430
1431                 eb = (struct ocfs2_extent_block *) bh->b_data;
1432                 el = &eb->h_list;
1433
1434                 if (le16_to_cpu(el->l_next_free_rec) <
1435                     le16_to_cpu(el->l_count)) {
1436                         brelse(lowest_bh);
1437                         lowest_bh = bh;
1438                         get_bh(lowest_bh);
1439                 }
1440         }
1441
1442         /* If we didn't find one and the fe doesn't have any room,
1443          * then return '1' */
1444         el = et->et_root_el;
1445         if (!lowest_bh && (el->l_next_free_rec == el->l_count))
1446                 status = 1;
1447
1448         *target_bh = lowest_bh;
1449 bail:
1450         brelse(bh);
1451
1452         mlog_exit(status);
1453         return status;
1454 }
1455
1456 /*
1457  * Grow a b-tree so that it has more records.
1458  *
1459  * We might shift the tree depth in which case existing paths should
1460  * be considered invalid.
1461  *
1462  * Tree depth after the grow is returned via *final_depth.
1463  *
1464  * *last_eb_bh will be updated by ocfs2_add_branch().
1465  */
1466 static int ocfs2_grow_tree(struct inode *inode, handle_t *handle,
1467                            struct ocfs2_extent_tree *et, int *final_depth,
1468                            struct buffer_head **last_eb_bh,
1469                            struct ocfs2_alloc_context *meta_ac)
1470 {
1471         int ret, shift;
1472         struct ocfs2_extent_list *el = et->et_root_el;
1473         int depth = le16_to_cpu(el->l_tree_depth);
1474         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1475         struct buffer_head *bh = NULL;
1476
1477         BUG_ON(meta_ac == NULL);
1478
1479         shift = ocfs2_find_branch_target(osb, et, &bh);
1480         if (shift < 0) {
1481                 ret = shift;
1482                 mlog_errno(ret);
1483                 goto out;
1484         }
1485
1486         /* We traveled all the way to the bottom of the allocation tree
1487          * and didn't find room for any more extents - we need to add
1488          * another tree level */
1489         if (shift) {
1490                 BUG_ON(bh);
1491                 mlog(0, "need to shift tree depth (current = %d)\n", depth);
1492
1493                 /* ocfs2_shift_tree_depth will return us a buffer with
1494                  * the new extent block (so we can pass that to
1495                  * ocfs2_add_branch). */
1496                 ret = ocfs2_shift_tree_depth(osb, handle, inode, et,
1497                                              meta_ac, &bh);
1498                 if (ret < 0) {
1499                         mlog_errno(ret);
1500                         goto out;
1501                 }
1502                 depth++;
1503                 if (depth == 1) {
1504                         /*
1505                          * Special case: we have room now if we shifted from
1506                          * tree_depth 0, so no more work needs to be done.
1507                          *
1508                          * We won't be calling add_branch, so pass
1509                          * back *last_eb_bh as the new leaf. At depth
1510                          * zero, it should always be null so there's
1511                          * no reason to brelse.
1512                          */
1513                         BUG_ON(*last_eb_bh);
1514                         get_bh(bh);
1515                         *last_eb_bh = bh;
1516                         goto out;
1517                 }
1518         }
1519
1520         /* call ocfs2_add_branch to add the final part of the tree with
1521          * the new data. */
1522         mlog(0, "add branch. bh = %p\n", bh);
1523         ret = ocfs2_add_branch(osb, handle, inode, et, bh, last_eb_bh,
1524                                meta_ac);
1525         if (ret < 0) {
1526                 mlog_errno(ret);
1527                 goto out;
1528         }
1529
1530 out:
1531         if (final_depth)
1532                 *final_depth = depth;
1533         brelse(bh);
1534         return ret;
1535 }
1536
1537 /*
1538  * This function will discard the rightmost extent record.
1539  */
1540 static void ocfs2_shift_records_right(struct ocfs2_extent_list *el)
1541 {
1542         int next_free = le16_to_cpu(el->l_next_free_rec);
1543         int count = le16_to_cpu(el->l_count);
1544         unsigned int num_bytes;
1545
1546         BUG_ON(!next_free);
1547         /* This will cause us to go off the end of our extent list. */
1548         BUG_ON(next_free >= count);
1549
1550         num_bytes = sizeof(struct ocfs2_extent_rec) * next_free;
1551
1552         memmove(&el->l_recs[1], &el->l_recs[0], num_bytes);
1553 }
1554
1555 static void ocfs2_rotate_leaf(struct ocfs2_extent_list *el,
1556                               struct ocfs2_extent_rec *insert_rec)
1557 {
1558         int i, insert_index, next_free, has_empty, num_bytes;
1559         u32 insert_cpos = le32_to_cpu(insert_rec->e_cpos);
1560         struct ocfs2_extent_rec *rec;
1561
1562         next_free = le16_to_cpu(el->l_next_free_rec);
1563         has_empty = ocfs2_is_empty_extent(&el->l_recs[0]);
1564
1565         BUG_ON(!next_free);
1566
1567         /* The tree code before us didn't allow enough room in the leaf. */
1568         BUG_ON(el->l_next_free_rec == el->l_count && !has_empty);
1569
1570         /*
1571          * The easiest way to approach this is to just remove the
1572          * empty extent and temporarily decrement next_free.
1573          */
1574         if (has_empty) {
1575                 /*
1576                  * If next_free was 1 (only an empty extent), this
1577                  * loop won't execute, which is fine. We still want
1578                  * the decrement above to happen.
1579                  */
1580                 for(i = 0; i < (next_free - 1); i++)
1581                         el->l_recs[i] = el->l_recs[i+1];
1582
1583                 next_free--;
1584         }
1585
1586         /*
1587          * Figure out what the new record index should be.
1588          */
1589         for(i = 0; i < next_free; i++) {
1590                 rec = &el->l_recs[i];
1591
1592                 if (insert_cpos < le32_to_cpu(rec->e_cpos))
1593                         break;
1594         }
1595         insert_index = i;
1596
1597         mlog(0, "ins %u: index %d, has_empty %d, next_free %d, count %d\n",
1598              insert_cpos, insert_index, has_empty, next_free, le16_to_cpu(el->l_count));
1599
1600         BUG_ON(insert_index < 0);
1601         BUG_ON(insert_index >= le16_to_cpu(el->l_count));
1602         BUG_ON(insert_index > next_free);
1603
1604         /*
1605          * No need to memmove if we're just adding to the tail.
1606          */
1607         if (insert_index != next_free) {
1608                 BUG_ON(next_free >= le16_to_cpu(el->l_count));
1609
1610                 num_bytes = next_free - insert_index;
1611                 num_bytes *= sizeof(struct ocfs2_extent_rec);
1612                 memmove(&el->l_recs[insert_index + 1],
1613                         &el->l_recs[insert_index],
1614                         num_bytes);
1615         }
1616
1617         /*
1618          * Either we had an empty extent, and need to re-increment or
1619          * there was no empty extent on a non full rightmost leaf node,
1620          * in which case we still need to increment.
1621          */
1622         next_free++;
1623         el->l_next_free_rec = cpu_to_le16(next_free);
1624         /*
1625          * Make sure none of the math above just messed up our tree.
1626          */
1627         BUG_ON(le16_to_cpu(el->l_next_free_rec) > le16_to_cpu(el->l_count));
1628
1629         el->l_recs[insert_index] = *insert_rec;
1630
1631 }
1632
1633 static void ocfs2_remove_empty_extent(struct ocfs2_extent_list *el)
1634 {
1635         int size, num_recs = le16_to_cpu(el->l_next_free_rec);
1636
1637         BUG_ON(num_recs == 0);
1638
1639         if (ocfs2_is_empty_extent(&el->l_recs[0])) {
1640                 num_recs--;
1641                 size = num_recs * sizeof(struct ocfs2_extent_rec);
1642                 memmove(&el->l_recs[0], &el->l_recs[1], size);
1643                 memset(&el->l_recs[num_recs], 0,
1644                        sizeof(struct ocfs2_extent_rec));
1645                 el->l_next_free_rec = cpu_to_le16(num_recs);
1646         }
1647 }
1648
1649 /*
1650  * Create an empty extent record .
1651  *
1652  * l_next_free_rec may be updated.
1653  *
1654  * If an empty extent already exists do nothing.
1655  */
1656 static void ocfs2_create_empty_extent(struct ocfs2_extent_list *el)
1657 {
1658         int next_free = le16_to_cpu(el->l_next_free_rec);
1659
1660         BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
1661
1662         if (next_free == 0)
1663                 goto set_and_inc;
1664
1665         if (ocfs2_is_empty_extent(&el->l_recs[0]))
1666                 return;
1667
1668         mlog_bug_on_msg(el->l_count == el->l_next_free_rec,
1669                         "Asked to create an empty extent in a full list:\n"
1670                         "count = %u, tree depth = %u",
1671                         le16_to_cpu(el->l_count),
1672                         le16_to_cpu(el->l_tree_depth));
1673
1674         ocfs2_shift_records_right(el);
1675
1676 set_and_inc:
1677         le16_add_cpu(&el->l_next_free_rec, 1);
1678         memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
1679 }
1680
1681 /*
1682  * For a rotation which involves two leaf nodes, the "root node" is
1683  * the lowest level tree node which contains a path to both leafs. This
1684  * resulting set of information can be used to form a complete "subtree"
1685  *
1686  * This function is passed two full paths from the dinode down to a
1687  * pair of adjacent leaves. It's task is to figure out which path
1688  * index contains the subtree root - this can be the root index itself
1689  * in a worst-case rotation.
1690  *
1691  * The array index of the subtree root is passed back.
1692  */
1693 static int ocfs2_find_subtree_root(struct inode *inode,
1694                                    struct ocfs2_path *left,
1695                                    struct ocfs2_path *right)
1696 {
1697         int i = 0;
1698
1699         /*
1700          * Check that the caller passed in two paths from the same tree.
1701          */
1702         BUG_ON(path_root_bh(left) != path_root_bh(right));
1703
1704         do {
1705                 i++;
1706
1707                 /*
1708                  * The caller didn't pass two adjacent paths.
1709                  */
1710                 mlog_bug_on_msg(i > left->p_tree_depth,
1711                                 "Inode %lu, left depth %u, right depth %u\n"
1712                                 "left leaf blk %llu, right leaf blk %llu\n",
1713                                 inode->i_ino, left->p_tree_depth,
1714                                 right->p_tree_depth,
1715                                 (unsigned long long)path_leaf_bh(left)->b_blocknr,
1716                                 (unsigned long long)path_leaf_bh(right)->b_blocknr);
1717         } while (left->p_node[i].bh->b_blocknr ==
1718                  right->p_node[i].bh->b_blocknr);
1719
1720         return i - 1;
1721 }
1722
1723 typedef void (path_insert_t)(void *, struct buffer_head *);
1724
1725 /*
1726  * Traverse a btree path in search of cpos, starting at root_el.
1727  *
1728  * This code can be called with a cpos larger than the tree, in which
1729  * case it will return the rightmost path.
1730  */
1731 static int __ocfs2_find_path(struct inode *inode,
1732                              struct ocfs2_extent_list *root_el, u32 cpos,
1733                              path_insert_t *func, void *data)
1734 {
1735         int i, ret = 0;
1736         u32 range;
1737         u64 blkno;
1738         struct buffer_head *bh = NULL;
1739         struct ocfs2_extent_block *eb;
1740         struct ocfs2_extent_list *el;
1741         struct ocfs2_extent_rec *rec;
1742         struct ocfs2_inode_info *oi = OCFS2_I(inode);
1743
1744         el = root_el;
1745         while (el->l_tree_depth) {
1746                 if (le16_to_cpu(el->l_next_free_rec) == 0) {
1747                         ocfs2_error(inode->i_sb,
1748                                     "Inode %llu has empty extent list at "
1749                                     "depth %u\n",
1750                                     (unsigned long long)oi->ip_blkno,
1751                                     le16_to_cpu(el->l_tree_depth));
1752                         ret = -EROFS;
1753                         goto out;
1754
1755                 }
1756
1757                 for(i = 0; i < le16_to_cpu(el->l_next_free_rec) - 1; i++) {
1758                         rec = &el->l_recs[i];
1759
1760                         /*
1761                          * In the case that cpos is off the allocation
1762                          * tree, this should just wind up returning the
1763                          * rightmost record.
1764                          */
1765                         range = le32_to_cpu(rec->e_cpos) +
1766                                 ocfs2_rec_clusters(el, rec);
1767                         if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
1768                             break;
1769                 }
1770
1771                 blkno = le64_to_cpu(el->l_recs[i].e_blkno);
1772                 if (blkno == 0) {
1773                         ocfs2_error(inode->i_sb,
1774                                     "Inode %llu has bad blkno in extent list "
1775                                     "at depth %u (index %d)\n",
1776                                     (unsigned long long)oi->ip_blkno,
1777                                     le16_to_cpu(el->l_tree_depth), i);
1778                         ret = -EROFS;
1779                         goto out;
1780                 }
1781
1782                 brelse(bh);
1783                 bh = NULL;
1784                 ret = ocfs2_read_extent_block(INODE_CACHE(inode), blkno, &bh);
1785                 if (ret) {
1786                         mlog_errno(ret);
1787                         goto out;
1788                 }
1789
1790                 eb = (struct ocfs2_extent_block *) bh->b_data;
1791                 el = &eb->h_list;
1792
1793                 if (le16_to_cpu(el->l_next_free_rec) >
1794                     le16_to_cpu(el->l_count)) {
1795                         ocfs2_error(inode->i_sb,
1796                                     "Inode %llu has bad count in extent list "
1797                                     "at block %llu (next free=%u, count=%u)\n",
1798                                     (unsigned long long)oi->ip_blkno,
1799                                     (unsigned long long)bh->b_blocknr,
1800                                     le16_to_cpu(el->l_next_free_rec),
1801                                     le16_to_cpu(el->l_count));
1802                         ret = -EROFS;
1803                         goto out;
1804                 }
1805
1806                 if (func)
1807                         func(data, bh);
1808         }
1809
1810 out:
1811         /*
1812          * Catch any trailing bh that the loop didn't handle.
1813          */
1814         brelse(bh);
1815
1816         return ret;
1817 }
1818
1819 /*
1820  * Given an initialized path (that is, it has a valid root extent
1821  * list), this function will traverse the btree in search of the path
1822  * which would contain cpos.
1823  *
1824  * The path traveled is recorded in the path structure.
1825  *
1826  * Note that this will not do any comparisons on leaf node extent
1827  * records, so it will work fine in the case that we just added a tree
1828  * branch.
1829  */
1830 struct find_path_data {
1831         int index;
1832         struct ocfs2_path *path;
1833 };
1834 static void find_path_ins(void *data, struct buffer_head *bh)
1835 {
1836         struct find_path_data *fp = data;
1837
1838         get_bh(bh);
1839         ocfs2_path_insert_eb(fp->path, fp->index, bh);
1840         fp->index++;
1841 }
1842 static int ocfs2_find_path(struct inode *inode, struct ocfs2_path *path,
1843                            u32 cpos)
1844 {
1845         struct find_path_data data;
1846
1847         data.index = 1;
1848         data.path = path;
1849         return __ocfs2_find_path(inode, path_root_el(path), cpos,
1850                                  find_path_ins, &data);
1851 }
1852
1853 static void find_leaf_ins(void *data, struct buffer_head *bh)
1854 {
1855         struct ocfs2_extent_block *eb =(struct ocfs2_extent_block *)bh->b_data;
1856         struct ocfs2_extent_list *el = &eb->h_list;
1857         struct buffer_head **ret = data;
1858
1859         /* We want to retain only the leaf block. */
1860         if (le16_to_cpu(el->l_tree_depth) == 0) {
1861                 get_bh(bh);
1862                 *ret = bh;
1863         }
1864 }
1865 /*
1866  * Find the leaf block in the tree which would contain cpos. No
1867  * checking of the actual leaf is done.
1868  *
1869  * Some paths want to call this instead of allocating a path structure
1870  * and calling ocfs2_find_path().
1871  *
1872  * This function doesn't handle non btree extent lists.
1873  */
1874 int ocfs2_find_leaf(struct inode *inode, struct ocfs2_extent_list *root_el,
1875                     u32 cpos, struct buffer_head **leaf_bh)
1876 {
1877         int ret;
1878         struct buffer_head *bh = NULL;
1879
1880         ret = __ocfs2_find_path(inode, root_el, cpos, find_leaf_ins, &bh);
1881         if (ret) {
1882                 mlog_errno(ret);
1883                 goto out;
1884         }
1885
1886         *leaf_bh = bh;
1887 out:
1888         return ret;
1889 }
1890
1891 /*
1892  * Adjust the adjacent records (left_rec, right_rec) involved in a rotation.
1893  *
1894  * Basically, we've moved stuff around at the bottom of the tree and
1895  * we need to fix up the extent records above the changes to reflect
1896  * the new changes.
1897  *
1898  * left_rec: the record on the left.
1899  * left_child_el: is the child list pointed to by left_rec
1900  * right_rec: the record to the right of left_rec
1901  * right_child_el: is the child list pointed to by right_rec
1902  *
1903  * By definition, this only works on interior nodes.
1904  */
1905 static void ocfs2_adjust_adjacent_records(struct ocfs2_extent_rec *left_rec,
1906                                   struct ocfs2_extent_list *left_child_el,
1907                                   struct ocfs2_extent_rec *right_rec,
1908                                   struct ocfs2_extent_list *right_child_el)
1909 {
1910         u32 left_clusters, right_end;
1911
1912         /*
1913          * Interior nodes never have holes. Their cpos is the cpos of
1914          * the leftmost record in their child list. Their cluster
1915          * count covers the full theoretical range of their child list
1916          * - the range between their cpos and the cpos of the record
1917          * immediately to their right.
1918          */
1919         left_clusters = le32_to_cpu(right_child_el->l_recs[0].e_cpos);
1920         if (!ocfs2_rec_clusters(right_child_el, &right_child_el->l_recs[0])) {
1921                 BUG_ON(right_child_el->l_tree_depth);
1922                 BUG_ON(le16_to_cpu(right_child_el->l_next_free_rec) <= 1);
1923                 left_clusters = le32_to_cpu(right_child_el->l_recs[1].e_cpos);
1924         }
1925         left_clusters -= le32_to_cpu(left_rec->e_cpos);
1926         left_rec->e_int_clusters = cpu_to_le32(left_clusters);
1927
1928         /*
1929          * Calculate the rightmost cluster count boundary before
1930          * moving cpos - we will need to adjust clusters after
1931          * updating e_cpos to keep the same highest cluster count.
1932          */
1933         right_end = le32_to_cpu(right_rec->e_cpos);
1934         right_end += le32_to_cpu(right_rec->e_int_clusters);
1935
1936         right_rec->e_cpos = left_rec->e_cpos;
1937         le32_add_cpu(&right_rec->e_cpos, left_clusters);
1938
1939         right_end -= le32_to_cpu(right_rec->e_cpos);
1940         right_rec->e_int_clusters = cpu_to_le32(right_end);
1941 }
1942
1943 /*
1944  * Adjust the adjacent root node records involved in a
1945  * rotation. left_el_blkno is passed in as a key so that we can easily
1946  * find it's index in the root list.
1947  */
1948 static void ocfs2_adjust_root_records(struct ocfs2_extent_list *root_el,
1949                                       struct ocfs2_extent_list *left_el,
1950                                       struct ocfs2_extent_list *right_el,
1951                                       u64 left_el_blkno)
1952 {
1953         int i;
1954
1955         BUG_ON(le16_to_cpu(root_el->l_tree_depth) <=
1956                le16_to_cpu(left_el->l_tree_depth));
1957
1958         for(i = 0; i < le16_to_cpu(root_el->l_next_free_rec) - 1; i++) {
1959                 if (le64_to_cpu(root_el->l_recs[i].e_blkno) == left_el_blkno)
1960                         break;
1961         }
1962
1963         /*
1964          * The path walking code should have never returned a root and
1965          * two paths which are not adjacent.
1966          */
1967         BUG_ON(i >= (le16_to_cpu(root_el->l_next_free_rec) - 1));
1968
1969         ocfs2_adjust_adjacent_records(&root_el->l_recs[i], left_el,
1970                                       &root_el->l_recs[i + 1], right_el);
1971 }
1972
1973 /*
1974  * We've changed a leaf block (in right_path) and need to reflect that
1975  * change back up the subtree.
1976  *
1977  * This happens in multiple places:
1978  *   - When we've moved an extent record from the left path leaf to the right
1979  *     path leaf to make room for an empty extent in the left path leaf.
1980  *   - When our insert into the right path leaf is at the leftmost edge
1981  *     and requires an update of the path immediately to it's left. This
1982  *     can occur at the end of some types of rotation and appending inserts.
1983  *   - When we've adjusted the last extent record in the left path leaf and the
1984  *     1st extent record in the right path leaf during cross extent block merge.
1985  */
1986 static void ocfs2_complete_edge_insert(struct inode *inode, handle_t *handle,
1987                                        struct ocfs2_path *left_path,
1988                                        struct ocfs2_path *right_path,
1989                                        int subtree_index)
1990 {
1991         int ret, i, idx;
1992         struct ocfs2_extent_list *el, *left_el, *right_el;
1993         struct ocfs2_extent_rec *left_rec, *right_rec;
1994         struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
1995
1996         /*
1997          * Update the counts and position values within all the
1998          * interior nodes to reflect the leaf rotation we just did.
1999          *
2000          * The root node is handled below the loop.
2001          *
2002          * We begin the loop with right_el and left_el pointing to the
2003          * leaf lists and work our way up.
2004          *
2005          * NOTE: within this loop, left_el and right_el always refer
2006          * to the *child* lists.
2007          */
2008         left_el = path_leaf_el(left_path);
2009         right_el = path_leaf_el(right_path);
2010         for(i = left_path->p_tree_depth - 1; i > subtree_index; i--) {
2011                 mlog(0, "Adjust records at index %u\n", i);
2012
2013                 /*
2014                  * One nice property of knowing that all of these
2015                  * nodes are below the root is that we only deal with
2016                  * the leftmost right node record and the rightmost
2017                  * left node record.
2018                  */
2019                 el = left_path->p_node[i].el;
2020                 idx = le16_to_cpu(left_el->l_next_free_rec) - 1;
2021                 left_rec = &el->l_recs[idx];
2022
2023                 el = right_path->p_node[i].el;
2024                 right_rec = &el->l_recs[0];
2025
2026                 ocfs2_adjust_adjacent_records(left_rec, left_el, right_rec,
2027                                               right_el);
2028
2029                 ret = ocfs2_journal_dirty(handle, left_path->p_node[i].bh);
2030                 if (ret)
2031                         mlog_errno(ret);
2032
2033                 ret = ocfs2_journal_dirty(handle, right_path->p_node[i].bh);
2034                 if (ret)
2035                         mlog_errno(ret);
2036
2037                 /*
2038                  * Setup our list pointers now so that the current
2039                  * parents become children in the next iteration.
2040                  */
2041                 left_el = left_path->p_node[i].el;
2042                 right_el = right_path->p_node[i].el;
2043         }
2044
2045         /*
2046          * At the root node, adjust the two adjacent records which
2047          * begin our path to the leaves.
2048          */
2049
2050         el = left_path->p_node[subtree_index].el;
2051         left_el = left_path->p_node[subtree_index + 1].el;
2052         right_el = right_path->p_node[subtree_index + 1].el;
2053
2054         ocfs2_adjust_root_records(el, left_el, right_el,
2055                                   left_path->p_node[subtree_index + 1].bh->b_blocknr);
2056
2057         root_bh = left_path->p_node[subtree_index].bh;
2058
2059         ret = ocfs2_journal_dirty(handle, root_bh);
2060         if (ret)
2061                 mlog_errno(ret);
2062 }
2063
2064 static int ocfs2_rotate_subtree_right(struct inode *inode,
2065                                       handle_t *handle,
2066                                       struct ocfs2_path *left_path,
2067                                       struct ocfs2_path *right_path,
2068                                       int subtree_index)
2069 {
2070         int ret, i;
2071         struct buffer_head *right_leaf_bh;
2072         struct buffer_head *left_leaf_bh = NULL;
2073         struct buffer_head *root_bh;
2074         struct ocfs2_extent_list *right_el, *left_el;
2075         struct ocfs2_extent_rec move_rec;
2076
2077         left_leaf_bh = path_leaf_bh(left_path);
2078         left_el = path_leaf_el(left_path);
2079
2080         if (left_el->l_next_free_rec != left_el->l_count) {
2081                 ocfs2_error(inode->i_sb,
2082                             "Inode %llu has non-full interior leaf node %llu"
2083                             "(next free = %u)",
2084                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
2085                             (unsigned long long)left_leaf_bh->b_blocknr,
2086                             le16_to_cpu(left_el->l_next_free_rec));
2087                 return -EROFS;
2088         }
2089
2090         /*
2091          * This extent block may already have an empty record, so we
2092          * return early if so.
2093          */
2094         if (ocfs2_is_empty_extent(&left_el->l_recs[0]))
2095                 return 0;
2096
2097         root_bh = left_path->p_node[subtree_index].bh;
2098         BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
2099
2100         ret = ocfs2_path_bh_journal_access(handle, INODE_CACHE(inode), right_path,
2101                                            subtree_index);
2102         if (ret) {
2103                 mlog_errno(ret);
2104                 goto out;
2105         }
2106
2107         for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
2108                 ret = ocfs2_path_bh_journal_access(handle, INODE_CACHE(inode),
2109                                                    right_path, i);
2110                 if (ret) {
2111                         mlog_errno(ret);
2112                         goto out;
2113                 }
2114
2115                 ret = ocfs2_path_bh_journal_access(handle, INODE_CACHE(inode),
2116                                                    left_path, i);
2117                 if (ret) {
2118                         mlog_errno(ret);
2119                         goto out;
2120                 }
2121         }
2122
2123         right_leaf_bh = path_leaf_bh(right_path);
2124         right_el = path_leaf_el(right_path);
2125
2126         /* This is a code error, not a disk corruption. */
2127         mlog_bug_on_msg(!right_el->l_next_free_rec, "Inode %llu: Rotate fails "
2128                         "because rightmost leaf block %llu is empty\n",
2129                         (unsigned long long)OCFS2_I(inode)->ip_blkno,
2130                         (unsigned long long)right_leaf_bh->b_blocknr);
2131
2132         ocfs2_create_empty_extent(right_el);
2133
2134         ret = ocfs2_journal_dirty(handle, right_leaf_bh);
2135         if (ret) {
2136                 mlog_errno(ret);
2137                 goto out;
2138         }
2139
2140         /* Do the copy now. */
2141         i = le16_to_cpu(left_el->l_next_free_rec) - 1;
2142         move_rec = left_el->l_recs[i];
2143         right_el->l_recs[0] = move_rec;
2144
2145         /*
2146          * Clear out the record we just copied and shift everything
2147          * over, leaving an empty extent in the left leaf.
2148          *
2149          * We temporarily subtract from next_free_rec so that the
2150          * shift will lose the tail record (which is now defunct).
2151          */
2152         le16_add_cpu(&left_el->l_next_free_rec, -1);
2153         ocfs2_shift_records_right(left_el);
2154         memset(&left_el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2155         le16_add_cpu(&left_el->l_next_free_rec, 1);
2156
2157         ret = ocfs2_journal_dirty(handle, left_leaf_bh);
2158         if (ret) {
2159                 mlog_errno(ret);
2160                 goto out;
2161         }
2162
2163         ocfs2_complete_edge_insert(inode, handle, left_path, right_path,
2164                                 subtree_index);
2165
2166 out:
2167         return ret;
2168 }
2169
2170 /*
2171  * Given a full path, determine what cpos value would return us a path
2172  * containing the leaf immediately to the left of the current one.
2173  *
2174  * Will return zero if the path passed in is already the leftmost path.
