ocfs2: ocfs2_rotate_subtree_left() doesn't need struct inode.
[safe/jmp/linux-2.6] / fs / ocfs2 / alloc.c
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * alloc.c
5  *
6  * Extent allocs and frees
7  *
8  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public
12  * License as published by the Free Software Foundation; either
13  * version 2 of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public
21  * License along with this program; if not, write to the
22  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23  * Boston, MA 021110-1307, USA.
24  */
25
26 #include <linux/fs.h>
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/swap.h>
31 #include <linux/quotaops.h>
32
33 #define MLOG_MASK_PREFIX ML_DISK_ALLOC
34 #include <cluster/masklog.h>
35
36 #include "ocfs2.h"
37
38 #include "alloc.h"
39 #include "aops.h"
40 #include "blockcheck.h"
41 #include "dlmglue.h"
42 #include "extent_map.h"
43 #include "inode.h"
44 #include "journal.h"
45 #include "localalloc.h"
46 #include "suballoc.h"
47 #include "sysfile.h"
48 #include "file.h"
49 #include "super.h"
50 #include "uptodate.h"
51 #include "xattr.h"
52
53 #include "buffer_head_io.h"
54
55
56 /*
57  * Operations for a specific extent tree type.
58  *
59  * To implement an on-disk btree (extent tree) type in ocfs2, add
60  * an ocfs2_extent_tree_operations structure and the matching
61  * ocfs2_init_<thingy>_extent_tree() function.  That's pretty much it
62  * for the allocation portion of the extent tree.
63  */
64 struct ocfs2_extent_tree_operations {
65         /*
66          * last_eb_blk is the block number of the right most leaf extent
67          * block.  Most on-disk structures containing an extent tree store
68          * this value for fast access.  The ->eo_set_last_eb_blk() and
69          * ->eo_get_last_eb_blk() operations access this value.  They are
70          *  both required.
71          */
72         void (*eo_set_last_eb_blk)(struct ocfs2_extent_tree *et,
73                                    u64 blkno);
74         u64 (*eo_get_last_eb_blk)(struct ocfs2_extent_tree *et);
75
76         /*
77          * The on-disk structure usually keeps track of how many total
78          * clusters are stored in this extent tree.  This function updates
79          * that value.  new_clusters is the delta, and must be
80          * added to the total.  Required.
81          */
82         void (*eo_update_clusters)(struct ocfs2_extent_tree *et,
83                                    u32 new_clusters);
84
85         /*
86          * If ->eo_insert_check() exists, it is called before rec is
87          * inserted into the extent tree.  It is optional.
88          */
89         int (*eo_insert_check)(struct ocfs2_extent_tree *et,
90                                struct ocfs2_extent_rec *rec);
91         int (*eo_sanity_check)(struct ocfs2_extent_tree *et);
92
93         /*
94          * --------------------------------------------------------------
95          * The remaining are internal to ocfs2_extent_tree and don't have
96          * accessor functions
97          */
98
99         /*
100          * ->eo_fill_root_el() takes et->et_object and sets et->et_root_el.
101          * It is required.
102          */
103         void (*eo_fill_root_el)(struct ocfs2_extent_tree *et);
104
105         /*
106          * ->eo_fill_max_leaf_clusters sets et->et_max_leaf_clusters if
107          * it exists.  If it does not, et->et_max_leaf_clusters is set
108          * to 0 (unlimited).  Optional.
109          */
110         void (*eo_fill_max_leaf_clusters)(struct ocfs2_extent_tree *et);
111 };
112
113
114 /*
115  * Pre-declare ocfs2_dinode_et_ops so we can use it as a sanity check
116  * in the methods.
117  */
118 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et);
119 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et,
120                                          u64 blkno);
121 static void ocfs2_dinode_update_clusters(struct ocfs2_extent_tree *et,
122                                          u32 clusters);
123 static int ocfs2_dinode_insert_check(struct ocfs2_extent_tree *et,
124                                      struct ocfs2_extent_rec *rec);
125 static int ocfs2_dinode_sanity_check(struct ocfs2_extent_tree *et);
126 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et);
127 static struct ocfs2_extent_tree_operations ocfs2_dinode_et_ops = {
128         .eo_set_last_eb_blk     = ocfs2_dinode_set_last_eb_blk,
129         .eo_get_last_eb_blk     = ocfs2_dinode_get_last_eb_blk,
130         .eo_update_clusters     = ocfs2_dinode_update_clusters,
131         .eo_insert_check        = ocfs2_dinode_insert_check,
132         .eo_sanity_check        = ocfs2_dinode_sanity_check,
133         .eo_fill_root_el        = ocfs2_dinode_fill_root_el,
134 };
135
136 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et,
137                                          u64 blkno)
138 {
139         struct ocfs2_dinode *di = et->et_object;
140
141         BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
142         di->i_last_eb_blk = cpu_to_le64(blkno);
143 }
144
145 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et)
146 {
147         struct ocfs2_dinode *di = et->et_object;
148
149         BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
150         return le64_to_cpu(di->i_last_eb_blk);
151 }
152
153 static void ocfs2_dinode_update_clusters(struct ocfs2_extent_tree *et,
154                                          u32 clusters)
155 {
156         struct ocfs2_inode_info *oi = cache_info_to_inode(et->et_ci);
157         struct ocfs2_dinode *di = et->et_object;
158
159         le32_add_cpu(&di->i_clusters, clusters);
160         spin_lock(&oi->ip_lock);
161         oi->ip_clusters = le32_to_cpu(di->i_clusters);
162         spin_unlock(&oi->ip_lock);
163 }
164
165 static int ocfs2_dinode_insert_check(struct ocfs2_extent_tree *et,
166                                      struct ocfs2_extent_rec *rec)
167 {
168         struct ocfs2_inode_info *oi = cache_info_to_inode(et->et_ci);
169         struct ocfs2_super *osb = OCFS2_SB(oi->vfs_inode.i_sb);
170
171         BUG_ON(oi->ip_dyn_features & OCFS2_INLINE_DATA_FL);
172         mlog_bug_on_msg(!ocfs2_sparse_alloc(osb) &&
173                         (oi->ip_clusters != le32_to_cpu(rec->e_cpos)),
174                         "Device %s, asking for sparse allocation: inode %llu, "
175                         "cpos %u, clusters %u\n",
176                         osb->dev_str,
177                         (unsigned long long)oi->ip_blkno,
178                         rec->e_cpos, oi->ip_clusters);
179
180         return 0;
181 }
182
183 static int ocfs2_dinode_sanity_check(struct ocfs2_extent_tree *et)
184 {
185         struct ocfs2_dinode *di = et->et_object;
186
187         BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
188         BUG_ON(!OCFS2_IS_VALID_DINODE(di));
189
190         return 0;
191 }
192
193 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et)
194 {
195         struct ocfs2_dinode *di = et->et_object;
196
197         et->et_root_el = &di->id2.i_list;
198 }
199
200
201 static void ocfs2_xattr_value_fill_root_el(struct ocfs2_extent_tree *et)
202 {
203         struct ocfs2_xattr_value_buf *vb = et->et_object;
204
205         et->et_root_el = &vb->vb_xv->xr_list;
206 }
207
208 static void ocfs2_xattr_value_set_last_eb_blk(struct ocfs2_extent_tree *et,
209                                               u64 blkno)
210 {
211         struct ocfs2_xattr_value_buf *vb = et->et_object;
212
213         vb->vb_xv->xr_last_eb_blk = cpu_to_le64(blkno);
214 }
215
216 static u64 ocfs2_xattr_value_get_last_eb_blk(struct ocfs2_extent_tree *et)
217 {
218         struct ocfs2_xattr_value_buf *vb = et->et_object;
219
220         return le64_to_cpu(vb->vb_xv->xr_last_eb_blk);
221 }
222
223 static void ocfs2_xattr_value_update_clusters(struct ocfs2_extent_tree *et,
224                                               u32 clusters)
225 {
226         struct ocfs2_xattr_value_buf *vb = et->et_object;
227
228         le32_add_cpu(&vb->vb_xv->xr_clusters, clusters);
229 }
230
231 static struct ocfs2_extent_tree_operations ocfs2_xattr_value_et_ops = {
232         .eo_set_last_eb_blk     = ocfs2_xattr_value_set_last_eb_blk,
233         .eo_get_last_eb_blk     = ocfs2_xattr_value_get_last_eb_blk,
234         .eo_update_clusters     = ocfs2_xattr_value_update_clusters,
235         .eo_fill_root_el        = ocfs2_xattr_value_fill_root_el,
236 };
237
238 static void ocfs2_xattr_tree_fill_root_el(struct ocfs2_extent_tree *et)
239 {
240         struct ocfs2_xattr_block *xb = et->et_object;
241
242         et->et_root_el = &xb->xb_attrs.xb_root.xt_list;
243 }
244
245 static void ocfs2_xattr_tree_fill_max_leaf_clusters(struct ocfs2_extent_tree *et)
246 {
247         struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
248         et->et_max_leaf_clusters =
249                 ocfs2_clusters_for_bytes(sb, OCFS2_MAX_XATTR_TREE_LEAF_SIZE);
250 }
251
252 static void ocfs2_xattr_tree_set_last_eb_blk(struct ocfs2_extent_tree *et,
253                                              u64 blkno)
254 {
255         struct ocfs2_xattr_block *xb = et->et_object;
256         struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root;
257
258         xt->xt_last_eb_blk = cpu_to_le64(blkno);
259 }
260
261 static u64 ocfs2_xattr_tree_get_last_eb_blk(struct ocfs2_extent_tree *et)
262 {
263         struct ocfs2_xattr_block *xb = et->et_object;
264         struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root;
265
266         return le64_to_cpu(xt->xt_last_eb_blk);
267 }
268
269 static void ocfs2_xattr_tree_update_clusters(struct ocfs2_extent_tree *et,
270                                              u32 clusters)
271 {
272         struct ocfs2_xattr_block *xb = et->et_object;
273
274         le32_add_cpu(&xb->xb_attrs.xb_root.xt_clusters, clusters);
275 }
276
277 static struct ocfs2_extent_tree_operations ocfs2_xattr_tree_et_ops = {
278         .eo_set_last_eb_blk     = ocfs2_xattr_tree_set_last_eb_blk,
279         .eo_get_last_eb_blk     = ocfs2_xattr_tree_get_last_eb_blk,
280         .eo_update_clusters     = ocfs2_xattr_tree_update_clusters,
281         .eo_fill_root_el        = ocfs2_xattr_tree_fill_root_el,
282         .eo_fill_max_leaf_clusters = ocfs2_xattr_tree_fill_max_leaf_clusters,
283 };
284
285 static void ocfs2_dx_root_set_last_eb_blk(struct ocfs2_extent_tree *et,
286                                           u64 blkno)
287 {
288         struct ocfs2_dx_root_block *dx_root = et->et_object;
289
290         dx_root->dr_last_eb_blk = cpu_to_le64(blkno);
291 }
292
293 static u64 ocfs2_dx_root_get_last_eb_blk(struct ocfs2_extent_tree *et)
294 {
295         struct ocfs2_dx_root_block *dx_root = et->et_object;
296
297         return le64_to_cpu(dx_root->dr_last_eb_blk);
298 }
299
300 static void ocfs2_dx_root_update_clusters(struct ocfs2_extent_tree *et,
301                                           u32 clusters)
302 {
303         struct ocfs2_dx_root_block *dx_root = et->et_object;
304
305         le32_add_cpu(&dx_root->dr_clusters, clusters);
306 }
307
308 static int ocfs2_dx_root_sanity_check(struct ocfs2_extent_tree *et)
309 {
310         struct ocfs2_dx_root_block *dx_root = et->et_object;
311
312         BUG_ON(!OCFS2_IS_VALID_DX_ROOT(dx_root));
313
314         return 0;
315 }
316
317 static void ocfs2_dx_root_fill_root_el(struct ocfs2_extent_tree *et)
318 {
319         struct ocfs2_dx_root_block *dx_root = et->et_object;
320
321         et->et_root_el = &dx_root->dr_list;
322 }
323
324 static struct ocfs2_extent_tree_operations ocfs2_dx_root_et_ops = {
325         .eo_set_last_eb_blk     = ocfs2_dx_root_set_last_eb_blk,
326         .eo_get_last_eb_blk     = ocfs2_dx_root_get_last_eb_blk,
327         .eo_update_clusters     = ocfs2_dx_root_update_clusters,
328         .eo_sanity_check        = ocfs2_dx_root_sanity_check,
329         .eo_fill_root_el        = ocfs2_dx_root_fill_root_el,
330 };
331
332 static void __ocfs2_init_extent_tree(struct ocfs2_extent_tree *et,
333                                      struct inode *inode,
334                                      struct buffer_head *bh,
335                                      ocfs2_journal_access_func access,
336                                      void *obj,
337                                      struct ocfs2_extent_tree_operations *ops)
338 {
339         et->et_ops = ops;
340         et->et_root_bh = bh;
341         et->et_ci = INODE_CACHE(inode);
342         et->et_root_journal_access = access;
343         if (!obj)
344                 obj = (void *)bh->b_data;
345         et->et_object = obj;
346
347         et->et_ops->eo_fill_root_el(et);
348         if (!et->et_ops->eo_fill_max_leaf_clusters)
349                 et->et_max_leaf_clusters = 0;
350         else
351                 et->et_ops->eo_fill_max_leaf_clusters(et);
352 }
353
354 void ocfs2_init_dinode_extent_tree(struct ocfs2_extent_tree *et,
355                                    struct inode *inode,
356                                    struct buffer_head *bh)
357 {
358         __ocfs2_init_extent_tree(et, inode, bh, ocfs2_journal_access_di,
359                                  NULL, &ocfs2_dinode_et_ops);
360 }
361
362 void ocfs2_init_xattr_tree_extent_tree(struct ocfs2_extent_tree *et,
363                                        struct inode *inode,
364                                        struct buffer_head *bh)
365 {
366         __ocfs2_init_extent_tree(et, inode, bh, ocfs2_journal_access_xb,
367                                  NULL, &ocfs2_xattr_tree_et_ops);
368 }
369
370 void ocfs2_init_xattr_value_extent_tree(struct ocfs2_extent_tree *et,
371                                         struct inode *inode,
372                                         struct ocfs2_xattr_value_buf *vb)
373 {
374         __ocfs2_init_extent_tree(et, inode, vb->vb_bh, vb->vb_access, vb,
375                                  &ocfs2_xattr_value_et_ops);
376 }
377
378 void ocfs2_init_dx_root_extent_tree(struct ocfs2_extent_tree *et,
379                                     struct inode *inode,
380                                     struct buffer_head *bh)
381 {
382         __ocfs2_init_extent_tree(et, inode, bh, ocfs2_journal_access_dr,
383                                  NULL, &ocfs2_dx_root_et_ops);
384 }
385
386 static inline void ocfs2_et_set_last_eb_blk(struct ocfs2_extent_tree *et,
387                                             u64 new_last_eb_blk)
388 {
389         et->et_ops->eo_set_last_eb_blk(et, new_last_eb_blk);
390 }
391
392 static inline u64 ocfs2_et_get_last_eb_blk(struct ocfs2_extent_tree *et)
393 {
394         return et->et_ops->eo_get_last_eb_blk(et);
395 }
396
397 static inline void ocfs2_et_update_clusters(struct ocfs2_extent_tree *et,
398                                             u32 clusters)
399 {
400         et->et_ops->eo_update_clusters(et, clusters);
401 }
402
403 static inline int ocfs2_et_root_journal_access(handle_t *handle,
404                                                struct ocfs2_extent_tree *et,
405                                                int type)
406 {
407         return et->et_root_journal_access(handle, et->et_ci, et->et_root_bh,
408                                           type);
409 }
410
411 static inline int ocfs2_et_insert_check(struct ocfs2_extent_tree *et,
412                                         struct ocfs2_extent_rec *rec)
413 {
414         int ret = 0;
415
416         if (et->et_ops->eo_insert_check)
417                 ret = et->et_ops->eo_insert_check(et, rec);
418         return ret;
419 }
420
421 static inline int ocfs2_et_sanity_check(struct ocfs2_extent_tree *et)
422 {
423         int ret = 0;
424
425         if (et->et_ops->eo_sanity_check)
426                 ret = et->et_ops->eo_sanity_check(et);
427         return ret;
428 }
429
430 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc);
431 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
432                                          struct ocfs2_extent_block *eb);
433
434 /*
435  * Structures which describe a path through a btree, and functions to
436  * manipulate them.
437  *
438  * The idea here is to be as generic as possible with the tree
439  * manipulation code.
440  */
441 struct ocfs2_path_item {
442         struct buffer_head              *bh;
443         struct ocfs2_extent_list        *el;
444 };
445
446 #define OCFS2_MAX_PATH_DEPTH    5
447
448 struct ocfs2_path {
449         int                             p_tree_depth;
450         ocfs2_journal_access_func       p_root_access;
451         struct ocfs2_path_item          p_node[OCFS2_MAX_PATH_DEPTH];
452 };
453
454 #define path_root_bh(_path) ((_path)->p_node[0].bh)
455 #define path_root_el(_path) ((_path)->p_node[0].el)
456 #define path_root_access(_path)((_path)->p_root_access)
457 #define path_leaf_bh(_path) ((_path)->p_node[(_path)->p_tree_depth].bh)
458 #define path_leaf_el(_path) ((_path)->p_node[(_path)->p_tree_depth].el)
459 #define path_num_items(_path) ((_path)->p_tree_depth + 1)
460
461 static int ocfs2_find_path(struct ocfs2_caching_info *ci,
462                            struct ocfs2_path *path, u32 cpos);
463 static void ocfs2_adjust_rightmost_records(struct inode *inode,
464                                            handle_t *handle,
465                                            struct ocfs2_path *path,
466                                            struct ocfs2_extent_rec *insert_rec);
467 /*
468  * Reset the actual path elements so that we can re-use the structure
469  * to build another path. Generally, this involves freeing the buffer
470  * heads.
471  */
472 static void ocfs2_reinit_path(struct ocfs2_path *path, int keep_root)
473 {
474         int i, start = 0, depth = 0;
475         struct ocfs2_path_item *node;
476
477         if (keep_root)
478                 start = 1;
479
480         for(i = start; i < path_num_items(path); i++) {
481                 node = &path->p_node[i];
482
483                 brelse(node->bh);
484                 node->bh = NULL;
485                 node->el = NULL;
486         }
487
488         /*
489          * Tree depth may change during truncate, or insert. If we're
490          * keeping the root extent list, then make sure that our path
491          * structure reflects the proper depth.
492          */
493         if (keep_root)
494                 depth = le16_to_cpu(path_root_el(path)->l_tree_depth);
495         else
496                 path_root_access(path) = NULL;
497
498         path->p_tree_depth = depth;
499 }
500
501 static void ocfs2_free_path(struct ocfs2_path *path)
502 {
503         if (path) {
504                 ocfs2_reinit_path(path, 0);
505                 kfree(path);
506         }
507 }
508
509 /*
510  * All the elements of src into dest. After this call, src could be freed
511  * without affecting dest.
512  *
513  * Both paths should have the same root. Any non-root elements of dest
514  * will be freed.
515  */
516 static void ocfs2_cp_path(struct ocfs2_path *dest, struct ocfs2_path *src)
517 {
518         int i;
519
520         BUG_ON(path_root_bh(dest) != path_root_bh(src));
521         BUG_ON(path_root_el(dest) != path_root_el(src));
522         BUG_ON(path_root_access(dest) != path_root_access(src));
523
524         ocfs2_reinit_path(dest, 1);
525
526         for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
527                 dest->p_node[i].bh = src->p_node[i].bh;
528                 dest->p_node[i].el = src->p_node[i].el;
529
530                 if (dest->p_node[i].bh)
531                         get_bh(dest->p_node[i].bh);
532         }
533 }
534
535 /*
536  * Make the *dest path the same as src and re-initialize src path to
537  * have a root only.
538  */
539 static void ocfs2_mv_path(struct ocfs2_path *dest, struct ocfs2_path *src)
540 {
541         int i;
542
543         BUG_ON(path_root_bh(dest) != path_root_bh(src));
544         BUG_ON(path_root_access(dest) != path_root_access(src));
545
546         for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
547                 brelse(dest->p_node[i].bh);
548
549                 dest->p_node[i].bh = src->p_node[i].bh;
550                 dest->p_node[i].el = src->p_node[i].el;
551
552                 src->p_node[i].bh = NULL;
553                 src->p_node[i].el = NULL;
554         }
555 }
556
557 /*
558  * Insert an extent block at given index.
559  *
560  * This will not take an additional reference on eb_bh.
561  */
562 static inline void ocfs2_path_insert_eb(struct ocfs2_path *path, int index,
563                                         struct buffer_head *eb_bh)
564 {
565         struct ocfs2_extent_block *eb = (struct ocfs2_extent_block *)eb_bh->b_data;
566
567         /*
568          * Right now, no root bh is an extent block, so this helps
569          * catch code errors with dinode trees. The assertion can be
570          * safely removed if we ever need to insert extent block
571          * structures at the root.
572          */
573         BUG_ON(index == 0);
574
575         path->p_node[index].bh = eb_bh;
576         path->p_node[index].el = &eb->h_list;
577 }
578
579 static struct ocfs2_path *ocfs2_new_path(struct buffer_head *root_bh,
580                                          struct ocfs2_extent_list *root_el,
581                                          ocfs2_journal_access_func access)
582 {
583         struct ocfs2_path *path;
584
585         BUG_ON(le16_to_cpu(root_el->l_tree_depth) >= OCFS2_MAX_PATH_DEPTH);
586
587         path = kzalloc(sizeof(*path), GFP_NOFS);
588         if (path) {
589                 path->p_tree_depth = le16_to_cpu(root_el->l_tree_depth);
590                 get_bh(root_bh);
591                 path_root_bh(path) = root_bh;
592                 path_root_el(path) = root_el;
593                 path_root_access(path) = access;
594         }
595
596         return path;
597 }
598
599 static struct ocfs2_path *ocfs2_new_path_from_path(struct ocfs2_path *path)
600 {
601         return ocfs2_new_path(path_root_bh(path), path_root_el(path),
602                               path_root_access(path));
603 }
604
605 static struct ocfs2_path *ocfs2_new_path_from_et(struct ocfs2_extent_tree *et)
606 {
607         return ocfs2_new_path(et->et_root_bh, et->et_root_el,
608                               et->et_root_journal_access);
609 }
610
611 /*
612  * Journal the buffer at depth idx.  All idx>0 are extent_blocks,
613  * otherwise it's the root_access function.
614  *
615  * I don't like the way this function's name looks next to
616  * ocfs2_journal_access_path(), but I don't have a better one.
