ocfs2: Add an insertion check to ocfs2_extent_tree_operations.
[safe/jmp/linux-2.6] / fs / ocfs2 / alloc.c
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * alloc.c
5  *
6  * Extent allocs and frees
7  *
8  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public
12  * License as published by the Free Software Foundation; either
13  * version 2 of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public
21  * License along with this program; if not, write to the
22  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23  * Boston, MA 021110-1307, USA.
24  */
25
26 #include <linux/fs.h>
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/swap.h>
31
32 #define MLOG_MASK_PREFIX ML_DISK_ALLOC
33 #include <cluster/masklog.h>
34
35 #include "ocfs2.h"
36
37 #include "alloc.h"
38 #include "aops.h"
39 #include "dlmglue.h"
40 #include "extent_map.h"
41 #include "inode.h"
42 #include "journal.h"
43 #include "localalloc.h"
44 #include "suballoc.h"
45 #include "sysfile.h"
46 #include "file.h"
47 #include "super.h"
48 #include "uptodate.h"
49
50 #include "buffer_head_io.h"
51
52 /*
53  * ocfs2_extent_tree and ocfs2_extent_tree_operations are used to abstract
54  * the b-tree operations in ocfs2. Now all the b-tree operations are not
55  * limited to ocfs2_dinode only. Any data which need to allocate clusters
56  * to store can use b-tree. And it only needs to implement its ocfs2_extent_tree
57  * and operation.
58  *
59  * ocfs2_extent_tree contains info for the root of the b-tree, it must have a
60  * root ocfs2_extent_list and a root_bh so that they can be used in the b-tree
61  * functions.
62  * ocfs2_extent_tree_operations abstract the normal operations we do for
63  * the root of extent b-tree.
64  */
65 struct ocfs2_extent_tree;
66
67 struct ocfs2_extent_tree_operations {
68         void (*eo_set_last_eb_blk)(struct ocfs2_extent_tree *et,
69                                    u64 blkno);
70         u64 (*eo_get_last_eb_blk)(struct ocfs2_extent_tree *et);
71         void (*eo_update_clusters)(struct inode *inode,
72                                    struct ocfs2_extent_tree *et,
73                                    u32 new_clusters);
74         int (*eo_insert_check)(struct inode *inode,
75                                struct ocfs2_extent_tree *et,
76                                struct ocfs2_extent_rec *rec);
77         int (*eo_sanity_check)(struct inode *inode, struct ocfs2_extent_tree *et);
78
79         /* These are internal to ocfs2_extent_tree and don't have
80          * accessor functions */
81         void (*eo_fill_root_el)(struct ocfs2_extent_tree *et);
82         void (*eo_fill_max_leaf_clusters)(struct inode *inode,
83                                           struct ocfs2_extent_tree *et);
84 };
85
86 struct ocfs2_extent_tree {
87         enum ocfs2_extent_tree_type             et_type;
88         struct ocfs2_extent_tree_operations     *et_ops;
89         struct buffer_head                      *et_root_bh;
90         struct ocfs2_extent_list                *et_root_el;
91         void                                    *et_object;
92         unsigned int                            et_max_leaf_clusters;
93 };
94
95 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et)
96 {
97         struct ocfs2_dinode *di = et->et_object;
98
99         et->et_root_el = &di->id2.i_list;
100 }
101
102 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et,
103                                          u64 blkno)
104 {
105         struct ocfs2_dinode *di = et->et_object;
106
107         BUG_ON(et->et_type != OCFS2_DINODE_EXTENT);
108         di->i_last_eb_blk = cpu_to_le64(blkno);
109 }
110
111 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et)
112 {
113         struct ocfs2_dinode *di = et->et_object;
114
115         BUG_ON(et->et_type != OCFS2_DINODE_EXTENT);
116         return le64_to_cpu(di->i_last_eb_blk);
117 }
118
119 static void ocfs2_dinode_update_clusters(struct inode *inode,
120                                          struct ocfs2_extent_tree *et,
121                                          u32 clusters)
122 {
123         struct ocfs2_dinode *di = et->et_object;
124
125         le32_add_cpu(&di->i_clusters, clusters);
126         spin_lock(&OCFS2_I(inode)->ip_lock);
127         OCFS2_I(inode)->ip_clusters = le32_to_cpu(di->i_clusters);
128         spin_unlock(&OCFS2_I(inode)->ip_lock);
129 }
130
131 static int ocfs2_dinode_insert_check(struct inode *inode,
132                                      struct ocfs2_extent_tree *et,
133                                      struct ocfs2_extent_rec *rec)
134 {
135         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
136
137         BUG_ON(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL);
138         mlog_bug_on_msg(!ocfs2_sparse_alloc(osb) &&
139                         (OCFS2_I(inode)->ip_clusters != rec->e_cpos),
140                         "Device %s, asking for sparse allocation: inode %llu, "
141                         "cpos %u, clusters %u\n",
142                         osb->dev_str,
143                         (unsigned long long)OCFS2_I(inode)->ip_blkno,
144                         rec->e_cpos,
145                         OCFS2_I(inode)->ip_clusters);
146
147         return 0;
148 }
149
150 static int ocfs2_dinode_sanity_check(struct inode *inode,
151                                      struct ocfs2_extent_tree *et)
152 {
153         int ret = 0;
154         struct ocfs2_dinode *di;
155
156         BUG_ON(et->et_type != OCFS2_DINODE_EXTENT);
157
158         di = et->et_object;
159         if (!OCFS2_IS_VALID_DINODE(di)) {
160                 ret = -EIO;
161                 ocfs2_error(inode->i_sb,
162                         "Inode %llu has invalid path root",
163                         (unsigned long long)OCFS2_I(inode)->ip_blkno);
164         }
165
166         return ret;
167 }
168
169 static struct ocfs2_extent_tree_operations ocfs2_dinode_et_ops = {
170         .eo_set_last_eb_blk     = ocfs2_dinode_set_last_eb_blk,
171         .eo_get_last_eb_blk     = ocfs2_dinode_get_last_eb_blk,
172         .eo_update_clusters     = ocfs2_dinode_update_clusters,
173         .eo_insert_check        = ocfs2_dinode_insert_check,
174         .eo_sanity_check        = ocfs2_dinode_sanity_check,
175         .eo_fill_root_el        = ocfs2_dinode_fill_root_el,
176 };
177
178 static void ocfs2_xattr_value_fill_root_el(struct ocfs2_extent_tree *et)
179 {
180         struct ocfs2_xattr_value_root *xv = et->et_object;
181
182         et->et_root_el = &xv->xr_list;
183 }
184
185 static void ocfs2_xattr_value_set_last_eb_blk(struct ocfs2_extent_tree *et,
186                                               u64 blkno)
187 {
188         struct ocfs2_xattr_value_root *xv =
189                 (struct ocfs2_xattr_value_root *)et->et_object;
190
191         xv->xr_last_eb_blk = cpu_to_le64(blkno);
192 }
193
194 static u64 ocfs2_xattr_value_get_last_eb_blk(struct ocfs2_extent_tree *et)
195 {
196         struct ocfs2_xattr_value_root *xv =
197                 (struct ocfs2_xattr_value_root *) et->et_object;
198
199         return le64_to_cpu(xv->xr_last_eb_blk);
200 }
201
202 static void ocfs2_xattr_value_update_clusters(struct inode *inode,
203                                               struct ocfs2_extent_tree *et,
204                                               u32 clusters)
205 {
206         struct ocfs2_xattr_value_root *xv =
207                 (struct ocfs2_xattr_value_root *)et->et_object;
208
209         le32_add_cpu(&xv->xr_clusters, clusters);
210 }
211
212 static struct ocfs2_extent_tree_operations ocfs2_xattr_value_et_ops = {
213         .eo_set_last_eb_blk     = ocfs2_xattr_value_set_last_eb_blk,
214         .eo_get_last_eb_blk     = ocfs2_xattr_value_get_last_eb_blk,
215         .eo_update_clusters     = ocfs2_xattr_value_update_clusters,
216         .eo_fill_root_el        = ocfs2_xattr_value_fill_root_el,
217 };
218
219 static void ocfs2_xattr_tree_fill_root_el(struct ocfs2_extent_tree *et)
220 {
221         struct ocfs2_xattr_block *xb = et->et_object;
222
223         et->et_root_el = &xb->xb_attrs.xb_root.xt_list;
224 }
225
226 static void ocfs2_xattr_tree_fill_max_leaf_clusters(struct inode *inode,
227                                                     struct ocfs2_extent_tree *et)
228 {
229         et->et_max_leaf_clusters =
230                 ocfs2_clusters_for_bytes(inode->i_sb,
231                                          OCFS2_MAX_XATTR_TREE_LEAF_SIZE);
232 }
233
234 static void ocfs2_xattr_tree_set_last_eb_blk(struct ocfs2_extent_tree *et,
235                                              u64 blkno)
236 {
237         struct ocfs2_xattr_block *xb = et->et_object;
238         struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root;
239
240         xt->xt_last_eb_blk = cpu_to_le64(blkno);
241 }
242
243 static u64 ocfs2_xattr_tree_get_last_eb_blk(struct ocfs2_extent_tree *et)
244 {
245         struct ocfs2_xattr_block *xb = et->et_object;
246         struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root;
247
248         return le64_to_cpu(xt->xt_last_eb_blk);
249 }
250
251 static void ocfs2_xattr_tree_update_clusters(struct inode *inode,
252                                              struct ocfs2_extent_tree *et,
253                                              u32 clusters)
254 {
255         struct ocfs2_xattr_block *xb = et->et_object;
256
257         le32_add_cpu(&xb->xb_attrs.xb_root.xt_clusters, clusters);
258 }
259
260 static struct ocfs2_extent_tree_operations ocfs2_xattr_tree_et_ops = {
261         .eo_set_last_eb_blk     = ocfs2_xattr_tree_set_last_eb_blk,
262         .eo_get_last_eb_blk     = ocfs2_xattr_tree_get_last_eb_blk,
263         .eo_update_clusters     = ocfs2_xattr_tree_update_clusters,
264         .eo_fill_root_el        = ocfs2_xattr_tree_fill_root_el,
265         .eo_fill_max_leaf_clusters = ocfs2_xattr_tree_fill_max_leaf_clusters,
266 };
267
268 static void __ocfs2_get_extent_tree(struct ocfs2_extent_tree *et,
269                                     struct inode *inode,
270                                     struct buffer_head *bh,
271                                     void *obj,
272                                     enum ocfs2_extent_tree_type et_type,
273                                     struct ocfs2_extent_tree_operations *ops)
274 {
275         et->et_type = et_type;
276         et->et_ops = ops;
277         get_bh(bh);
278         et->et_root_bh = bh;
279         if (!obj)
280                 obj = (void *)bh->b_data;
281         et->et_object = obj;
282
283         et->et_ops->eo_fill_root_el(et);
284         if (!et->et_ops->eo_fill_max_leaf_clusters)
285                 et->et_max_leaf_clusters = 0;
286         else
287                 et->et_ops->eo_fill_max_leaf_clusters(inode, et);
288 }
289
290 static void ocfs2_get_dinode_extent_tree(struct ocfs2_extent_tree *et,
291                                          struct inode *inode,
292                                          struct buffer_head *bh)
293 {
294         __ocfs2_get_extent_tree(et, inode, bh, NULL, OCFS2_DINODE_EXTENT,
295                                 &ocfs2_dinode_et_ops);
296 }
297
298 static void ocfs2_get_xattr_tree_extent_tree(struct ocfs2_extent_tree *et,
299                                              struct inode *inode,
300                                              struct buffer_head *bh)
301 {
302         __ocfs2_get_extent_tree(et, inode, bh, NULL,
303                                 OCFS2_XATTR_TREE_EXTENT,
304                                 &ocfs2_xattr_tree_et_ops);
305 }
306
307 static void ocfs2_get_xattr_value_extent_tree(struct ocfs2_extent_tree *et,
308                                              struct inode *inode,
309                                              struct buffer_head *bh,
310                                              struct ocfs2_xattr_value_root *xv)
311 {
312         __ocfs2_get_extent_tree(et, inode, bh, xv,
313                                 OCFS2_XATTR_VALUE_EXTENT,
314                                 &ocfs2_xattr_value_et_ops);
315 }
316
317 static void ocfs2_get_extent_tree(struct ocfs2_extent_tree *et,
318                                   struct inode *inode,
319                                   struct buffer_head *bh,
320                                   enum ocfs2_extent_tree_type et_type,
321                                   void *obj)
322 {
323         if (et_type == OCFS2_DINODE_EXTENT)
324                 ocfs2_get_dinode_extent_tree(et, inode, bh);
325         else if (et_type == OCFS2_XATTR_VALUE_EXTENT)
326                 ocfs2_get_xattr_tree_extent_tree(et, inode, bh);
327         else if (et_type == OCFS2_XATTR_TREE_EXTENT)
328                 ocfs2_get_xattr_value_extent_tree(et, inode, bh, obj);
329         else
330                 BUG();
331 }
332
333 static void ocfs2_put_extent_tree(struct ocfs2_extent_tree *et)
334 {
335         brelse(et->et_root_bh);
336 }
337
338 static inline void ocfs2_et_set_last_eb_blk(struct ocfs2_extent_tree *et,
339                                             u64 new_last_eb_blk)
340 {
341         et->et_ops->eo_set_last_eb_blk(et, new_last_eb_blk);
342 }
343
344 static inline u64 ocfs2_et_get_last_eb_blk(struct ocfs2_extent_tree *et)
345 {
346         return et->et_ops->eo_get_last_eb_blk(et);
347 }
348
349 static inline void ocfs2_et_update_clusters(struct inode *inode,
350                                             struct ocfs2_extent_tree *et,
351                                             u32 clusters)
352 {
353         et->et_ops->eo_update_clusters(inode, et, clusters);
354 }
355
356 static inline int ocfs2_et_insert_check(struct inode *inode,
357                                         struct ocfs2_extent_tree *et,
358                                         struct ocfs2_extent_rec *rec)
359 {
360         int ret = 0;
361
362         if (et->et_ops->eo_insert_check)
363                 ret = et->et_ops->eo_insert_check(inode, et, rec);
364         return ret;
365 }
366
367 static inline int ocfs2_et_sanity_check(struct inode *inode,
368                                         struct ocfs2_extent_tree *et)
369 {
370         int ret = 0;
371
372         if (et->et_ops->eo_sanity_check)
373                 ret = et->et_ops->eo_sanity_check(inode, et);
374         return ret;
375 }
376
377 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc);
378 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
379                                          struct ocfs2_extent_block *eb);
380
381 /*
382  * Structures which describe a path through a btree, and functions to
383  * manipulate them.
384  *
385  * The idea here is to be as generic as possible with the tree
386  * manipulation code.
387  */
388 struct ocfs2_path_item {
389         struct buffer_head              *bh;
390         struct ocfs2_extent_list        *el;
391 };
392
393 #define OCFS2_MAX_PATH_DEPTH    5
394
395 struct ocfs2_path {
396         int                     p_tree_depth;
397         struct ocfs2_path_item  p_node[OCFS2_MAX_PATH_DEPTH];
398 };
399
400 #define path_root_bh(_path) ((_path)->p_node[0].bh)
401 #define path_root_el(_path) ((_path)->p_node[0].el)
402 #define path_leaf_bh(_path) ((_path)->p_node[(_path)->p_tree_depth].bh)
403 #define path_leaf_el(_path) ((_path)->p_node[(_path)->p_tree_depth].el)
404 #define path_num_items(_path) ((_path)->p_tree_depth + 1)
405
406 /*
407  * Reset the actual path elements so that we can re-use the structure
408  * to build another path. Generally, this involves freeing the buffer
409  * heads.
410  */
411 static void ocfs2_reinit_path(struct ocfs2_path *path, int keep_root)
412 {
413         int i, start = 0, depth = 0;
414         struct ocfs2_path_item *node;
415
416         if (keep_root)
417                 start = 1;
418
419         for(i = start; i < path_num_items(path); i++) {
420                 node = &path->p_node[i];
421
422                 brelse(node->bh);
423                 node->bh = NULL;
424                 node->el = NULL;
425         }
426
427         /*
428          * Tree depth may change during truncate, or insert. If we're
429          * keeping the root extent list, then make sure that our path
430          * structure reflects the proper depth.
431          */
432         if (keep_root)
433                 depth = le16_to_cpu(path_root_el(path)->l_tree_depth);
434
435         path->p_tree_depth = depth;
436 }
437
438 static void ocfs2_free_path(struct ocfs2_path *path)
439 {
440         if (path) {
441                 ocfs2_reinit_path(path, 0);
442                 kfree(path);
443         }
444 }
445
446 /*
447  * All the elements of src into dest. After this call, src could be freed
448  * without affecting dest.
449  *
450  * Both paths should have the same root. Any non-root elements of dest
451  * will be freed.
452  */
453 static void ocfs2_cp_path(struct ocfs2_path *dest, struct ocfs2_path *src)
454 {
455         int i;
456
457         BUG_ON(path_root_bh(dest) != path_root_bh(src));
458         BUG_ON(path_root_el(dest) != path_root_el(src));
459
460         ocfs2_reinit_path(dest, 1);
461
462         for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
463                 dest->p_node[i].bh = src->p_node[i].bh;
464                 dest->p_node[i].el = src->p_node[i].el;
465
466                 if (dest->p_node[i].bh)
467                         get_bh(dest->p_node[i].bh);
468         }
469 }
470
471 /*
472  * Make the *dest path the same as src and re-initialize src path to
473  * have a root only.
474  */
475 static void ocfs2_mv_path(struct ocfs2_path *dest, struct ocfs2_path *src)
476 {
477         int i;
478
479         BUG_ON(path_root_bh(dest) != path_root_bh(src));
480
481         for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
482                 brelse(dest->p_node[i].bh);
483
484                 dest->p_node[i].bh = src->p_node[i].bh;
485                 dest->p_node[i].el = src->p_node[i].el;
486
487                 src->p_node[i].bh = NULL;
488                 src->p_node[i].el = NULL;
489         }
490 }
491
492 /*
493  * Insert an extent block at given index.
494  *
495  * This will not take an additional reference on eb_bh.
496  */
497 static inline void ocfs2_path_insert_eb(struct ocfs2_path *path, int index,
498                                         struct buffer_head *eb_bh)
499 {
500         struct ocfs2_extent_block *eb = (struct ocfs2_extent_block *)eb_bh->b_data;
501
502         /*
503          * Right now, no root bh is an extent block, so this helps
504          * catch code errors with dinode trees. The assertion can be
505          * safely removed if we ever need to insert extent block
506          * structures at the root.
507          */
508         BUG_ON(index == 0);
509
510         path->p_node[index].bh = eb_bh;
511         path->p_node[index].el = &eb->h_list;
512 }
513
514 static struct ocfs2_path *ocfs2_new_path(struct buffer_head *root_bh,
515                                          struct ocfs2_extent_list *root_el)
516 {
517         struct ocfs2_path *path;
518
519         BUG_ON(le16_to_cpu(root_el->l_tree_depth) >= OCFS2_MAX_PATH_DEPTH);
520
521         path = kzalloc(sizeof(*path), GFP_NOFS);
522         if (path) {
523                 path->p_tree_depth = le16_to_cpu(root_el->l_tree_depth);
524                 get_bh(root_bh);
525                 path_root_bh(path) = root_bh;
526                 path_root_el(path) = root_el;
527         }
528
529         return path;
530 }
531
532 /*
533  * Convenience function to journal all components in a path.
534  */
535 static int ocfs2_journal_access_path(struct inode *inode, handle_t *handle,
536                                      struct ocfs2_path *path)
537 {
538         int i, ret = 0;
539
540         if (!path)
541                 goto out;
542
543         for(i = 0; i < path_num_items(path); i++) {
544                 ret = ocfs2_journal_access(handle, inode, path->p_node[i].bh,
545                                            OCFS2_JOURNAL_ACCESS_WRITE);
546                 if (ret < 0) {
547                         mlog_errno(ret);
548                         goto out;
549                 }
550         }
551
552 out:
553         return ret;
554 }
555
556 /*
557  * Return the index of the extent record which contains cluster #v_cluster.
558  * -1 is returned if it was not found.
559  *
560  * Should work fine on interior and exterior nodes.
561  */
562 int ocfs2_search_extent_list(struct ocfs2_extent_list *el, u32 v_cluster)
563 {
564         int ret = -1;
565         int i;
566         struct ocfs2_extent_rec *rec;
567         u32 rec_end, rec_start, clusters;
568
569         for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
570                 rec = &el->l_recs[i];
571
572                 rec_start = le32_to_cpu(rec->e_cpos);
573                 clusters = ocfs2_rec_clusters(el, rec);
574
575                 rec_end = rec_start + clusters;
576
577                 if (v_cluster >= rec_start && v_cluster < rec_end) {
578                         ret = i;
579                         break;
580                 }
581         }
582
583         return ret;
584 }
585
586 enum ocfs2_contig_type {
587         CONTIG_NONE = 0,
588         CONTIG_LEFT,
589         CONTIG_RIGHT,
590         CONTIG_LEFTRIGHT,
591 };
592
593
594 /*
595  * NOTE: ocfs2_block_extent_contig(), ocfs2_extents_adjacent() and
596  * ocfs2_extent_contig only work properly against leaf nodes!
597  */
598 static int ocfs2_block_extent_contig(struct super_block *sb,
599                                      struct ocfs2_extent_rec *ext,
600                                      u64 blkno)
601 {
602         u64 blk_end = le64_to_cpu(ext->e_blkno);
603
604         blk_end += ocfs2_clusters_to_blocks(sb,
605                                     le16_to_cpu(ext->e_leaf_clusters));
606
607         return blkno == blk_end;
608 }
609
610 static int ocfs2_extents_adjacent(struct ocfs2_extent_rec *left,
611                                   struct ocfs2_extent_rec *right)
612 {
613         u32 left_range;
614
615         left_range = le32_to_cpu(left->e_cpos) +
616                 le16_to_cpu(left->e_leaf_clusters);
617
618         return (left_range == le32_to_cpu(right->e_cpos));
619 }
620
621 static enum ocfs2_contig_type
622         ocfs2_extent_contig(struct inode *inode,
623                             struct ocfs2_extent_rec *ext,
624                             struct ocfs2_extent_rec *insert_rec)
625 {
626         u64 blkno = le64_to_cpu(insert_rec->e_blkno);
627
628         /*
629          * Refuse to coalesce extent records with different flag
630          * fields - we don't want to mix unwritten extents with user
631          * data.
632          */
633         if (ext->e_flags != insert_rec->e_flags)
634                 return CONTIG_NONE;
635
636         if (ocfs2_extents_adjacent(ext, insert_rec) &&
637             ocfs2_block_extent_contig(inode->i_sb, ext, blkno))
638                         return CONTIG_RIGHT;
639
640         blkno = le64_to_cpu(ext->e_blkno);
641         if (ocfs2_extents_adjacent(insert_rec, ext) &&
642             ocfs2_block_extent_contig(inode->i_sb, insert_rec, blkno))
643                 return CONTIG_LEFT;
644
645         return CONTIG_NONE;
646 }
647
648 /*
649  * NOTE: We can have pretty much any combination of contiguousness and
650  * appending.
651  *
652  * The usefulness of APPEND_TAIL is more in that it lets us know that
653  * we'll have to update the path to that leaf.
654  */
655 enum ocfs2_append_type {
656         APPEND_NONE = 0,
657         APPEND_TAIL,
658 };
659
660 enum ocfs2_split_type {
661         SPLIT_NONE = 0,
662         SPLIT_LEFT,
663         SPLIT_RIGHT,
664 };
665
666 struct ocfs2_insert_type {
667         enum ocfs2_split_type   ins_split;
668         enum ocfs2_append_type  ins_appending;
669         enum ocfs2_contig_type  ins_contig;
670         int                     ins_contig_index;
671         int                     ins_tree_depth;
672 };
673
674 struct ocfs2_merge_ctxt {
675         enum ocfs2_contig_type  c_contig_type;
676         int                     c_has_empty_extent;
677         int                     c_split_covers_rec;
678 };
679
680 /*
681  * How many free extents have we got before we need more meta data?
682  */
683 int ocfs2_num_free_extents(struct ocfs2_super *osb,
684                            struct inode *inode,
685                            struct buffer_head *root_bh,
686                            enum ocfs2_extent_tree_type type,
687                            void *obj)
688 {
689         int retval;
690         struct ocfs2_extent_list *el = NULL;
691         struct ocfs2_extent_block *eb;
692         struct buffer_head *eb_bh = NULL;
693         u64 last_eb_blk = 0;
694         struct ocfs2_extent_tree et;
695
696         mlog_entry_void();
697
698         ocfs2_get_extent_tree(&et, inode, root_bh, type, obj);
699         el = et.et_root_el;
700         last_eb_blk = ocfs2_et_get_last_eb_blk(&et);
701
702         if (last_eb_blk) {
703                 retval = ocfs2_read_block(osb, last_eb_blk,
704                                           &eb_bh, OCFS2_BH_CACHED, inode);
705                 if (retval < 0) {
706                         mlog_errno(retval);
707                         goto bail;
708                 }
709                 eb = (struct ocfs2_extent_block *) eb_bh->b_data;
710                 el = &eb->h_list;
711         }
712
713         BUG_ON(el->l_tree_depth != 0);
714
715         retval = le16_to_cpu(el->l_count) - le16_to_cpu(el->l_next_free_rec);
716 bail:
717         if (eb_bh)
718                 brelse(eb_bh);
719
720         ocfs2_put_extent_tree(&et);
721         mlog_exit(retval);
722         return retval;
723 }
724
725 /* expects array to already be allocated
726  *
727  * sets h_signature, h_blkno, h_suballoc_bit, h_suballoc_slot, and
728  * l_count for you
729  */
730 static int ocfs2_create_new_meta_bhs(struct ocfs2_super *osb,
731                                      handle_t *handle,
732                                      struct inode *inode,
733                                      int wanted,
734                                      struct ocfs2_alloc_context *meta_ac,
735                                      struct buffer_head *bhs[])
736 {
737         int count, status, i;
738         u16 suballoc_bit_start;
739         u32 num_got;
740         u64 first_blkno;
741         struct ocfs2_extent_block *eb;
742
743         mlog_entry_void();
744
745         count = 0;
746         while (count < wanted) {
747                 status = ocfs2_claim_metadata(osb,
748                                               handle,
749                                               meta_ac,
750                                               wanted - count,
751                                               &suballoc_bit_start,
752                                               &num_got,
753                                               &first_blkno);
754                 if (status < 0) {
755                         mlog_errno(status);
756                         goto bail;
757                 }
758
759                 for(i = count;  i < (num_got + count); i++) {
760                         bhs[i] = sb_getblk(osb->sb, first_blkno);
761                         if (bhs[i] == NULL) {
762                                 status = -EIO;
763                                 mlog_errno(status);
764                                 goto bail;
765                         }
766                         ocfs2_set_new_buffer_uptodate(inode, bhs[i]);
767
768                         status = ocfs2_journal_access(handle, inode, bhs[i],
769                                                       OCFS2_JOURNAL_ACCESS_CREATE);
770                         if (status < 0) {
771                                 mlog_errno(status);
772                                 goto bail;
773                         }
774
775                         memset(bhs[i]->b_data, 0, osb->sb->s_blocksize);
776                         eb = (struct ocfs2_extent_block *) bhs[i]->b_data;
777                         /* Ok, setup the minimal stuff here. */
778                         strcpy(eb->h_signature, OCFS2_EXTENT_BLOCK_SIGNATURE);
779                         eb->h_blkno = cpu_to_le64(first_blkno);
780                         eb->h_fs_generation = cpu_to_le32(osb->fs_generation);
781                         eb->h_suballoc_slot = cpu_to_le16(osb->slot_num);
782                         eb->h_suballoc_bit = cpu_to_le16(suballoc_bit_start);
783                         eb->h_list.l_count =
784                                 cpu_to_le16(ocfs2_extent_recs_per_eb(osb->sb));
785
786                         suballoc_bit_start++;
787                         first_blkno++;
788
789                         /* We'll also be dirtied by the caller, so
790                          * this isn't absolutely necessary. */
791                         status = ocfs2_journal_dirty(handle, bhs[i]);
792                         if (status < 0) {
793                                 mlog_errno(status);
794                                 goto bail;
795                         }
796                 }
797
798                 count += num_got;
799         }
800
801         status = 0;
802 bail:
803         if (status < 0) {
804                 for(i = 0; i < wanted; i++) {
805                         if (bhs[i])
806                                 brelse(bhs[i]);
807                         bhs[i] = NULL;
808                 }
809         }
810         mlog_exit(status);
811         return status;
812 }
813
814 /*
815  * Helper function for ocfs2_add_branch() and ocfs2_shift_tree_depth().
816  *
817  * Returns the sum of the rightmost extent rec logical offset and
818  * cluster count.
819  *
820  * ocfs2_add_branch() uses this to determine what logical cluster
821  * value should be populated into the leftmost new branch records.
822  *
823  * ocfs2_shift_tree_depth() uses this to determine the # clusters
824  * value for the new topmost tree record.
825  */
826 static inline u32 ocfs2_sum_rightmost_rec(struct ocfs2_extent_list  *el)
827 {
828         int i;
829
830         i = le16_to_cpu(el->l_next_free_rec) - 1;
831
832         return le32_to_cpu(el->l_recs[i].e_cpos) +
833                 ocfs2_rec_clusters(el, &el->l_recs[i]);
834 }
835
836 /*
837  * Add an entire tree branch to our inode. eb_bh is the extent block
838  * to start at, if we don't want to start the branch at the dinode
839  * structure.
840  *
841  * last_eb_bh is required as we have to update it's next_leaf pointer
842  * for the new last extent block.
843  *
844  * the new branch will be 'empty' in the sense that every block will
845  * contain a single record with cluster count == 0.
846  */
847 static int ocfs2_add_branch(struct ocfs2_super *osb,
848                             handle_t *handle,
849                             struct inode *inode,
850                             struct ocfs2_extent_tree *et,
851                             struct buffer_head *eb_bh,
852                             struct buffer_head **last_eb_bh,
853                             struct ocfs2_alloc_context *meta_ac)
854 {
855         int status, new_blocks, i;
856         u64 next_blkno, new_last_eb_blk;
857         struct buffer_head *bh;
858         struct buffer_head **new_eb_bhs = NULL;
859         struct ocfs2_extent_block *eb;
860         struct ocfs2_extent_list  *eb_el;
861         struct ocfs2_extent_list  *el;
862         u32 new_cpos;
863
864         mlog_entry_void();
865
866         BUG_ON(!last_eb_bh || !*last_eb_bh);
867
868         if (eb_bh) {
869                 eb = (struct ocfs2_extent_block *) eb_bh->b_data;
870                 el = &eb->h_list;
871         } else
872                 el = et->et_root_el;
873
874         /* we never add a branch to a leaf. */
875         BUG_ON(!el->l_tree_depth);
876
877         new_blocks = le16_to_cpu(el->l_tree_depth);
878
879         /* allocate the number of new eb blocks we need */
880         new_eb_bhs = kcalloc(new_blocks, sizeof(struct buffer_head *),
881                              GFP_KERNEL);
882         if (!new_eb_bhs) {
883                 status = -ENOMEM;
884                 mlog_errno(status);
885                 goto bail;
886         }
887
888         status = ocfs2_create_new_meta_bhs(osb, handle, inode, new_blocks,
889                                            meta_ac, new_eb_bhs);
890         if (status < 0) {
891                 mlog_errno(status);
892                 goto bail;
893         }
894
895         eb = (struct ocfs2_extent_block *)(*last_eb_bh)->b_data;
896         new_cpos = ocfs2_sum_rightmost_rec(&eb->h_list);
897
898         /* Note: new_eb_bhs[new_blocks - 1] is the guy which will be
899          * linked with the rest of the tree.
900          * conversly, new_eb_bhs[0] is the new bottommost leaf.
901          *
902          * when we leave the loop, new_last_eb_blk will point to the
903          * newest leaf, and next_blkno will point to the topmost extent
904          * block. */
905         next_blkno = new_last_eb_blk = 0;
906         for(i = 0; i < new_blocks; i++) {
907                 bh = new_eb_bhs[i];
908                 eb = (struct ocfs2_extent_block *) bh->b_data;
909                 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
910                         OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
911                         status = -EIO;
912                         goto bail;
913                 }
914                 eb_el = &eb->h_list;
915
916                 status = ocfs2_journal_access(handle, inode, bh,
917                                               OCFS2_JOURNAL_ACCESS_CREATE);
918                 if (status < 0) {
919                         mlog_errno(status);
920                         goto bail;
921                 }
922
923                 eb->h_next_leaf_blk = 0;
924                 eb_el->l_tree_depth = cpu_to_le16(i);
925                 eb_el->l_next_free_rec = cpu_to_le16(1);
926                 /*
927                  * This actually counts as an empty extent as
928                  * c_clusters == 0
929                  */
930                 eb_el->l_recs[0].e_cpos = cpu_to_le32(new_cpos);
931                 eb_el->l_recs[0].e_blkno = cpu_to_le64(next_blkno);
932                 /*
933                  * eb_el isn't always an interior node, but even leaf
934                  * nodes want a zero'd flags and reserved field so
935                  * this gets the whole 32 bits regardless of use.