2175  */
2176 static int ocfs2_find_cpos_for_left_leaf(struct super_block *sb,
2177                                          struct ocfs2_path *path, u32 *cpos)
2178 {
2179         int i, j, ret = 0;
2180         u64 blkno;
2181         struct ocfs2_extent_list *el;
2182
2183         BUG_ON(path->p_tree_depth == 0);
2184
2185         *cpos = 0;
2186
2187         blkno = path_leaf_bh(path)->b_blocknr;
2188
2189         /* Start at the tree node just above the leaf and work our way up. */
2190         i = path->p_tree_depth - 1;
2191         while (i >= 0) {
2192                 el = path->p_node[i].el;
2193
2194                 /*
2195                  * Find the extent record just before the one in our
2196                  * path.
2197                  */
2198                 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
2199                         if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
2200                                 if (j == 0) {
2201                                         if (i == 0) {
2202                                                 /*
2203                                                  * We've determined that the
2204                                                  * path specified is already
2205                                                  * the leftmost one - return a
2206                                                  * cpos of zero.
2207                                                  */
2208                                                 goto out;
2209                                         }
2210                                         /*
2211                                          * The leftmost record points to our
2212                                          * leaf - we need to travel up the
2213                                          * tree one level.
2214                                          */
2215                                         goto next_node;
2216                                 }
2217
2218                                 *cpos = le32_to_cpu(el->l_recs[j - 1].e_cpos);
2219                                 *cpos = *cpos + ocfs2_rec_clusters(el,
2220                                                            &el->l_recs[j - 1]);
2221                                 *cpos = *cpos - 1;
2222                                 goto out;
2223                         }
2224                 }
2225
2226                 /*
2227                  * If we got here, we never found a valid node where
2228                  * the tree indicated one should be.
2229                  */
2230                 ocfs2_error(sb,
2231                             "Invalid extent tree at extent block %llu\n",
2232                             (unsigned long long)blkno);
2233                 ret = -EROFS;
2234                 goto out;
2235
2236 next_node:
2237                 blkno = path->p_node[i].bh->b_blocknr;
2238                 i--;
2239         }
2240
2241 out:
2242         return ret;
2243 }
2244
2245 /*
2246  * Extend the transaction by enough credits to complete the rotation,
2247  * and still leave at least the original number of credits allocated
2248  * to this transaction.
2249  */
2250 static int ocfs2_extend_rotate_transaction(handle_t *handle, int subtree_depth,
2251                                            int op_credits,
2252                                            struct ocfs2_path *path)
2253 {
2254         int credits = (path->p_tree_depth - subtree_depth) * 2 + 1 + op_credits;
2255
2256         if (handle->h_buffer_credits < credits)
2257                 return ocfs2_extend_trans(handle, credits);
2258
2259         return 0;
2260 }
2261
2262 /*
2263  * Trap the case where we're inserting into the theoretical range past
2264  * the _actual_ left leaf range. Otherwise, we'll rotate a record
2265  * whose cpos is less than ours into the right leaf.
2266  *
2267  * It's only necessary to look at the rightmost record of the left
2268  * leaf because the logic that calls us should ensure that the
2269  * theoretical ranges in the path components above the leaves are
2270  * correct.
2271  */
2272 static int ocfs2_rotate_requires_path_adjustment(struct ocfs2_path *left_path,
2273                                                  u32 insert_cpos)
2274 {
2275         struct ocfs2_extent_list *left_el;
2276         struct ocfs2_extent_rec *rec;
2277         int next_free;
2278
2279         left_el = path_leaf_el(left_path);
2280         next_free = le16_to_cpu(left_el->l_next_free_rec);
2281         rec = &left_el->l_recs[next_free - 1];
2282
2283         if (insert_cpos > le32_to_cpu(rec->e_cpos))
2284                 return 1;
2285         return 0;
2286 }
2287
2288 static int ocfs2_leftmost_rec_contains(struct ocfs2_extent_list *el, u32 cpos)
2289 {
2290         int next_free = le16_to_cpu(el->l_next_free_rec);
2291         unsigned int range;
2292         struct ocfs2_extent_rec *rec;
2293
2294         if (next_free == 0)
2295                 return 0;
2296
2297         rec = &el->l_recs[0];
2298         if (ocfs2_is_empty_extent(rec)) {
2299                 /* Empty list. */
2300                 if (next_free == 1)
2301                         return 0;
2302                 rec = &el->l_recs[1];
2303         }
2304
2305         range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
2306         if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
2307                 return 1;
2308         return 0;
2309 }
2310
2311 /*
2312  * Rotate all the records in a btree right one record, starting at insert_cpos.
2313  *
2314  * The path to the rightmost leaf should be passed in.
2315  *
2316  * The array is assumed to be large enough to hold an entire path (tree depth).
2317  *
2318  * Upon succesful return from this function:
2319  *
2320  * - The 'right_path' array will contain a path to the leaf block
2321  *   whose range contains e_cpos.
2322  * - That leaf block will have a single empty extent in list index 0.
2323  * - In the case that the rotation requires a post-insert update,
2324  *   *ret_left_path will contain a valid path which can be passed to
2325  *   ocfs2_insert_path().
2326  */
2327 static int ocfs2_rotate_tree_right(struct inode *inode,
2328                                    handle_t *handle,
2329                                    enum ocfs2_split_type split,
2330                                    u32 insert_cpos,
2331                                    struct ocfs2_path *right_path,
2332                                    struct ocfs2_path **ret_left_path)
2333 {
2334         int ret, start, orig_credits = handle->h_buffer_credits;
2335         u32 cpos;
2336         struct ocfs2_path *left_path = NULL;
2337
2338         *ret_left_path = NULL;
2339
2340         left_path = ocfs2_new_path_from_path(right_path);
2341         if (!left_path) {
2342                 ret = -ENOMEM;
2343                 mlog_errno(ret);
2344                 goto out;
2345         }
2346
2347         ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path, &cpos);
2348         if (ret) {
2349                 mlog_errno(ret);
2350                 goto out;
2351         }
2352
2353         mlog(0, "Insert: %u, first left path cpos: %u\n", insert_cpos, cpos);
2354
2355         /*
2356          * What we want to do here is:
2357          *
2358          * 1) Start with the rightmost path.
2359          *
2360          * 2) Determine a path to the leaf block directly to the left
2361          *    of that leaf.
2362          *
2363          * 3) Determine the 'subtree root' - the lowest level tree node
2364          *    which contains a path to both leaves.
2365          *
2366          * 4) Rotate the subtree.
2367          *
2368          * 5) Find the next subtree by considering the left path to be
2369          *    the new right path.
2370          *
2371          * The check at the top of this while loop also accepts
2372          * insert_cpos == cpos because cpos is only a _theoretical_
2373          * value to get us the left path - insert_cpos might very well
2374          * be filling that hole.
2375          *
2376          * Stop at a cpos of '0' because we either started at the
2377          * leftmost branch (i.e., a tree with one branch and a
2378          * rotation inside of it), or we've gone as far as we can in
2379          * rotating subtrees.
2380          */
2381         while (cpos && insert_cpos <= cpos) {
2382                 mlog(0, "Rotating a tree: ins. cpos: %u, left path cpos: %u\n",
2383                      insert_cpos, cpos);
2384
2385                 ret = ocfs2_find_path(inode, left_path, cpos);
2386                 if (ret) {
2387                         mlog_errno(ret);
2388                         goto out;
2389                 }
2390
2391                 mlog_bug_on_msg(path_leaf_bh(left_path) ==
2392                                 path_leaf_bh(right_path),
2393                                 "Inode %lu: error during insert of %u "
2394                                 "(left path cpos %u) results in two identical "
2395                                 "paths ending at %llu\n",
2396                                 inode->i_ino, insert_cpos, cpos,
2397                                 (unsigned long long)
2398                                 path_leaf_bh(left_path)->b_blocknr);
2399
2400                 if (split == SPLIT_NONE &&
2401                     ocfs2_rotate_requires_path_adjustment(left_path,
2402                                                           insert_cpos)) {
2403
2404                         /*
2405                          * We've rotated the tree as much as we
2406                          * should. The rest is up to
2407                          * ocfs2_insert_path() to complete, after the
2408                          * record insertion. We indicate this
2409                          * situation by returning the left path.
2410                          *
2411                          * The reason we don't adjust the records here
2412                          * before the record insert is that an error
2413                          * later might break the rule where a parent
2414                          * record e_cpos will reflect the actual
2415                          * e_cpos of the 1st nonempty record of the
2416                          * child list.
2417                          */
2418                         *ret_left_path = left_path;
2419                         goto out_ret_path;
2420                 }
2421
2422                 start = ocfs2_find_subtree_root(inode, left_path, right_path);
2423
2424                 mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n",
2425                      start,
2426                      (unsigned long long) right_path->p_node[start].bh->b_blocknr,
2427                      right_path->p_tree_depth);
2428
2429                 ret = ocfs2_extend_rotate_transaction(handle, start,
2430                                                       orig_credits, right_path);
2431                 if (ret) {
2432                         mlog_errno(ret);
2433                         goto out;
2434                 }
2435
2436                 ret = ocfs2_rotate_subtree_right(inode, handle, left_path,
2437                                                  right_path, start);
2438                 if (ret) {
2439                         mlog_errno(ret);
2440                         goto out;
2441                 }
2442
2443                 if (split != SPLIT_NONE &&
2444                     ocfs2_leftmost_rec_contains(path_leaf_el(right_path),
2445                                                 insert_cpos)) {
2446                         /*
2447                          * A rotate moves the rightmost left leaf
2448                          * record over to the leftmost right leaf
2449                          * slot. If we're doing an extent split
2450                          * instead of a real insert, then we have to
2451                          * check that the extent to be split wasn't
2452                          * just moved over. If it was, then we can
2453                          * exit here, passing left_path back -
2454                          * ocfs2_split_extent() is smart enough to
2455                          * search both leaves.
2456                          */
2457                         *ret_left_path = left_path;
2458                         goto out_ret_path;
2459                 }
2460
2461                 /*
2462                  * There is no need to re-read the next right path
2463                  * as we know that it'll be our current left
2464                  * path. Optimize by copying values instead.
2465                  */
2466                 ocfs2_mv_path(right_path, left_path);
2467
2468                 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path,
2469                                                     &cpos);
2470                 if (ret) {
2471                         mlog_errno(ret);
2472                         goto out;
2473                 }
2474         }
2475
2476 out:
2477         ocfs2_free_path(left_path);
2478
2479 out_ret_path:
2480         return ret;
2481 }
2482
2483 static int ocfs2_update_edge_lengths(struct inode *inode, handle_t *handle,
2484                                      int subtree_index, struct ocfs2_path *path)
2485 {
2486         int i, idx, ret;
2487         struct ocfs2_extent_rec *rec;
2488         struct ocfs2_extent_list *el;
2489         struct ocfs2_extent_block *eb;
2490         u32 range;
2491
2492         /*
2493          * In normal tree rotation process, we will never touch the
2494          * tree branch above subtree_index and ocfs2_extend_rotate_transaction
2495          * doesn't reserve the credits for them either.
2496          *
2497          * But we do have a special case here which will update the rightmost
2498          * records for all the bh in the path.
2499          * So we have to allocate extra credits and access them.
2500          */
2501         ret = ocfs2_extend_trans(handle,
2502                                  handle->h_buffer_credits + subtree_index);
2503         if (ret) {
2504                 mlog_errno(ret);
2505                 goto out;
2506         }
2507
2508         ret = ocfs2_journal_access_path(INODE_CACHE(inode), handle, path);
2509         if (ret) {
2510                 mlog_errno(ret);
2511                 goto out;
2512         }
2513
2514         /* Path should always be rightmost. */
2515         eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
2516         BUG_ON(eb->h_next_leaf_blk != 0ULL);
2517
2518         el = &eb->h_list;
2519         BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0);
2520         idx = le16_to_cpu(el->l_next_free_rec) - 1;
2521         rec = &el->l_recs[idx];
2522         range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
2523
2524         for (i = 0; i < path->p_tree_depth; i++) {
2525                 el = path->p_node[i].el;
2526                 idx = le16_to_cpu(el->l_next_free_rec) - 1;
2527                 rec = &el->l_recs[idx];
2528
2529                 rec->e_int_clusters = cpu_to_le32(range);
2530                 le32_add_cpu(&rec->e_int_clusters, -le32_to_cpu(rec->e_cpos));
2531
2532                 ocfs2_journal_dirty(handle, path->p_node[i].bh);
2533         }
2534 out:
2535         return ret;
2536 }
2537
2538 static void ocfs2_unlink_path(struct inode *inode, handle_t *handle,
2539                               struct ocfs2_cached_dealloc_ctxt *dealloc,
2540                               struct ocfs2_path *path, int unlink_start)
2541 {
2542         int ret, i;
2543         struct ocfs2_extent_block *eb;
2544         struct ocfs2_extent_list *el;
2545         struct buffer_head *bh;
2546
2547         for(i = unlink_start; i < path_num_items(path); i++) {
2548                 bh = path->p_node[i].bh;
2549
2550                 eb = (struct ocfs2_extent_block *)bh->b_data;
2551                 /*
2552                  * Not all nodes might have had their final count
2553                  * decremented by the caller - handle this here.
2554                  */
2555                 el = &eb->h_list;
2556                 if (le16_to_cpu(el->l_next_free_rec) > 1) {
2557                         mlog(ML_ERROR,
2558                              "Inode %llu, attempted to remove extent block "
2559                              "%llu with %u records\n",
2560                              (unsigned long long)OCFS2_I(inode)->ip_blkno,
2561                              (unsigned long long)le64_to_cpu(eb->h_blkno),
2562                              le16_to_cpu(el->l_next_free_rec));
2563
2564                         ocfs2_journal_dirty(handle, bh);
2565                         ocfs2_remove_from_cache(INODE_CACHE(inode), bh);
2566                         continue;
2567                 }
2568
2569                 el->l_next_free_rec = 0;
2570                 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2571
2572                 ocfs2_journal_dirty(handle, bh);
2573
2574                 ret = ocfs2_cache_extent_block_free(dealloc, eb);
2575                 if (ret)
2576                         mlog_errno(ret);
2577
2578                 ocfs2_remove_from_cache(INODE_CACHE(inode), bh);
2579         }
2580 }
2581
2582 static void ocfs2_unlink_subtree(struct inode *inode, handle_t *handle,
2583                                  struct ocfs2_path *left_path,
2584                                  struct ocfs2_path *right_path,
2585                                  int subtree_index,
2586                                  struct ocfs2_cached_dealloc_ctxt *dealloc)
2587 {
2588         int i;
2589         struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
2590         struct ocfs2_extent_list *root_el = left_path->p_node[subtree_index].el;
2591         struct ocfs2_extent_list *el;
2592         struct ocfs2_extent_block *eb;
2593
2594         el = path_leaf_el(left_path);
2595
2596         eb = (struct ocfs2_extent_block *)right_path->p_node[subtree_index + 1].bh->b_data;
2597
2598         for(i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++)
2599                 if (root_el->l_recs[i].e_blkno == eb->h_blkno)
2600                         break;
2601
2602         BUG_ON(i >= le16_to_cpu(root_el->l_next_free_rec));
2603
2604         memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
2605         le16_add_cpu(&root_el->l_next_free_rec, -1);
2606
2607         eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2608         eb->h_next_leaf_blk = 0;
2609
2610         ocfs2_journal_dirty(handle, root_bh);
2611         ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2612
2613         ocfs2_unlink_path(inode, handle, dealloc, right_path,
2614                           subtree_index + 1);
2615 }
2616
2617 static int ocfs2_rotate_subtree_left(struct inode *inode, handle_t *handle,
2618                                      struct ocfs2_path *left_path,
2619                                      struct ocfs2_path *right_path,
2620                                      int subtree_index,
2621                                      struct ocfs2_cached_dealloc_ctxt *dealloc,
2622                                      int *deleted,
2623                                      struct ocfs2_extent_tree *et)
2624 {
2625         int ret, i, del_right_subtree = 0, right_has_empty = 0;
2626         struct buffer_head *root_bh, *et_root_bh = path_root_bh(right_path);
2627         struct ocfs2_extent_list *right_leaf_el, *left_leaf_el;
2628         struct ocfs2_extent_block *eb;
2629
2630         *deleted = 0;
2631
2632         right_leaf_el = path_leaf_el(right_path);
2633         left_leaf_el = path_leaf_el(left_path);
2634         root_bh = left_path->p_node[subtree_index].bh;
2635         BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
2636
2637         if (!ocfs2_is_empty_extent(&left_leaf_el->l_recs[0]))
2638                 return 0;
2639
2640         eb = (struct ocfs2_extent_block *)path_leaf_bh(right_path)->b_data;
2641         if (ocfs2_is_empty_extent(&right_leaf_el->l_recs[0])) {
2642                 /*
2643                  * It's legal for us to proceed if the right leaf is
2644                  * the rightmost one and it has an empty extent. There
2645                  * are two cases to handle - whether the leaf will be
2646                  * empty after removal or not. If the leaf isn't empty
2647                  * then just remove the empty extent up front. The
2648                  * next block will handle empty leaves by flagging
2649                  * them for unlink.
2650                  *
2651                  * Non rightmost leaves will throw -EAGAIN and the
2652                  * caller can manually move the subtree and retry.
2653                  */
2654
2655                 if (eb->h_next_leaf_blk != 0ULL)
2656                         return -EAGAIN;
2657
2658                 if (le16_to_cpu(right_leaf_el->l_next_free_rec) > 1) {
2659                         ret = ocfs2_journal_access_eb(handle, INODE_CACHE(inode),
2660                                                       path_leaf_bh(right_path),
2661                                                       OCFS2_JOURNAL_ACCESS_WRITE);
2662                         if (ret) {
2663                                 mlog_errno(ret);
2664                                 goto out;
2665                         }
2666
2667                         ocfs2_remove_empty_extent(right_leaf_el);
2668                 } else
2669                         right_has_empty = 1;
2670         }
2671
2672         if (eb->h_next_leaf_blk == 0ULL &&
2673             le16_to_cpu(right_leaf_el->l_next_free_rec) == 1) {
2674                 /*
2675                  * We have to update i_last_eb_blk during the meta
2676                  * data delete.
2677                  */
2678                 ret = ocfs2_et_root_journal_access(handle, et,
2679                                                    OCFS2_JOURNAL_ACCESS_WRITE);
2680                 if (ret) {
2681                         mlog_errno(ret);
2682                         goto out;
2683                 }
2684
2685                 del_right_subtree = 1;
2686         }
2687
2688         /*
2689          * Getting here with an empty extent in the right path implies
2690          * that it's the rightmost path and will be deleted.
2691          */
2692         BUG_ON(right_has_empty && !del_right_subtree);
2693
2694         ret = ocfs2_path_bh_journal_access(handle, INODE_CACHE(inode), right_path,
2695                                            subtree_index);
2696         if (ret) {
2697                 mlog_errno(ret);
2698                 goto out;
2699         }
2700
2701         for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
2702                 ret = ocfs2_path_bh_journal_access(handle, INODE_CACHE(inode),
2703                                                    right_path, i);
2704                 if (ret) {
2705                         mlog_errno(ret);
2706                         goto out;
2707                 }
2708
2709                 ret = ocfs2_path_bh_journal_access(handle, INODE_CACHE(inode),
2710                                                    left_path, i);
2711                 if (ret) {
2712                         mlog_errno(ret);
2713                         goto out;
2714                 }
2715         }
2716
2717         if (!right_has_empty) {
2718                 /*
2719                  * Only do this if we're moving a real
2720                  * record. Otherwise, the action is delayed until
2721                  * after removal of the right path in which case we
2722                  * can do a simple shift to remove the empty extent.
2723                  */
2724                 ocfs2_rotate_leaf(left_leaf_el, &right_leaf_el->l_recs[0]);
2725                 memset(&right_leaf_el->l_recs[0], 0,
2726                        sizeof(struct ocfs2_extent_rec));
2727         }
2728         if (eb->h_next_leaf_blk == 0ULL) {
2729                 /*
2730                  * Move recs over to get rid of empty extent, decrease
2731                  * next_free. This is allowed to remove the last
2732                  * extent in our leaf (setting l_next_free_rec to
2733                  * zero) - the delete code below won't care.
2734                  */
2735                 ocfs2_remove_empty_extent(right_leaf_el);
2736         }
2737
2738         ret = ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2739         if (ret)
2740                 mlog_errno(ret);
2741         ret = ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
2742         if (ret)
2743                 mlog_errno(ret);
2744
2745         if (del_right_subtree) {
2746                 ocfs2_unlink_subtree(inode, handle, left_path, right_path,
2747                                      subtree_index, dealloc);
2748                 ret = ocfs2_update_edge_lengths(inode, handle, subtree_index,
2749                                                 left_path);
2750                 if (ret) {
2751                         mlog_errno(ret);
2752                         goto out;
2753                 }
2754
2755                 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2756                 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
2757
2758                 /*
2759                  * Removal of the extent in the left leaf was skipped
2760                  * above so we could delete the right path
2761                  * 1st.
2762                  */
2763                 if (right_has_empty)
2764                         ocfs2_remove_empty_extent(left_leaf_el);
2765
2766                 ret = ocfs2_journal_dirty(handle, et_root_bh);
2767                 if (ret)
2768                         mlog_errno(ret);
2769
2770                 *deleted = 1;
2771         } else
2772                 ocfs2_complete_edge_insert(inode, handle, left_path, right_path,
2773                                            subtree_index);
2774
2775 out:
2776         return ret;
2777 }
2778
2779 /*
2780  * Given a full path, determine what cpos value would return us a path
2781  * containing the leaf immediately to the right of the current one.
2782  *
2783  * Will return zero if the path passed in is already the rightmost path.
2784  *
2785  * This looks similar, but is subtly different to
2786  * ocfs2_find_cpos_for_left_leaf().
2787  */
2788 static int ocfs2_find_cpos_for_right_leaf(struct super_block *sb,
2789                                           struct ocfs2_path *path, u32 *cpos)
2790 {
2791         int i, j, ret = 0;
2792         u64 blkno;
2793         struct ocfs2_extent_list *el;
2794
2795         *cpos = 0;
2796
2797         if (path->p_tree_depth == 0)
2798                 return 0;
2799
2800         blkno = path_leaf_bh(path)->b_blocknr;
2801
2802         /* Start at the tree node just above the leaf and work our way up. */
2803         i = path->p_tree_depth - 1;
2804         while (i >= 0) {
2805                 int next_free;
2806
2807                 el = path->p_node[i].el;
2808
2809                 /*
2810                  * Find the extent record just after the one in our
2811                  * path.
2812                  */
2813                 next_free = le16_to_cpu(el->l_next_free_rec);
2814                 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
2815                         if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
2816                                 if (j == (next_free - 1)) {
2817                                         if (i == 0) {
2818                                                 /*
2819                                                  * We've determined that the
2820                                                  * path specified is already
2821                                                  * the rightmost one - return a
2822                                                  * cpos of zero.
2823                                                  */
2824                                                 goto out;
2825                                         }
2826                                         /*
2827                                          * The rightmost record points to our
2828                                          * leaf - we need to travel up the
2829                                          * tree one level.
2830                                          */
2831                                         goto next_node;
2832                                 }
2833
2834                                 *cpos = le32_to_cpu(el->l_recs[j + 1].e_cpos);
2835                                 goto out;
2836                         }
2837                 }
2838
2839                 /*
2840                  * If we got here, we never found a valid node where
2841                  * the tree indicated one should be.
2842                  */
2843                 ocfs2_error(sb,
2844                             "Invalid extent tree at extent block %llu\n",
2845                             (unsigned long long)blkno);
2846                 ret = -EROFS;
2847                 goto out;
2848
2849 next_node:
2850                 blkno = path->p_node[i].bh->b_blocknr;
2851                 i--;
2852         }
2853
2854 out:
2855         return ret;
2856 }
2857
2858 static int ocfs2_rotate_rightmost_leaf_left(struct inode *inode,
2859                                             handle_t *handle,
2860                                             struct ocfs2_path *path)
2861 {
2862         int ret;
2863         struct buffer_head *bh = path_leaf_bh(path);
2864         struct ocfs2_extent_list *el = path_leaf_el(path);
2865
2866         if (!ocfs2_is_empty_extent(&el->l_recs[0]))
2867                 return 0;
2868
2869         ret = ocfs2_path_bh_journal_access(handle, INODE_CACHE(inode), path,
2870                                            path_num_items(path) - 1);
2871         if (ret) {
2872                 mlog_errno(ret);
2873                 goto out;
2874         }
2875
2876         ocfs2_remove_empty_extent(el);
2877
2878         ret = ocfs2_journal_dirty(handle, bh);
2879         if (ret)
2880                 mlog_errno(ret);
2881
2882 out:
2883         return ret;
2884 }
2885
2886 static int __ocfs2_rotate_tree_left(struct inode *inode,
2887                                     handle_t *handle, int orig_credits,
2888                                     struct ocfs2_path *path,
2889                                     struct ocfs2_cached_dealloc_ctxt *dealloc,
2890                                     struct ocfs2_path **empty_extent_path,
2891                                     struct ocfs2_extent_tree *et)
2892 {
2893         int ret, subtree_root, deleted;
2894         u32 right_cpos;
2895         struct ocfs2_path *left_path = NULL;
2896         struct ocfs2_path *right_path = NULL;
2897
2898         BUG_ON(!ocfs2_is_empty_extent(&(path_leaf_el(path)->l_recs[0])));
2899
2900         *empty_extent_path = NULL;
2901
2902         ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, path,
2903                                              &right_cpos);
2904         if (ret) {
2905                 mlog_errno(ret);
2906                 goto out;
2907         }
2908
2909         left_path = ocfs2_new_path_from_path(path);
2910         if (!left_path) {
2911                 ret = -ENOMEM;
2912                 mlog_errno(ret);
2913                 goto out;
2914         }
2915
2916         ocfs2_cp_path(left_path, path);
2917
2918         right_path = ocfs2_new_path_from_path(path);
2919         if (!right_path) {
2920                 ret = -ENOMEM;
2921                 mlog_errno(ret);
2922                 goto out;
2923         }
2924
2925         while (right_cpos) {
2926                 ret = ocfs2_find_path(inode, right_path, right_cpos);
2927                 if (ret) {
2928                         mlog_errno(ret);
2929                         goto out;
2930                 }
2931
2932                 subtree_root = ocfs2_find_subtree_root(inode, left_path,
2933                                                        right_path);
2934
2935                 mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n",
2936                      subtree_root,
2937                      (unsigned long long)
2938                      right_path->p_node[subtree_root].bh->b_blocknr,
2939                      right_path->p_tree_depth);
2940
2941                 ret = ocfs2_extend_rotate_transaction(handle, subtree_root,
2942                                                       orig_credits, left_path);
2943                 if (ret) {
2944                         mlog_errno(ret);
2945                         goto out;
2946                 }
2947
2948                 /*
2949                  * Caller might still want to make changes to the
2950                  * tree root, so re-add it to the journal here.
2951                  */
2952                 ret = ocfs2_path_bh_journal_access(handle, INODE_CACHE(inode),
2953                                                    left_path, 0);
2954                 if (ret) {
2955                         mlog_errno(ret);
2956                         goto out;
2957                 }
2958
2959                 ret = ocfs2_rotate_subtree_left(inode, handle, left_path,
2960                                                 right_path, subtree_root,
2961                                                 dealloc, &deleted, et);
2962                 if (ret == -EAGAIN) {
2963                         /*
2964                          * The rotation has to temporarily stop due to
2965                          * the right subtree having an empty
2966                          * extent. Pass it back to the caller for a
2967                          * fixup.
2968                          */
2969                         *empty_extent_path = right_path;
2970                         right_path = NULL;
2971                         goto out;
2972                 }
2973                 if (ret) {
2974                         mlog_errno(ret);
2975                         goto out;
2976                 }
2977
2978                 /*
2979                  * The subtree rotate might have removed records on
2980                  * the rightmost edge. If so, then rotation is
2981                  * complete.