617  */
618 static int ocfs2_path_bh_journal_access(handle_t *handle,
619                                         struct ocfs2_caching_info *ci,
620                                         struct ocfs2_path *path,
621                                         int idx)
622 {
623         ocfs2_journal_access_func access = path_root_access(path);
624
625         if (!access)
626                 access = ocfs2_journal_access;
627
628         if (idx)
629                 access = ocfs2_journal_access_eb;
630
631         return access(handle, ci, path->p_node[idx].bh,
632                       OCFS2_JOURNAL_ACCESS_WRITE);
633 }
634
635 /*
636  * Convenience function to journal all components in a path.
637  */
638 static int ocfs2_journal_access_path(struct ocfs2_caching_info *ci,
639                                      handle_t *handle,
640                                      struct ocfs2_path *path)
641 {
642         int i, ret = 0;
643
644         if (!path)
645                 goto out;
646
647         for(i = 0; i < path_num_items(path); i++) {
648                 ret = ocfs2_path_bh_journal_access(handle, ci, path, i);
649                 if (ret < 0) {
650                         mlog_errno(ret);
651                         goto out;
652                 }
653         }
654
655 out:
656         return ret;
657 }
658
659 /*
660  * Return the index of the extent record which contains cluster #v_cluster.
661  * -1 is returned if it was not found.
662  *
663  * Should work fine on interior and exterior nodes.
664  */
665 int ocfs2_search_extent_list(struct ocfs2_extent_list *el, u32 v_cluster)
666 {
667         int ret = -1;
668         int i;
669         struct ocfs2_extent_rec *rec;
670         u32 rec_end, rec_start, clusters;
671
672         for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
673                 rec = &el->l_recs[i];
674
675                 rec_start = le32_to_cpu(rec->e_cpos);
676                 clusters = ocfs2_rec_clusters(el, rec);
677
678                 rec_end = rec_start + clusters;
679
680                 if (v_cluster >= rec_start && v_cluster < rec_end) {
681                         ret = i;
682                         break;
683                 }
684         }
685
686         return ret;
687 }
688
689 enum ocfs2_contig_type {
690         CONTIG_NONE = 0,
691         CONTIG_LEFT,
692         CONTIG_RIGHT,
693         CONTIG_LEFTRIGHT,
694 };
695
696
697 /*
698  * NOTE: ocfs2_block_extent_contig(), ocfs2_extents_adjacent() and
699  * ocfs2_extent_contig only work properly against leaf nodes!
700  */
701 static int ocfs2_block_extent_contig(struct super_block *sb,
702                                      struct ocfs2_extent_rec *ext,
703                                      u64 blkno)
704 {
705         u64 blk_end = le64_to_cpu(ext->e_blkno);
706
707         blk_end += ocfs2_clusters_to_blocks(sb,
708                                     le16_to_cpu(ext->e_leaf_clusters));
709
710         return blkno == blk_end;
711 }
712
713 static int ocfs2_extents_adjacent(struct ocfs2_extent_rec *left,
714                                   struct ocfs2_extent_rec *right)
715 {
716         u32 left_range;
717
718         left_range = le32_to_cpu(left->e_cpos) +
719                 le16_to_cpu(left->e_leaf_clusters);
720
721         return (left_range == le32_to_cpu(right->e_cpos));
722 }
723
724 static enum ocfs2_contig_type
725         ocfs2_extent_contig(struct inode *inode,
726                             struct ocfs2_extent_rec *ext,
727                             struct ocfs2_extent_rec *insert_rec)
728 {
729         u64 blkno = le64_to_cpu(insert_rec->e_blkno);
730
731         /*
732          * Refuse to coalesce extent records with different flag
733          * fields - we don't want to mix unwritten extents with user
734          * data.
735          */
736         if (ext->e_flags != insert_rec->e_flags)
737                 return CONTIG_NONE;
738
739         if (ocfs2_extents_adjacent(ext, insert_rec) &&
740             ocfs2_block_extent_contig(inode->i_sb, ext, blkno))
741                         return CONTIG_RIGHT;
742
743         blkno = le64_to_cpu(ext->e_blkno);
744         if (ocfs2_extents_adjacent(insert_rec, ext) &&
745             ocfs2_block_extent_contig(inode->i_sb, insert_rec, blkno))
746                 return CONTIG_LEFT;
747
748         return CONTIG_NONE;
749 }
750
751 /*
752  * NOTE: We can have pretty much any combination of contiguousness and
753  * appending.
754  *
755  * The usefulness of APPEND_TAIL is more in that it lets us know that
756  * we'll have to update the path to that leaf.
757  */
758 enum ocfs2_append_type {
759         APPEND_NONE = 0,
760         APPEND_TAIL,
761 };
762
763 enum ocfs2_split_type {
764         SPLIT_NONE = 0,
765         SPLIT_LEFT,
766         SPLIT_RIGHT,
767 };
768
769 struct ocfs2_insert_type {
770         enum ocfs2_split_type   ins_split;
771         enum ocfs2_append_type  ins_appending;
772         enum ocfs2_contig_type  ins_contig;
773         int                     ins_contig_index;
774         int                     ins_tree_depth;
775 };
776
777 struct ocfs2_merge_ctxt {
778         enum ocfs2_contig_type  c_contig_type;
779         int                     c_has_empty_extent;
780         int                     c_split_covers_rec;
781 };
782
783 static int ocfs2_validate_extent_block(struct super_block *sb,
784                                        struct buffer_head *bh)
785 {
786         int rc;
787         struct ocfs2_extent_block *eb =
788                 (struct ocfs2_extent_block *)bh->b_data;
789
790         mlog(0, "Validating extent block %llu\n",
791              (unsigned long long)bh->b_blocknr);
792
793         BUG_ON(!buffer_uptodate(bh));
794
795         /*
796          * If the ecc fails, we return the error but otherwise
797          * leave the filesystem running.  We know any error is
798          * local to this block.
799          */
800         rc = ocfs2_validate_meta_ecc(sb, bh->b_data, &eb->h_check);
801         if (rc) {
802                 mlog(ML_ERROR, "Checksum failed for extent block %llu\n",
803                      (unsigned long long)bh->b_blocknr);
804                 return rc;
805         }
806
807         /*
808          * Errors after here are fatal.
809          */
810
811         if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
812                 ocfs2_error(sb,
813                             "Extent block #%llu has bad signature %.*s",
814                             (unsigned long long)bh->b_blocknr, 7,
815                             eb->h_signature);
816                 return -EINVAL;
817         }
818
819         if (le64_to_cpu(eb->h_blkno) != bh->b_blocknr) {
820                 ocfs2_error(sb,
821                             "Extent block #%llu has an invalid h_blkno "
822                             "of %llu",
823                             (unsigned long long)bh->b_blocknr,
824                             (unsigned long long)le64_to_cpu(eb->h_blkno));
825                 return -EINVAL;
826         }
827
828         if (le32_to_cpu(eb->h_fs_generation) != OCFS2_SB(sb)->fs_generation) {
829                 ocfs2_error(sb,
830                             "Extent block #%llu has an invalid "
831                             "h_fs_generation of #%u",
832                             (unsigned long long)bh->b_blocknr,
833                             le32_to_cpu(eb->h_fs_generation));
834                 return -EINVAL;
835         }
836
837         return 0;
838 }
839
840 int ocfs2_read_extent_block(struct ocfs2_caching_info *ci, u64 eb_blkno,
841                             struct buffer_head **bh)
842 {
843         int rc;
844         struct buffer_head *tmp = *bh;
845
846         rc = ocfs2_read_block(ci, eb_blkno, &tmp,
847                               ocfs2_validate_extent_block);
848
849         /* If ocfs2_read_block() got us a new bh, pass it up. */
850         if (!rc && !*bh)
851                 *bh = tmp;
852
853         return rc;
854 }
855
856
857 /*
858  * How many free extents have we got before we need more meta data?
859  */
860 int ocfs2_num_free_extents(struct ocfs2_super *osb,
861                            struct ocfs2_extent_tree *et)
862 {
863         int retval;
864         struct ocfs2_extent_list *el = NULL;
865         struct ocfs2_extent_block *eb;
866         struct buffer_head *eb_bh = NULL;
867         u64 last_eb_blk = 0;
868
869         mlog_entry_void();
870
871         el = et->et_root_el;
872         last_eb_blk = ocfs2_et_get_last_eb_blk(et);
873
874         if (last_eb_blk) {
875                 retval = ocfs2_read_extent_block(et->et_ci, last_eb_blk,
876                                                  &eb_bh);
877                 if (retval < 0) {
878                         mlog_errno(retval);
879                         goto bail;
880                 }
881                 eb = (struct ocfs2_extent_block *) eb_bh->b_data;
882                 el = &eb->h_list;
883         }
884
885         BUG_ON(el->l_tree_depth != 0);
886
887         retval = le16_to_cpu(el->l_count) - le16_to_cpu(el->l_next_free_rec);
888 bail:
889         brelse(eb_bh);
890
891         mlog_exit(retval);
892         return retval;
893 }
894
895 /* expects array to already be allocated
896  *
897  * sets h_signature, h_blkno, h_suballoc_bit, h_suballoc_slot, and
898  * l_count for you
899  */
900 static int ocfs2_create_new_meta_bhs(handle_t *handle,
901                                      struct ocfs2_extent_tree *et,
902                                      int wanted,
903                                      struct ocfs2_alloc_context *meta_ac,
904                                      struct buffer_head *bhs[])
905 {
906         int count, status, i;
907         u16 suballoc_bit_start;
908         u32 num_got;
909         u64 first_blkno;
910         struct ocfs2_super *osb =
911                 OCFS2_SB(ocfs2_metadata_cache_get_super(et->et_ci));
912         struct ocfs2_extent_block *eb;
913
914         mlog_entry_void();
915
916         count = 0;
917         while (count < wanted) {
918                 status = ocfs2_claim_metadata(osb,
919                                               handle,
920                                               meta_ac,
921                                               wanted - count,
922                                               &suballoc_bit_start,
923                                               &num_got,
924                                               &first_blkno);
925                 if (status < 0) {
926                         mlog_errno(status);
927                         goto bail;
928                 }
929
930                 for(i = count;  i < (num_got + count); i++) {
931                         bhs[i] = sb_getblk(osb->sb, first_blkno);
932                         if (bhs[i] == NULL) {
933                                 status = -EIO;
934                                 mlog_errno(status);
935                                 goto bail;
936                         }
937                         ocfs2_set_new_buffer_uptodate(et->et_ci, bhs[i]);
938
939                         status = ocfs2_journal_access_eb(handle, et->et_ci,
940                                                          bhs[i],
941                                                          OCFS2_JOURNAL_ACCESS_CREATE);
942                         if (status < 0) {
943                                 mlog_errno(status);
944                                 goto bail;
945                         }
946
947                         memset(bhs[i]->b_data, 0, osb->sb->s_blocksize);
948                         eb = (struct ocfs2_extent_block *) bhs[i]->b_data;
949                         /* Ok, setup the minimal stuff here. */
950                         strcpy(eb->h_signature, OCFS2_EXTENT_BLOCK_SIGNATURE);
951                         eb->h_blkno = cpu_to_le64(first_blkno);
952                         eb->h_fs_generation = cpu_to_le32(osb->fs_generation);
953                         eb->h_suballoc_slot = cpu_to_le16(osb->slot_num);
954                         eb->h_suballoc_bit = cpu_to_le16(suballoc_bit_start);
955                         eb->h_list.l_count =
956                                 cpu_to_le16(ocfs2_extent_recs_per_eb(osb->sb));
957
958                         suballoc_bit_start++;
959                         first_blkno++;
960
961                         /* We'll also be dirtied by the caller, so
962                          * this isn't absolutely necessary. */
963                         status = ocfs2_journal_dirty(handle, bhs[i]);
964                         if (status < 0) {
965                                 mlog_errno(status);
966                                 goto bail;
967                         }
968                 }
969
970                 count += num_got;
971         }
972
973         status = 0;
974 bail:
975         if (status < 0) {
976                 for(i = 0; i < wanted; i++) {
977                         brelse(bhs[i]);
978                         bhs[i] = NULL;
979                 }
980         }
981         mlog_exit(status);
982         return status;
983 }
984
985 /*
986  * Helper function for ocfs2_add_branch() and ocfs2_shift_tree_depth().
987  *
988  * Returns the sum of the rightmost extent rec logical offset and
989  * cluster count.
990  *
991  * ocfs2_add_branch() uses this to determine what logical cluster
992  * value should be populated into the leftmost new branch records.
993  *
994  * ocfs2_shift_tree_depth() uses this to determine the # clusters
995  * value for the new topmost tree record.
996  */
997 static inline u32 ocfs2_sum_rightmost_rec(struct ocfs2_extent_list  *el)
998 {
999         int i;
1000
1001         i = le16_to_cpu(el->l_next_free_rec) - 1;
1002
1003         return le32_to_cpu(el->l_recs[i].e_cpos) +
1004                 ocfs2_rec_clusters(el, &el->l_recs[i]);
1005 }
1006
1007 /*
1008  * Change range of the branches in the right most path according to the leaf
1009  * extent block's rightmost record.
1010  */
1011 static int ocfs2_adjust_rightmost_branch(handle_t *handle,
1012                                          struct inode *inode,
1013                                          struct ocfs2_extent_tree *et)
1014 {
1015         int status;
1016         struct ocfs2_path *path = NULL;
1017         struct ocfs2_extent_list *el;
1018         struct ocfs2_extent_rec *rec;
1019
1020         path = ocfs2_new_path_from_et(et);
1021         if (!path) {
1022                 status = -ENOMEM;
1023                 return status;
1024         }
1025
1026         status = ocfs2_find_path(et->et_ci, path, UINT_MAX);
1027         if (status < 0) {
1028                 mlog_errno(status);
1029                 goto out;
1030         }
1031
1032         status = ocfs2_extend_trans(handle, path_num_items(path) +
1033                                     handle->h_buffer_credits);
1034         if (status < 0) {
1035                 mlog_errno(status);
1036                 goto out;
1037         }
1038
1039         status = ocfs2_journal_access_path(INODE_CACHE(inode), handle, path);
1040         if (status < 0) {
1041                 mlog_errno(status);
1042                 goto out;
1043         }
1044
1045         el = path_leaf_el(path);
1046         rec = &el->l_recs[le32_to_cpu(el->l_next_free_rec) - 1];
1047
1048         ocfs2_adjust_rightmost_records(inode, handle, path, rec);
1049
1050 out:
1051         ocfs2_free_path(path);
1052         return status;
1053 }
1054
1055 /*
1056  * Add an entire tree branch to our inode. eb_bh is the extent block
1057  * to start at, if we don't want to start the branch at the dinode
1058  * structure.
1059  *
1060  * last_eb_bh is required as we have to update it's next_leaf pointer
1061  * for the new last extent block.
1062  *
1063  * the new branch will be 'empty' in the sense that every block will
1064  * contain a single record with cluster count == 0.
1065  */
1066 static int ocfs2_add_branch(struct ocfs2_super *osb,
1067                             handle_t *handle,
1068                             struct inode *inode,
1069                             struct ocfs2_extent_tree *et,
1070                             struct buffer_head *eb_bh,
1071                             struct buffer_head **last_eb_bh,
1072                             struct ocfs2_alloc_context *meta_ac)
1073 {
1074         int status, new_blocks, i;
1075         u64 next_blkno, new_last_eb_blk;
1076         struct buffer_head *bh;
1077         struct buffer_head **new_eb_bhs = NULL;
1078         struct ocfs2_extent_block *eb;
1079         struct ocfs2_extent_list  *eb_el;
1080         struct ocfs2_extent_list  *el;
1081         u32 new_cpos, root_end;
1082
1083         mlog_entry_void();
1084
1085         BUG_ON(!last_eb_bh || !*last_eb_bh);
1086
1087         if (eb_bh) {
1088                 eb = (struct ocfs2_extent_block *) eb_bh->b_data;
1089                 el = &eb->h_list;
1090         } else
1091                 el = et->et_root_el;
1092
1093         /* we never add a branch to a leaf. */
1094         BUG_ON(!el->l_tree_depth);
1095
1096         new_blocks = le16_to_cpu(el->l_tree_depth);
1097
1098         eb = (struct ocfs2_extent_block *)(*last_eb_bh)->b_data;
1099         new_cpos = ocfs2_sum_rightmost_rec(&eb->h_list);
1100         root_end = ocfs2_sum_rightmost_rec(et->et_root_el);
1101
1102         /*
1103          * If there is a gap before the root end and the real end
1104          * of the righmost leaf block, we need to remove the gap
1105          * between new_cpos and root_end first so that the tree
1106          * is consistent after we add a new branch(it will start
1107          * from new_cpos).
1108          */
1109         if (root_end > new_cpos) {
1110                 mlog(0, "adjust the cluster end from %u to %u\n",
1111                      root_end, new_cpos);
1112                 status = ocfs2_adjust_rightmost_branch(handle, inode, et);
1113                 if (status) {
1114                         mlog_errno(status);
1115                         goto bail;
1116                 }
1117         }
1118
1119         /* allocate the number of new eb blocks we need */
1120         new_eb_bhs = kcalloc(new_blocks, sizeof(struct buffer_head *),
1121                              GFP_KERNEL);
1122         if (!new_eb_bhs) {
1123                 status = -ENOMEM;
1124                 mlog_errno(status);
1125                 goto bail;
1126         }
1127
1128         status = ocfs2_create_new_meta_bhs(handle, et, new_blocks,
1129                                            meta_ac, new_eb_bhs);
1130         if (status < 0) {
1131                 mlog_errno(status);
1132                 goto bail;
1133         }
1134
1135         /* Note: new_eb_bhs[new_blocks - 1] is the guy which will be
1136          * linked with the rest of the tree.
1137          * conversly, new_eb_bhs[0] is the new bottommost leaf.
1138          *
1139          * when we leave the loop, new_last_eb_blk will point to the
1140          * newest leaf, and next_blkno will point to the topmost extent
1141          * block. */
1142         next_blkno = new_last_eb_blk = 0;
1143         for(i = 0; i < new_blocks; i++) {
1144                 bh = new_eb_bhs[i];
1145                 eb = (struct ocfs2_extent_block *) bh->b_data;
1146                 /* ocfs2_create_new_meta_bhs() should create it right! */
1147                 BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb));
1148                 eb_el = &eb->h_list;
1149
1150                 status = ocfs2_journal_access_eb(handle, INODE_CACHE(inode), bh,
1151                                                  OCFS2_JOURNAL_ACCESS_CREATE);
1152                 if (status < 0) {
1153                         mlog_errno(status);
1154                         goto bail;
1155                 }
1156
1157                 eb->h_next_leaf_blk = 0;
1158                 eb_el->l_tree_depth = cpu_to_le16(i);
1159                 eb_el->l_next_free_rec = cpu_to_le16(1);
1160                 /*
1161                  * This actually counts as an empty extent as
1162                  * c_clusters == 0
1163                  */
1164                 eb_el->l_recs[0].e_cpos = cpu_to_le32(new_cpos);
1165                 eb_el->l_recs[0].e_blkno = cpu_to_le64(next_blkno);
1166                 /*
1167                  * eb_el isn't always an interior node, but even leaf
1168                  * nodes want a zero'd flags and reserved field so
1169                  * this gets the whole 32 bits regardless of use.
1170                  */
1171                 eb_el->l_recs[0].e_int_clusters = cpu_to_le32(0);
1172                 if (!eb_el->l_tree_depth)
1173                         new_last_eb_blk = le64_to_cpu(eb->h_blkno);
1174
1175                 status = ocfs2_journal_dirty(handle, bh);
1176                 if (status < 0) {
1177                         mlog_errno(status);
1178                         goto bail;
1179                 }
1180
1181                 next_blkno = le64_to_cpu(eb->h_blkno);
1182         }
1183
1184         /* This is a bit hairy. We want to update up to three blocks
1185          * here without leaving any of them in an inconsistent state
1186          * in case of error. We don't have to worry about
1187          * journal_dirty erroring as it won't unless we've aborted the
1188          * handle (in which case we would never be here) so reserving
1189          * the write with journal_access is all we need to do. */
1190         status = ocfs2_journal_access_eb(handle, INODE_CACHE(inode), *last_eb_bh,
1191                                          OCFS2_JOURNAL_ACCESS_WRITE);
1192         if (status < 0) {
1193                 mlog_errno(status);
1194                 goto bail;
1195         }
1196         status = ocfs2_et_root_journal_access(handle, et,
1197                                               OCFS2_JOURNAL_ACCESS_WRITE);
1198         if (status < 0) {
1199                 mlog_errno(status);
1200                 goto bail;
1201         }
1202         if (eb_bh) {
1203                 status = ocfs2_journal_access_eb(handle, INODE_CACHE(inode), eb_bh,
1204                                                  OCFS2_JOURNAL_ACCESS_WRITE);
1205                 if (status < 0) {
1206                         mlog_errno(status);
1207                         goto bail;
1208                 }
1209         }
1210
1211         /* Link the new branch into the rest of the tree (el will
1212          * either be on the root_bh, or the extent block passed in. */
1213         i = le16_to_cpu(el->l_next_free_rec);
1214         el->l_recs[i].e_blkno = cpu_to_le64(next_blkno);
1215         el->l_recs[i].e_cpos = cpu_to_le32(new_cpos);
1216         el->l_recs[i].e_int_clusters = 0;
1217         le16_add_cpu(&el->l_next_free_rec, 1);
1218
1219         /* fe needs a new last extent block pointer, as does the
1220          * next_leaf on the previously last-extent-block. */
1221         ocfs2_et_set_last_eb_blk(et, new_last_eb_blk);
1222
1223         eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
1224         eb->h_next_leaf_blk = cpu_to_le64(new_last_eb_blk);
1225
1226         status = ocfs2_journal_dirty(handle, *last_eb_bh);
1227         if (status < 0)
1228                 mlog_errno(status);
1229         status = ocfs2_journal_dirty(handle, et->et_root_bh);
1230         if (status < 0)
1231                 mlog_errno(status);
1232         if (eb_bh) {
1233                 status = ocfs2_journal_dirty(handle, eb_bh);
1234                 if (status < 0)
1235                         mlog_errno(status);
1236         }
1237
1238         /*
1239          * Some callers want to track the rightmost leaf so pass it
1240          * back here.
1241          */
1242         brelse(*last_eb_bh);
1243         get_bh(new_eb_bhs[0]);
1244         *last_eb_bh = new_eb_bhs[0];
1245
1246         status = 0;
1247 bail:
1248         if (new_eb_bhs) {
1249                 for (i = 0; i < new_blocks; i++)
1250                         brelse(new_eb_bhs[i]);
1251                 kfree(new_eb_bhs);
1252         }
1253
1254         mlog_exit(status);
1255         return status;
1256 }
1257
1258 /*
1259  * adds another level to the allocation tree.
1260  * returns back the new extent block so you can add a branch to it
1261  * after this call.