936                  */
937                 eb_el->l_recs[0].e_int_clusters = cpu_to_le32(0);
938                 if (!eb_el->l_tree_depth)
939                         new_last_eb_blk = le64_to_cpu(eb->h_blkno);
940
941                 status = ocfs2_journal_dirty(handle, bh);
942                 if (status < 0) {
943                         mlog_errno(status);
944                         goto bail;
945                 }
946
947                 next_blkno = le64_to_cpu(eb->h_blkno);
948         }
949
950         /* This is a bit hairy. We want to update up to three blocks
951          * here without leaving any of them in an inconsistent state
952          * in case of error. We don't have to worry about
953          * journal_dirty erroring as it won't unless we've aborted the
954          * handle (in which case we would never be here) so reserving
955          * the write with journal_access is all we need to do. */
956         status = ocfs2_journal_access(handle, inode, *last_eb_bh,
957                                       OCFS2_JOURNAL_ACCESS_WRITE);
958         if (status < 0) {
959                 mlog_errno(status);
960                 goto bail;
961         }
962         status = ocfs2_journal_access(handle, inode, et->et_root_bh,
963                                       OCFS2_JOURNAL_ACCESS_WRITE);
964         if (status < 0) {
965                 mlog_errno(status);
966                 goto bail;
967         }
968         if (eb_bh) {
969                 status = ocfs2_journal_access(handle, inode, eb_bh,
970                                               OCFS2_JOURNAL_ACCESS_WRITE);
971                 if (status < 0) {
972                         mlog_errno(status);
973                         goto bail;
974                 }
975         }
976
977         /* Link the new branch into the rest of the tree (el will
978          * either be on the root_bh, or the extent block passed in. */
979         i = le16_to_cpu(el->l_next_free_rec);
980         el->l_recs[i].e_blkno = cpu_to_le64(next_blkno);
981         el->l_recs[i].e_cpos = cpu_to_le32(new_cpos);
982         el->l_recs[i].e_int_clusters = 0;
983         le16_add_cpu(&el->l_next_free_rec, 1);
984
985         /* fe needs a new last extent block pointer, as does the
986          * next_leaf on the previously last-extent-block. */
987         ocfs2_et_set_last_eb_blk(et, new_last_eb_blk);
988
989         eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
990         eb->h_next_leaf_blk = cpu_to_le64(new_last_eb_blk);
991
992         status = ocfs2_journal_dirty(handle, *last_eb_bh);
993         if (status < 0)
994                 mlog_errno(status);
995         status = ocfs2_journal_dirty(handle, et->et_root_bh);
996         if (status < 0)
997                 mlog_errno(status);
998         if (eb_bh) {
999                 status = ocfs2_journal_dirty(handle, eb_bh);
1000                 if (status < 0)
1001                         mlog_errno(status);
1002         }
1003
1004         /*
1005          * Some callers want to track the rightmost leaf so pass it
1006          * back here.
1007          */
1008         brelse(*last_eb_bh);
1009         get_bh(new_eb_bhs[0]);
1010         *last_eb_bh = new_eb_bhs[0];
1011
1012         status = 0;
1013 bail:
1014         if (new_eb_bhs) {
1015                 for (i = 0; i < new_blocks; i++)
1016                         if (new_eb_bhs[i])
1017                                 brelse(new_eb_bhs[i]);
1018                 kfree(new_eb_bhs);
1019         }
1020
1021         mlog_exit(status);
1022         return status;
1023 }
1024
1025 /*
1026  * adds another level to the allocation tree.
1027  * returns back the new extent block so you can add a branch to it
1028  * after this call.
1029  */
1030 static int ocfs2_shift_tree_depth(struct ocfs2_super *osb,
1031                                   handle_t *handle,
1032                                   struct inode *inode,
1033                                   struct ocfs2_extent_tree *et,
1034                                   struct ocfs2_alloc_context *meta_ac,
1035                                   struct buffer_head **ret_new_eb_bh)
1036 {
1037         int status, i;
1038         u32 new_clusters;
1039         struct buffer_head *new_eb_bh = NULL;
1040         struct ocfs2_extent_block *eb;
1041         struct ocfs2_extent_list  *root_el;
1042         struct ocfs2_extent_list  *eb_el;
1043
1044         mlog_entry_void();
1045
1046         status = ocfs2_create_new_meta_bhs(osb, handle, inode, 1, meta_ac,
1047                                            &new_eb_bh);
1048         if (status < 0) {
1049                 mlog_errno(status);
1050                 goto bail;
1051         }
1052
1053         eb = (struct ocfs2_extent_block *) new_eb_bh->b_data;
1054         if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
1055                 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
1056                 status = -EIO;
1057                 goto bail;
1058         }
1059
1060         eb_el = &eb->h_list;
1061         root_el = et->et_root_el;
1062
1063         status = ocfs2_journal_access(handle, inode, new_eb_bh,
1064                                       OCFS2_JOURNAL_ACCESS_CREATE);
1065         if (status < 0) {
1066                 mlog_errno(status);
1067                 goto bail;
1068         }
1069
1070         /* copy the root extent list data into the new extent block */
1071         eb_el->l_tree_depth = root_el->l_tree_depth;
1072         eb_el->l_next_free_rec = root_el->l_next_free_rec;
1073         for (i = 0; i < le16_to_cpu(root_el->l_next_free_rec); i++)
1074                 eb_el->l_recs[i] = root_el->l_recs[i];
1075
1076         status = ocfs2_journal_dirty(handle, new_eb_bh);
1077         if (status < 0) {
1078                 mlog_errno(status);
1079                 goto bail;
1080         }
1081
1082         status = ocfs2_journal_access(handle, inode, et->et_root_bh,
1083                                       OCFS2_JOURNAL_ACCESS_WRITE);
1084         if (status < 0) {
1085                 mlog_errno(status);
1086                 goto bail;
1087         }
1088
1089         new_clusters = ocfs2_sum_rightmost_rec(eb_el);
1090
1091         /* update root_bh now */
1092         le16_add_cpu(&root_el->l_tree_depth, 1);
1093         root_el->l_recs[0].e_cpos = 0;
1094         root_el->l_recs[0].e_blkno = eb->h_blkno;
1095         root_el->l_recs[0].e_int_clusters = cpu_to_le32(new_clusters);
1096         for (i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++)
1097                 memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
1098         root_el->l_next_free_rec = cpu_to_le16(1);
1099
1100         /* If this is our 1st tree depth shift, then last_eb_blk
1101          * becomes the allocated extent block */
1102         if (root_el->l_tree_depth == cpu_to_le16(1))
1103                 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
1104
1105         status = ocfs2_journal_dirty(handle, et->et_root_bh);
1106         if (status < 0) {
1107                 mlog_errno(status);
1108                 goto bail;
1109         }
1110
1111         *ret_new_eb_bh = new_eb_bh;
1112         new_eb_bh = NULL;
1113         status = 0;
1114 bail:
1115         if (new_eb_bh)
1116                 brelse(new_eb_bh);
1117
1118         mlog_exit(status);
1119         return status;
1120 }
1121
1122 /*
1123  * Should only be called when there is no space left in any of the
1124  * leaf nodes. What we want to do is find the lowest tree depth
1125  * non-leaf extent block with room for new records. There are three
1126  * valid results of this search:
1127  *
1128  * 1) a lowest extent block is found, then we pass it back in
1129  *    *lowest_eb_bh and return '0'
1130  *
1131  * 2) the search fails to find anything, but the root_el has room. We
1132  *    pass NULL back in *lowest_eb_bh, but still return '0'
1133  *
1134  * 3) the search fails to find anything AND the root_el is full, in
1135  *    which case we return > 0
1136  *
1137  * return status < 0 indicates an error.
1138  */
1139 static int ocfs2_find_branch_target(struct ocfs2_super *osb,
1140                                     struct inode *inode,
1141                                     struct ocfs2_extent_tree *et,
1142                                     struct buffer_head **target_bh)
1143 {
1144         int status = 0, i;
1145         u64 blkno;
1146         struct ocfs2_extent_block *eb;
1147         struct ocfs2_extent_list  *el;
1148         struct buffer_head *bh = NULL;
1149         struct buffer_head *lowest_bh = NULL;
1150
1151         mlog_entry_void();
1152
1153         *target_bh = NULL;
1154
1155         el = et->et_root_el;
1156
1157         while(le16_to_cpu(el->l_tree_depth) > 1) {
1158                 if (le16_to_cpu(el->l_next_free_rec) == 0) {
1159                         ocfs2_error(inode->i_sb, "Dinode %llu has empty "
1160                                     "extent list (next_free_rec == 0)",
1161                                     (unsigned long long)OCFS2_I(inode)->ip_blkno);
1162                         status = -EIO;
1163                         goto bail;
1164                 }
1165                 i = le16_to_cpu(el->l_next_free_rec) - 1;
1166                 blkno = le64_to_cpu(el->l_recs[i].e_blkno);
1167                 if (!blkno) {
1168                         ocfs2_error(inode->i_sb, "Dinode %llu has extent "
1169                                     "list where extent # %d has no physical "
1170                                     "block start",
1171                                     (unsigned long long)OCFS2_I(inode)->ip_blkno, i);
1172                         status = -EIO;
1173                         goto bail;
1174                 }
1175
1176                 if (bh) {
1177                         brelse(bh);
1178                         bh = NULL;
1179                 }
1180
1181                 status = ocfs2_read_block(osb, blkno, &bh, OCFS2_BH_CACHED,
1182                                           inode);
1183                 if (status < 0) {
1184                         mlog_errno(status);
1185                         goto bail;
1186                 }
1187
1188                 eb = (struct ocfs2_extent_block *) bh->b_data;
1189                 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
1190                         OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
1191                         status = -EIO;
1192                         goto bail;
1193                 }
1194                 el = &eb->h_list;
1195
1196                 if (le16_to_cpu(el->l_next_free_rec) <
1197                     le16_to_cpu(el->l_count)) {
1198                         if (lowest_bh)
1199                                 brelse(lowest_bh);
1200                         lowest_bh = bh;
1201                         get_bh(lowest_bh);
1202                 }
1203         }
1204
1205         /* If we didn't find one and the fe doesn't have any room,
1206          * then return '1' */
1207         el = et->et_root_el;
1208         if (!lowest_bh && (el->l_next_free_rec == el->l_count))
1209                 status = 1;
1210
1211         *target_bh = lowest_bh;
1212 bail:
1213         if (bh)
1214                 brelse(bh);
1215
1216         mlog_exit(status);
1217         return status;
1218 }
1219
1220 /*
1221  * Grow a b-tree so that it has more records.
1222  *
1223  * We might shift the tree depth in which case existing paths should
1224  * be considered invalid.
1225  *
1226  * Tree depth after the grow is returned via *final_depth.
1227  *
1228  * *last_eb_bh will be updated by ocfs2_add_branch().
1229  */
1230 static int ocfs2_grow_tree(struct inode *inode, handle_t *handle,
1231                            struct ocfs2_extent_tree *et, int *final_depth,
1232                            struct buffer_head **last_eb_bh,
1233                            struct ocfs2_alloc_context *meta_ac)
1234 {
1235         int ret, shift;
1236         struct ocfs2_extent_list *el = et->et_root_el;
1237         int depth = le16_to_cpu(el->l_tree_depth);
1238         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1239         struct buffer_head *bh = NULL;
1240
1241         BUG_ON(meta_ac == NULL);
1242
1243         shift = ocfs2_find_branch_target(osb, inode, et, &bh);
1244         if (shift < 0) {
1245                 ret = shift;
1246                 mlog_errno(ret);
1247                 goto out;
1248         }
1249
1250         /* We traveled all the way to the bottom of the allocation tree
1251          * and didn't find room for any more extents - we need to add
1252          * another tree level */
1253         if (shift) {
1254                 BUG_ON(bh);
1255                 mlog(0, "need to shift tree depth (current = %d)\n", depth);
1256
1257                 /* ocfs2_shift_tree_depth will return us a buffer with
1258                  * the new extent block (so we can pass that to
1259                  * ocfs2_add_branch). */
1260                 ret = ocfs2_shift_tree_depth(osb, handle, inode, et,
1261                                              meta_ac, &bh);
1262                 if (ret < 0) {
1263                         mlog_errno(ret);
1264                         goto out;
1265                 }
1266                 depth++;
1267                 if (depth == 1) {
1268                         /*
1269                          * Special case: we have room now if we shifted from
1270                          * tree_depth 0, so no more work needs to be done.
1271                          *
1272                          * We won't be calling add_branch, so pass
1273                          * back *last_eb_bh as the new leaf. At depth
1274                          * zero, it should always be null so there's
1275                          * no reason to brelse.
1276                          */
1277                         BUG_ON(*last_eb_bh);
1278                         get_bh(bh);
1279                         *last_eb_bh = bh;
1280                         goto out;
1281                 }
1282         }
1283
1284         /* call ocfs2_add_branch to add the final part of the tree with
1285          * the new data. */
1286         mlog(0, "add branch. bh = %p\n", bh);
1287         ret = ocfs2_add_branch(osb, handle, inode, et, bh, last_eb_bh,
1288                                meta_ac);
1289         if (ret < 0) {
1290                 mlog_errno(ret);
1291                 goto out;
1292         }
1293
1294 out:
1295         if (final_depth)
1296                 *final_depth = depth;
1297         brelse(bh);
1298         return ret;
1299 }
1300
1301 /*
1302  * This function will discard the rightmost extent record.
1303  */
1304 static void ocfs2_shift_records_right(struct ocfs2_extent_list *el)
1305 {
1306         int next_free = le16_to_cpu(el->l_next_free_rec);
1307         int count = le16_to_cpu(el->l_count);
1308         unsigned int num_bytes;
1309
1310         BUG_ON(!next_free);
1311         /* This will cause us to go off the end of our extent list. */
1312         BUG_ON(next_free >= count);
1313
1314         num_bytes = sizeof(struct ocfs2_extent_rec) * next_free;
1315
1316         memmove(&el->l_recs[1], &el->l_recs[0], num_bytes);
1317 }
1318
1319 static void ocfs2_rotate_leaf(struct ocfs2_extent_list *el,
1320                               struct ocfs2_extent_rec *insert_rec)
1321 {
1322         int i, insert_index, next_free, has_empty, num_bytes;
1323         u32 insert_cpos = le32_to_cpu(insert_rec->e_cpos);
1324         struct ocfs2_extent_rec *rec;
1325
1326         next_free = le16_to_cpu(el->l_next_free_rec);
1327         has_empty = ocfs2_is_empty_extent(&el->l_recs[0]);
1328
1329         BUG_ON(!next_free);
1330
1331         /* The tree code before us didn't allow enough room in the leaf. */
1332         BUG_ON(el->l_next_free_rec == el->l_count && !has_empty);
1333
1334         /*
1335          * The easiest way to approach this is to just remove the
1336          * empty extent and temporarily decrement next_free.
1337          */
1338         if (has_empty) {
1339                 /*
1340                  * If next_free was 1 (only an empty extent), this
1341                  * loop won't execute, which is fine. We still want
1342                  * the decrement above to happen.
1343                  */
1344                 for(i = 0; i < (next_free - 1); i++)
1345                         el->l_recs[i] = el->l_recs[i+1];
1346
1347                 next_free--;
1348         }
1349
1350         /*
1351          * Figure out what the new record index should be.
1352          */
1353         for(i = 0; i < next_free; i++) {
1354                 rec = &el->l_recs[i];
1355
1356                 if (insert_cpos < le32_to_cpu(rec->e_cpos))
1357                         break;
1358         }
1359         insert_index = i;
1360
1361         mlog(0, "ins %u: index %d, has_empty %d, next_free %d, count %d\n",
1362              insert_cpos, insert_index, has_empty, next_free, le16_to_cpu(el->l_count));
1363
1364         BUG_ON(insert_index < 0);
1365         BUG_ON(insert_index >= le16_to_cpu(el->l_count));
1366         BUG_ON(insert_index > next_free);
1367
1368         /*
1369          * No need to memmove if we're just adding to the tail.
1370          */
1371         if (insert_index != next_free) {
1372                 BUG_ON(next_free >= le16_to_cpu(el->l_count));
1373
1374                 num_bytes = next_free - insert_index;
1375                 num_bytes *= sizeof(struct ocfs2_extent_rec);
1376                 memmove(&el->l_recs[insert_index + 1],
1377                         &el->l_recs[insert_index],
1378                         num_bytes);
1379         }
1380
1381         /*
1382          * Either we had an empty extent, and need to re-increment or
1383          * there was no empty extent on a non full rightmost leaf node,
1384          * in which case we still need to increment.
1385          */
1386         next_free++;
1387         el->l_next_free_rec = cpu_to_le16(next_free);
1388         /*
1389          * Make sure none of the math above just messed up our tree.
1390          */
1391         BUG_ON(le16_to_cpu(el->l_next_free_rec) > le16_to_cpu(el->l_count));
1392
1393         el->l_recs[insert_index] = *insert_rec;
1394
1395 }
1396
1397 static void ocfs2_remove_empty_extent(struct ocfs2_extent_list *el)
1398 {
1399         int size, num_recs = le16_to_cpu(el->l_next_free_rec);
1400
1401         BUG_ON(num_recs == 0);
1402
1403         if (ocfs2_is_empty_extent(&el->l_recs[0])) {
1404                 num_recs--;
1405                 size = num_recs * sizeof(struct ocfs2_extent_rec);
1406                 memmove(&el->l_recs[0], &el->l_recs[1], size);
1407                 memset(&el->l_recs[num_recs], 0,
1408                        sizeof(struct ocfs2_extent_rec));
1409                 el->l_next_free_rec = cpu_to_le16(num_recs);
1410         }
1411 }
1412
1413 /*
1414  * Create an empty extent record .
1415  *
1416  * l_next_free_rec may be updated.
1417  *
1418  * If an empty extent already exists do nothing.
1419  */
1420 static void ocfs2_create_empty_extent(struct ocfs2_extent_list *el)
1421 {
1422         int next_free = le16_to_cpu(el->l_next_free_rec);
1423
1424         BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
1425
1426         if (next_free == 0)
1427                 goto set_and_inc;
1428
1429         if (ocfs2_is_empty_extent(&el->l_recs[0]))
1430                 return;
1431
1432         mlog_bug_on_msg(el->l_count == el->l_next_free_rec,
1433                         "Asked to create an empty extent in a full list:\n"
1434                         "count = %u, tree depth = %u",
1435                         le16_to_cpu(el->l_count),
1436                         le16_to_cpu(el->l_tree_depth));
1437
1438         ocfs2_shift_records_right(el);
1439
1440 set_and_inc:
1441         le16_add_cpu(&el->l_next_free_rec, 1);
1442         memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
1443 }
1444
1445 /*
1446  * For a rotation which involves two leaf nodes, the "root node" is
1447  * the lowest level tree node which contains a path to both leafs. This
1448  * resulting set of information can be used to form a complete "subtree"
1449  *
1450  * This function is passed two full paths from the dinode down to a
1451  * pair of adjacent leaves. It's task is to figure out which path
1452  * index contains the subtree root - this can be the root index itself
1453  * in a worst-case rotation.
1454  *
1455  * The array index of the subtree root is passed back.
1456  */
1457 static int ocfs2_find_subtree_root(struct inode *inode,
1458                                    struct ocfs2_path *left,
1459                                    struct ocfs2_path *right)
1460 {
1461         int i = 0;
1462
1463         /*
1464          * Check that the caller passed in two paths from the same tree.
1465          */
1466         BUG_ON(path_root_bh(left) != path_root_bh(right));
1467
1468         do {
1469                 i++;
1470
1471                 /*
1472                  * The caller didn't pass two adjacent paths.
1473                  */
1474                 mlog_bug_on_msg(i > left->p_tree_depth,
1475                                 "Inode %lu, left depth %u, right depth %u\n"
1476                                 "left leaf blk %llu, right leaf blk %llu\n",
1477                                 inode->i_ino, left->p_tree_depth,
1478                                 right->p_tree_depth,
1479                                 (unsigned long long)path_leaf_bh(left)->b_blocknr,
1480                                 (unsigned long long)path_leaf_bh(right)->b_blocknr);
1481         } while (left->p_node[i].bh->b_blocknr ==
1482                  right->p_node[i].bh->b_blocknr);
1483
1484         return i - 1;
1485 }
1486
1487 typedef void (path_insert_t)(void *, struct buffer_head *);
1488
1489 /*
1490  * Traverse a btree path in search of cpos, starting at root_el.
1491  *
1492  * This code can be called with a cpos larger than the tree, in which
1493  * case it will return the rightmost path.
1494  */
1495 static int __ocfs2_find_path(struct inode *inode,
1496                              struct ocfs2_extent_list *root_el, u32 cpos,
1497                              path_insert_t *func, void *data)
1498 {
1499         int i, ret = 0;
1500         u32 range;
1501         u64 blkno;
1502         struct buffer_head *bh = NULL;
1503         struct ocfs2_extent_block *eb;
1504         struct ocfs2_extent_list *el;
1505         struct ocfs2_extent_rec *rec;
1506         struct ocfs2_inode_info *oi = OCFS2_I(inode);
1507
1508         el = root_el;
1509         while (el->l_tree_depth) {
1510                 if (le16_to_cpu(el->l_next_free_rec) == 0) {
1511                         ocfs2_error(inode->i_sb,
1512                                     "Inode %llu has empty extent list at "
1513                                     "depth %u\n",
1514                                     (unsigned long long)oi->ip_blkno,
1515                                     le16_to_cpu(el->l_tree_depth));
1516                         ret = -EROFS;
1517                         goto out;
1518
1519                 }
1520
1521                 for(i = 0; i < le16_to_cpu(el->l_next_free_rec) - 1; i++) {
1522                         rec = &el->l_recs[i];
1523
1524                         /*
1525                          * In the case that cpos is off the allocation
1526                          * tree, this should just wind up returning the
1527                          * rightmost record.
1528                          */
1529                         range = le32_to_cpu(rec->e_cpos) +
1530                                 ocfs2_rec_clusters(el, rec);
1531                         if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
1532                             break;
1533                 }
1534
1535                 blkno = le64_to_cpu(el->l_recs[i].e_blkno);
1536                 if (blkno == 0) {
1537                         ocfs2_error(inode->i_sb,
1538                                     "Inode %llu has bad blkno in extent list "
1539                                     "at depth %u (index %d)\n",
1540                                     (unsigned long long)oi->ip_blkno,
1541                                     le16_to_cpu(el->l_tree_depth), i);
1542                         ret = -EROFS;
1543                         goto out;
1544                 }
1545
1546                 brelse(bh);
1547                 bh = NULL;
1548                 ret = ocfs2_read_block(OCFS2_SB(inode->i_sb), blkno,
1549                                        &bh, OCFS2_BH_CACHED, inode);
1550                 if (ret) {
1551                         mlog_errno(ret);
1552                         goto out;
1553                 }
1554
1555                 eb = (struct ocfs2_extent_block *) bh->b_data;
1556                 el = &eb->h_list;
1557                 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
1558                         OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
1559                         ret = -EIO;
1560                         goto out;
1561                 }
1562
1563                 if (le16_to_cpu(el->l_next_free_rec) >
1564                     le16_to_cpu(el->l_count)) {
1565                         ocfs2_error(inode->i_sb,
1566                                     "Inode %llu has bad count in extent list "
1567                                     "at block %llu (next free=%u, count=%u)\n",
1568                                     (unsigned long long)oi->ip_blkno,
1569                                     (unsigned long long)bh->b_blocknr,
1570                                     le16_to_cpu(el->l_next_free_rec),
1571                                     le16_to_cpu(el->l_count));
1572                         ret = -EROFS;
1573                         goto out;
1574                 }
1575
1576                 if (func)
1577                         func(data, bh);
1578         }
1579
1580 out:
1581         /*
1582          * Catch any trailing bh that the loop didn't handle.
1583          */
1584         brelse(bh);
1585
1586         return ret;
1587 }
1588
1589 /*
1590  * Given an initialized path (that is, it has a valid root extent
1591  * list), this function will traverse the btree in search of the path
1592  * which would contain cpos.
1593  *
1594  * The path traveled is recorded in the path structure.
1595  *
1596  * Note that this will not do any comparisons on leaf node extent
1597  * records, so it will work fine in the case that we just added a tree
1598  * branch.
1599  */
1600 struct find_path_data {
1601         int index;
1602         struct ocfs2_path *path;
1603 };
1604 static void find_path_ins(void *data, struct buffer_head *bh)
1605 {
1606         struct find_path_data *fp = data;
1607
1608         get_bh(bh);
1609         ocfs2_path_insert_eb(fp->path, fp->index, bh);
1610         fp->index++;
1611 }
1612 static int ocfs2_find_path(struct inode *inode, struct ocfs2_path *path,
1613                            u32 cpos)
1614 {
1615         struct find_path_data data;
1616
1617         data.index = 1;
1618         data.path = path;
1619         return __ocfs2_find_path(inode, path_root_el(path), cpos,
1620                                  find_path_ins, &data);
1621 }
1622
1623 static void find_leaf_ins(void *data, struct buffer_head *bh)
1624 {
1625         struct ocfs2_extent_block *eb =(struct ocfs2_extent_block *)bh->b_data;
1626         struct ocfs2_extent_list *el = &eb->h_list;
1627         struct buffer_head **ret = data;
1628
1629         /* We want to retain only the leaf block. */
1630         if (le16_to_cpu(el->l_tree_depth) == 0) {
1631                 get_bh(bh);
1632                 *ret = bh;
1633         }
1634 }
1635 /*
1636  * Find the leaf block in the tree which would contain cpos. No
1637  * checking of the actual leaf is done.
1638  *
1639  * Some paths want to call this instead of allocating a path structure
1640  * and calling ocfs2_find_path().
1641  *
1642  * This function doesn't handle non btree extent lists.
1643  */
1644 int ocfs2_find_leaf(struct inode *inode, struct ocfs2_extent_list *root_el,
1645                     u32 cpos, struct buffer_head **leaf_bh)
1646 {
1647         int ret;
1648         struct buffer_head *bh = NULL;
1649
1650         ret = __ocfs2_find_path(inode, root_el, cpos, find_leaf_ins, &bh);
1651         if (ret) {
1652                 mlog_errno(ret);
1653                 goto out;
1654         }
1655
1656         *leaf_bh = bh;
1657 out:
1658         return ret;
1659 }
1660
1661 /*
1662  * Adjust the adjacent records (left_rec, right_rec) involved in a rotation.
1663  *
1664  * Basically, we've moved stuff around at the bottom of the tree and
1665  * we need to fix up the extent records above the changes to reflect
1666  * the new changes.
1667  *
1668  * left_rec: the record on the left.
1669  * left_child_el: is the child list pointed to by left_rec
1670  * right_rec: the record to the right of left_rec
1671  * right_child_el: is the child list pointed to by right_rec
1672  *
1673  * By definition, this only works on interior nodes.
1674  */
1675 static void ocfs2_adjust_adjacent_records(struct ocfs2_extent_rec *left_rec,
1676                                   struct ocfs2_extent_list *left_child_el,
1677                                   struct ocfs2_extent_rec *right_rec,
1678                                   struct ocfs2_extent_list *right_child_el)
1679 {
1680         u32 left_clusters, right_end;
1681
1682         /*
1683          * Interior nodes never have holes. Their cpos is the cpos of
1684          * the leftmost record in their child list. Their cluster
1685          * count covers the full theoretical range of their child list
1686          * - the range between their cpos and the cpos of the record
1687          * immediately to their right.
1688          */
1689         left_clusters = le32_to_cpu(right_child_el->l_recs[0].e_cpos);
1690         if (ocfs2_is_empty_extent(&right_child_el->l_recs[0])) {
1691                 BUG_ON(le16_to_cpu(right_child_el->l_next_free_rec) <= 1);
1692                 left_clusters = le32_to_cpu(right_child_el->l_recs[1].e_cpos);
1693         }
1694         left_clusters -= le32_to_cpu(left_rec->e_cpos);
1695         left_rec->e_int_clusters = cpu_to_le32(left_clusters);
1696
1697         /*
1698          * Calculate the rightmost cluster count boundary before
1699          * moving cpos - we will need to adjust clusters after
1700          * updating e_cpos to keep the same highest cluster count.
1701          */
1702         right_end = le32_to_cpu(right_rec->e_cpos);
1703         right_end += le32_to_cpu(right_rec->e_int_clusters);
1704
1705         right_rec->e_cpos = left_rec->e_cpos;
1706         le32_add_cpu(&right_rec->e_cpos, left_clusters);
1707
1708         right_end -= le32_to_cpu(right_rec->e_cpos);
1709         right_rec->e_int_clusters = cpu_to_le32(right_end);
1710 }
1711
1712 /*
1713  * Adjust the adjacent root node records involved in a
1714  * rotation. left_el_blkno is passed in as a key so that we can easily
1715  * find it's index in the root list.
1716  */
1717 static void ocfs2_adjust_root_records(struct ocfs2_extent_list *root_el,
1718                                       struct ocfs2_extent_list *left_el,
1719                                       struct ocfs2_extent_list *right_el,
1720                                       u64 left_el_blkno)
1721 {
1722         int i;
1723
1724         BUG_ON(le16_to_cpu(root_el->l_tree_depth) <=
1725                le16_to_cpu(left_el->l_tree_depth));
1726
1727         for(i = 0; i < le16_to_cpu(root_el->l_next_free_rec) - 1; i++) {
1728                 if (le64_to_cpu(root_el->l_recs[i].e_blkno) == left_el_blkno)
1729                         break;
1730         }
1731
1732         /*
1733          * The path walking code should have never returned a root and
1734          * two paths which are not adjacent.
1735          */
1736         BUG_ON(i >= (le16_to_cpu(root_el->l_next_free_rec) - 1));
1737
1738         ocfs2_adjust_adjacent_records(&root_el->l_recs[i], left_el,
1739                                       &root_el->l_recs[i + 1], right_el);
1740 }
1741
1742 /*
1743  * We've changed a leaf block (in right_path) and need to reflect that
1744  * change back up the subtree.
1745  *
1746  * This happens in multiple places:
1747  *   - When we've moved an extent record from the left path leaf to the right
1748  *     path leaf to make room for an empty extent in the left path leaf.
1749  *   - When our insert into the right path leaf is at the leftmost edge
1750  *     and requires an update of the path immediately to it's left. This
1751  *     can occur at the end of some types of rotation and appending inserts.
1752  *   - When we've adjusted the last extent record in the left path leaf and the
1753  *     1st extent record in the right path leaf during cross extent block merge.
1754  */
1755 static void ocfs2_complete_edge_insert(struct inode *inode, handle_t *handle,
1756                                        struct ocfs2_path *left_path,
1757                                        struct ocfs2_path *right_path,
1758                                        int subtree_index)
1759 {
1760         int ret, i, idx;
1761         struct ocfs2_extent_list *el, *left_el, *right_el;
1762         struct ocfs2_extent_rec *left_rec, *right_rec;
1763         struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
1764
1765         /*
1766          * Update the counts and position values within all the
1767          * interior nodes to reflect the leaf rotation we just did.
1768          *
1769          * The root node is handled below the loop.
1770          *
1771          * We begin the loop with right_el and left_el pointing to the
1772          * leaf lists and work our way up.
1773          *
1774          * NOTE: within this loop, left_el and right_el always refer
1775          * to the *child* lists.
1776          */
1777         left_el = path_leaf_el(left_path);
1778         right_el = path_leaf_el(right_path);
1779         for(i = left_path->p_tree_depth - 1; i > subtree_index; i--) {
1780                 mlog(0, "Adjust records at index %u\n", i);
1781
1782                 /*
1783                  * One nice property of knowing that all of these
1784                  * nodes are below the root is that we only deal with
1785                  * the leftmost right node record and the rightmost
1786                  * left node record.
1787                  */
1788                 el = left_path->p_node[i].el;
1789                 idx = le16_to_cpu(left_el->l_next_free_rec) - 1;
1790                 left_rec = &el->l_recs[idx];
1791
1792                 el = right_path->p_node[i].el;
1793                 right_rec = &el->l_recs[0];
1794
1795                 ocfs2_adjust_adjacent_records(left_rec, left_el, right_rec,
1796                                               right_el);
1797
1798                 ret = ocfs2_journal_dirty(handle, left_path->p_node[i].bh);
1799                 if (ret)
1800                         mlog_errno(ret);
1801
1802                 ret = ocfs2_journal_dirty(handle, right_path->p_node[i].bh);
1803                 if (ret)
1804                         mlog_errno(ret);
1805
1806                 /*
1807                  * Setup our list pointers now so that the current
1808                  * parents become children in the next iteration.