2982                  */
2983                 if (deleted)
2984                         break;
2985
2986                 ocfs2_mv_path(left_path, right_path);
2987
2988                 ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, left_path,
2989                                                      &right_cpos);
2990                 if (ret) {
2991                         mlog_errno(ret);
2992                         goto out;
2993                 }
2994         }
2995
2996 out:
2997         ocfs2_free_path(right_path);
2998         ocfs2_free_path(left_path);
2999
3000         return ret;
3001 }
3002
3003 static int ocfs2_remove_rightmost_path(struct inode *inode, handle_t *handle,
3004                                 struct ocfs2_path *path,
3005                                 struct ocfs2_cached_dealloc_ctxt *dealloc,
3006                                 struct ocfs2_extent_tree *et)
3007 {
3008         int ret, subtree_index;
3009         u32 cpos;
3010         struct ocfs2_path *left_path = NULL;
3011         struct ocfs2_extent_block *eb;
3012         struct ocfs2_extent_list *el;
3013
3014
3015         ret = ocfs2_et_sanity_check(inode, et);
3016         if (ret)
3017                 goto out;
3018         /*
3019          * There's two ways we handle this depending on
3020          * whether path is the only existing one.
3021          */
3022         ret = ocfs2_extend_rotate_transaction(handle, 0,
3023                                               handle->h_buffer_credits,
3024                                               path);
3025         if (ret) {
3026                 mlog_errno(ret);
3027                 goto out;
3028         }
3029
3030         ret = ocfs2_journal_access_path(et->et_ci, handle, path);
3031         if (ret) {
3032                 mlog_errno(ret);
3033                 goto out;
3034         }
3035
3036         ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci),
3037                                             path, &cpos);
3038         if (ret) {
3039                 mlog_errno(ret);
3040                 goto out;
3041         }
3042
3043         if (cpos) {
3044                 /*
3045                  * We have a path to the left of this one - it needs
3046                  * an update too.
3047                  */
3048                 left_path = ocfs2_new_path_from_path(path);
3049                 if (!left_path) {
3050                         ret = -ENOMEM;
3051                         mlog_errno(ret);
3052                         goto out;
3053                 }
3054
3055                 ret = ocfs2_find_path(inode, left_path, cpos);
3056                 if (ret) {
3057                         mlog_errno(ret);
3058                         goto out;
3059                 }
3060
3061                 ret = ocfs2_journal_access_path(et->et_ci, handle, left_path);
3062                 if (ret) {
3063                         mlog_errno(ret);
3064                         goto out;
3065                 }
3066
3067                 subtree_index = ocfs2_find_subtree_root(inode, left_path, path);
3068
3069                 ocfs2_unlink_subtree(inode, handle, left_path, path,
3070                                      subtree_index, dealloc);
3071                 ret = ocfs2_update_edge_lengths(inode, handle, subtree_index,
3072                                                 left_path);
3073                 if (ret) {
3074                         mlog_errno(ret);
3075                         goto out;
3076                 }
3077
3078                 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
3079                 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
3080         } else {
3081                 /*
3082                  * 'path' is also the leftmost path which
3083                  * means it must be the only one. This gets
3084                  * handled differently because we want to
3085                  * revert the inode back to having extents
3086                  * in-line.
3087                  */
3088                 ocfs2_unlink_path(inode, handle, dealloc, path, 1);
3089
3090                 el = et->et_root_el;
3091                 el->l_tree_depth = 0;
3092                 el->l_next_free_rec = 0;
3093                 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
3094
3095                 ocfs2_et_set_last_eb_blk(et, 0);
3096         }
3097
3098         ocfs2_journal_dirty(handle, path_root_bh(path));
3099
3100 out:
3101         ocfs2_free_path(left_path);
3102         return ret;
3103 }
3104
3105 /*
3106  * Left rotation of btree records.
3107  *
3108  * In many ways, this is (unsurprisingly) the opposite of right
3109  * rotation. We start at some non-rightmost path containing an empty
3110  * extent in the leaf block. The code works its way to the rightmost
3111  * path by rotating records to the left in every subtree.
3112  *
3113  * This is used by any code which reduces the number of extent records
3114  * in a leaf. After removal, an empty record should be placed in the
3115  * leftmost list position.
3116  *
3117  * This won't handle a length update of the rightmost path records if
3118  * the rightmost tree leaf record is removed so the caller is
3119  * responsible for detecting and correcting that.
3120  */
3121 static int ocfs2_rotate_tree_left(struct inode *inode, handle_t *handle,
3122                                   struct ocfs2_path *path,
3123                                   struct ocfs2_cached_dealloc_ctxt *dealloc,
3124                                   struct ocfs2_extent_tree *et)
3125 {
3126         int ret, orig_credits = handle->h_buffer_credits;
3127         struct ocfs2_path *tmp_path = NULL, *restart_path = NULL;
3128         struct ocfs2_extent_block *eb;
3129         struct ocfs2_extent_list *el;
3130
3131         el = path_leaf_el(path);
3132         if (!ocfs2_is_empty_extent(&el->l_recs[0]))
3133                 return 0;
3134
3135         if (path->p_tree_depth == 0) {
3136 rightmost_no_delete:
3137                 /*
3138                  * Inline extents. This is trivially handled, so do
3139                  * it up front.
3140                  */
3141                 ret = ocfs2_rotate_rightmost_leaf_left(inode, handle,
3142                                                        path);
3143                 if (ret)
3144                         mlog_errno(ret);
3145                 goto out;
3146         }
3147
3148         /*
3149          * Handle rightmost branch now. There's several cases:
3150          *  1) simple rotation leaving records in there. That's trivial.
3151          *  2) rotation requiring a branch delete - there's no more
3152          *     records left. Two cases of this:
3153          *     a) There are branches to the left.
3154          *     b) This is also the leftmost (the only) branch.
3155          *
3156          *  1) is handled via ocfs2_rotate_rightmost_leaf_left()
3157          *  2a) we need the left branch so that we can update it with the unlink
3158          *  2b) we need to bring the inode back to inline extents.
3159          */
3160
3161         eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
3162         el = &eb->h_list;
3163         if (eb->h_next_leaf_blk == 0) {
3164                 /*
3165                  * This gets a bit tricky if we're going to delete the
3166                  * rightmost path. Get the other cases out of the way
3167                  * 1st.
3168                  */
3169                 if (le16_to_cpu(el->l_next_free_rec) > 1)
3170                         goto rightmost_no_delete;
3171
3172                 if (le16_to_cpu(el->l_next_free_rec) == 0) {
3173                         ret = -EIO;
3174                         ocfs2_error(inode->i_sb,
3175                                     "Inode %llu has empty extent block at %llu",
3176                                     (unsigned long long)OCFS2_I(inode)->ip_blkno,
3177                                     (unsigned long long)le64_to_cpu(eb->h_blkno));
3178                         goto out;
3179                 }
3180
3181                 /*
3182                  * XXX: The caller can not trust "path" any more after
3183                  * this as it will have been deleted. What do we do?
3184                  *
3185                  * In theory the rotate-for-merge code will never get
3186                  * here because it'll always ask for a rotate in a
3187                  * nonempty list.
3188                  */
3189
3190                 ret = ocfs2_remove_rightmost_path(inode, handle, path,
3191                                                   dealloc, et);
3192                 if (ret)
3193                         mlog_errno(ret);
3194                 goto out;
3195         }
3196
3197         /*
3198          * Now we can loop, remembering the path we get from -EAGAIN
3199          * and restarting from there.
3200          */
3201 try_rotate:
3202         ret = __ocfs2_rotate_tree_left(inode, handle, orig_credits, path,
3203                                        dealloc, &restart_path, et);
3204         if (ret && ret != -EAGAIN) {
3205                 mlog_errno(ret);
3206                 goto out;
3207         }
3208
3209         while (ret == -EAGAIN) {
3210                 tmp_path = restart_path;
3211                 restart_path = NULL;
3212
3213                 ret = __ocfs2_rotate_tree_left(inode, handle, orig_credits,
3214                                                tmp_path, dealloc,
3215                                                &restart_path, et);
3216                 if (ret && ret != -EAGAIN) {
3217                         mlog_errno(ret);
3218                         goto out;
3219                 }
3220
3221                 ocfs2_free_path(tmp_path);
3222                 tmp_path = NULL;
3223
3224                 if (ret == 0)
3225                         goto try_rotate;
3226         }
3227
3228 out:
3229         ocfs2_free_path(tmp_path);
3230         ocfs2_free_path(restart_path);
3231         return ret;
3232 }
3233
3234 static void ocfs2_cleanup_merge(struct ocfs2_extent_list *el,
3235                                 int index)
3236 {
3237         struct ocfs2_extent_rec *rec = &el->l_recs[index];
3238         unsigned int size;
3239
3240         if (rec->e_leaf_clusters == 0) {
3241                 /*
3242                  * We consumed all of the merged-from record. An empty
3243                  * extent cannot exist anywhere but the 1st array
3244                  * position, so move things over if the merged-from
3245                  * record doesn't occupy that position.
3246                  *
3247                  * This creates a new empty extent so the caller
3248                  * should be smart enough to have removed any existing
3249                  * ones.
3250                  */
3251                 if (index > 0) {
3252                         BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
3253                         size = index * sizeof(struct ocfs2_extent_rec);
3254                         memmove(&el->l_recs[1], &el->l_recs[0], size);
3255                 }
3256
3257                 /*
3258                  * Always memset - the caller doesn't check whether it
3259                  * created an empty extent, so there could be junk in
3260                  * the other fields.
3261                  */
3262                 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
3263         }
3264 }
3265
3266 static int ocfs2_get_right_path(struct inode *inode,
3267                                 struct ocfs2_path *left_path,
3268                                 struct ocfs2_path **ret_right_path)
3269 {
3270         int ret;
3271         u32 right_cpos;
3272         struct ocfs2_path *right_path = NULL;
3273         struct ocfs2_extent_list *left_el;
3274
3275         *ret_right_path = NULL;
3276
3277         /* This function shouldn't be called for non-trees. */
3278         BUG_ON(left_path->p_tree_depth == 0);
3279
3280         left_el = path_leaf_el(left_path);
3281         BUG_ON(left_el->l_next_free_rec != left_el->l_count);
3282
3283         ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, left_path,
3284                                              &right_cpos);
3285         if (ret) {
3286                 mlog_errno(ret);
3287                 goto out;
3288         }
3289
3290         /* This function shouldn't be called for the rightmost leaf. */
3291         BUG_ON(right_cpos == 0);
3292
3293         right_path = ocfs2_new_path_from_path(left_path);
3294         if (!right_path) {
3295                 ret = -ENOMEM;
3296                 mlog_errno(ret);
3297                 goto out;
3298         }
3299
3300         ret = ocfs2_find_path(inode, right_path, right_cpos);
3301         if (ret) {
3302                 mlog_errno(ret);
3303                 goto out;
3304         }
3305
3306         *ret_right_path = right_path;
3307 out:
3308         if (ret)
3309                 ocfs2_free_path(right_path);
3310         return ret;
3311 }
3312
3313 /*
3314  * Remove split_rec clusters from the record at index and merge them
3315  * onto the beginning of the record "next" to it.
3316  * For index < l_count - 1, the next means the extent rec at index + 1.
3317  * For index == l_count - 1, the "next" means the 1st extent rec of the
3318  * next extent block.
3319  */
3320 static int ocfs2_merge_rec_right(struct inode *inode,
3321                                  struct ocfs2_path *left_path,
3322                                  handle_t *handle,
3323                                  struct ocfs2_extent_rec *split_rec,
3324                                  int index)
3325 {
3326         int ret, next_free, i;
3327         unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
3328         struct ocfs2_extent_rec *left_rec;
3329         struct ocfs2_extent_rec *right_rec;
3330         struct ocfs2_extent_list *right_el;
3331         struct ocfs2_path *right_path = NULL;
3332         int subtree_index = 0;
3333         struct ocfs2_extent_list *el = path_leaf_el(left_path);
3334         struct buffer_head *bh = path_leaf_bh(left_path);
3335         struct buffer_head *root_bh = NULL;
3336
3337         BUG_ON(index >= le16_to_cpu(el->l_next_free_rec));
3338         left_rec = &el->l_recs[index];
3339
3340         if (index == le16_to_cpu(el->l_next_free_rec) - 1 &&
3341             le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count)) {
3342                 /* we meet with a cross extent block merge. */
3343                 ret = ocfs2_get_right_path(inode, left_path, &right_path);
3344                 if (ret) {
3345                         mlog_errno(ret);
3346                         goto out;
3347                 }
3348
3349                 right_el = path_leaf_el(right_path);
3350                 next_free = le16_to_cpu(right_el->l_next_free_rec);
3351                 BUG_ON(next_free <= 0);
3352                 right_rec = &right_el->l_recs[0];
3353                 if (ocfs2_is_empty_extent(right_rec)) {
3354                         BUG_ON(next_free <= 1);
3355                         right_rec = &right_el->l_recs[1];
3356                 }
3357
3358                 BUG_ON(le32_to_cpu(left_rec->e_cpos) +
3359                        le16_to_cpu(left_rec->e_leaf_clusters) !=
3360                        le32_to_cpu(right_rec->e_cpos));
3361
3362                 subtree_index = ocfs2_find_subtree_root(inode,
3363                                                         left_path, right_path);
3364
3365                 ret = ocfs2_extend_rotate_transaction(handle, subtree_index,
3366                                                       handle->h_buffer_credits,
3367                                                       right_path);
3368                 if (ret) {
3369                         mlog_errno(ret);
3370                         goto out;
3371                 }
3372
3373                 root_bh = left_path->p_node[subtree_index].bh;
3374                 BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
3375
3376                 ret = ocfs2_path_bh_journal_access(handle, INODE_CACHE(inode), right_path,
3377                                                    subtree_index);
3378                 if (ret) {
3379                         mlog_errno(ret);
3380                         goto out;
3381                 }
3382
3383                 for (i = subtree_index + 1;
3384                      i < path_num_items(right_path); i++) {
3385                         ret = ocfs2_path_bh_journal_access(handle, INODE_CACHE(inode),
3386                                                            right_path, i);
3387                         if (ret) {
3388                                 mlog_errno(ret);
3389                                 goto out;
3390                         }
3391
3392                         ret = ocfs2_path_bh_journal_access(handle, INODE_CACHE(inode),
3393                                                            left_path, i);
3394                         if (ret) {
3395                                 mlog_errno(ret);
3396                                 goto out;
3397                         }
3398                 }
3399
3400         } else {
3401                 BUG_ON(index == le16_to_cpu(el->l_next_free_rec) - 1);
3402                 right_rec = &el->l_recs[index + 1];
3403         }
3404
3405         ret = ocfs2_path_bh_journal_access(handle, INODE_CACHE(inode), left_path,
3406                                            path_num_items(left_path) - 1);
3407         if (ret) {
3408                 mlog_errno(ret);
3409                 goto out;
3410         }
3411
3412         le16_add_cpu(&left_rec->e_leaf_clusters, -split_clusters);
3413
3414         le32_add_cpu(&right_rec->e_cpos, -split_clusters);
3415         le64_add_cpu(&right_rec->e_blkno,
3416                      -ocfs2_clusters_to_blocks(inode->i_sb, split_clusters));
3417         le16_add_cpu(&right_rec->e_leaf_clusters, split_clusters);
3418
3419         ocfs2_cleanup_merge(el, index);
3420
3421         ret = ocfs2_journal_dirty(handle, bh);
3422         if (ret)
3423                 mlog_errno(ret);
3424
3425         if (right_path) {
3426                 ret = ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
3427                 if (ret)
3428                         mlog_errno(ret);
3429
3430                 ocfs2_complete_edge_insert(inode, handle, left_path,
3431                                            right_path, subtree_index);
3432         }
3433 out:
3434         if (right_path)
3435                 ocfs2_free_path(right_path);
3436         return ret;
3437 }
3438
3439 static int ocfs2_get_left_path(struct inode *inode,
3440                                struct ocfs2_path *right_path,
3441                                struct ocfs2_path **ret_left_path)
3442 {
3443         int ret;
3444         u32 left_cpos;
3445         struct ocfs2_path *left_path = NULL;
3446
3447         *ret_left_path = NULL;
3448
3449         /* This function shouldn't be called for non-trees. */
3450         BUG_ON(right_path->p_tree_depth == 0);
3451
3452         ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb,
3453                                             right_path, &left_cpos);
3454         if (ret) {
3455                 mlog_errno(ret);
3456                 goto out;
3457         }
3458
3459         /* This function shouldn't be called for the leftmost leaf. */
3460         BUG_ON(left_cpos == 0);
3461
3462         left_path = ocfs2_new_path_from_path(right_path);
3463         if (!left_path) {
3464                 ret = -ENOMEM;
3465                 mlog_errno(ret);
3466                 goto out;
3467         }
3468
3469         ret = ocfs2_find_path(inode, left_path, left_cpos);
3470         if (ret) {
3471                 mlog_errno(ret);
3472                 goto out;
3473         }
3474
3475         *ret_left_path = left_path;
3476 out:
3477         if (ret)
3478                 ocfs2_free_path(left_path);
3479         return ret;
3480 }
3481
3482 /*
3483  * Remove split_rec clusters from the record at index and merge them
3484  * onto the tail of the record "before" it.
3485  * For index > 0, the "before" means the extent rec at index - 1.
3486  *
3487  * For index == 0, the "before" means the last record of the previous
3488  * extent block. And there is also a situation that we may need to
3489  * remove the rightmost leaf extent block in the right_path and change
3490  * the right path to indicate the new rightmost path.
3491  */
3492 static int ocfs2_merge_rec_left(struct inode *inode,
3493                                 struct ocfs2_path *right_path,
3494                                 handle_t *handle,
3495                                 struct ocfs2_extent_rec *split_rec,
3496                                 struct ocfs2_cached_dealloc_ctxt *dealloc,
3497                                 struct ocfs2_extent_tree *et,
3498                                 int index)
3499 {
3500         int ret, i, subtree_index = 0, has_empty_extent = 0;
3501         unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
3502         struct ocfs2_extent_rec *left_rec;
3503         struct ocfs2_extent_rec *right_rec;
3504         struct ocfs2_extent_list *el = path_leaf_el(right_path);
3505         struct buffer_head *bh = path_leaf_bh(right_path);
3506         struct buffer_head *root_bh = NULL;
3507         struct ocfs2_path *left_path = NULL;
3508         struct ocfs2_extent_list *left_el;
3509
3510         BUG_ON(index < 0);
3511
3512         right_rec = &el->l_recs[index];
3513         if (index == 0) {
3514                 /* we meet with a cross extent block merge. */
3515                 ret = ocfs2_get_left_path(inode, right_path, &left_path);
3516                 if (ret) {
3517                         mlog_errno(ret);
3518                         goto out;
3519                 }
3520
3521                 left_el = path_leaf_el(left_path);
3522                 BUG_ON(le16_to_cpu(left_el->l_next_free_rec) !=
3523                        le16_to_cpu(left_el->l_count));
3524
3525                 left_rec = &left_el->l_recs[
3526                                 le16_to_cpu(left_el->l_next_free_rec) - 1];
3527                 BUG_ON(le32_to_cpu(left_rec->e_cpos) +
3528                        le16_to_cpu(left_rec->e_leaf_clusters) !=
3529                        le32_to_cpu(split_rec->e_cpos));
3530
3531                 subtree_index = ocfs2_find_subtree_root(inode,
3532                                                         left_path, right_path);
3533
3534                 ret = ocfs2_extend_rotate_transaction(handle, subtree_index,
3535                                                       handle->h_buffer_credits,
3536                                                       left_path);
3537                 if (ret) {
3538                         mlog_errno(ret);
3539                         goto out;
3540                 }
3541
3542                 root_bh = left_path->p_node[subtree_index].bh;
3543                 BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
3544
3545                 ret = ocfs2_path_bh_journal_access(handle, INODE_CACHE(inode), right_path,
3546                                                    subtree_index);
3547                 if (ret) {
3548                         mlog_errno(ret);
3549                         goto out;
3550                 }
3551
3552                 for (i = subtree_index + 1;
3553                      i < path_num_items(right_path); i++) {
3554                         ret = ocfs2_path_bh_journal_access(handle, INODE_CACHE(inode),
3555                                                            right_path, i);
3556                         if (ret) {
3557                                 mlog_errno(ret);
3558                                 goto out;
3559                         }
3560
3561                         ret = ocfs2_path_bh_journal_access(handle, INODE_CACHE(inode),
3562                                                            left_path, i);
3563                         if (ret) {
3564                                 mlog_errno(ret);
3565                                 goto out;
3566                         }
3567                 }
3568         } else {
3569                 left_rec = &el->l_recs[index - 1];
3570                 if (ocfs2_is_empty_extent(&el->l_recs[0]))
3571                         has_empty_extent = 1;
3572         }
3573
3574         ret = ocfs2_path_bh_journal_access(handle, INODE_CACHE(inode), right_path,
3575                                            path_num_items(right_path) - 1);
3576         if (ret) {
3577                 mlog_errno(ret);
3578                 goto out;
3579         }
3580
3581         if (has_empty_extent && index == 1) {
3582                 /*
3583                  * The easy case - we can just plop the record right in.
3584                  */
3585                 *left_rec = *split_rec;
3586
3587                 has_empty_extent = 0;
3588         } else
3589                 le16_add_cpu(&left_rec->e_leaf_clusters, split_clusters);
3590
3591         le32_add_cpu(&right_rec->e_cpos, split_clusters);
3592         le64_add_cpu(&right_rec->e_blkno,
3593                      ocfs2_clusters_to_blocks(inode->i_sb, split_clusters));
3594         le16_add_cpu(&right_rec->e_leaf_clusters, -split_clusters);
3595
3596         ocfs2_cleanup_merge(el, index);
3597
3598         ret = ocfs2_journal_dirty(handle, bh);
3599         if (ret)
3600                 mlog_errno(ret);
3601
3602         if (left_path) {
3603                 ret = ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
3604                 if (ret)
3605                         mlog_errno(ret);
3606
3607                 /*
3608                  * In the situation that the right_rec is empty and the extent
3609                  * block is empty also,  ocfs2_complete_edge_insert can't handle
3610                  * it and we need to delete the right extent block.
3611                  */
3612                 if (le16_to_cpu(right_rec->e_leaf_clusters) == 0 &&
3613                     le16_to_cpu(el->l_next_free_rec) == 1) {
3614
3615                         ret = ocfs2_remove_rightmost_path(inode, handle,
3616                                                           right_path,
3617                                                           dealloc, et);
3618                         if (ret) {
3619                                 mlog_errno(ret);
3620                                 goto out;
3621                         }
3622
3623                         /* Now the rightmost extent block has been deleted.
3624                          * So we use the new rightmost path.
3625                          */
3626                         ocfs2_mv_path(right_path, left_path);
3627                         left_path = NULL;
3628                 } else
3629                         ocfs2_complete_edge_insert(inode, handle, left_path,
3630                                                    right_path, subtree_index);
3631         }
3632 out:
3633         if (left_path)
3634                 ocfs2_free_path(left_path);
3635         return ret;
3636 }
3637
3638 static int ocfs2_try_to_merge_extent(struct inode *inode,
3639                                      handle_t *handle,
3640                                      struct ocfs2_path *path,
3641                                      int split_index,
3642                                      struct ocfs2_extent_rec *split_rec,
3643                                      struct ocfs2_cached_dealloc_ctxt *dealloc,
3644                                      struct ocfs2_merge_ctxt *ctxt,
3645                                      struct ocfs2_extent_tree *et)
3646
3647 {
3648         int ret = 0;
3649         struct ocfs2_extent_list *el = path_leaf_el(path);
3650         struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
3651
3652         BUG_ON(ctxt->c_contig_type == CONTIG_NONE);
3653
3654         if (ctxt->c_split_covers_rec && ctxt->c_has_empty_extent) {
3655                 /*
3656                  * The merge code will need to create an empty
3657                  * extent to take the place of the newly
3658                  * emptied slot. Remove any pre-existing empty
3659                  * extents - having more than one in a leaf is
3660                  * illegal.
3661                  */
3662                 ret = ocfs2_rotate_tree_left(inode, handle, path,
3663                                              dealloc, et);
3664                 if (ret) {
3665                         mlog_errno(ret);
3666                         goto out;
3667                 }
3668                 split_index--;
3669                 rec = &el->l_recs[split_index];
3670         }
3671
3672         if (ctxt->c_contig_type == CONTIG_LEFTRIGHT) {
3673                 /*
3674                  * Left-right contig implies this.
3675                  */
3676                 BUG_ON(!ctxt->c_split_covers_rec);
3677
3678                 /*
3679                  * Since the leftright insert always covers the entire
3680                  * extent, this call will delete the insert record
3681                  * entirely, resulting in an empty extent record added to
3682                  * the extent block.
3683                  *
3684                  * Since the adding of an empty extent shifts
3685                  * everything back to the right, there's no need to
3686                  * update split_index here.
3687                  *
3688                  * When the split_index is zero, we need to merge it to the
3689                  * prevoius extent block. It is more efficient and easier
3690                  * if we do merge_right first and merge_left later.
3691                  */
3692                 ret = ocfs2_merge_rec_right(inode, path,
3693                                             handle, split_rec,
3694                                             split_index);
3695                 if (ret) {
3696                         mlog_errno(ret);
3697                         goto out;
3698                 }
3699
3700                 /*
3701                  * We can only get this from logic error above.
3702                  */
3703                 BUG_ON(!ocfs2_is_empty_extent(&el->l_recs[0]));
3704
3705                 /* The merge left us with an empty extent, remove it. */
3706                 ret = ocfs2_rotate_tree_left(inode, handle, path,
3707                                              dealloc, et);
3708                 if (ret) {
3709                         mlog_errno(ret);
3710                         goto out;
3711                 }
3712
3713                 rec = &el->l_recs[split_index];
3714
3715                 /*
3716                  * Note that we don't pass split_rec here on purpose -
3717                  * we've merged it into the rec already.
3718                  */
3719                 ret = ocfs2_merge_rec_left(inode, path,
3720                                            handle, rec,
3721                                            dealloc, et,
3722                                            split_index);
3723
3724                 if (ret) {
3725                         mlog_errno(ret);
3726                         goto out;
3727                 }
3728
3729                 ret = ocfs2_rotate_tree_left(inode, handle, path,
3730                                              dealloc, et);
3731                 /*
3732                  * Error from this last rotate is not critical, so
3733                  * print but don't bubble it up.
3734                  */
3735                 if (ret)
3736                         mlog_errno(ret);
3737                 ret = 0;
3738         } else {
3739                 /*
3740                  * Merge a record to the left or right.
3741                  *
3742                  * 'contig_type' is relative to the existing record,
3743                  * so for example, if we're "right contig", it's to
3744                  * the record on the left (hence the left merge).
3745                  */
3746                 if (ctxt->c_contig_type == CONTIG_RIGHT) {
3747                         ret = ocfs2_merge_rec_left(inode,
3748                                                    path,
3749                                                    handle, split_rec,
3750                                                    dealloc, et,
3751                                                    split_index);
3752                         if (ret) {
3753                                 mlog_errno(ret);
3754                                 goto out;
3755                         }
3756                 } else {
3757                         ret = ocfs2_merge_rec_right(inode,
3758                                                     path,
3759                                                     handle, split_rec,
3760                                                     split_index);
3761                         if (ret) {
3762                                 mlog_errno(ret);
3763                                 goto out;
3764                         }
3765                 }
3766
3767                 if (ctxt->c_split_covers_rec) {
3768                         /*
3769                          * The merge may have left an empty extent in
3770                          * our leaf. Try to rotate it away.