1262  */
1263 static int ocfs2_shift_tree_depth(struct ocfs2_super *osb,
1264                                   handle_t *handle,
1265                                   struct inode *inode,
1266                                   struct ocfs2_extent_tree *et,
1267                                   struct ocfs2_alloc_context *meta_ac,
1268                                   struct buffer_head **ret_new_eb_bh)
1269 {
1270         int status, i;
1271         u32 new_clusters;
1272         struct buffer_head *new_eb_bh = NULL;
1273         struct ocfs2_extent_block *eb;
1274         struct ocfs2_extent_list  *root_el;
1275         struct ocfs2_extent_list  *eb_el;
1276
1277         mlog_entry_void();
1278
1279         status = ocfs2_create_new_meta_bhs(handle, et, 1, meta_ac,
1280                                            &new_eb_bh);
1281         if (status < 0) {
1282                 mlog_errno(status);
1283                 goto bail;
1284         }
1285
1286         eb = (struct ocfs2_extent_block *) new_eb_bh->b_data;
1287         /* ocfs2_create_new_meta_bhs() should create it right! */
1288         BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb));
1289
1290         eb_el = &eb->h_list;
1291         root_el = et->et_root_el;
1292
1293         status = ocfs2_journal_access_eb(handle, INODE_CACHE(inode), new_eb_bh,
1294                                          OCFS2_JOURNAL_ACCESS_CREATE);
1295         if (status < 0) {
1296                 mlog_errno(status);
1297                 goto bail;
1298         }
1299
1300         /* copy the root extent list data into the new extent block */
1301         eb_el->l_tree_depth = root_el->l_tree_depth;
1302         eb_el->l_next_free_rec = root_el->l_next_free_rec;
1303         for (i = 0; i < le16_to_cpu(root_el->l_next_free_rec); i++)
1304                 eb_el->l_recs[i] = root_el->l_recs[i];
1305
1306         status = ocfs2_journal_dirty(handle, new_eb_bh);
1307         if (status < 0) {
1308                 mlog_errno(status);
1309                 goto bail;
1310         }
1311
1312         status = ocfs2_et_root_journal_access(handle, et,
1313                                               OCFS2_JOURNAL_ACCESS_WRITE);
1314         if (status < 0) {
1315                 mlog_errno(status);
1316                 goto bail;
1317         }
1318
1319         new_clusters = ocfs2_sum_rightmost_rec(eb_el);
1320
1321         /* update root_bh now */
1322         le16_add_cpu(&root_el->l_tree_depth, 1);
1323         root_el->l_recs[0].e_cpos = 0;
1324         root_el->l_recs[0].e_blkno = eb->h_blkno;
1325         root_el->l_recs[0].e_int_clusters = cpu_to_le32(new_clusters);
1326         for (i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++)
1327                 memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
1328         root_el->l_next_free_rec = cpu_to_le16(1);
1329
1330         /* If this is our 1st tree depth shift, then last_eb_blk
1331          * becomes the allocated extent block */
1332         if (root_el->l_tree_depth == cpu_to_le16(1))
1333                 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
1334
1335         status = ocfs2_journal_dirty(handle, et->et_root_bh);
1336         if (status < 0) {
1337                 mlog_errno(status);
1338                 goto bail;
1339         }
1340
1341         *ret_new_eb_bh = new_eb_bh;
1342         new_eb_bh = NULL;
1343         status = 0;
1344 bail:
1345         brelse(new_eb_bh);
1346
1347         mlog_exit(status);
1348         return status;
1349 }
1350
1351 /*
1352  * Should only be called when there is no space left in any of the
1353  * leaf nodes. What we want to do is find the lowest tree depth
1354  * non-leaf extent block with room for new records. There are three
1355  * valid results of this search:
1356  *
1357  * 1) a lowest extent block is found, then we pass it back in
1358  *    *lowest_eb_bh and return '0'
1359  *
1360  * 2) the search fails to find anything, but the root_el has room. We
1361  *    pass NULL back in *lowest_eb_bh, but still return '0'
1362  *
1363  * 3) the search fails to find anything AND the root_el is full, in
1364  *    which case we return > 0
1365  *
1366  * return status < 0 indicates an error.
1367  */
1368 static int ocfs2_find_branch_target(struct ocfs2_super *osb,
1369                                     struct ocfs2_extent_tree *et,
1370                                     struct buffer_head **target_bh)
1371 {
1372         int status = 0, i;
1373         u64 blkno;
1374         struct ocfs2_extent_block *eb;
1375         struct ocfs2_extent_list  *el;
1376         struct buffer_head *bh = NULL;
1377         struct buffer_head *lowest_bh = NULL;
1378
1379         mlog_entry_void();
1380
1381         *target_bh = NULL;
1382
1383         el = et->et_root_el;
1384
1385         while(le16_to_cpu(el->l_tree_depth) > 1) {
1386                 if (le16_to_cpu(el->l_next_free_rec) == 0) {
1387                         ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
1388                                     "Owner %llu has empty "
1389                                     "extent list (next_free_rec == 0)",
1390                                     (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci));
1391                         status = -EIO;
1392                         goto bail;
1393                 }
1394                 i = le16_to_cpu(el->l_next_free_rec) - 1;
1395                 blkno = le64_to_cpu(el->l_recs[i].e_blkno);
1396                 if (!blkno) {
1397                         ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
1398                                     "Owner %llu has extent "
1399                                     "list where extent # %d has no physical "
1400                                     "block start",
1401                                     (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), i);
1402                         status = -EIO;
1403                         goto bail;
1404                 }
1405
1406                 brelse(bh);
1407                 bh = NULL;
1408
1409                 status = ocfs2_read_extent_block(et->et_ci, blkno, &bh);
1410                 if (status < 0) {
1411                         mlog_errno(status);
1412                         goto bail;
1413                 }
1414
1415                 eb = (struct ocfs2_extent_block *) bh->b_data;
1416                 el = &eb->h_list;
1417
1418                 if (le16_to_cpu(el->l_next_free_rec) <
1419                     le16_to_cpu(el->l_count)) {
1420                         brelse(lowest_bh);
1421                         lowest_bh = bh;
1422                         get_bh(lowest_bh);
1423                 }
1424         }
1425
1426         /* If we didn't find one and the fe doesn't have any room,
1427          * then return '1' */
1428         el = et->et_root_el;
1429         if (!lowest_bh && (el->l_next_free_rec == el->l_count))
1430                 status = 1;
1431
1432         *target_bh = lowest_bh;
1433 bail:
1434         brelse(bh);
1435
1436         mlog_exit(status);
1437         return status;
1438 }
1439
1440 /*
1441  * Grow a b-tree so that it has more records.
1442  *
1443  * We might shift the tree depth in which case existing paths should
1444  * be considered invalid.
1445  *
1446  * Tree depth after the grow is returned via *final_depth.
1447  *
1448  * *last_eb_bh will be updated by ocfs2_add_branch().
1449  */
1450 static int ocfs2_grow_tree(struct inode *inode, handle_t *handle,
1451                            struct ocfs2_extent_tree *et, int *final_depth,
1452                            struct buffer_head **last_eb_bh,
1453                            struct ocfs2_alloc_context *meta_ac)
1454 {
1455         int ret, shift;
1456         struct ocfs2_extent_list *el = et->et_root_el;
1457         int depth = le16_to_cpu(el->l_tree_depth);
1458         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1459         struct buffer_head *bh = NULL;
1460
1461         BUG_ON(meta_ac == NULL);
1462
1463         shift = ocfs2_find_branch_target(osb, et, &bh);
1464         if (shift < 0) {
1465                 ret = shift;
1466                 mlog_errno(ret);
1467                 goto out;
1468         }
1469
1470         /* We traveled all the way to the bottom of the allocation tree
1471          * and didn't find room for any more extents - we need to add
1472          * another tree level */
1473         if (shift) {
1474                 BUG_ON(bh);
1475                 mlog(0, "need to shift tree depth (current = %d)\n", depth);
1476
1477                 /* ocfs2_shift_tree_depth will return us a buffer with
1478                  * the new extent block (so we can pass that to
1479                  * ocfs2_add_branch). */
1480                 ret = ocfs2_shift_tree_depth(osb, handle, inode, et,
1481                                              meta_ac, &bh);
1482                 if (ret < 0) {
1483                         mlog_errno(ret);
1484                         goto out;
1485                 }
1486                 depth++;
1487                 if (depth == 1) {
1488                         /*
1489                          * Special case: we have room now if we shifted from
1490                          * tree_depth 0, so no more work needs to be done.
1491                          *
1492                          * We won't be calling add_branch, so pass
1493                          * back *last_eb_bh as the new leaf. At depth
1494                          * zero, it should always be null so there's
1495                          * no reason to brelse.
1496                          */
1497                         BUG_ON(*last_eb_bh);
1498                         get_bh(bh);
1499                         *last_eb_bh = bh;
1500                         goto out;
1501                 }
1502         }
1503
1504         /* call ocfs2_add_branch to add the final part of the tree with
1505          * the new data. */
1506         mlog(0, "add branch. bh = %p\n", bh);
1507         ret = ocfs2_add_branch(osb, handle, inode, et, bh, last_eb_bh,
1508                                meta_ac);
1509         if (ret < 0) {
1510                 mlog_errno(ret);
1511                 goto out;
1512         }
1513
1514 out:
1515         if (final_depth)
1516                 *final_depth = depth;
1517         brelse(bh);
1518         return ret;
1519 }
1520
1521 /*
1522  * This function will discard the rightmost extent record.
1523  */
1524 static void ocfs2_shift_records_right(struct ocfs2_extent_list *el)
1525 {
1526         int next_free = le16_to_cpu(el->l_next_free_rec);
1527         int count = le16_to_cpu(el->l_count);
1528         unsigned int num_bytes;
1529
1530         BUG_ON(!next_free);
1531         /* This will cause us to go off the end of our extent list. */
1532         BUG_ON(next_free >= count);
1533
1534         num_bytes = sizeof(struct ocfs2_extent_rec) * next_free;
1535
1536         memmove(&el->l_recs[1], &el->l_recs[0], num_bytes);
1537 }
1538
1539 static void ocfs2_rotate_leaf(struct ocfs2_extent_list *el,
1540                               struct ocfs2_extent_rec *insert_rec)
1541 {
1542         int i, insert_index, next_free, has_empty, num_bytes;
1543         u32 insert_cpos = le32_to_cpu(insert_rec->e_cpos);
1544         struct ocfs2_extent_rec *rec;
1545
1546         next_free = le16_to_cpu(el->l_next_free_rec);
1547         has_empty = ocfs2_is_empty_extent(&el->l_recs[0]);
1548
1549         BUG_ON(!next_free);
1550
1551         /* The tree code before us didn't allow enough room in the leaf. */
1552         BUG_ON(el->l_next_free_rec == el->l_count && !has_empty);
1553
1554         /*
1555          * The easiest way to approach this is to just remove the
1556          * empty extent and temporarily decrement next_free.
1557          */
1558         if (has_empty) {
1559                 /*
1560                  * If next_free was 1 (only an empty extent), this
1561                  * loop won't execute, which is fine. We still want
1562                  * the decrement above to happen.
1563                  */
1564                 for(i = 0; i < (next_free - 1); i++)
1565                         el->l_recs[i] = el->l_recs[i+1];
1566
1567                 next_free--;
1568         }
1569
1570         /*
1571          * Figure out what the new record index should be.
1572          */
1573         for(i = 0; i < next_free; i++) {
1574                 rec = &el->l_recs[i];
1575
1576                 if (insert_cpos < le32_to_cpu(rec->e_cpos))
1577                         break;
1578         }
1579         insert_index = i;
1580
1581         mlog(0, "ins %u: index %d, has_empty %d, next_free %d, count %d\n",
1582              insert_cpos, insert_index, has_empty, next_free, le16_to_cpu(el->l_count));
1583
1584         BUG_ON(insert_index < 0);
1585         BUG_ON(insert_index >= le16_to_cpu(el->l_count));
1586         BUG_ON(insert_index > next_free);
1587
1588         /*
1589          * No need to memmove if we're just adding to the tail.
1590          */
1591         if (insert_index != next_free) {
1592                 BUG_ON(next_free >= le16_to_cpu(el->l_count));
1593
1594                 num_bytes = next_free - insert_index;
1595                 num_bytes *= sizeof(struct ocfs2_extent_rec);
1596                 memmove(&el->l_recs[insert_index + 1],
1597                         &el->l_recs[insert_index],
1598                         num_bytes);
1599         }
1600
1601         /*
1602          * Either we had an empty extent, and need to re-increment or
1603          * there was no empty extent on a non full rightmost leaf node,
1604          * in which case we still need to increment.
1605          */
1606         next_free++;
1607         el->l_next_free_rec = cpu_to_le16(next_free);
1608         /*
1609          * Make sure none of the math above just messed up our tree.
1610          */
1611         BUG_ON(le16_to_cpu(el->l_next_free_rec) > le16_to_cpu(el->l_count));
1612
1613         el->l_recs[insert_index] = *insert_rec;
1614
1615 }
1616
1617 static void ocfs2_remove_empty_extent(struct ocfs2_extent_list *el)
1618 {
1619         int size, num_recs = le16_to_cpu(el->l_next_free_rec);
1620
1621         BUG_ON(num_recs == 0);
1622
1623         if (ocfs2_is_empty_extent(&el->l_recs[0])) {
1624                 num_recs--;
1625                 size = num_recs * sizeof(struct ocfs2_extent_rec);
1626                 memmove(&el->l_recs[0], &el->l_recs[1], size);
1627                 memset(&el->l_recs[num_recs], 0,
1628                        sizeof(struct ocfs2_extent_rec));
1629                 el->l_next_free_rec = cpu_to_le16(num_recs);
1630         }
1631 }
1632
1633 /*
1634  * Create an empty extent record .
1635  *
1636  * l_next_free_rec may be updated.
1637  *
1638  * If an empty extent already exists do nothing.
1639  */
1640 static void ocfs2_create_empty_extent(struct ocfs2_extent_list *el)
1641 {
1642         int next_free = le16_to_cpu(el->l_next_free_rec);
1643
1644         BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
1645
1646         if (next_free == 0)
1647                 goto set_and_inc;
1648
1649         if (ocfs2_is_empty_extent(&el->l_recs[0]))
1650                 return;
1651
1652         mlog_bug_on_msg(el->l_count == el->l_next_free_rec,
1653                         "Asked to create an empty extent in a full list:\n"
1654                         "count = %u, tree depth = %u",
1655                         le16_to_cpu(el->l_count),
1656                         le16_to_cpu(el->l_tree_depth));
1657
1658         ocfs2_shift_records_right(el);
1659
1660 set_and_inc:
1661         le16_add_cpu(&el->l_next_free_rec, 1);
1662         memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
1663 }
1664
1665 /*
1666  * For a rotation which involves two leaf nodes, the "root node" is
1667  * the lowest level tree node which contains a path to both leafs. This
1668  * resulting set of information can be used to form a complete "subtree"
1669  *
1670  * This function is passed two full paths from the dinode down to a
1671  * pair of adjacent leaves. It's task is to figure out which path
1672  * index contains the subtree root - this can be the root index itself
1673  * in a worst-case rotation.
1674  *
1675  * The array index of the subtree root is passed back.
1676  */
1677 static int ocfs2_find_subtree_root(struct ocfs2_extent_tree *et,
1678                                    struct ocfs2_path *left,
1679                                    struct ocfs2_path *right)
1680 {
1681         int i = 0;
1682
1683         /*
1684          * Check that the caller passed in two paths from the same tree.
1685          */
1686         BUG_ON(path_root_bh(left) != path_root_bh(right));
1687
1688         do {
1689                 i++;
1690
1691                 /*
1692                  * The caller didn't pass two adjacent paths.
1693                  */
1694                 mlog_bug_on_msg(i > left->p_tree_depth,
1695                                 "Owner %llu, left depth %u, right depth %u\n"
1696                                 "left leaf blk %llu, right leaf blk %llu\n",
1697                                 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
1698                                 left->p_tree_depth, right->p_tree_depth,
1699                                 (unsigned long long)path_leaf_bh(left)->b_blocknr,
1700                                 (unsigned long long)path_leaf_bh(right)->b_blocknr);
1701         } while (left->p_node[i].bh->b_blocknr ==
1702                  right->p_node[i].bh->b_blocknr);
1703
1704         return i - 1;
1705 }
1706
1707 typedef void (path_insert_t)(void *, struct buffer_head *);
1708
1709 /*
1710  * Traverse a btree path in search of cpos, starting at root_el.
1711  *
1712  * This code can be called with a cpos larger than the tree, in which
1713  * case it will return the rightmost path.
1714  */
1715 static int __ocfs2_find_path(struct ocfs2_caching_info *ci,
1716                              struct ocfs2_extent_list *root_el, u32 cpos,
1717                              path_insert_t *func, void *data)
1718 {
1719         int i, ret = 0;
1720         u32 range;
1721         u64 blkno;
1722         struct buffer_head *bh = NULL;
1723         struct ocfs2_extent_block *eb;
1724         struct ocfs2_extent_list *el;
1725         struct ocfs2_extent_rec *rec;
1726
1727         el = root_el;
1728         while (el->l_tree_depth) {
1729                 if (le16_to_cpu(el->l_next_free_rec) == 0) {
1730                         ocfs2_error(ocfs2_metadata_cache_get_super(ci),
1731                                     "Owner %llu has empty extent list at "
1732                                     "depth %u\n",
1733                                     (unsigned long long)ocfs2_metadata_cache_owner(ci),
1734                                     le16_to_cpu(el->l_tree_depth));
1735                         ret = -EROFS;
1736                         goto out;
1737
1738                 }
1739
1740                 for(i = 0; i < le16_to_cpu(el->l_next_free_rec) - 1; i++) {
1741                         rec = &el->l_recs[i];
1742
1743                         /*
1744                          * In the case that cpos is off the allocation
1745                          * tree, this should just wind up returning the
1746                          * rightmost record.
1747                          */
1748                         range = le32_to_cpu(rec->e_cpos) +
1749                                 ocfs2_rec_clusters(el, rec);
1750                         if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
1751                             break;
1752                 }
1753
1754                 blkno = le64_to_cpu(el->l_recs[i].e_blkno);
1755                 if (blkno == 0) {
1756                         ocfs2_error(ocfs2_metadata_cache_get_super(ci),
1757                                     "Owner %llu has bad blkno in extent list "
1758                                     "at depth %u (index %d)\n",
1759                                     (unsigned long long)ocfs2_metadata_cache_owner(ci),
1760                                     le16_to_cpu(el->l_tree_depth), i);
1761                         ret = -EROFS;
1762                         goto out;
1763                 }
1764
1765                 brelse(bh);
1766                 bh = NULL;
1767                 ret = ocfs2_read_extent_block(ci, blkno, &bh);
1768                 if (ret) {
1769                         mlog_errno(ret);
1770                         goto out;
1771                 }
1772
1773                 eb = (struct ocfs2_extent_block *) bh->b_data;
1774                 el = &eb->h_list;
1775
1776                 if (le16_to_cpu(el->l_next_free_rec) >
1777                     le16_to_cpu(el->l_count)) {
1778                         ocfs2_error(ocfs2_metadata_cache_get_super(ci),
1779                                     "Owner %llu has bad count in extent list "
1780                                     "at block %llu (next free=%u, count=%u)\n",
1781                                     (unsigned long long)ocfs2_metadata_cache_owner(ci),
1782                                     (unsigned long long)bh->b_blocknr,
1783                                     le16_to_cpu(el->l_next_free_rec),
1784                                     le16_to_cpu(el->l_count));
1785                         ret = -EROFS;
1786                         goto out;
1787                 }
1788
1789                 if (func)
1790                         func(data, bh);
1791         }
1792
1793 out:
1794         /*
1795          * Catch any trailing bh that the loop didn't handle.
1796          */
1797         brelse(bh);
1798
1799         return ret;
1800 }
1801
1802 /*
1803  * Given an initialized path (that is, it has a valid root extent
1804  * list), this function will traverse the btree in search of the path
1805  * which would contain cpos.
1806  *
1807  * The path traveled is recorded in the path structure.
1808  *
1809  * Note that this will not do any comparisons on leaf node extent
1810  * records, so it will work fine in the case that we just added a tree
1811  * branch.
1812  */
1813 struct find_path_data {
1814         int index;
1815         struct ocfs2_path *path;
1816 };
1817 static void find_path_ins(void *data, struct buffer_head *bh)
1818 {
1819         struct find_path_data *fp = data;
1820
1821         get_bh(bh);
1822         ocfs2_path_insert_eb(fp->path, fp->index, bh);
1823         fp->index++;
1824 }
1825 static int ocfs2_find_path(struct ocfs2_caching_info *ci,
1826                            struct ocfs2_path *path, u32 cpos)
1827 {
1828         struct find_path_data data;
1829
1830         data.index = 1;
1831         data.path = path;
1832         return __ocfs2_find_path(ci, path_root_el(path), cpos,
1833                                  find_path_ins, &data);
1834 }
1835
1836 static void find_leaf_ins(void *data, struct buffer_head *bh)
1837 {
1838         struct ocfs2_extent_block *eb =(struct ocfs2_extent_block *)bh->b_data;
1839         struct ocfs2_extent_list *el = &eb->h_list;
1840         struct buffer_head **ret = data;
1841
1842         /* We want to retain only the leaf block. */
1843         if (le16_to_cpu(el->l_tree_depth) == 0) {
1844                 get_bh(bh);
1845                 *ret = bh;
1846         }
1847 }
1848 /*
1849  * Find the leaf block in the tree which would contain cpos. No
1850  * checking of the actual leaf is done.
1851  *
1852  * Some paths want to call this instead of allocating a path structure
1853  * and calling ocfs2_find_path().
1854  *
1855  * This function doesn't handle non btree extent lists.
1856  */
1857 int ocfs2_find_leaf(struct ocfs2_caching_info *ci,
1858                     struct ocfs2_extent_list *root_el, u32 cpos,
1859                     struct buffer_head **leaf_bh)
1860 {
1861         int ret;
1862         struct buffer_head *bh = NULL;
1863
1864         ret = __ocfs2_find_path(ci, root_el, cpos, find_leaf_ins, &bh);
1865         if (ret) {
1866                 mlog_errno(ret);
1867                 goto out;
1868         }
1869
1870         *leaf_bh = bh;
1871 out:
1872         return ret;
1873 }
1874
1875 /*
1876  * Adjust the adjacent records (left_rec, right_rec) involved in a rotation.
1877  *
1878  * Basically, we've moved stuff around at the bottom of the tree and
1879  * we need to fix up the extent records above the changes to reflect
1880  * the new changes.
1881  *
1882  * left_rec: the record on the left.
1883  * left_child_el: is the child list pointed to by left_rec
1884  * right_rec: the record to the right of left_rec
1885  * right_child_el: is the child list pointed to by right_rec
1886  *
1887  * By definition, this only works on interior nodes.