1809                  */
1810                 left_el = left_path->p_node[i].el;
1811                 right_el = right_path->p_node[i].el;
1812         }
1813
1814         /*
1815          * At the root node, adjust the two adjacent records which
1816          * begin our path to the leaves.
1817          */
1818
1819         el = left_path->p_node[subtree_index].el;
1820         left_el = left_path->p_node[subtree_index + 1].el;
1821         right_el = right_path->p_node[subtree_index + 1].el;
1822
1823         ocfs2_adjust_root_records(el, left_el, right_el,
1824                                   left_path->p_node[subtree_index + 1].bh->b_blocknr);
1825
1826         root_bh = left_path->p_node[subtree_index].bh;
1827
1828         ret = ocfs2_journal_dirty(handle, root_bh);
1829         if (ret)
1830                 mlog_errno(ret);
1831 }
1832
1833 static int ocfs2_rotate_subtree_right(struct inode *inode,
1834                                       handle_t *handle,
1835                                       struct ocfs2_path *left_path,
1836                                       struct ocfs2_path *right_path,
1837                                       int subtree_index)
1838 {
1839         int ret, i;
1840         struct buffer_head *right_leaf_bh;
1841         struct buffer_head *left_leaf_bh = NULL;
1842         struct buffer_head *root_bh;
1843         struct ocfs2_extent_list *right_el, *left_el;
1844         struct ocfs2_extent_rec move_rec;
1845
1846         left_leaf_bh = path_leaf_bh(left_path);
1847         left_el = path_leaf_el(left_path);
1848
1849         if (left_el->l_next_free_rec != left_el->l_count) {
1850                 ocfs2_error(inode->i_sb,
1851                             "Inode %llu has non-full interior leaf node %llu"
1852                             "(next free = %u)",
1853                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
1854                             (unsigned long long)left_leaf_bh->b_blocknr,
1855                             le16_to_cpu(left_el->l_next_free_rec));
1856                 return -EROFS;
1857         }
1858
1859         /*
1860          * This extent block may already have an empty record, so we
1861          * return early if so.
1862          */
1863         if (ocfs2_is_empty_extent(&left_el->l_recs[0]))
1864                 return 0;
1865
1866         root_bh = left_path->p_node[subtree_index].bh;
1867         BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
1868
1869         ret = ocfs2_journal_access(handle, inode, root_bh,
1870                                    OCFS2_JOURNAL_ACCESS_WRITE);
1871         if (ret) {
1872                 mlog_errno(ret);
1873                 goto out;
1874         }
1875
1876         for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
1877                 ret = ocfs2_journal_access(handle, inode,
1878                                            right_path->p_node[i].bh,
1879                                            OCFS2_JOURNAL_ACCESS_WRITE);
1880                 if (ret) {
1881                         mlog_errno(ret);
1882                         goto out;
1883                 }
1884
1885                 ret = ocfs2_journal_access(handle, inode,
1886                                            left_path->p_node[i].bh,
1887                                            OCFS2_JOURNAL_ACCESS_WRITE);
1888                 if (ret) {
1889                         mlog_errno(ret);
1890                         goto out;
1891                 }
1892         }
1893
1894         right_leaf_bh = path_leaf_bh(right_path);
1895         right_el = path_leaf_el(right_path);
1896
1897         /* This is a code error, not a disk corruption. */
1898         mlog_bug_on_msg(!right_el->l_next_free_rec, "Inode %llu: Rotate fails "
1899                         "because rightmost leaf block %llu is empty\n",
1900                         (unsigned long long)OCFS2_I(inode)->ip_blkno,
1901                         (unsigned long long)right_leaf_bh->b_blocknr);
1902
1903         ocfs2_create_empty_extent(right_el);
1904
1905         ret = ocfs2_journal_dirty(handle, right_leaf_bh);
1906         if (ret) {
1907                 mlog_errno(ret);
1908                 goto out;
1909         }
1910
1911         /* Do the copy now. */
1912         i = le16_to_cpu(left_el->l_next_free_rec) - 1;
1913         move_rec = left_el->l_recs[i];
1914         right_el->l_recs[0] = move_rec;
1915
1916         /*
1917          * Clear out the record we just copied and shift everything
1918          * over, leaving an empty extent in the left leaf.
1919          *
1920          * We temporarily subtract from next_free_rec so that the
1921          * shift will lose the tail record (which is now defunct).
1922          */
1923         le16_add_cpu(&left_el->l_next_free_rec, -1);
1924         ocfs2_shift_records_right(left_el);
1925         memset(&left_el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
1926         le16_add_cpu(&left_el->l_next_free_rec, 1);
1927
1928         ret = ocfs2_journal_dirty(handle, left_leaf_bh);
1929         if (ret) {
1930                 mlog_errno(ret);
1931                 goto out;
1932         }
1933
1934         ocfs2_complete_edge_insert(inode, handle, left_path, right_path,
1935                                 subtree_index);
1936
1937 out:
1938         return ret;
1939 }
1940
1941 /*
1942  * Given a full path, determine what cpos value would return us a path
1943  * containing the leaf immediately to the left of the current one.
1944  *
1945  * Will return zero if the path passed in is already the leftmost path.
1946  */
1947 static int ocfs2_find_cpos_for_left_leaf(struct super_block *sb,
1948                                          struct ocfs2_path *path, u32 *cpos)
1949 {
1950         int i, j, ret = 0;
1951         u64 blkno;
1952         struct ocfs2_extent_list *el;
1953
1954         BUG_ON(path->p_tree_depth == 0);
1955
1956         *cpos = 0;
1957
1958         blkno = path_leaf_bh(path)->b_blocknr;
1959
1960         /* Start at the tree node just above the leaf and work our way up. */
1961         i = path->p_tree_depth - 1;
1962         while (i >= 0) {
1963                 el = path->p_node[i].el;
1964
1965                 /*
1966                  * Find the extent record just before the one in our
1967                  * path.
1968                  */
1969                 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
1970                         if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
1971                                 if (j == 0) {
1972                                         if (i == 0) {
1973                                                 /*
1974                                                  * We've determined that the
1975                                                  * path specified is already
1976                                                  * the leftmost one - return a
1977                                                  * cpos of zero.
1978                                                  */
1979                                                 goto out;
1980                                         }
1981                                         /*
1982                                          * The leftmost record points to our
1983                                          * leaf - we need to travel up the
1984                                          * tree one level.
1985                                          */
1986                                         goto next_node;
1987                                 }
1988
1989                                 *cpos = le32_to_cpu(el->l_recs[j - 1].e_cpos);
1990                                 *cpos = *cpos + ocfs2_rec_clusters(el,
1991                                                            &el->l_recs[j - 1]);
1992                                 *cpos = *cpos - 1;
1993                                 goto out;
1994                         }
1995                 }
1996
1997                 /*
1998                  * If we got here, we never found a valid node where
1999                  * the tree indicated one should be.
2000                  */
2001                 ocfs2_error(sb,
2002                             "Invalid extent tree at extent block %llu\n",
2003                             (unsigned long long)blkno);
2004                 ret = -EROFS;
2005                 goto out;
2006
2007 next_node:
2008                 blkno = path->p_node[i].bh->b_blocknr;
2009                 i--;
2010         }
2011
2012 out:
2013         return ret;
2014 }
2015
2016 /*
2017  * Extend the transaction by enough credits to complete the rotation,
2018  * and still leave at least the original number of credits allocated
2019  * to this transaction.
2020  */
2021 static int ocfs2_extend_rotate_transaction(handle_t *handle, int subtree_depth,
2022                                            int op_credits,
2023                                            struct ocfs2_path *path)
2024 {
2025         int credits = (path->p_tree_depth - subtree_depth) * 2 + 1 + op_credits;
2026
2027         if (handle->h_buffer_credits < credits)
2028                 return ocfs2_extend_trans(handle, credits);
2029
2030         return 0;
2031 }
2032
2033 /*
2034  * Trap the case where we're inserting into the theoretical range past
2035  * the _actual_ left leaf range. Otherwise, we'll rotate a record
2036  * whose cpos is less than ours into the right leaf.
2037  *
2038  * It's only necessary to look at the rightmost record of the left
2039  * leaf because the logic that calls us should ensure that the
2040  * theoretical ranges in the path components above the leaves are
2041  * correct.
2042  */
2043 static int ocfs2_rotate_requires_path_adjustment(struct ocfs2_path *left_path,
2044                                                  u32 insert_cpos)
2045 {
2046         struct ocfs2_extent_list *left_el;
2047         struct ocfs2_extent_rec *rec;
2048         int next_free;
2049
2050         left_el = path_leaf_el(left_path);
2051         next_free = le16_to_cpu(left_el->l_next_free_rec);
2052         rec = &left_el->l_recs[next_free - 1];
2053
2054         if (insert_cpos > le32_to_cpu(rec->e_cpos))
2055                 return 1;
2056         return 0;
2057 }
2058
2059 static int ocfs2_leftmost_rec_contains(struct ocfs2_extent_list *el, u32 cpos)
2060 {
2061         int next_free = le16_to_cpu(el->l_next_free_rec);
2062         unsigned int range;
2063         struct ocfs2_extent_rec *rec;
2064
2065         if (next_free == 0)
2066                 return 0;
2067
2068         rec = &el->l_recs[0];
2069         if (ocfs2_is_empty_extent(rec)) {
2070                 /* Empty list. */
2071                 if (next_free == 1)
2072                         return 0;
2073                 rec = &el->l_recs[1];
2074         }
2075
2076         range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
2077         if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
2078                 return 1;
2079         return 0;
2080 }
2081
2082 /*
2083  * Rotate all the records in a btree right one record, starting at insert_cpos.
2084  *
2085  * The path to the rightmost leaf should be passed in.
2086  *
2087  * The array is assumed to be large enough to hold an entire path (tree depth).
2088  *
2089  * Upon succesful return from this function:
2090  *
2091  * - The 'right_path' array will contain a path to the leaf block
2092  *   whose range contains e_cpos.
2093  * - That leaf block will have a single empty extent in list index 0.
2094  * - In the case that the rotation requires a post-insert update,
2095  *   *ret_left_path will contain a valid path which can be passed to
2096  *   ocfs2_insert_path().
2097  */
2098 static int ocfs2_rotate_tree_right(struct inode *inode,
2099                                    handle_t *handle,
2100                                    enum ocfs2_split_type split,
2101                                    u32 insert_cpos,
2102                                    struct ocfs2_path *right_path,
2103                                    struct ocfs2_path **ret_left_path)
2104 {
2105         int ret, start, orig_credits = handle->h_buffer_credits;
2106         u32 cpos;
2107         struct ocfs2_path *left_path = NULL;
2108
2109         *ret_left_path = NULL;
2110
2111         left_path = ocfs2_new_path(path_root_bh(right_path),
2112                                    path_root_el(right_path));
2113         if (!left_path) {
2114                 ret = -ENOMEM;
2115                 mlog_errno(ret);
2116                 goto out;
2117         }
2118
2119         ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path, &cpos);
2120         if (ret) {
2121                 mlog_errno(ret);
2122                 goto out;
2123         }
2124
2125         mlog(0, "Insert: %u, first left path cpos: %u\n", insert_cpos, cpos);
2126
2127         /*
2128          * What we want to do here is:
2129          *
2130          * 1) Start with the rightmost path.
2131          *
2132          * 2) Determine a path to the leaf block directly to the left
2133          *    of that leaf.
2134          *
2135          * 3) Determine the 'subtree root' - the lowest level tree node
2136          *    which contains a path to both leaves.
2137          *
2138          * 4) Rotate the subtree.
2139          *
2140          * 5) Find the next subtree by considering the left path to be
2141          *    the new right path.
2142          *
2143          * The check at the top of this while loop also accepts
2144          * insert_cpos == cpos because cpos is only a _theoretical_
2145          * value to get us the left path - insert_cpos might very well
2146          * be filling that hole.
2147          *
2148          * Stop at a cpos of '0' because we either started at the
2149          * leftmost branch (i.e., a tree with one branch and a
2150          * rotation inside of it), or we've gone as far as we can in
2151          * rotating subtrees.
2152          */
2153         while (cpos && insert_cpos <= cpos) {
2154                 mlog(0, "Rotating a tree: ins. cpos: %u, left path cpos: %u\n",
2155                      insert_cpos, cpos);
2156
2157                 ret = ocfs2_find_path(inode, left_path, cpos);
2158                 if (ret) {
2159                         mlog_errno(ret);
2160                         goto out;
2161                 }
2162
2163                 mlog_bug_on_msg(path_leaf_bh(left_path) ==
2164                                 path_leaf_bh(right_path),
2165                                 "Inode %lu: error during insert of %u "
2166                                 "(left path cpos %u) results in two identical "
2167                                 "paths ending at %llu\n",
2168                                 inode->i_ino, insert_cpos, cpos,
2169                                 (unsigned long long)
2170                                 path_leaf_bh(left_path)->b_blocknr);
2171
2172                 if (split == SPLIT_NONE &&
2173                     ocfs2_rotate_requires_path_adjustment(left_path,
2174                                                           insert_cpos)) {
2175
2176                         /*
2177                          * We've rotated the tree as much as we
2178                          * should. The rest is up to
2179                          * ocfs2_insert_path() to complete, after the
2180                          * record insertion. We indicate this
2181                          * situation by returning the left path.
2182                          *
2183                          * The reason we don't adjust the records here
2184                          * before the record insert is that an error
2185                          * later might break the rule where a parent
2186                          * record e_cpos will reflect the actual
2187                          * e_cpos of the 1st nonempty record of the
2188                          * child list.
2189                          */
2190                         *ret_left_path = left_path;
2191                         goto out_ret_path;
2192                 }
2193
2194                 start = ocfs2_find_subtree_root(inode, left_path, right_path);
2195
2196                 mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n",
2197                      start,
2198                      (unsigned long long) right_path->p_node[start].bh->b_blocknr,
2199                      right_path->p_tree_depth);
2200
2201                 ret = ocfs2_extend_rotate_transaction(handle, start,
2202                                                       orig_credits, right_path);
2203                 if (ret) {
2204                         mlog_errno(ret);
2205                         goto out;
2206                 }
2207
2208                 ret = ocfs2_rotate_subtree_right(inode, handle, left_path,
2209                                                  right_path, start);
2210                 if (ret) {
2211                         mlog_errno(ret);
2212                         goto out;
2213                 }
2214
2215                 if (split != SPLIT_NONE &&
2216                     ocfs2_leftmost_rec_contains(path_leaf_el(right_path),
2217                                                 insert_cpos)) {
2218                         /*
2219                          * A rotate moves the rightmost left leaf
2220                          * record over to the leftmost right leaf
2221                          * slot. If we're doing an extent split
2222                          * instead of a real insert, then we have to
2223                          * check that the extent to be split wasn't
2224                          * just moved over. If it was, then we can
2225                          * exit here, passing left_path back -
2226                          * ocfs2_split_extent() is smart enough to
2227                          * search both leaves.
2228                          */
2229                         *ret_left_path = left_path;
2230                         goto out_ret_path;
2231                 }
2232
2233                 /*
2234                  * There is no need to re-read the next right path
2235                  * as we know that it'll be our current left
2236                  * path. Optimize by copying values instead.
2237                  */
2238                 ocfs2_mv_path(right_path, left_path);
2239
2240                 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path,
2241                                                     &cpos);
2242                 if (ret) {
2243                         mlog_errno(ret);
2244                         goto out;
2245                 }
2246         }
2247
2248 out:
2249         ocfs2_free_path(left_path);
2250
2251 out_ret_path:
2252         return ret;
2253 }
2254
2255 static void ocfs2_update_edge_lengths(struct inode *inode, handle_t *handle,
2256                                       struct ocfs2_path *path)
2257 {
2258         int i, idx;
2259         struct ocfs2_extent_rec *rec;
2260         struct ocfs2_extent_list *el;
2261         struct ocfs2_extent_block *eb;
2262         u32 range;
2263
2264         /* Path should always be rightmost. */
2265         eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
2266         BUG_ON(eb->h_next_leaf_blk != 0ULL);
2267
2268         el = &eb->h_list;
2269         BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0);
2270         idx = le16_to_cpu(el->l_next_free_rec) - 1;
2271         rec = &el->l_recs[idx];
2272         range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
2273
2274         for (i = 0; i < path->p_tree_depth; i++) {
2275                 el = path->p_node[i].el;
2276                 idx = le16_to_cpu(el->l_next_free_rec) - 1;
2277                 rec = &el->l_recs[idx];
2278
2279                 rec->e_int_clusters = cpu_to_le32(range);
2280                 le32_add_cpu(&rec->e_int_clusters, -le32_to_cpu(rec->e_cpos));
2281
2282                 ocfs2_journal_dirty(handle, path->p_node[i].bh);
2283         }
2284 }
2285
2286 static void ocfs2_unlink_path(struct inode *inode, handle_t *handle,
2287                               struct ocfs2_cached_dealloc_ctxt *dealloc,
2288                               struct ocfs2_path *path, int unlink_start)
2289 {
2290         int ret, i;
2291         struct ocfs2_extent_block *eb;
2292         struct ocfs2_extent_list *el;
2293         struct buffer_head *bh;
2294
2295         for(i = unlink_start; i < path_num_items(path); i++) {
2296                 bh = path->p_node[i].bh;
2297
2298                 eb = (struct ocfs2_extent_block *)bh->b_data;
2299                 /*
2300                  * Not all nodes might have had their final count
2301                  * decremented by the caller - handle this here.
2302                  */
2303                 el = &eb->h_list;
2304                 if (le16_to_cpu(el->l_next_free_rec) > 1) {
2305                         mlog(ML_ERROR,
2306                              "Inode %llu, attempted to remove extent block "
2307                              "%llu with %u records\n",
2308                              (unsigned long long)OCFS2_I(inode)->ip_blkno,
2309                              (unsigned long long)le64_to_cpu(eb->h_blkno),
2310                              le16_to_cpu(el->l_next_free_rec));
2311
2312                         ocfs2_journal_dirty(handle, bh);
2313                         ocfs2_remove_from_cache(inode, bh);
2314                         continue;
2315                 }
2316
2317                 el->l_next_free_rec = 0;
2318                 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2319
2320                 ocfs2_journal_dirty(handle, bh);
2321
2322                 ret = ocfs2_cache_extent_block_free(dealloc, eb);
2323                 if (ret)
2324                         mlog_errno(ret);
2325
2326                 ocfs2_remove_from_cache(inode, bh);
2327         }
2328 }
2329
2330 static void ocfs2_unlink_subtree(struct inode *inode, handle_t *handle,
2331                                  struct ocfs2_path *left_path,
2332                                  struct ocfs2_path *right_path,
2333                                  int subtree_index,
2334                                  struct ocfs2_cached_dealloc_ctxt *dealloc)
2335 {
2336         int i;
2337         struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
2338         struct ocfs2_extent_list *root_el = left_path->p_node[subtree_index].el;
2339         struct ocfs2_extent_list *el;
2340         struct ocfs2_extent_block *eb;
2341
2342         el = path_leaf_el(left_path);
2343
2344         eb = (struct ocfs2_extent_block *)right_path->p_node[subtree_index + 1].bh->b_data;
2345
2346         for(i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++)
2347                 if (root_el->l_recs[i].e_blkno == eb->h_blkno)
2348                         break;
2349
2350         BUG_ON(i >= le16_to_cpu(root_el->l_next_free_rec));
2351
2352         memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
2353         le16_add_cpu(&root_el->l_next_free_rec, -1);
2354
2355         eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2356         eb->h_next_leaf_blk = 0;
2357
2358         ocfs2_journal_dirty(handle, root_bh);
2359         ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2360
2361         ocfs2_unlink_path(inode, handle, dealloc, right_path,
2362                           subtree_index + 1);
2363 }
2364
2365 static int ocfs2_rotate_subtree_left(struct inode *inode, handle_t *handle,
2366                                      struct ocfs2_path *left_path,
2367                                      struct ocfs2_path *right_path,
2368                                      int subtree_index,
2369                                      struct ocfs2_cached_dealloc_ctxt *dealloc,
2370                                      int *deleted,
2371                                      struct ocfs2_extent_tree *et)
2372 {
2373         int ret, i, del_right_subtree = 0, right_has_empty = 0;
2374         struct buffer_head *root_bh, *et_root_bh = path_root_bh(right_path);
2375         struct ocfs2_extent_list *right_leaf_el, *left_leaf_el;
2376         struct ocfs2_extent_block *eb;
2377
2378         *deleted = 0;
2379
2380         right_leaf_el = path_leaf_el(right_path);
2381         left_leaf_el = path_leaf_el(left_path);
2382         root_bh = left_path->p_node[subtree_index].bh;
2383         BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
2384
2385         if (!ocfs2_is_empty_extent(&left_leaf_el->l_recs[0]))
2386                 return 0;
2387
2388         eb = (struct ocfs2_extent_block *)path_leaf_bh(right_path)->b_data;
2389         if (ocfs2_is_empty_extent(&right_leaf_el->l_recs[0])) {
2390                 /*
2391                  * It's legal for us to proceed if the right leaf is
2392                  * the rightmost one and it has an empty extent. There
2393                  * are two cases to handle - whether the leaf will be
2394                  * empty after removal or not. If the leaf isn't empty
2395                  * then just remove the empty extent up front. The
2396                  * next block will handle empty leaves by flagging
2397                  * them for unlink.
2398                  *
2399                  * Non rightmost leaves will throw -EAGAIN and the
2400                  * caller can manually move the subtree and retry.
2401                  */
2402
2403                 if (eb->h_next_leaf_blk != 0ULL)
2404                         return -EAGAIN;
2405
2406                 if (le16_to_cpu(right_leaf_el->l_next_free_rec) > 1) {
2407                         ret = ocfs2_journal_access(handle, inode,
2408                                                    path_leaf_bh(right_path),
2409                                                    OCFS2_JOURNAL_ACCESS_WRITE);
2410                         if (ret) {
2411                                 mlog_errno(ret);
2412                                 goto out;
2413                         }
2414
2415                         ocfs2_remove_empty_extent(right_leaf_el);
2416                 } else
2417                         right_has_empty = 1;
2418         }
2419
2420         if (eb->h_next_leaf_blk == 0ULL &&
2421             le16_to_cpu(right_leaf_el->l_next_free_rec) == 1) {
2422                 /*
2423                  * We have to update i_last_eb_blk during the meta
2424                  * data delete.
2425                  */
2426                 ret = ocfs2_journal_access(handle, inode, et_root_bh,
2427                                            OCFS2_JOURNAL_ACCESS_WRITE);
2428                 if (ret) {
2429                         mlog_errno(ret);
2430                         goto out;
2431                 }
2432
2433                 del_right_subtree = 1;
2434         }
2435
2436         /*
2437          * Getting here with an empty extent in the right path implies
2438          * that it's the rightmost path and will be deleted.
2439          */
2440         BUG_ON(right_has_empty && !del_right_subtree);
2441
2442         ret = ocfs2_journal_access(handle, inode, root_bh,
2443                                    OCFS2_JOURNAL_ACCESS_WRITE);
2444         if (ret) {
2445                 mlog_errno(ret);
2446                 goto out;
2447         }
2448
2449         for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
2450                 ret = ocfs2_journal_access(handle, inode,
2451                                            right_path->p_node[i].bh,
2452                                            OCFS2_JOURNAL_ACCESS_WRITE);
2453                 if (ret) {
2454                         mlog_errno(ret);
2455                         goto out;
2456                 }
2457
2458                 ret = ocfs2_journal_access(handle, inode,
2459                                            left_path->p_node[i].bh,
2460                                            OCFS2_JOURNAL_ACCESS_WRITE);
2461                 if (ret) {
2462                         mlog_errno(ret);
2463                         goto out;
2464                 }
2465         }
2466
2467         if (!right_has_empty) {
2468                 /*
2469                  * Only do this if we're moving a real
2470                  * record. Otherwise, the action is delayed until
2471                  * after removal of the right path in which case we
2472                  * can do a simple shift to remove the empty extent.
2473                  */
2474                 ocfs2_rotate_leaf(left_leaf_el, &right_leaf_el->l_recs[0]);
2475                 memset(&right_leaf_el->l_recs[0], 0,
2476                        sizeof(struct ocfs2_extent_rec));
2477         }
2478         if (eb->h_next_leaf_blk == 0ULL) {
2479                 /*
2480                  * Move recs over to get rid of empty extent, decrease
2481                  * next_free. This is allowed to remove the last
2482                  * extent in our leaf (setting l_next_free_rec to
2483                  * zero) - the delete code below won't care.
2484                  */
2485                 ocfs2_remove_empty_extent(right_leaf_el);
2486         }
2487
2488         ret = ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2489         if (ret)
2490                 mlog_errno(ret);
2491         ret = ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
2492         if (ret)
2493                 mlog_errno(ret);
2494
2495         if (del_right_subtree) {
2496                 ocfs2_unlink_subtree(inode, handle, left_path, right_path,
2497                                      subtree_index, dealloc);
2498                 ocfs2_update_edge_lengths(inode, handle, left_path);
2499
2500                 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2501                 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
2502
2503                 /*
2504                  * Removal of the extent in the left leaf was skipped
2505                  * above so we could delete the right path
2506                  * 1st.
2507                  */
2508                 if (right_has_empty)
2509                         ocfs2_remove_empty_extent(left_leaf_el);
2510
2511                 ret = ocfs2_journal_dirty(handle, et_root_bh);
2512                 if (ret)
2513                         mlog_errno(ret);
2514
2515                 *deleted = 1;
2516         } else
2517                 ocfs2_complete_edge_insert(inode, handle, left_path, right_path,
2518                                            subtree_index);
2519
2520 out:
2521         return ret;
2522 }
2523
2524 /*
2525  * Given a full path, determine what cpos value would return us a path
2526  * containing the leaf immediately to the right of the current one.
2527  *
2528  * Will return zero if the path passed in is already the rightmost path.
2529  *
2530  * This looks similar, but is subtly different to
2531  * ocfs2_find_cpos_for_left_leaf().
2532  */
2533 static int ocfs2_find_cpos_for_right_leaf(struct super_block *sb,
2534                                           struct ocfs2_path *path, u32 *cpos)
2535 {
2536         int i, j, ret = 0;
2537         u64 blkno;
2538         struct ocfs2_extent_list *el;
2539
2540         *cpos = 0;
2541
2542         if (path->p_tree_depth == 0)
2543                 return 0;
2544
2545         blkno = path_leaf_bh(path)->b_blocknr;
2546
2547         /* Start at the tree node just above the leaf and work our way up. */
2548         i = path->p_tree_depth - 1;
2549         while (i >= 0) {
2550                 int next_free;
2551
2552                 el = path->p_node[i].el;
2553
2554                 /*
2555                  * Find the extent record just after the one in our
2556                  * path.
2557                  */
2558                 next_free = le16_to_cpu(el->l_next_free_rec);
2559                 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
2560                         if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
2561                                 if (j == (next_free - 1)) {
2562                                         if (i == 0) {
2563                                                 /*
2564                                                  * We've determined that the
2565                                                  * path specified is already
2566                                                  * the rightmost one - return a
2567                                                  * cpos of zero.
2568                                                  */
2569                                                 goto out;
2570                                         }
2571                                         /*
2572                                          * The rightmost record points to our
2573                                          * leaf - we need to travel up the
2574                                          * tree one level.
2575                                          */
2576                                         goto next_node;
2577                                 }
2578
2579                                 *cpos = le32_to_cpu(el->l_recs[j + 1].e_cpos);
2580                                 goto out;
2581                         }
2582                 }
2583
2584                 /*
2585                  * If we got here, we never found a valid node where
2586                  * the tree indicated one should be.
2587                  */
2588                 ocfs2_error(sb,
2589                             "Invalid extent tree at extent block %llu\n",
2590                             (unsigned long long)blkno);
2591                 ret = -EROFS;
2592                 goto out;
2593
2594 next_node:
2595                 blkno = path->p_node[i].bh->b_blocknr;
2596                 i--;
2597         }
2598
2599 out:
2600         return ret;
2601 }
2602
2603 static int ocfs2_rotate_rightmost_leaf_left(struct inode *inode,
2604                                             handle_t *handle,
2605                                             struct buffer_head *bh,
2606                                             struct ocfs2_extent_list *el)
2607 {
2608         int ret;
2609
2610         if (!ocfs2_is_empty_extent(&el->l_recs[0]))
2611                 return 0;
2612
2613         ret = ocfs2_journal_access(handle, inode, bh,
2614                                    OCFS2_JOURNAL_ACCESS_WRITE);
2615         if (ret) {
2616                 mlog_errno(ret);
2617                 goto out;
2618         }
2619
2620         ocfs2_remove_empty_extent(el);
2621
2622         ret = ocfs2_journal_dirty(handle, bh);
2623         if (ret)
2624                 mlog_errno(ret);
2625
2626 out:
2627         return ret;
2628 }
2629
2630 static int __ocfs2_rotate_tree_left(struct inode *inode,
2631                                     handle_t *handle, int orig_credits,
2632                                     struct ocfs2_path *path,
2633                                     struct ocfs2_cached_dealloc_ctxt *dealloc,
2634                                     struct ocfs2_path **empty_extent_path,
2635                                     struct ocfs2_extent_tree *et)
2636 {
2637         int ret, subtree_root, deleted;
2638         u32 right_cpos;
2639         struct ocfs2_path *left_path = NULL;
2640         struct ocfs2_path *right_path = NULL;
2641
2642         BUG_ON(!ocfs2_is_empty_extent(&(path_leaf_el(path)->l_recs[0])));
2643
2644         *empty_extent_path = NULL;
2645
2646         ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, path,
2647                                              &right_cpos);
2648         if (ret) {
2649                 mlog_errno(ret);
2650                 goto out;
2651         }
2652
2653         left_path = ocfs2_new_path(path_root_bh(path),
2654                                    path_root_el(path));
2655         if (!left_path) {
2656                 ret = -ENOMEM;
2657                 mlog_errno(ret);
2658                 goto out;
2659         }
2660
2661         ocfs2_cp_path(left_path, path);
2662
2663         right_path = ocfs2_new_path(path_root_bh(path),
2664                                     path_root_el(path));
2665         if (!right_path) {
2666                 ret = -ENOMEM;
2667                 mlog_errno(ret);
2668                 goto out;
2669         }
2670
2671         while (right_cpos) {
2672                 ret = ocfs2_find_path(inode, right_path, right_cpos);
2673                 if (ret) {
2674                         mlog_errno(ret);
2675                         goto out;
2676                 }
2677
2678                 subtree_root = ocfs2_find_subtree_root(inode, left_path,
2679                                                        right_path);
2680
2681                 mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n",
2682                      subtree_root,
2683                      (unsigned long long)
2684                      right_path->p_node[subtree_root].bh->b_blocknr,
2685                      right_path->p_tree_depth);
2686
2687                 ret = ocfs2_extend_rotate_transaction(handle, subtree_root,
2688                                                       orig_credits, left_path);
2689                 if (ret) {
2690                         mlog_errno(ret);
2691                         goto out;
2692                 }
2693
2694                 /*
2695                  * Caller might still want to make changes to the
2696                  * tree root, so re-add it to the journal here.
2697                  */
2698                 ret = ocfs2_journal_access(handle, inode,
2699                                            path_root_bh(left_path),
2700                                            OCFS2_JOURNAL_ACCESS_WRITE);
2701                 if (ret) {
2702                         mlog_errno(ret);
2703                         goto out;
2704                 }
2705
2706                 ret = ocfs2_rotate_subtree_left(inode, handle, left_path,
2707                                                 right_path, subtree_root,
2708                                                 dealloc, &deleted, et);
2709                 if (ret == -EAGAIN) {
2710                         /*
2711                          * The rotation has to temporarily stop due to
2712                          * the right subtree having an empty
2713                          * extent. Pass it back to the caller for a
2714                          * fixup.
2715                          */
2716                         *empty_extent_path = right_path;
2717                         right_path = NULL;
2718                         goto out;
2719                 }
2720                 if (ret) {
2721                         mlog_errno(ret);
2722                         goto out;
2723                 }
2724
2725                 /*
2726                  * The subtree rotate might have removed records on
2727                  * the rightmost edge. If so, then rotation is
2728                  * complete.