3771                          */
3772                         ret = ocfs2_rotate_tree_left(inode, handle, path,
3773                                                      dealloc, et);
3774                         if (ret)
3775                                 mlog_errno(ret);
3776                         ret = 0;
3777                 }
3778         }
3779
3780 out:
3781         return ret;
3782 }
3783
3784 static void ocfs2_subtract_from_rec(struct super_block *sb,
3785                                     enum ocfs2_split_type split,
3786                                     struct ocfs2_extent_rec *rec,
3787                                     struct ocfs2_extent_rec *split_rec)
3788 {
3789         u64 len_blocks;
3790
3791         len_blocks = ocfs2_clusters_to_blocks(sb,
3792                                 le16_to_cpu(split_rec->e_leaf_clusters));
3793
3794         if (split == SPLIT_LEFT) {
3795                 /*
3796                  * Region is on the left edge of the existing
3797                  * record.
3798                  */
3799                 le32_add_cpu(&rec->e_cpos,
3800                              le16_to_cpu(split_rec->e_leaf_clusters));
3801                 le64_add_cpu(&rec->e_blkno, len_blocks);
3802                 le16_add_cpu(&rec->e_leaf_clusters,
3803                              -le16_to_cpu(split_rec->e_leaf_clusters));
3804         } else {
3805                 /*
3806                  * Region is on the right edge of the existing
3807                  * record.
3808                  */
3809                 le16_add_cpu(&rec->e_leaf_clusters,
3810                              -le16_to_cpu(split_rec->e_leaf_clusters));
3811         }
3812 }
3813
3814 /*
3815  * Do the final bits of extent record insertion at the target leaf
3816  * list. If this leaf is part of an allocation tree, it is assumed
3817  * that the tree above has been prepared.
3818  */
3819 static void ocfs2_insert_at_leaf(struct ocfs2_extent_rec *insert_rec,
3820                                  struct ocfs2_extent_list *el,
3821                                  struct ocfs2_insert_type *insert,
3822                                  struct inode *inode)
3823 {
3824         int i = insert->ins_contig_index;
3825         unsigned int range;
3826         struct ocfs2_extent_rec *rec;
3827
3828         BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
3829
3830         if (insert->ins_split != SPLIT_NONE) {
3831                 i = ocfs2_search_extent_list(el, le32_to_cpu(insert_rec->e_cpos));
3832                 BUG_ON(i == -1);
3833                 rec = &el->l_recs[i];
3834                 ocfs2_subtract_from_rec(inode->i_sb, insert->ins_split, rec,
3835                                         insert_rec);
3836                 goto rotate;
3837         }
3838
3839         /*
3840          * Contiguous insert - either left or right.
3841          */
3842         if (insert->ins_contig != CONTIG_NONE) {
3843                 rec = &el->l_recs[i];
3844                 if (insert->ins_contig == CONTIG_LEFT) {
3845                         rec->e_blkno = insert_rec->e_blkno;
3846                         rec->e_cpos = insert_rec->e_cpos;
3847                 }
3848                 le16_add_cpu(&rec->e_leaf_clusters,
3849                              le16_to_cpu(insert_rec->e_leaf_clusters));
3850                 return;
3851         }
3852
3853         /*
3854          * Handle insert into an empty leaf.
3855          */
3856         if (le16_to_cpu(el->l_next_free_rec) == 0 ||
3857             ((le16_to_cpu(el->l_next_free_rec) == 1) &&
3858              ocfs2_is_empty_extent(&el->l_recs[0]))) {
3859                 el->l_recs[0] = *insert_rec;
3860                 el->l_next_free_rec = cpu_to_le16(1);
3861                 return;
3862         }
3863
3864         /*
3865          * Appending insert.
3866          */
3867         if (insert->ins_appending == APPEND_TAIL) {
3868                 i = le16_to_cpu(el->l_next_free_rec) - 1;
3869                 rec = &el->l_recs[i];
3870                 range = le32_to_cpu(rec->e_cpos)
3871                         + le16_to_cpu(rec->e_leaf_clusters);
3872                 BUG_ON(le32_to_cpu(insert_rec->e_cpos) < range);
3873
3874                 mlog_bug_on_msg(le16_to_cpu(el->l_next_free_rec) >=
3875                                 le16_to_cpu(el->l_count),
3876                                 "inode %lu, depth %u, count %u, next free %u, "
3877                                 "rec.cpos %u, rec.clusters %u, "
3878                                 "insert.cpos %u, insert.clusters %u\n",
3879                                 inode->i_ino,
3880                                 le16_to_cpu(el->l_tree_depth),
3881                                 le16_to_cpu(el->l_count),
3882                                 le16_to_cpu(el->l_next_free_rec),
3883                                 le32_to_cpu(el->l_recs[i].e_cpos),
3884                                 le16_to_cpu(el->l_recs[i].e_leaf_clusters),
3885                                 le32_to_cpu(insert_rec->e_cpos),
3886                                 le16_to_cpu(insert_rec->e_leaf_clusters));
3887                 i++;
3888                 el->l_recs[i] = *insert_rec;
3889                 le16_add_cpu(&el->l_next_free_rec, 1);
3890                 return;
3891         }
3892
3893 rotate:
3894         /*
3895          * Ok, we have to rotate.
3896          *
3897          * At this point, it is safe to assume that inserting into an
3898          * empty leaf and appending to a leaf have both been handled
3899          * above.
3900          *
3901          * This leaf needs to have space, either by the empty 1st
3902          * extent record, or by virtue of an l_next_rec < l_count.
3903          */
3904         ocfs2_rotate_leaf(el, insert_rec);
3905 }
3906
3907 static void ocfs2_adjust_rightmost_records(struct inode *inode,
3908                                            handle_t *handle,
3909                                            struct ocfs2_path *path,
3910                                            struct ocfs2_extent_rec *insert_rec)
3911 {
3912         int ret, i, next_free;
3913         struct buffer_head *bh;
3914         struct ocfs2_extent_list *el;
3915         struct ocfs2_extent_rec *rec;
3916
3917         /*
3918          * Update everything except the leaf block.
3919          */
3920         for (i = 0; i < path->p_tree_depth; i++) {
3921                 bh = path->p_node[i].bh;
3922                 el = path->p_node[i].el;
3923
3924                 next_free = le16_to_cpu(el->l_next_free_rec);
3925                 if (next_free == 0) {
3926                         ocfs2_error(inode->i_sb,
3927                                     "Dinode %llu has a bad extent list",
3928                                     (unsigned long long)OCFS2_I(inode)->ip_blkno);
3929                         ret = -EIO;
3930                         return;
3931                 }
3932
3933                 rec = &el->l_recs[next_free - 1];
3934
3935                 rec->e_int_clusters = insert_rec->e_cpos;
3936                 le32_add_cpu(&rec->e_int_clusters,
3937                              le16_to_cpu(insert_rec->e_leaf_clusters));
3938                 le32_add_cpu(&rec->e_int_clusters,
3939                              -le32_to_cpu(rec->e_cpos));
3940
3941                 ret = ocfs2_journal_dirty(handle, bh);
3942                 if (ret)
3943                         mlog_errno(ret);
3944
3945         }
3946 }
3947
3948 static int ocfs2_append_rec_to_path(struct inode *inode, handle_t *handle,
3949                                     struct ocfs2_extent_rec *insert_rec,
3950                                     struct ocfs2_path *right_path,
3951                                     struct ocfs2_path **ret_left_path)
3952 {
3953         int ret, next_free;
3954         struct ocfs2_extent_list *el;
3955         struct ocfs2_path *left_path = NULL;
3956
3957         *ret_left_path = NULL;
3958
3959         /*
3960          * This shouldn't happen for non-trees. The extent rec cluster
3961          * count manipulation below only works for interior nodes.
3962          */
3963         BUG_ON(right_path->p_tree_depth == 0);
3964
3965         /*
3966          * If our appending insert is at the leftmost edge of a leaf,
3967          * then we might need to update the rightmost records of the
3968          * neighboring path.
3969          */
3970         el = path_leaf_el(right_path);
3971         next_free = le16_to_cpu(el->l_next_free_rec);
3972         if (next_free == 0 ||
3973             (next_free == 1 && ocfs2_is_empty_extent(&el->l_recs[0]))) {
3974                 u32 left_cpos;
3975
3976                 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path,
3977                                                     &left_cpos);
3978                 if (ret) {
3979                         mlog_errno(ret);
3980                         goto out;
3981                 }
3982
3983                 mlog(0, "Append may need a left path update. cpos: %u, "
3984                      "left_cpos: %u\n", le32_to_cpu(insert_rec->e_cpos),
3985                      left_cpos);
3986
3987                 /*
3988                  * No need to worry if the append is already in the
3989                  * leftmost leaf.
3990                  */
3991                 if (left_cpos) {
3992                         left_path = ocfs2_new_path_from_path(right_path);
3993                         if (!left_path) {
3994                                 ret = -ENOMEM;
3995                                 mlog_errno(ret);
3996                                 goto out;
3997                         }
3998
3999                         ret = ocfs2_find_path(inode, left_path, left_cpos);
4000                         if (ret) {
4001                                 mlog_errno(ret);
4002                                 goto out;
4003                         }
4004
4005                         /*
4006                          * ocfs2_insert_path() will pass the left_path to the
4007                          * journal for us.
4008                          */
4009                 }
4010         }
4011
4012         ret = ocfs2_journal_access_path(INODE_CACHE(inode), handle, right_path);
4013         if (ret) {
4014                 mlog_errno(ret);
4015                 goto out;
4016         }
4017
4018         ocfs2_adjust_rightmost_records(inode, handle, right_path, insert_rec);
4019
4020         *ret_left_path = left_path;
4021         ret = 0;
4022 out:
4023         if (ret != 0)
4024                 ocfs2_free_path(left_path);
4025
4026         return ret;
4027 }
4028
4029 static void ocfs2_split_record(struct inode *inode,
4030                                struct ocfs2_path *left_path,
4031                                struct ocfs2_path *right_path,
4032                                struct ocfs2_extent_rec *split_rec,
4033                                enum ocfs2_split_type split)
4034 {
4035         int index;
4036         u32 cpos = le32_to_cpu(split_rec->e_cpos);
4037         struct ocfs2_extent_list *left_el = NULL, *right_el, *insert_el, *el;
4038         struct ocfs2_extent_rec *rec, *tmprec;
4039
4040         right_el = path_leaf_el(right_path);
4041         if (left_path)
4042                 left_el = path_leaf_el(left_path);
4043
4044         el = right_el;
4045         insert_el = right_el;
4046         index = ocfs2_search_extent_list(el, cpos);
4047         if (index != -1) {
4048                 if (index == 0 && left_path) {
4049                         BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
4050
4051                         /*
4052                          * This typically means that the record
4053                          * started in the left path but moved to the
4054                          * right as a result of rotation. We either
4055                          * move the existing record to the left, or we
4056                          * do the later insert there.
4057                          *
4058                          * In this case, the left path should always
4059                          * exist as the rotate code will have passed
4060                          * it back for a post-insert update.
4061                          */
4062
4063                         if (split == SPLIT_LEFT) {
4064                                 /*
4065                                  * It's a left split. Since we know
4066                                  * that the rotate code gave us an
4067                                  * empty extent in the left path, we
4068                                  * can just do the insert there.
4069                                  */
4070                                 insert_el = left_el;
4071                         } else {
4072                                 /*
4073                                  * Right split - we have to move the
4074                                  * existing record over to the left
4075                                  * leaf. The insert will be into the
4076                                  * newly created empty extent in the
4077                                  * right leaf.
4078                                  */
4079                                 tmprec = &right_el->l_recs[index];
4080                                 ocfs2_rotate_leaf(left_el, tmprec);
4081                                 el = left_el;
4082
4083                                 memset(tmprec, 0, sizeof(*tmprec));
4084                                 index = ocfs2_search_extent_list(left_el, cpos);
4085                                 BUG_ON(index == -1);
4086                         }
4087                 }
4088         } else {
4089                 BUG_ON(!left_path);
4090                 BUG_ON(!ocfs2_is_empty_extent(&left_el->l_recs[0]));
4091                 /*
4092                  * Left path is easy - we can just allow the insert to
4093                  * happen.
4094                  */
4095                 el = left_el;
4096                 insert_el = left_el;
4097                 index = ocfs2_search_extent_list(el, cpos);
4098                 BUG_ON(index == -1);
4099         }
4100
4101         rec = &el->l_recs[index];
4102         ocfs2_subtract_from_rec(inode->i_sb, split, rec, split_rec);
4103         ocfs2_rotate_leaf(insert_el, split_rec);
4104 }
4105
4106 /*
4107  * This function only does inserts on an allocation b-tree. For tree
4108  * depth = 0, ocfs2_insert_at_leaf() is called directly.
4109  *
4110  * right_path is the path we want to do the actual insert
4111  * in. left_path should only be passed in if we need to update that
4112  * portion of the tree after an edge insert.
4113  */
4114 static int ocfs2_insert_path(struct inode *inode,
4115                              handle_t *handle,
4116                              struct ocfs2_path *left_path,
4117                              struct ocfs2_path *right_path,
4118                              struct ocfs2_extent_rec *insert_rec,
4119                              struct ocfs2_insert_type *insert)
4120 {
4121         int ret, subtree_index;
4122         struct buffer_head *leaf_bh = path_leaf_bh(right_path);
4123
4124         if (left_path) {
4125                 int credits = handle->h_buffer_credits;
4126
4127                 /*
4128                  * There's a chance that left_path got passed back to
4129                  * us without being accounted for in the
4130                  * journal. Extend our transaction here to be sure we
4131                  * can change those blocks.
4132                  */
4133                 credits += left_path->p_tree_depth;
4134
4135                 ret = ocfs2_extend_trans(handle, credits);
4136                 if (ret < 0) {
4137                         mlog_errno(ret);
4138                         goto out;
4139                 }
4140
4141                 ret = ocfs2_journal_access_path(INODE_CACHE(inode), handle, left_path);
4142                 if (ret < 0) {
4143                         mlog_errno(ret);
4144                         goto out;
4145                 }
4146         }
4147
4148         /*
4149          * Pass both paths to the journal. The majority of inserts
4150          * will be touching all components anyway.
4151          */
4152         ret = ocfs2_journal_access_path(INODE_CACHE(inode), handle, right_path);
4153         if (ret < 0) {
4154                 mlog_errno(ret);
4155                 goto out;
4156         }
4157
4158         if (insert->ins_split != SPLIT_NONE) {
4159                 /*
4160                  * We could call ocfs2_insert_at_leaf() for some types
4161                  * of splits, but it's easier to just let one separate
4162                  * function sort it all out.
4163                  */
4164                 ocfs2_split_record(inode, left_path, right_path,
4165                                    insert_rec, insert->ins_split);
4166
4167                 /*
4168                  * Split might have modified either leaf and we don't
4169                  * have a guarantee that the later edge insert will
4170                  * dirty this for us.
4171                  */
4172                 if (left_path)
4173                         ret = ocfs2_journal_dirty(handle,
4174                                                   path_leaf_bh(left_path));
4175                         if (ret)
4176                                 mlog_errno(ret);
4177         } else
4178                 ocfs2_insert_at_leaf(insert_rec, path_leaf_el(right_path),
4179                                      insert, inode);
4180
4181         ret = ocfs2_journal_dirty(handle, leaf_bh);
4182         if (ret)
4183                 mlog_errno(ret);
4184
4185         if (left_path) {
4186                 /*
4187                  * The rotate code has indicated that we need to fix
4188                  * up portions of the tree after the insert.
4189                  *
4190                  * XXX: Should we extend the transaction here?
4191                  */
4192                 subtree_index = ocfs2_find_subtree_root(inode, left_path,
4193                                                         right_path);
4194                 ocfs2_complete_edge_insert(inode, handle, left_path,
4195                                            right_path, subtree_index);
4196         }
4197
4198         ret = 0;
4199 out:
4200         return ret;
4201 }
4202
4203 static int ocfs2_do_insert_extent(struct inode *inode,
4204                                   handle_t *handle,
4205                                   struct ocfs2_extent_tree *et,
4206                                   struct ocfs2_extent_rec *insert_rec,
4207                                   struct ocfs2_insert_type *type)
4208 {
4209         int ret, rotate = 0;
4210         u32 cpos;
4211         struct ocfs2_path *right_path = NULL;
4212         struct ocfs2_path *left_path = NULL;
4213         struct ocfs2_extent_list *el;
4214
4215         el = et->et_root_el;
4216
4217         ret = ocfs2_et_root_journal_access(handle, et,
4218                                            OCFS2_JOURNAL_ACCESS_WRITE);
4219         if (ret) {
4220                 mlog_errno(ret);
4221                 goto out;
4222         }
4223
4224         if (le16_to_cpu(el->l_tree_depth) == 0) {
4225                 ocfs2_insert_at_leaf(insert_rec, el, type, inode);
4226                 goto out_update_clusters;
4227         }
4228
4229         right_path = ocfs2_new_path_from_et(et);
4230         if (!right_path) {
4231                 ret = -ENOMEM;
4232                 mlog_errno(ret);
4233                 goto out;
4234         }
4235
4236         /*
4237          * Determine the path to start with. Rotations need the
4238          * rightmost path, everything else can go directly to the
4239          * target leaf.
4240          */
4241         cpos = le32_to_cpu(insert_rec->e_cpos);
4242         if (type->ins_appending == APPEND_NONE &&
4243             type->ins_contig == CONTIG_NONE) {
4244                 rotate = 1;
4245                 cpos = UINT_MAX;
4246         }
4247
4248         ret = ocfs2_find_path(inode, right_path, cpos);
4249         if (ret) {
4250                 mlog_errno(ret);
4251                 goto out;
4252         }
4253
4254         /*
4255          * Rotations and appends need special treatment - they modify
4256          * parts of the tree's above them.
4257          *
4258          * Both might pass back a path immediate to the left of the
4259          * one being inserted to. This will be cause
4260          * ocfs2_insert_path() to modify the rightmost records of
4261          * left_path to account for an edge insert.
4262          *
4263          * XXX: When modifying this code, keep in mind that an insert
4264          * can wind up skipping both of these two special cases...
4265          */
4266         if (rotate) {
4267                 ret = ocfs2_rotate_tree_right(inode, handle, type->ins_split,
4268                                               le32_to_cpu(insert_rec->e_cpos),
4269                                               right_path, &left_path);
4270                 if (ret) {
4271                         mlog_errno(ret);
4272                         goto out;
4273                 }
4274
4275                 /*
4276                  * ocfs2_rotate_tree_right() might have extended the
4277                  * transaction without re-journaling our tree root.
4278                  */
4279                 ret = ocfs2_et_root_journal_access(handle, et,
4280                                                    OCFS2_JOURNAL_ACCESS_WRITE);
4281                 if (ret) {
4282                         mlog_errno(ret);
4283                         goto out;
4284                 }
4285         } else if (type->ins_appending == APPEND_TAIL
4286                    && type->ins_contig != CONTIG_LEFT) {
4287                 ret = ocfs2_append_rec_to_path(inode, handle, insert_rec,
4288                                                right_path, &left_path);
4289                 if (ret) {
4290                         mlog_errno(ret);
4291                         goto out;
4292                 }
4293         }
4294
4295         ret = ocfs2_insert_path(inode, handle, left_path, right_path,
4296                                 insert_rec, type);
4297         if (ret) {
4298                 mlog_errno(ret);
4299                 goto out;
4300         }
4301
4302 out_update_clusters:
4303         if (type->ins_split == SPLIT_NONE)
4304                 ocfs2_et_update_clusters(inode, et,
4305                                          le16_to_cpu(insert_rec->e_leaf_clusters));
4306
4307         ret = ocfs2_journal_dirty(handle, et->et_root_bh);
4308         if (ret)
4309                 mlog_errno(ret);
4310
4311 out:
4312         ocfs2_free_path(left_path);
4313         ocfs2_free_path(right_path);
4314
4315         return ret;
4316 }
4317
4318 static enum ocfs2_contig_type
4319 ocfs2_figure_merge_contig_type(struct inode *inode, struct ocfs2_path *path,
4320                                struct ocfs2_extent_list *el, int index,
4321                                struct ocfs2_extent_rec *split_rec)
4322 {
4323         int status;
4324         enum ocfs2_contig_type ret = CONTIG_NONE;
4325         u32 left_cpos, right_cpos;
4326         struct ocfs2_extent_rec *rec = NULL;
4327         struct ocfs2_extent_list *new_el;
4328         struct ocfs2_path *left_path = NULL, *right_path = NULL;
4329         struct buffer_head *bh;
4330         struct ocfs2_extent_block *eb;
4331
4332         if (index > 0) {
4333                 rec = &el->l_recs[index - 1];
4334         } else if (path->p_tree_depth > 0) {
4335                 status = ocfs2_find_cpos_for_left_leaf(inode->i_sb,
4336                                                        path, &left_cpos);
4337                 if (status)
4338                         goto out;
4339
4340                 if (left_cpos != 0) {
4341                         left_path = ocfs2_new_path_from_path(path);
4342                         if (!left_path)
4343                                 goto out;
4344
4345                         status = ocfs2_find_path(inode, left_path, left_cpos);
4346                         if (status)
4347                                 goto out;
4348
4349                         new_el = path_leaf_el(left_path);
4350
4351                         if (le16_to_cpu(new_el->l_next_free_rec) !=
4352                             le16_to_cpu(new_el->l_count)) {
4353                                 bh = path_leaf_bh(left_path);
4354                                 eb = (struct ocfs2_extent_block *)bh->b_data;
4355                                 ocfs2_error(inode->i_sb,
4356                                             "Extent block #%llu has an "
4357                                             "invalid l_next_free_rec of "
4358                                             "%d.  It should have "
4359                                             "matched the l_count of %d",
4360                                             (unsigned long long)le64_to_cpu(eb->h_blkno),
4361                                             le16_to_cpu(new_el->l_next_free_rec),
4362                                             le16_to_cpu(new_el->l_count));
4363                                 status = -EINVAL;
4364                                 goto out;
4365                         }
4366                         rec = &new_el->l_recs[
4367                                 le16_to_cpu(new_el->l_next_free_rec) - 1];
4368                 }
4369         }
4370
4371         /*
4372          * We're careful to check for an empty extent record here -
4373          * the merge code will know what to do if it sees one.
4374          */
4375         if (rec) {
4376                 if (index == 1 && ocfs2_is_empty_extent(rec)) {
4377                         if (split_rec->e_cpos == el->l_recs[index].e_cpos)
4378                                 ret = CONTIG_RIGHT;
4379                 } else {
4380                         ret = ocfs2_extent_contig(inode, rec, split_rec);
4381                 }
4382         }
4383
4384         rec = NULL;
4385         if (index < (le16_to_cpu(el->l_next_free_rec) - 1))
4386                 rec = &el->l_recs[index + 1];
4387         else if (le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count) &&
4388                  path->p_tree_depth > 0) {
4389                 status = ocfs2_find_cpos_for_right_leaf(inode->i_sb,
4390                                                         path, &right_cpos);
4391                 if (status)
4392                         goto out;
4393
4394                 if (right_cpos == 0)
4395                         goto out;
4396
4397                 right_path = ocfs2_new_path_from_path(path);
4398                 if (!right_path)
4399                         goto out;
4400
4401                 status = ocfs2_find_path(inode, right_path, right_cpos);
4402                 if (status)
4403                         goto out;
4404
4405                 new_el = path_leaf_el(right_path);
4406                 rec = &new_el->l_recs[0];
4407                 if (ocfs2_is_empty_extent(rec)) {
4408                         if (le16_to_cpu(new_el->l_next_free_rec) <= 1) {
4409                                 bh = path_leaf_bh(right_path);
4410                                 eb = (struct ocfs2_extent_block *)bh->b_data;
4411                                 ocfs2_error(inode->i_sb,
4412                                             "Extent block #%llu has an "
4413                                             "invalid l_next_free_rec of %d",
4414                                             (unsigned long long)le64_to_cpu(eb->h_blkno),
4415                                             le16_to_cpu(new_el->l_next_free_rec));
4416                                 status = -EINVAL;
4417                                 goto out;
4418                         }
4419                         rec = &new_el->l_recs[1];
4420                 }
4421         }
4422
4423         if (rec) {
4424                 enum ocfs2_contig_type contig_type;
4425
4426                 contig_type = ocfs2_extent_contig(inode, rec, split_rec);
4427
4428                 if (contig_type == CONTIG_LEFT && ret == CONTIG_RIGHT)
4429                         ret = CONTIG_LEFTRIGHT;
4430                 else if (ret == CONTIG_NONE)
4431                         ret = contig_type;
4432         }
4433
4434 out:
4435         if (left_path)
4436                 ocfs2_free_path(left_path);
4437         if (right_path)
4438                 ocfs2_free_path(right_path);
4439
4440         return ret;
4441 }
4442
4443 static void ocfs2_figure_contig_type(struct inode *inode,
4444                                      struct ocfs2_insert_type *insert,
4445                                      struct ocfs2_extent_list *el,
4446                                      struct ocfs2_extent_rec *insert_rec,
4447                                      struct ocfs2_extent_tree *et)
4448 {
4449         int i;
4450         enum ocfs2_contig_type contig_type = CONTIG_NONE;
4451
4452         BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
4453
4454         for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
4455                 contig_type = ocfs2_extent_contig(inode, &el->l_recs[i],
4456                                                   insert_rec);
4457                 if (contig_type != CONTIG_NONE) {
4458                         insert->ins_contig_index = i;
4459                         break;
4460                 }
4461         }
4462         insert->ins_contig = contig_type;
4463
4464         if (insert->ins_contig != CONTIG_NONE) {
4465                 struct ocfs2_extent_rec *rec =
4466                                 &el->l_recs[insert->ins_contig_index];
4467                 unsigned int len = le16_to_cpu(rec->e_leaf_clusters) +
4468                                    le16_to_cpu(insert_rec->e_leaf_clusters);
4469
4470                 /*
4471                  * Caller might want us to limit the size of extents, don't
4472                  * calculate contiguousness if we might exceed that limit.
4473                  */
4474                 if (et->et_max_leaf_clusters &&
4475                     (len > et->et_max_leaf_clusters))
4476                         insert->ins_contig = CONTIG_NONE;
4477         }
4478 }
4479
4480 /*
4481  * This should only be called against the righmost leaf extent list.
4482  *
4483  * ocfs2_figure_appending_type() will figure out whether we'll have to
4484  * insert at the tail of the rightmost leaf.
4485  *
4486  * This should also work against the root extent list for tree's with 0
4487  * depth. If we consider the root extent list to be the rightmost leaf node
4488  * then the logic here makes sense.
4489  */
4490 static void ocfs2_figure_appending_type(struct ocfs2_insert_type *insert,
4491                                         struct ocfs2_extent_list *el,
4492                                         struct ocfs2_extent_rec *insert_rec)
4493 {
4494         int i;
4495         u32 cpos = le32_to_cpu(insert_rec->e_cpos);
4496         struct ocfs2_extent_rec *rec;
4497
4498         insert->ins_appending = APPEND_NONE;
4499
4500         BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
4501
4502         if (!el->l_next_free_rec)
4503                 goto set_tail_append;
4504
4505         if (ocfs2_is_empty_extent(&el->l_recs[0])) {
4506                 /* Were all records empty? */
4507                 if (le16_to_cpu(el->l_next_free_rec) == 1)
4508                         goto set_tail_append;
4509         }
4510
4511         i = le16_to_cpu(el->l_next_free_rec) - 1;
4512         rec = &el->l_recs[i];
4513
4514         if (cpos >=
4515             (le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)))
4516                 goto set_tail_append;
4517
4518         return;
4519
4520 set_tail_append:
4521         insert->ins_appending = APPEND_TAIL;
4522 }
4523
4524 /*
4525  * Helper function called at the begining of an insert.
4526  *
4527  * This computes a few things that are commonly used in the process of
4528  * inserting into the btree:
4529  *   - Whether the new extent is contiguous with an existing one.
4530  *   - The current tree depth.
4531  *   - Whether the insert is an appending one.