1888  */
1889 static void ocfs2_adjust_adjacent_records(struct ocfs2_extent_rec *left_rec,
1890                                   struct ocfs2_extent_list *left_child_el,
1891                                   struct ocfs2_extent_rec *right_rec,
1892                                   struct ocfs2_extent_list *right_child_el)
1893 {
1894         u32 left_clusters, right_end;
1895
1896         /*
1897          * Interior nodes never have holes. Their cpos is the cpos of
1898          * the leftmost record in their child list. Their cluster
1899          * count covers the full theoretical range of their child list
1900          * - the range between their cpos and the cpos of the record
1901          * immediately to their right.
1902          */
1903         left_clusters = le32_to_cpu(right_child_el->l_recs[0].e_cpos);
1904         if (!ocfs2_rec_clusters(right_child_el, &right_child_el->l_recs[0])) {
1905                 BUG_ON(right_child_el->l_tree_depth);
1906                 BUG_ON(le16_to_cpu(right_child_el->l_next_free_rec) <= 1);
1907                 left_clusters = le32_to_cpu(right_child_el->l_recs[1].e_cpos);
1908         }
1909         left_clusters -= le32_to_cpu(left_rec->e_cpos);
1910         left_rec->e_int_clusters = cpu_to_le32(left_clusters);
1911
1912         /*
1913          * Calculate the rightmost cluster count boundary before
1914          * moving cpos - we will need to adjust clusters after
1915          * updating e_cpos to keep the same highest cluster count.
1916          */
1917         right_end = le32_to_cpu(right_rec->e_cpos);
1918         right_end += le32_to_cpu(right_rec->e_int_clusters);
1919
1920         right_rec->e_cpos = left_rec->e_cpos;
1921         le32_add_cpu(&right_rec->e_cpos, left_clusters);
1922
1923         right_end -= le32_to_cpu(right_rec->e_cpos);
1924         right_rec->e_int_clusters = cpu_to_le32(right_end);
1925 }
1926
1927 /*
1928  * Adjust the adjacent root node records involved in a
1929  * rotation. left_el_blkno is passed in as a key so that we can easily
1930  * find it's index in the root list.
1931  */
1932 static void ocfs2_adjust_root_records(struct ocfs2_extent_list *root_el,
1933                                       struct ocfs2_extent_list *left_el,
1934                                       struct ocfs2_extent_list *right_el,
1935                                       u64 left_el_blkno)
1936 {
1937         int i;
1938
1939         BUG_ON(le16_to_cpu(root_el->l_tree_depth) <=
1940                le16_to_cpu(left_el->l_tree_depth));
1941
1942         for(i = 0; i < le16_to_cpu(root_el->l_next_free_rec) - 1; i++) {
1943                 if (le64_to_cpu(root_el->l_recs[i].e_blkno) == left_el_blkno)
1944                         break;
1945         }
1946
1947         /*
1948          * The path walking code should have never returned a root and
1949          * two paths which are not adjacent.
1950          */
1951         BUG_ON(i >= (le16_to_cpu(root_el->l_next_free_rec) - 1));
1952
1953         ocfs2_adjust_adjacent_records(&root_el->l_recs[i], left_el,
1954                                       &root_el->l_recs[i + 1], right_el);
1955 }
1956
1957 /*
1958  * We've changed a leaf block (in right_path) and need to reflect that
1959  * change back up the subtree.
1960  *
1961  * This happens in multiple places:
1962  *   - When we've moved an extent record from the left path leaf to the right
1963  *     path leaf to make room for an empty extent in the left path leaf.
1964  *   - When our insert into the right path leaf is at the leftmost edge
1965  *     and requires an update of the path immediately to it's left. This
1966  *     can occur at the end of some types of rotation and appending inserts.
1967  *   - When we've adjusted the last extent record in the left path leaf and the
1968  *     1st extent record in the right path leaf during cross extent block merge.
1969  */
1970 static void ocfs2_complete_edge_insert(handle_t *handle,
1971                                        struct ocfs2_path *left_path,
1972                                        struct ocfs2_path *right_path,
1973                                        int subtree_index)
1974 {
1975         int ret, i, idx;
1976         struct ocfs2_extent_list *el, *left_el, *right_el;
1977         struct ocfs2_extent_rec *left_rec, *right_rec;
1978         struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
1979
1980         /*
1981          * Update the counts and position values within all the
1982          * interior nodes to reflect the leaf rotation we just did.
1983          *
1984          * The root node is handled below the loop.
1985          *
1986          * We begin the loop with right_el and left_el pointing to the
1987          * leaf lists and work our way up.
1988          *
1989          * NOTE: within this loop, left_el and right_el always refer
1990          * to the *child* lists.
1991          */
1992         left_el = path_leaf_el(left_path);
1993         right_el = path_leaf_el(right_path);
1994         for(i = left_path->p_tree_depth - 1; i > subtree_index; i--) {
1995                 mlog(0, "Adjust records at index %u\n", i);
1996
1997                 /*
1998                  * One nice property of knowing that all of these
1999                  * nodes are below the root is that we only deal with
2000                  * the leftmost right node record and the rightmost
2001                  * left node record.
2002                  */
2003                 el = left_path->p_node[i].el;
2004                 idx = le16_to_cpu(left_el->l_next_free_rec) - 1;
2005                 left_rec = &el->l_recs[idx];
2006
2007                 el = right_path->p_node[i].el;
2008                 right_rec = &el->l_recs[0];
2009
2010                 ocfs2_adjust_adjacent_records(left_rec, left_el, right_rec,
2011                                               right_el);
2012
2013                 ret = ocfs2_journal_dirty(handle, left_path->p_node[i].bh);
2014                 if (ret)
2015                         mlog_errno(ret);
2016
2017                 ret = ocfs2_journal_dirty(handle, right_path->p_node[i].bh);
2018                 if (ret)
2019                         mlog_errno(ret);
2020
2021                 /*
2022                  * Setup our list pointers now so that the current
2023                  * parents become children in the next iteration.
2024                  */
2025                 left_el = left_path->p_node[i].el;
2026                 right_el = right_path->p_node[i].el;
2027         }
2028
2029         /*
2030          * At the root node, adjust the two adjacent records which
2031          * begin our path to the leaves.
2032          */
2033
2034         el = left_path->p_node[subtree_index].el;
2035         left_el = left_path->p_node[subtree_index + 1].el;
2036         right_el = right_path->p_node[subtree_index + 1].el;
2037
2038         ocfs2_adjust_root_records(el, left_el, right_el,
2039                                   left_path->p_node[subtree_index + 1].bh->b_blocknr);
2040
2041         root_bh = left_path->p_node[subtree_index].bh;
2042
2043         ret = ocfs2_journal_dirty(handle, root_bh);
2044         if (ret)
2045                 mlog_errno(ret);
2046 }
2047
2048 static int ocfs2_rotate_subtree_right(handle_t *handle,
2049                                       struct ocfs2_extent_tree *et,
2050                                       struct ocfs2_path *left_path,
2051                                       struct ocfs2_path *right_path,
2052                                       int subtree_index)
2053 {
2054         int ret, i;
2055         struct buffer_head *right_leaf_bh;
2056         struct buffer_head *left_leaf_bh = NULL;
2057         struct buffer_head *root_bh;
2058         struct ocfs2_extent_list *right_el, *left_el;
2059         struct ocfs2_extent_rec move_rec;
2060
2061         left_leaf_bh = path_leaf_bh(left_path);
2062         left_el = path_leaf_el(left_path);
2063
2064         if (left_el->l_next_free_rec != left_el->l_count) {
2065                 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
2066                             "Inode %llu has non-full interior leaf node %llu"
2067                             "(next free = %u)",
2068                             (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2069                             (unsigned long long)left_leaf_bh->b_blocknr,
2070                             le16_to_cpu(left_el->l_next_free_rec));
2071                 return -EROFS;
2072         }
2073
2074         /*
2075          * This extent block may already have an empty record, so we
2076          * return early if so.
2077          */
2078         if (ocfs2_is_empty_extent(&left_el->l_recs[0]))
2079                 return 0;
2080
2081         root_bh = left_path->p_node[subtree_index].bh;
2082         BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
2083
2084         ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
2085                                            subtree_index);
2086         if (ret) {
2087                 mlog_errno(ret);
2088                 goto out;
2089         }
2090
2091         for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
2092                 ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2093                                                    right_path, i);
2094                 if (ret) {
2095                         mlog_errno(ret);
2096                         goto out;
2097                 }
2098
2099                 ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2100                                                    left_path, i);
2101                 if (ret) {
2102                         mlog_errno(ret);
2103                         goto out;
2104                 }
2105         }
2106
2107         right_leaf_bh = path_leaf_bh(right_path);
2108         right_el = path_leaf_el(right_path);
2109
2110         /* This is a code error, not a disk corruption. */
2111         mlog_bug_on_msg(!right_el->l_next_free_rec, "Inode %llu: Rotate fails "
2112                         "because rightmost leaf block %llu is empty\n",
2113                         (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2114                         (unsigned long long)right_leaf_bh->b_blocknr);
2115
2116         ocfs2_create_empty_extent(right_el);
2117
2118         ret = ocfs2_journal_dirty(handle, right_leaf_bh);
2119         if (ret) {
2120                 mlog_errno(ret);
2121                 goto out;
2122         }
2123
2124         /* Do the copy now. */
2125         i = le16_to_cpu(left_el->l_next_free_rec) - 1;
2126         move_rec = left_el->l_recs[i];
2127         right_el->l_recs[0] = move_rec;
2128
2129         /*
2130          * Clear out the record we just copied and shift everything
2131          * over, leaving an empty extent in the left leaf.
2132          *
2133          * We temporarily subtract from next_free_rec so that the
2134          * shift will lose the tail record (which is now defunct).
2135          */
2136         le16_add_cpu(&left_el->l_next_free_rec, -1);
2137         ocfs2_shift_records_right(left_el);
2138         memset(&left_el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2139         le16_add_cpu(&left_el->l_next_free_rec, 1);
2140
2141         ret = ocfs2_journal_dirty(handle, left_leaf_bh);
2142         if (ret) {
2143                 mlog_errno(ret);
2144                 goto out;
2145         }
2146
2147         ocfs2_complete_edge_insert(handle, left_path, right_path,
2148                                    subtree_index);
2149
2150 out:
2151         return ret;
2152 }
2153
2154 /*
2155  * Given a full path, determine what cpos value would return us a path
2156  * containing the leaf immediately to the left of the current one.
2157  *
2158  * Will return zero if the path passed in is already the leftmost path.
2159  */
2160 static int ocfs2_find_cpos_for_left_leaf(struct super_block *sb,
2161                                          struct ocfs2_path *path, u32 *cpos)
2162 {
2163         int i, j, ret = 0;
2164         u64 blkno;
2165         struct ocfs2_extent_list *el;
2166
2167         BUG_ON(path->p_tree_depth == 0);
2168
2169         *cpos = 0;
2170
2171         blkno = path_leaf_bh(path)->b_blocknr;
2172
2173         /* Start at the tree node just above the leaf and work our way up. */
2174         i = path->p_tree_depth - 1;
2175         while (i >= 0) {
2176                 el = path->p_node[i].el;
2177
2178                 /*
2179                  * Find the extent record just before the one in our
2180                  * path.
2181                  */
2182                 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
2183                         if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
2184                                 if (j == 0) {
2185                                         if (i == 0) {
2186                                                 /*
2187                                                  * We've determined that the
2188                                                  * path specified is already
2189                                                  * the leftmost one - return a
2190                                                  * cpos of zero.
2191                                                  */
2192                                                 goto out;
2193                                         }
2194                                         /*
2195                                          * The leftmost record points to our
2196                                          * leaf - we need to travel up the
2197                                          * tree one level.
2198                                          */
2199                                         goto next_node;
2200                                 }
2201
2202                                 *cpos = le32_to_cpu(el->l_recs[j - 1].e_cpos);
2203                                 *cpos = *cpos + ocfs2_rec_clusters(el,
2204                                                            &el->l_recs[j - 1]);
2205                                 *cpos = *cpos - 1;
2206                                 goto out;
2207                         }
2208                 }
2209
2210                 /*
2211                  * If we got here, we never found a valid node where
2212                  * the tree indicated one should be.
2213                  */
2214                 ocfs2_error(sb,
2215                             "Invalid extent tree at extent block %llu\n",
2216                             (unsigned long long)blkno);
2217                 ret = -EROFS;
2218                 goto out;
2219
2220 next_node:
2221                 blkno = path->p_node[i].bh->b_blocknr;
2222                 i--;
2223         }
2224
2225 out:
2226         return ret;
2227 }
2228
2229 /*
2230  * Extend the transaction by enough credits to complete the rotation,
2231  * and still leave at least the original number of credits allocated
2232  * to this transaction.
2233  */
2234 static int ocfs2_extend_rotate_transaction(handle_t *handle, int subtree_depth,
2235                                            int op_credits,
2236                                            struct ocfs2_path *path)
2237 {
2238         int credits = (path->p_tree_depth - subtree_depth) * 2 + 1 + op_credits;
2239
2240         if (handle->h_buffer_credits < credits)
2241                 return ocfs2_extend_trans(handle, credits);
2242
2243         return 0;
2244 }
2245
2246 /*
2247  * Trap the case where we're inserting into the theoretical range past
2248  * the _actual_ left leaf range. Otherwise, we'll rotate a record
2249  * whose cpos is less than ours into the right leaf.
2250  *
2251  * It's only necessary to look at the rightmost record of the left
2252  * leaf because the logic that calls us should ensure that the
2253  * theoretical ranges in the path components above the leaves are
2254  * correct.
2255  */
2256 static int ocfs2_rotate_requires_path_adjustment(struct ocfs2_path *left_path,
2257                                                  u32 insert_cpos)
2258 {
2259         struct ocfs2_extent_list *left_el;
2260         struct ocfs2_extent_rec *rec;
2261         int next_free;
2262
2263         left_el = path_leaf_el(left_path);
2264         next_free = le16_to_cpu(left_el->l_next_free_rec);
2265         rec = &left_el->l_recs[next_free - 1];
2266
2267         if (insert_cpos > le32_to_cpu(rec->e_cpos))
2268                 return 1;
2269         return 0;
2270 }
2271
2272 static int ocfs2_leftmost_rec_contains(struct ocfs2_extent_list *el, u32 cpos)
2273 {
2274         int next_free = le16_to_cpu(el->l_next_free_rec);
2275         unsigned int range;
2276         struct ocfs2_extent_rec *rec;
2277
2278         if (next_free == 0)
2279                 return 0;
2280
2281         rec = &el->l_recs[0];
2282         if (ocfs2_is_empty_extent(rec)) {
2283                 /* Empty list. */
2284                 if (next_free == 1)
2285                         return 0;
2286                 rec = &el->l_recs[1];
2287         }
2288
2289         range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
2290         if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
2291                 return 1;
2292         return 0;
2293 }
2294
2295 /*
2296  * Rotate all the records in a btree right one record, starting at insert_cpos.
2297  *
2298  * The path to the rightmost leaf should be passed in.
2299  *
2300  * The array is assumed to be large enough to hold an entire path (tree depth).
2301  *
2302  * Upon succesful return from this function:
2303  *
2304  * - The 'right_path' array will contain a path to the leaf block
2305  *   whose range contains e_cpos.
2306  * - That leaf block will have a single empty extent in list index 0.
2307  * - In the case that the rotation requires a post-insert update,
2308  *   *ret_left_path will contain a valid path which can be passed to
2309  *   ocfs2_insert_path().
2310  */
2311 static int ocfs2_rotate_tree_right(handle_t *handle,
2312                                    struct ocfs2_extent_tree *et,
2313                                    enum ocfs2_split_type split,
2314                                    u32 insert_cpos,
2315                                    struct ocfs2_path *right_path,
2316                                    struct ocfs2_path **ret_left_path)
2317 {
2318         int ret, start, orig_credits = handle->h_buffer_credits;
2319         u32 cpos;
2320         struct ocfs2_path *left_path = NULL;
2321         struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
2322
2323         *ret_left_path = NULL;
2324
2325         left_path = ocfs2_new_path_from_path(right_path);
2326         if (!left_path) {
2327                 ret = -ENOMEM;
2328                 mlog_errno(ret);
2329                 goto out;
2330         }
2331
2332         ret = ocfs2_find_cpos_for_left_leaf(sb, right_path, &cpos);
2333         if (ret) {
2334                 mlog_errno(ret);
2335                 goto out;
2336         }
2337
2338         mlog(0, "Insert: %u, first left path cpos: %u\n", insert_cpos, cpos);
2339
2340         /*
2341          * What we want to do here is:
2342          *
2343          * 1) Start with the rightmost path.
2344          *
2345          * 2) Determine a path to the leaf block directly to the left
2346          *    of that leaf.
2347          *
2348          * 3) Determine the 'subtree root' - the lowest level tree node
2349          *    which contains a path to both leaves.
2350          *
2351          * 4) Rotate the subtree.
2352          *
2353          * 5) Find the next subtree by considering the left path to be
2354          *    the new right path.
2355          *
2356          * The check at the top of this while loop also accepts
2357          * insert_cpos == cpos because cpos is only a _theoretical_
2358          * value to get us the left path - insert_cpos might very well
2359          * be filling that hole.
2360          *
2361          * Stop at a cpos of '0' because we either started at the
2362          * leftmost branch (i.e., a tree with one branch and a
2363          * rotation inside of it), or we've gone as far as we can in
2364          * rotating subtrees.
2365          */
2366         while (cpos && insert_cpos <= cpos) {
2367                 mlog(0, "Rotating a tree: ins. cpos: %u, left path cpos: %u\n",
2368                      insert_cpos, cpos);
2369
2370                 ret = ocfs2_find_path(et->et_ci, left_path, cpos);
2371                 if (ret) {
2372                         mlog_errno(ret);
2373                         goto out;
2374                 }
2375
2376                 mlog_bug_on_msg(path_leaf_bh(left_path) ==
2377                                 path_leaf_bh(right_path),
2378                                 "Owner %llu: error during insert of %u "
2379                                 "(left path cpos %u) results in two identical "
2380                                 "paths ending at %llu\n",
2381                                 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2382                                 insert_cpos, cpos,
2383                                 (unsigned long long)
2384                                 path_leaf_bh(left_path)->b_blocknr);
2385
2386                 if (split == SPLIT_NONE &&
2387                     ocfs2_rotate_requires_path_adjustment(left_path,
2388                                                           insert_cpos)) {
2389
2390                         /*
2391                          * We've rotated the tree as much as we
2392                          * should. The rest is up to
2393                          * ocfs2_insert_path() to complete, after the
2394                          * record insertion. We indicate this
2395                          * situation by returning the left path.
2396                          *
2397                          * The reason we don't adjust the records here
2398                          * before the record insert is that an error
2399                          * later might break the rule where a parent
2400                          * record e_cpos will reflect the actual
2401                          * e_cpos of the 1st nonempty record of the
2402                          * child list.
2403                          */
2404                         *ret_left_path = left_path;
2405                         goto out_ret_path;
2406                 }
2407
2408                 start = ocfs2_find_subtree_root(et, left_path, right_path);
2409
2410                 mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n",
2411                      start,
2412                      (unsigned long long) right_path->p_node[start].bh->b_blocknr,
2413                      right_path->p_tree_depth);
2414
2415                 ret = ocfs2_extend_rotate_transaction(handle, start,
2416                                                       orig_credits, right_path);
2417                 if (ret) {
2418                         mlog_errno(ret);
2419                         goto out;
2420                 }
2421
2422                 ret = ocfs2_rotate_subtree_right(handle, et, left_path,
2423                                                  right_path, start);
2424                 if (ret) {
2425                         mlog_errno(ret);
2426                         goto out;
2427                 }
2428
2429                 if (split != SPLIT_NONE &&
2430                     ocfs2_leftmost_rec_contains(path_leaf_el(right_path),
2431                                                 insert_cpos)) {
2432                         /*
2433                          * A rotate moves the rightmost left leaf
2434                          * record over to the leftmost right leaf
2435                          * slot. If we're doing an extent split
2436                          * instead of a real insert, then we have to
2437                          * check that the extent to be split wasn't
2438                          * just moved over. If it was, then we can
2439                          * exit here, passing left_path back -
2440                          * ocfs2_split_extent() is smart enough to
2441                          * search both leaves.
2442                          */
2443                         *ret_left_path = left_path;
2444                         goto out_ret_path;
2445                 }
2446
2447                 /*
2448                  * There is no need to re-read the next right path
2449                  * as we know that it'll be our current left
2450                  * path. Optimize by copying values instead.
2451                  */
2452                 ocfs2_mv_path(right_path, left_path);
2453
2454                 ret = ocfs2_find_cpos_for_left_leaf(sb, right_path, &cpos);
2455                 if (ret) {
2456                         mlog_errno(ret);
2457                         goto out;
2458                 }
2459         }
2460
2461 out:
2462         ocfs2_free_path(left_path);
2463
2464 out_ret_path:
2465         return ret;
2466 }
2467
2468 static int ocfs2_update_edge_lengths(handle_t *handle,
2469                                      struct ocfs2_extent_tree *et,
2470                                      int subtree_index, struct ocfs2_path *path)
2471 {
2472         int i, idx, ret;
2473         struct ocfs2_extent_rec *rec;
2474         struct ocfs2_extent_list *el;
2475         struct ocfs2_extent_block *eb;
2476         u32 range;
2477
2478         /*
2479          * In normal tree rotation process, we will never touch the
2480          * tree branch above subtree_index and ocfs2_extend_rotate_transaction
2481          * doesn't reserve the credits for them either.
2482          *
2483          * But we do have a special case here which will update the rightmost
2484          * records for all the bh in the path.
2485          * So we have to allocate extra credits and access them.