2729                  */
2730                 if (deleted)
2731                         break;
2732
2733                 ocfs2_mv_path(left_path, right_path);
2734
2735                 ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, left_path,
2736                                                      &right_cpos);
2737                 if (ret) {
2738                         mlog_errno(ret);
2739                         goto out;
2740                 }
2741         }
2742
2743 out:
2744         ocfs2_free_path(right_path);
2745         ocfs2_free_path(left_path);
2746
2747         return ret;
2748 }
2749
2750 static int ocfs2_remove_rightmost_path(struct inode *inode, handle_t *handle,
2751                                 struct ocfs2_path *path,
2752                                 struct ocfs2_cached_dealloc_ctxt *dealloc,
2753                                 struct ocfs2_extent_tree *et)
2754 {
2755         int ret, subtree_index;
2756         u32 cpos;
2757         struct ocfs2_path *left_path = NULL;
2758         struct ocfs2_extent_block *eb;
2759         struct ocfs2_extent_list *el;
2760
2761
2762         ret = ocfs2_et_sanity_check(inode, et);
2763         if (ret)
2764                 goto out;
2765         /*
2766          * There's two ways we handle this depending on
2767          * whether path is the only existing one.
2768          */
2769         ret = ocfs2_extend_rotate_transaction(handle, 0,
2770                                               handle->h_buffer_credits,
2771                                               path);
2772         if (ret) {
2773                 mlog_errno(ret);
2774                 goto out;
2775         }
2776
2777         ret = ocfs2_journal_access_path(inode, handle, path);
2778         if (ret) {
2779                 mlog_errno(ret);
2780                 goto out;
2781         }
2782
2783         ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, &cpos);
2784         if (ret) {
2785                 mlog_errno(ret);
2786                 goto out;
2787         }
2788
2789         if (cpos) {
2790                 /*
2791                  * We have a path to the left of this one - it needs
2792                  * an update too.
2793                  */
2794                 left_path = ocfs2_new_path(path_root_bh(path),
2795                                            path_root_el(path));
2796                 if (!left_path) {
2797                         ret = -ENOMEM;
2798                         mlog_errno(ret);
2799                         goto out;
2800                 }
2801
2802                 ret = ocfs2_find_path(inode, left_path, cpos);
2803                 if (ret) {
2804                         mlog_errno(ret);
2805                         goto out;
2806                 }
2807
2808                 ret = ocfs2_journal_access_path(inode, handle, left_path);
2809                 if (ret) {
2810                         mlog_errno(ret);
2811                         goto out;
2812                 }
2813
2814                 subtree_index = ocfs2_find_subtree_root(inode, left_path, path);
2815
2816                 ocfs2_unlink_subtree(inode, handle, left_path, path,
2817                                      subtree_index, dealloc);
2818                 ocfs2_update_edge_lengths(inode, handle, left_path);
2819
2820                 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2821                 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
2822         } else {
2823                 /*
2824                  * 'path' is also the leftmost path which
2825                  * means it must be the only one. This gets
2826                  * handled differently because we want to
2827                  * revert the inode back to having extents
2828                  * in-line.
2829                  */
2830                 ocfs2_unlink_path(inode, handle, dealloc, path, 1);
2831
2832                 el = et->et_root_el;
2833                 el->l_tree_depth = 0;
2834                 el->l_next_free_rec = 0;
2835                 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2836
2837                 ocfs2_et_set_last_eb_blk(et, 0);
2838         }
2839
2840         ocfs2_journal_dirty(handle, path_root_bh(path));
2841
2842 out:
2843         ocfs2_free_path(left_path);
2844         return ret;
2845 }
2846
2847 /*
2848  * Left rotation of btree records.
2849  *
2850  * In many ways, this is (unsurprisingly) the opposite of right
2851  * rotation. We start at some non-rightmost path containing an empty
2852  * extent in the leaf block. The code works its way to the rightmost
2853  * path by rotating records to the left in every subtree.
2854  *
2855  * This is used by any code which reduces the number of extent records
2856  * in a leaf. After removal, an empty record should be placed in the
2857  * leftmost list position.
2858  *
2859  * This won't handle a length update of the rightmost path records if
2860  * the rightmost tree leaf record is removed so the caller is
2861  * responsible for detecting and correcting that.
2862  */
2863 static int ocfs2_rotate_tree_left(struct inode *inode, handle_t *handle,
2864                                   struct ocfs2_path *path,
2865                                   struct ocfs2_cached_dealloc_ctxt *dealloc,
2866                                   struct ocfs2_extent_tree *et)
2867 {
2868         int ret, orig_credits = handle->h_buffer_credits;
2869         struct ocfs2_path *tmp_path = NULL, *restart_path = NULL;
2870         struct ocfs2_extent_block *eb;
2871         struct ocfs2_extent_list *el;
2872
2873         el = path_leaf_el(path);
2874         if (!ocfs2_is_empty_extent(&el->l_recs[0]))
2875                 return 0;
2876
2877         if (path->p_tree_depth == 0) {
2878 rightmost_no_delete:
2879                 /*
2880                  * Inline extents. This is trivially handled, so do
2881                  * it up front.
2882                  */
2883                 ret = ocfs2_rotate_rightmost_leaf_left(inode, handle,
2884                                                        path_leaf_bh(path),
2885                                                        path_leaf_el(path));
2886                 if (ret)
2887                         mlog_errno(ret);
2888                 goto out;
2889         }
2890
2891         /*
2892          * Handle rightmost branch now. There's several cases:
2893          *  1) simple rotation leaving records in there. That's trivial.
2894          *  2) rotation requiring a branch delete - there's no more
2895          *     records left. Two cases of this:
2896          *     a) There are branches to the left.
2897          *     b) This is also the leftmost (the only) branch.
2898          *
2899          *  1) is handled via ocfs2_rotate_rightmost_leaf_left()
2900          *  2a) we need the left branch so that we can update it with the unlink
2901          *  2b) we need to bring the inode back to inline extents.
2902          */
2903
2904         eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
2905         el = &eb->h_list;
2906         if (eb->h_next_leaf_blk == 0) {
2907                 /*
2908                  * This gets a bit tricky if we're going to delete the
2909                  * rightmost path. Get the other cases out of the way
2910                  * 1st.
2911                  */
2912                 if (le16_to_cpu(el->l_next_free_rec) > 1)
2913                         goto rightmost_no_delete;
2914
2915                 if (le16_to_cpu(el->l_next_free_rec) == 0) {
2916                         ret = -EIO;
2917                         ocfs2_error(inode->i_sb,
2918                                     "Inode %llu has empty extent block at %llu",
2919                                     (unsigned long long)OCFS2_I(inode)->ip_blkno,
2920                                     (unsigned long long)le64_to_cpu(eb->h_blkno));
2921                         goto out;
2922                 }
2923
2924                 /*
2925                  * XXX: The caller can not trust "path" any more after
2926                  * this as it will have been deleted. What do we do?
2927                  *
2928                  * In theory the rotate-for-merge code will never get
2929                  * here because it'll always ask for a rotate in a
2930                  * nonempty list.
2931                  */
2932
2933                 ret = ocfs2_remove_rightmost_path(inode, handle, path,
2934                                                   dealloc, et);
2935                 if (ret)
2936                         mlog_errno(ret);
2937                 goto out;
2938         }
2939
2940         /*
2941          * Now we can loop, remembering the path we get from -EAGAIN
2942          * and restarting from there.
2943          */
2944 try_rotate:
2945         ret = __ocfs2_rotate_tree_left(inode, handle, orig_credits, path,
2946                                        dealloc, &restart_path, et);
2947         if (ret && ret != -EAGAIN) {
2948                 mlog_errno(ret);
2949                 goto out;
2950         }
2951
2952         while (ret == -EAGAIN) {
2953                 tmp_path = restart_path;
2954                 restart_path = NULL;
2955
2956                 ret = __ocfs2_rotate_tree_left(inode, handle, orig_credits,
2957                                                tmp_path, dealloc,
2958                                                &restart_path, et);
2959                 if (ret && ret != -EAGAIN) {
2960                         mlog_errno(ret);
2961                         goto out;
2962                 }
2963
2964                 ocfs2_free_path(tmp_path);
2965                 tmp_path = NULL;
2966
2967                 if (ret == 0)
2968                         goto try_rotate;
2969         }
2970
2971 out:
2972         ocfs2_free_path(tmp_path);
2973         ocfs2_free_path(restart_path);
2974         return ret;
2975 }
2976
2977 static void ocfs2_cleanup_merge(struct ocfs2_extent_list *el,
2978                                 int index)
2979 {
2980         struct ocfs2_extent_rec *rec = &el->l_recs[index];
2981         unsigned int size;
2982
2983         if (rec->e_leaf_clusters == 0) {
2984                 /*
2985                  * We consumed all of the merged-from record. An empty
2986                  * extent cannot exist anywhere but the 1st array
2987                  * position, so move things over if the merged-from
2988                  * record doesn't occupy that position.
2989                  *
2990                  * This creates a new empty extent so the caller
2991                  * should be smart enough to have removed any existing
2992                  * ones.
2993                  */
2994                 if (index > 0) {
2995                         BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
2996                         size = index * sizeof(struct ocfs2_extent_rec);
2997                         memmove(&el->l_recs[1], &el->l_recs[0], size);
2998                 }
2999
3000                 /*
3001                  * Always memset - the caller doesn't check whether it
3002                  * created an empty extent, so there could be junk in
3003                  * the other fields.
3004                  */
3005                 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
3006         }
3007 }
3008
3009 static int ocfs2_get_right_path(struct inode *inode,
3010                                 struct ocfs2_path *left_path,
3011                                 struct ocfs2_path **ret_right_path)
3012 {
3013         int ret;
3014         u32 right_cpos;
3015         struct ocfs2_path *right_path = NULL;
3016         struct ocfs2_extent_list *left_el;
3017
3018         *ret_right_path = NULL;
3019
3020         /* This function shouldn't be called for non-trees. */
3021         BUG_ON(left_path->p_tree_depth == 0);
3022
3023         left_el = path_leaf_el(left_path);
3024         BUG_ON(left_el->l_next_free_rec != left_el->l_count);
3025
3026         ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, left_path,
3027                                              &right_cpos);
3028         if (ret) {
3029                 mlog_errno(ret);
3030                 goto out;
3031         }
3032
3033         /* This function shouldn't be called for the rightmost leaf. */
3034         BUG_ON(right_cpos == 0);
3035
3036         right_path = ocfs2_new_path(path_root_bh(left_path),
3037                                     path_root_el(left_path));
3038         if (!right_path) {
3039                 ret = -ENOMEM;
3040                 mlog_errno(ret);
3041                 goto out;
3042         }
3043
3044         ret = ocfs2_find_path(inode, right_path, right_cpos);
3045         if (ret) {
3046                 mlog_errno(ret);
3047                 goto out;
3048         }
3049
3050         *ret_right_path = right_path;
3051 out:
3052         if (ret)
3053                 ocfs2_free_path(right_path);
3054         return ret;
3055 }
3056
3057 /*
3058  * Remove split_rec clusters from the record at index and merge them
3059  * onto the beginning of the record "next" to it.
3060  * For index < l_count - 1, the next means the extent rec at index + 1.
3061  * For index == l_count - 1, the "next" means the 1st extent rec of the
3062  * next extent block.
3063  */
3064 static int ocfs2_merge_rec_right(struct inode *inode,
3065                                  struct ocfs2_path *left_path,
3066                                  handle_t *handle,
3067                                  struct ocfs2_extent_rec *split_rec,
3068                                  int index)
3069 {
3070         int ret, next_free, i;
3071         unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
3072         struct ocfs2_extent_rec *left_rec;
3073         struct ocfs2_extent_rec *right_rec;
3074         struct ocfs2_extent_list *right_el;
3075         struct ocfs2_path *right_path = NULL;
3076         int subtree_index = 0;
3077         struct ocfs2_extent_list *el = path_leaf_el(left_path);
3078         struct buffer_head *bh = path_leaf_bh(left_path);
3079         struct buffer_head *root_bh = NULL;
3080
3081         BUG_ON(index >= le16_to_cpu(el->l_next_free_rec));
3082         left_rec = &el->l_recs[index];
3083
3084         if (index == le16_to_cpu(el->l_next_free_rec) - 1 &&
3085             le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count)) {
3086                 /* we meet with a cross extent block merge. */
3087                 ret = ocfs2_get_right_path(inode, left_path, &right_path);
3088                 if (ret) {
3089                         mlog_errno(ret);
3090                         goto out;
3091                 }
3092
3093                 right_el = path_leaf_el(right_path);
3094                 next_free = le16_to_cpu(right_el->l_next_free_rec);
3095                 BUG_ON(next_free <= 0);
3096                 right_rec = &right_el->l_recs[0];
3097                 if (ocfs2_is_empty_extent(right_rec)) {
3098                         BUG_ON(next_free <= 1);
3099                         right_rec = &right_el->l_recs[1];
3100                 }
3101
3102                 BUG_ON(le32_to_cpu(left_rec->e_cpos) +
3103                        le16_to_cpu(left_rec->e_leaf_clusters) !=
3104                        le32_to_cpu(right_rec->e_cpos));
3105
3106                 subtree_index = ocfs2_find_subtree_root(inode,
3107                                                         left_path, right_path);
3108
3109                 ret = ocfs2_extend_rotate_transaction(handle, subtree_index,
3110                                                       handle->h_buffer_credits,
3111                                                       right_path);
3112                 if (ret) {
3113                         mlog_errno(ret);
3114                         goto out;
3115                 }
3116
3117                 root_bh = left_path->p_node[subtree_index].bh;
3118                 BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
3119
3120                 ret = ocfs2_journal_access(handle, inode, root_bh,
3121                                            OCFS2_JOURNAL_ACCESS_WRITE);
3122                 if (ret) {
3123                         mlog_errno(ret);
3124                         goto out;
3125                 }
3126
3127                 for (i = subtree_index + 1;
3128                      i < path_num_items(right_path); i++) {
3129                         ret = ocfs2_journal_access(handle, inode,
3130                                                    right_path->p_node[i].bh,
3131                                                    OCFS2_JOURNAL_ACCESS_WRITE);
3132                         if (ret) {
3133                                 mlog_errno(ret);
3134                                 goto out;
3135                         }
3136
3137                         ret = ocfs2_journal_access(handle, inode,
3138                                                    left_path->p_node[i].bh,
3139                                                    OCFS2_JOURNAL_ACCESS_WRITE);
3140                         if (ret) {
3141                                 mlog_errno(ret);
3142                                 goto out;
3143                         }
3144                 }
3145
3146         } else {
3147                 BUG_ON(index == le16_to_cpu(el->l_next_free_rec) - 1);
3148                 right_rec = &el->l_recs[index + 1];
3149         }
3150
3151         ret = ocfs2_journal_access(handle, inode, bh,
3152                                    OCFS2_JOURNAL_ACCESS_WRITE);
3153         if (ret) {
3154                 mlog_errno(ret);
3155                 goto out;
3156         }
3157
3158         le16_add_cpu(&left_rec->e_leaf_clusters, -split_clusters);
3159
3160         le32_add_cpu(&right_rec->e_cpos, -split_clusters);
3161         le64_add_cpu(&right_rec->e_blkno,
3162                      -ocfs2_clusters_to_blocks(inode->i_sb, split_clusters));
3163         le16_add_cpu(&right_rec->e_leaf_clusters, split_clusters);
3164
3165         ocfs2_cleanup_merge(el, index);
3166
3167         ret = ocfs2_journal_dirty(handle, bh);
3168         if (ret)
3169                 mlog_errno(ret);
3170
3171         if (right_path) {
3172                 ret = ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
3173                 if (ret)
3174                         mlog_errno(ret);
3175
3176                 ocfs2_complete_edge_insert(inode, handle, left_path,
3177                                            right_path, subtree_index);
3178         }
3179 out:
3180         if (right_path)
3181                 ocfs2_free_path(right_path);
3182         return ret;
3183 }
3184
3185 static int ocfs2_get_left_path(struct inode *inode,
3186                                struct ocfs2_path *right_path,
3187                                struct ocfs2_path **ret_left_path)
3188 {
3189         int ret;
3190         u32 left_cpos;
3191         struct ocfs2_path *left_path = NULL;
3192
3193         *ret_left_path = NULL;
3194
3195         /* This function shouldn't be called for non-trees. */
3196         BUG_ON(right_path->p_tree_depth == 0);
3197
3198         ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb,
3199                                             right_path, &left_cpos);
3200         if (ret) {
3201                 mlog_errno(ret);
3202                 goto out;
3203         }
3204
3205         /* This function shouldn't be called for the leftmost leaf. */
3206         BUG_ON(left_cpos == 0);
3207
3208         left_path = ocfs2_new_path(path_root_bh(right_path),
3209                                    path_root_el(right_path));
3210         if (!left_path) {
3211                 ret = -ENOMEM;
3212                 mlog_errno(ret);
3213                 goto out;
3214         }
3215
3216         ret = ocfs2_find_path(inode, left_path, left_cpos);
3217         if (ret) {
3218                 mlog_errno(ret);
3219                 goto out;
3220         }
3221
3222         *ret_left_path = left_path;
3223 out:
3224         if (ret)
3225                 ocfs2_free_path(left_path);
3226         return ret;
3227 }
3228
3229 /*
3230  * Remove split_rec clusters from the record at index and merge them
3231  * onto the tail of the record "before" it.
3232  * For index > 0, the "before" means the extent rec at index - 1.
3233  *
3234  * For index == 0, the "before" means the last record of the previous
3235  * extent block. And there is also a situation that we may need to
3236  * remove the rightmost leaf extent block in the right_path and change
3237  * the right path to indicate the new rightmost path.
3238  */
3239 static int ocfs2_merge_rec_left(struct inode *inode,
3240                                 struct ocfs2_path *right_path,
3241                                 handle_t *handle,
3242                                 struct ocfs2_extent_rec *split_rec,
3243                                 struct ocfs2_cached_dealloc_ctxt *dealloc,
3244                                 struct ocfs2_extent_tree *et,
3245                                 int index)
3246 {
3247         int ret, i, subtree_index = 0, has_empty_extent = 0;
3248         unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
3249         struct ocfs2_extent_rec *left_rec;
3250         struct ocfs2_extent_rec *right_rec;
3251         struct ocfs2_extent_list *el = path_leaf_el(right_path);
3252         struct buffer_head *bh = path_leaf_bh(right_path);
3253         struct buffer_head *root_bh = NULL;
3254         struct ocfs2_path *left_path = NULL;
3255         struct ocfs2_extent_list *left_el;
3256
3257         BUG_ON(index < 0);
3258
3259         right_rec = &el->l_recs[index];
3260         if (index == 0) {
3261                 /* we meet with a cross extent block merge. */
3262                 ret = ocfs2_get_left_path(inode, right_path, &left_path);
3263                 if (ret) {
3264                         mlog_errno(ret);
3265                         goto out;
3266                 }
3267
3268                 left_el = path_leaf_el(left_path);
3269                 BUG_ON(le16_to_cpu(left_el->l_next_free_rec) !=
3270                        le16_to_cpu(left_el->l_count));
3271
3272                 left_rec = &left_el->l_recs[
3273                                 le16_to_cpu(left_el->l_next_free_rec) - 1];
3274                 BUG_ON(le32_to_cpu(left_rec->e_cpos) +
3275                        le16_to_cpu(left_rec->e_leaf_clusters) !=
3276                        le32_to_cpu(split_rec->e_cpos));
3277
3278                 subtree_index = ocfs2_find_subtree_root(inode,
3279                                                         left_path, right_path);
3280
3281                 ret = ocfs2_extend_rotate_transaction(handle, subtree_index,
3282                                                       handle->h_buffer_credits,
3283                                                       left_path);
3284                 if (ret) {
3285                         mlog_errno(ret);
3286                         goto out;
3287                 }
3288
3289                 root_bh = left_path->p_node[subtree_index].bh;
3290                 BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
3291
3292                 ret = ocfs2_journal_access(handle, inode, root_bh,
3293                                            OCFS2_JOURNAL_ACCESS_WRITE);
3294                 if (ret) {
3295                         mlog_errno(ret);
3296                         goto out;
3297                 }
3298
3299                 for (i = subtree_index + 1;
3300                      i < path_num_items(right_path); i++) {
3301                         ret = ocfs2_journal_access(handle, inode,
3302                                                    right_path->p_node[i].bh,
3303                                                    OCFS2_JOURNAL_ACCESS_WRITE);
3304                         if (ret) {
3305                                 mlog_errno(ret);
3306                                 goto out;
3307                         }
3308
3309                         ret = ocfs2_journal_access(handle, inode,
3310                                                    left_path->p_node[i].bh,
3311                                                    OCFS2_JOURNAL_ACCESS_WRITE);
3312                         if (ret) {
3313                                 mlog_errno(ret);
3314                                 goto out;
3315                         }
3316                 }
3317         } else {
3318                 left_rec = &el->l_recs[index - 1];
3319                 if (ocfs2_is_empty_extent(&el->l_recs[0]))
3320                         has_empty_extent = 1;
3321         }
3322
3323         ret = ocfs2_journal_access(handle, inode, bh,
3324                                    OCFS2_JOURNAL_ACCESS_WRITE);
3325         if (ret) {
3326                 mlog_errno(ret);
3327                 goto out;
3328         }
3329
3330         if (has_empty_extent && index == 1) {
3331                 /*
3332                  * The easy case - we can just plop the record right in.
3333                  */
3334                 *left_rec = *split_rec;
3335
3336                 has_empty_extent = 0;
3337         } else
3338                 le16_add_cpu(&left_rec->e_leaf_clusters, split_clusters);
3339
3340         le32_add_cpu(&right_rec->e_cpos, split_clusters);
3341         le64_add_cpu(&right_rec->e_blkno,
3342                      ocfs2_clusters_to_blocks(inode->i_sb, split_clusters));
3343         le16_add_cpu(&right_rec->e_leaf_clusters, -split_clusters);
3344
3345         ocfs2_cleanup_merge(el, index);
3346
3347         ret = ocfs2_journal_dirty(handle, bh);
3348         if (ret)
3349                 mlog_errno(ret);
3350
3351         if (left_path) {
3352                 ret = ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
3353                 if (ret)
3354                         mlog_errno(ret);
3355
3356                 /*
3357                  * In the situation that the right_rec is empty and the extent
3358                  * block is empty also,  ocfs2_complete_edge_insert can't handle
3359                  * it and we need to delete the right extent block.
3360                  */
3361                 if (le16_to_cpu(right_rec->e_leaf_clusters) == 0 &&
3362                     le16_to_cpu(el->l_next_free_rec) == 1) {
3363
3364                         ret = ocfs2_remove_rightmost_path(inode, handle,
3365                                                           right_path,
3366                                                           dealloc, et);
3367                         if (ret) {
3368                                 mlog_errno(ret);
3369                                 goto out;
3370                         }
3371
3372                         /* Now the rightmost extent block has been deleted.
3373                          * So we use the new rightmost path.
3374                          */
3375                         ocfs2_mv_path(right_path, left_path);
3376                         left_path = NULL;
3377                 } else
3378                         ocfs2_complete_edge_insert(inode, handle, left_path,
3379                                                    right_path, subtree_index);
3380         }
3381 out:
3382         if (left_path)
3383                 ocfs2_free_path(left_path);
3384         return ret;
3385 }
3386
3387 static int ocfs2_try_to_merge_extent(struct inode *inode,
3388                                      handle_t *handle,
3389                                      struct ocfs2_path *path,
3390                                      int split_index,
3391                                      struct ocfs2_extent_rec *split_rec,
3392                                      struct ocfs2_cached_dealloc_ctxt *dealloc,
3393                                      struct ocfs2_merge_ctxt *ctxt,
3394                                      struct ocfs2_extent_tree *et)
3395
3396 {
3397         int ret = 0;
3398         struct ocfs2_extent_list *el = path_leaf_el(path);
3399         struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
3400
3401         BUG_ON(ctxt->c_contig_type == CONTIG_NONE);
3402
3403         if (ctxt->c_split_covers_rec && ctxt->c_has_empty_extent) {
3404                 /*
3405                  * The merge code will need to create an empty
3406                  * extent to take the place of the newly
3407                  * emptied slot. Remove any pre-existing empty
3408                  * extents - having more than one in a leaf is
3409                  * illegal.
3410                  */
3411                 ret = ocfs2_rotate_tree_left(inode, handle, path,
3412                                              dealloc, et);
3413                 if (ret) {
3414                         mlog_errno(ret);
3415                         goto out;
3416                 }
3417                 split_index--;
3418                 rec = &el->l_recs[split_index];
3419         }
3420
3421         if (ctxt->c_contig_type == CONTIG_LEFTRIGHT) {
3422                 /*
3423                  * Left-right contig implies this.
3424                  */
3425                 BUG_ON(!ctxt->c_split_covers_rec);
3426
3427                 /*
3428                  * Since the leftright insert always covers the entire
3429                  * extent, this call will delete the insert record
3430                  * entirely, resulting in an empty extent record added to
3431                  * the extent block.
3432                  *
3433                  * Since the adding of an empty extent shifts
3434                  * everything back to the right, there's no need to
3435                  * update split_index here.
3436                  *
3437                  * When the split_index is zero, we need to merge it to the
3438                  * prevoius extent block. It is more efficient and easier
3439                  * if we do merge_right first and merge_left later.
3440                  */
3441                 ret = ocfs2_merge_rec_right(inode, path,
3442                                             handle, split_rec,
3443                                             split_index);
3444                 if (ret) {
3445                         mlog_errno(ret);
3446                         goto out;
3447                 }
3448
3449                 /*
3450                  * We can only get this from logic error above.
3451                  */
3452                 BUG_ON(!ocfs2_is_empty_extent(&el->l_recs[0]));
3453
3454                 /* The merge left us with an empty extent, remove it. */
3455                 ret = ocfs2_rotate_tree_left(inode, handle, path,
3456                                              dealloc, et);
3457                 if (ret) {
3458                         mlog_errno(ret);
3459                         goto out;
3460                 }
3461
3462                 rec = &el->l_recs[split_index];
3463
3464                 /*
3465                  * Note that we don't pass split_rec here on purpose -
3466                  * we've merged it into the rec already.
3467                  */
3468                 ret = ocfs2_merge_rec_left(inode, path,
3469                                            handle, rec,
3470                                            dealloc, et,
3471                                            split_index);
3472
3473                 if (ret) {
3474                         mlog_errno(ret);
3475                         goto out;
3476                 }
3477
3478                 ret = ocfs2_rotate_tree_left(inode, handle, path,
3479                                              dealloc, et);
3480                 /*
3481                  * Error from this last rotate is not critical, so
3482                  * print but don't bubble it up.
3483                  */
3484                 if (ret)
3485                         mlog_errno(ret);
3486                 ret = 0;
3487         } else {
3488                 /*
3489                  * Merge a record to the left or right.
3490                  *
3491                  * 'contig_type' is relative to the existing record,
3492                  * so for example, if we're "right contig", it's to
3493                  * the record on the left (hence the left merge).
3494                  */
3495                 if (ctxt->c_contig_type == CONTIG_RIGHT) {
3496                         ret = ocfs2_merge_rec_left(inode,
3497                                                    path,
3498                                                    handle, split_rec,
3499                                                    dealloc, et,
3500                                                    split_index);
3501                         if (ret) {
3502                                 mlog_errno(ret);
3503                                 goto out;
3504                         }
3505                 } else {
3506                         ret = ocfs2_merge_rec_right(inode,
3507                                                     path,
3508                                                     handle, split_rec,
3509                                                     split_index);
3510                         if (ret) {
3511                                 mlog_errno(ret);
3512                                 goto out;
3513                         }
3514                 }
3515
3516                 if (ctxt->c_split_covers_rec) {
3517                         /*
3518                          * The merge may have left an empty extent in
3519                          * our leaf. Try to rotate it away.
3520                          */
3521                         ret = ocfs2_rotate_tree_left(inode, handle, path,
3522                                                      dealloc, et);
3523                         if (ret)
3524                                 mlog_errno(ret);
3525                         ret = 0;
3526                 }
3527         }
3528
3529 out:
3530         return ret;
3531 }
3532
3533 static void ocfs2_subtract_from_rec(struct super_block *sb,
3534                                     enum ocfs2_split_type split,
3535                                     struct ocfs2_extent_rec *rec,
3536                                     struct ocfs2_extent_rec *split_rec)
3537 {
3538         u64 len_blocks;
3539
3540         len_blocks = ocfs2_clusters_to_blocks(sb,
3541                                 le16_to_cpu(split_rec->e_leaf_clusters));
3542
3543         if (split == SPLIT_LEFT) {
3544                 /*
3545                  * Region is on the left edge of the existing
3546                  * record.
3547                  */
3548                 le32_add_cpu(&rec->e_cpos,
3549                              le16_to_cpu(split_rec->e_leaf_clusters));
3550                 le64_add_cpu(&rec->e_blkno, len_blocks);
3551                 le16_add_cpu(&rec->e_leaf_clusters,
3552                              -le16_to_cpu(split_rec->e_leaf_clusters));
3553         } else {
3554                 /*
3555                  * Region is on the right edge of the existing
3556                  * record.
3557                  */
3558                 le16_add_cpu(&rec->e_leaf_clusters,
3559                              -le16_to_cpu(split_rec->e_leaf_clusters));
3560         }
3561 }
3562
3563 /*
3564  * Do the final bits of extent record insertion at the target leaf
3565  * list. If this leaf is part of an allocation tree, it is assumed
3566  * that the tree above has been prepared.
3567  */
3568 static void ocfs2_insert_at_leaf(struct ocfs2_extent_rec *insert_rec,
3569                                  struct ocfs2_extent_list *el,
3570                                  struct ocfs2_insert_type *insert,
3571                                  struct inode *inode)
3572 {
3573         int i = insert->ins_contig_index;
3574         unsigned int range;
3575         struct ocfs2_extent_rec *rec;
3576
3577         BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
3578
3579         if (insert->ins_split != SPLIT_NONE) {
3580                 i = ocfs2_search_extent_list(el, le32_to_cpu(insert_rec->e_cpos));
3581                 BUG_ON(i == -1);
3582                 rec = &el->l_recs[i];
3583                 ocfs2_subtract_from_rec(inode->i_sb, insert->ins_split, rec,
3584                                         insert_rec);
3585                 goto rotate;
3586         }
3587
3588         /*
3589          * Contiguous insert - either left or right.
3590          */
3591         if (insert->ins_contig != CONTIG_NONE) {
3592                 rec = &el->l_recs[i];
3593                 if (insert->ins_contig == CONTIG_LEFT) {
3594                         rec->e_blkno = insert_rec->e_blkno;
3595                         rec->e_cpos = insert_rec->e_cpos;
3596                 }
3597                 le16_add_cpu(&rec->e_leaf_clusters,
3598                              le16_to_cpu(insert_rec->e_leaf_clusters));
3599                 return;
3600         }
3601
3602         /*
3603          * Handle insert into an empty leaf.
3604          */
3605         if (le16_to_cpu(el->l_next_free_rec) == 0 ||
3606             ((le16_to_cpu(el->l_next_free_rec) == 1) &&
3607              ocfs2_is_empty_extent(&el->l_recs[0]))) {
3608                 el->l_recs[0] = *insert_rec;
3609                 el->l_next_free_rec = cpu_to_le16(1);
3610                 return;
3611         }
3612
3613         /*
3614          * Appending insert.
3615          */
3616         if (insert->ins_appending == APPEND_TAIL) {
3617                 i = le16_to_cpu(el->l_next_free_rec) - 1;
3618                 rec = &el->l_recs[i];
3619                 range = le32_to_cpu(rec->e_cpos)
3620                         + le16_to_cpu(rec->e_leaf_clusters);
3621                 BUG_ON(le32_to_cpu(insert_rec->e_cpos) < range);
3622
3623                 mlog_bug_on_msg(le16_to_cpu(el->l_next_free_rec) >=
3624                                 le16_to_cpu(el->l_count),
3625                                 "inode %lu, depth %u, count %u, next free %u, "
3626                                 "rec.cpos %u, rec.clusters %u, "
3627                                 "insert.cpos %u, insert.clusters %u\n",
3628                                 inode->i_ino,
3629                                 le16_to_cpu(el->l_tree_depth),
3630                                 le16_to_cpu(el->l_count),
3631                                 le16_to_cpu(el->l_next_free_rec),
3632                                 le32_to_cpu(el->l_recs[i].e_cpos),
3633                                 le16_to_cpu(el->l_recs[i].e_leaf_clusters),
3634                                 le32_to_cpu(insert_rec->e_cpos),
3635                                 le16_to_cpu(insert_rec->e_leaf_clusters));
3636                 i++;
3637                 el->l_recs[i] = *insert_rec;
3638                 le16_add_cpu(&el->l_next_free_rec, 1);
3639                 return;
3640         }
3641
3642 rotate:
3643         /*
3644          * Ok, we have to rotate.
3645          *
3646          * At this point, it is safe to assume that inserting into an
3647          * empty leaf and appending to a leaf have both been handled
3648          * above.