4532  *   - The total # of free records in the tree.
4533  *
4534  * All of the information is stored on the ocfs2_insert_type
4535  * structure.
4536  */
4537 static int ocfs2_figure_insert_type(struct inode *inode,
4538                                     struct ocfs2_extent_tree *et,
4539                                     struct buffer_head **last_eb_bh,
4540                                     struct ocfs2_extent_rec *insert_rec,
4541                                     int *free_records,
4542                                     struct ocfs2_insert_type *insert)
4543 {
4544         int ret;
4545         struct ocfs2_extent_block *eb;
4546         struct ocfs2_extent_list *el;
4547         struct ocfs2_path *path = NULL;
4548         struct buffer_head *bh = NULL;
4549
4550         insert->ins_split = SPLIT_NONE;
4551
4552         el = et->et_root_el;
4553         insert->ins_tree_depth = le16_to_cpu(el->l_tree_depth);
4554
4555         if (el->l_tree_depth) {
4556                 /*
4557                  * If we have tree depth, we read in the
4558                  * rightmost extent block ahead of time as
4559                  * ocfs2_figure_insert_type() and ocfs2_add_branch()
4560                  * may want it later.
4561                  */
4562                 ret = ocfs2_read_extent_block(et->et_ci,
4563                                               ocfs2_et_get_last_eb_blk(et),
4564                                               &bh);
4565                 if (ret) {
4566                         mlog_exit(ret);
4567                         goto out;
4568                 }
4569                 eb = (struct ocfs2_extent_block *) bh->b_data;
4570                 el = &eb->h_list;
4571         }
4572
4573         /*
4574          * Unless we have a contiguous insert, we'll need to know if
4575          * there is room left in our allocation tree for another
4576          * extent record.
4577          *
4578          * XXX: This test is simplistic, we can search for empty
4579          * extent records too.
4580          */
4581         *free_records = le16_to_cpu(el->l_count) -
4582                 le16_to_cpu(el->l_next_free_rec);
4583
4584         if (!insert->ins_tree_depth) {
4585                 ocfs2_figure_contig_type(inode, insert, el, insert_rec, et);
4586                 ocfs2_figure_appending_type(insert, el, insert_rec);
4587                 return 0;
4588         }
4589
4590         path = ocfs2_new_path_from_et(et);
4591         if (!path) {
4592                 ret = -ENOMEM;
4593                 mlog_errno(ret);
4594                 goto out;
4595         }
4596
4597         /*
4598          * In the case that we're inserting past what the tree
4599          * currently accounts for, ocfs2_find_path() will return for
4600          * us the rightmost tree path. This is accounted for below in
4601          * the appending code.
4602          */
4603         ret = ocfs2_find_path(inode, path, le32_to_cpu(insert_rec->e_cpos));
4604         if (ret) {
4605                 mlog_errno(ret);
4606                 goto out;
4607         }
4608
4609         el = path_leaf_el(path);
4610
4611         /*
4612          * Now that we have the path, there's two things we want to determine:
4613          * 1) Contiguousness (also set contig_index if this is so)
4614          *
4615          * 2) Are we doing an append? We can trivially break this up
4616          *     into two types of appends: simple record append, or a
4617          *     rotate inside the tail leaf.
4618          */
4619         ocfs2_figure_contig_type(inode, insert, el, insert_rec, et);
4620
4621         /*
4622          * The insert code isn't quite ready to deal with all cases of
4623          * left contiguousness. Specifically, if it's an insert into
4624          * the 1st record in a leaf, it will require the adjustment of
4625          * cluster count on the last record of the path directly to it's
4626          * left. For now, just catch that case and fool the layers
4627          * above us. This works just fine for tree_depth == 0, which
4628          * is why we allow that above.
4629          */
4630         if (insert->ins_contig == CONTIG_LEFT &&
4631             insert->ins_contig_index == 0)
4632                 insert->ins_contig = CONTIG_NONE;
4633
4634         /*
4635          * Ok, so we can simply compare against last_eb to figure out
4636          * whether the path doesn't exist. This will only happen in
4637          * the case that we're doing a tail append, so maybe we can
4638          * take advantage of that information somehow.
4639          */
4640         if (ocfs2_et_get_last_eb_blk(et) ==
4641             path_leaf_bh(path)->b_blocknr) {
4642                 /*
4643                  * Ok, ocfs2_find_path() returned us the rightmost
4644                  * tree path. This might be an appending insert. There are
4645                  * two cases:
4646                  *    1) We're doing a true append at the tail:
4647                  *      -This might even be off the end of the leaf
4648                  *    2) We're "appending" by rotating in the tail
4649                  */
4650                 ocfs2_figure_appending_type(insert, el, insert_rec);
4651         }
4652
4653 out:
4654         ocfs2_free_path(path);
4655
4656         if (ret == 0)
4657                 *last_eb_bh = bh;
4658         else
4659                 brelse(bh);
4660         return ret;
4661 }
4662
4663 /*
4664  * Insert an extent into an inode btree.
4665  *
4666  * The caller needs to update fe->i_clusters
4667  */
4668 int ocfs2_insert_extent(struct ocfs2_super *osb,
4669                         handle_t *handle,
4670                         struct inode *inode,
4671                         struct ocfs2_extent_tree *et,
4672                         u32 cpos,
4673                         u64 start_blk,
4674                         u32 new_clusters,
4675                         u8 flags,
4676                         struct ocfs2_alloc_context *meta_ac)
4677 {
4678         int status;
4679         int uninitialized_var(free_records);
4680         struct buffer_head *last_eb_bh = NULL;
4681         struct ocfs2_insert_type insert = {0, };
4682         struct ocfs2_extent_rec rec;
4683
4684         mlog(0, "add %u clusters at position %u to inode %llu\n",
4685              new_clusters, cpos, (unsigned long long)OCFS2_I(inode)->ip_blkno);
4686
4687         memset(&rec, 0, sizeof(rec));
4688         rec.e_cpos = cpu_to_le32(cpos);
4689         rec.e_blkno = cpu_to_le64(start_blk);
4690         rec.e_leaf_clusters = cpu_to_le16(new_clusters);
4691         rec.e_flags = flags;
4692         status = ocfs2_et_insert_check(inode, et, &rec);
4693         if (status) {
4694                 mlog_errno(status);
4695                 goto bail;
4696         }
4697
4698         status = ocfs2_figure_insert_type(inode, et, &last_eb_bh, &rec,
4699                                           &free_records, &insert);
4700         if (status < 0) {
4701                 mlog_errno(status);
4702                 goto bail;
4703         }
4704
4705         mlog(0, "Insert.appending: %u, Insert.Contig: %u, "
4706              "Insert.contig_index: %d, Insert.free_records: %d, "
4707              "Insert.tree_depth: %d\n",
4708              insert.ins_appending, insert.ins_contig, insert.ins_contig_index,
4709              free_records, insert.ins_tree_depth);
4710
4711         if (insert.ins_contig == CONTIG_NONE && free_records == 0) {
4712                 status = ocfs2_grow_tree(inode, handle, et,
4713                                          &insert.ins_tree_depth, &last_eb_bh,
4714                                          meta_ac);
4715                 if (status) {
4716                         mlog_errno(status);
4717                         goto bail;
4718                 }
4719         }
4720
4721         /* Finally, we can add clusters. This might rotate the tree for us. */
4722         status = ocfs2_do_insert_extent(inode, handle, et, &rec, &insert);
4723         if (status < 0)
4724                 mlog_errno(status);
4725         else if (et->et_ops == &ocfs2_dinode_et_ops)
4726                 ocfs2_extent_map_insert_rec(inode, &rec);
4727
4728 bail:
4729         brelse(last_eb_bh);
4730
4731         mlog_exit(status);
4732         return status;
4733 }
4734
4735 /*
4736  * Allcate and add clusters into the extent b-tree.
4737  * The new clusters(clusters_to_add) will be inserted at logical_offset.
4738  * The extent b-tree's root is specified by et, and
4739  * it is not limited to the file storage. Any extent tree can use this
4740  * function if it implements the proper ocfs2_extent_tree.
4741  */
4742 int ocfs2_add_clusters_in_btree(struct ocfs2_super *osb,
4743                                 struct inode *inode,
4744                                 u32 *logical_offset,
4745                                 u32 clusters_to_add,
4746                                 int mark_unwritten,
4747                                 struct ocfs2_extent_tree *et,
4748                                 handle_t *handle,
4749                                 struct ocfs2_alloc_context *data_ac,
4750                                 struct ocfs2_alloc_context *meta_ac,
4751                                 enum ocfs2_alloc_restarted *reason_ret)
4752 {
4753         int status = 0;
4754         int free_extents;
4755         enum ocfs2_alloc_restarted reason = RESTART_NONE;
4756         u32 bit_off, num_bits;
4757         u64 block;
4758         u8 flags = 0;
4759
4760         BUG_ON(!clusters_to_add);
4761
4762         if (mark_unwritten)
4763                 flags = OCFS2_EXT_UNWRITTEN;
4764
4765         free_extents = ocfs2_num_free_extents(osb, et);
4766         if (free_extents < 0) {
4767                 status = free_extents;
4768                 mlog_errno(status);
4769                 goto leave;
4770         }
4771
4772         /* there are two cases which could cause us to EAGAIN in the
4773          * we-need-more-metadata case:
4774          * 1) we haven't reserved *any*
4775          * 2) we are so fragmented, we've needed to add metadata too
4776          *    many times. */
4777         if (!free_extents && !meta_ac) {
4778                 mlog(0, "we haven't reserved any metadata!\n");
4779                 status = -EAGAIN;
4780                 reason = RESTART_META;
4781                 goto leave;
4782         } else if ((!free_extents)
4783                    && (ocfs2_alloc_context_bits_left(meta_ac)
4784                        < ocfs2_extend_meta_needed(et->et_root_el))) {
4785                 mlog(0, "filesystem is really fragmented...\n");
4786                 status = -EAGAIN;
4787                 reason = RESTART_META;
4788                 goto leave;
4789         }
4790
4791         status = __ocfs2_claim_clusters(osb, handle, data_ac, 1,
4792                                         clusters_to_add, &bit_off, &num_bits);
4793         if (status < 0) {
4794                 if (status != -ENOSPC)
4795                         mlog_errno(status);
4796                 goto leave;
4797         }
4798
4799         BUG_ON(num_bits > clusters_to_add);
4800
4801         /* reserve our write early -- insert_extent may update the tree root */
4802         status = ocfs2_et_root_journal_access(handle, et,
4803                                               OCFS2_JOURNAL_ACCESS_WRITE);
4804         if (status < 0) {
4805                 mlog_errno(status);
4806                 goto leave;
4807         }
4808
4809         block = ocfs2_clusters_to_blocks(osb->sb, bit_off);
4810         mlog(0, "Allocating %u clusters at block %u for inode %llu\n",
4811              num_bits, bit_off, (unsigned long long)OCFS2_I(inode)->ip_blkno);
4812         status = ocfs2_insert_extent(osb, handle, inode, et,
4813                                      *logical_offset, block,
4814                                      num_bits, flags, meta_ac);
4815         if (status < 0) {
4816                 mlog_errno(status);
4817                 goto leave;
4818         }
4819
4820         status = ocfs2_journal_dirty(handle, et->et_root_bh);
4821         if (status < 0) {
4822                 mlog_errno(status);
4823                 goto leave;
4824         }
4825
4826         clusters_to_add -= num_bits;
4827         *logical_offset += num_bits;
4828
4829         if (clusters_to_add) {
4830                 mlog(0, "need to alloc once more, wanted = %u\n",
4831                      clusters_to_add);
4832                 status = -EAGAIN;
4833                 reason = RESTART_TRANS;
4834         }
4835
4836 leave:
4837         mlog_exit(status);
4838         if (reason_ret)
4839                 *reason_ret = reason;
4840         return status;
4841 }
4842
4843 static void ocfs2_make_right_split_rec(struct super_block *sb,
4844                                        struct ocfs2_extent_rec *split_rec,
4845                                        u32 cpos,
4846                                        struct ocfs2_extent_rec *rec)
4847 {
4848         u32 rec_cpos = le32_to_cpu(rec->e_cpos);
4849         u32 rec_range = rec_cpos + le16_to_cpu(rec->e_leaf_clusters);
4850
4851         memset(split_rec, 0, sizeof(struct ocfs2_extent_rec));
4852
4853         split_rec->e_cpos = cpu_to_le32(cpos);
4854         split_rec->e_leaf_clusters = cpu_to_le16(rec_range - cpos);
4855
4856         split_rec->e_blkno = rec->e_blkno;
4857         le64_add_cpu(&split_rec->e_blkno,
4858                      ocfs2_clusters_to_blocks(sb, cpos - rec_cpos));
4859
4860         split_rec->e_flags = rec->e_flags;
4861 }
4862
4863 static int ocfs2_split_and_insert(struct inode *inode,
4864                                   handle_t *handle,
4865                                   struct ocfs2_path *path,
4866                                   struct ocfs2_extent_tree *et,
4867                                   struct buffer_head **last_eb_bh,
4868                                   int split_index,
4869                                   struct ocfs2_extent_rec *orig_split_rec,
4870                                   struct ocfs2_alloc_context *meta_ac)
4871 {
4872         int ret = 0, depth;
4873         unsigned int insert_range, rec_range, do_leftright = 0;
4874         struct ocfs2_extent_rec tmprec;
4875         struct ocfs2_extent_list *rightmost_el;
4876         struct ocfs2_extent_rec rec;
4877         struct ocfs2_extent_rec split_rec = *orig_split_rec;
4878         struct ocfs2_insert_type insert;
4879         struct ocfs2_extent_block *eb;
4880
4881 leftright:
4882         /*
4883          * Store a copy of the record on the stack - it might move
4884          * around as the tree is manipulated below.
4885          */
4886         rec = path_leaf_el(path)->l_recs[split_index];
4887
4888         rightmost_el = et->et_root_el;
4889
4890         depth = le16_to_cpu(rightmost_el->l_tree_depth);
4891         if (depth) {
4892                 BUG_ON(!(*last_eb_bh));
4893                 eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
4894                 rightmost_el = &eb->h_list;
4895         }
4896
4897         if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
4898             le16_to_cpu(rightmost_el->l_count)) {
4899                 ret = ocfs2_grow_tree(inode, handle, et,
4900                                       &depth, last_eb_bh, meta_ac);
4901                 if (ret) {
4902                         mlog_errno(ret);
4903                         goto out;
4904                 }
4905         }
4906
4907         memset(&insert, 0, sizeof(struct ocfs2_insert_type));
4908         insert.ins_appending = APPEND_NONE;
4909         insert.ins_contig = CONTIG_NONE;
4910         insert.ins_tree_depth = depth;
4911
4912         insert_range = le32_to_cpu(split_rec.e_cpos) +
4913                 le16_to_cpu(split_rec.e_leaf_clusters);
4914         rec_range = le32_to_cpu(rec.e_cpos) +
4915                 le16_to_cpu(rec.e_leaf_clusters);
4916
4917         if (split_rec.e_cpos == rec.e_cpos) {
4918                 insert.ins_split = SPLIT_LEFT;
4919         } else if (insert_range == rec_range) {
4920                 insert.ins_split = SPLIT_RIGHT;
4921         } else {
4922                 /*
4923                  * Left/right split. We fake this as a right split
4924                  * first and then make a second pass as a left split.
4925                  */
4926                 insert.ins_split = SPLIT_RIGHT;
4927
4928                 ocfs2_make_right_split_rec(inode->i_sb, &tmprec, insert_range,
4929                                            &rec);
4930
4931                 split_rec = tmprec;
4932
4933                 BUG_ON(do_leftright);
4934                 do_leftright = 1;
4935         }
4936
4937         ret = ocfs2_do_insert_extent(inode, handle, et, &split_rec, &insert);
4938         if (ret) {
4939                 mlog_errno(ret);
4940                 goto out;
4941         }
4942
4943         if (do_leftright == 1) {
4944                 u32 cpos;
4945                 struct ocfs2_extent_list *el;
4946
4947                 do_leftright++;
4948                 split_rec = *orig_split_rec;
4949
4950                 ocfs2_reinit_path(path, 1);
4951
4952                 cpos = le32_to_cpu(split_rec.e_cpos);
4953                 ret = ocfs2_find_path(inode, path, cpos);
4954                 if (ret) {
4955                         mlog_errno(ret);
4956                         goto out;
4957                 }
4958
4959                 el = path_leaf_el(path);
4960                 split_index = ocfs2_search_extent_list(el, cpos);
4961                 goto leftright;
4962         }
4963 out:
4964
4965         return ret;
4966 }
4967
4968 static int ocfs2_replace_extent_rec(struct inode *inode,
4969                                     handle_t *handle,
4970                                     struct ocfs2_path *path,
4971                                     struct ocfs2_extent_list *el,
4972                                     int split_index,
4973                                     struct ocfs2_extent_rec *split_rec)
4974 {
4975         int ret;
4976
4977         ret = ocfs2_path_bh_journal_access(handle, INODE_CACHE(inode), path,
4978                                            path_num_items(path) - 1);
4979         if (ret) {
4980                 mlog_errno(ret);
4981                 goto out;
4982         }
4983
4984         el->l_recs[split_index] = *split_rec;
4985
4986         ocfs2_journal_dirty(handle, path_leaf_bh(path));
4987 out:
4988         return ret;
4989 }
4990
4991 /*
4992  * Mark part or all of the extent record at split_index in the leaf
4993  * pointed to by path as written. This removes the unwritten
4994  * extent flag.
4995  *
4996  * Care is taken to handle contiguousness so as to not grow the tree.
4997  *
4998  * meta_ac is not strictly necessary - we only truly need it if growth
4999  * of the tree is required. All other cases will degrade into a less
5000  * optimal tree layout.
5001  *
5002  * last_eb_bh should be the rightmost leaf block for any extent
5003  * btree. Since a split may grow the tree or a merge might shrink it,
5004  * the caller cannot trust the contents of that buffer after this call.
5005  *
5006  * This code is optimized for readability - several passes might be
5007  * made over certain portions of the tree. All of those blocks will
5008  * have been brought into cache (and pinned via the journal), so the
5009  * extra overhead is not expressed in terms of disk reads.
5010  */
5011 static int __ocfs2_mark_extent_written(struct inode *inode,
5012                                        struct ocfs2_extent_tree *et,
5013                                        handle_t *handle,
5014                                        struct ocfs2_path *path,
5015                                        int split_index,
5016                                        struct ocfs2_extent_rec *split_rec,
5017                                        struct ocfs2_alloc_context *meta_ac,
5018                                        struct ocfs2_cached_dealloc_ctxt *dealloc)
5019 {
5020         int ret = 0;
5021         struct ocfs2_extent_list *el = path_leaf_el(path);
5022         struct buffer_head *last_eb_bh = NULL;
5023         struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
5024         struct ocfs2_merge_ctxt ctxt;
5025         struct ocfs2_extent_list *rightmost_el;
5026
5027         if (!(rec->e_flags & OCFS2_EXT_UNWRITTEN)) {
5028                 ret = -EIO;
5029                 mlog_errno(ret);
5030                 goto out;
5031         }
5032
5033         if (le32_to_cpu(rec->e_cpos) > le32_to_cpu(split_rec->e_cpos) ||
5034             ((le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)) <
5035              (le32_to_cpu(split_rec->e_cpos) + le16_to_cpu(split_rec->e_leaf_clusters)))) {
5036                 ret = -EIO;
5037                 mlog_errno(ret);
5038                 goto out;
5039         }
5040
5041         ctxt.c_contig_type = ocfs2_figure_merge_contig_type(inode, path, el,
5042                                                             split_index,
5043                                                             split_rec);
5044
5045         /*
5046          * The core merge / split code wants to know how much room is
5047          * left in this inodes allocation tree, so we pass the
5048          * rightmost extent list.
5049          */
5050         if (path->p_tree_depth) {
5051                 struct ocfs2_extent_block *eb;
5052
5053                 ret = ocfs2_read_extent_block(et->et_ci,
5054                                               ocfs2_et_get_last_eb_blk(et),
5055                                               &last_eb_bh);
5056                 if (ret) {
5057                         mlog_exit(ret);
5058                         goto out;
5059                 }
5060
5061                 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
5062                 rightmost_el = &eb->h_list;
5063         } else
5064                 rightmost_el = path_root_el(path);
5065
5066         if (rec->e_cpos == split_rec->e_cpos &&
5067             rec->e_leaf_clusters == split_rec->e_leaf_clusters)
5068                 ctxt.c_split_covers_rec = 1;
5069         else
5070                 ctxt.c_split_covers_rec = 0;
5071
5072         ctxt.c_has_empty_extent = ocfs2_is_empty_extent(&el->l_recs[0]);
5073
5074         mlog(0, "index: %d, contig: %u, has_empty: %u, split_covers: %u\n",
5075              split_index, ctxt.c_contig_type, ctxt.c_has_empty_extent,
5076              ctxt.c_split_covers_rec);
5077
5078         if (ctxt.c_contig_type == CONTIG_NONE) {
5079                 if (ctxt.c_split_covers_rec)
5080                         ret = ocfs2_replace_extent_rec(inode, handle,
5081                                                        path, el,
5082                                                        split_index, split_rec);
5083                 else
5084                         ret = ocfs2_split_and_insert(inode, handle, path, et,
5085                                                      &last_eb_bh, split_index,
5086                                                      split_rec, meta_ac);
5087                 if (ret)
5088                         mlog_errno(ret);
5089         } else {
5090                 ret = ocfs2_try_to_merge_extent(inode, handle, path,
5091                                                 split_index, split_rec,
5092                                                 dealloc, &ctxt, et);
5093                 if (ret)
5094                         mlog_errno(ret);
5095         }
5096
5097 out:
5098         brelse(last_eb_bh);
5099         return ret;
5100 }
5101
5102 /*
5103  * Mark the already-existing extent at cpos as written for len clusters.
5104  *
5105  * If the existing extent is larger than the request, initiate a
5106  * split. An attempt will be made at merging with adjacent extents.
5107  *
5108  * The caller is responsible for passing down meta_ac if we'll need it.
5109  */
5110 int ocfs2_mark_extent_written(struct inode *inode,
5111                               struct ocfs2_extent_tree *et,
5112                               handle_t *handle, u32 cpos, u32 len, u32 phys,
5113                               struct ocfs2_alloc_context *meta_ac,
5114                               struct ocfs2_cached_dealloc_ctxt *dealloc)
5115 {
5116         int ret, index;
5117         u64 start_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys);
5118         struct ocfs2_extent_rec split_rec;
5119         struct ocfs2_path *left_path = NULL;
5120         struct ocfs2_extent_list *el;
5121
5122         mlog(0, "Inode %lu cpos %u, len %u, phys %u (%llu)\n",
5123              inode->i_ino, cpos, len, phys, (unsigned long long)start_blkno);
5124
5125         if (!ocfs2_writes_unwritten_extents(OCFS2_SB(inode->i_sb))) {
5126                 ocfs2_error(inode->i_sb, "Inode %llu has unwritten extents "
5127                             "that are being written to, but the feature bit "
5128                             "is not set in the super block.",
5129                             (unsigned long long)OCFS2_I(inode)->ip_blkno);
5130                 ret = -EROFS;
5131                 goto out;
5132         }
5133
5134         /*
5135          * XXX: This should be fixed up so that we just re-insert the
5136          * next extent records.
5137          *
5138          * XXX: This is a hack on the extent tree, maybe it should be
5139          * an op?
5140          */
5141         if (et->et_ops == &ocfs2_dinode_et_ops)
5142                 ocfs2_extent_map_trunc(inode, 0);
5143
5144         left_path = ocfs2_new_path_from_et(et);
5145         if (!left_path) {
5146                 ret = -ENOMEM;
5147                 mlog_errno(ret);
5148                 goto out;
5149         }
5150
5151         ret = ocfs2_find_path(inode, left_path, cpos);
5152         if (ret) {
5153                 mlog_errno(ret);
5154                 goto out;
5155         }
5156         el = path_leaf_el(left_path);
5157
5158         index = ocfs2_search_extent_list(el, cpos);
5159         if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
5160                 ocfs2_error(inode->i_sb,
5161                             "Inode %llu has an extent at cpos %u which can no "
5162                             "longer be found.\n",
5163                             (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
5164                 ret = -EROFS;
5165                 goto out;
5166         }
5167
5168         memset(&split_rec, 0, sizeof(struct ocfs2_extent_rec));
5169         split_rec.e_cpos = cpu_to_le32(cpos);
5170         split_rec.e_leaf_clusters = cpu_to_le16(len);
5171         split_rec.e_blkno = cpu_to_le64(start_blkno);
5172         split_rec.e_flags = path_leaf_el(left_path)->l_recs[index].e_flags;
5173         split_rec.e_flags &= ~OCFS2_EXT_UNWRITTEN;
5174
5175         ret = __ocfs2_mark_extent_written(inode, et, handle, left_path,
5176                                           index, &split_rec, meta_ac,
5177                                           dealloc);
5178         if (ret)
5179                 mlog_errno(ret);
5180
5181 out:
5182         ocfs2_free_path(left_path);
5183         return ret;
5184 }
5185
5186 static int ocfs2_split_tree(struct inode *inode, struct ocfs2_extent_tree *et,
5187                             handle_t *handle, struct ocfs2_path *path,
5188                             int index, u32 new_range,
5189                             struct ocfs2_alloc_context *meta_ac)
5190 {
5191         int ret, depth, credits = handle->h_buffer_credits;
5192         struct buffer_head *last_eb_bh = NULL;
5193         struct ocfs2_extent_block *eb;
5194         struct ocfs2_extent_list *rightmost_el, *el;
5195         struct ocfs2_extent_rec split_rec;
5196         struct ocfs2_extent_rec *rec;
5197         struct ocfs2_insert_type insert;
5198
5199         /*
5200          * Setup the record to split before we grow the tree.
5201          */
5202         el = path_leaf_el(path);
5203         rec = &el->l_recs[index];
5204         ocfs2_make_right_split_rec(inode->i_sb, &split_rec, new_range, rec);
5205
5206         depth = path->p_tree_depth;
5207         if (depth > 0) {
5208                 ret = ocfs2_read_extent_block(et->et_ci,
5209                                               ocfs2_et_get_last_eb_blk(et),
5210                                               &last_eb_bh);
5211                 if (ret < 0) {
5212                         mlog_errno(ret);
5213                         goto out;
5214                 }
5215
5216                 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
5217                 rightmost_el = &eb->h_list;
5218         } else
5219                 rightmost_el = path_leaf_el(path);
5220
5221         credits += path->p_tree_depth +
5222                    ocfs2_extend_meta_needed(et->et_root_el);
5223         ret = ocfs2_extend_trans(handle, credits);
5224         if (ret) {
5225                 mlog_errno(ret);
5226                 goto out;
5227         }
5228
5229         if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
5230             le16_to_cpu(rightmost_el->l_count)) {
5231                 ret = ocfs2_grow_tree(inode, handle, et, &depth, &last_eb_bh,
5232                                       meta_ac);
5233                 if (ret) {
5234                         mlog_errno(ret);
5235                         goto out;
5236                 }
5237         }
5238
5239         memset(&insert, 0, sizeof(struct ocfs2_insert_type));
5240         insert.ins_appending = APPEND_NONE;
5241         insert.ins_contig = CONTIG_NONE;
5242         insert.ins_split = SPLIT_RIGHT;
5243         insert.ins_tree_depth = depth;
5244
5245         ret = ocfs2_do_insert_extent(inode, handle, et, &split_rec, &insert);
5246         if (ret)
5247                 mlog_errno(ret);
5248
5249 out:
5250         brelse(last_eb_bh);
5251         return ret;
5252 }
5253
5254 static int ocfs2_truncate_rec(struct inode *inode, handle_t *handle,
5255                               struct ocfs2_path *path, int index,
5256                               struct ocfs2_cached_dealloc_ctxt *dealloc,
5257                               u32 cpos, u32 len,
5258                               struct ocfs2_extent_tree *et)
5259 {
5260         int ret;
5261         u32 left_cpos, rec_range, trunc_range;
5262         int wants_rotate = 0, is_rightmost_tree_rec = 0;
5263         struct super_block *sb = inode->i_sb;
5264         struct ocfs2_path *left_path = NULL;
5265         struct ocfs2_extent_list *el = path_leaf_el(path);
5266         struct ocfs2_extent_rec *rec;
5267         struct ocfs2_extent_block *eb;
5268
5269         if (ocfs2_is_empty_extent(&el->l_recs[0]) && index > 0) {
5270                 ret = ocfs2_rotate_tree_left(inode, handle, path, dealloc, et);
5271                 if (ret) {
5272                         mlog_errno(ret);
5273                         goto out;
5274                 }
5275
5276                 index--;
5277         }
5278
5279         if (index == (le16_to_cpu(el->l_next_free_rec) - 1) &&
5280             path->p_tree_depth) {
5281                 /*
5282                  * Check whether this is the rightmost tree record. If
5283                  * we remove all of this record or part of its right
5284                  * edge then an update of the record lengths above it
5285                  * will be required.