2486          */
2487         ret = ocfs2_extend_trans(handle,
2488                                  handle->h_buffer_credits + subtree_index);
2489         if (ret) {
2490                 mlog_errno(ret);
2491                 goto out;
2492         }
2493
2494         ret = ocfs2_journal_access_path(et->et_ci, handle, path);
2495         if (ret) {
2496                 mlog_errno(ret);
2497                 goto out;
2498         }
2499
2500         /* Path should always be rightmost. */
2501         eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
2502         BUG_ON(eb->h_next_leaf_blk != 0ULL);
2503
2504         el = &eb->h_list;
2505         BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0);
2506         idx = le16_to_cpu(el->l_next_free_rec) - 1;
2507         rec = &el->l_recs[idx];
2508         range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
2509
2510         for (i = 0; i < path->p_tree_depth; i++) {
2511                 el = path->p_node[i].el;
2512                 idx = le16_to_cpu(el->l_next_free_rec) - 1;
2513                 rec = &el->l_recs[idx];
2514
2515                 rec->e_int_clusters = cpu_to_le32(range);
2516                 le32_add_cpu(&rec->e_int_clusters, -le32_to_cpu(rec->e_cpos));
2517
2518                 ocfs2_journal_dirty(handle, path->p_node[i].bh);
2519         }
2520 out:
2521         return ret;
2522 }
2523
2524 static void ocfs2_unlink_path(handle_t *handle,
2525                               struct ocfs2_extent_tree *et,
2526                               struct ocfs2_cached_dealloc_ctxt *dealloc,
2527                               struct ocfs2_path *path, int unlink_start)
2528 {
2529         int ret, i;
2530         struct ocfs2_extent_block *eb;
2531         struct ocfs2_extent_list *el;
2532         struct buffer_head *bh;
2533
2534         for(i = unlink_start; i < path_num_items(path); i++) {
2535                 bh = path->p_node[i].bh;
2536
2537                 eb = (struct ocfs2_extent_block *)bh->b_data;
2538                 /*
2539                  * Not all nodes might have had their final count
2540                  * decremented by the caller - handle this here.
2541                  */
2542                 el = &eb->h_list;
2543                 if (le16_to_cpu(el->l_next_free_rec) > 1) {
2544                         mlog(ML_ERROR,
2545                              "Inode %llu, attempted to remove extent block "
2546                              "%llu with %u records\n",
2547                              (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2548                              (unsigned long long)le64_to_cpu(eb->h_blkno),
2549                              le16_to_cpu(el->l_next_free_rec));
2550
2551                         ocfs2_journal_dirty(handle, bh);
2552                         ocfs2_remove_from_cache(et->et_ci, bh);
2553                         continue;
2554                 }
2555
2556                 el->l_next_free_rec = 0;
2557                 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2558
2559                 ocfs2_journal_dirty(handle, bh);
2560
2561                 ret = ocfs2_cache_extent_block_free(dealloc, eb);
2562                 if (ret)
2563                         mlog_errno(ret);
2564
2565                 ocfs2_remove_from_cache(et->et_ci, bh);
2566         }
2567 }
2568
2569 static void ocfs2_unlink_subtree(handle_t *handle,
2570                                  struct ocfs2_extent_tree *et,
2571                                  struct ocfs2_path *left_path,
2572                                  struct ocfs2_path *right_path,
2573                                  int subtree_index,
2574                                  struct ocfs2_cached_dealloc_ctxt *dealloc)
2575 {
2576         int i;
2577         struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
2578         struct ocfs2_extent_list *root_el = left_path->p_node[subtree_index].el;
2579         struct ocfs2_extent_list *el;
2580         struct ocfs2_extent_block *eb;
2581
2582         el = path_leaf_el(left_path);
2583
2584         eb = (struct ocfs2_extent_block *)right_path->p_node[subtree_index + 1].bh->b_data;
2585
2586         for(i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++)
2587                 if (root_el->l_recs[i].e_blkno == eb->h_blkno)
2588                         break;
2589
2590         BUG_ON(i >= le16_to_cpu(root_el->l_next_free_rec));
2591
2592         memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
2593         le16_add_cpu(&root_el->l_next_free_rec, -1);
2594
2595         eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2596         eb->h_next_leaf_blk = 0;
2597
2598         ocfs2_journal_dirty(handle, root_bh);
2599         ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2600
2601         ocfs2_unlink_path(handle, et, dealloc, right_path,
2602                           subtree_index + 1);
2603 }
2604
2605 static int ocfs2_rotate_subtree_left(handle_t *handle,
2606                                      struct ocfs2_extent_tree *et,
2607                                      struct ocfs2_path *left_path,
2608                                      struct ocfs2_path *right_path,
2609                                      int subtree_index,
2610                                      struct ocfs2_cached_dealloc_ctxt *dealloc,
2611                                      int *deleted)
2612 {
2613         int ret, i, del_right_subtree = 0, right_has_empty = 0;
2614         struct buffer_head *root_bh, *et_root_bh = path_root_bh(right_path);
2615         struct ocfs2_extent_list *right_leaf_el, *left_leaf_el;
2616         struct ocfs2_extent_block *eb;
2617
2618         *deleted = 0;
2619
2620         right_leaf_el = path_leaf_el(right_path);
2621         left_leaf_el = path_leaf_el(left_path);
2622         root_bh = left_path->p_node[subtree_index].bh;
2623         BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
2624
2625         if (!ocfs2_is_empty_extent(&left_leaf_el->l_recs[0]))
2626                 return 0;
2627
2628         eb = (struct ocfs2_extent_block *)path_leaf_bh(right_path)->b_data;
2629         if (ocfs2_is_empty_extent(&right_leaf_el->l_recs[0])) {
2630                 /*
2631                  * It's legal for us to proceed if the right leaf is
2632                  * the rightmost one and it has an empty extent. There
2633                  * are two cases to handle - whether the leaf will be
2634                  * empty after removal or not. If the leaf isn't empty
2635                  * then just remove the empty extent up front. The
2636                  * next block will handle empty leaves by flagging
2637                  * them for unlink.
2638                  *
2639                  * Non rightmost leaves will throw -EAGAIN and the
2640                  * caller can manually move the subtree and retry.
2641                  */
2642
2643                 if (eb->h_next_leaf_blk != 0ULL)
2644                         return -EAGAIN;
2645
2646                 if (le16_to_cpu(right_leaf_el->l_next_free_rec) > 1) {
2647                         ret = ocfs2_journal_access_eb(handle, et->et_ci,
2648                                                       path_leaf_bh(right_path),
2649                                                       OCFS2_JOURNAL_ACCESS_WRITE);
2650                         if (ret) {
2651                                 mlog_errno(ret);
2652                                 goto out;
2653                         }
2654
2655                         ocfs2_remove_empty_extent(right_leaf_el);
2656                 } else
2657                         right_has_empty = 1;
2658         }
2659
2660         if (eb->h_next_leaf_blk == 0ULL &&
2661             le16_to_cpu(right_leaf_el->l_next_free_rec) == 1) {
2662                 /*
2663                  * We have to update i_last_eb_blk during the meta
2664                  * data delete.
2665                  */
2666                 ret = ocfs2_et_root_journal_access(handle, et,
2667                                                    OCFS2_JOURNAL_ACCESS_WRITE);
2668                 if (ret) {
2669                         mlog_errno(ret);
2670                         goto out;
2671                 }
2672
2673                 del_right_subtree = 1;
2674         }
2675
2676         /*
2677          * Getting here with an empty extent in the right path implies
2678          * that it's the rightmost path and will be deleted.
2679          */
2680         BUG_ON(right_has_empty && !del_right_subtree);
2681
2682         ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
2683                                            subtree_index);
2684         if (ret) {
2685                 mlog_errno(ret);
2686                 goto out;
2687         }
2688
2689         for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
2690                 ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2691                                                    right_path, i);
2692                 if (ret) {
2693                         mlog_errno(ret);
2694                         goto out;
2695                 }
2696
2697                 ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2698                                                    left_path, i);
2699                 if (ret) {
2700                         mlog_errno(ret);
2701                         goto out;
2702                 }
2703         }
2704
2705         if (!right_has_empty) {
2706                 /*
2707                  * Only do this if we're moving a real
2708                  * record. Otherwise, the action is delayed until
2709                  * after removal of the right path in which case we
2710                  * can do a simple shift to remove the empty extent.
2711                  */
2712                 ocfs2_rotate_leaf(left_leaf_el, &right_leaf_el->l_recs[0]);
2713                 memset(&right_leaf_el->l_recs[0], 0,
2714                        sizeof(struct ocfs2_extent_rec));
2715         }
2716         if (eb->h_next_leaf_blk == 0ULL) {
2717                 /*
2718                  * Move recs over to get rid of empty extent, decrease
2719                  * next_free. This is allowed to remove the last
2720                  * extent in our leaf (setting l_next_free_rec to
2721                  * zero) - the delete code below won't care.
2722                  */
2723                 ocfs2_remove_empty_extent(right_leaf_el);
2724         }
2725
2726         ret = ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2727         if (ret)
2728                 mlog_errno(ret);
2729         ret = ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
2730         if (ret)
2731                 mlog_errno(ret);
2732
2733         if (del_right_subtree) {
2734                 ocfs2_unlink_subtree(handle, et, left_path, right_path,
2735                                      subtree_index, dealloc);
2736                 ret = ocfs2_update_edge_lengths(handle, et, subtree_index,
2737                                                 left_path);
2738                 if (ret) {
2739                         mlog_errno(ret);
2740                         goto out;
2741                 }
2742
2743                 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2744                 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
2745
2746                 /*
2747                  * Removal of the extent in the left leaf was skipped
2748                  * above so we could delete the right path
2749                  * 1st.
2750                  */
2751                 if (right_has_empty)
2752                         ocfs2_remove_empty_extent(left_leaf_el);
2753
2754                 ret = ocfs2_journal_dirty(handle, et_root_bh);
2755                 if (ret)
2756                         mlog_errno(ret);
2757
2758                 *deleted = 1;
2759         } else
2760                 ocfs2_complete_edge_insert(handle, left_path, right_path,
2761                                            subtree_index);
2762
2763 out:
2764         return ret;
2765 }
2766
2767 /*
2768  * Given a full path, determine what cpos value would return us a path
2769  * containing the leaf immediately to the right of the current one.
2770  *
2771  * Will return zero if the path passed in is already the rightmost path.
2772  *
2773  * This looks similar, but is subtly different to
2774  * ocfs2_find_cpos_for_left_leaf().
2775  */
2776 static int ocfs2_find_cpos_for_right_leaf(struct super_block *sb,
2777                                           struct ocfs2_path *path, u32 *cpos)
2778 {
2779         int i, j, ret = 0;
2780         u64 blkno;
2781         struct ocfs2_extent_list *el;
2782
2783         *cpos = 0;
2784
2785         if (path->p_tree_depth == 0)
2786                 return 0;
2787
2788         blkno = path_leaf_bh(path)->b_blocknr;
2789
2790         /* Start at the tree node just above the leaf and work our way up. */
2791         i = path->p_tree_depth - 1;
2792         while (i >= 0) {
2793                 int next_free;
2794
2795                 el = path->p_node[i].el;
2796
2797                 /*
2798                  * Find the extent record just after the one in our
2799                  * path.
2800                  */
2801                 next_free = le16_to_cpu(el->l_next_free_rec);
2802                 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
2803                         if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
2804                                 if (j == (next_free - 1)) {
2805                                         if (i == 0) {
2806                                                 /*
2807                                                  * We've determined that the
2808                                                  * path specified is already
2809                                                  * the rightmost one - return a
2810                                                  * cpos of zero.
2811                                                  */
2812                                                 goto out;
2813                                         }
2814                                         /*
2815                                          * The rightmost record points to our
2816                                          * leaf - we need to travel up the
2817                                          * tree one level.
2818                                          */
2819                                         goto next_node;
2820                                 }
2821
2822                                 *cpos = le32_to_cpu(el->l_recs[j + 1].e_cpos);
2823                                 goto out;
2824                         }
2825                 }
2826
2827                 /*
2828                  * If we got here, we never found a valid node where
2829                  * the tree indicated one should be.
2830                  */
2831                 ocfs2_error(sb,
2832                             "Invalid extent tree at extent block %llu\n",
2833                             (unsigned long long)blkno);
2834                 ret = -EROFS;
2835                 goto out;
2836
2837 next_node:
2838                 blkno = path->p_node[i].bh->b_blocknr;
2839                 i--;
2840         }
2841
2842 out:
2843         return ret;
2844 }
2845
2846 static int ocfs2_rotate_rightmost_leaf_left(struct inode *inode,
2847                                             handle_t *handle,
2848                                             struct ocfs2_path *path)
2849 {
2850         int ret;
2851         struct buffer_head *bh = path_leaf_bh(path);
2852         struct ocfs2_extent_list *el = path_leaf_el(path);
2853
2854         if (!ocfs2_is_empty_extent(&el->l_recs[0]))
2855                 return 0;
2856
2857         ret = ocfs2_path_bh_journal_access(handle, INODE_CACHE(inode), path,
2858                                            path_num_items(path) - 1);
2859         if (ret) {
2860                 mlog_errno(ret);
2861                 goto out;
2862         }
2863
2864         ocfs2_remove_empty_extent(el);
2865
2866         ret = ocfs2_journal_dirty(handle, bh);
2867         if (ret)
2868                 mlog_errno(ret);
2869
2870 out:
2871         return ret;
2872 }
2873
2874 static int __ocfs2_rotate_tree_left(struct inode *inode,
2875                                     handle_t *handle, int orig_credits,
2876                                     struct ocfs2_path *path,
2877                                     struct ocfs2_cached_dealloc_ctxt *dealloc,
2878                                     struct ocfs2_path **empty_extent_path,
2879                                     struct ocfs2_extent_tree *et)
2880 {
2881         int ret, subtree_root, deleted;
2882         u32 right_cpos;
2883         struct ocfs2_path *left_path = NULL;
2884         struct ocfs2_path *right_path = NULL;
2885
2886         BUG_ON(!ocfs2_is_empty_extent(&(path_leaf_el(path)->l_recs[0])));
2887
2888         *empty_extent_path = NULL;
2889
2890         ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, path,
2891                                              &right_cpos);
2892         if (ret) {
2893                 mlog_errno(ret);
2894                 goto out;
2895         }
2896
2897         left_path = ocfs2_new_path_from_path(path);
2898         if (!left_path) {
2899                 ret = -ENOMEM;
2900                 mlog_errno(ret);
2901                 goto out;
2902         }
2903
2904         ocfs2_cp_path(left_path, path);
2905
2906         right_path = ocfs2_new_path_from_path(path);
2907         if (!right_path) {
2908                 ret = -ENOMEM;
2909                 mlog_errno(ret);
2910                 goto out;
2911         }
2912
2913         while (right_cpos) {
2914                 ret = ocfs2_find_path(et->et_ci, right_path, right_cpos);
2915                 if (ret) {
2916                         mlog_errno(ret);
2917                         goto out;
2918                 }
2919
2920                 subtree_root = ocfs2_find_subtree_root(et, left_path,
2921                                                        right_path);
2922
2923                 mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n",
2924                      subtree_root,
2925                      (unsigned long long)
2926                      right_path->p_node[subtree_root].bh->b_blocknr,
2927                      right_path->p_tree_depth);
2928
2929                 ret = ocfs2_extend_rotate_transaction(handle, subtree_root,
2930                                                       orig_credits, left_path);
2931                 if (ret) {
2932                         mlog_errno(ret);
2933                         goto out;
2934                 }
2935
2936                 /*
2937                  * Caller might still want to make changes to the
2938                  * tree root, so re-add it to the journal here.
2939                  */
2940                 ret = ocfs2_path_bh_journal_access(handle, INODE_CACHE(inode),
2941                                                    left_path, 0);
2942                 if (ret) {
2943                         mlog_errno(ret);
2944                         goto out;
2945                 }
2946
2947                 ret = ocfs2_rotate_subtree_left(handle, et, left_path,
2948                                                 right_path, subtree_root,
2949                                                 dealloc, &deleted);
2950                 if (ret == -EAGAIN) {
2951                         /*
2952                          * The rotation has to temporarily stop due to
2953                          * the right subtree having an empty
2954                          * extent. Pass it back to the caller for a
2955                          * fixup.
2956                          */
2957                         *empty_extent_path = right_path;
2958                         right_path = NULL;
2959                         goto out;
2960                 }
2961                 if (ret) {
2962                         mlog_errno(ret);
2963                         goto out;
2964                 }
2965
2966                 /*
2967                  * The subtree rotate might have removed records on
2968                  * the rightmost edge. If so, then rotation is
2969                  * complete.
2970                  */
2971                 if (deleted)
2972                         break;
2973
2974                 ocfs2_mv_path(left_path, right_path);
2975
2976                 ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, left_path,
2977                                                      &right_cpos);
2978                 if (ret) {
2979                         mlog_errno(ret);
2980                         goto out;
2981                 }
2982         }
2983
2984 out:
2985         ocfs2_free_path(right_path);
2986         ocfs2_free_path(left_path);
2987
2988         return ret;
2989 }
2990
2991 static int ocfs2_remove_rightmost_path(struct inode *inode, handle_t *handle,
2992                                 struct ocfs2_path *path,
2993                                 struct ocfs2_cached_dealloc_ctxt *dealloc,
2994                                 struct ocfs2_extent_tree *et)
2995 {
2996         int ret, subtree_index;
2997         u32 cpos;
2998         struct ocfs2_path *left_path = NULL;
2999         struct ocfs2_extent_block *eb;
3000         struct ocfs2_extent_list *el;
3001
3002
3003         ret = ocfs2_et_sanity_check(et);
3004         if (ret)
3005                 goto out;
3006         /*
3007          * There's two ways we handle this depending on
3008          * whether path is the only existing one.
3009          */
3010         ret = ocfs2_extend_rotate_transaction(handle, 0,
3011                                               handle->h_buffer_credits,
3012                                               path);
3013         if (ret) {
3014                 mlog_errno(ret);
3015                 goto out;
3016         }
3017
3018         ret = ocfs2_journal_access_path(et->et_ci, handle, path);
3019         if (ret) {
3020                 mlog_errno(ret);
3021                 goto out;
3022         }
3023
3024         ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci),
3025                                             path, &cpos);
3026         if (ret) {
3027                 mlog_errno(ret);
3028                 goto out;
3029         }
3030
3031         if (cpos) {
3032                 /*
3033                  * We have a path to the left of this one - it needs
3034                  * an update too.
3035                  */
3036                 left_path = ocfs2_new_path_from_path(path);
3037                 if (!left_path) {
3038                         ret = -ENOMEM;
3039                         mlog_errno(ret);
3040                         goto out;
3041                 }
3042
3043                 ret = ocfs2_find_path(et->et_ci, left_path, cpos);
3044                 if (ret) {
3045                         mlog_errno(ret);
3046                         goto out;
3047                 }
3048
3049                 ret = ocfs2_journal_access_path(et->et_ci, handle, left_path);
3050                 if (ret) {
3051                         mlog_errno(ret);
3052                         goto out;
3053                 }
3054
3055                 subtree_index = ocfs2_find_subtree_root(et, left_path, path);
3056
3057                 ocfs2_unlink_subtree(handle, et, left_path, path,
3058                                      subtree_index, dealloc);
3059                 ret = ocfs2_update_edge_lengths(handle, et, subtree_index,
3060                                                 left_path);
3061                 if (ret) {
3062                         mlog_errno(ret);
3063                         goto out;
3064                 }
3065
3066                 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
3067                 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
3068         } else {
3069                 /*
3070                  * 'path' is also the leftmost path which
3071                  * means it must be the only one. This gets
3072                  * handled differently because we want to
3073                  * revert the inode back to having extents
3074                  * in-line.
3075                  */
3076                 ocfs2_unlink_path(handle, et, dealloc, path, 1);
3077
3078                 el = et->et_root_el;
3079                 el->l_tree_depth = 0;
3080                 el->l_next_free_rec = 0;
3081                 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
3082
3083                 ocfs2_et_set_last_eb_blk(et, 0);
3084         }
3085
3086         ocfs2_journal_dirty(handle, path_root_bh(path));
3087
3088 out:
3089         ocfs2_free_path(left_path);
3090         return ret;
3091 }
3092
3093 /*
3094  * Left rotation of btree records.
3095  *
3096  * In many ways, this is (unsurprisingly) the opposite of right
3097  * rotation. We start at some non-rightmost path containing an empty
3098  * extent in the leaf block. The code works its way to the rightmost
3099  * path by rotating records to the left in every subtree.
3100  *
3101  * This is used by any code which reduces the number of extent records
3102  * in a leaf. After removal, an empty record should be placed in the
3103  * leftmost list position.
3104  *
3105  * This won't handle a length update of the rightmost path records if
3106  * the rightmost tree leaf record is removed so the caller is
3107  * responsible for detecting and correcting that.
3108  */
3109 static int ocfs2_rotate_tree_left(struct inode *inode, handle_t *handle,
3110                                   struct ocfs2_path *path,
3111                                   struct ocfs2_cached_dealloc_ctxt *dealloc,
3112                                   struct ocfs2_extent_tree *et)
3113 {
3114         int ret, orig_credits = handle->h_buffer_credits;
3115         struct ocfs2_path *tmp_path = NULL, *restart_path = NULL;
3116         struct ocfs2_extent_block *eb;
3117         struct ocfs2_extent_list *el;
3118
3119         el = path_leaf_el(path);
3120         if (!ocfs2_is_empty_extent(&el->l_recs[0]))
3121                 return 0;
3122
3123         if (path->p_tree_depth == 0) {
3124 rightmost_no_delete:
3125                 /*
3126                  * Inline extents. This is trivially handled, so do
3127                  * it up front.
3128                  */
3129                 ret = ocfs2_rotate_rightmost_leaf_left(inode, handle,
3130                                                        path);
3131                 if (ret)
3132                         mlog_errno(ret);
3133                 goto out;
3134         }
3135
3136         /*
3137          * Handle rightmost branch now. There's several cases:
3138          *  1) simple rotation leaving records in there. That's trivial.
3139          *  2) rotation requiring a branch delete - there's no more
3140          *     records left. Two cases of this:
3141          *     a) There are branches to the left.
3142          *     b) This is also the leftmost (the only) branch.
3143          *
3144          *  1) is handled via ocfs2_rotate_rightmost_leaf_left()
3145          *  2a) we need the left branch so that we can update it with the unlink
3146          *  2b) we need to bring the inode back to inline extents.
3147          */
3148
3149         eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
3150         el = &eb->h_list;
3151         if (eb->h_next_leaf_blk == 0) {
3152                 /*
3153                  * This gets a bit tricky if we're going to delete the
3154                  * rightmost path. Get the other cases out of the way
3155                  * 1st.
3156                  */
3157                 if (le16_to_cpu(el->l_next_free_rec) > 1)
3158                         goto rightmost_no_delete;
3159
3160                 if (le16_to_cpu(el->l_next_free_rec) == 0) {
3161                         ret = -EIO;
3162                         ocfs2_error(inode->i_sb,
3163                                     "Inode %llu has empty extent block at %llu",
3164                                     (unsigned long long)OCFS2_I(inode)->ip_blkno,
3165                                     (unsigned long long)le64_to_cpu(eb->h_blkno));
3166                         goto out;
3167                 }
3168
3169                 /*
3170                  * XXX: The caller can not trust "path" any more after
3171                  * this as it will have been deleted. What do we do?
3172                  *
3173                  * In theory the rotate-for-merge code will never get
3174                  * here because it'll always ask for a rotate in a
3175                  * nonempty list.