3649          *
3650          * This leaf needs to have space, either by the empty 1st
3651          * extent record, or by virtue of an l_next_rec < l_count.
3652          */
3653         ocfs2_rotate_leaf(el, insert_rec);
3654 }
3655
3656 static void ocfs2_adjust_rightmost_records(struct inode *inode,
3657                                            handle_t *handle,
3658                                            struct ocfs2_path *path,
3659                                            struct ocfs2_extent_rec *insert_rec)
3660 {
3661         int ret, i, next_free;
3662         struct buffer_head *bh;
3663         struct ocfs2_extent_list *el;
3664         struct ocfs2_extent_rec *rec;
3665
3666         /*
3667          * Update everything except the leaf block.
3668          */
3669         for (i = 0; i < path->p_tree_depth; i++) {
3670                 bh = path->p_node[i].bh;
3671                 el = path->p_node[i].el;
3672
3673                 next_free = le16_to_cpu(el->l_next_free_rec);
3674                 if (next_free == 0) {
3675                         ocfs2_error(inode->i_sb,
3676                                     "Dinode %llu has a bad extent list",
3677                                     (unsigned long long)OCFS2_I(inode)->ip_blkno);
3678                         ret = -EIO;
3679                         return;
3680                 }
3681
3682                 rec = &el->l_recs[next_free - 1];
3683
3684                 rec->e_int_clusters = insert_rec->e_cpos;
3685                 le32_add_cpu(&rec->e_int_clusters,
3686                              le16_to_cpu(insert_rec->e_leaf_clusters));
3687                 le32_add_cpu(&rec->e_int_clusters,
3688                              -le32_to_cpu(rec->e_cpos));
3689
3690                 ret = ocfs2_journal_dirty(handle, bh);
3691                 if (ret)
3692                         mlog_errno(ret);
3693
3694         }
3695 }
3696
3697 static int ocfs2_append_rec_to_path(struct inode *inode, handle_t *handle,
3698                                     struct ocfs2_extent_rec *insert_rec,
3699                                     struct ocfs2_path *right_path,
3700                                     struct ocfs2_path **ret_left_path)
3701 {
3702         int ret, next_free;
3703         struct ocfs2_extent_list *el;
3704         struct ocfs2_path *left_path = NULL;
3705
3706         *ret_left_path = NULL;
3707
3708         /*
3709          * This shouldn't happen for non-trees. The extent rec cluster
3710          * count manipulation below only works for interior nodes.
3711          */
3712         BUG_ON(right_path->p_tree_depth == 0);
3713
3714         /*
3715          * If our appending insert is at the leftmost edge of a leaf,
3716          * then we might need to update the rightmost records of the
3717          * neighboring path.
3718          */
3719         el = path_leaf_el(right_path);
3720         next_free = le16_to_cpu(el->l_next_free_rec);
3721         if (next_free == 0 ||
3722             (next_free == 1 && ocfs2_is_empty_extent(&el->l_recs[0]))) {
3723                 u32 left_cpos;
3724
3725                 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path,
3726                                                     &left_cpos);
3727                 if (ret) {
3728                         mlog_errno(ret);
3729                         goto out;
3730                 }
3731
3732                 mlog(0, "Append may need a left path update. cpos: %u, "
3733                      "left_cpos: %u\n", le32_to_cpu(insert_rec->e_cpos),
3734                      left_cpos);
3735
3736                 /*
3737                  * No need to worry if the append is already in the
3738                  * leftmost leaf.
3739                  */
3740                 if (left_cpos) {
3741                         left_path = ocfs2_new_path(path_root_bh(right_path),
3742                                                    path_root_el(right_path));
3743                         if (!left_path) {
3744                                 ret = -ENOMEM;
3745                                 mlog_errno(ret);
3746                                 goto out;
3747                         }
3748
3749                         ret = ocfs2_find_path(inode, left_path, left_cpos);
3750                         if (ret) {
3751                                 mlog_errno(ret);
3752                                 goto out;
3753                         }
3754
3755                         /*
3756                          * ocfs2_insert_path() will pass the left_path to the
3757                          * journal for us.
3758                          */
3759                 }
3760         }
3761
3762         ret = ocfs2_journal_access_path(inode, handle, right_path);
3763         if (ret) {
3764                 mlog_errno(ret);
3765                 goto out;
3766         }
3767
3768         ocfs2_adjust_rightmost_records(inode, handle, right_path, insert_rec);
3769
3770         *ret_left_path = left_path;
3771         ret = 0;
3772 out:
3773         if (ret != 0)
3774                 ocfs2_free_path(left_path);
3775
3776         return ret;
3777 }
3778
3779 static void ocfs2_split_record(struct inode *inode,
3780                                struct ocfs2_path *left_path,
3781                                struct ocfs2_path *right_path,
3782                                struct ocfs2_extent_rec *split_rec,
3783                                enum ocfs2_split_type split)
3784 {
3785         int index;
3786         u32 cpos = le32_to_cpu(split_rec->e_cpos);
3787         struct ocfs2_extent_list *left_el = NULL, *right_el, *insert_el, *el;
3788         struct ocfs2_extent_rec *rec, *tmprec;
3789
3790         right_el = path_leaf_el(right_path);;
3791         if (left_path)
3792                 left_el = path_leaf_el(left_path);
3793
3794         el = right_el;
3795         insert_el = right_el;
3796         index = ocfs2_search_extent_list(el, cpos);
3797         if (index != -1) {
3798                 if (index == 0 && left_path) {
3799                         BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
3800
3801                         /*
3802                          * This typically means that the record
3803                          * started in the left path but moved to the
3804                          * right as a result of rotation. We either
3805                          * move the existing record to the left, or we
3806                          * do the later insert there.
3807                          *
3808                          * In this case, the left path should always
3809                          * exist as the rotate code will have passed
3810                          * it back for a post-insert update.
3811                          */
3812
3813                         if (split == SPLIT_LEFT) {
3814                                 /*
3815                                  * It's a left split. Since we know
3816                                  * that the rotate code gave us an
3817                                  * empty extent in the left path, we
3818                                  * can just do the insert there.
3819                                  */
3820                                 insert_el = left_el;
3821                         } else {
3822                                 /*
3823                                  * Right split - we have to move the
3824                                  * existing record over to the left
3825                                  * leaf. The insert will be into the
3826                                  * newly created empty extent in the
3827                                  * right leaf.
3828                                  */
3829                                 tmprec = &right_el->l_recs[index];
3830                                 ocfs2_rotate_leaf(left_el, tmprec);
3831                                 el = left_el;
3832
3833                                 memset(tmprec, 0, sizeof(*tmprec));
3834                                 index = ocfs2_search_extent_list(left_el, cpos);
3835                                 BUG_ON(index == -1);
3836                         }
3837                 }
3838         } else {
3839                 BUG_ON(!left_path);
3840                 BUG_ON(!ocfs2_is_empty_extent(&left_el->l_recs[0]));
3841                 /*
3842                  * Left path is easy - we can just allow the insert to
3843                  * happen.
3844                  */
3845                 el = left_el;
3846                 insert_el = left_el;
3847                 index = ocfs2_search_extent_list(el, cpos);
3848                 BUG_ON(index == -1);
3849         }
3850
3851         rec = &el->l_recs[index];
3852         ocfs2_subtract_from_rec(inode->i_sb, split, rec, split_rec);
3853         ocfs2_rotate_leaf(insert_el, split_rec);
3854 }
3855
3856 /*
3857  * This function only does inserts on an allocation b-tree. For tree
3858  * depth = 0, ocfs2_insert_at_leaf() is called directly.
3859  *
3860  * right_path is the path we want to do the actual insert
3861  * in. left_path should only be passed in if we need to update that
3862  * portion of the tree after an edge insert.
3863  */
3864 static int ocfs2_insert_path(struct inode *inode,
3865                              handle_t *handle,
3866                              struct ocfs2_path *left_path,
3867                              struct ocfs2_path *right_path,
3868                              struct ocfs2_extent_rec *insert_rec,
3869                              struct ocfs2_insert_type *insert)
3870 {
3871         int ret, subtree_index;
3872         struct buffer_head *leaf_bh = path_leaf_bh(right_path);
3873
3874         if (left_path) {
3875                 int credits = handle->h_buffer_credits;
3876
3877                 /*
3878                  * There's a chance that left_path got passed back to
3879                  * us without being accounted for in the
3880                  * journal. Extend our transaction here to be sure we
3881                  * can change those blocks.
3882                  */
3883                 credits += left_path->p_tree_depth;
3884
3885                 ret = ocfs2_extend_trans(handle, credits);
3886                 if (ret < 0) {
3887                         mlog_errno(ret);
3888                         goto out;
3889                 }
3890
3891                 ret = ocfs2_journal_access_path(inode, handle, left_path);
3892                 if (ret < 0) {
3893                         mlog_errno(ret);
3894                         goto out;
3895                 }
3896         }
3897
3898         /*
3899          * Pass both paths to the journal. The majority of inserts
3900          * will be touching all components anyway.
3901          */
3902         ret = ocfs2_journal_access_path(inode, handle, right_path);
3903         if (ret < 0) {
3904                 mlog_errno(ret);
3905                 goto out;
3906         }
3907
3908         if (insert->ins_split != SPLIT_NONE) {
3909                 /*
3910                  * We could call ocfs2_insert_at_leaf() for some types
3911                  * of splits, but it's easier to just let one separate
3912                  * function sort it all out.
3913                  */
3914                 ocfs2_split_record(inode, left_path, right_path,
3915                                    insert_rec, insert->ins_split);
3916
3917                 /*
3918                  * Split might have modified either leaf and we don't
3919                  * have a guarantee that the later edge insert will
3920                  * dirty this for us.
3921                  */
3922                 if (left_path)
3923                         ret = ocfs2_journal_dirty(handle,
3924                                                   path_leaf_bh(left_path));
3925                         if (ret)
3926                                 mlog_errno(ret);
3927         } else
3928                 ocfs2_insert_at_leaf(insert_rec, path_leaf_el(right_path),
3929                                      insert, inode);
3930
3931         ret = ocfs2_journal_dirty(handle, leaf_bh);
3932         if (ret)
3933                 mlog_errno(ret);
3934
3935         if (left_path) {
3936                 /*
3937                  * The rotate code has indicated that we need to fix
3938                  * up portions of the tree after the insert.
3939                  *
3940                  * XXX: Should we extend the transaction here?
3941                  */
3942                 subtree_index = ocfs2_find_subtree_root(inode, left_path,
3943                                                         right_path);
3944                 ocfs2_complete_edge_insert(inode, handle, left_path,
3945                                            right_path, subtree_index);
3946         }
3947
3948         ret = 0;
3949 out:
3950         return ret;
3951 }
3952
3953 static int ocfs2_do_insert_extent(struct inode *inode,
3954                                   handle_t *handle,
3955                                   struct ocfs2_extent_tree *et,
3956                                   struct ocfs2_extent_rec *insert_rec,
3957                                   struct ocfs2_insert_type *type)
3958 {
3959         int ret, rotate = 0;
3960         u32 cpos;
3961         struct ocfs2_path *right_path = NULL;
3962         struct ocfs2_path *left_path = NULL;
3963         struct ocfs2_extent_list *el;
3964
3965         el = et->et_root_el;
3966
3967         ret = ocfs2_journal_access(handle, inode, et->et_root_bh,
3968                                    OCFS2_JOURNAL_ACCESS_WRITE);
3969         if (ret) {
3970                 mlog_errno(ret);
3971                 goto out;
3972         }
3973
3974         if (le16_to_cpu(el->l_tree_depth) == 0) {
3975                 ocfs2_insert_at_leaf(insert_rec, el, type, inode);
3976                 goto out_update_clusters;
3977         }
3978
3979         right_path = ocfs2_new_path(et->et_root_bh, et->et_root_el);
3980         if (!right_path) {
3981                 ret = -ENOMEM;
3982                 mlog_errno(ret);
3983                 goto out;
3984         }
3985
3986         /*
3987          * Determine the path to start with. Rotations need the
3988          * rightmost path, everything else can go directly to the
3989          * target leaf.
3990          */
3991         cpos = le32_to_cpu(insert_rec->e_cpos);
3992         if (type->ins_appending == APPEND_NONE &&
3993             type->ins_contig == CONTIG_NONE) {
3994                 rotate = 1;
3995                 cpos = UINT_MAX;
3996         }
3997
3998         ret = ocfs2_find_path(inode, right_path, cpos);
3999         if (ret) {
4000                 mlog_errno(ret);
4001                 goto out;
4002         }
4003
4004         /*
4005          * Rotations and appends need special treatment - they modify
4006          * parts of the tree's above them.
4007          *
4008          * Both might pass back a path immediate to the left of the
4009          * one being inserted to. This will be cause
4010          * ocfs2_insert_path() to modify the rightmost records of
4011          * left_path to account for an edge insert.
4012          *
4013          * XXX: When modifying this code, keep in mind that an insert
4014          * can wind up skipping both of these two special cases...
4015          */
4016         if (rotate) {
4017                 ret = ocfs2_rotate_tree_right(inode, handle, type->ins_split,
4018                                               le32_to_cpu(insert_rec->e_cpos),
4019                                               right_path, &left_path);
4020                 if (ret) {
4021                         mlog_errno(ret);
4022                         goto out;
4023                 }
4024
4025                 /*
4026                  * ocfs2_rotate_tree_right() might have extended the
4027                  * transaction without re-journaling our tree root.
4028                  */
4029                 ret = ocfs2_journal_access(handle, inode, et->et_root_bh,
4030                                            OCFS2_JOURNAL_ACCESS_WRITE);
4031                 if (ret) {
4032                         mlog_errno(ret);
4033                         goto out;
4034                 }
4035         } else if (type->ins_appending == APPEND_TAIL
4036                    && type->ins_contig != CONTIG_LEFT) {
4037                 ret = ocfs2_append_rec_to_path(inode, handle, insert_rec,
4038                                                right_path, &left_path);
4039                 if (ret) {
4040                         mlog_errno(ret);
4041                         goto out;
4042                 }
4043         }
4044
4045         ret = ocfs2_insert_path(inode, handle, left_path, right_path,
4046                                 insert_rec, type);
4047         if (ret) {
4048                 mlog_errno(ret);
4049                 goto out;
4050         }
4051
4052 out_update_clusters:
4053         if (type->ins_split == SPLIT_NONE)
4054                 ocfs2_et_update_clusters(inode, et,
4055                                          le16_to_cpu(insert_rec->e_leaf_clusters));
4056
4057         ret = ocfs2_journal_dirty(handle, et->et_root_bh);
4058         if (ret)
4059                 mlog_errno(ret);
4060
4061 out:
4062         ocfs2_free_path(left_path);
4063         ocfs2_free_path(right_path);
4064
4065         return ret;
4066 }
4067
4068 static enum ocfs2_contig_type
4069 ocfs2_figure_merge_contig_type(struct inode *inode, struct ocfs2_path *path,
4070                                struct ocfs2_extent_list *el, int index,
4071                                struct ocfs2_extent_rec *split_rec)
4072 {
4073         int status;
4074         enum ocfs2_contig_type ret = CONTIG_NONE;
4075         u32 left_cpos, right_cpos;
4076         struct ocfs2_extent_rec *rec = NULL;
4077         struct ocfs2_extent_list *new_el;
4078         struct ocfs2_path *left_path = NULL, *right_path = NULL;
4079         struct buffer_head *bh;
4080         struct ocfs2_extent_block *eb;
4081
4082         if (index > 0) {
4083                 rec = &el->l_recs[index - 1];
4084         } else if (path->p_tree_depth > 0) {
4085                 status = ocfs2_find_cpos_for_left_leaf(inode->i_sb,
4086                                                        path, &left_cpos);
4087                 if (status)
4088                         goto out;
4089
4090                 if (left_cpos != 0) {
4091                         left_path = ocfs2_new_path(path_root_bh(path),
4092                                                    path_root_el(path));
4093                         if (!left_path)
4094                                 goto out;
4095
4096                         status = ocfs2_find_path(inode, left_path, left_cpos);
4097                         if (status)
4098                                 goto out;
4099
4100                         new_el = path_leaf_el(left_path);
4101
4102                         if (le16_to_cpu(new_el->l_next_free_rec) !=
4103                             le16_to_cpu(new_el->l_count)) {
4104                                 bh = path_leaf_bh(left_path);
4105                                 eb = (struct ocfs2_extent_block *)bh->b_data;
4106                                 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb,
4107                                                                  eb);
4108                                 goto out;
4109                         }
4110                         rec = &new_el->l_recs[
4111                                 le16_to_cpu(new_el->l_next_free_rec) - 1];
4112                 }
4113         }
4114
4115         /*
4116          * We're careful to check for an empty extent record here -
4117          * the merge code will know what to do if it sees one.
4118          */
4119         if (rec) {
4120                 if (index == 1 && ocfs2_is_empty_extent(rec)) {
4121                         if (split_rec->e_cpos == el->l_recs[index].e_cpos)
4122                                 ret = CONTIG_RIGHT;
4123                 } else {
4124                         ret = ocfs2_extent_contig(inode, rec, split_rec);
4125                 }
4126         }
4127
4128         rec = NULL;
4129         if (index < (le16_to_cpu(el->l_next_free_rec) - 1))
4130                 rec = &el->l_recs[index + 1];
4131         else if (le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count) &&
4132                  path->p_tree_depth > 0) {
4133                 status = ocfs2_find_cpos_for_right_leaf(inode->i_sb,
4134                                                         path, &right_cpos);
4135                 if (status)
4136                         goto out;
4137
4138                 if (right_cpos == 0)
4139                         goto out;
4140
4141                 right_path = ocfs2_new_path(path_root_bh(path),
4142                                             path_root_el(path));
4143                 if (!right_path)
4144                         goto out;
4145
4146                 status = ocfs2_find_path(inode, right_path, right_cpos);
4147                 if (status)
4148                         goto out;
4149
4150                 new_el = path_leaf_el(right_path);
4151                 rec = &new_el->l_recs[0];
4152                 if (ocfs2_is_empty_extent(rec)) {
4153                         if (le16_to_cpu(new_el->l_next_free_rec) <= 1) {
4154                                 bh = path_leaf_bh(right_path);
4155                                 eb = (struct ocfs2_extent_block *)bh->b_data;
4156                                 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb,
4157                                                                  eb);
4158                                 goto out;
4159                         }
4160                         rec = &new_el->l_recs[1];
4161                 }
4162         }
4163
4164         if (rec) {
4165                 enum ocfs2_contig_type contig_type;
4166
4167                 contig_type = ocfs2_extent_contig(inode, rec, split_rec);
4168
4169                 if (contig_type == CONTIG_LEFT && ret == CONTIG_RIGHT)
4170                         ret = CONTIG_LEFTRIGHT;
4171                 else if (ret == CONTIG_NONE)
4172                         ret = contig_type;
4173         }
4174
4175 out:
4176         if (left_path)
4177                 ocfs2_free_path(left_path);
4178         if (right_path)
4179                 ocfs2_free_path(right_path);
4180
4181         return ret;
4182 }
4183
4184 static void ocfs2_figure_contig_type(struct inode *inode,
4185                                      struct ocfs2_insert_type *insert,
4186                                      struct ocfs2_extent_list *el,
4187                                      struct ocfs2_extent_rec *insert_rec,
4188                                      struct ocfs2_extent_tree *et)
4189 {
4190         int i;
4191         enum ocfs2_contig_type contig_type = CONTIG_NONE;
4192
4193         BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
4194
4195         for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
4196                 contig_type = ocfs2_extent_contig(inode, &el->l_recs[i],
4197                                                   insert_rec);
4198                 if (contig_type != CONTIG_NONE) {
4199                         insert->ins_contig_index = i;
4200                         break;
4201                 }
4202         }
4203         insert->ins_contig = contig_type;
4204
4205         if (insert->ins_contig != CONTIG_NONE) {
4206                 struct ocfs2_extent_rec *rec =
4207                                 &el->l_recs[insert->ins_contig_index];
4208                 unsigned int len = le16_to_cpu(rec->e_leaf_clusters) +
4209                                    le16_to_cpu(insert_rec->e_leaf_clusters);
4210
4211                 /*
4212                  * Caller might want us to limit the size of extents, don't
4213                  * calculate contiguousness if we might exceed that limit.
4214                  */
4215                 if (et->et_max_leaf_clusters &&
4216                     (len > et->et_max_leaf_clusters))
4217                         insert->ins_contig = CONTIG_NONE;
4218         }
4219 }
4220
4221 /*
4222  * This should only be called against the righmost leaf extent list.
4223  *
4224  * ocfs2_figure_appending_type() will figure out whether we'll have to
4225  * insert at the tail of the rightmost leaf.
4226  *
4227  * This should also work against the root extent list for tree's with 0
4228  * depth. If we consider the root extent list to be the rightmost leaf node
4229  * then the logic here makes sense.
4230  */
4231 static void ocfs2_figure_appending_type(struct ocfs2_insert_type *insert,
4232                                         struct ocfs2_extent_list *el,
4233                                         struct ocfs2_extent_rec *insert_rec)
4234 {
4235         int i;
4236         u32 cpos = le32_to_cpu(insert_rec->e_cpos);
4237         struct ocfs2_extent_rec *rec;
4238
4239         insert->ins_appending = APPEND_NONE;
4240
4241         BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
4242
4243         if (!el->l_next_free_rec)
4244                 goto set_tail_append;
4245
4246         if (ocfs2_is_empty_extent(&el->l_recs[0])) {
4247                 /* Were all records empty? */
4248                 if (le16_to_cpu(el->l_next_free_rec) == 1)
4249                         goto set_tail_append;
4250         }
4251
4252         i = le16_to_cpu(el->l_next_free_rec) - 1;
4253         rec = &el->l_recs[i];
4254
4255         if (cpos >=
4256             (le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)))
4257                 goto set_tail_append;
4258
4259         return;
4260
4261 set_tail_append:
4262         insert->ins_appending = APPEND_TAIL;
4263 }
4264
4265 /*
4266  * Helper function called at the begining of an insert.
4267  *
4268  * This computes a few things that are commonly used in the process of
4269  * inserting into the btree:
4270  *   - Whether the new extent is contiguous with an existing one.
4271  *   - The current tree depth.
4272  *   - Whether the insert is an appending one.
4273  *   - The total # of free records in the tree.
4274  *
4275  * All of the information is stored on the ocfs2_insert_type
4276  * structure.
4277  */
4278 static int ocfs2_figure_insert_type(struct inode *inode,
4279                                     struct ocfs2_extent_tree *et,
4280                                     struct buffer_head **last_eb_bh,
4281                                     struct ocfs2_extent_rec *insert_rec,
4282                                     int *free_records,
4283                                     struct ocfs2_insert_type *insert)
4284 {
4285         int ret;
4286         struct ocfs2_extent_block *eb;
4287         struct ocfs2_extent_list *el;
4288         struct ocfs2_path *path = NULL;
4289         struct buffer_head *bh = NULL;
4290
4291         insert->ins_split = SPLIT_NONE;
4292
4293         el = et->et_root_el;
4294         insert->ins_tree_depth = le16_to_cpu(el->l_tree_depth);
4295
4296         if (el->l_tree_depth) {
4297                 /*
4298                  * If we have tree depth, we read in the
4299                  * rightmost extent block ahead of time as
4300                  * ocfs2_figure_insert_type() and ocfs2_add_branch()
4301                  * may want it later.
4302                  */
4303                 ret = ocfs2_read_block(OCFS2_SB(inode->i_sb),
4304                                        ocfs2_et_get_last_eb_blk(et), &bh,
4305                                        OCFS2_BH_CACHED, inode);
4306                 if (ret) {
4307                         mlog_exit(ret);
4308                         goto out;
4309                 }
4310                 eb = (struct ocfs2_extent_block *) bh->b_data;
4311                 el = &eb->h_list;
4312         }
4313
4314         /*
4315          * Unless we have a contiguous insert, we'll need to know if
4316          * there is room left in our allocation tree for another
4317          * extent record.
4318          *
4319          * XXX: This test is simplistic, we can search for empty
4320          * extent records too.
4321          */
4322         *free_records = le16_to_cpu(el->l_count) -
4323                 le16_to_cpu(el->l_next_free_rec);
4324
4325         if (!insert->ins_tree_depth) {
4326                 ocfs2_figure_contig_type(inode, insert, el, insert_rec, et);
4327                 ocfs2_figure_appending_type(insert, el, insert_rec);
4328                 return 0;
4329         }
4330
4331         path = ocfs2_new_path(et->et_root_bh, et->et_root_el);
4332         if (!path) {
4333                 ret = -ENOMEM;
4334                 mlog_errno(ret);
4335                 goto out;
4336         }
4337
4338         /*
4339          * In the case that we're inserting past what the tree
4340          * currently accounts for, ocfs2_find_path() will return for
4341          * us the rightmost tree path. This is accounted for below in
4342          * the appending code.
4343          */
4344         ret = ocfs2_find_path(inode, path, le32_to_cpu(insert_rec->e_cpos));
4345         if (ret) {
4346                 mlog_errno(ret);
4347                 goto out;
4348         }
4349
4350         el = path_leaf_el(path);
4351
4352         /*
4353          * Now that we have the path, there's two things we want to determine:
4354          * 1) Contiguousness (also set contig_index if this is so)
4355          *
4356          * 2) Are we doing an append? We can trivially break this up
4357          *     into two types of appends: simple record append, or a
4358          *     rotate inside the tail leaf.
4359          */
4360         ocfs2_figure_contig_type(inode, insert, el, insert_rec, et);
4361
4362         /*
4363          * The insert code isn't quite ready to deal with all cases of
4364          * left contiguousness. Specifically, if it's an insert into
4365          * the 1st record in a leaf, it will require the adjustment of
4366          * cluster count on the last record of the path directly to it's
4367          * left. For now, just catch that case and fool the layers
4368          * above us. This works just fine for tree_depth == 0, which
4369          * is why we allow that above.
4370          */
4371         if (insert->ins_contig == CONTIG_LEFT &&
4372             insert->ins_contig_index == 0)
4373                 insert->ins_contig = CONTIG_NONE;
4374
4375         /*
4376          * Ok, so we can simply compare against last_eb to figure out
4377          * whether the path doesn't exist. This will only happen in
4378          * the case that we're doing a tail append, so maybe we can
4379          * take advantage of that information somehow.
4380          */
4381         if (ocfs2_et_get_last_eb_blk(et) ==
4382             path_leaf_bh(path)->b_blocknr) {
4383                 /*
4384                  * Ok, ocfs2_find_path() returned us the rightmost
4385                  * tree path. This might be an appending insert. There are
4386                  * two cases:
4387                  *    1) We're doing a true append at the tail:
4388                  *      -This might even be off the end of the leaf
4389                  *    2) We're "appending" by rotating in the tail
4390                  */
4391                 ocfs2_figure_appending_type(insert, el, insert_rec);
4392         }
4393
4394 out:
4395         ocfs2_free_path(path);
4396
4397         if (ret == 0)
4398                 *last_eb_bh = bh;
4399         else
4400                 brelse(bh);
4401         return ret;
4402 }
4403
4404 /*
4405  * Insert an extent into an inode btree.
4406  *
4407  * The caller needs to update fe->i_clusters
4408  */
4409 static int ocfs2_insert_extent(struct ocfs2_super *osb,
4410                                handle_t *handle,
4411                                struct inode *inode,
4412                                struct buffer_head *root_bh,
4413                                u32 cpos,
4414                                u64 start_blk,
4415                                u32 new_clusters,
4416                                u8 flags,
4417                                struct ocfs2_alloc_context *meta_ac,
4418                                struct ocfs2_extent_tree *et)
4419 {
4420         int status;
4421         int uninitialized_var(free_records);
4422         struct buffer_head *last_eb_bh = NULL;
4423         struct ocfs2_insert_type insert = {0, };
4424         struct ocfs2_extent_rec rec;
4425
4426         mlog(0, "add %u clusters at position %u to inode %llu\n",
4427              new_clusters, cpos, (unsigned long long)OCFS2_I(inode)->ip_blkno);
4428
4429         memset(&rec, 0, sizeof(rec));
4430         rec.e_cpos = cpu_to_le32(cpos);
4431         rec.e_blkno = cpu_to_le64(start_blk);
4432         rec.e_leaf_clusters = cpu_to_le16(new_clusters);
4433         rec.e_flags = flags;
4434         status = ocfs2_et_insert_check(inode, et, &rec);
4435         if (status) {
4436                 mlog_errno(status);
4437                 goto bail;
4438         }
4439
4440         status = ocfs2_figure_insert_type(inode, et, &last_eb_bh, &rec,
4441                                           &free_records, &insert);
4442         if (status < 0) {
4443                 mlog_errno(status);
4444                 goto bail;
4445         }
4446
4447         mlog(0, "Insert.appending: %u, Insert.Contig: %u, "
4448              "Insert.contig_index: %d, Insert.free_records: %d, "
4449              "Insert.tree_depth: %d\n",
4450              insert.ins_appending, insert.ins_contig, insert.ins_contig_index,
4451              free_records, insert.ins_tree_depth);
4452
4453         if (insert.ins_contig == CONTIG_NONE && free_records == 0) {
4454                 status = ocfs2_grow_tree(inode, handle, et,
4455                                          &insert.ins_tree_depth, &last_eb_bh,
4456                                          meta_ac);
4457                 if (status) {
4458                         mlog_errno(status);
4459                         goto bail;
4460                 }
4461         }
4462
4463         /* Finally, we can add clusters. This might rotate the tree for us. */
4464         status = ocfs2_do_insert_extent(inode, handle, et, &rec, &insert);
4465         if (status < 0)
4466                 mlog_errno(status);
4467         else if (et->et_type == OCFS2_DINODE_EXTENT)
4468                 ocfs2_extent_map_insert_rec(inode, &rec);
4469
4470 bail:
4471         if (last_eb_bh)
4472                 brelse(last_eb_bh);
4473
4474         mlog_exit(status);
4475         return status;
4476 }
4477
4478 int ocfs2_dinode_insert_extent(struct ocfs2_super *osb,
4479                                handle_t *handle,
4480                                struct inode *inode,
4481                                struct buffer_head *root_bh,
4482                                u32 cpos,
4483                                u64 start_blk,
4484                                u32 new_clusters,
4485                                u8 flags,
4486                                struct ocfs2_alloc_context *meta_ac)
4487 {
4488         int status;
4489         struct ocfs2_extent_tree et;
4490
4491         ocfs2_get_dinode_extent_tree(&et, inode, root_bh);
4492         status = ocfs2_insert_extent(osb, handle, inode, root_bh,
4493                                      cpos, start_blk, new_clusters,
4494                                      flags, meta_ac, &et);
4495         ocfs2_put_extent_tree(&et);
4496
4497         return status;
4498 }
4499
4500 int ocfs2_xattr_value_insert_extent(struct ocfs2_super *osb,
4501                                     handle_t *handle,
4502                                     struct inode *inode,
4503                                     struct buffer_head *root_bh,
4504                                     u32 cpos,
4505                                     u64 start_blk,
4506                                     u32 new_clusters,
4507                                     u8 flags,
4508                                     struct ocfs2_alloc_context *meta_ac,
4509                                     struct ocfs2_xattr_value_root *xv)
4510 {
4511         int status;
4512         struct ocfs2_extent_tree et;
4513
4514         ocfs2_get_xattr_value_extent_tree(&et, inode, root_bh, xv);
4515         status = ocfs2_insert_extent(osb, handle, inode, root_bh,
4516                                      cpos, start_blk, new_clusters,
4517                                      flags, meta_ac, &et);
4518         ocfs2_put_extent_tree(&et);
4519
4520         return status;
4521 }
4522
4523 int ocfs2_xattr_tree_insert_extent(struct ocfs2_super *osb,
4524                                    handle_t *handle,
4525                                    struct inode *inode,
4526                                    struct buffer_head *root_bh,
4527                                    u32 cpos,
4528                                    u64 start_blk,
4529                                    u32 new_clusters,
4530                                    u8 flags,
4531                                    struct ocfs2_alloc_context *meta_ac)
4532 {
4533         int status;
4534         struct ocfs2_extent_tree et;
4535
4536         ocfs2_get_xattr_tree_extent_tree(&et, inode, root_bh);
4537         status = ocfs2_insert_extent(osb, handle, inode, root_bh,
4538                                      cpos, start_blk, new_clusters,
4539                                      flags, meta_ac, &et);
4540         ocfs2_put_extent_tree(&et);
4541
4542         return status;
4543 }
4544
4545 /*
4546  * Allcate and add clusters into the extent b-tree.
4547  * The new clusters(clusters_to_add) will be inserted at logical_offset.