5286                  */
5287                 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
5288                 if (eb->h_next_leaf_blk == 0)
5289                         is_rightmost_tree_rec = 1;
5290         }
5291
5292         rec = &el->l_recs[index];
5293         if (index == 0 && path->p_tree_depth &&
5294             le32_to_cpu(rec->e_cpos) == cpos) {
5295                 /*
5296                  * Changing the leftmost offset (via partial or whole
5297                  * record truncate) of an interior (or rightmost) path
5298                  * means we have to update the subtree that is formed
5299                  * by this leaf and the one to it's left.
5300                  *
5301                  * There are two cases we can skip:
5302                  *   1) Path is the leftmost one in our inode tree.
5303                  *   2) The leaf is rightmost and will be empty after
5304                  *      we remove the extent record - the rotate code
5305                  *      knows how to update the newly formed edge.
5306                  */
5307
5308                 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path,
5309                                                     &left_cpos);
5310                 if (ret) {
5311                         mlog_errno(ret);
5312                         goto out;
5313                 }
5314
5315                 if (left_cpos && le16_to_cpu(el->l_next_free_rec) > 1) {
5316                         left_path = ocfs2_new_path_from_path(path);
5317                         if (!left_path) {
5318                                 ret = -ENOMEM;
5319                                 mlog_errno(ret);
5320                                 goto out;
5321                         }
5322
5323                         ret = ocfs2_find_path(inode, left_path, left_cpos);
5324                         if (ret) {
5325                                 mlog_errno(ret);
5326                                 goto out;
5327                         }
5328                 }
5329         }
5330
5331         ret = ocfs2_extend_rotate_transaction(handle, 0,
5332                                               handle->h_buffer_credits,
5333                                               path);
5334         if (ret) {
5335                 mlog_errno(ret);
5336                 goto out;
5337         }
5338
5339         ret = ocfs2_journal_access_path(et->et_ci, handle, path);
5340         if (ret) {
5341                 mlog_errno(ret);
5342                 goto out;
5343         }
5344
5345         ret = ocfs2_journal_access_path(et->et_ci, handle, left_path);
5346         if (ret) {
5347                 mlog_errno(ret);
5348                 goto out;
5349         }
5350
5351         rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
5352         trunc_range = cpos + len;
5353
5354         if (le32_to_cpu(rec->e_cpos) == cpos && rec_range == trunc_range) {
5355                 int next_free;
5356
5357                 memset(rec, 0, sizeof(*rec));
5358                 ocfs2_cleanup_merge(el, index);
5359                 wants_rotate = 1;
5360
5361                 next_free = le16_to_cpu(el->l_next_free_rec);
5362                 if (is_rightmost_tree_rec && next_free > 1) {
5363                         /*
5364                          * We skip the edge update if this path will
5365                          * be deleted by the rotate code.
5366                          */
5367                         rec = &el->l_recs[next_free - 1];
5368                         ocfs2_adjust_rightmost_records(inode, handle, path,
5369                                                        rec);
5370                 }
5371         } else if (le32_to_cpu(rec->e_cpos) == cpos) {
5372                 /* Remove leftmost portion of the record. */
5373                 le32_add_cpu(&rec->e_cpos, len);
5374                 le64_add_cpu(&rec->e_blkno, ocfs2_clusters_to_blocks(sb, len));
5375                 le16_add_cpu(&rec->e_leaf_clusters, -len);
5376         } else if (rec_range == trunc_range) {
5377                 /* Remove rightmost portion of the record */
5378                 le16_add_cpu(&rec->e_leaf_clusters, -len);
5379                 if (is_rightmost_tree_rec)
5380                         ocfs2_adjust_rightmost_records(inode, handle, path, rec);
5381         } else {
5382                 /* Caller should have trapped this. */
5383                 mlog(ML_ERROR, "Inode %llu: Invalid record truncate: (%u, %u) "
5384                      "(%u, %u)\n", (unsigned long long)OCFS2_I(inode)->ip_blkno,
5385                      le32_to_cpu(rec->e_cpos),
5386                      le16_to_cpu(rec->e_leaf_clusters), cpos, len);
5387                 BUG();
5388         }
5389
5390         if (left_path) {
5391                 int subtree_index;
5392
5393                 subtree_index = ocfs2_find_subtree_root(inode, left_path, path);
5394                 ocfs2_complete_edge_insert(inode, handle, left_path, path,
5395                                            subtree_index);
5396         }
5397
5398         ocfs2_journal_dirty(handle, path_leaf_bh(path));
5399
5400         ret = ocfs2_rotate_tree_left(inode, handle, path, dealloc, et);
5401         if (ret) {
5402                 mlog_errno(ret);
5403                 goto out;
5404         }
5405
5406 out:
5407         ocfs2_free_path(left_path);
5408         return ret;
5409 }
5410
5411 int ocfs2_remove_extent(struct inode *inode,
5412                         struct ocfs2_extent_tree *et,
5413                         u32 cpos, u32 len, handle_t *handle,
5414                         struct ocfs2_alloc_context *meta_ac,
5415                         struct ocfs2_cached_dealloc_ctxt *dealloc)
5416 {
5417         int ret, index;
5418         u32 rec_range, trunc_range;
5419         struct ocfs2_extent_rec *rec;
5420         struct ocfs2_extent_list *el;
5421         struct ocfs2_path *path = NULL;
5422
5423         ocfs2_extent_map_trunc(inode, 0);
5424
5425         path = ocfs2_new_path_from_et(et);
5426         if (!path) {
5427                 ret = -ENOMEM;
5428                 mlog_errno(ret);
5429                 goto out;
5430         }
5431
5432         ret = ocfs2_find_path(inode, path, cpos);
5433         if (ret) {
5434                 mlog_errno(ret);
5435                 goto out;
5436         }
5437
5438         el = path_leaf_el(path);
5439         index = ocfs2_search_extent_list(el, cpos);
5440         if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
5441                 ocfs2_error(inode->i_sb,
5442                             "Inode %llu has an extent at cpos %u which can no "
5443                             "longer be found.\n",
5444                             (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
5445                 ret = -EROFS;
5446                 goto out;
5447         }
5448
5449         /*
5450          * We have 3 cases of extent removal:
5451          *   1) Range covers the entire extent rec
5452          *   2) Range begins or ends on one edge of the extent rec
5453          *   3) Range is in the middle of the extent rec (no shared edges)
5454          *
5455          * For case 1 we remove the extent rec and left rotate to
5456          * fill the hole.
5457          *
5458          * For case 2 we just shrink the existing extent rec, with a
5459          * tree update if the shrinking edge is also the edge of an
5460          * extent block.
5461          *
5462          * For case 3 we do a right split to turn the extent rec into
5463          * something case 2 can handle.
5464          */
5465         rec = &el->l_recs[index];
5466         rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
5467         trunc_range = cpos + len;
5468
5469         BUG_ON(cpos < le32_to_cpu(rec->e_cpos) || trunc_range > rec_range);
5470
5471         mlog(0, "Inode %llu, remove (cpos %u, len %u). Existing index %d "
5472              "(cpos %u, len %u)\n",
5473              (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos, len, index,
5474              le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec));
5475
5476         if (le32_to_cpu(rec->e_cpos) == cpos || rec_range == trunc_range) {
5477                 ret = ocfs2_truncate_rec(inode, handle, path, index, dealloc,
5478                                          cpos, len, et);
5479                 if (ret) {
5480                         mlog_errno(ret);
5481                         goto out;
5482                 }
5483         } else {
5484                 ret = ocfs2_split_tree(inode, et, handle, path, index,
5485                                        trunc_range, meta_ac);
5486                 if (ret) {
5487                         mlog_errno(ret);
5488                         goto out;
5489                 }
5490
5491                 /*
5492                  * The split could have manipulated the tree enough to
5493                  * move the record location, so we have to look for it again.
5494                  */
5495                 ocfs2_reinit_path(path, 1);
5496
5497                 ret = ocfs2_find_path(inode, path, cpos);
5498                 if (ret) {
5499                         mlog_errno(ret);
5500                         goto out;
5501                 }
5502
5503                 el = path_leaf_el(path);
5504                 index = ocfs2_search_extent_list(el, cpos);
5505                 if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
5506                         ocfs2_error(inode->i_sb,
5507                                     "Inode %llu: split at cpos %u lost record.",
5508                                     (unsigned long long)OCFS2_I(inode)->ip_blkno,
5509                                     cpos);
5510                         ret = -EROFS;
5511                         goto out;
5512                 }
5513
5514                 /*
5515                  * Double check our values here. If anything is fishy,
5516                  * it's easier to catch it at the top level.
5517                  */
5518                 rec = &el->l_recs[index];
5519                 rec_range = le32_to_cpu(rec->e_cpos) +
5520                         ocfs2_rec_clusters(el, rec);
5521                 if (rec_range != trunc_range) {
5522                         ocfs2_error(inode->i_sb,
5523                                     "Inode %llu: error after split at cpos %u"
5524                                     "trunc len %u, existing record is (%u,%u)",
5525                                     (unsigned long long)OCFS2_I(inode)->ip_blkno,
5526                                     cpos, len, le32_to_cpu(rec->e_cpos),
5527                                     ocfs2_rec_clusters(el, rec));
5528                         ret = -EROFS;
5529                         goto out;
5530                 }
5531
5532                 ret = ocfs2_truncate_rec(inode, handle, path, index, dealloc,
5533                                          cpos, len, et);
5534                 if (ret) {
5535                         mlog_errno(ret);
5536                         goto out;
5537                 }
5538         }
5539
5540 out:
5541         ocfs2_free_path(path);
5542         return ret;
5543 }
5544
5545 int ocfs2_remove_btree_range(struct inode *inode,
5546                              struct ocfs2_extent_tree *et,
5547                              u32 cpos, u32 phys_cpos, u32 len,
5548                              struct ocfs2_cached_dealloc_ctxt *dealloc)
5549 {
5550         int ret;
5551         u64 phys_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys_cpos);
5552         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
5553         struct inode *tl_inode = osb->osb_tl_inode;
5554         handle_t *handle;
5555         struct ocfs2_alloc_context *meta_ac = NULL;
5556
5557         ret = ocfs2_lock_allocators(inode, et, 0, 1, NULL, &meta_ac);
5558         if (ret) {
5559                 mlog_errno(ret);
5560                 return ret;
5561         }
5562
5563         mutex_lock(&tl_inode->i_mutex);
5564
5565         if (ocfs2_truncate_log_needs_flush(osb)) {
5566                 ret = __ocfs2_flush_truncate_log(osb);
5567                 if (ret < 0) {
5568                         mlog_errno(ret);
5569                         goto out;
5570                 }
5571         }
5572
5573         handle = ocfs2_start_trans(osb, ocfs2_remove_extent_credits(osb->sb));
5574         if (IS_ERR(handle)) {
5575                 ret = PTR_ERR(handle);
5576                 mlog_errno(ret);
5577                 goto out;
5578         }
5579
5580         ret = ocfs2_et_root_journal_access(handle, et,
5581                                            OCFS2_JOURNAL_ACCESS_WRITE);
5582         if (ret) {
5583                 mlog_errno(ret);
5584                 goto out;
5585         }
5586
5587         vfs_dq_free_space_nodirty(inode,
5588                                   ocfs2_clusters_to_bytes(inode->i_sb, len));
5589
5590         ret = ocfs2_remove_extent(inode, et, cpos, len, handle, meta_ac,
5591                                   dealloc);
5592         if (ret) {
5593                 mlog_errno(ret);
5594                 goto out_commit;
5595         }
5596
5597         ocfs2_et_update_clusters(inode, et, -len);
5598
5599         ret = ocfs2_journal_dirty(handle, et->et_root_bh);
5600         if (ret) {
5601                 mlog_errno(ret);
5602                 goto out_commit;
5603         }
5604
5605         ret = ocfs2_truncate_log_append(osb, handle, phys_blkno, len);
5606         if (ret)
5607                 mlog_errno(ret);
5608
5609 out_commit:
5610         ocfs2_commit_trans(osb, handle);
5611 out:
5612         mutex_unlock(&tl_inode->i_mutex);
5613
5614         if (meta_ac)
5615                 ocfs2_free_alloc_context(meta_ac);
5616
5617         return ret;
5618 }
5619
5620 int ocfs2_truncate_log_needs_flush(struct ocfs2_super *osb)
5621 {
5622         struct buffer_head *tl_bh = osb->osb_tl_bh;
5623         struct ocfs2_dinode *di;
5624         struct ocfs2_truncate_log *tl;
5625
5626         di = (struct ocfs2_dinode *) tl_bh->b_data;
5627         tl = &di->id2.i_dealloc;
5628
5629         mlog_bug_on_msg(le16_to_cpu(tl->tl_used) > le16_to_cpu(tl->tl_count),
5630                         "slot %d, invalid truncate log parameters: used = "
5631                         "%u, count = %u\n", osb->slot_num,
5632                         le16_to_cpu(tl->tl_used), le16_to_cpu(tl->tl_count));
5633         return le16_to_cpu(tl->tl_used) == le16_to_cpu(tl->tl_count);
5634 }
5635
5636 static int ocfs2_truncate_log_can_coalesce(struct ocfs2_truncate_log *tl,
5637                                            unsigned int new_start)
5638 {
5639         unsigned int tail_index;
5640         unsigned int current_tail;
5641
5642         /* No records, nothing to coalesce */
5643         if (!le16_to_cpu(tl->tl_used))
5644                 return 0;
5645
5646         tail_index = le16_to_cpu(tl->tl_used) - 1;
5647         current_tail = le32_to_cpu(tl->tl_recs[tail_index].t_start);
5648         current_tail += le32_to_cpu(tl->tl_recs[tail_index].t_clusters);
5649
5650         return current_tail == new_start;
5651 }
5652
5653 int ocfs2_truncate_log_append(struct ocfs2_super *osb,
5654                               handle_t *handle,
5655                               u64 start_blk,
5656                               unsigned int num_clusters)
5657 {
5658         int status, index;
5659         unsigned int start_cluster, tl_count;
5660         struct inode *tl_inode = osb->osb_tl_inode;
5661         struct buffer_head *tl_bh = osb->osb_tl_bh;
5662         struct ocfs2_dinode *di;
5663         struct ocfs2_truncate_log *tl;
5664
5665         mlog_entry("start_blk = %llu, num_clusters = %u\n",
5666                    (unsigned long long)start_blk, num_clusters);
5667
5668         BUG_ON(mutex_trylock(&tl_inode->i_mutex));
5669
5670         start_cluster = ocfs2_blocks_to_clusters(osb->sb, start_blk);
5671
5672         di = (struct ocfs2_dinode *) tl_bh->b_data;
5673
5674         /* tl_bh is loaded from ocfs2_truncate_log_init().  It's validated
5675          * by the underlying call to ocfs2_read_inode_block(), so any
5676          * corruption is a code bug */
5677         BUG_ON(!OCFS2_IS_VALID_DINODE(di));
5678
5679         tl = &di->id2.i_dealloc;
5680         tl_count = le16_to_cpu(tl->tl_count);
5681         mlog_bug_on_msg(tl_count > ocfs2_truncate_recs_per_inode(osb->sb) ||
5682                         tl_count == 0,
5683                         "Truncate record count on #%llu invalid "
5684                         "wanted %u, actual %u\n",
5685                         (unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
5686                         ocfs2_truncate_recs_per_inode(osb->sb),
5687                         le16_to_cpu(tl->tl_count));
5688
5689         /* Caller should have known to flush before calling us. */
5690         index = le16_to_cpu(tl->tl_used);
5691         if (index >= tl_count) {
5692                 status = -ENOSPC;
5693                 mlog_errno(status);
5694                 goto bail;
5695         }
5696
5697         status = ocfs2_journal_access_di(handle, INODE_CACHE(tl_inode), tl_bh,
5698                                          OCFS2_JOURNAL_ACCESS_WRITE);
5699         if (status < 0) {
5700                 mlog_errno(status);
5701                 goto bail;
5702         }
5703
5704         mlog(0, "Log truncate of %u clusters starting at cluster %u to "
5705              "%llu (index = %d)\n", num_clusters, start_cluster,
5706              (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, index);
5707
5708         if (ocfs2_truncate_log_can_coalesce(tl, start_cluster)) {
5709                 /*
5710                  * Move index back to the record we are coalescing with.
5711                  * ocfs2_truncate_log_can_coalesce() guarantees nonzero
5712                  */
5713                 index--;
5714
5715                 num_clusters += le32_to_cpu(tl->tl_recs[index].t_clusters);
5716                 mlog(0, "Coalesce with index %u (start = %u, clusters = %u)\n",
5717                      index, le32_to_cpu(tl->tl_recs[index].t_start),
5718                      num_clusters);
5719         } else {
5720                 tl->tl_recs[index].t_start = cpu_to_le32(start_cluster);
5721                 tl->tl_used = cpu_to_le16(index + 1);
5722         }
5723         tl->tl_recs[index].t_clusters = cpu_to_le32(num_clusters);
5724
5725         status = ocfs2_journal_dirty(handle, tl_bh);
5726         if (status < 0) {
5727                 mlog_errno(status);
5728                 goto bail;
5729         }
5730
5731 bail:
5732         mlog_exit(status);
5733         return status;
5734 }
5735
5736 static int ocfs2_replay_truncate_records(struct ocfs2_super *osb,
5737                                          handle_t *handle,
5738                                          struct inode *data_alloc_inode,
5739                                          struct buffer_head *data_alloc_bh)
5740 {
5741         int status = 0;
5742         int i;
5743         unsigned int num_clusters;
5744         u64 start_blk;
5745         struct ocfs2_truncate_rec rec;
5746         struct ocfs2_dinode *di;
5747         struct ocfs2_truncate_log *tl;
5748         struct inode *tl_inode = osb->osb_tl_inode;
5749         struct buffer_head *tl_bh = osb->osb_tl_bh;
5750
5751         mlog_entry_void();
5752
5753         di = (struct ocfs2_dinode *) tl_bh->b_data;
5754         tl = &di->id2.i_dealloc;
5755         i = le16_to_cpu(tl->tl_used) - 1;
5756         while (i >= 0) {
5757                 /* Caller has given us at least enough credits to
5758                  * update the truncate log dinode */
5759                 status = ocfs2_journal_access_di(handle, INODE_CACHE(tl_inode), tl_bh,
5760                                                  OCFS2_JOURNAL_ACCESS_WRITE);
5761                 if (status < 0) {
5762                         mlog_errno(status);
5763                         goto bail;
5764                 }
5765
5766                 tl->tl_used = cpu_to_le16(i);
5767
5768                 status = ocfs2_journal_dirty(handle, tl_bh);
5769                 if (status < 0) {
5770                         mlog_errno(status);
5771                         goto bail;
5772                 }
5773
5774                 /* TODO: Perhaps we can calculate the bulk of the
5775                  * credits up front rather than extending like
5776                  * this. */
5777                 status = ocfs2_extend_trans(handle,
5778                                             OCFS2_TRUNCATE_LOG_FLUSH_ONE_REC);
5779                 if (status < 0) {
5780                         mlog_errno(status);
5781                         goto bail;
5782                 }
5783
5784                 rec = tl->tl_recs[i];
5785                 start_blk = ocfs2_clusters_to_blocks(data_alloc_inode->i_sb,
5786                                                     le32_to_cpu(rec.t_start));
5787                 num_clusters = le32_to_cpu(rec.t_clusters);
5788
5789                 /* if start_blk is not set, we ignore the record as
5790                  * invalid. */
5791                 if (start_blk) {
5792                         mlog(0, "free record %d, start = %u, clusters = %u\n",
5793                              i, le32_to_cpu(rec.t_start), num_clusters);
5794
5795                         status = ocfs2_free_clusters(handle, data_alloc_inode,
5796                                                      data_alloc_bh, start_blk,
5797                                                      num_clusters);
5798                         if (status < 0) {
5799                                 mlog_errno(status);
5800                                 goto bail;
5801                         }
5802                 }
5803                 i--;
5804         }
5805
5806 bail:
5807         mlog_exit(status);
5808         return status;
5809 }
5810
5811 /* Expects you to already be holding tl_inode->i_mutex */
5812 int __ocfs2_flush_truncate_log(struct ocfs2_super *osb)
5813 {
5814         int status;
5815         unsigned int num_to_flush;
5816         handle_t *handle;
5817         struct inode *tl_inode = osb->osb_tl_inode;
5818         struct inode *data_alloc_inode = NULL;
5819         struct buffer_head *tl_bh = osb->osb_tl_bh;
5820         struct buffer_head *data_alloc_bh = NULL;
5821         struct ocfs2_dinode *di;
5822         struct ocfs2_truncate_log *tl;
5823
5824         mlog_entry_void();
5825
5826         BUG_ON(mutex_trylock(&tl_inode->i_mutex));
5827
5828         di = (struct ocfs2_dinode *) tl_bh->b_data;
5829
5830         /* tl_bh is loaded from ocfs2_truncate_log_init().  It's validated
5831          * by the underlying call to ocfs2_read_inode_block(), so any
5832          * corruption is a code bug */
5833         BUG_ON(!OCFS2_IS_VALID_DINODE(di));
5834
5835         tl = &di->id2.i_dealloc;
5836         num_to_flush = le16_to_cpu(tl->tl_used);
5837         mlog(0, "Flush %u records from truncate log #%llu\n",
5838              num_to_flush, (unsigned long long)OCFS2_I(tl_inode)->ip_blkno);
5839         if (!num_to_flush) {
5840                 status = 0;
5841                 goto out;
5842         }
5843
5844         data_alloc_inode = ocfs2_get_system_file_inode(osb,
5845                                                        GLOBAL_BITMAP_SYSTEM_INODE,
5846                                                        OCFS2_INVALID_SLOT);
5847         if (!data_alloc_inode) {
5848                 status = -EINVAL;
5849                 mlog(ML_ERROR, "Could not get bitmap inode!\n");
5850                 goto out;
5851         }
5852
5853         mutex_lock(&data_alloc_inode->i_mutex);
5854
5855         status = ocfs2_inode_lock(data_alloc_inode, &data_alloc_bh, 1);
5856         if (status < 0) {
5857                 mlog_errno(status);
5858                 goto out_mutex;
5859         }
5860
5861         handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
5862         if (IS_ERR(handle)) {
5863                 status = PTR_ERR(handle);
5864                 mlog_errno(status);
5865                 goto out_unlock;
5866         }
5867
5868         status = ocfs2_replay_truncate_records(osb, handle, data_alloc_inode,
5869                                                data_alloc_bh);
5870         if (status < 0)
5871                 mlog_errno(status);
5872
5873         ocfs2_commit_trans(osb, handle);
5874
5875 out_unlock:
5876         brelse(data_alloc_bh);
5877         ocfs2_inode_unlock(data_alloc_inode, 1);
5878
5879 out_mutex:
5880         mutex_unlock(&data_alloc_inode->i_mutex);
5881         iput(data_alloc_inode);
5882
5883 out:
5884         mlog_exit(status);
5885         return status;
5886 }
5887
5888 int ocfs2_flush_truncate_log(struct ocfs2_super *osb)
5889 {
5890         int status;
5891         struct inode *tl_inode = osb->osb_tl_inode;
5892
5893         mutex_lock(&tl_inode->i_mutex);
5894         status = __ocfs2_flush_truncate_log(osb);
5895         mutex_unlock(&tl_inode->i_mutex);
5896
5897         return status;
5898 }
5899
5900 static void ocfs2_truncate_log_worker(struct work_struct *work)
5901 {
5902         int status;
5903         struct ocfs2_super *osb =
5904                 container_of(work, struct ocfs2_super,
5905                              osb_truncate_log_wq.work);
5906
5907         mlog_entry_void();
5908
5909         status = ocfs2_flush_truncate_log(osb);
5910         if (status < 0)
5911                 mlog_errno(status);
5912         else
5913                 ocfs2_init_inode_steal_slot(osb);
5914
5915         mlog_exit(status);
5916 }
5917
5918 #define OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL (2 * HZ)
5919 void ocfs2_schedule_truncate_log_flush(struct ocfs2_super *osb,
5920                                        int cancel)
5921 {
5922         if (osb->osb_tl_inode) {
5923                 /* We want to push off log flushes while truncates are
5924                  * still running. */
5925                 if (cancel)
5926                         cancel_delayed_work(&osb->osb_truncate_log_wq);
5927
5928                 queue_delayed_work(ocfs2_wq, &osb->osb_truncate_log_wq,
5929                                    OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL);
5930         }
5931 }
5932
5933 static int ocfs2_get_truncate_log_info(struct ocfs2_super *osb,
5934                                        int slot_num,
5935                                        struct inode **tl_inode,
5936                                        struct buffer_head **tl_bh)
5937 {
5938         int status;
5939         struct inode *inode = NULL;
5940         struct buffer_head *bh = NULL;
5941
5942         inode = ocfs2_get_system_file_inode(osb,
5943                                            TRUNCATE_LOG_SYSTEM_INODE,
5944                                            slot_num);
5945         if (!inode) {
5946                 status = -EINVAL;
5947                 mlog(ML_ERROR, "Could not get load truncate log inode!\n");
5948                 goto bail;
5949         }
5950
5951         status = ocfs2_read_inode_block(inode, &bh);
5952         if (status < 0) {
5953                 iput(inode);
5954                 mlog_errno(status);
5955                 goto bail;
5956         }
5957
5958         *tl_inode = inode;
5959         *tl_bh    = bh;
5960 bail:
5961         mlog_exit(status);
5962         return status;
5963 }
5964
5965 /* called during the 1st stage of node recovery. we stamp a clean
5966  * truncate log and pass back a copy for processing later. if the
5967  * truncate log does not require processing, a *tl_copy is set to
5968  * NULL. */
5969 int ocfs2_begin_truncate_log_recovery(struct ocfs2_super *osb,
5970                                       int slot_num,
5971                                       struct ocfs2_dinode **tl_copy)
5972 {
5973         int status;
5974         struct inode *tl_inode = NULL;
5975         struct buffer_head *tl_bh = NULL;
5976         struct ocfs2_dinode *di;
5977         struct ocfs2_truncate_log *tl;
5978
5979         *tl_copy = NULL;
5980
5981         mlog(0, "recover truncate log from slot %d\n", slot_num);
5982
5983         status = ocfs2_get_truncate_log_info(osb, slot_num, &tl_inode, &tl_bh);
5984         if (status < 0) {
5985                 mlog_errno(status);
5986                 goto bail;
5987         }
5988
5989         di = (struct ocfs2_dinode *) tl_bh->b_data;
5990
5991         /* tl_bh is loaded from ocfs2_get_truncate_log_info().  It's
5992          * validated by the underlying call to ocfs2_read_inode_block(),
5993          * so any corruption is a code bug */
5994         BUG_ON(!OCFS2_IS_VALID_DINODE(di));
5995
5996         tl = &di->id2.i_dealloc;
5997         if (le16_to_cpu(tl->tl_used)) {
5998                 mlog(0, "We'll have %u logs to recover\n",
5999                      le16_to_cpu(tl->tl_used));
6000
6001                 *tl_copy = kmalloc(tl_bh->b_size, GFP_KERNEL);
6002                 if (!(*tl_copy)) {
6003                         status = -ENOMEM;
6004                         mlog_errno(status);
6005                         goto bail;
6006                 }
6007
6008                 /* Assuming the write-out below goes well, this copy
6009                  * will be passed back to recovery for processing. */
6010                 memcpy(*tl_copy, tl_bh->b_data, tl_bh->b_size);
6011
6012                 /* All we need to do to clear the truncate log is set
6013                  * tl_used. */
6014                 tl->tl_used = 0;
6015
6016                 ocfs2_compute_meta_ecc(osb->sb, tl_bh->b_data, &di->i_check);
6017                 status = ocfs2_write_block(osb, tl_bh, INODE_CACHE(tl_inode));
6018                 if (status < 0) {
6019                         mlog_errno(status);
6020                         goto bail;
6021                 }
6022         }
6023
6024 bail:
6025         if (tl_inode)
6026                 iput(tl_inode);
6027         brelse(tl_bh);
6028
6029         if (status < 0 && (*tl_copy)) {
6030                 kfree(*tl_copy);
6031                 *tl_copy = NULL;
6032         }
6033
6034         mlog_exit(status);
6035         return status;
6036 }
6037
6038 int ocfs2_complete_truncate_log_recovery(struct ocfs2_super *osb,
6039                                          struct ocfs2_dinode *tl_copy)
6040 {
6041         int status = 0;
6042         int i;
6043         unsigned int clusters, num_recs, start_cluster;
6044         u64 start_blk;
6045         handle_t *handle;
6046         struct inode *tl_inode = osb->osb_tl_inode;
6047         struct ocfs2_truncate_log *tl;
6048
6049         mlog_entry_void();
6050
6051         if (OCFS2_I(tl_inode)->ip_blkno == le64_to_cpu(tl_copy->i_blkno)) {
6052                 mlog(ML_ERROR, "Asked to recover my own truncate log!\n");
6053                 return -EINVAL;
6054         }
6055
6056         tl = &tl_copy->id2.i_dealloc;
6057         num_recs = le16_to_cpu(tl->tl_used);
6058         mlog(0, "cleanup %u records from %llu\n", num_recs,
6059              (unsigned long long)le64_to_cpu(tl_copy->i_blkno));
6060
6061         mutex_lock(&tl_inode->i_mutex);
6062         for(i = 0; i < num_recs; i++) {
6063                 if (ocfs2_truncate_log_needs_flush(osb)) {
6064                         status = __ocfs2_flush_truncate_log(osb);
6065                         if (status < 0) {
6066                                 mlog_errno(status);
6067                                 goto bail_up;
6068                         }
6069                 }
6070
6071                 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
6072                 if (IS_ERR(handle)) {
6073                         status = PTR_ERR(handle);
6074                         mlog_errno(status);
6075                         goto bail_up;
6076                 }
6077
6078                 clusters = le32_to_cpu(tl->tl_recs[i].t_clusters);
6079                 start_cluster = le32_to_cpu(tl->tl_recs[i].t_start);
6080                 start_blk = ocfs2_clusters_to_blocks(osb->sb, start_cluster);
6081
6082                 status = ocfs2_truncate_log_append(osb, handle,
6083                                                    start_blk, clusters);
6084                 ocfs2_commit_trans(osb, handle);
6085                 if (status < 0) {
6086                         mlog_errno(status);
6087                         goto bail_up;
6088                 }
6089         }
6090
6091 bail_up:
6092         mutex_unlock(&tl_inode->i_mutex);
6093
6094         mlog_exit(status);
6095         return status;
6096 }
6097
6098 void ocfs2_truncate_log_shutdown(struct ocfs2_super *osb)
6099 {
6100         int status;
6101         struct inode *tl_inode = osb->osb_tl_inode;
6102
6103         mlog_entry_void();
6104
6105         if (tl_inode) {
6106                 cancel_delayed_work(&osb->osb_truncate_log_wq);
6107                 flush_workqueue(ocfs2_wq);
6108
6109                 status = ocfs2_flush_truncate_log(osb);
6110                 if (status < 0)
6111                         mlog_errno(status);
6112
6113                 brelse(osb->osb_tl_bh);
6114                 iput(osb->osb_tl_inode);
6115         }
6116
6117         mlog_exit_void();
6118 }
6119
6120 int ocfs2_truncate_log_init(struct ocfs2_super *osb)
6121 {
6122         int status;
6123         struct inode *tl_inode = NULL;
6124         struct buffer_head *tl_bh = NULL;
6125
6126         mlog_entry_void();
6127
6128         status = ocfs2_get_truncate_log_info(osb,
6129                                              osb->slot_num,
6130                                              &tl_inode,
6131                                              &tl_bh);
6132         if (status < 0)
6133                 mlog_errno(status);
6134
6135         /* ocfs2_truncate_log_shutdown keys on the existence of
6136          * osb->osb_tl_inode so we don't set any of the osb variables
6137          * until we're sure all is well. */
6138         INIT_DELAYED_WORK(&osb->osb_truncate_log_wq,
6139                           ocfs2_truncate_log_worker);
6140         osb->osb_tl_bh    = tl_bh;
6141         osb->osb_tl_inode = tl_inode;
6142
6143         mlog_exit(status);
6144         return status;
6145 }
6146
6147 /*
6148  * Delayed de-allocation of suballocator blocks.