3176                  */
3177
3178                 ret = ocfs2_remove_rightmost_path(inode, handle, path,
3179                                                   dealloc, et);
3180                 if (ret)
3181                         mlog_errno(ret);
3182                 goto out;
3183         }
3184
3185         /*
3186          * Now we can loop, remembering the path we get from -EAGAIN
3187          * and restarting from there.
3188          */
3189 try_rotate:
3190         ret = __ocfs2_rotate_tree_left(inode, handle, orig_credits, path,
3191                                        dealloc, &restart_path, et);
3192         if (ret && ret != -EAGAIN) {
3193                 mlog_errno(ret);
3194                 goto out;
3195         }
3196
3197         while (ret == -EAGAIN) {
3198                 tmp_path = restart_path;
3199                 restart_path = NULL;
3200
3201                 ret = __ocfs2_rotate_tree_left(inode, handle, orig_credits,
3202                                                tmp_path, dealloc,
3203                                                &restart_path, et);
3204                 if (ret && ret != -EAGAIN) {
3205                         mlog_errno(ret);
3206                         goto out;
3207                 }
3208
3209                 ocfs2_free_path(tmp_path);
3210                 tmp_path = NULL;
3211
3212                 if (ret == 0)
3213                         goto try_rotate;
3214         }
3215
3216 out:
3217         ocfs2_free_path(tmp_path);
3218         ocfs2_free_path(restart_path);
3219         return ret;
3220 }
3221
3222 static void ocfs2_cleanup_merge(struct ocfs2_extent_list *el,
3223                                 int index)
3224 {
3225         struct ocfs2_extent_rec *rec = &el->l_recs[index];
3226         unsigned int size;
3227
3228         if (rec->e_leaf_clusters == 0) {
3229                 /*
3230                  * We consumed all of the merged-from record. An empty
3231                  * extent cannot exist anywhere but the 1st array
3232                  * position, so move things over if the merged-from
3233                  * record doesn't occupy that position.
3234                  *
3235                  * This creates a new empty extent so the caller
3236                  * should be smart enough to have removed any existing
3237                  * ones.
3238                  */
3239                 if (index > 0) {
3240                         BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
3241                         size = index * sizeof(struct ocfs2_extent_rec);
3242                         memmove(&el->l_recs[1], &el->l_recs[0], size);
3243                 }
3244
3245                 /*
3246                  * Always memset - the caller doesn't check whether it
3247                  * created an empty extent, so there could be junk in
3248                  * the other fields.
3249                  */
3250                 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
3251         }
3252 }
3253
3254 static int ocfs2_get_right_path(struct inode *inode,
3255                                 struct ocfs2_path *left_path,
3256                                 struct ocfs2_path **ret_right_path)
3257 {
3258         int ret;
3259         u32 right_cpos;
3260         struct ocfs2_path *right_path = NULL;
3261         struct ocfs2_extent_list *left_el;
3262
3263         *ret_right_path = NULL;
3264
3265         /* This function shouldn't be called for non-trees. */
3266         BUG_ON(left_path->p_tree_depth == 0);
3267
3268         left_el = path_leaf_el(left_path);
3269         BUG_ON(left_el->l_next_free_rec != left_el->l_count);
3270
3271         ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, left_path,
3272                                              &right_cpos);
3273         if (ret) {
3274                 mlog_errno(ret);
3275                 goto out;
3276         }
3277
3278         /* This function shouldn't be called for the rightmost leaf. */
3279         BUG_ON(right_cpos == 0);
3280
3281         right_path = ocfs2_new_path_from_path(left_path);
3282         if (!right_path) {
3283                 ret = -ENOMEM;
3284                 mlog_errno(ret);
3285                 goto out;
3286         }
3287
3288         ret = ocfs2_find_path(INODE_CACHE(inode), right_path, right_cpos);
3289         if (ret) {
3290                 mlog_errno(ret);
3291                 goto out;
3292         }
3293
3294         *ret_right_path = right_path;
3295 out:
3296         if (ret)
3297                 ocfs2_free_path(right_path);
3298         return ret;
3299 }
3300
3301 /*
3302  * Remove split_rec clusters from the record at index and merge them
3303  * onto the beginning of the record "next" to it.
3304  * For index < l_count - 1, the next means the extent rec at index + 1.
3305  * For index == l_count - 1, the "next" means the 1st extent rec of the
3306  * next extent block.
3307  */
3308 static int ocfs2_merge_rec_right(struct inode *inode,
3309                                  struct ocfs2_path *left_path,
3310                                  handle_t *handle,
3311                                  struct ocfs2_extent_tree *et,
3312                                  struct ocfs2_extent_rec *split_rec,
3313                                  int index)
3314 {
3315         int ret, next_free, i;
3316         unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
3317         struct ocfs2_extent_rec *left_rec;
3318         struct ocfs2_extent_rec *right_rec;
3319         struct ocfs2_extent_list *right_el;
3320         struct ocfs2_path *right_path = NULL;
3321         int subtree_index = 0;
3322         struct ocfs2_extent_list *el = path_leaf_el(left_path);
3323         struct buffer_head *bh = path_leaf_bh(left_path);
3324         struct buffer_head *root_bh = NULL;
3325
3326         BUG_ON(index >= le16_to_cpu(el->l_next_free_rec));
3327         left_rec = &el->l_recs[index];
3328
3329         if (index == le16_to_cpu(el->l_next_free_rec) - 1 &&
3330             le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count)) {
3331                 /* we meet with a cross extent block merge. */
3332                 ret = ocfs2_get_right_path(inode, left_path, &right_path);
3333                 if (ret) {
3334                         mlog_errno(ret);
3335                         goto out;
3336                 }
3337
3338                 right_el = path_leaf_el(right_path);
3339                 next_free = le16_to_cpu(right_el->l_next_free_rec);
3340                 BUG_ON(next_free <= 0);
3341                 right_rec = &right_el->l_recs[0];
3342                 if (ocfs2_is_empty_extent(right_rec)) {
3343                         BUG_ON(next_free <= 1);
3344                         right_rec = &right_el->l_recs[1];
3345                 }
3346
3347                 BUG_ON(le32_to_cpu(left_rec->e_cpos) +
3348                        le16_to_cpu(left_rec->e_leaf_clusters) !=
3349                        le32_to_cpu(right_rec->e_cpos));
3350
3351                 subtree_index = ocfs2_find_subtree_root(et, left_path,
3352                                                         right_path);
3353
3354                 ret = ocfs2_extend_rotate_transaction(handle, subtree_index,
3355                                                       handle->h_buffer_credits,
3356                                                       right_path);
3357                 if (ret) {
3358                         mlog_errno(ret);
3359                         goto out;
3360                 }
3361
3362                 root_bh = left_path->p_node[subtree_index].bh;
3363                 BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
3364
3365                 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
3366                                                    subtree_index);
3367                 if (ret) {
3368                         mlog_errno(ret);
3369                         goto out;
3370                 }
3371
3372                 for (i = subtree_index + 1;
3373                      i < path_num_items(right_path); i++) {
3374                         ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
3375                                                            right_path, i);
3376                         if (ret) {
3377                                 mlog_errno(ret);
3378                                 goto out;
3379                         }
3380
3381                         ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
3382                                                            left_path, i);
3383                         if (ret) {
3384                                 mlog_errno(ret);
3385                                 goto out;
3386                         }
3387                 }
3388
3389         } else {
3390                 BUG_ON(index == le16_to_cpu(el->l_next_free_rec) - 1);
3391                 right_rec = &el->l_recs[index + 1];
3392         }
3393
3394         ret = ocfs2_path_bh_journal_access(handle, et->et_ci, left_path,
3395                                            path_num_items(left_path) - 1);
3396         if (ret) {
3397                 mlog_errno(ret);
3398                 goto out;
3399         }
3400
3401         le16_add_cpu(&left_rec->e_leaf_clusters, -split_clusters);
3402
3403         le32_add_cpu(&right_rec->e_cpos, -split_clusters);
3404         le64_add_cpu(&right_rec->e_blkno,
3405                      -ocfs2_clusters_to_blocks(ocfs2_metadata_cache_get_super(et->et_ci),
3406                                                split_clusters));
3407         le16_add_cpu(&right_rec->e_leaf_clusters, split_clusters);
3408
3409         ocfs2_cleanup_merge(el, index);
3410
3411         ret = ocfs2_journal_dirty(handle, bh);
3412         if (ret)
3413                 mlog_errno(ret);
3414
3415         if (right_path) {
3416                 ret = ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
3417                 if (ret)
3418                         mlog_errno(ret);
3419
3420                 ocfs2_complete_edge_insert(handle, left_path, right_path,
3421                                            subtree_index);
3422         }
3423 out:
3424         if (right_path)
3425                 ocfs2_free_path(right_path);
3426         return ret;
3427 }
3428
3429 static int ocfs2_get_left_path(struct inode *inode,
3430                                struct ocfs2_path *right_path,
3431                                struct ocfs2_path **ret_left_path)
3432 {
3433         int ret;
3434         u32 left_cpos;
3435         struct ocfs2_path *left_path = NULL;
3436
3437         *ret_left_path = NULL;
3438
3439         /* This function shouldn't be called for non-trees. */
3440         BUG_ON(right_path->p_tree_depth == 0);
3441
3442         ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb,
3443                                             right_path, &left_cpos);
3444         if (ret) {
3445                 mlog_errno(ret);
3446                 goto out;
3447         }
3448
3449         /* This function shouldn't be called for the leftmost leaf. */
3450         BUG_ON(left_cpos == 0);
3451
3452         left_path = ocfs2_new_path_from_path(right_path);
3453         if (!left_path) {
3454                 ret = -ENOMEM;
3455                 mlog_errno(ret);
3456                 goto out;
3457         }
3458
3459         ret = ocfs2_find_path(INODE_CACHE(inode), left_path, left_cpos);
3460         if (ret) {
3461                 mlog_errno(ret);
3462                 goto out;
3463         }
3464
3465         *ret_left_path = left_path;
3466 out:
3467         if (ret)
3468                 ocfs2_free_path(left_path);
3469         return ret;
3470 }
3471
3472 /*
3473  * Remove split_rec clusters from the record at index and merge them
3474  * onto the tail of the record "before" it.
3475  * For index > 0, the "before" means the extent rec at index - 1.
3476  *
3477  * For index == 0, the "before" means the last record of the previous
3478  * extent block. And there is also a situation that we may need to
3479  * remove the rightmost leaf extent block in the right_path and change
3480  * the right path to indicate the new rightmost path.
3481  */
3482 static int ocfs2_merge_rec_left(struct inode *inode,
3483                                 struct ocfs2_path *right_path,
3484                                 handle_t *handle,
3485                                 struct ocfs2_extent_rec *split_rec,
3486                                 struct ocfs2_cached_dealloc_ctxt *dealloc,
3487                                 struct ocfs2_extent_tree *et,
3488                                 int index)
3489 {
3490         int ret, i, subtree_index = 0, has_empty_extent = 0;
3491         unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
3492         struct ocfs2_extent_rec *left_rec;
3493         struct ocfs2_extent_rec *right_rec;
3494         struct ocfs2_extent_list *el = path_leaf_el(right_path);
3495         struct buffer_head *bh = path_leaf_bh(right_path);
3496         struct buffer_head *root_bh = NULL;
3497         struct ocfs2_path *left_path = NULL;
3498         struct ocfs2_extent_list *left_el;
3499
3500         BUG_ON(index < 0);
3501
3502         right_rec = &el->l_recs[index];
3503         if (index == 0) {
3504                 /* we meet with a cross extent block merge. */
3505                 ret = ocfs2_get_left_path(inode, right_path, &left_path);
3506                 if (ret) {
3507                         mlog_errno(ret);
3508                         goto out;
3509                 }
3510
3511                 left_el = path_leaf_el(left_path);
3512                 BUG_ON(le16_to_cpu(left_el->l_next_free_rec) !=
3513                        le16_to_cpu(left_el->l_count));
3514
3515                 left_rec = &left_el->l_recs[
3516                                 le16_to_cpu(left_el->l_next_free_rec) - 1];
3517                 BUG_ON(le32_to_cpu(left_rec->e_cpos) +
3518                        le16_to_cpu(left_rec->e_leaf_clusters) !=
3519                        le32_to_cpu(split_rec->e_cpos));
3520
3521                 subtree_index = ocfs2_find_subtree_root(et, left_path,
3522                                                         right_path);
3523
3524                 ret = ocfs2_extend_rotate_transaction(handle, subtree_index,
3525                                                       handle->h_buffer_credits,
3526                                                       left_path);
3527                 if (ret) {
3528                         mlog_errno(ret);
3529                         goto out;
3530                 }
3531
3532                 root_bh = left_path->p_node[subtree_index].bh;
3533                 BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
3534
3535                 ret = ocfs2_path_bh_journal_access(handle, INODE_CACHE(inode), right_path,
3536                                                    subtree_index);
3537                 if (ret) {
3538                         mlog_errno(ret);
3539                         goto out;
3540                 }
3541
3542                 for (i = subtree_index + 1;
3543                      i < path_num_items(right_path); i++) {
3544                         ret = ocfs2_path_bh_journal_access(handle, INODE_CACHE(inode),
3545                                                            right_path, i);
3546                         if (ret) {
3547                                 mlog_errno(ret);
3548                                 goto out;
3549                         }
3550
3551                         ret = ocfs2_path_bh_journal_access(handle, INODE_CACHE(inode),
3552                                                            left_path, i);
3553                         if (ret) {
3554                                 mlog_errno(ret);
3555                                 goto out;
3556                         }
3557                 }
3558         } else {
3559                 left_rec = &el->l_recs[index - 1];
3560                 if (ocfs2_is_empty_extent(&el->l_recs[0]))
3561                         has_empty_extent = 1;
3562         }
3563
3564         ret = ocfs2_path_bh_journal_access(handle, INODE_CACHE(inode), right_path,
3565                                            path_num_items(right_path) - 1);
3566         if (ret) {
3567                 mlog_errno(ret);
3568                 goto out;
3569         }
3570
3571         if (has_empty_extent && index == 1) {
3572                 /*
3573                  * The easy case - we can just plop the record right in.
3574                  */
3575                 *left_rec = *split_rec;
3576
3577                 has_empty_extent = 0;
3578         } else
3579                 le16_add_cpu(&left_rec->e_leaf_clusters, split_clusters);
3580
3581         le32_add_cpu(&right_rec->e_cpos, split_clusters);
3582         le64_add_cpu(&right_rec->e_blkno,
3583                      ocfs2_clusters_to_blocks(inode->i_sb, split_clusters));
3584         le16_add_cpu(&right_rec->e_leaf_clusters, -split_clusters);
3585
3586         ocfs2_cleanup_merge(el, index);
3587
3588         ret = ocfs2_journal_dirty(handle, bh);
3589         if (ret)
3590                 mlog_errno(ret);
3591
3592         if (left_path) {
3593                 ret = ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
3594                 if (ret)
3595                         mlog_errno(ret);
3596
3597                 /*
3598                  * In the situation that the right_rec is empty and the extent
3599                  * block is empty also,  ocfs2_complete_edge_insert can't handle
3600                  * it and we need to delete the right extent block.
3601                  */
3602                 if (le16_to_cpu(right_rec->e_leaf_clusters) == 0 &&
3603                     le16_to_cpu(el->l_next_free_rec) == 1) {
3604
3605                         ret = ocfs2_remove_rightmost_path(inode, handle,
3606                                                           right_path,
3607                                                           dealloc, et);
3608                         if (ret) {
3609                                 mlog_errno(ret);
3610                                 goto out;
3611                         }
3612
3613                         /* Now the rightmost extent block has been deleted.
3614                          * So we use the new rightmost path.
3615                          */
3616                         ocfs2_mv_path(right_path, left_path);
3617                         left_path = NULL;
3618                 } else
3619                         ocfs2_complete_edge_insert(handle, left_path,
3620                                                    right_path, subtree_index);
3621         }
3622 out:
3623         if (left_path)
3624                 ocfs2_free_path(left_path);
3625         return ret;
3626 }
3627
3628 static int ocfs2_try_to_merge_extent(struct inode *inode,
3629                                      handle_t *handle,
3630                                      struct ocfs2_path *path,
3631                                      int split_index,
3632                                      struct ocfs2_extent_rec *split_rec,
3633                                      struct ocfs2_cached_dealloc_ctxt *dealloc,
3634                                      struct ocfs2_merge_ctxt *ctxt,
3635                                      struct ocfs2_extent_tree *et)
3636
3637 {
3638         int ret = 0;
3639         struct ocfs2_extent_list *el = path_leaf_el(path);
3640         struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
3641
3642         BUG_ON(ctxt->c_contig_type == CONTIG_NONE);
3643
3644         if (ctxt->c_split_covers_rec && ctxt->c_has_empty_extent) {
3645                 /*
3646                  * The merge code will need to create an empty
3647                  * extent to take the place of the newly
3648                  * emptied slot. Remove any pre-existing empty
3649                  * extents - having more than one in a leaf is
3650                  * illegal.
3651                  */
3652                 ret = ocfs2_rotate_tree_left(inode, handle, path,
3653                                              dealloc, et);
3654                 if (ret) {
3655                         mlog_errno(ret);
3656                         goto out;
3657                 }
3658                 split_index--;
3659                 rec = &el->l_recs[split_index];
3660         }
3661
3662         if (ctxt->c_contig_type == CONTIG_LEFTRIGHT) {
3663                 /*
3664                  * Left-right contig implies this.
3665                  */
3666                 BUG_ON(!ctxt->c_split_covers_rec);
3667
3668                 /*
3669                  * Since the leftright insert always covers the entire
3670                  * extent, this call will delete the insert record
3671                  * entirely, resulting in an empty extent record added to
3672                  * the extent block.
3673                  *
3674                  * Since the adding of an empty extent shifts
3675                  * everything back to the right, there's no need to
3676                  * update split_index here.
3677                  *
3678                  * When the split_index is zero, we need to merge it to the
3679                  * prevoius extent block. It is more efficient and easier
3680                  * if we do merge_right first and merge_left later.
3681                  */
3682                 ret = ocfs2_merge_rec_right(inode, path,
3683                                             handle, et, split_rec,
3684                                             split_index);
3685                 if (ret) {
3686                         mlog_errno(ret);
3687                         goto out;
3688                 }
3689
3690                 /*
3691                  * We can only get this from logic error above.
3692                  */
3693                 BUG_ON(!ocfs2_is_empty_extent(&el->l_recs[0]));
3694
3695                 /* The merge left us with an empty extent, remove it. */
3696                 ret = ocfs2_rotate_tree_left(inode, handle, path,
3697                                              dealloc, et);
3698                 if (ret) {
3699                         mlog_errno(ret);
3700                         goto out;
3701                 }
3702
3703                 rec = &el->l_recs[split_index];
3704
3705                 /*
3706                  * Note that we don't pass split_rec here on purpose -
3707                  * we've merged it into the rec already.
3708                  */
3709                 ret = ocfs2_merge_rec_left(inode, path,
3710                                            handle, rec,
3711                                            dealloc, et,
3712                                            split_index);
3713
3714                 if (ret) {
3715                         mlog_errno(ret);
3716                         goto out;
3717                 }
3718
3719                 ret = ocfs2_rotate_tree_left(inode, handle, path,
3720                                              dealloc, et);
3721                 /*
3722                  * Error from this last rotate is not critical, so
3723                  * print but don't bubble it up.
3724                  */
3725                 if (ret)
3726                         mlog_errno(ret);
3727                 ret = 0;
3728         } else {
3729                 /*
3730                  * Merge a record to the left or right.
3731                  *
3732                  * 'contig_type' is relative to the existing record,
3733                  * so for example, if we're "right contig", it's to
3734                  * the record on the left (hence the left merge).
3735                  */
3736                 if (ctxt->c_contig_type == CONTIG_RIGHT) {
3737                         ret = ocfs2_merge_rec_left(inode,
3738                                                    path,
3739                                                    handle, split_rec,
3740                                                    dealloc, et,
3741                                                    split_index);
3742                         if (ret) {
3743                                 mlog_errno(ret);
3744                                 goto out;
3745                         }
3746                 } else {
3747                         ret = ocfs2_merge_rec_right(inode, path, handle,
3748                                                     et, split_rec,
3749                                                     split_index);
3750                         if (ret) {
3751                                 mlog_errno(ret);
3752                                 goto out;
3753                         }
3754                 }
3755
3756                 if (ctxt->c_split_covers_rec) {
3757                         /*
3758                          * The merge may have left an empty extent in
3759                          * our leaf. Try to rotate it away.
3760                          */
3761                         ret = ocfs2_rotate_tree_left(inode, handle, path,
3762                                                      dealloc, et);
3763                         if (ret)
3764                                 mlog_errno(ret);
3765                         ret = 0;
3766                 }
3767         }
3768
3769 out:
3770         return ret;
3771 }
3772
3773 static void ocfs2_subtract_from_rec(struct super_block *sb,
3774                                     enum ocfs2_split_type split,
3775                                     struct ocfs2_extent_rec *rec,
3776                                     struct ocfs2_extent_rec *split_rec)
3777 {
3778         u64 len_blocks;
3779
3780         len_blocks = ocfs2_clusters_to_blocks(sb,
3781                                 le16_to_cpu(split_rec->e_leaf_clusters));
3782
3783         if (split == SPLIT_LEFT) {
3784                 /*
3785                  * Region is on the left edge of the existing
3786                  * record.
3787                  */
3788                 le32_add_cpu(&rec->e_cpos,
3789                              le16_to_cpu(split_rec->e_leaf_clusters));
3790                 le64_add_cpu(&rec->e_blkno, len_blocks);
3791                 le16_add_cpu(&rec->e_leaf_clusters,
3792                              -le16_to_cpu(split_rec->e_leaf_clusters));
3793         } else {
3794                 /*
3795                  * Region is on the right edge of the existing
3796                  * record.
3797                  */
3798                 le16_add_cpu(&rec->e_leaf_clusters,
3799                              -le16_to_cpu(split_rec->e_leaf_clusters));
3800         }
3801 }
3802
3803 /*
3804  * Do the final bits of extent record insertion at the target leaf
3805  * list. If this leaf is part of an allocation tree, it is assumed
3806  * that the tree above has been prepared.
3807  */
3808 static void ocfs2_insert_at_leaf(struct ocfs2_extent_rec *insert_rec,
3809                                  struct ocfs2_extent_list *el,
3810                                  struct ocfs2_insert_type *insert,
3811                                  struct inode *inode)
3812 {
3813         int i = insert->ins_contig_index;
3814         unsigned int range;
3815         struct ocfs2_extent_rec *rec;
3816
3817         BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
3818
3819         if (insert->ins_split != SPLIT_NONE) {
3820                 i = ocfs2_search_extent_list(el, le32_to_cpu(insert_rec->e_cpos));
3821                 BUG_ON(i == -1);
3822                 rec = &el->l_recs[i];
3823                 ocfs2_subtract_from_rec(inode->i_sb, insert->ins_split, rec,
3824                                         insert_rec);
3825                 goto rotate;
3826         }
3827
3828         /*
3829          * Contiguous insert - either left or right.