4548  * The extent b-tree's root is root_el and it should be in root_bh, and
4549  * it is not limited to the file storage. Any extent tree can use this
4550  * function if it implements the proper ocfs2_extent_tree.
4551  */
4552 int ocfs2_add_clusters_in_btree(struct ocfs2_super *osb,
4553                                 struct inode *inode,
4554                                 u32 *logical_offset,
4555                                 u32 clusters_to_add,
4556                                 int mark_unwritten,
4557                                 struct buffer_head *root_bh,
4558                                 struct ocfs2_extent_list *root_el,
4559                                 handle_t *handle,
4560                                 struct ocfs2_alloc_context *data_ac,
4561                                 struct ocfs2_alloc_context *meta_ac,
4562                                 enum ocfs2_alloc_restarted *reason_ret,
4563                                 enum ocfs2_extent_tree_type type,
4564                                 void *obj)
4565 {
4566         int status = 0;
4567         int free_extents;
4568         enum ocfs2_alloc_restarted reason = RESTART_NONE;
4569         u32 bit_off, num_bits;
4570         u64 block;
4571         u8 flags = 0;
4572
4573         BUG_ON(!clusters_to_add);
4574
4575         if (mark_unwritten)
4576                 flags = OCFS2_EXT_UNWRITTEN;
4577
4578         free_extents = ocfs2_num_free_extents(osb, inode, root_bh, type,
4579                                               obj);
4580         if (free_extents < 0) {
4581                 status = free_extents;
4582                 mlog_errno(status);
4583                 goto leave;
4584         }
4585
4586         /* there are two cases which could cause us to EAGAIN in the
4587          * we-need-more-metadata case:
4588          * 1) we haven't reserved *any*
4589          * 2) we are so fragmented, we've needed to add metadata too
4590          *    many times. */
4591         if (!free_extents && !meta_ac) {
4592                 mlog(0, "we haven't reserved any metadata!\n");
4593                 status = -EAGAIN;
4594                 reason = RESTART_META;
4595                 goto leave;
4596         } else if ((!free_extents)
4597                    && (ocfs2_alloc_context_bits_left(meta_ac)
4598                        < ocfs2_extend_meta_needed(root_el))) {
4599                 mlog(0, "filesystem is really fragmented...\n");
4600                 status = -EAGAIN;
4601                 reason = RESTART_META;
4602                 goto leave;
4603         }
4604
4605         status = __ocfs2_claim_clusters(osb, handle, data_ac, 1,
4606                                         clusters_to_add, &bit_off, &num_bits);
4607         if (status < 0) {
4608                 if (status != -ENOSPC)
4609                         mlog_errno(status);
4610                 goto leave;
4611         }
4612
4613         BUG_ON(num_bits > clusters_to_add);
4614
4615         /* reserve our write early -- insert_extent may update the inode */
4616         status = ocfs2_journal_access(handle, inode, root_bh,
4617                                       OCFS2_JOURNAL_ACCESS_WRITE);
4618         if (status < 0) {
4619                 mlog_errno(status);
4620                 goto leave;
4621         }
4622
4623         block = ocfs2_clusters_to_blocks(osb->sb, bit_off);
4624         mlog(0, "Allocating %u clusters at block %u for inode %llu\n",
4625              num_bits, bit_off, (unsigned long long)OCFS2_I(inode)->ip_blkno);
4626         if (type == OCFS2_DINODE_EXTENT)
4627                 status = ocfs2_dinode_insert_extent(osb, handle, inode, root_bh,
4628                                                     *logical_offset, block,
4629                                                     num_bits, flags, meta_ac);
4630         else if (type == OCFS2_XATTR_TREE_EXTENT)
4631                 status = ocfs2_xattr_tree_insert_extent(osb, handle,
4632                                                         inode, root_bh,
4633                                                         *logical_offset,
4634                                                         block, num_bits, flags,
4635                                                         meta_ac);
4636         else
4637                 status = ocfs2_xattr_value_insert_extent(osb, handle,
4638                                                          inode, root_bh,
4639                                                          *logical_offset,
4640                                                          block, num_bits, flags,
4641                                                          meta_ac, obj);
4642         if (status < 0) {
4643                 mlog_errno(status);
4644                 goto leave;
4645         }
4646
4647         status = ocfs2_journal_dirty(handle, root_bh);
4648         if (status < 0) {
4649                 mlog_errno(status);
4650                 goto leave;
4651         }
4652
4653         clusters_to_add -= num_bits;
4654         *logical_offset += num_bits;
4655
4656         if (clusters_to_add) {
4657                 mlog(0, "need to alloc once more, wanted = %u\n",
4658                      clusters_to_add);
4659                 status = -EAGAIN;
4660                 reason = RESTART_TRANS;
4661         }
4662
4663 leave:
4664         mlog_exit(status);
4665         if (reason_ret)
4666                 *reason_ret = reason;
4667         return status;
4668 }
4669
4670 static void ocfs2_make_right_split_rec(struct super_block *sb,
4671                                        struct ocfs2_extent_rec *split_rec,
4672                                        u32 cpos,
4673                                        struct ocfs2_extent_rec *rec)
4674 {
4675         u32 rec_cpos = le32_to_cpu(rec->e_cpos);
4676         u32 rec_range = rec_cpos + le16_to_cpu(rec->e_leaf_clusters);
4677
4678         memset(split_rec, 0, sizeof(struct ocfs2_extent_rec));
4679
4680         split_rec->e_cpos = cpu_to_le32(cpos);
4681         split_rec->e_leaf_clusters = cpu_to_le16(rec_range - cpos);
4682
4683         split_rec->e_blkno = rec->e_blkno;
4684         le64_add_cpu(&split_rec->e_blkno,
4685                      ocfs2_clusters_to_blocks(sb, cpos - rec_cpos));
4686
4687         split_rec->e_flags = rec->e_flags;
4688 }
4689
4690 static int ocfs2_split_and_insert(struct inode *inode,
4691                                   handle_t *handle,
4692                                   struct ocfs2_path *path,
4693                                   struct ocfs2_extent_tree *et,
4694                                   struct buffer_head **last_eb_bh,
4695                                   int split_index,
4696                                   struct ocfs2_extent_rec *orig_split_rec,
4697                                   struct ocfs2_alloc_context *meta_ac)
4698 {
4699         int ret = 0, depth;
4700         unsigned int insert_range, rec_range, do_leftright = 0;
4701         struct ocfs2_extent_rec tmprec;
4702         struct ocfs2_extent_list *rightmost_el;
4703         struct ocfs2_extent_rec rec;
4704         struct ocfs2_extent_rec split_rec = *orig_split_rec;
4705         struct ocfs2_insert_type insert;
4706         struct ocfs2_extent_block *eb;
4707
4708 leftright:
4709         /*
4710          * Store a copy of the record on the stack - it might move
4711          * around as the tree is manipulated below.
4712          */
4713         rec = path_leaf_el(path)->l_recs[split_index];
4714
4715         rightmost_el = et->et_root_el;
4716
4717         depth = le16_to_cpu(rightmost_el->l_tree_depth);
4718         if (depth) {
4719                 BUG_ON(!(*last_eb_bh));
4720                 eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
4721                 rightmost_el = &eb->h_list;
4722         }
4723
4724         if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
4725             le16_to_cpu(rightmost_el->l_count)) {
4726                 ret = ocfs2_grow_tree(inode, handle, et,
4727                                       &depth, last_eb_bh, meta_ac);
4728                 if (ret) {
4729                         mlog_errno(ret);
4730                         goto out;
4731                 }
4732         }
4733
4734         memset(&insert, 0, sizeof(struct ocfs2_insert_type));
4735         insert.ins_appending = APPEND_NONE;
4736         insert.ins_contig = CONTIG_NONE;
4737         insert.ins_tree_depth = depth;
4738
4739         insert_range = le32_to_cpu(split_rec.e_cpos) +
4740                 le16_to_cpu(split_rec.e_leaf_clusters);
4741         rec_range = le32_to_cpu(rec.e_cpos) +
4742                 le16_to_cpu(rec.e_leaf_clusters);
4743
4744         if (split_rec.e_cpos == rec.e_cpos) {
4745                 insert.ins_split = SPLIT_LEFT;
4746         } else if (insert_range == rec_range) {
4747                 insert.ins_split = SPLIT_RIGHT;
4748         } else {
4749                 /*
4750                  * Left/right split. We fake this as a right split
4751                  * first and then make a second pass as a left split.
4752                  */
4753                 insert.ins_split = SPLIT_RIGHT;
4754
4755                 ocfs2_make_right_split_rec(inode->i_sb, &tmprec, insert_range,
4756                                            &rec);
4757
4758                 split_rec = tmprec;
4759
4760                 BUG_ON(do_leftright);
4761                 do_leftright = 1;
4762         }
4763
4764         ret = ocfs2_do_insert_extent(inode, handle, et, &split_rec, &insert);
4765         if (ret) {
4766                 mlog_errno(ret);
4767                 goto out;
4768         }
4769
4770         if (do_leftright == 1) {
4771                 u32 cpos;
4772                 struct ocfs2_extent_list *el;
4773
4774                 do_leftright++;
4775                 split_rec = *orig_split_rec;
4776
4777                 ocfs2_reinit_path(path, 1);
4778
4779                 cpos = le32_to_cpu(split_rec.e_cpos);
4780                 ret = ocfs2_find_path(inode, path, cpos);
4781                 if (ret) {
4782                         mlog_errno(ret);
4783                         goto out;
4784                 }
4785
4786                 el = path_leaf_el(path);
4787                 split_index = ocfs2_search_extent_list(el, cpos);
4788                 goto leftright;
4789         }
4790 out:
4791
4792         return ret;
4793 }
4794
4795 /*
4796  * Mark part or all of the extent record at split_index in the leaf
4797  * pointed to by path as written. This removes the unwritten
4798  * extent flag.
4799  *
4800  * Care is taken to handle contiguousness so as to not grow the tree.
4801  *
4802  * meta_ac is not strictly necessary - we only truly need it if growth
4803  * of the tree is required. All other cases will degrade into a less
4804  * optimal tree layout.
4805  *
4806  * last_eb_bh should be the rightmost leaf block for any extent
4807  * btree. Since a split may grow the tree or a merge might shrink it,
4808  * the caller cannot trust the contents of that buffer after this call.
4809  *
4810  * This code is optimized for readability - several passes might be
4811  * made over certain portions of the tree. All of those blocks will
4812  * have been brought into cache (and pinned via the journal), so the
4813  * extra overhead is not expressed in terms of disk reads.
4814  */
4815 static int __ocfs2_mark_extent_written(struct inode *inode,
4816                                        struct ocfs2_extent_tree *et,
4817                                        handle_t *handle,
4818                                        struct ocfs2_path *path,
4819                                        int split_index,
4820                                        struct ocfs2_extent_rec *split_rec,
4821                                        struct ocfs2_alloc_context *meta_ac,
4822                                        struct ocfs2_cached_dealloc_ctxt *dealloc)
4823 {
4824         int ret = 0;
4825         struct ocfs2_extent_list *el = path_leaf_el(path);
4826         struct buffer_head *last_eb_bh = NULL;
4827         struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
4828         struct ocfs2_merge_ctxt ctxt;
4829         struct ocfs2_extent_list *rightmost_el;
4830
4831         if (!(rec->e_flags & OCFS2_EXT_UNWRITTEN)) {
4832                 ret = -EIO;
4833                 mlog_errno(ret);
4834                 goto out;
4835         }
4836
4837         if (le32_to_cpu(rec->e_cpos) > le32_to_cpu(split_rec->e_cpos) ||
4838             ((le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)) <
4839              (le32_to_cpu(split_rec->e_cpos) + le16_to_cpu(split_rec->e_leaf_clusters)))) {
4840                 ret = -EIO;
4841                 mlog_errno(ret);
4842                 goto out;
4843         }
4844
4845         ctxt.c_contig_type = ocfs2_figure_merge_contig_type(inode, path, el,
4846                                                             split_index,
4847                                                             split_rec);
4848
4849         /*
4850          * The core merge / split code wants to know how much room is
4851          * left in this inodes allocation tree, so we pass the
4852          * rightmost extent list.
4853          */
4854         if (path->p_tree_depth) {
4855                 struct ocfs2_extent_block *eb;
4856
4857                 ret = ocfs2_read_block(OCFS2_SB(inode->i_sb),
4858                                        ocfs2_et_get_last_eb_blk(et),
4859                                        &last_eb_bh, OCFS2_BH_CACHED, inode);
4860                 if (ret) {
4861                         mlog_exit(ret);
4862                         goto out;
4863                 }
4864
4865                 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
4866                 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
4867                         OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
4868                         ret = -EROFS;
4869                         goto out;
4870                 }
4871
4872                 rightmost_el = &eb->h_list;
4873         } else
4874                 rightmost_el = path_root_el(path);
4875
4876         if (rec->e_cpos == split_rec->e_cpos &&
4877             rec->e_leaf_clusters == split_rec->e_leaf_clusters)
4878                 ctxt.c_split_covers_rec = 1;
4879         else
4880                 ctxt.c_split_covers_rec = 0;
4881
4882         ctxt.c_has_empty_extent = ocfs2_is_empty_extent(&el->l_recs[0]);
4883
4884         mlog(0, "index: %d, contig: %u, has_empty: %u, split_covers: %u\n",
4885              split_index, ctxt.c_contig_type, ctxt.c_has_empty_extent,
4886              ctxt.c_split_covers_rec);
4887
4888         if (ctxt.c_contig_type == CONTIG_NONE) {
4889                 if (ctxt.c_split_covers_rec)
4890                         el->l_recs[split_index] = *split_rec;
4891                 else
4892                         ret = ocfs2_split_and_insert(inode, handle, path, et,
4893                                                      &last_eb_bh, split_index,
4894                                                      split_rec, meta_ac);
4895                 if (ret)
4896                         mlog_errno(ret);
4897         } else {
4898                 ret = ocfs2_try_to_merge_extent(inode, handle, path,
4899                                                 split_index, split_rec,
4900                                                 dealloc, &ctxt, et);
4901                 if (ret)
4902                         mlog_errno(ret);
4903         }
4904
4905 out:
4906         brelse(last_eb_bh);
4907         return ret;
4908 }
4909
4910 /*
4911  * Mark the already-existing extent at cpos as written for len clusters.
4912  *
4913  * If the existing extent is larger than the request, initiate a
4914  * split. An attempt will be made at merging with adjacent extents.
4915  *
4916  * The caller is responsible for passing down meta_ac if we'll need it.
4917  */
4918 int ocfs2_mark_extent_written(struct inode *inode, struct buffer_head *root_bh,
4919                               handle_t *handle, u32 cpos, u32 len, u32 phys,
4920                               struct ocfs2_alloc_context *meta_ac,
4921                               struct ocfs2_cached_dealloc_ctxt *dealloc,
4922                               enum ocfs2_extent_tree_type et_type,
4923                               void *obj)
4924 {
4925         int ret, index;
4926         u64 start_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys);
4927         struct ocfs2_extent_rec split_rec;
4928         struct ocfs2_path *left_path = NULL;
4929         struct ocfs2_extent_list *el;
4930         struct ocfs2_extent_tree et;
4931
4932         mlog(0, "Inode %lu cpos %u, len %u, phys %u (%llu)\n",
4933              inode->i_ino, cpos, len, phys, (unsigned long long)start_blkno);
4934
4935         ocfs2_get_extent_tree(&et, inode, root_bh, et_type, obj);
4936
4937         if (!ocfs2_writes_unwritten_extents(OCFS2_SB(inode->i_sb))) {
4938                 ocfs2_error(inode->i_sb, "Inode %llu has unwritten extents "
4939                             "that are being written to, but the feature bit "
4940                             "is not set in the super block.",
4941                             (unsigned long long)OCFS2_I(inode)->ip_blkno);
4942                 ret = -EROFS;
4943                 goto out;
4944         }
4945
4946         /*
4947          * XXX: This should be fixed up so that we just re-insert the
4948          * next extent records.
4949          */
4950         if (et_type == OCFS2_DINODE_EXTENT)
4951                 ocfs2_extent_map_trunc(inode, 0);
4952
4953         left_path = ocfs2_new_path(et.et_root_bh, et.et_root_el);
4954         if (!left_path) {
4955                 ret = -ENOMEM;
4956                 mlog_errno(ret);
4957                 goto out;
4958         }
4959
4960         ret = ocfs2_find_path(inode, left_path, cpos);
4961         if (ret) {
4962                 mlog_errno(ret);
4963                 goto out;
4964         }
4965         el = path_leaf_el(left_path);
4966
4967         index = ocfs2_search_extent_list(el, cpos);
4968         if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
4969                 ocfs2_error(inode->i_sb,
4970                             "Inode %llu has an extent at cpos %u which can no "
4971                             "longer be found.\n",
4972                             (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
4973                 ret = -EROFS;
4974                 goto out;
4975         }
4976
4977         memset(&split_rec, 0, sizeof(struct ocfs2_extent_rec));
4978         split_rec.e_cpos = cpu_to_le32(cpos);
4979         split_rec.e_leaf_clusters = cpu_to_le16(len);
4980         split_rec.e_blkno = cpu_to_le64(start_blkno);
4981         split_rec.e_flags = path_leaf_el(left_path)->l_recs[index].e_flags;
4982         split_rec.e_flags &= ~OCFS2_EXT_UNWRITTEN;
4983
4984         ret = __ocfs2_mark_extent_written(inode, &et, handle, left_path,
4985                                           index, &split_rec, meta_ac,
4986                                           dealloc);
4987         if (ret)
4988                 mlog_errno(ret);
4989
4990 out:
4991         ocfs2_free_path(left_path);
4992         ocfs2_put_extent_tree(&et);
4993         return ret;
4994 }
4995
4996 static int ocfs2_split_tree(struct inode *inode, struct ocfs2_extent_tree *et,
4997                             handle_t *handle, struct ocfs2_path *path,
4998                             int index, u32 new_range,
4999                             struct ocfs2_alloc_context *meta_ac)
5000 {
5001         int ret, depth, credits = handle->h_buffer_credits;
5002         struct buffer_head *last_eb_bh = NULL;
5003         struct ocfs2_extent_block *eb;
5004         struct ocfs2_extent_list *rightmost_el, *el;
5005         struct ocfs2_extent_rec split_rec;
5006         struct ocfs2_extent_rec *rec;
5007         struct ocfs2_insert_type insert;
5008
5009         /*
5010          * Setup the record to split before we grow the tree.
5011          */
5012         el = path_leaf_el(path);
5013         rec = &el->l_recs[index];
5014         ocfs2_make_right_split_rec(inode->i_sb, &split_rec, new_range, rec);
5015
5016         depth = path->p_tree_depth;
5017         if (depth > 0) {
5018                 ret = ocfs2_read_block(OCFS2_SB(inode->i_sb),
5019                                        ocfs2_et_get_last_eb_blk(et),
5020                                        &last_eb_bh, OCFS2_BH_CACHED, inode);
5021                 if (ret < 0) {
5022                         mlog_errno(ret);
5023                         goto out;
5024                 }
5025
5026                 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
5027                 rightmost_el = &eb->h_list;
5028         } else
5029                 rightmost_el = path_leaf_el(path);
5030
5031         credits += path->p_tree_depth +
5032                    ocfs2_extend_meta_needed(et->et_root_el);
5033         ret = ocfs2_extend_trans(handle, credits);
5034         if (ret) {
5035                 mlog_errno(ret);
5036                 goto out;
5037         }
5038
5039         if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
5040             le16_to_cpu(rightmost_el->l_count)) {
5041                 ret = ocfs2_grow_tree(inode, handle, et, &depth, &last_eb_bh,
5042                                       meta_ac);
5043                 if (ret) {
5044                         mlog_errno(ret);
5045                         goto out;
5046                 }
5047         }
5048
5049         memset(&insert, 0, sizeof(struct ocfs2_insert_type));
5050         insert.ins_appending = APPEND_NONE;
5051         insert.ins_contig = CONTIG_NONE;
5052         insert.ins_split = SPLIT_RIGHT;
5053         insert.ins_tree_depth = depth;
5054
5055         ret = ocfs2_do_insert_extent(inode, handle, et, &split_rec, &insert);
5056         if (ret)
5057                 mlog_errno(ret);
5058
5059 out:
5060         brelse(last_eb_bh);
5061         return ret;
5062 }
5063
5064 static int ocfs2_truncate_rec(struct inode *inode, handle_t *handle,
5065                               struct ocfs2_path *path, int index,
5066                               struct ocfs2_cached_dealloc_ctxt *dealloc,
5067                               u32 cpos, u32 len,
5068                               struct ocfs2_extent_tree *et)
5069 {
5070         int ret;
5071         u32 left_cpos, rec_range, trunc_range;
5072         int wants_rotate = 0, is_rightmost_tree_rec = 0;
5073         struct super_block *sb = inode->i_sb;
5074         struct ocfs2_path *left_path = NULL;
5075         struct ocfs2_extent_list *el = path_leaf_el(path);
5076         struct ocfs2_extent_rec *rec;
5077         struct ocfs2_extent_block *eb;
5078
5079         if (ocfs2_is_empty_extent(&el->l_recs[0]) && index > 0) {
5080                 ret = ocfs2_rotate_tree_left(inode, handle, path, dealloc, et);
5081                 if (ret) {
5082                         mlog_errno(ret);
5083                         goto out;
5084                 }
5085
5086                 index--;
5087         }
5088
5089         if (index == (le16_to_cpu(el->l_next_free_rec) - 1) &&
5090             path->p_tree_depth) {
5091                 /*
5092                  * Check whether this is the rightmost tree record. If
5093                  * we remove all of this record or part of its right
5094                  * edge then an update of the record lengths above it
5095                  * will be required.
5096                  */
5097                 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
5098                 if (eb->h_next_leaf_blk == 0)
5099                         is_rightmost_tree_rec = 1;
5100         }
5101
5102         rec = &el->l_recs[index];
5103         if (index == 0 && path->p_tree_depth &&
5104             le32_to_cpu(rec->e_cpos) == cpos) {
5105                 /*
5106                  * Changing the leftmost offset (via partial or whole
5107                  * record truncate) of an interior (or rightmost) path
5108                  * means we have to update the subtree that is formed
5109                  * by this leaf and the one to it's left.
5110                  *
5111                  * There are two cases we can skip:
5112                  *   1) Path is the leftmost one in our inode tree.
5113                  *   2) The leaf is rightmost and will be empty after
5114                  *      we remove the extent record - the rotate code
5115                  *      knows how to update the newly formed edge.
5116                  */
5117
5118                 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path,
5119                                                     &left_cpos);
5120                 if (ret) {
5121                         mlog_errno(ret);
5122                         goto out;
5123                 }
5124
5125                 if (left_cpos && le16_to_cpu(el->l_next_free_rec) > 1) {
5126                         left_path = ocfs2_new_path(path_root_bh(path),
5127                                                    path_root_el(path));
5128                         if (!left_path) {
5129                                 ret = -ENOMEM;
5130                                 mlog_errno(ret);
5131                                 goto out;
5132                         }
5133
5134                         ret = ocfs2_find_path(inode, left_path, left_cpos);
5135                         if (ret) {
5136                                 mlog_errno(ret);
5137                                 goto out;
5138                         }
5139                 }
5140         }
5141
5142         ret = ocfs2_extend_rotate_transaction(handle, 0,
5143                                               handle->h_buffer_credits,
5144                                               path);
5145         if (ret) {
5146                 mlog_errno(ret);
5147                 goto out;
5148         }
5149
5150         ret = ocfs2_journal_access_path(inode, handle, path);
5151         if (ret) {
5152                 mlog_errno(ret);
5153                 goto out;
5154         }
5155
5156         ret = ocfs2_journal_access_path(inode, handle, left_path);
5157         if (ret) {
5158                 mlog_errno(ret);
5159                 goto out;
5160         }
5161
5162         rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
5163         trunc_range = cpos + len;
5164
5165         if (le32_to_cpu(rec->e_cpos) == cpos && rec_range == trunc_range) {
5166                 int next_free;
5167
5168                 memset(rec, 0, sizeof(*rec));
5169                 ocfs2_cleanup_merge(el, index);
5170                 wants_rotate = 1;
5171
5172                 next_free = le16_to_cpu(el->l_next_free_rec);
5173                 if (is_rightmost_tree_rec && next_free > 1) {
5174                         /*
5175                          * We skip the edge update if this path will
5176                          * be deleted by the rotate code.
5177                          */
5178                         rec = &el->l_recs[next_free - 1];
5179                         ocfs2_adjust_rightmost_records(inode, handle, path,
5180                                                        rec);
5181                 }
5182         } else if (le32_to_cpu(rec->e_cpos) == cpos) {
5183                 /* Remove leftmost portion of the record. */
5184                 le32_add_cpu(&rec->e_cpos, len);
5185                 le64_add_cpu(&rec->e_blkno, ocfs2_clusters_to_blocks(sb, len));
5186                 le16_add_cpu(&rec->e_leaf_clusters, -len);
5187         } else if (rec_range == trunc_range) {
5188                 /* Remove rightmost portion of the record */
5189                 le16_add_cpu(&rec->e_leaf_clusters, -len);
5190                 if (is_rightmost_tree_rec)
5191                         ocfs2_adjust_rightmost_records(inode, handle, path, rec);
5192         } else {
5193                 /* Caller should have trapped this. */
5194                 mlog(ML_ERROR, "Inode %llu: Invalid record truncate: (%u, %u) "
5195                      "(%u, %u)\n", (unsigned long long)OCFS2_I(inode)->ip_blkno,
5196                      le32_to_cpu(rec->e_cpos),
5197                      le16_to_cpu(rec->e_leaf_clusters), cpos, len);
5198                 BUG();
5199         }
5200
5201         if (left_path) {
5202                 int subtree_index;
5203
5204                 subtree_index = ocfs2_find_subtree_root(inode, left_path, path);
5205                 ocfs2_complete_edge_insert(inode, handle, left_path, path,
5206                                            subtree_index);
5207         }
5208
5209         ocfs2_journal_dirty(handle, path_leaf_bh(path));
5210
5211         ret = ocfs2_rotate_tree_left(inode, handle, path, dealloc, et);
5212         if (ret) {
5213                 mlog_errno(ret);
5214                 goto out;
5215         }
5216
5217 out:
5218         ocfs2_free_path(left_path);
5219         return ret;
5220 }
5221
5222 int ocfs2_remove_extent(struct inode *inode, struct buffer_head *root_bh,
5223                         u32 cpos, u32 len, handle_t *handle,
5224                         struct ocfs2_alloc_context *meta_ac,
5225                         struct ocfs2_cached_dealloc_ctxt *dealloc,
5226                         enum ocfs2_extent_tree_type et_type,
5227                         void *obj)
5228 {
5229         int ret, index;
5230         u32 rec_range, trunc_range;
5231         struct ocfs2_extent_rec *rec;
5232         struct ocfs2_extent_list *el;
5233         struct ocfs2_path *path = NULL;
5234         struct ocfs2_extent_tree et;
5235
5236         ocfs2_get_extent_tree(&et, inode, root_bh, et_type, obj);
5237
5238         ocfs2_extent_map_trunc(inode, 0);
5239
5240         path = ocfs2_new_path(et.et_root_bh, et.et_root_el);
5241         if (!path) {
5242                 ret = -ENOMEM;
5243                 mlog_errno(ret);
5244                 goto out;
5245         }
5246
5247         ret = ocfs2_find_path(inode, path, cpos);
5248         if (ret) {
5249                 mlog_errno(ret);
5250                 goto out;
5251         }
5252
5253         el = path_leaf_el(path);
5254         index = ocfs2_search_extent_list(el, cpos);
5255         if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
5256                 ocfs2_error(inode->i_sb,
5257                             "Inode %llu has an extent at cpos %u which can no "
5258                             "longer be found.\n",
5259                             (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
5260                 ret = -EROFS;
5261                 goto out;
5262         }
5263
5264         /*
5265          * We have 3 cases of extent removal:
5266          *   1) Range covers the entire extent rec
5267          *   2) Range begins or ends on one edge of the extent rec
5268          *   3) Range is in the middle of the extent rec (no shared edges)
5269          *
5270          * For case 1 we remove the extent rec and left rotate to
5271          * fill the hole.
5272          *
5273          * For case 2 we just shrink the existing extent rec, with a
5274          * tree update if the shrinking edge is also the edge of an
5275          * extent block.
5276          *
5277          * For case 3 we do a right split to turn the extent rec into
5278          * something case 2 can handle.
5279          */
5280         rec = &el->l_recs[index];
5281         rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
5282         trunc_range = cpos + len;
5283
5284         BUG_ON(cpos < le32_to_cpu(rec->e_cpos) || trunc_range > rec_range);
5285
5286         mlog(0, "Inode %llu, remove (cpos %u, len %u). Existing index %d "
5287              "(cpos %u, len %u)\n",
5288              (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos, len, index,
5289              le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec));
5290
5291         if (le32_to_cpu(rec->e_cpos) == cpos || rec_range == trunc_range) {
5292                 ret = ocfs2_truncate_rec(inode, handle, path, index, dealloc,
5293                                          cpos, len, &et);
5294                 if (ret) {
5295                         mlog_errno(ret);
5296                         goto out;
5297                 }
5298         } else {
5299                 ret = ocfs2_split_tree(inode, &et, handle, path, index,
5300                                        trunc_range, meta_ac);
5301                 if (ret) {
5302                         mlog_errno(ret);
5303                         goto out;
5304                 }
5305
5306                 /*
5307                  * The split could have manipulated the tree enough to
5308                  * move the record location, so we have to look for it again.
5309                  */
5310                 ocfs2_reinit_path(path, 1);
5311
5312                 ret = ocfs2_find_path(inode, path, cpos);
5313                 if (ret) {
5314                         mlog_errno(ret);
5315                         goto out;
5316                 }
5317
5318                 el = path_leaf_el(path);
5319                 index = ocfs2_search_extent_list(el, cpos);
5320                 if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
5321                         ocfs2_error(inode->i_sb,
5322                                     "Inode %llu: split at cpos %u lost record.",
5323                                     (unsigned long long)OCFS2_I(inode)->ip_blkno,
5324                                     cpos);
5325                         ret = -EROFS;
5326                         goto out;
5327                 }
5328
5329                 /*
5330                  * Double check our values here. If anything is fishy,
5331                  * it's easier to catch it at the top level.