6149  *
6150  * Some sets of block de-allocations might involve multiple suballocator inodes.
6151  *
6152  * The locking for this can get extremely complicated, especially when
6153  * the suballocator inodes to delete from aren't known until deep
6154  * within an unrelated codepath.
6155  *
6156  * ocfs2_extent_block structures are a good example of this - an inode
6157  * btree could have been grown by any number of nodes each allocating
6158  * out of their own suballoc inode.
6159  *
6160  * These structures allow the delay of block de-allocation until a
6161  * later time, when locking of multiple cluster inodes won't cause
6162  * deadlock.
6163  */
6164
6165 /*
6166  * Describe a single bit freed from a suballocator.  For the block
6167  * suballocators, it represents one block.  For the global cluster
6168  * allocator, it represents some clusters and free_bit indicates
6169  * clusters number.
6170  */
6171 struct ocfs2_cached_block_free {
6172         struct ocfs2_cached_block_free          *free_next;
6173         u64                                     free_blk;
6174         unsigned int                            free_bit;
6175 };
6176
6177 struct ocfs2_per_slot_free_list {
6178         struct ocfs2_per_slot_free_list         *f_next_suballocator;
6179         int                                     f_inode_type;
6180         int                                     f_slot;
6181         struct ocfs2_cached_block_free          *f_first;
6182 };
6183
6184 static int ocfs2_free_cached_blocks(struct ocfs2_super *osb,
6185                                     int sysfile_type,
6186                                     int slot,
6187                                     struct ocfs2_cached_block_free *head)
6188 {
6189         int ret;
6190         u64 bg_blkno;
6191         handle_t *handle;
6192         struct inode *inode;
6193         struct buffer_head *di_bh = NULL;
6194         struct ocfs2_cached_block_free *tmp;
6195
6196         inode = ocfs2_get_system_file_inode(osb, sysfile_type, slot);
6197         if (!inode) {
6198                 ret = -EINVAL;
6199                 mlog_errno(ret);
6200                 goto out;
6201         }
6202
6203         mutex_lock(&inode->i_mutex);
6204
6205         ret = ocfs2_inode_lock(inode, &di_bh, 1);
6206         if (ret) {
6207                 mlog_errno(ret);
6208                 goto out_mutex;
6209         }
6210
6211         handle = ocfs2_start_trans(osb, OCFS2_SUBALLOC_FREE);
6212         if (IS_ERR(handle)) {
6213                 ret = PTR_ERR(handle);
6214                 mlog_errno(ret);
6215                 goto out_unlock;
6216         }
6217
6218         while (head) {
6219                 bg_blkno = ocfs2_which_suballoc_group(head->free_blk,
6220                                                       head->free_bit);
6221                 mlog(0, "Free bit: (bit %u, blkno %llu)\n",
6222                      head->free_bit, (unsigned long long)head->free_blk);
6223
6224                 ret = ocfs2_free_suballoc_bits(handle, inode, di_bh,
6225                                                head->free_bit, bg_blkno, 1);
6226                 if (ret) {
6227                         mlog_errno(ret);
6228                         goto out_journal;
6229                 }
6230
6231                 ret = ocfs2_extend_trans(handle, OCFS2_SUBALLOC_FREE);
6232                 if (ret) {
6233                         mlog_errno(ret);
6234                         goto out_journal;
6235                 }
6236
6237                 tmp = head;
6238                 head = head->free_next;
6239                 kfree(tmp);
6240         }
6241
6242 out_journal:
6243         ocfs2_commit_trans(osb, handle);
6244
6245 out_unlock:
6246         ocfs2_inode_unlock(inode, 1);
6247         brelse(di_bh);
6248 out_mutex:
6249         mutex_unlock(&inode->i_mutex);
6250         iput(inode);
6251 out:
6252         while(head) {
6253                 /* Premature exit may have left some dangling items. */
6254                 tmp = head;
6255                 head = head->free_next;
6256                 kfree(tmp);
6257         }
6258
6259         return ret;
6260 }
6261
6262 int ocfs2_cache_cluster_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt,
6263                                 u64 blkno, unsigned int bit)
6264 {
6265         int ret = 0;
6266         struct ocfs2_cached_block_free *item;
6267
6268         item = kmalloc(sizeof(*item), GFP_NOFS);
6269         if (item == NULL) {
6270                 ret = -ENOMEM;
6271                 mlog_errno(ret);
6272                 return ret;
6273         }
6274
6275         mlog(0, "Insert clusters: (bit %u, blk %llu)\n",
6276              bit, (unsigned long long)blkno);
6277
6278         item->free_blk = blkno;
6279         item->free_bit = bit;
6280         item->free_next = ctxt->c_global_allocator;
6281
6282         ctxt->c_global_allocator = item;
6283         return ret;
6284 }
6285
6286 static int ocfs2_free_cached_clusters(struct ocfs2_super *osb,
6287                                       struct ocfs2_cached_block_free *head)
6288 {
6289         struct ocfs2_cached_block_free *tmp;
6290         struct inode *tl_inode = osb->osb_tl_inode;
6291         handle_t *handle;
6292         int ret = 0;
6293
6294         mutex_lock(&tl_inode->i_mutex);
6295
6296         while (head) {
6297                 if (ocfs2_truncate_log_needs_flush(osb)) {
6298                         ret = __ocfs2_flush_truncate_log(osb);
6299                         if (ret < 0) {
6300                                 mlog_errno(ret);
6301                                 break;
6302                         }
6303                 }
6304
6305                 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
6306                 if (IS_ERR(handle)) {
6307                         ret = PTR_ERR(handle);
6308                         mlog_errno(ret);
6309                         break;
6310                 }
6311
6312                 ret = ocfs2_truncate_log_append(osb, handle, head->free_blk,
6313                                                 head->free_bit);
6314
6315                 ocfs2_commit_trans(osb, handle);
6316                 tmp = head;
6317                 head = head->free_next;
6318                 kfree(tmp);
6319
6320                 if (ret < 0) {
6321                         mlog_errno(ret);
6322                         break;
6323                 }
6324         }
6325
6326         mutex_unlock(&tl_inode->i_mutex);
6327
6328         while (head) {
6329                 /* Premature exit may have left some dangling items. */
6330                 tmp = head;
6331                 head = head->free_next;
6332                 kfree(tmp);
6333         }
6334
6335         return ret;
6336 }
6337
6338 int ocfs2_run_deallocs(struct ocfs2_super *osb,
6339                        struct ocfs2_cached_dealloc_ctxt *ctxt)
6340 {
6341         int ret = 0, ret2;
6342         struct ocfs2_per_slot_free_list *fl;
6343
6344         if (!ctxt)
6345                 return 0;
6346
6347         while (ctxt->c_first_suballocator) {
6348                 fl = ctxt->c_first_suballocator;
6349
6350                 if (fl->f_first) {
6351                         mlog(0, "Free items: (type %u, slot %d)\n",
6352                              fl->f_inode_type, fl->f_slot);
6353                         ret2 = ocfs2_free_cached_blocks(osb,
6354                                                         fl->f_inode_type,
6355                                                         fl->f_slot,
6356                                                         fl->f_first);
6357                         if (ret2)
6358                                 mlog_errno(ret2);
6359                         if (!ret)
6360                                 ret = ret2;
6361                 }
6362
6363                 ctxt->c_first_suballocator = fl->f_next_suballocator;
6364                 kfree(fl);
6365         }
6366
6367         if (ctxt->c_global_allocator) {
6368                 ret2 = ocfs2_free_cached_clusters(osb,
6369                                                   ctxt->c_global_allocator);
6370                 if (ret2)
6371                         mlog_errno(ret2);
6372                 if (!ret)
6373                         ret = ret2;
6374
6375                 ctxt->c_global_allocator = NULL;
6376         }
6377
6378         return ret;
6379 }
6380
6381 static struct ocfs2_per_slot_free_list *
6382 ocfs2_find_per_slot_free_list(int type,
6383                               int slot,
6384                               struct ocfs2_cached_dealloc_ctxt *ctxt)
6385 {
6386         struct ocfs2_per_slot_free_list *fl = ctxt->c_first_suballocator;
6387
6388         while (fl) {
6389                 if (fl->f_inode_type == type && fl->f_slot == slot)
6390                         return fl;
6391
6392                 fl = fl->f_next_suballocator;
6393         }
6394
6395         fl = kmalloc(sizeof(*fl), GFP_NOFS);
6396         if (fl) {
6397                 fl->f_inode_type = type;
6398                 fl->f_slot = slot;
6399                 fl->f_first = NULL;
6400                 fl->f_next_suballocator = ctxt->c_first_suballocator;
6401
6402                 ctxt->c_first_suballocator = fl;
6403         }
6404         return fl;
6405 }
6406
6407 static int ocfs2_cache_block_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt,
6408                                      int type, int slot, u64 blkno,
6409                                      unsigned int bit)
6410 {
6411         int ret;
6412         struct ocfs2_per_slot_free_list *fl;
6413         struct ocfs2_cached_block_free *item;
6414
6415         fl = ocfs2_find_per_slot_free_list(type, slot, ctxt);
6416         if (fl == NULL) {
6417                 ret = -ENOMEM;
6418                 mlog_errno(ret);
6419                 goto out;
6420         }
6421
6422         item = kmalloc(sizeof(*item), GFP_NOFS);
6423         if (item == NULL) {
6424                 ret = -ENOMEM;
6425                 mlog_errno(ret);
6426                 goto out;
6427         }
6428
6429         mlog(0, "Insert: (type %d, slot %u, bit %u, blk %llu)\n",
6430              type, slot, bit, (unsigned long long)blkno);
6431
6432         item->free_blk = blkno;
6433         item->free_bit = bit;
6434         item->free_next = fl->f_first;
6435
6436         fl->f_first = item;
6437
6438         ret = 0;
6439 out:
6440         return ret;
6441 }
6442
6443 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
6444                                          struct ocfs2_extent_block *eb)
6445 {
6446         return ocfs2_cache_block_dealloc(ctxt, EXTENT_ALLOC_SYSTEM_INODE,
6447                                          le16_to_cpu(eb->h_suballoc_slot),
6448                                          le64_to_cpu(eb->h_blkno),
6449                                          le16_to_cpu(eb->h_suballoc_bit));
6450 }
6451
6452 /* This function will figure out whether the currently last extent
6453  * block will be deleted, and if it will, what the new last extent
6454  * block will be so we can update his h_next_leaf_blk field, as well
6455  * as the dinodes i_last_eb_blk */
6456 static int ocfs2_find_new_last_ext_blk(struct inode *inode,
6457                                        unsigned int clusters_to_del,
6458                                        struct ocfs2_path *path,
6459                                        struct buffer_head **new_last_eb)
6460 {
6461         int next_free, ret = 0;
6462         u32 cpos;
6463         struct ocfs2_extent_rec *rec;
6464         struct ocfs2_extent_block *eb;
6465         struct ocfs2_extent_list *el;
6466         struct buffer_head *bh = NULL;
6467
6468         *new_last_eb = NULL;
6469
6470         /* we have no tree, so of course, no last_eb. */
6471         if (!path->p_tree_depth)
6472                 goto out;
6473
6474         /* trunc to zero special case - this makes tree_depth = 0
6475          * regardless of what it is.  */
6476         if (OCFS2_I(inode)->ip_clusters == clusters_to_del)
6477                 goto out;
6478
6479         el = path_leaf_el(path);
6480         BUG_ON(!el->l_next_free_rec);
6481
6482         /*
6483          * Make sure that this extent list will actually be empty
6484          * after we clear away the data. We can shortcut out if
6485          * there's more than one non-empty extent in the
6486          * list. Otherwise, a check of the remaining extent is
6487          * necessary.
6488          */
6489         next_free = le16_to_cpu(el->l_next_free_rec);
6490         rec = NULL;
6491         if (ocfs2_is_empty_extent(&el->l_recs[0])) {
6492                 if (next_free > 2)
6493                         goto out;
6494
6495                 /* We may have a valid extent in index 1, check it. */
6496                 if (next_free == 2)
6497                         rec = &el->l_recs[1];
6498
6499                 /*
6500                  * Fall through - no more nonempty extents, so we want
6501                  * to delete this leaf.
6502                  */
6503         } else {
6504                 if (next_free > 1)
6505                         goto out;
6506
6507                 rec = &el->l_recs[0];
6508         }
6509
6510         if (rec) {
6511                 /*
6512                  * Check it we'll only be trimming off the end of this
6513                  * cluster.
6514                  */
6515                 if (le16_to_cpu(rec->e_leaf_clusters) > clusters_to_del)
6516                         goto out;
6517         }
6518
6519         ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, &cpos);
6520         if (ret) {
6521                 mlog_errno(ret);
6522                 goto out;
6523         }
6524
6525         ret = ocfs2_find_leaf(inode, path_root_el(path), cpos, &bh);
6526         if (ret) {
6527                 mlog_errno(ret);
6528                 goto out;
6529         }
6530
6531         eb = (struct ocfs2_extent_block *) bh->b_data;
6532         el = &eb->h_list;
6533
6534         /* ocfs2_find_leaf() gets the eb from ocfs2_read_extent_block().
6535          * Any corruption is a code bug. */
6536         BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb));
6537
6538         *new_last_eb = bh;
6539         get_bh(*new_last_eb);
6540         mlog(0, "returning block %llu, (cpos: %u)\n",
6541              (unsigned long long)le64_to_cpu(eb->h_blkno), cpos);
6542 out:
6543         brelse(bh);
6544
6545         return ret;
6546 }
6547
6548 /*
6549  * Trim some clusters off the rightmost edge of a tree. Only called
6550  * during truncate.
6551  *
6552  * The caller needs to:
6553  *   - start journaling of each path component.
6554  *   - compute and fully set up any new last ext block
6555  */
6556 static int ocfs2_trim_tree(struct inode *inode, struct ocfs2_path *path,
6557                            handle_t *handle, struct ocfs2_truncate_context *tc,
6558                            u32 clusters_to_del, u64 *delete_start)
6559 {
6560         int ret, i, index = path->p_tree_depth;
6561         u32 new_edge = 0;
6562         u64 deleted_eb = 0;
6563         struct buffer_head *bh;
6564         struct ocfs2_extent_list *el;
6565         struct ocfs2_extent_rec *rec;
6566
6567         *delete_start = 0;
6568
6569         while (index >= 0) {
6570                 bh = path->p_node[index].bh;
6571                 el = path->p_node[index].el;
6572
6573                 mlog(0, "traveling tree (index = %d, block = %llu)\n",
6574                      index,  (unsigned long long)bh->b_blocknr);
6575
6576                 BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0);
6577
6578                 if (index !=
6579                     (path->p_tree_depth - le16_to_cpu(el->l_tree_depth))) {
6580                         ocfs2_error(inode->i_sb,
6581                                     "Inode %lu has invalid ext. block %llu",
6582                                     inode->i_ino,
6583                                     (unsigned long long)bh->b_blocknr);
6584                         ret = -EROFS;
6585                         goto out;
6586                 }
6587
6588 find_tail_record:
6589                 i = le16_to_cpu(el->l_next_free_rec) - 1;
6590                 rec = &el->l_recs[i];
6591
6592                 mlog(0, "Extent list before: record %d: (%u, %u, %llu), "
6593                      "next = %u\n", i, le32_to_cpu(rec->e_cpos),
6594                      ocfs2_rec_clusters(el, rec),
6595                      (unsigned long long)le64_to_cpu(rec->e_blkno),
6596                      le16_to_cpu(el->l_next_free_rec));
6597
6598                 BUG_ON(ocfs2_rec_clusters(el, rec) < clusters_to_del);
6599
6600                 if (le16_to_cpu(el->l_tree_depth) == 0) {
6601                         /*
6602                          * If the leaf block contains a single empty
6603                          * extent and no records, we can just remove
6604                          * the block.
6605                          */
6606                         if (i == 0 && ocfs2_is_empty_extent(rec)) {
6607                                 memset(rec, 0,
6608                                        sizeof(struct ocfs2_extent_rec));
6609                                 el->l_next_free_rec = cpu_to_le16(0);
6610
6611                                 goto delete;
6612                         }
6613
6614                         /*
6615                          * Remove any empty extents by shifting things
6616                          * left. That should make life much easier on
6617                          * the code below. This condition is rare
6618                          * enough that we shouldn't see a performance
6619                          * hit.
6620                          */
6621                         if (ocfs2_is_empty_extent(&el->l_recs[0])) {
6622                                 le16_add_cpu(&el->l_next_free_rec, -1);
6623
6624                                 for(i = 0;
6625                                     i < le16_to_cpu(el->l_next_free_rec); i++)
6626                                         el->l_recs[i] = el->l_recs[i + 1];
6627
6628                                 memset(&el->l_recs[i], 0,
6629                                        sizeof(struct ocfs2_extent_rec));
6630
6631                                 /*
6632                                  * We've modified our extent list. The
6633                                  * simplest way to handle this change
6634                                  * is to being the search from the
6635                                  * start again.
6636                                  */
6637                                 goto find_tail_record;
6638                         }
6639
6640                         le16_add_cpu(&rec->e_leaf_clusters, -clusters_to_del);
6641
6642                         /*
6643                          * We'll use "new_edge" on our way back up the
6644                          * tree to know what our rightmost cpos is.
6645                          */
6646                         new_edge = le16_to_cpu(rec->e_leaf_clusters);
6647                         new_edge += le32_to_cpu(rec->e_cpos);
6648
6649                         /*
6650                          * The caller will use this to delete data blocks.
6651                          */
6652                         *delete_start = le64_to_cpu(rec->e_blkno)
6653                                 + ocfs2_clusters_to_blocks(inode->i_sb,
6654                                         le16_to_cpu(rec->e_leaf_clusters));
6655
6656                         /*
6657                          * If it's now empty, remove this record.
6658                          */
6659                         if (le16_to_cpu(rec->e_leaf_clusters) == 0) {
6660                                 memset(rec, 0,
6661                                        sizeof(struct ocfs2_extent_rec));
6662                                 le16_add_cpu(&el->l_next_free_rec, -1);
6663                         }
6664                 } else {
6665                         if (le64_to_cpu(rec->e_blkno) == deleted_eb) {
6666                                 memset(rec, 0,
6667                                        sizeof(struct ocfs2_extent_rec));
6668                                 le16_add_cpu(&el->l_next_free_rec, -1);
6669
6670                                 goto delete;
6671                         }
6672
6673                         /* Can this actually happen? */
6674                         if (le16_to_cpu(el->l_next_free_rec) == 0)
6675                                 goto delete;
6676
6677                         /*
6678                          * We never actually deleted any clusters
6679                          * because our leaf was empty. There's no
6680                          * reason to adjust the rightmost edge then.
6681                          */
6682                         if (new_edge == 0)
6683                                 goto delete;
6684
6685                         rec->e_int_clusters = cpu_to_le32(new_edge);
6686                         le32_add_cpu(&rec->e_int_clusters,
6687                                      -le32_to_cpu(rec->e_cpos));
6688
6689                          /*
6690                           * A deleted child record should have been
6691                           * caught above.
6692                           */
6693                          BUG_ON(le32_to_cpu(rec->e_int_clusters) == 0);
6694                 }
6695
6696 delete:
6697                 ret = ocfs2_journal_dirty(handle, bh);
6698                 if (ret) {
6699                         mlog_errno(ret);
6700                         goto out;
6701                 }
6702
6703                 mlog(0, "extent list container %llu, after: record %d: "
6704                      "(%u, %u, %llu), next = %u.\n",
6705                      (unsigned long long)bh->b_blocknr, i,
6706                      le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec),
6707                      (unsigned long long)le64_to_cpu(rec->e_blkno),
6708                      le16_to_cpu(el->l_next_free_rec));
6709
6710                 /*
6711                  * We must be careful to only attempt delete of an
6712                  * extent block (and not the root inode block).
6713                  */
6714                 if (index > 0 && le16_to_cpu(el->l_next_free_rec) == 0) {
6715                         struct ocfs2_extent_block *eb =
6716                                 (struct ocfs2_extent_block *)bh->b_data;
6717
6718                         /*
6719                          * Save this for use when processing the
6720                          * parent block.
6721                          */
6722                         deleted_eb = le64_to_cpu(eb->h_blkno);
6723
6724                         mlog(0, "deleting this extent block.\n");
6725
6726                         ocfs2_remove_from_cache(INODE_CACHE(inode), bh);
6727
6728                         BUG_ON(ocfs2_rec_clusters(el, &el->l_recs[0]));
6729                         BUG_ON(le32_to_cpu(el->l_recs[0].e_cpos));
6730                         BUG_ON(le64_to_cpu(el->l_recs[0].e_blkno));
6731
6732                         ret = ocfs2_cache_extent_block_free(&tc->tc_dealloc, eb);
6733                         /* An error here is not fatal. */
6734                         if (ret < 0)
6735                                 mlog_errno(ret);
6736                 } else {
6737                         deleted_eb = 0;
6738                 }
6739
6740                 index--;
6741         }
6742
6743         ret = 0;
6744 out:
6745         return ret;
6746 }
6747
6748 static int ocfs2_do_truncate(struct ocfs2_super *osb,
6749                              unsigned int clusters_to_del,
6750                              struct inode *inode,
6751                              struct buffer_head *fe_bh,
6752                              handle_t *handle,
6753                              struct ocfs2_truncate_context *tc,
6754                              struct ocfs2_path *path)
6755 {
6756         int status;
6757         struct ocfs2_dinode *fe;
6758         struct ocfs2_extent_block *last_eb = NULL;
6759         struct ocfs2_extent_list *el;
6760         struct buffer_head *last_eb_bh = NULL;
6761         u64 delete_blk = 0;
6762
6763         fe = (struct ocfs2_dinode *) fe_bh->b_data;
6764
6765         status = ocfs2_find_new_last_ext_blk(inode, clusters_to_del,
6766                                              path, &last_eb_bh);
6767         if (status < 0) {
6768                 mlog_errno(status);
6769                 goto bail;
6770         }
6771
6772         /*
6773          * Each component will be touched, so we might as well journal
6774          * here to avoid having to handle errors later.