3830          */
3831         if (insert->ins_contig != CONTIG_NONE) {
3832                 rec = &el->l_recs[i];
3833                 if (insert->ins_contig == CONTIG_LEFT) {
3834                         rec->e_blkno = insert_rec->e_blkno;
3835                         rec->e_cpos = insert_rec->e_cpos;
3836                 }
3837                 le16_add_cpu(&rec->e_leaf_clusters,
3838                              le16_to_cpu(insert_rec->e_leaf_clusters));
3839                 return;
3840         }
3841
3842         /*
3843          * Handle insert into an empty leaf.
3844          */
3845         if (le16_to_cpu(el->l_next_free_rec) == 0 ||
3846             ((le16_to_cpu(el->l_next_free_rec) == 1) &&
3847              ocfs2_is_empty_extent(&el->l_recs[0]))) {
3848                 el->l_recs[0] = *insert_rec;
3849                 el->l_next_free_rec = cpu_to_le16(1);
3850                 return;
3851         }
3852
3853         /*
3854          * Appending insert.
3855          */
3856         if (insert->ins_appending == APPEND_TAIL) {
3857                 i = le16_to_cpu(el->l_next_free_rec) - 1;
3858                 rec = &el->l_recs[i];
3859                 range = le32_to_cpu(rec->e_cpos)
3860                         + le16_to_cpu(rec->e_leaf_clusters);
3861                 BUG_ON(le32_to_cpu(insert_rec->e_cpos) < range);
3862
3863                 mlog_bug_on_msg(le16_to_cpu(el->l_next_free_rec) >=
3864                                 le16_to_cpu(el->l_count),
3865                                 "inode %lu, depth %u, count %u, next free %u, "
3866                                 "rec.cpos %u, rec.clusters %u, "
3867                                 "insert.cpos %u, insert.clusters %u\n",
3868                                 inode->i_ino,
3869                                 le16_to_cpu(el->l_tree_depth),
3870                                 le16_to_cpu(el->l_count),
3871                                 le16_to_cpu(el->l_next_free_rec),
3872                                 le32_to_cpu(el->l_recs[i].e_cpos),
3873                                 le16_to_cpu(el->l_recs[i].e_leaf_clusters),
3874                                 le32_to_cpu(insert_rec->e_cpos),
3875                                 le16_to_cpu(insert_rec->e_leaf_clusters));
3876                 i++;
3877                 el->l_recs[i] = *insert_rec;
3878                 le16_add_cpu(&el->l_next_free_rec, 1);
3879                 return;
3880         }
3881
3882 rotate:
3883         /*
3884          * Ok, we have to rotate.
3885          *
3886          * At this point, it is safe to assume that inserting into an
3887          * empty leaf and appending to a leaf have both been handled
3888          * above.
3889          *
3890          * This leaf needs to have space, either by the empty 1st
3891          * extent record, or by virtue of an l_next_rec < l_count.
3892          */
3893         ocfs2_rotate_leaf(el, insert_rec);
3894 }
3895
3896 static void ocfs2_adjust_rightmost_records(struct inode *inode,
3897                                            handle_t *handle,
3898                                            struct ocfs2_path *path,
3899                                            struct ocfs2_extent_rec *insert_rec)
3900 {
3901         int ret, i, next_free;
3902         struct buffer_head *bh;
3903         struct ocfs2_extent_list *el;
3904         struct ocfs2_extent_rec *rec;
3905
3906         /*
3907          * Update everything except the leaf block.
3908          */
3909         for (i = 0; i < path->p_tree_depth; i++) {
3910                 bh = path->p_node[i].bh;
3911                 el = path->p_node[i].el;
3912
3913                 next_free = le16_to_cpu(el->l_next_free_rec);
3914                 if (next_free == 0) {
3915                         ocfs2_error(inode->i_sb,
3916                                     "Dinode %llu has a bad extent list",
3917                                     (unsigned long long)OCFS2_I(inode)->ip_blkno);
3918                         ret = -EIO;
3919                         return;
3920                 }
3921
3922                 rec = &el->l_recs[next_free - 1];
3923
3924                 rec->e_int_clusters = insert_rec->e_cpos;
3925                 le32_add_cpu(&rec->e_int_clusters,
3926                              le16_to_cpu(insert_rec->e_leaf_clusters));
3927                 le32_add_cpu(&rec->e_int_clusters,
3928                              -le32_to_cpu(rec->e_cpos));
3929
3930                 ret = ocfs2_journal_dirty(handle, bh);
3931                 if (ret)
3932                         mlog_errno(ret);
3933
3934         }
3935 }
3936
3937 static int ocfs2_append_rec_to_path(struct inode *inode, handle_t *handle,
3938                                     struct ocfs2_extent_rec *insert_rec,
3939                                     struct ocfs2_path *right_path,
3940                                     struct ocfs2_path **ret_left_path)
3941 {
3942         int ret, next_free;
3943         struct ocfs2_extent_list *el;
3944         struct ocfs2_path *left_path = NULL;
3945
3946         *ret_left_path = NULL;
3947
3948         /*
3949          * This shouldn't happen for non-trees. The extent rec cluster
3950          * count manipulation below only works for interior nodes.
3951          */
3952         BUG_ON(right_path->p_tree_depth == 0);
3953
3954         /*
3955          * If our appending insert is at the leftmost edge of a leaf,
3956          * then we might need to update the rightmost records of the
3957          * neighboring path.
3958          */
3959         el = path_leaf_el(right_path);
3960         next_free = le16_to_cpu(el->l_next_free_rec);
3961         if (next_free == 0 ||
3962             (next_free == 1 && ocfs2_is_empty_extent(&el->l_recs[0]))) {
3963                 u32 left_cpos;
3964
3965                 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path,
3966                                                     &left_cpos);
3967                 if (ret) {
3968                         mlog_errno(ret);
3969                         goto out;
3970                 }
3971
3972                 mlog(0, "Append may need a left path update. cpos: %u, "
3973                      "left_cpos: %u\n", le32_to_cpu(insert_rec->e_cpos),
3974                      left_cpos);
3975
3976                 /*
3977                  * No need to worry if the append is already in the
3978                  * leftmost leaf.
3979                  */
3980                 if (left_cpos) {
3981                         left_path = ocfs2_new_path_from_path(right_path);
3982                         if (!left_path) {
3983                                 ret = -ENOMEM;
3984                                 mlog_errno(ret);
3985                                 goto out;
3986                         }
3987
3988                         ret = ocfs2_find_path(INODE_CACHE(inode), left_path,
3989                                               left_cpos);
3990                         if (ret) {
3991                                 mlog_errno(ret);
3992                                 goto out;
3993                         }
3994
3995                         /*
3996                          * ocfs2_insert_path() will pass the left_path to the
3997                          * journal for us.
3998                          */
3999                 }
4000         }
4001
4002         ret = ocfs2_journal_access_path(INODE_CACHE(inode), handle, right_path);
4003         if (ret) {
4004                 mlog_errno(ret);
4005                 goto out;
4006         }
4007
4008         ocfs2_adjust_rightmost_records(inode, handle, right_path, insert_rec);
4009
4010         *ret_left_path = left_path;
4011         ret = 0;
4012 out:
4013         if (ret != 0)
4014                 ocfs2_free_path(left_path);
4015
4016         return ret;
4017 }
4018
4019 static void ocfs2_split_record(struct inode *inode,
4020                                struct ocfs2_path *left_path,
4021                                struct ocfs2_path *right_path,
4022                                struct ocfs2_extent_rec *split_rec,
4023                                enum ocfs2_split_type split)
4024 {
4025         int index;
4026         u32 cpos = le32_to_cpu(split_rec->e_cpos);
4027         struct ocfs2_extent_list *left_el = NULL, *right_el, *insert_el, *el;
4028         struct ocfs2_extent_rec *rec, *tmprec;
4029
4030         right_el = path_leaf_el(right_path);
4031         if (left_path)
4032                 left_el = path_leaf_el(left_path);
4033
4034         el = right_el;
4035         insert_el = right_el;
4036         index = ocfs2_search_extent_list(el, cpos);
4037         if (index != -1) {
4038                 if (index == 0 && left_path) {
4039                         BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
4040
4041                         /*
4042                          * This typically means that the record
4043                          * started in the left path but moved to the
4044                          * right as a result of rotation. We either
4045                          * move the existing record to the left, or we
4046                          * do the later insert there.
4047                          *
4048                          * In this case, the left path should always
4049                          * exist as the rotate code will have passed
4050                          * it back for a post-insert update.
4051                          */
4052
4053                         if (split == SPLIT_LEFT) {
4054                                 /*
4055                                  * It's a left split. Since we know
4056                                  * that the rotate code gave us an
4057                                  * empty extent in the left path, we
4058                                  * can just do the insert there.
4059                                  */
4060                                 insert_el = left_el;
4061                         } else {
4062                                 /*
4063                                  * Right split - we have to move the
4064                                  * existing record over to the left
4065                                  * leaf. The insert will be into the
4066                                  * newly created empty extent in the
4067                                  * right leaf.
4068                                  */
4069                                 tmprec = &right_el->l_recs[index];
4070                                 ocfs2_rotate_leaf(left_el, tmprec);
4071                                 el = left_el;
4072
4073                                 memset(tmprec, 0, sizeof(*tmprec));
4074                                 index = ocfs2_search_extent_list(left_el, cpos);
4075                                 BUG_ON(index == -1);
4076                         }
4077                 }
4078         } else {
4079                 BUG_ON(!left_path);
4080                 BUG_ON(!ocfs2_is_empty_extent(&left_el->l_recs[0]));
4081                 /*
4082                  * Left path is easy - we can just allow the insert to
4083                  * happen.
4084                  */
4085                 el = left_el;
4086                 insert_el = left_el;
4087                 index = ocfs2_search_extent_list(el, cpos);
4088                 BUG_ON(index == -1);
4089         }
4090
4091         rec = &el->l_recs[index];
4092         ocfs2_subtract_from_rec(inode->i_sb, split, rec, split_rec);
4093         ocfs2_rotate_leaf(insert_el, split_rec);
4094 }
4095
4096 /*
4097  * This function only does inserts on an allocation b-tree. For tree
4098  * depth = 0, ocfs2_insert_at_leaf() is called directly.
4099  *
4100  * right_path is the path we want to do the actual insert
4101  * in. left_path should only be passed in if we need to update that
4102  * portion of the tree after an edge insert.
4103  */
4104 static int ocfs2_insert_path(struct inode *inode,
4105                              handle_t *handle,
4106                              struct ocfs2_extent_tree *et,
4107                              struct ocfs2_path *left_path,
4108                              struct ocfs2_path *right_path,
4109                              struct ocfs2_extent_rec *insert_rec,
4110                              struct ocfs2_insert_type *insert)
4111 {
4112         int ret, subtree_index;
4113         struct buffer_head *leaf_bh = path_leaf_bh(right_path);
4114
4115         if (left_path) {
4116                 int credits = handle->h_buffer_credits;
4117
4118                 /*
4119                  * There's a chance that left_path got passed back to
4120                  * us without being accounted for in the
4121                  * journal. Extend our transaction here to be sure we
4122                  * can change those blocks.
4123                  */
4124                 credits += left_path->p_tree_depth;
4125
4126                 ret = ocfs2_extend_trans(handle, credits);
4127                 if (ret < 0) {
4128                         mlog_errno(ret);
4129                         goto out;
4130                 }
4131
4132                 ret = ocfs2_journal_access_path(et->et_ci, handle, left_path);
4133                 if (ret < 0) {
4134                         mlog_errno(ret);
4135                         goto out;
4136                 }
4137         }
4138
4139         /*
4140          * Pass both paths to the journal. The majority of inserts
4141          * will be touching all components anyway.
4142          */
4143         ret = ocfs2_journal_access_path(et->et_ci, handle, right_path);
4144         if (ret < 0) {
4145                 mlog_errno(ret);
4146                 goto out;
4147         }
4148
4149         if (insert->ins_split != SPLIT_NONE) {
4150                 /*
4151                  * We could call ocfs2_insert_at_leaf() for some types
4152                  * of splits, but it's easier to just let one separate
4153                  * function sort it all out.
4154                  */
4155                 ocfs2_split_record(inode, left_path, right_path,
4156                                    insert_rec, insert->ins_split);
4157
4158                 /*
4159                  * Split might have modified either leaf and we don't
4160                  * have a guarantee that the later edge insert will
4161                  * dirty this for us.
4162                  */
4163                 if (left_path)
4164                         ret = ocfs2_journal_dirty(handle,
4165                                                   path_leaf_bh(left_path));
4166                         if (ret)
4167                                 mlog_errno(ret);
4168         } else
4169                 ocfs2_insert_at_leaf(insert_rec, path_leaf_el(right_path),
4170                                      insert, inode);
4171
4172         ret = ocfs2_journal_dirty(handle, leaf_bh);
4173         if (ret)
4174                 mlog_errno(ret);
4175
4176         if (left_path) {
4177                 /*
4178                  * The rotate code has indicated that we need to fix
4179                  * up portions of the tree after the insert.
4180                  *
4181                  * XXX: Should we extend the transaction here?
4182                  */
4183                 subtree_index = ocfs2_find_subtree_root(et, left_path,
4184                                                         right_path);
4185                 ocfs2_complete_edge_insert(handle, left_path, right_path,
4186                                            subtree_index);
4187         }
4188
4189         ret = 0;
4190 out:
4191         return ret;
4192 }
4193
4194 static int ocfs2_do_insert_extent(struct inode *inode,
4195                                   handle_t *handle,
4196                                   struct ocfs2_extent_tree *et,
4197                                   struct ocfs2_extent_rec *insert_rec,
4198                                   struct ocfs2_insert_type *type)
4199 {
4200         int ret, rotate = 0;
4201         u32 cpos;
4202         struct ocfs2_path *right_path = NULL;
4203         struct ocfs2_path *left_path = NULL;
4204         struct ocfs2_extent_list *el;
4205
4206         el = et->et_root_el;
4207
4208         ret = ocfs2_et_root_journal_access(handle, et,
4209                                            OCFS2_JOURNAL_ACCESS_WRITE);
4210         if (ret) {
4211                 mlog_errno(ret);
4212                 goto out;
4213         }
4214
4215         if (le16_to_cpu(el->l_tree_depth) == 0) {
4216                 ocfs2_insert_at_leaf(insert_rec, el, type, inode);
4217                 goto out_update_clusters;
4218         }
4219
4220         right_path = ocfs2_new_path_from_et(et);
4221         if (!right_path) {
4222                 ret = -ENOMEM;
4223                 mlog_errno(ret);
4224                 goto out;
4225         }
4226
4227         /*
4228          * Determine the path to start with. Rotations need the
4229          * rightmost path, everything else can go directly to the
4230          * target leaf.
4231          */
4232         cpos = le32_to_cpu(insert_rec->e_cpos);
4233         if (type->ins_appending == APPEND_NONE &&
4234             type->ins_contig == CONTIG_NONE) {
4235                 rotate = 1;
4236                 cpos = UINT_MAX;
4237         }
4238
4239         ret = ocfs2_find_path(et->et_ci, right_path, cpos);
4240         if (ret) {
4241                 mlog_errno(ret);
4242                 goto out;
4243         }
4244
4245         /*
4246          * Rotations and appends need special treatment - they modify
4247          * parts of the tree's above them.
4248          *
4249          * Both might pass back a path immediate to the left of the
4250          * one being inserted to. This will be cause
4251          * ocfs2_insert_path() to modify the rightmost records of
4252          * left_path to account for an edge insert.
4253          *
4254          * XXX: When modifying this code, keep in mind that an insert
4255          * can wind up skipping both of these two special cases...
4256          */
4257         if (rotate) {
4258                 ret = ocfs2_rotate_tree_right(handle, et, type->ins_split,
4259                                               le32_to_cpu(insert_rec->e_cpos),
4260                                               right_path, &left_path);
4261                 if (ret) {
4262                         mlog_errno(ret);
4263                         goto out;
4264                 }
4265
4266                 /*
4267                  * ocfs2_rotate_tree_right() might have extended the
4268                  * transaction without re-journaling our tree root.
4269                  */
4270                 ret = ocfs2_et_root_journal_access(handle, et,
4271                                                    OCFS2_JOURNAL_ACCESS_WRITE);
4272                 if (ret) {
4273                         mlog_errno(ret);
4274                         goto out;
4275                 }
4276         } else if (type->ins_appending == APPEND_TAIL
4277                    && type->ins_contig != CONTIG_LEFT) {
4278                 ret = ocfs2_append_rec_to_path(inode, handle, insert_rec,
4279                                                right_path, &left_path);
4280                 if (ret) {
4281                         mlog_errno(ret);
4282                         goto out;
4283                 }
4284         }
4285
4286         ret = ocfs2_insert_path(inode, handle, et, left_path, right_path,
4287                                 insert_rec, type);
4288         if (ret) {
4289                 mlog_errno(ret);
4290                 goto out;
4291         }
4292
4293 out_update_clusters:
4294         if (type->ins_split == SPLIT_NONE)
4295                 ocfs2_et_update_clusters(et,
4296                                          le16_to_cpu(insert_rec->e_leaf_clusters));
4297
4298         ret = ocfs2_journal_dirty(handle, et->et_root_bh);
4299         if (ret)
4300                 mlog_errno(ret);
4301
4302 out:
4303         ocfs2_free_path(left_path);
4304         ocfs2_free_path(right_path);
4305
4306         return ret;
4307 }
4308
4309 static enum ocfs2_contig_type
4310 ocfs2_figure_merge_contig_type(struct inode *inode, struct ocfs2_path *path,
4311                                struct ocfs2_extent_list *el, int index,
4312                                struct ocfs2_extent_rec *split_rec)
4313 {
4314         int status;
4315         enum ocfs2_contig_type ret = CONTIG_NONE;
4316         u32 left_cpos, right_cpos;
4317         struct ocfs2_extent_rec *rec = NULL;
4318         struct ocfs2_extent_list *new_el;
4319         struct ocfs2_path *left_path = NULL, *right_path = NULL;
4320         struct buffer_head *bh;
4321         struct ocfs2_extent_block *eb;
4322
4323         if (index > 0) {
4324                 rec = &el->l_recs[index - 1];
4325         } else if (path->p_tree_depth > 0) {
4326                 status = ocfs2_find_cpos_for_left_leaf(inode->i_sb,
4327                                                        path, &left_cpos);
4328                 if (status)
4329                         goto out;
4330
4331                 if (left_cpos != 0) {
4332                         left_path = ocfs2_new_path_from_path(path);
4333                         if (!left_path)
4334                                 goto out;
4335
4336                         status = ocfs2_find_path(INODE_CACHE(inode),
4337                                                  left_path, left_cpos);
4338                         if (status)
4339                                 goto out;
4340
4341                         new_el = path_leaf_el(left_path);
4342
4343                         if (le16_to_cpu(new_el->l_next_free_rec) !=
4344                             le16_to_cpu(new_el->l_count)) {
4345                                 bh = path_leaf_bh(left_path);
4346                                 eb = (struct ocfs2_extent_block *)bh->b_data;
4347                                 ocfs2_error(inode->i_sb,
4348                                             "Extent block #%llu has an "
4349                                             "invalid l_next_free_rec of "
4350                                             "%d.  It should have "
4351                                             "matched the l_count of %d",
4352                                             (unsigned long long)le64_to_cpu(eb->h_blkno),
4353                                             le16_to_cpu(new_el->l_next_free_rec),
4354                                             le16_to_cpu(new_el->l_count));
4355                                 status = -EINVAL;
4356                                 goto out;
4357                         }
4358                         rec = &new_el->l_recs[
4359                                 le16_to_cpu(new_el->l_next_free_rec) - 1];
4360                 }
4361         }
4362
4363         /*
4364          * We're careful to check for an empty extent record here -
4365          * the merge code will know what to do if it sees one.
4366          */
4367         if (rec) {
4368                 if (index == 1 && ocfs2_is_empty_extent(rec)) {
4369                         if (split_rec->e_cpos == el->l_recs[index].e_cpos)
4370                                 ret = CONTIG_RIGHT;
4371                 } else {
4372                         ret = ocfs2_extent_contig(inode, rec, split_rec);
4373                 }
4374         }
4375
4376         rec = NULL;
4377         if (index < (le16_to_cpu(el->l_next_free_rec) - 1))
4378                 rec = &el->l_recs[index + 1];
4379         else if (le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count) &&
4380                  path->p_tree_depth > 0) {
4381                 status = ocfs2_find_cpos_for_right_leaf(inode->i_sb,
4382                                                         path, &right_cpos);
4383                 if (status)
4384                         goto out;
4385
4386                 if (right_cpos == 0)
4387                         goto out;
4388
4389                 right_path = ocfs2_new_path_from_path(path);
4390                 if (!right_path)
4391                         goto out;
4392
4393                 status = ocfs2_find_path(INODE_CACHE(inode), right_path, right_cpos);
4394                 if (status)
4395                         goto out;
4396
4397                 new_el = path_leaf_el(right_path);
4398                 rec = &new_el->l_recs[0];
4399                 if (ocfs2_is_empty_extent(rec)) {
4400                         if (le16_to_cpu(new_el->l_next_free_rec) <= 1) {
4401                                 bh = path_leaf_bh(right_path);
4402                                 eb = (struct ocfs2_extent_block *)bh->b_data;
4403                                 ocfs2_error(inode->i_sb,
4404                                             "Extent block #%llu has an "
4405                                             "invalid l_next_free_rec of %d",
4406                                             (unsigned long long)le64_to_cpu(eb->h_blkno),
4407                                             le16_to_cpu(new_el->l_next_free_rec));
4408                                 status = -EINVAL;
4409                                 goto out;
4410                         }
4411                         rec = &new_el->l_recs[1];
4412                 }
4413         }
4414
4415         if (rec) {
4416                 enum ocfs2_contig_type contig_type;
4417
4418                 contig_type = ocfs2_extent_contig(inode, rec, split_rec);
4419
4420                 if (contig_type == CONTIG_LEFT && ret == CONTIG_RIGHT)
4421                         ret = CONTIG_LEFTRIGHT;
4422                 else if (ret == CONTIG_NONE)
4423                         ret = contig_type;
4424         }
4425
4426 out:
4427         if (left_path)
4428                 ocfs2_free_path(left_path);
4429         if (right_path)
4430                 ocfs2_free_path(right_path);
4431
4432         return ret;
4433 }
4434
4435 static void ocfs2_figure_contig_type(struct inode *inode,
4436                                      struct ocfs2_insert_type *insert,
4437                                      struct ocfs2_extent_list *el,
4438                                      struct ocfs2_extent_rec *insert_rec,
4439                                      struct ocfs2_extent_tree *et)
4440 {
4441         int i;
4442         enum ocfs2_contig_type contig_type = CONTIG_NONE;
4443
4444         BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
4445
4446         for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
4447                 contig_type = ocfs2_extent_contig(inode, &el->l_recs[i],
4448                                                   insert_rec);
4449                 if (contig_type != CONTIG_NONE) {
4450                         insert->ins_contig_index = i;
4451                         break;
4452                 }
4453         }
4454         insert->ins_contig = contig_type;
4455
4456         if (insert->ins_contig != CONTIG_NONE) {
4457                 struct ocfs2_extent_rec *rec =
4458                                 &el->l_recs[insert->ins_contig_index];
4459                 unsigned int len = le16_to_cpu(rec->e_leaf_clusters) +
4460                                    le16_to_cpu(insert_rec->e_leaf_clusters);
4461
4462                 /*
4463                  * Caller might want us to limit the size of extents, don't
4464                  * calculate contiguousness if we might exceed that limit.