5332                  */
5333                 rec = &el->l_recs[index];
5334                 rec_range = le32_to_cpu(rec->e_cpos) +
5335                         ocfs2_rec_clusters(el, rec);
5336                 if (rec_range != trunc_range) {
5337                         ocfs2_error(inode->i_sb,
5338                                     "Inode %llu: error after split at cpos %u"
5339                                     "trunc len %u, existing record is (%u,%u)",
5340                                     (unsigned long long)OCFS2_I(inode)->ip_blkno,
5341                                     cpos, len, le32_to_cpu(rec->e_cpos),
5342                                     ocfs2_rec_clusters(el, rec));
5343                         ret = -EROFS;
5344                         goto out;
5345                 }
5346
5347                 ret = ocfs2_truncate_rec(inode, handle, path, index, dealloc,
5348                                          cpos, len, &et);
5349                 if (ret) {
5350                         mlog_errno(ret);
5351                         goto out;
5352                 }
5353         }
5354
5355 out:
5356         ocfs2_free_path(path);
5357         ocfs2_put_extent_tree(&et);
5358         return ret;
5359 }
5360
5361 int ocfs2_truncate_log_needs_flush(struct ocfs2_super *osb)
5362 {
5363         struct buffer_head *tl_bh = osb->osb_tl_bh;
5364         struct ocfs2_dinode *di;
5365         struct ocfs2_truncate_log *tl;
5366
5367         di = (struct ocfs2_dinode *) tl_bh->b_data;
5368         tl = &di->id2.i_dealloc;
5369
5370         mlog_bug_on_msg(le16_to_cpu(tl->tl_used) > le16_to_cpu(tl->tl_count),
5371                         "slot %d, invalid truncate log parameters: used = "
5372                         "%u, count = %u\n", osb->slot_num,
5373                         le16_to_cpu(tl->tl_used), le16_to_cpu(tl->tl_count));
5374         return le16_to_cpu(tl->tl_used) == le16_to_cpu(tl->tl_count);
5375 }
5376
5377 static int ocfs2_truncate_log_can_coalesce(struct ocfs2_truncate_log *tl,
5378                                            unsigned int new_start)
5379 {
5380         unsigned int tail_index;
5381         unsigned int current_tail;
5382
5383         /* No records, nothing to coalesce */
5384         if (!le16_to_cpu(tl->tl_used))
5385                 return 0;
5386
5387         tail_index = le16_to_cpu(tl->tl_used) - 1;
5388         current_tail = le32_to_cpu(tl->tl_recs[tail_index].t_start);
5389         current_tail += le32_to_cpu(tl->tl_recs[tail_index].t_clusters);
5390
5391         return current_tail == new_start;
5392 }
5393
5394 int ocfs2_truncate_log_append(struct ocfs2_super *osb,
5395                               handle_t *handle,
5396                               u64 start_blk,
5397                               unsigned int num_clusters)
5398 {
5399         int status, index;
5400         unsigned int start_cluster, tl_count;
5401         struct inode *tl_inode = osb->osb_tl_inode;
5402         struct buffer_head *tl_bh = osb->osb_tl_bh;
5403         struct ocfs2_dinode *di;
5404         struct ocfs2_truncate_log *tl;
5405
5406         mlog_entry("start_blk = %llu, num_clusters = %u\n",
5407                    (unsigned long long)start_blk, num_clusters);
5408
5409         BUG_ON(mutex_trylock(&tl_inode->i_mutex));
5410
5411         start_cluster = ocfs2_blocks_to_clusters(osb->sb, start_blk);
5412
5413         di = (struct ocfs2_dinode *) tl_bh->b_data;
5414         tl = &di->id2.i_dealloc;
5415         if (!OCFS2_IS_VALID_DINODE(di)) {
5416                 OCFS2_RO_ON_INVALID_DINODE(osb->sb, di);
5417                 status = -EIO;
5418                 goto bail;
5419         }
5420
5421         tl_count = le16_to_cpu(tl->tl_count);
5422         mlog_bug_on_msg(tl_count > ocfs2_truncate_recs_per_inode(osb->sb) ||
5423                         tl_count == 0,
5424                         "Truncate record count on #%llu invalid "
5425                         "wanted %u, actual %u\n",
5426                         (unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
5427                         ocfs2_truncate_recs_per_inode(osb->sb),
5428                         le16_to_cpu(tl->tl_count));
5429
5430         /* Caller should have known to flush before calling us. */
5431         index = le16_to_cpu(tl->tl_used);
5432         if (index >= tl_count) {
5433                 status = -ENOSPC;
5434                 mlog_errno(status);
5435                 goto bail;
5436         }
5437
5438         status = ocfs2_journal_access(handle, tl_inode, tl_bh,
5439                                       OCFS2_JOURNAL_ACCESS_WRITE);
5440         if (status < 0) {
5441                 mlog_errno(status);
5442                 goto bail;
5443         }
5444
5445         mlog(0, "Log truncate of %u clusters starting at cluster %u to "
5446              "%llu (index = %d)\n", num_clusters, start_cluster,
5447              (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, index);
5448
5449         if (ocfs2_truncate_log_can_coalesce(tl, start_cluster)) {
5450                 /*
5451                  * Move index back to the record we are coalescing with.
5452                  * ocfs2_truncate_log_can_coalesce() guarantees nonzero
5453                  */
5454                 index--;
5455
5456                 num_clusters += le32_to_cpu(tl->tl_recs[index].t_clusters);
5457                 mlog(0, "Coalesce with index %u (start = %u, clusters = %u)\n",
5458                      index, le32_to_cpu(tl->tl_recs[index].t_start),
5459                      num_clusters);
5460         } else {
5461                 tl->tl_recs[index].t_start = cpu_to_le32(start_cluster);
5462                 tl->tl_used = cpu_to_le16(index + 1);
5463         }
5464         tl->tl_recs[index].t_clusters = cpu_to_le32(num_clusters);
5465
5466         status = ocfs2_journal_dirty(handle, tl_bh);
5467         if (status < 0) {
5468                 mlog_errno(status);
5469                 goto bail;
5470         }
5471
5472 bail:
5473         mlog_exit(status);
5474         return status;
5475 }
5476
5477 static int ocfs2_replay_truncate_records(struct ocfs2_super *osb,
5478                                          handle_t *handle,
5479                                          struct inode *data_alloc_inode,
5480                                          struct buffer_head *data_alloc_bh)
5481 {
5482         int status = 0;
5483         int i;
5484         unsigned int num_clusters;
5485         u64 start_blk;
5486         struct ocfs2_truncate_rec rec;
5487         struct ocfs2_dinode *di;
5488         struct ocfs2_truncate_log *tl;
5489         struct inode *tl_inode = osb->osb_tl_inode;
5490         struct buffer_head *tl_bh = osb->osb_tl_bh;
5491
5492         mlog_entry_void();
5493
5494         di = (struct ocfs2_dinode *) tl_bh->b_data;
5495         tl = &di->id2.i_dealloc;
5496         i = le16_to_cpu(tl->tl_used) - 1;
5497         while (i >= 0) {
5498                 /* Caller has given us at least enough credits to
5499                  * update the truncate log dinode */
5500                 status = ocfs2_journal_access(handle, tl_inode, tl_bh,
5501                                               OCFS2_JOURNAL_ACCESS_WRITE);
5502                 if (status < 0) {
5503                         mlog_errno(status);
5504                         goto bail;
5505                 }
5506
5507                 tl->tl_used = cpu_to_le16(i);
5508
5509                 status = ocfs2_journal_dirty(handle, tl_bh);
5510                 if (status < 0) {
5511                         mlog_errno(status);
5512                         goto bail;
5513                 }
5514
5515                 /* TODO: Perhaps we can calculate the bulk of the
5516                  * credits up front rather than extending like
5517                  * this. */
5518                 status = ocfs2_extend_trans(handle,
5519                                             OCFS2_TRUNCATE_LOG_FLUSH_ONE_REC);
5520                 if (status < 0) {
5521                         mlog_errno(status);
5522                         goto bail;
5523                 }
5524
5525                 rec = tl->tl_recs[i];
5526                 start_blk = ocfs2_clusters_to_blocks(data_alloc_inode->i_sb,
5527                                                     le32_to_cpu(rec.t_start));
5528                 num_clusters = le32_to_cpu(rec.t_clusters);
5529
5530                 /* if start_blk is not set, we ignore the record as
5531                  * invalid. */
5532                 if (start_blk) {
5533                         mlog(0, "free record %d, start = %u, clusters = %u\n",
5534                              i, le32_to_cpu(rec.t_start), num_clusters);
5535
5536                         status = ocfs2_free_clusters(handle, data_alloc_inode,
5537                                                      data_alloc_bh, start_blk,
5538                                                      num_clusters);
5539                         if (status < 0) {
5540                                 mlog_errno(status);
5541                                 goto bail;
5542                         }
5543                 }
5544                 i--;
5545         }
5546
5547 bail:
5548         mlog_exit(status);
5549         return status;
5550 }
5551
5552 /* Expects you to already be holding tl_inode->i_mutex */
5553 int __ocfs2_flush_truncate_log(struct ocfs2_super *osb)
5554 {
5555         int status;
5556         unsigned int num_to_flush;
5557         handle_t *handle;
5558         struct inode *tl_inode = osb->osb_tl_inode;
5559         struct inode *data_alloc_inode = NULL;
5560         struct buffer_head *tl_bh = osb->osb_tl_bh;
5561         struct buffer_head *data_alloc_bh = NULL;
5562         struct ocfs2_dinode *di;
5563         struct ocfs2_truncate_log *tl;
5564
5565         mlog_entry_void();
5566
5567         BUG_ON(mutex_trylock(&tl_inode->i_mutex));
5568
5569         di = (struct ocfs2_dinode *) tl_bh->b_data;
5570         tl = &di->id2.i_dealloc;
5571         if (!OCFS2_IS_VALID_DINODE(di)) {
5572                 OCFS2_RO_ON_INVALID_DINODE(osb->sb, di);
5573                 status = -EIO;
5574                 goto out;
5575         }
5576
5577         num_to_flush = le16_to_cpu(tl->tl_used);
5578         mlog(0, "Flush %u records from truncate log #%llu\n",
5579              num_to_flush, (unsigned long long)OCFS2_I(tl_inode)->ip_blkno);
5580         if (!num_to_flush) {
5581                 status = 0;
5582                 goto out;
5583         }
5584
5585         data_alloc_inode = ocfs2_get_system_file_inode(osb,
5586                                                        GLOBAL_BITMAP_SYSTEM_INODE,
5587                                                        OCFS2_INVALID_SLOT);
5588         if (!data_alloc_inode) {
5589                 status = -EINVAL;
5590                 mlog(ML_ERROR, "Could not get bitmap inode!\n");
5591                 goto out;
5592         }
5593
5594         mutex_lock(&data_alloc_inode->i_mutex);
5595
5596         status = ocfs2_inode_lock(data_alloc_inode, &data_alloc_bh, 1);
5597         if (status < 0) {
5598                 mlog_errno(status);
5599                 goto out_mutex;
5600         }
5601
5602         handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
5603         if (IS_ERR(handle)) {
5604                 status = PTR_ERR(handle);
5605                 mlog_errno(status);
5606                 goto out_unlock;
5607         }
5608
5609         status = ocfs2_replay_truncate_records(osb, handle, data_alloc_inode,
5610                                                data_alloc_bh);
5611         if (status < 0)
5612                 mlog_errno(status);
5613
5614         ocfs2_commit_trans(osb, handle);
5615
5616 out_unlock:
5617         brelse(data_alloc_bh);
5618         ocfs2_inode_unlock(data_alloc_inode, 1);
5619
5620 out_mutex:
5621         mutex_unlock(&data_alloc_inode->i_mutex);
5622         iput(data_alloc_inode);
5623
5624 out:
5625         mlog_exit(status);
5626         return status;
5627 }
5628
5629 int ocfs2_flush_truncate_log(struct ocfs2_super *osb)
5630 {
5631         int status;
5632         struct inode *tl_inode = osb->osb_tl_inode;
5633
5634         mutex_lock(&tl_inode->i_mutex);
5635         status = __ocfs2_flush_truncate_log(osb);
5636         mutex_unlock(&tl_inode->i_mutex);
5637
5638         return status;
5639 }
5640
5641 static void ocfs2_truncate_log_worker(struct work_struct *work)
5642 {
5643         int status;
5644         struct ocfs2_super *osb =
5645                 container_of(work, struct ocfs2_super,
5646                              osb_truncate_log_wq.work);
5647
5648         mlog_entry_void();
5649
5650         status = ocfs2_flush_truncate_log(osb);
5651         if (status < 0)
5652                 mlog_errno(status);
5653         else
5654                 ocfs2_init_inode_steal_slot(osb);
5655
5656         mlog_exit(status);
5657 }
5658
5659 #define OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL (2 * HZ)
5660 void ocfs2_schedule_truncate_log_flush(struct ocfs2_super *osb,
5661                                        int cancel)
5662 {
5663         if (osb->osb_tl_inode) {
5664                 /* We want to push off log flushes while truncates are
5665                  * still running. */
5666                 if (cancel)
5667                         cancel_delayed_work(&osb->osb_truncate_log_wq);
5668
5669                 queue_delayed_work(ocfs2_wq, &osb->osb_truncate_log_wq,
5670                                    OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL);
5671         }
5672 }
5673
5674 static int ocfs2_get_truncate_log_info(struct ocfs2_super *osb,
5675                                        int slot_num,
5676                                        struct inode **tl_inode,
5677                                        struct buffer_head **tl_bh)
5678 {
5679         int status;
5680         struct inode *inode = NULL;
5681         struct buffer_head *bh = NULL;
5682
5683         inode = ocfs2_get_system_file_inode(osb,
5684                                            TRUNCATE_LOG_SYSTEM_INODE,
5685                                            slot_num);
5686         if (!inode) {
5687                 status = -EINVAL;
5688                 mlog(ML_ERROR, "Could not get load truncate log inode!\n");
5689                 goto bail;
5690         }
5691
5692         status = ocfs2_read_block(osb, OCFS2_I(inode)->ip_blkno, &bh,
5693                                   OCFS2_BH_CACHED, inode);
5694         if (status < 0) {
5695                 iput(inode);
5696                 mlog_errno(status);
5697                 goto bail;
5698         }
5699
5700         *tl_inode = inode;
5701         *tl_bh    = bh;
5702 bail:
5703         mlog_exit(status);
5704         return status;
5705 }
5706
5707 /* called during the 1st stage of node recovery. we stamp a clean
5708  * truncate log and pass back a copy for processing later. if the
5709  * truncate log does not require processing, a *tl_copy is set to
5710  * NULL. */
5711 int ocfs2_begin_truncate_log_recovery(struct ocfs2_super *osb,
5712                                       int slot_num,
5713                                       struct ocfs2_dinode **tl_copy)
5714 {
5715         int status;
5716         struct inode *tl_inode = NULL;
5717         struct buffer_head *tl_bh = NULL;
5718         struct ocfs2_dinode *di;
5719         struct ocfs2_truncate_log *tl;
5720
5721         *tl_copy = NULL;
5722
5723         mlog(0, "recover truncate log from slot %d\n", slot_num);
5724
5725         status = ocfs2_get_truncate_log_info(osb, slot_num, &tl_inode, &tl_bh);
5726         if (status < 0) {
5727                 mlog_errno(status);
5728                 goto bail;
5729         }
5730
5731         di = (struct ocfs2_dinode *) tl_bh->b_data;
5732         tl = &di->id2.i_dealloc;
5733         if (!OCFS2_IS_VALID_DINODE(di)) {
5734                 OCFS2_RO_ON_INVALID_DINODE(tl_inode->i_sb, di);
5735                 status = -EIO;
5736                 goto bail;
5737         }
5738
5739         if (le16_to_cpu(tl->tl_used)) {
5740                 mlog(0, "We'll have %u logs to recover\n",
5741                      le16_to_cpu(tl->tl_used));
5742
5743                 *tl_copy = kmalloc(tl_bh->b_size, GFP_KERNEL);
5744                 if (!(*tl_copy)) {
5745                         status = -ENOMEM;
5746                         mlog_errno(status);
5747                         goto bail;
5748                 }
5749
5750                 /* Assuming the write-out below goes well, this copy
5751                  * will be passed back to recovery for processing. */
5752                 memcpy(*tl_copy, tl_bh->b_data, tl_bh->b_size);
5753
5754                 /* All we need to do to clear the truncate log is set
5755                  * tl_used. */
5756                 tl->tl_used = 0;
5757
5758                 status = ocfs2_write_block(osb, tl_bh, tl_inode);
5759                 if (status < 0) {
5760                         mlog_errno(status);
5761                         goto bail;
5762                 }
5763         }
5764
5765 bail:
5766         if (tl_inode)
5767                 iput(tl_inode);
5768         if (tl_bh)
5769                 brelse(tl_bh);
5770
5771         if (status < 0 && (*tl_copy)) {
5772                 kfree(*tl_copy);
5773                 *tl_copy = NULL;
5774         }
5775
5776         mlog_exit(status);
5777         return status;
5778 }
5779
5780 int ocfs2_complete_truncate_log_recovery(struct ocfs2_super *osb,
5781                                          struct ocfs2_dinode *tl_copy)
5782 {
5783         int status = 0;
5784         int i;
5785         unsigned int clusters, num_recs, start_cluster;
5786         u64 start_blk;
5787         handle_t *handle;
5788         struct inode *tl_inode = osb->osb_tl_inode;
5789         struct ocfs2_truncate_log *tl;
5790
5791         mlog_entry_void();
5792
5793         if (OCFS2_I(tl_inode)->ip_blkno == le64_to_cpu(tl_copy->i_blkno)) {
5794                 mlog(ML_ERROR, "Asked to recover my own truncate log!\n");
5795                 return -EINVAL;
5796         }
5797
5798         tl = &tl_copy->id2.i_dealloc;
5799         num_recs = le16_to_cpu(tl->tl_used);
5800         mlog(0, "cleanup %u records from %llu\n", num_recs,
5801              (unsigned long long)le64_to_cpu(tl_copy->i_blkno));
5802
5803         mutex_lock(&tl_inode->i_mutex);
5804         for(i = 0; i < num_recs; i++) {
5805                 if (ocfs2_truncate_log_needs_flush(osb)) {
5806                         status = __ocfs2_flush_truncate_log(osb);
5807                         if (status < 0) {
5808                                 mlog_errno(status);
5809                                 goto bail_up;
5810                         }
5811                 }
5812
5813                 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
5814                 if (IS_ERR(handle)) {
5815                         status = PTR_ERR(handle);
5816                         mlog_errno(status);
5817                         goto bail_up;
5818                 }
5819
5820                 clusters = le32_to_cpu(tl->tl_recs[i].t_clusters);
5821                 start_cluster = le32_to_cpu(tl->tl_recs[i].t_start);
5822                 start_blk = ocfs2_clusters_to_blocks(osb->sb, start_cluster);
5823
5824                 status = ocfs2_truncate_log_append(osb, handle,
5825                                                    start_blk, clusters);
5826                 ocfs2_commit_trans(osb, handle);
5827                 if (status < 0) {
5828                         mlog_errno(status);
5829                         goto bail_up;
5830                 }
5831         }
5832
5833 bail_up:
5834         mutex_unlock(&tl_inode->i_mutex);
5835
5836         mlog_exit(status);
5837         return status;
5838 }
5839
5840 void ocfs2_truncate_log_shutdown(struct ocfs2_super *osb)
5841 {
5842         int status;
5843         struct inode *tl_inode = osb->osb_tl_inode;
5844
5845         mlog_entry_void();
5846
5847         if (tl_inode) {
5848                 cancel_delayed_work(&osb->osb_truncate_log_wq);
5849                 flush_workqueue(ocfs2_wq);
5850
5851                 status = ocfs2_flush_truncate_log(osb);
5852                 if (status < 0)
5853                         mlog_errno(status);
5854
5855                 brelse(osb->osb_tl_bh);
5856                 iput(osb->osb_tl_inode);
5857         }
5858
5859         mlog_exit_void();
5860 }
5861
5862 int ocfs2_truncate_log_init(struct ocfs2_super *osb)
5863 {
5864         int status;
5865         struct inode *tl_inode = NULL;
5866         struct buffer_head *tl_bh = NULL;
5867
5868         mlog_entry_void();
5869
5870         status = ocfs2_get_truncate_log_info(osb,
5871                                              osb->slot_num,
5872                                              &tl_inode,
5873                                              &tl_bh);
5874         if (status < 0)
5875                 mlog_errno(status);
5876
5877         /* ocfs2_truncate_log_shutdown keys on the existence of
5878          * osb->osb_tl_inode so we don't set any of the osb variables
5879          * until we're sure all is well. */
5880         INIT_DELAYED_WORK(&osb->osb_truncate_log_wq,
5881                           ocfs2_truncate_log_worker);
5882         osb->osb_tl_bh    = tl_bh;
5883         osb->osb_tl_inode = tl_inode;
5884
5885         mlog_exit(status);
5886         return status;
5887 }
5888
5889 /*
5890  * Delayed de-allocation of suballocator blocks.
5891  *
5892  * Some sets of block de-allocations might involve multiple suballocator inodes.
5893  *
5894  * The locking for this can get extremely complicated, especially when
5895  * the suballocator inodes to delete from aren't known until deep
5896  * within an unrelated codepath.
5897  *
5898  * ocfs2_extent_block structures are a good example of this - an inode
5899  * btree could have been grown by any number of nodes each allocating
5900  * out of their own suballoc inode.
5901  *
5902  * These structures allow the delay of block de-allocation until a
5903  * later time, when locking of multiple cluster inodes won't cause
5904  * deadlock.
5905  */
5906
5907 /*
5908  * Describes a single block free from a suballocator
5909  */
5910 struct ocfs2_cached_block_free {
5911         struct ocfs2_cached_block_free          *free_next;
5912         u64                                     free_blk;
5913         unsigned int                            free_bit;
5914 };
5915
5916 struct ocfs2_per_slot_free_list {
5917         struct ocfs2_per_slot_free_list         *f_next_suballocator;
5918         int                                     f_inode_type;
5919         int                                     f_slot;
5920         struct ocfs2_cached_block_free          *f_first;
5921 };
5922
5923 static int ocfs2_free_cached_items(struct ocfs2_super *osb,
5924                                    int sysfile_type,
5925                                    int slot,
5926                                    struct ocfs2_cached_block_free *head)
5927 {
5928         int ret;
5929         u64 bg_blkno;
5930         handle_t *handle;
5931         struct inode *inode;
5932         struct buffer_head *di_bh = NULL;
5933         struct ocfs2_cached_block_free *tmp;
5934
5935         inode = ocfs2_get_system_file_inode(osb, sysfile_type, slot);
5936         if (!inode) {
5937                 ret = -EINVAL;
5938                 mlog_errno(ret);
5939                 goto out;
5940         }
5941
5942         mutex_lock(&inode->i_mutex);
5943
5944         ret = ocfs2_inode_lock(inode, &di_bh, 1);
5945         if (ret) {
5946                 mlog_errno(ret);
5947                 goto out_mutex;
5948         }
5949
5950         handle = ocfs2_start_trans(osb, OCFS2_SUBALLOC_FREE);
5951         if (IS_ERR(handle)) {
5952                 ret = PTR_ERR(handle);
5953                 mlog_errno(ret);
5954                 goto out_unlock;
5955         }
5956
5957         while (head) {
5958                 bg_blkno = ocfs2_which_suballoc_group(head->free_blk,
5959                                                       head->free_bit);
5960                 mlog(0, "Free bit: (bit %u, blkno %llu)\n",
5961                      head->free_bit, (unsigned long long)head->free_blk);
5962
5963                 ret = ocfs2_free_suballoc_bits(handle, inode, di_bh,
5964                                                head->free_bit, bg_blkno, 1);
5965                 if (ret) {
5966                         mlog_errno(ret);
5967                         goto out_journal;
5968                 }
5969
5970                 ret = ocfs2_extend_trans(handle, OCFS2_SUBALLOC_FREE);
5971                 if (ret) {
5972                         mlog_errno(ret);
5973                         goto out_journal;
5974                 }
5975
5976                 tmp = head;
5977                 head = head->free_next;
5978                 kfree(tmp);
5979         }
5980
5981 out_journal:
5982         ocfs2_commit_trans(osb, handle);
5983
5984 out_unlock:
5985         ocfs2_inode_unlock(inode, 1);
5986         brelse(di_bh);
5987 out_mutex:
5988         mutex_unlock(&inode->i_mutex);
5989         iput(inode);
5990 out:
5991         while(head) {
5992                 /* Premature exit may have left some dangling items. */
5993                 tmp = head;
5994                 head = head->free_next;
5995                 kfree(tmp);
5996         }
5997
5998         return ret;
5999 }
6000
6001 int ocfs2_run_deallocs(struct ocfs2_super *osb,
6002                        struct ocfs2_cached_dealloc_ctxt *ctxt)
6003 {
6004         int ret = 0, ret2;
6005         struct ocfs2_per_slot_free_list *fl;
6006
6007         if (!ctxt)
6008                 return 0;
6009
6010         while (ctxt->c_first_suballocator) {
6011                 fl = ctxt->c_first_suballocator;
6012
6013                 if (fl->f_first) {
6014                         mlog(0, "Free items: (type %u, slot %d)\n",
6015                              fl->f_inode_type, fl->f_slot);
6016                         ret2 = ocfs2_free_cached_items(osb, fl->f_inode_type,
6017                                                        fl->f_slot, fl->f_first);
6018                         if (ret2)
6019                                 mlog_errno(ret2);
6020                         if (!ret)
6021                                 ret = ret2;
6022                 }
6023
6024                 ctxt->c_first_suballocator = fl->f_next_suballocator;
6025                 kfree(fl);
6026         }
6027
6028         return ret;
6029 }
6030
6031 static struct ocfs2_per_slot_free_list *
6032 ocfs2_find_per_slot_free_list(int type,
6033                               int slot,
6034                               struct ocfs2_cached_dealloc_ctxt *ctxt)
6035 {
6036         struct ocfs2_per_slot_free_list *fl = ctxt->c_first_suballocator;
6037
6038         while (fl) {
6039                 if (fl->f_inode_type == type && fl->f_slot == slot)
6040                         return fl;
6041
6042                 fl = fl->f_next_suballocator;
6043         }
6044
6045         fl = kmalloc(sizeof(*fl), GFP_NOFS);
6046         if (fl) {
6047                 fl->f_inode_type = type;
6048                 fl->f_slot = slot;
6049                 fl->f_first = NULL;
6050                 fl->f_next_suballocator = ctxt->c_first_suballocator;
6051
6052                 ctxt->c_first_suballocator = fl;
6053         }
6054         return fl;
6055 }
6056
6057 static int ocfs2_cache_block_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt,
6058                                      int type, int slot, u64 blkno,
6059                                      unsigned int bit)
6060 {
6061         int ret;
6062         struct ocfs2_per_slot_free_list *fl;
6063         struct ocfs2_cached_block_free *item;
6064
6065         fl = ocfs2_find_per_slot_free_list(type, slot, ctxt);
6066         if (fl == NULL) {
6067                 ret = -ENOMEM;
6068                 mlog_errno(ret);
6069                 goto out;
6070         }
6071
6072         item = kmalloc(sizeof(*item), GFP_NOFS);
6073         if (item == NULL) {
6074                 ret = -ENOMEM;
6075                 mlog_errno(ret);
6076                 goto out;
6077         }
6078
6079         mlog(0, "Insert: (type %d, slot %u, bit %u, blk %llu)\n",
6080              type, slot, bit, (unsigned long long)blkno);
6081
6082         item->free_blk = blkno;
6083         item->free_bit = bit;
6084         item->free_next = fl->f_first;
6085
6086         fl->f_first = item;
6087
6088         ret = 0;
6089 out:
6090         return ret;
6091 }
6092
6093 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
6094                                          struct ocfs2_extent_block *eb)
6095 {
6096         return ocfs2_cache_block_dealloc(ctxt, EXTENT_ALLOC_SYSTEM_INODE,
6097                                          le16_to_cpu(eb->h_suballoc_slot),
6098                                          le64_to_cpu(eb->h_blkno),
6099                                          le16_to_cpu(eb->h_suballoc_bit));
6100 }
6101
6102 /* This function will figure out whether the currently last extent
6103  * block will be deleted, and if it will, what the new last extent
6104  * block will be so we can update his h_next_leaf_blk field, as well
6105  * as the dinodes i_last_eb_blk */
6106 static int ocfs2_find_new_last_ext_blk(struct inode *inode,
6107                                        unsigned int clusters_to_del,
6108                                        struct ocfs2_path *path,
6109                                        struct buffer_head **new_last_eb)
6110 {
6111         int next_free, ret = 0;
6112         u32 cpos;
6113         struct ocfs2_extent_rec *rec;
6114         struct ocfs2_extent_block *eb;
6115         struct ocfs2_extent_list *el;
6116         struct buffer_head *bh = NULL;
6117
6118         *new_last_eb = NULL;
6119
6120         /* we have no tree, so of course, no last_eb. */
6121         if (!path->p_tree_depth)
6122                 goto out;
6123
6124         /* trunc to zero special case - this makes tree_depth = 0
6125          * regardless of what it is.  */
6126         if (OCFS2_I(inode)->ip_clusters == clusters_to_del)
6127                 goto out;
6128
6129         el = path_leaf_el(path);
6130         BUG_ON(!el->l_next_free_rec);
6131
6132         /*
6133          * Make sure that this extent list will actually be empty
6134          * after we clear away the data. We can shortcut out if
6135          * there's more than one non-empty extent in the
6136          * list. Otherwise, a check of the remaining extent is
6137          * necessary.
6138          */
6139         next_free = le16_to_cpu(el->l_next_free_rec);
6140         rec = NULL;
6141         if (ocfs2_is_empty_extent(&el->l_recs[0])) {
6142                 if (next_free > 2)
6143                         goto out;
6144
6145                 /* We may have a valid extent in index 1, check it. */
6146                 if (next_free == 2)
6147                         rec = &el->l_recs[1];
6148
6149                 /*
6150                  * Fall through - no more nonempty extents, so we want
6151                  * to delete this leaf.
6152                  */
6153         } else {
6154                 if (next_free > 1)
6155                         goto out;
6156
6157                 rec = &el->l_recs[0];
6158         }
6159
6160         if (rec) {
6161                 /*
6162                  * Check it we'll only be trimming off the end of this
6163                  * cluster.
6164                  */
6165                 if (le16_to_cpu(rec->e_leaf_clusters) > clusters_to_del)
6166                         goto out;
6167         }
6168
6169         ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, &cpos);
6170         if (ret) {
6171                 mlog_errno(ret);
6172                 goto out;
6173         }
6174
6175         ret = ocfs2_find_leaf(inode, path_root_el(path), cpos, &bh);
6176         if (ret) {
6177                 mlog_errno(ret);
6178                 goto out;
6179         }
6180
6181         eb = (struct ocfs2_extent_block *) bh->b_data;
6182         el = &eb->h_list;
6183         if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
6184                 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
6185                 ret = -EROFS;
6186                 goto out;
6187         }
6188
6189         *new_last_eb = bh;
6190         get_bh(*new_last_eb);
6191         mlog(0, "returning block %llu, (cpos: %u)\n",
6192              (unsigned long long)le64_to_cpu(eb->h_blkno), cpos);
6193 out:
6194         brelse(bh);
6195
6196         return ret;
6197 }
6198
6199 /*
6200  * Trim some clusters off the rightmost edge of a tree. Only called
6201  * during truncate.
6202  *
6203  * The caller needs to:
6204  *   - start journaling of each path component.
6205  *   - compute and fully set up any new last ext block
6206  */
6207 static int ocfs2_trim_tree(struct inode *inode, struct ocfs2_path *path,
6208                            handle_t *handle, struct ocfs2_truncate_context *tc,
6209                            u32 clusters_to_del, u64 *delete_start)
6210 {
6211         int ret, i, index = path->p_tree_depth;
6212         u32 new_edge = 0;
6213         u64 deleted_eb = 0;
6214         struct buffer_head *bh;
6215         struct ocfs2_extent_list *el;
6216         struct ocfs2_extent_rec *rec;
6217
6218         *delete_start = 0;
6219
6220         while (index >= 0) {
6221                 bh = path->p_node[index].bh;
6222                 el = path->p_node[index].el;
6223
6224                 mlog(0, "traveling tree (index = %d, block = %llu)\n",
6225                      index,  (unsigned long long)bh->b_blocknr);
6226
6227                 BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0);
6228
6229                 if (index !=
6230                     (path->p_tree_depth - le16_to_cpu(el->l_tree_depth))) {
6231                         ocfs2_error(inode->i_sb,
6232                                     "Inode %lu has invalid ext. block %llu",
6233                                     inode->i_ino,
6234                                     (unsigned long long)bh->b_blocknr);
6235                         ret = -EROFS;
6236                         goto out;
6237                 }
6238
6239 find_tail_record:
6240                 i = le16_to_cpu(el->l_next_free_rec) - 1;
6241                 rec = &el->l_recs[i];
6242
6243                 mlog(0, "Extent list before: record %d: (%u, %u, %llu), "
6244                      "next = %u\n", i, le32_to_cpu(rec->e_cpos),
6245                      ocfs2_rec_clusters(el, rec),
6246                      (unsigned long long)le64_to_cpu(rec->e_blkno),
6247                      le16_to_cpu(el->l_next_free_rec));
6248
6249                 BUG_ON(ocfs2_rec_clusters(el, rec) < clusters_to_del);
6250
6251                 if (le16_to_cpu(el->l_tree_depth) == 0) {
6252                         /*
6253                          * If the leaf block contains a single empty
6254                          * extent and no records, we can just remove
6255                          * the block.
6256                          */
6257                         if (i == 0 && ocfs2_is_empty_extent(rec)) {
6258                                 memset(rec, 0,
6259                                        sizeof(struct ocfs2_extent_rec));
6260                                 el->l_next_free_rec = cpu_to_le16(0);
6261
6262                                 goto delete;
6263                         }
6264
6265                         /*
6266                          * Remove any empty extents by shifting things
6267                          * left. That should make life much easier on
6268                          * the code below. This condition is rare
6269                          * enough that we shouldn't see a performance
6270                          * hit.
6271                          */
6272                         if (ocfs2_is_empty_extent(&el->l_recs[0])) {
6273                                 le16_add_cpu(&el->l_next_free_rec, -1);
6274
6275                                 for(i = 0;
6276                                     i < le16_to_cpu(el->l_next_free_rec); i++)
6277                                         el->l_recs[i] = el->l_recs[i + 1];
6278
6279                                 memset(&el->l_recs[i], 0,
6280                                        sizeof(struct ocfs2_extent_rec));
6281
6282                                 /*
6283                                  * We've modified our extent list. The
6284                                  * simplest way to handle this change
6285                                  * is to being the search from the
6286                                  * start again.
6287                                  */
6288                                 goto find_tail_record;
6289                         }
6290
6291                         le16_add_cpu(&rec->e_leaf_clusters, -clusters_to_del);
6292
6293                         /*
6294                          * We'll use "new_edge" on our way back up the
6295                          * tree to know what our rightmost cpos is.