6775          */
6776         status = ocfs2_journal_access_path(INODE_CACHE(inode), handle, path);
6777         if (status < 0) {
6778                 mlog_errno(status);
6779                 goto bail;
6780         }
6781
6782         if (last_eb_bh) {
6783                 status = ocfs2_journal_access_eb(handle, INODE_CACHE(inode), last_eb_bh,
6784                                                  OCFS2_JOURNAL_ACCESS_WRITE);
6785                 if (status < 0) {
6786                         mlog_errno(status);
6787                         goto bail;
6788                 }
6789
6790                 last_eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
6791         }
6792
6793         el = &(fe->id2.i_list);
6794
6795         /*
6796          * Lower levels depend on this never happening, but it's best
6797          * to check it up here before changing the tree.
6798          */
6799         if (el->l_tree_depth && el->l_recs[0].e_int_clusters == 0) {
6800                 ocfs2_error(inode->i_sb,
6801                             "Inode %lu has an empty extent record, depth %u\n",
6802                             inode->i_ino, le16_to_cpu(el->l_tree_depth));
6803                 status = -EROFS;
6804                 goto bail;
6805         }
6806
6807         vfs_dq_free_space_nodirty(inode,
6808                         ocfs2_clusters_to_bytes(osb->sb, clusters_to_del));
6809         spin_lock(&OCFS2_I(inode)->ip_lock);
6810         OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters) -
6811                                       clusters_to_del;
6812         spin_unlock(&OCFS2_I(inode)->ip_lock);
6813         le32_add_cpu(&fe->i_clusters, -clusters_to_del);
6814         inode->i_blocks = ocfs2_inode_sector_count(inode);
6815
6816         status = ocfs2_trim_tree(inode, path, handle, tc,
6817                                  clusters_to_del, &delete_blk);
6818         if (status) {
6819                 mlog_errno(status);
6820                 goto bail;
6821         }
6822
6823         if (le32_to_cpu(fe->i_clusters) == 0) {
6824                 /* trunc to zero is a special case. */
6825                 el->l_tree_depth = 0;
6826                 fe->i_last_eb_blk = 0;
6827         } else if (last_eb)
6828                 fe->i_last_eb_blk = last_eb->h_blkno;
6829
6830         status = ocfs2_journal_dirty(handle, fe_bh);
6831         if (status < 0) {
6832                 mlog_errno(status);
6833                 goto bail;
6834         }
6835
6836         if (last_eb) {
6837                 /* If there will be a new last extent block, then by
6838                  * definition, there cannot be any leaves to the right of
6839                  * him. */
6840                 last_eb->h_next_leaf_blk = 0;
6841                 status = ocfs2_journal_dirty(handle, last_eb_bh);
6842                 if (status < 0) {
6843                         mlog_errno(status);
6844                         goto bail;
6845                 }
6846         }
6847
6848         if (delete_blk) {
6849                 status = ocfs2_truncate_log_append(osb, handle, delete_blk,
6850                                                    clusters_to_del);
6851                 if (status < 0) {
6852                         mlog_errno(status);
6853                         goto bail;
6854                 }
6855         }
6856         status = 0;
6857 bail:
6858         brelse(last_eb_bh);
6859         mlog_exit(status);
6860         return status;
6861 }
6862
6863 static int ocfs2_zero_func(handle_t *handle, struct buffer_head *bh)
6864 {
6865         set_buffer_uptodate(bh);
6866         mark_buffer_dirty(bh);
6867         return 0;
6868 }
6869
6870 static void ocfs2_map_and_dirty_page(struct inode *inode, handle_t *handle,
6871                                      unsigned int from, unsigned int to,
6872                                      struct page *page, int zero, u64 *phys)
6873 {
6874         int ret, partial = 0;
6875
6876         ret = ocfs2_map_page_blocks(page, phys, inode, from, to, 0);
6877         if (ret)
6878                 mlog_errno(ret);
6879
6880         if (zero)
6881                 zero_user_segment(page, from, to);
6882
6883         /*
6884          * Need to set the buffers we zero'd into uptodate
6885          * here if they aren't - ocfs2_map_page_blocks()
6886          * might've skipped some
6887          */
6888         ret = walk_page_buffers(handle, page_buffers(page),
6889                                 from, to, &partial,
6890                                 ocfs2_zero_func);
6891         if (ret < 0)
6892                 mlog_errno(ret);
6893         else if (ocfs2_should_order_data(inode)) {
6894                 ret = ocfs2_jbd2_file_inode(handle, inode);
6895                 if (ret < 0)
6896                         mlog_errno(ret);
6897         }
6898
6899         if (!partial)
6900                 SetPageUptodate(page);
6901
6902         flush_dcache_page(page);
6903 }
6904
6905 static void ocfs2_zero_cluster_pages(struct inode *inode, loff_t start,
6906                                      loff_t end, struct page **pages,
6907                                      int numpages, u64 phys, handle_t *handle)
6908 {
6909         int i;
6910         struct page *page;
6911         unsigned int from, to = PAGE_CACHE_SIZE;
6912         struct super_block *sb = inode->i_sb;
6913
6914         BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb)));
6915
6916         if (numpages == 0)
6917                 goto out;
6918
6919         to = PAGE_CACHE_SIZE;
6920         for(i = 0; i < numpages; i++) {
6921                 page = pages[i];
6922
6923                 from = start & (PAGE_CACHE_SIZE - 1);
6924                 if ((end >> PAGE_CACHE_SHIFT) == page->index)
6925                         to = end & (PAGE_CACHE_SIZE - 1);
6926
6927                 BUG_ON(from > PAGE_CACHE_SIZE);
6928                 BUG_ON(to > PAGE_CACHE_SIZE);
6929
6930                 ocfs2_map_and_dirty_page(inode, handle, from, to, page, 1,
6931                                          &phys);
6932
6933                 start = (page->index + 1) << PAGE_CACHE_SHIFT;
6934         }
6935 out:
6936         if (pages)
6937                 ocfs2_unlock_and_free_pages(pages, numpages);
6938 }
6939
6940 static int ocfs2_grab_eof_pages(struct inode *inode, loff_t start, loff_t end,
6941                                 struct page **pages, int *num)
6942 {
6943         int numpages, ret = 0;
6944         struct super_block *sb = inode->i_sb;
6945         struct address_space *mapping = inode->i_mapping;
6946         unsigned long index;
6947         loff_t last_page_bytes;
6948
6949         BUG_ON(start > end);
6950
6951         BUG_ON(start >> OCFS2_SB(sb)->s_clustersize_bits !=
6952                (end - 1) >> OCFS2_SB(sb)->s_clustersize_bits);
6953
6954         numpages = 0;
6955         last_page_bytes = PAGE_ALIGN(end);
6956         index = start >> PAGE_CACHE_SHIFT;
6957         do {
6958                 pages[numpages] = grab_cache_page(mapping, index);
6959                 if (!pages[numpages]) {
6960                         ret = -ENOMEM;
6961                         mlog_errno(ret);
6962                         goto out;
6963                 }
6964
6965                 numpages++;
6966                 index++;
6967         } while (index < (last_page_bytes >> PAGE_CACHE_SHIFT));
6968
6969 out:
6970         if (ret != 0) {
6971                 if (pages)
6972                         ocfs2_unlock_and_free_pages(pages, numpages);
6973                 numpages = 0;
6974         }
6975
6976         *num = numpages;
6977
6978         return ret;
6979 }
6980
6981 /*
6982  * Zero the area past i_size but still within an allocated
6983  * cluster. This avoids exposing nonzero data on subsequent file
6984  * extends.
6985  *
6986  * We need to call this before i_size is updated on the inode because
6987  * otherwise block_write_full_page() will skip writeout of pages past
6988  * i_size. The new_i_size parameter is passed for this reason.
6989  */
6990 int ocfs2_zero_range_for_truncate(struct inode *inode, handle_t *handle,
6991                                   u64 range_start, u64 range_end)
6992 {
6993         int ret = 0, numpages;
6994         struct page **pages = NULL;
6995         u64 phys;
6996         unsigned int ext_flags;
6997         struct super_block *sb = inode->i_sb;
6998
6999         /*
7000          * File systems which don't support sparse files zero on every
7001          * extend.
7002          */
7003         if (!ocfs2_sparse_alloc(OCFS2_SB(sb)))
7004                 return 0;
7005
7006         pages = kcalloc(ocfs2_pages_per_cluster(sb),
7007                         sizeof(struct page *), GFP_NOFS);
7008         if (pages == NULL) {
7009                 ret = -ENOMEM;
7010                 mlog_errno(ret);
7011                 goto out;
7012         }
7013
7014         if (range_start == range_end)
7015                 goto out;
7016
7017         ret = ocfs2_extent_map_get_blocks(inode,
7018                                           range_start >> sb->s_blocksize_bits,
7019                                           &phys, NULL, &ext_flags);
7020         if (ret) {
7021                 mlog_errno(ret);
7022                 goto out;
7023         }
7024
7025         /*
7026          * Tail is a hole, or is marked unwritten. In either case, we
7027          * can count on read and write to return/push zero's.
7028          */
7029         if (phys == 0 || ext_flags & OCFS2_EXT_UNWRITTEN)
7030                 goto out;
7031
7032         ret = ocfs2_grab_eof_pages(inode, range_start, range_end, pages,
7033                                    &numpages);
7034         if (ret) {
7035                 mlog_errno(ret);
7036                 goto out;
7037         }
7038
7039         ocfs2_zero_cluster_pages(inode, range_start, range_end, pages,
7040                                  numpages, phys, handle);
7041
7042         /*
7043          * Initiate writeout of the pages we zero'd here. We don't
7044          * wait on them - the truncate_inode_pages() call later will
7045          * do that for us.
7046          */
7047         ret = do_sync_mapping_range(inode->i_mapping, range_start,
7048                                     range_end - 1, SYNC_FILE_RANGE_WRITE);
7049         if (ret)
7050                 mlog_errno(ret);
7051
7052 out:
7053         if (pages)
7054                 kfree(pages);
7055
7056         return ret;
7057 }
7058
7059 static void ocfs2_zero_dinode_id2_with_xattr(struct inode *inode,
7060                                              struct ocfs2_dinode *di)
7061 {
7062         unsigned int blocksize = 1 << inode->i_sb->s_blocksize_bits;
7063         unsigned int xattrsize = le16_to_cpu(di->i_xattr_inline_size);
7064
7065         if (le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_XATTR_FL)
7066                 memset(&di->id2, 0, blocksize -
7067                                     offsetof(struct ocfs2_dinode, id2) -
7068                                     xattrsize);
7069         else
7070                 memset(&di->id2, 0, blocksize -
7071                                     offsetof(struct ocfs2_dinode, id2));
7072 }
7073
7074 void ocfs2_dinode_new_extent_list(struct inode *inode,
7075                                   struct ocfs2_dinode *di)
7076 {
7077         ocfs2_zero_dinode_id2_with_xattr(inode, di);
7078         di->id2.i_list.l_tree_depth = 0;
7079         di->id2.i_list.l_next_free_rec = 0;
7080         di->id2.i_list.l_count = cpu_to_le16(
7081                 ocfs2_extent_recs_per_inode_with_xattr(inode->i_sb, di));
7082 }
7083
7084 void ocfs2_set_inode_data_inline(struct inode *inode, struct ocfs2_dinode *di)
7085 {
7086         struct ocfs2_inode_info *oi = OCFS2_I(inode);
7087         struct ocfs2_inline_data *idata = &di->id2.i_data;
7088
7089         spin_lock(&oi->ip_lock);
7090         oi->ip_dyn_features |= OCFS2_INLINE_DATA_FL;
7091         di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
7092         spin_unlock(&oi->ip_lock);
7093
7094         /*
7095          * We clear the entire i_data structure here so that all
7096          * fields can be properly initialized.
7097          */
7098         ocfs2_zero_dinode_id2_with_xattr(inode, di);
7099
7100         idata->id_count = cpu_to_le16(
7101                         ocfs2_max_inline_data_with_xattr(inode->i_sb, di));
7102 }
7103
7104 int ocfs2_convert_inline_data_to_extents(struct inode *inode,
7105                                          struct buffer_head *di_bh)
7106 {
7107         int ret, i, has_data, num_pages = 0;
7108         handle_t *handle;
7109         u64 uninitialized_var(block);
7110         struct ocfs2_inode_info *oi = OCFS2_I(inode);
7111         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
7112         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
7113         struct ocfs2_alloc_context *data_ac = NULL;
7114         struct page **pages = NULL;
7115         loff_t end = osb->s_clustersize;
7116         struct ocfs2_extent_tree et;
7117         int did_quota = 0;
7118
7119         has_data = i_size_read(inode) ? 1 : 0;
7120
7121         if (has_data) {
7122                 pages = kcalloc(ocfs2_pages_per_cluster(osb->sb),
7123                                 sizeof(struct page *), GFP_NOFS);
7124                 if (pages == NULL) {
7125                         ret = -ENOMEM;
7126                         mlog_errno(ret);
7127                         goto out;
7128                 }
7129
7130                 ret = ocfs2_reserve_clusters(osb, 1, &data_ac);
7131                 if (ret) {
7132                         mlog_errno(ret);
7133                         goto out;
7134                 }
7135         }
7136
7137         handle = ocfs2_start_trans(osb,
7138                                    ocfs2_inline_to_extents_credits(osb->sb));
7139         if (IS_ERR(handle)) {
7140                 ret = PTR_ERR(handle);
7141                 mlog_errno(ret);
7142                 goto out_unlock;
7143         }
7144
7145         ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
7146                                       OCFS2_JOURNAL_ACCESS_WRITE);
7147         if (ret) {
7148                 mlog_errno(ret);
7149                 goto out_commit;
7150         }
7151
7152         if (has_data) {
7153                 u32 bit_off, num;
7154                 unsigned int page_end;
7155                 u64 phys;
7156
7157                 if (vfs_dq_alloc_space_nodirty(inode,
7158                                        ocfs2_clusters_to_bytes(osb->sb, 1))) {
7159                         ret = -EDQUOT;
7160                         goto out_commit;
7161                 }
7162                 did_quota = 1;
7163
7164                 ret = ocfs2_claim_clusters(osb, handle, data_ac, 1, &bit_off,
7165                                            &num);
7166                 if (ret) {
7167                         mlog_errno(ret);
7168                         goto out_commit;
7169                 }
7170
7171                 /*
7172                  * Save two copies, one for insert, and one that can
7173                  * be changed by ocfs2_map_and_dirty_page() below.
7174                  */
7175                 block = phys = ocfs2_clusters_to_blocks(inode->i_sb, bit_off);
7176
7177                 /*
7178                  * Non sparse file systems zero on extend, so no need
7179                  * to do that now.
7180                  */
7181                 if (!ocfs2_sparse_alloc(osb) &&
7182                     PAGE_CACHE_SIZE < osb->s_clustersize)
7183                         end = PAGE_CACHE_SIZE;
7184
7185                 ret = ocfs2_grab_eof_pages(inode, 0, end, pages, &num_pages);
7186                 if (ret) {
7187                         mlog_errno(ret);
7188                         goto out_commit;
7189                 }
7190
7191                 /*
7192                  * This should populate the 1st page for us and mark
7193                  * it up to date.
7194                  */
7195                 ret = ocfs2_read_inline_data(inode, pages[0], di_bh);
7196                 if (ret) {
7197                         mlog_errno(ret);
7198                         goto out_commit;
7199                 }
7200
7201                 page_end = PAGE_CACHE_SIZE;
7202                 if (PAGE_CACHE_SIZE > osb->s_clustersize)
7203                         page_end = osb->s_clustersize;
7204
7205                 for (i = 0; i < num_pages; i++)
7206                         ocfs2_map_and_dirty_page(inode, handle, 0, page_end,
7207                                                  pages[i], i > 0, &phys);
7208         }
7209
7210         spin_lock(&oi->ip_lock);
7211         oi->ip_dyn_features &= ~OCFS2_INLINE_DATA_FL;
7212         di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
7213         spin_unlock(&oi->ip_lock);
7214
7215         ocfs2_dinode_new_extent_list(inode, di);
7216
7217         ocfs2_journal_dirty(handle, di_bh);
7218
7219         if (has_data) {
7220                 /*
7221                  * An error at this point should be extremely rare. If
7222                  * this proves to be false, we could always re-build
7223                  * the in-inode data from our pages.
7224                  */
7225                 ocfs2_init_dinode_extent_tree(&et, inode, di_bh);
7226                 ret = ocfs2_insert_extent(osb, handle, inode, &et,
7227                                           0, block, 1, 0, NULL);
7228                 if (ret) {
7229                         mlog_errno(ret);
7230                         goto out_commit;
7231                 }
7232
7233                 inode->i_blocks = ocfs2_inode_sector_count(inode);
7234         }
7235
7236 out_commit:
7237         if (ret < 0 && did_quota)
7238                 vfs_dq_free_space_nodirty(inode,
7239                                           ocfs2_clusters_to_bytes(osb->sb, 1));
7240
7241         ocfs2_commit_trans(osb, handle);
7242
7243 out_unlock:
7244         if (data_ac)
7245                 ocfs2_free_alloc_context(data_ac);
7246
7247 out:
7248         if (pages) {
7249                 ocfs2_unlock_and_free_pages(pages, num_pages);
7250                 kfree(pages);
7251         }
7252
7253         return ret;
7254 }
7255
7256 /*
7257  * It is expected, that by the time you call this function,
7258  * inode->i_size and fe->i_size have been adjusted.
7259  *
7260  * WARNING: This will kfree the truncate context
7261  */
7262 int ocfs2_commit_truncate(struct ocfs2_super *osb,
7263                           struct inode *inode,
7264                           struct buffer_head *fe_bh,
7265                           struct ocfs2_truncate_context *tc)
7266 {
7267         int status, i, credits, tl_sem = 0;
7268         u32 clusters_to_del, new_highest_cpos, range;
7269         struct ocfs2_extent_list *el;
7270         handle_t *handle = NULL;
7271         struct inode *tl_inode = osb->osb_tl_inode;
7272         struct ocfs2_path *path = NULL;
7273         struct ocfs2_dinode *di = (struct ocfs2_dinode *)fe_bh->b_data;
7274
7275         mlog_entry_void();
7276
7277         new_highest_cpos = ocfs2_clusters_for_bytes(osb->sb,
7278                                                      i_size_read(inode));
7279
7280         path = ocfs2_new_path(fe_bh, &di->id2.i_list,
7281                               ocfs2_journal_access_di);
7282         if (!path) {
7283                 status = -ENOMEM;
7284                 mlog_errno(status);
7285                 goto bail;
7286         }
7287
7288         ocfs2_extent_map_trunc(inode, new_highest_cpos);
7289
7290 start:
7291         /*
7292          * Check that we still have allocation to delete.
7293          */
7294         if (OCFS2_I(inode)->ip_clusters == 0) {
7295                 status = 0;
7296                 goto bail;
7297         }
7298
7299         /*
7300          * Truncate always works against the rightmost tree branch.
7301          */
7302         status = ocfs2_find_path(inode, path, UINT_MAX);
7303         if (status) {
7304                 mlog_errno(status);
7305                 goto bail;
7306         }
7307
7308         mlog(0, "inode->ip_clusters = %u, tree_depth = %u\n",
7309              OCFS2_I(inode)->ip_clusters, path->p_tree_depth);
7310
7311         /*
7312          * By now, el will point to the extent list on the bottom most
7313          * portion of this tree. Only the tail record is considered in
7314          * each pass.
7315          *
7316          * We handle the following cases, in order:
7317          * - empty extent: delete the remaining branch
7318          * - remove the entire record
7319          * - remove a partial record
7320          * - no record needs to be removed (truncate has completed)
7321          */
7322         el = path_leaf_el(path);
7323         if (le16_to_cpu(el->l_next_free_rec) == 0) {
7324                 ocfs2_error(inode->i_sb,
7325                             "Inode %llu has empty extent block at %llu\n",
7326                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
7327                             (unsigned long long)path_leaf_bh(path)->b_blocknr);
7328                 status = -EROFS;
7329                 goto bail;
7330         }
7331
7332         i = le16_to_cpu(el->l_next_free_rec) - 1;
7333         range = le32_to_cpu(el->l_recs[i].e_cpos) +
7334                 ocfs2_rec_clusters(el, &el->l_recs[i]);
7335         if (i == 0 && ocfs2_is_empty_extent(&el->l_recs[i])) {
7336                 clusters_to_del = 0;
7337         } else if (le32_to_cpu(el->l_recs[i].e_cpos) >= new_highest_cpos) {
7338                 clusters_to_del = ocfs2_rec_clusters(el, &el->l_recs[i]);
7339         } else if (range > new_highest_cpos) {
7340                 clusters_to_del = (ocfs2_rec_clusters(el, &el->l_recs[i]) +
7341                                    le32_to_cpu(el->l_recs[i].e_cpos)) -
7342                                   new_highest_cpos;
7343         } else {
7344                 status = 0;
7345                 goto bail;
7346         }
7347
7348         mlog(0, "clusters_to_del = %u in this pass, tail blk=%llu\n",
7349              clusters_to_del, (unsigned long long)path_leaf_bh(path)->b_blocknr);
7350
7351         mutex_lock(&tl_inode->i_mutex);
7352         tl_sem = 1;
7353         /* ocfs2_truncate_log_needs_flush guarantees us at least one
7354          * record is free for use. If there isn't any, we flush to get
7355          * an empty truncate log.  */
7356         if (ocfs2_truncate_log_needs_flush(osb)) {
7357                 status = __ocfs2_flush_truncate_log(osb);
7358                 if (status < 0) {
7359                         mlog_errno(status);
7360                         goto bail;
7361                 }
7362         }
7363
7364         credits = ocfs2_calc_tree_trunc_credits(osb->sb, clusters_to_del,
7365                                                 (struct ocfs2_dinode *)fe_bh->b_data,
7366                                                 el);
7367         handle = ocfs2_start_trans(osb, credits);
7368         if (IS_ERR(handle)) {
7369                 status = PTR_ERR(handle);
7370                 handle = NULL;
7371                 mlog_errno(status);
7372                 goto bail;
7373         }
7374
7375         status = ocfs2_do_truncate(osb, clusters_to_del, inode, fe_bh, handle,
7376                                    tc, path);
7377         if (status < 0) {
7378                 mlog_errno(status);
7379                 goto bail;
7380         }
7381
7382         mutex_unlock(&tl_inode->i_mutex);
7383         tl_sem = 0;
7384
7385         ocfs2_commit_trans(osb, handle);
7386         handle = NULL;
7387
7388         ocfs2_reinit_path(path, 1);
7389
7390         /*
7391          * The check above will catch the case where we've truncated
7392          * away all allocation.
7393          */
7394         goto start;
7395
7396 bail:
7397
7398         ocfs2_schedule_truncate_log_flush(osb, 1);
7399
7400         if (tl_sem)
7401                 mutex_unlock(&tl_inode->i_mutex);
7402
7403         if (handle)
7404                 ocfs2_commit_trans(osb, handle);
7405
7406         ocfs2_run_deallocs(osb, &tc->tc_dealloc);
7407
7408         ocfs2_free_path(path);
7409
7410         /* This will drop the ext_alloc cluster lock for us */
7411         ocfs2_free_truncate_context(tc);
7412
7413         mlog_exit(status);
7414         return status;
7415 }
7416
7417 /*
7418  * Expects the inode to already be locked.
7419  */
7420 int ocfs2_prepare_truncate(struct ocfs2_super *osb,
7421                            struct inode *inode,
7422                            struct buffer_head *fe_bh,
7423                            struct ocfs2_truncate_context **tc)
7424 {
7425         int status;
7426         unsigned int new_i_clusters;
7427         struct ocfs2_dinode *fe;
7428         struct ocfs2_extent_block *eb;
7429         struct buffer_head *last_eb_bh = NULL;
7430
7431         mlog_entry_void();
7432
7433         *tc = NULL;
7434
7435         new_i_clusters = ocfs2_clusters_for_bytes(osb->sb,
7436                                                   i_size_read(inode));
7437         fe = (struct ocfs2_dinode *) fe_bh->b_data;
7438
7439         mlog(0, "fe->i_clusters = %u, new_i_clusters = %u, fe->i_size ="
7440              "%llu\n", le32_to_cpu(fe->i_clusters), new_i_clusters,
7441              (unsigned long long)le64_to_cpu(fe->i_size));
7442
7443         *tc = kzalloc(sizeof(struct ocfs2_truncate_context), GFP_KERNEL);
7444         if (!(*tc)) {
7445                 status = -ENOMEM;
7446                 mlog_errno(status);
7447                 goto bail;
7448         }
7449         ocfs2_init_dealloc_ctxt(&(*tc)->tc_dealloc);
7450
7451         if (fe->id2.i_list.l_tree_depth) {
7452                 status = ocfs2_read_extent_block(INODE_CACHE(inode),
7453                                                  le64_to_cpu(fe->i_last_eb_blk),
7454                                                  &last_eb_bh);
7455                 if (status < 0) {
7456                         mlog_errno(status);
7457                         goto bail;
7458                 }
7459                 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
7460         }
7461
7462         (*tc)->tc_last_eb_bh = last_eb_bh;
7463
7464         status = 0;
7465 bail:
7466         if (status < 0) {
7467                 if (*tc)
7468                         ocfs2_free_truncate_context(*tc);
7469                 *tc = NULL;
7470         }
7471         mlog_exit_void();
7472         return status;
7473 }
7474
7475 /*
7476  * 'start' is inclusive, 'end' is not.
7477  */
7478 int ocfs2_truncate_inline(struct inode *inode, struct buffer_head *di_bh,
7479                           unsigned int start, unsigned int end, int trunc)
7480 {
7481         int ret;
7482         unsigned int numbytes;
7483         handle_t *handle;
7484         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
7485         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
7486         struct ocfs2_inline_data *idata = &di->id2.i_data;
7487
7488         if (end > i_size_read(inode))
7489                 end = i_size_read(inode);
7490
7491         BUG_ON(start >= end);
7492
7493         if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) ||
7494             !(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL) ||
7495             !ocfs2_supports_inline_data(osb)) {
7496                 ocfs2_error(inode->i_sb,
7497                             "Inline data flags for inode %llu don't agree! "
7498                             "Disk: 0x%x, Memory: 0x%x, Superblock: 0x%x\n",
7499                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
7500                             le16_to_cpu(di->i_dyn_features),
7501                             OCFS2_I(inode)->ip_dyn_features,
7502                             osb->s_feature_incompat);
7503                 ret = -EROFS;
7504                 goto out;
7505         }
7506
7507         handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
7508         if (IS_ERR(handle)) {
7509                 ret = PTR_ERR(handle);
7510                 mlog_errno(ret);
7511                 goto out;
7512         }
7513
7514         ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
7515                                       OCFS2_JOURNAL_ACCESS_WRITE);
7516         if (ret) {
7517                 mlog_errno(ret);
7518                 goto out_commit;
7519         }
7520
7521         numbytes = end - start;
7522         memset(idata->id_data + start, 0, numbytes);
7523
7524         /*
7525          * No need to worry about the data page here - it's been
7526          * truncated already and inline data doesn't need it for
7527          * pushing zero's to disk, so we'll let readpage pick it up
7528          * later.
7529          */
7530         if (trunc) {
7531                 i_size_write(inode, start);
7532                 di->i_size = cpu_to_le64(start);
7533         }
7534
7535         inode->i_blocks = ocfs2_inode_sector_count(inode);
7536         inode->i_ctime = inode->i_mtime = CURRENT_TIME;
7537
7538         di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec);
7539         di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
7540
7541         ocfs2_journal_dirty(handle, di_bh);
7542
7543 out_commit:
7544         ocfs2_commit_trans(osb, handle);
7545
7546 out:
7547         return ret;
7548 }
7549
7550 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc)
7551 {
7552         /*
7553          * The caller is responsible for completing deallocation
7554          * before freeing the context.
7555          */
7556         if (tc->tc_dealloc.c_first_suballocator != NULL)
7557                 mlog(ML_NOTICE,
7558                      "Truncate completion has non-empty dealloc context\n");
7559
7560         brelse(tc->tc_last_eb_bh);
7561
7562         kfree(tc);
7563 }