6296                          */
6297                         new_edge = le16_to_cpu(rec->e_leaf_clusters);
6298                         new_edge += le32_to_cpu(rec->e_cpos);
6299
6300                         /*
6301                          * The caller will use this to delete data blocks.
6302                          */
6303                         *delete_start = le64_to_cpu(rec->e_blkno)
6304                                 + ocfs2_clusters_to_blocks(inode->i_sb,
6305                                         le16_to_cpu(rec->e_leaf_clusters));
6306
6307                         /*
6308                          * If it's now empty, remove this record.
6309                          */
6310                         if (le16_to_cpu(rec->e_leaf_clusters) == 0) {
6311                                 memset(rec, 0,
6312                                        sizeof(struct ocfs2_extent_rec));
6313                                 le16_add_cpu(&el->l_next_free_rec, -1);
6314                         }
6315                 } else {
6316                         if (le64_to_cpu(rec->e_blkno) == deleted_eb) {
6317                                 memset(rec, 0,
6318                                        sizeof(struct ocfs2_extent_rec));
6319                                 le16_add_cpu(&el->l_next_free_rec, -1);
6320
6321                                 goto delete;
6322                         }
6323
6324                         /* Can this actually happen? */
6325                         if (le16_to_cpu(el->l_next_free_rec) == 0)
6326                                 goto delete;
6327
6328                         /*
6329                          * We never actually deleted any clusters
6330                          * because our leaf was empty. There's no
6331                          * reason to adjust the rightmost edge then.
6332                          */
6333                         if (new_edge == 0)
6334                                 goto delete;
6335
6336                         rec->e_int_clusters = cpu_to_le32(new_edge);
6337                         le32_add_cpu(&rec->e_int_clusters,
6338                                      -le32_to_cpu(rec->e_cpos));
6339
6340                          /*
6341                           * A deleted child record should have been
6342                           * caught above.
6343                           */
6344                          BUG_ON(le32_to_cpu(rec->e_int_clusters) == 0);
6345                 }
6346
6347 delete:
6348                 ret = ocfs2_journal_dirty(handle, bh);
6349                 if (ret) {
6350                         mlog_errno(ret);
6351                         goto out;
6352                 }
6353
6354                 mlog(0, "extent list container %llu, after: record %d: "
6355                      "(%u, %u, %llu), next = %u.\n",
6356                      (unsigned long long)bh->b_blocknr, i,
6357                      le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec),
6358                      (unsigned long long)le64_to_cpu(rec->e_blkno),
6359                      le16_to_cpu(el->l_next_free_rec));
6360
6361                 /*
6362                  * We must be careful to only attempt delete of an
6363                  * extent block (and not the root inode block).
6364                  */
6365                 if (index > 0 && le16_to_cpu(el->l_next_free_rec) == 0) {
6366                         struct ocfs2_extent_block *eb =
6367                                 (struct ocfs2_extent_block *)bh->b_data;
6368
6369                         /*
6370                          * Save this for use when processing the
6371                          * parent block.
6372                          */
6373                         deleted_eb = le64_to_cpu(eb->h_blkno);
6374
6375                         mlog(0, "deleting this extent block.\n");
6376
6377                         ocfs2_remove_from_cache(inode, bh);
6378
6379                         BUG_ON(ocfs2_rec_clusters(el, &el->l_recs[0]));
6380                         BUG_ON(le32_to_cpu(el->l_recs[0].e_cpos));
6381                         BUG_ON(le64_to_cpu(el->l_recs[0].e_blkno));
6382
6383                         ret = ocfs2_cache_extent_block_free(&tc->tc_dealloc, eb);
6384                         /* An error here is not fatal. */
6385                         if (ret < 0)
6386                                 mlog_errno(ret);
6387                 } else {
6388                         deleted_eb = 0;
6389                 }
6390
6391                 index--;
6392         }
6393
6394         ret = 0;
6395 out:
6396         return ret;
6397 }
6398
6399 static int ocfs2_do_truncate(struct ocfs2_super *osb,
6400                              unsigned int clusters_to_del,
6401                              struct inode *inode,
6402                              struct buffer_head *fe_bh,
6403                              handle_t *handle,
6404                              struct ocfs2_truncate_context *tc,
6405                              struct ocfs2_path *path)
6406 {
6407         int status;
6408         struct ocfs2_dinode *fe;
6409         struct ocfs2_extent_block *last_eb = NULL;
6410         struct ocfs2_extent_list *el;
6411         struct buffer_head *last_eb_bh = NULL;
6412         u64 delete_blk = 0;
6413
6414         fe = (struct ocfs2_dinode *) fe_bh->b_data;
6415
6416         status = ocfs2_find_new_last_ext_blk(inode, clusters_to_del,
6417                                              path, &last_eb_bh);
6418         if (status < 0) {
6419                 mlog_errno(status);
6420                 goto bail;
6421         }
6422
6423         /*
6424          * Each component will be touched, so we might as well journal
6425          * here to avoid having to handle errors later.
6426          */
6427         status = ocfs2_journal_access_path(inode, handle, path);
6428         if (status < 0) {
6429                 mlog_errno(status);
6430                 goto bail;
6431         }
6432
6433         if (last_eb_bh) {
6434                 status = ocfs2_journal_access(handle, inode, last_eb_bh,
6435                                               OCFS2_JOURNAL_ACCESS_WRITE);
6436                 if (status < 0) {
6437                         mlog_errno(status);
6438                         goto bail;
6439                 }
6440
6441                 last_eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
6442         }
6443
6444         el = &(fe->id2.i_list);
6445
6446         /*
6447          * Lower levels depend on this never happening, but it's best
6448          * to check it up here before changing the tree.
6449          */
6450         if (el->l_tree_depth && el->l_recs[0].e_int_clusters == 0) {
6451                 ocfs2_error(inode->i_sb,
6452                             "Inode %lu has an empty extent record, depth %u\n",
6453                             inode->i_ino, le16_to_cpu(el->l_tree_depth));
6454                 status = -EROFS;
6455                 goto bail;
6456         }
6457
6458         spin_lock(&OCFS2_I(inode)->ip_lock);
6459         OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters) -
6460                                       clusters_to_del;
6461         spin_unlock(&OCFS2_I(inode)->ip_lock);
6462         le32_add_cpu(&fe->i_clusters, -clusters_to_del);
6463         inode->i_blocks = ocfs2_inode_sector_count(inode);
6464
6465         status = ocfs2_trim_tree(inode, path, handle, tc,
6466                                  clusters_to_del, &delete_blk);
6467         if (status) {
6468                 mlog_errno(status);
6469                 goto bail;
6470         }
6471
6472         if (le32_to_cpu(fe->i_clusters) == 0) {
6473                 /* trunc to zero is a special case. */
6474                 el->l_tree_depth = 0;
6475                 fe->i_last_eb_blk = 0;
6476         } else if (last_eb)
6477                 fe->i_last_eb_blk = last_eb->h_blkno;
6478
6479         status = ocfs2_journal_dirty(handle, fe_bh);
6480         if (status < 0) {
6481                 mlog_errno(status);
6482                 goto bail;
6483         }
6484
6485         if (last_eb) {
6486                 /* If there will be a new last extent block, then by
6487                  * definition, there cannot be any leaves to the right of
6488                  * him. */
6489                 last_eb->h_next_leaf_blk = 0;
6490                 status = ocfs2_journal_dirty(handle, last_eb_bh);
6491                 if (status < 0) {
6492                         mlog_errno(status);
6493                         goto bail;
6494                 }
6495         }
6496
6497         if (delete_blk) {
6498                 status = ocfs2_truncate_log_append(osb, handle, delete_blk,
6499                                                    clusters_to_del);
6500                 if (status < 0) {
6501                         mlog_errno(status);
6502                         goto bail;
6503                 }
6504         }
6505         status = 0;
6506 bail:
6507
6508         mlog_exit(status);
6509         return status;
6510 }
6511
6512 static int ocfs2_writeback_zero_func(handle_t *handle, struct buffer_head *bh)
6513 {
6514         set_buffer_uptodate(bh);
6515         mark_buffer_dirty(bh);
6516         return 0;
6517 }
6518
6519 static int ocfs2_ordered_zero_func(handle_t *handle, struct buffer_head *bh)
6520 {
6521         set_buffer_uptodate(bh);
6522         mark_buffer_dirty(bh);
6523         return ocfs2_journal_dirty_data(handle, bh);
6524 }
6525
6526 static void ocfs2_map_and_dirty_page(struct inode *inode, handle_t *handle,
6527                                      unsigned int from, unsigned int to,
6528                                      struct page *page, int zero, u64 *phys)
6529 {
6530         int ret, partial = 0;
6531
6532         ret = ocfs2_map_page_blocks(page, phys, inode, from, to, 0);
6533         if (ret)
6534                 mlog_errno(ret);
6535
6536         if (zero)
6537                 zero_user_segment(page, from, to);
6538
6539         /*
6540          * Need to set the buffers we zero'd into uptodate
6541          * here if they aren't - ocfs2_map_page_blocks()
6542          * might've skipped some
6543          */
6544         if (ocfs2_should_order_data(inode)) {
6545                 ret = walk_page_buffers(handle,
6546                                         page_buffers(page),
6547                                         from, to, &partial,
6548                                         ocfs2_ordered_zero_func);
6549                 if (ret < 0)
6550                         mlog_errno(ret);
6551         } else {
6552                 ret = walk_page_buffers(handle, page_buffers(page),
6553                                         from, to, &partial,
6554                                         ocfs2_writeback_zero_func);
6555                 if (ret < 0)
6556                         mlog_errno(ret);
6557         }
6558
6559         if (!partial)
6560                 SetPageUptodate(page);
6561
6562         flush_dcache_page(page);
6563 }
6564
6565 static void ocfs2_zero_cluster_pages(struct inode *inode, loff_t start,
6566                                      loff_t end, struct page **pages,
6567                                      int numpages, u64 phys, handle_t *handle)
6568 {
6569         int i;
6570         struct page *page;
6571         unsigned int from, to = PAGE_CACHE_SIZE;
6572         struct super_block *sb = inode->i_sb;
6573
6574         BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb)));
6575
6576         if (numpages == 0)
6577                 goto out;
6578
6579         to = PAGE_CACHE_SIZE;
6580         for(i = 0; i < numpages; i++) {
6581                 page = pages[i];
6582
6583                 from = start & (PAGE_CACHE_SIZE - 1);
6584                 if ((end >> PAGE_CACHE_SHIFT) == page->index)
6585                         to = end & (PAGE_CACHE_SIZE - 1);
6586
6587                 BUG_ON(from > PAGE_CACHE_SIZE);
6588                 BUG_ON(to > PAGE_CACHE_SIZE);
6589
6590                 ocfs2_map_and_dirty_page(inode, handle, from, to, page, 1,
6591                                          &phys);
6592
6593                 start = (page->index + 1) << PAGE_CACHE_SHIFT;
6594         }
6595 out:
6596         if (pages)
6597                 ocfs2_unlock_and_free_pages(pages, numpages);
6598 }
6599
6600 static int ocfs2_grab_eof_pages(struct inode *inode, loff_t start, loff_t end,
6601                                 struct page **pages, int *num)
6602 {
6603         int numpages, ret = 0;
6604         struct super_block *sb = inode->i_sb;
6605         struct address_space *mapping = inode->i_mapping;
6606         unsigned long index;
6607         loff_t last_page_bytes;
6608
6609         BUG_ON(start > end);
6610
6611         BUG_ON(start >> OCFS2_SB(sb)->s_clustersize_bits !=
6612                (end - 1) >> OCFS2_SB(sb)->s_clustersize_bits);
6613
6614         numpages = 0;
6615         last_page_bytes = PAGE_ALIGN(end);
6616         index = start >> PAGE_CACHE_SHIFT;
6617         do {
6618                 pages[numpages] = grab_cache_page(mapping, index);
6619                 if (!pages[numpages]) {
6620                         ret = -ENOMEM;
6621                         mlog_errno(ret);
6622                         goto out;
6623                 }
6624
6625                 numpages++;
6626                 index++;
6627         } while (index < (last_page_bytes >> PAGE_CACHE_SHIFT));
6628
6629 out:
6630         if (ret != 0) {
6631                 if (pages)
6632                         ocfs2_unlock_and_free_pages(pages, numpages);
6633                 numpages = 0;
6634         }
6635
6636         *num = numpages;
6637
6638         return ret;
6639 }
6640
6641 /*
6642  * Zero the area past i_size but still within an allocated
6643  * cluster. This avoids exposing nonzero data on subsequent file
6644  * extends.
6645  *
6646  * We need to call this before i_size is updated on the inode because
6647  * otherwise block_write_full_page() will skip writeout of pages past
6648  * i_size. The new_i_size parameter is passed for this reason.
6649  */
6650 int ocfs2_zero_range_for_truncate(struct inode *inode, handle_t *handle,
6651                                   u64 range_start, u64 range_end)
6652 {
6653         int ret = 0, numpages;
6654         struct page **pages = NULL;
6655         u64 phys;
6656         unsigned int ext_flags;
6657         struct super_block *sb = inode->i_sb;
6658
6659         /*
6660          * File systems which don't support sparse files zero on every
6661          * extend.
6662          */
6663         if (!ocfs2_sparse_alloc(OCFS2_SB(sb)))
6664                 return 0;
6665
6666         pages = kcalloc(ocfs2_pages_per_cluster(sb),
6667                         sizeof(struct page *), GFP_NOFS);
6668         if (pages == NULL) {
6669                 ret = -ENOMEM;
6670                 mlog_errno(ret);
6671                 goto out;
6672         }
6673
6674         if (range_start == range_end)
6675                 goto out;
6676
6677         ret = ocfs2_extent_map_get_blocks(inode,
6678                                           range_start >> sb->s_blocksize_bits,
6679                                           &phys, NULL, &ext_flags);
6680         if (ret) {
6681                 mlog_errno(ret);
6682                 goto out;
6683         }
6684
6685         /*
6686          * Tail is a hole, or is marked unwritten. In either case, we
6687          * can count on read and write to return/push zero's.
6688          */
6689         if (phys == 0 || ext_flags & OCFS2_EXT_UNWRITTEN)
6690                 goto out;
6691
6692         ret = ocfs2_grab_eof_pages(inode, range_start, range_end, pages,
6693                                    &numpages);
6694         if (ret) {
6695                 mlog_errno(ret);
6696                 goto out;
6697         }
6698
6699         ocfs2_zero_cluster_pages(inode, range_start, range_end, pages,
6700                                  numpages, phys, handle);
6701
6702         /*
6703          * Initiate writeout of the pages we zero'd here. We don't
6704          * wait on them - the truncate_inode_pages() call later will
6705          * do that for us.
6706          */
6707         ret = do_sync_mapping_range(inode->i_mapping, range_start,
6708                                     range_end - 1, SYNC_FILE_RANGE_WRITE);
6709         if (ret)
6710                 mlog_errno(ret);
6711
6712 out:
6713         if (pages)
6714                 kfree(pages);
6715
6716         return ret;
6717 }
6718
6719 static void ocfs2_zero_dinode_id2_with_xattr(struct inode *inode,
6720                                              struct ocfs2_dinode *di)
6721 {
6722         unsigned int blocksize = 1 << inode->i_sb->s_blocksize_bits;
6723         unsigned int xattrsize = le16_to_cpu(di->i_xattr_inline_size);
6724
6725         if (le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_XATTR_FL)
6726                 memset(&di->id2, 0, blocksize -
6727                                     offsetof(struct ocfs2_dinode, id2) -
6728                                     xattrsize);
6729         else
6730                 memset(&di->id2, 0, blocksize -
6731                                     offsetof(struct ocfs2_dinode, id2));
6732 }
6733
6734 void ocfs2_dinode_new_extent_list(struct inode *inode,
6735                                   struct ocfs2_dinode *di)
6736 {
6737         ocfs2_zero_dinode_id2_with_xattr(inode, di);
6738         di->id2.i_list.l_tree_depth = 0;
6739         di->id2.i_list.l_next_free_rec = 0;
6740         di->id2.i_list.l_count = cpu_to_le16(
6741                 ocfs2_extent_recs_per_inode_with_xattr(inode->i_sb, di));
6742 }
6743
6744 void ocfs2_set_inode_data_inline(struct inode *inode, struct ocfs2_dinode *di)
6745 {
6746         struct ocfs2_inode_info *oi = OCFS2_I(inode);
6747         struct ocfs2_inline_data *idata = &di->id2.i_data;
6748
6749         spin_lock(&oi->ip_lock);
6750         oi->ip_dyn_features |= OCFS2_INLINE_DATA_FL;
6751         di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
6752         spin_unlock(&oi->ip_lock);
6753
6754         /*
6755          * We clear the entire i_data structure here so that all
6756          * fields can be properly initialized.
6757          */
6758         ocfs2_zero_dinode_id2_with_xattr(inode, di);
6759
6760         idata->id_count = cpu_to_le16(
6761                         ocfs2_max_inline_data_with_xattr(inode->i_sb, di));
6762 }
6763
6764 int ocfs2_convert_inline_data_to_extents(struct inode *inode,
6765                                          struct buffer_head *di_bh)
6766 {
6767         int ret, i, has_data, num_pages = 0;
6768         handle_t *handle;
6769         u64 uninitialized_var(block);
6770         struct ocfs2_inode_info *oi = OCFS2_I(inode);
6771         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
6772         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
6773         struct ocfs2_alloc_context *data_ac = NULL;
6774         struct page **pages = NULL;
6775         loff_t end = osb->s_clustersize;
6776
6777         has_data = i_size_read(inode) ? 1 : 0;
6778
6779         if (has_data) {
6780                 pages = kcalloc(ocfs2_pages_per_cluster(osb->sb),
6781                                 sizeof(struct page *), GFP_NOFS);
6782                 if (pages == NULL) {
6783                         ret = -ENOMEM;
6784                         mlog_errno(ret);
6785                         goto out;
6786                 }
6787
6788                 ret = ocfs2_reserve_clusters(osb, 1, &data_ac);
6789                 if (ret) {
6790                         mlog_errno(ret);
6791                         goto out;
6792                 }
6793         }
6794
6795         handle = ocfs2_start_trans(osb, OCFS2_INLINE_TO_EXTENTS_CREDITS);
6796         if (IS_ERR(handle)) {
6797                 ret = PTR_ERR(handle);
6798                 mlog_errno(ret);
6799                 goto out_unlock;
6800         }
6801
6802         ret = ocfs2_journal_access(handle, inode, di_bh,
6803                                    OCFS2_JOURNAL_ACCESS_WRITE);
6804         if (ret) {
6805                 mlog_errno(ret);
6806                 goto out_commit;
6807         }
6808
6809         if (has_data) {
6810                 u32 bit_off, num;
6811                 unsigned int page_end;
6812                 u64 phys;
6813
6814                 ret = ocfs2_claim_clusters(osb, handle, data_ac, 1, &bit_off,
6815                                            &num);
6816                 if (ret) {
6817                         mlog_errno(ret);
6818                         goto out_commit;
6819                 }
6820
6821                 /*
6822                  * Save two copies, one for insert, and one that can
6823                  * be changed by ocfs2_map_and_dirty_page() below.
6824                  */
6825                 block = phys = ocfs2_clusters_to_blocks(inode->i_sb, bit_off);
6826
6827                 /*
6828                  * Non sparse file systems zero on extend, so no need
6829                  * to do that now.
6830                  */
6831                 if (!ocfs2_sparse_alloc(osb) &&
6832                     PAGE_CACHE_SIZE < osb->s_clustersize)
6833                         end = PAGE_CACHE_SIZE;
6834
6835                 ret = ocfs2_grab_eof_pages(inode, 0, end, pages, &num_pages);
6836                 if (ret) {
6837                         mlog_errno(ret);
6838                         goto out_commit;
6839                 }
6840
6841                 /*
6842                  * This should populate the 1st page for us and mark
6843                  * it up to date.
6844                  */
6845                 ret = ocfs2_read_inline_data(inode, pages[0], di_bh);
6846                 if (ret) {
6847                         mlog_errno(ret);
6848                         goto out_commit;
6849                 }
6850
6851                 page_end = PAGE_CACHE_SIZE;
6852                 if (PAGE_CACHE_SIZE > osb->s_clustersize)
6853                         page_end = osb->s_clustersize;
6854
6855                 for (i = 0; i < num_pages; i++)
6856                         ocfs2_map_and_dirty_page(inode, handle, 0, page_end,
6857                                                  pages[i], i > 0, &phys);
6858         }
6859
6860         spin_lock(&oi->ip_lock);
6861         oi->ip_dyn_features &= ~OCFS2_INLINE_DATA_FL;
6862         di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
6863         spin_unlock(&oi->ip_lock);
6864
6865         ocfs2_dinode_new_extent_list(inode, di);
6866
6867         ocfs2_journal_dirty(handle, di_bh);
6868
6869         if (has_data) {
6870                 /*
6871                  * An error at this point should be extremely rare. If
6872                  * this proves to be false, we could always re-build
6873                  * the in-inode data from our pages.
6874                  */
6875                 ret = ocfs2_dinode_insert_extent(osb, handle, inode, di_bh,
6876                                                  0, block, 1, 0, NULL);
6877                 if (ret) {
6878                         mlog_errno(ret);
6879                         goto out_commit;
6880                 }
6881
6882                 inode->i_blocks = ocfs2_inode_sector_count(inode);
6883         }
6884
6885 out_commit:
6886         ocfs2_commit_trans(osb, handle);
6887
6888 out_unlock:
6889         if (data_ac)
6890                 ocfs2_free_alloc_context(data_ac);
6891
6892 out:
6893         if (pages) {
6894                 ocfs2_unlock_and_free_pages(pages, num_pages);
6895                 kfree(pages);
6896         }
6897
6898         return ret;
6899 }
6900
6901 /*
6902  * It is expected, that by the time you call this function,
6903  * inode->i_size and fe->i_size have been adjusted.
6904  *
6905  * WARNING: This will kfree the truncate context
6906  */
6907 int ocfs2_commit_truncate(struct ocfs2_super *osb,
6908                           struct inode *inode,
6909                           struct buffer_head *fe_bh,
6910                           struct ocfs2_truncate_context *tc)
6911 {
6912         int status, i, credits, tl_sem = 0;
6913         u32 clusters_to_del, new_highest_cpos, range;
6914         struct ocfs2_extent_list *el;
6915         handle_t *handle = NULL;
6916         struct inode *tl_inode = osb->osb_tl_inode;
6917         struct ocfs2_path *path = NULL;
6918         struct ocfs2_dinode *di = (struct ocfs2_dinode *)fe_bh->b_data;
6919
6920         mlog_entry_void();
6921
6922         new_highest_cpos = ocfs2_clusters_for_bytes(osb->sb,
6923                                                      i_size_read(inode));
6924
6925         path = ocfs2_new_path(fe_bh, &di->id2.i_list);
6926         if (!path) {
6927                 status = -ENOMEM;
6928                 mlog_errno(status);
6929                 goto bail;
6930         }
6931
6932         ocfs2_extent_map_trunc(inode, new_highest_cpos);
6933
6934 start:
6935         /*
6936          * Check that we still have allocation to delete.
6937          */
6938         if (OCFS2_I(inode)->ip_clusters == 0) {
6939                 status = 0;
6940                 goto bail;
6941         }
6942
6943         /*
6944          * Truncate always works against the rightmost tree branch.
6945          */
6946         status = ocfs2_find_path(inode, path, UINT_MAX);
6947         if (status) {
6948                 mlog_errno(status);
6949                 goto bail;
6950         }
6951
6952         mlog(0, "inode->ip_clusters = %u, tree_depth = %u\n",
6953              OCFS2_I(inode)->ip_clusters, path->p_tree_depth);
6954
6955         /*
6956          * By now, el will point to the extent list on the bottom most
6957          * portion of this tree. Only the tail record is considered in
6958          * each pass.
6959          *
6960          * We handle the following cases, in order:
6961          * - empty extent: delete the remaining branch
6962          * - remove the entire record
6963          * - remove a partial record
6964          * - no record needs to be removed (truncate has completed)
6965          */
6966         el = path_leaf_el(path);
6967         if (le16_to_cpu(el->l_next_free_rec) == 0) {
6968                 ocfs2_error(inode->i_sb,
6969                             "Inode %llu has empty extent block at %llu\n",
6970                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
6971                             (unsigned long long)path_leaf_bh(path)->b_blocknr);
6972                 status = -EROFS;
6973                 goto bail;
6974         }
6975
6976         i = le16_to_cpu(el->l_next_free_rec) - 1;
6977         range = le32_to_cpu(el->l_recs[i].e_cpos) +
6978                 ocfs2_rec_clusters(el, &el->l_recs[i]);
6979         if (i == 0 && ocfs2_is_empty_extent(&el->l_recs[i])) {
6980                 clusters_to_del = 0;
6981         } else if (le32_to_cpu(el->l_recs[i].e_cpos) >= new_highest_cpos) {
6982                 clusters_to_del = ocfs2_rec_clusters(el, &el->l_recs[i]);
6983         } else if (range > new_highest_cpos) {
6984                 clusters_to_del = (ocfs2_rec_clusters(el, &el->l_recs[i]) +
6985                                    le32_to_cpu(el->l_recs[i].e_cpos)) -
6986                                   new_highest_cpos;
6987         } else {
6988                 status = 0;
6989                 goto bail;
6990         }
6991
6992         mlog(0, "clusters_to_del = %u in this pass, tail blk=%llu\n",
6993              clusters_to_del, (unsigned long long)path_leaf_bh(path)->b_blocknr);
6994
6995         mutex_lock(&tl_inode->i_mutex);
6996         tl_sem = 1;
6997         /* ocfs2_truncate_log_needs_flush guarantees us at least one
6998          * record is free for use. If there isn't any, we flush to get
6999          * an empty truncate log.  */
7000         if (ocfs2_truncate_log_needs_flush(osb)) {
7001                 status = __ocfs2_flush_truncate_log(osb);
7002                 if (status < 0) {
7003                         mlog_errno(status);
7004                         goto bail;
7005                 }
7006         }
7007
7008         credits = ocfs2_calc_tree_trunc_credits(osb->sb, clusters_to_del,
7009                                                 (struct ocfs2_dinode *)fe_bh->b_data,
7010                                                 el);
7011         handle = ocfs2_start_trans(osb, credits);
7012         if (IS_ERR(handle)) {
7013                 status = PTR_ERR(handle);
7014                 handle = NULL;
7015                 mlog_errno(status);
7016                 goto bail;
7017         }
7018
7019         status = ocfs2_do_truncate(osb, clusters_to_del, inode, fe_bh, handle,
7020                                    tc, path);
7021         if (status < 0) {
7022                 mlog_errno(status);
7023                 goto bail;
7024         }
7025
7026         mutex_unlock(&tl_inode->i_mutex);
7027         tl_sem = 0;
7028
7029         ocfs2_commit_trans(osb, handle);
7030         handle = NULL;
7031
7032         ocfs2_reinit_path(path, 1);
7033
7034         /*
7035          * The check above will catch the case where we've truncated
7036          * away all allocation.
7037          */
7038         goto start;
7039
7040 bail:
7041
7042         ocfs2_schedule_truncate_log_flush(osb, 1);
7043
7044         if (tl_sem)
7045                 mutex_unlock(&tl_inode->i_mutex);
7046
7047         if (handle)
7048                 ocfs2_commit_trans(osb, handle);
7049
7050         ocfs2_run_deallocs(osb, &tc->tc_dealloc);
7051
7052         ocfs2_free_path(path);
7053
7054         /* This will drop the ext_alloc cluster lock for us */
7055         ocfs2_free_truncate_context(tc);
7056
7057         mlog_exit(status);
7058         return status;
7059 }
7060
7061 /*
7062  * Expects the inode to already be locked.
7063  */
7064 int ocfs2_prepare_truncate(struct ocfs2_super *osb,
7065                            struct inode *inode,
7066                            struct buffer_head *fe_bh,
7067                            struct ocfs2_truncate_context **tc)
7068 {
7069         int status;
7070         unsigned int new_i_clusters;
7071         struct ocfs2_dinode *fe;
7072         struct ocfs2_extent_block *eb;
7073         struct buffer_head *last_eb_bh = NULL;
7074
7075         mlog_entry_void();
7076
7077         *tc = NULL;
7078
7079         new_i_clusters = ocfs2_clusters_for_bytes(osb->sb,
7080                                                   i_size_read(inode));
7081         fe = (struct ocfs2_dinode *) fe_bh->b_data;
7082
7083         mlog(0, "fe->i_clusters = %u, new_i_clusters = %u, fe->i_size ="
7084              "%llu\n", le32_to_cpu(fe->i_clusters), new_i_clusters,
7085              (unsigned long long)le64_to_cpu(fe->i_size));
7086
7087         *tc = kzalloc(sizeof(struct ocfs2_truncate_context), GFP_KERNEL);
7088         if (!(*tc)) {
7089                 status = -ENOMEM;
7090                 mlog_errno(status);
7091                 goto bail;
7092         }
7093         ocfs2_init_dealloc_ctxt(&(*tc)->tc_dealloc);
7094
7095         if (fe->id2.i_list.l_tree_depth) {
7096                 status = ocfs2_read_block(osb, le64_to_cpu(fe->i_last_eb_blk),
7097                                           &last_eb_bh, OCFS2_BH_CACHED, inode);
7098                 if (status < 0) {
7099                         mlog_errno(status);
7100                         goto bail;
7101                 }
7102                 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
7103                 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
7104                         OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
7105
7106                         brelse(last_eb_bh);
7107                         status = -EIO;
7108                         goto bail;
7109                 }
7110         }
7111
7112         (*tc)->tc_last_eb_bh = last_eb_bh;
7113
7114         status = 0;
7115 bail:
7116         if (status < 0) {
7117                 if (*tc)
7118                         ocfs2_free_truncate_context(*tc);
7119                 *tc = NULL;
7120         }
7121         mlog_exit_void();
7122         return status;
7123 }
7124
7125 /*
7126  * 'start' is inclusive, 'end' is not.
7127  */
7128 int ocfs2_truncate_inline(struct inode *inode, struct buffer_head *di_bh,
7129                           unsigned int start, unsigned int end, int trunc)
7130 {
7131         int ret;
7132         unsigned int numbytes;
7133         handle_t *handle;
7134         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
7135         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
7136         struct ocfs2_inline_data *idata = &di->id2.i_data;
7137
7138         if (end > i_size_read(inode))
7139                 end = i_size_read(inode);
7140
7141         BUG_ON(start >= end);
7142
7143         if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) ||
7144             !(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL) ||
7145             !ocfs2_supports_inline_data(osb)) {
7146                 ocfs2_error(inode->i_sb,
7147                             "Inline data flags for inode %llu don't agree! "
7148                             "Disk: 0x%x, Memory: 0x%x, Superblock: 0x%x\n",
7149                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
7150                             le16_to_cpu(di->i_dyn_features),
7151                             OCFS2_I(inode)->ip_dyn_features,
7152                             osb->s_feature_incompat);
7153                 ret = -EROFS;
7154                 goto out;
7155         }
7156
7157         handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
7158         if (IS_ERR(handle)) {
7159                 ret = PTR_ERR(handle);
7160                 mlog_errno(ret);
7161                 goto out;
7162         }
7163
7164         ret = ocfs2_journal_access(handle, inode, di_bh,
7165                                    OCFS2_JOURNAL_ACCESS_WRITE);
7166         if (ret) {
7167                 mlog_errno(ret);
7168                 goto out_commit;
7169         }
7170
7171         numbytes = end - start;
7172         memset(idata->id_data + start, 0, numbytes);
7173
7174         /*
7175          * No need to worry about the data page here - it's been
7176          * truncated already and inline data doesn't need it for
7177          * pushing zero's to disk, so we'll let readpage pick it up
7178          * later.
7179          */
7180         if (trunc) {
7181                 i_size_write(inode, start);
7182                 di->i_size = cpu_to_le64(start);
7183         }
7184
7185         inode->i_blocks = ocfs2_inode_sector_count(inode);
7186         inode->i_ctime = inode->i_mtime = CURRENT_TIME;
7187
7188         di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec);
7189         di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
7190
7191         ocfs2_journal_dirty(handle, di_bh);
7192
7193 out_commit:
7194         ocfs2_commit_trans(osb, handle);
7195
7196 out:
7197         return ret;
7198 }
7199
7200 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc)
7201 {
7202         /*
7203          * The caller is responsible for completing deallocation
7204          * before freeing the context.
7205          */
7206         if (tc->tc_dealloc.c_first_suballocator != NULL)
7207                 mlog(ML_NOTICE,
7208                      "Truncate completion has non-empty dealloc context\n");
7209
7210         if (tc->tc_last_eb_bh)
7211                 brelse(tc->tc_last_eb_bh);
7212
7213         kfree(tc);
7214 }