4465                  */
4466                 if (et->et_max_leaf_clusters &&
4467                     (len > et->et_max_leaf_clusters))
4468                         insert->ins_contig = CONTIG_NONE;
4469         }
4470 }
4471
4472 /*
4473  * This should only be called against the righmost leaf extent list.
4474  *
4475  * ocfs2_figure_appending_type() will figure out whether we'll have to
4476  * insert at the tail of the rightmost leaf.
4477  *
4478  * This should also work against the root extent list for tree's with 0
4479  * depth. If we consider the root extent list to be the rightmost leaf node
4480  * then the logic here makes sense.
4481  */
4482 static void ocfs2_figure_appending_type(struct ocfs2_insert_type *insert,
4483                                         struct ocfs2_extent_list *el,
4484                                         struct ocfs2_extent_rec *insert_rec)
4485 {
4486         int i;
4487         u32 cpos = le32_to_cpu(insert_rec->e_cpos);
4488         struct ocfs2_extent_rec *rec;
4489
4490         insert->ins_appending = APPEND_NONE;
4491
4492         BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
4493
4494         if (!el->l_next_free_rec)
4495                 goto set_tail_append;
4496
4497         if (ocfs2_is_empty_extent(&el->l_recs[0])) {
4498                 /* Were all records empty? */
4499                 if (le16_to_cpu(el->l_next_free_rec) == 1)
4500                         goto set_tail_append;
4501         }
4502
4503         i = le16_to_cpu(el->l_next_free_rec) - 1;
4504         rec = &el->l_recs[i];
4505
4506         if (cpos >=
4507             (le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)))
4508                 goto set_tail_append;
4509
4510         return;
4511
4512 set_tail_append:
4513         insert->ins_appending = APPEND_TAIL;
4514 }
4515
4516 /*
4517  * Helper function called at the begining of an insert.
4518  *
4519  * This computes a few things that are commonly used in the process of
4520  * inserting into the btree:
4521  *   - Whether the new extent is contiguous with an existing one.
4522  *   - The current tree depth.
4523  *   - Whether the insert is an appending one.
4524  *   - The total # of free records in the tree.
4525  *
4526  * All of the information is stored on the ocfs2_insert_type
4527  * structure.
4528  */
4529 static int ocfs2_figure_insert_type(struct inode *inode,
4530                                     struct ocfs2_extent_tree *et,
4531                                     struct buffer_head **last_eb_bh,
4532                                     struct ocfs2_extent_rec *insert_rec,
4533                                     int *free_records,
4534                                     struct ocfs2_insert_type *insert)
4535 {
4536         int ret;
4537         struct ocfs2_extent_block *eb;
4538         struct ocfs2_extent_list *el;
4539         struct ocfs2_path *path = NULL;
4540         struct buffer_head *bh = NULL;
4541
4542         insert->ins_split = SPLIT_NONE;
4543
4544         el = et->et_root_el;
4545         insert->ins_tree_depth = le16_to_cpu(el->l_tree_depth);
4546
4547         if (el->l_tree_depth) {
4548                 /*
4549                  * If we have tree depth, we read in the
4550                  * rightmost extent block ahead of time as
4551                  * ocfs2_figure_insert_type() and ocfs2_add_branch()
4552                  * may want it later.
4553                  */
4554                 ret = ocfs2_read_extent_block(et->et_ci,
4555                                               ocfs2_et_get_last_eb_blk(et),
4556                                               &bh);
4557                 if (ret) {
4558                         mlog_exit(ret);
4559                         goto out;
4560                 }
4561                 eb = (struct ocfs2_extent_block *) bh->b_data;
4562                 el = &eb->h_list;
4563         }
4564
4565         /*
4566          * Unless we have a contiguous insert, we'll need to know if
4567          * there is room left in our allocation tree for another
4568          * extent record.
4569          *
4570          * XXX: This test is simplistic, we can search for empty
4571          * extent records too.
4572          */
4573         *free_records = le16_to_cpu(el->l_count) -
4574                 le16_to_cpu(el->l_next_free_rec);
4575
4576         if (!insert->ins_tree_depth) {
4577                 ocfs2_figure_contig_type(inode, insert, el, insert_rec, et);
4578                 ocfs2_figure_appending_type(insert, el, insert_rec);
4579                 return 0;
4580         }
4581
4582         path = ocfs2_new_path_from_et(et);
4583         if (!path) {
4584                 ret = -ENOMEM;
4585                 mlog_errno(ret);
4586                 goto out;
4587         }
4588
4589         /*
4590          * In the case that we're inserting past what the tree
4591          * currently accounts for, ocfs2_find_path() will return for
4592          * us the rightmost tree path. This is accounted for below in
4593          * the appending code.
4594          */
4595         ret = ocfs2_find_path(et->et_ci, path, le32_to_cpu(insert_rec->e_cpos));
4596         if (ret) {
4597                 mlog_errno(ret);
4598                 goto out;
4599         }
4600
4601         el = path_leaf_el(path);
4602
4603         /*
4604          * Now that we have the path, there's two things we want to determine:
4605          * 1) Contiguousness (also set contig_index if this is so)
4606          *
4607          * 2) Are we doing an append? We can trivially break this up
4608          *     into two types of appends: simple record append, or a
4609          *     rotate inside the tail leaf.
4610          */
4611         ocfs2_figure_contig_type(inode, insert, el, insert_rec, et);
4612
4613         /*
4614          * The insert code isn't quite ready to deal with all cases of
4615          * left contiguousness. Specifically, if it's an insert into
4616          * the 1st record in a leaf, it will require the adjustment of
4617          * cluster count on the last record of the path directly to it's
4618          * left. For now, just catch that case and fool the layers
4619          * above us. This works just fine for tree_depth == 0, which
4620          * is why we allow that above.
4621          */
4622         if (insert->ins_contig == CONTIG_LEFT &&
4623             insert->ins_contig_index == 0)
4624                 insert->ins_contig = CONTIG_NONE;
4625
4626         /*
4627          * Ok, so we can simply compare against last_eb to figure out
4628          * whether the path doesn't exist. This will only happen in
4629          * the case that we're doing a tail append, so maybe we can
4630          * take advantage of that information somehow.
4631          */
4632         if (ocfs2_et_get_last_eb_blk(et) ==
4633             path_leaf_bh(path)->b_blocknr) {
4634                 /*
4635                  * Ok, ocfs2_find_path() returned us the rightmost
4636                  * tree path. This might be an appending insert. There are
4637                  * two cases:
4638                  *    1) We're doing a true append at the tail:
4639                  *      -This might even be off the end of the leaf
4640                  *    2) We're "appending" by rotating in the tail
4641                  */
4642                 ocfs2_figure_appending_type(insert, el, insert_rec);
4643         }
4644
4645 out:
4646         ocfs2_free_path(path);
4647
4648         if (ret == 0)
4649                 *last_eb_bh = bh;
4650         else
4651                 brelse(bh);
4652         return ret;
4653 }
4654
4655 /*
4656  * Insert an extent into an inode btree.
4657  *
4658  * The caller needs to update fe->i_clusters
4659  */
4660 int ocfs2_insert_extent(struct ocfs2_super *osb,
4661                         handle_t *handle,
4662                         struct inode *inode,
4663                         struct ocfs2_extent_tree *et,
4664                         u32 cpos,
4665                         u64 start_blk,
4666                         u32 new_clusters,
4667                         u8 flags,
4668                         struct ocfs2_alloc_context *meta_ac)
4669 {
4670         int status;
4671         int uninitialized_var(free_records);
4672         struct buffer_head *last_eb_bh = NULL;
4673         struct ocfs2_insert_type insert = {0, };
4674         struct ocfs2_extent_rec rec;
4675
4676         mlog(0, "add %u clusters at position %u to inode %llu\n",
4677              new_clusters, cpos, (unsigned long long)OCFS2_I(inode)->ip_blkno);
4678
4679         memset(&rec, 0, sizeof(rec));
4680         rec.e_cpos = cpu_to_le32(cpos);
4681         rec.e_blkno = cpu_to_le64(start_blk);
4682         rec.e_leaf_clusters = cpu_to_le16(new_clusters);
4683         rec.e_flags = flags;
4684         status = ocfs2_et_insert_check(et, &rec);
4685         if (status) {
4686                 mlog_errno(status);
4687                 goto bail;
4688         }
4689
4690         status = ocfs2_figure_insert_type(inode, et, &last_eb_bh, &rec,
4691                                           &free_records, &insert);
4692         if (status < 0) {
4693                 mlog_errno(status);
4694                 goto bail;
4695         }
4696
4697         mlog(0, "Insert.appending: %u, Insert.Contig: %u, "
4698              "Insert.contig_index: %d, Insert.free_records: %d, "
4699              "Insert.tree_depth: %d\n",
4700              insert.ins_appending, insert.ins_contig, insert.ins_contig_index,
4701              free_records, insert.ins_tree_depth);
4702
4703         if (insert.ins_contig == CONTIG_NONE && free_records == 0) {
4704                 status = ocfs2_grow_tree(inode, handle, et,
4705                                          &insert.ins_tree_depth, &last_eb_bh,
4706                                          meta_ac);
4707                 if (status) {
4708                         mlog_errno(status);
4709                         goto bail;
4710                 }
4711         }
4712
4713         /* Finally, we can add clusters. This might rotate the tree for us. */
4714         status = ocfs2_do_insert_extent(inode, handle, et, &rec, &insert);
4715         if (status < 0)
4716                 mlog_errno(status);
4717         else if (et->et_ops == &ocfs2_dinode_et_ops)
4718                 ocfs2_extent_map_insert_rec(inode, &rec);
4719
4720 bail:
4721         brelse(last_eb_bh);
4722
4723         mlog_exit(status);
4724         return status;
4725 }
4726
4727 /*
4728  * Allcate and add clusters into the extent b-tree.
4729  * The new clusters(clusters_to_add) will be inserted at logical_offset.
4730  * The extent b-tree's root is specified by et, and
4731  * it is not limited to the file storage. Any extent tree can use this
4732  * function if it implements the proper ocfs2_extent_tree.
4733  */
4734 int ocfs2_add_clusters_in_btree(struct ocfs2_super *osb,
4735                                 struct inode *inode,
4736                                 u32 *logical_offset,
4737                                 u32 clusters_to_add,
4738                                 int mark_unwritten,
4739                                 struct ocfs2_extent_tree *et,
4740                                 handle_t *handle,
4741                                 struct ocfs2_alloc_context *data_ac,
4742                                 struct ocfs2_alloc_context *meta_ac,
4743                                 enum ocfs2_alloc_restarted *reason_ret)
4744 {
4745         int status = 0;
4746         int free_extents;
4747         enum ocfs2_alloc_restarted reason = RESTART_NONE;
4748         u32 bit_off, num_bits;
4749         u64 block;
4750         u8 flags = 0;
4751
4752         BUG_ON(!clusters_to_add);
4753
4754         if (mark_unwritten)
4755                 flags = OCFS2_EXT_UNWRITTEN;
4756
4757         free_extents = ocfs2_num_free_extents(osb, et);
4758         if (free_extents < 0) {
4759                 status = free_extents;
4760                 mlog_errno(status);
4761                 goto leave;
4762         }
4763
4764         /* there are two cases which could cause us to EAGAIN in the
4765          * we-need-more-metadata case:
4766          * 1) we haven't reserved *any*
4767          * 2) we are so fragmented, we've needed to add metadata too
4768          *    many times. */
4769         if (!free_extents && !meta_ac) {
4770                 mlog(0, "we haven't reserved any metadata!\n");
4771                 status = -EAGAIN;
4772                 reason = RESTART_META;
4773                 goto leave;
4774         } else if ((!free_extents)
4775                    && (ocfs2_alloc_context_bits_left(meta_ac)
4776                        < ocfs2_extend_meta_needed(et->et_root_el))) {
4777                 mlog(0, "filesystem is really fragmented...\n");
4778                 status = -EAGAIN;
4779                 reason = RESTART_META;
4780                 goto leave;
4781         }
4782
4783         status = __ocfs2_claim_clusters(osb, handle, data_ac, 1,
4784                                         clusters_to_add, &bit_off, &num_bits);
4785         if (status < 0) {
4786                 if (status != -ENOSPC)
4787                         mlog_errno(status);
4788                 goto leave;
4789         }
4790
4791         BUG_ON(num_bits > clusters_to_add);
4792
4793         /* reserve our write early -- insert_extent may update the tree root */
4794         status = ocfs2_et_root_journal_access(handle, et,
4795                                               OCFS2_JOURNAL_ACCESS_WRITE);
4796         if (status < 0) {
4797                 mlog_errno(status);
4798                 goto leave;
4799         }
4800
4801         block = ocfs2_clusters_to_blocks(osb->sb, bit_off);
4802         mlog(0, "Allocating %u clusters at block %u for inode %llu\n",
4803              num_bits, bit_off, (unsigned long long)OCFS2_I(inode)->ip_blkno);
4804         status = ocfs2_insert_extent(osb, handle, inode, et,
4805                                      *logical_offset, block,
4806                                      num_bits, flags, meta_ac);
4807         if (status < 0) {
4808                 mlog_errno(status);
4809                 goto leave;
4810         }
4811
4812         status = ocfs2_journal_dirty(handle, et->et_root_bh);
4813         if (status < 0) {
4814                 mlog_errno(status);
4815                 goto leave;
4816         }
4817
4818         clusters_to_add -= num_bits;
4819         *logical_offset += num_bits;
4820
4821         if (clusters_to_add) {
4822                 mlog(0, "need to alloc once more, wanted = %u\n",
4823                      clusters_to_add);
4824                 status = -EAGAIN;
4825                 reason = RESTART_TRANS;
4826         }
4827
4828 leave:
4829         mlog_exit(status);
4830         if (reason_ret)
4831                 *reason_ret = reason;
4832         return status;
4833 }
4834
4835 static void ocfs2_make_right_split_rec(struct super_block *sb,
4836                                        struct ocfs2_extent_rec *split_rec,
4837                                        u32 cpos,
4838                                        struct ocfs2_extent_rec *rec)
4839 {
4840         u32 rec_cpos = le32_to_cpu(rec->e_cpos);
4841         u32 rec_range = rec_cpos + le16_to_cpu(rec->e_leaf_clusters);
4842
4843         memset(split_rec, 0, sizeof(struct ocfs2_extent_rec));
4844
4845         split_rec->e_cpos = cpu_to_le32(cpos);
4846         split_rec->e_leaf_clusters = cpu_to_le16(rec_range - cpos);
4847
4848         split_rec->e_blkno = rec->e_blkno;
4849         le64_add_cpu(&split_rec->e_blkno,
4850                      ocfs2_clusters_to_blocks(sb, cpos - rec_cpos));
4851
4852         split_rec->e_flags = rec->e_flags;
4853 }
4854
4855 static int ocfs2_split_and_insert(struct inode *inode,
4856                                   handle_t *handle,
4857                                   struct ocfs2_path *path,
4858                                   struct ocfs2_extent_tree *et,
4859                                   struct buffer_head **last_eb_bh,
4860                                   int split_index,
4861                                   struct ocfs2_extent_rec *orig_split_rec,
4862                                   struct ocfs2_alloc_context *meta_ac)
4863 {
4864         int ret = 0, depth;
4865         unsigned int insert_range, rec_range, do_leftright = 0;
4866         struct ocfs2_extent_rec tmprec;
4867         struct ocfs2_extent_list *rightmost_el;
4868         struct ocfs2_extent_rec rec;
4869         struct ocfs2_extent_rec split_rec = *orig_split_rec;
4870         struct ocfs2_insert_type insert;
4871         struct ocfs2_extent_block *eb;
4872
4873 leftright:
4874         /*
4875          * Store a copy of the record on the stack - it might move
4876          * around as the tree is manipulated below.
4877          */
4878         rec = path_leaf_el(path)->l_recs[split_index];
4879
4880         rightmost_el = et->et_root_el;
4881
4882         depth = le16_to_cpu(rightmost_el->l_tree_depth);
4883         if (depth) {
4884                 BUG_ON(!(*last_eb_bh));
4885                 eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
4886                 rightmost_el = &eb->h_list;
4887         }
4888
4889         if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
4890             le16_to_cpu(rightmost_el->l_count)) {
4891                 ret = ocfs2_grow_tree(inode, handle, et,
4892                                       &depth, last_eb_bh, meta_ac);
4893                 if (ret) {
4894                         mlog_errno(ret);
4895                         goto out;
4896                 }
4897         }
4898
4899         memset(&insert, 0, sizeof(struct ocfs2_insert_type));
4900         insert.ins_appending = APPEND_NONE;
4901         insert.ins_contig = CONTIG_NONE;
4902         insert.ins_tree_depth = depth;
4903
4904         insert_range = le32_to_cpu(split_rec.e_cpos) +
4905                 le16_to_cpu(split_rec.e_leaf_clusters);
4906         rec_range = le32_to_cpu(rec.e_cpos) +
4907                 le16_to_cpu(rec.e_leaf_clusters);
4908
4909         if (split_rec.e_cpos == rec.e_cpos) {
4910                 insert.ins_split = SPLIT_LEFT;
4911         } else if (insert_range == rec_range) {
4912                 insert.ins_split = SPLIT_RIGHT;
4913         } else {
4914                 /*
4915                  * Left/right split. We fake this as a right split
4916                  * first and then make a second pass as a left split.
4917                  */
4918                 insert.ins_split = SPLIT_RIGHT;
4919
4920                 ocfs2_make_right_split_rec(inode->i_sb, &tmprec, insert_range,
4921                                            &rec);
4922
4923                 split_rec = tmprec;
4924
4925                 BUG_ON(do_leftright);
4926                 do_leftright = 1;
4927         }
4928
4929         ret = ocfs2_do_insert_extent(inode, handle, et, &split_rec, &insert);
4930         if (ret) {
4931                 mlog_errno(ret);
4932                 goto out;
4933         }
4934
4935         if (do_leftright == 1) {
4936                 u32 cpos;
4937                 struct ocfs2_extent_list *el;
4938
4939                 do_leftright++;
4940                 split_rec = *orig_split_rec;
4941
4942                 ocfs2_reinit_path(path, 1);
4943
4944                 cpos = le32_to_cpu(split_rec.e_cpos);
4945                 ret = ocfs2_find_path(et->et_ci, path, cpos);
4946                 if (ret) {
4947                         mlog_errno(ret);
4948                         goto out;
4949                 }
4950
4951                 el = path_leaf_el(path);
4952                 split_index = ocfs2_search_extent_list(el, cpos);
4953                 goto leftright;
4954         }
4955 out:
4956
4957         return ret;
4958 }
4959
4960 static int ocfs2_replace_extent_rec(struct inode *inode,
4961                                     handle_t *handle,
4962                                     struct ocfs2_path *path,
4963                                     struct ocfs2_extent_list *el,
4964                                     int split_index,
4965                                     struct ocfs2_extent_rec *split_rec)
4966 {
4967         int ret;
4968
4969         ret = ocfs2_path_bh_journal_access(handle, INODE_CACHE(inode), path,
4970                                            path_num_items(path) - 1);
4971         if (ret) {
4972                 mlog_errno(ret);
4973                 goto out;
4974         }
4975
4976         el->l_recs[split_index] = *split_rec;
4977
4978         ocfs2_journal_dirty(handle, path_leaf_bh(path));
4979 out:
4980         return ret;
4981 }
4982
4983 /*
4984  * Mark part or all of the extent record at split_index in the leaf
4985  * pointed to by path as written. This removes the unwritten
4986  * extent flag.
4987  *
4988  * Care is taken to handle contiguousness so as to not grow the tree.
4989  *
4990  * meta_ac is not strictly necessary - we only truly need it if growth
4991  * of the tree is required. All other cases will degrade into a less
4992  * optimal tree layout.
4993  *
4994  * last_eb_bh should be the rightmost leaf block for any extent
4995  * btree. Since a split may grow the tree or a merge might shrink it,
4996  * the caller cannot trust the contents of that buffer after this call.
4997  *
4998  * This code is optimized for readability - several passes might be
4999  * made over certain portions of the tree. All of those blocks will
5000  * have been brought into cache (and pinned via the journal), so the
5001  * extra overhead is not expressed in terms of disk reads.
5002  */
5003 static int __ocfs2_mark_extent_written(struct inode *inode,
5004                                        struct ocfs2_extent_tree *et,
5005                                        handle_t *handle,
5006                                        struct ocfs2_path *path,
5007                                        int split_index,
5008                                        struct ocfs2_extent_rec *split_rec,
5009                                        struct ocfs2_alloc_context *meta_ac,
5010                                        struct ocfs2_cached_dealloc_ctxt *dealloc)
5011 {
5012         int ret = 0;
5013         struct ocfs2_extent_list *el = path_leaf_el(path);
5014         struct buffer_head *last_eb_bh = NULL;
5015         struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
5016         struct ocfs2_merge_ctxt ctxt;
5017         struct ocfs2_extent_list *rightmost_el;
5018
5019         if (!(rec->e_flags & OCFS2_EXT_UNWRITTEN)) {
5020                 ret = -EIO;
5021                 mlog_errno(ret);
5022                 goto out;
5023         }
5024
5025         if (le32_to_cpu(rec->e_cpos) > le32_to_cpu(split_rec->e_cpos) ||
5026             ((le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)) <
5027              (le32_to_cpu(split_rec->e_cpos) + le16_to_cpu(split_rec->e_leaf_clusters)))) {
5028                 ret = -EIO;
5029                 mlog_errno(ret);
5030                 goto out;
5031         }
5032
5033         ctxt.c_contig_type = ocfs2_figure_merge_contig_type(inode, path, el,
5034                                                             split_index,
5035                                                             split_rec);
5036
5037         /*
5038          * The core merge / split code wants to know how much room is
5039          * left in this inodes allocation tree, so we pass the
5040          * rightmost extent list.
5041          */
5042         if (path->p_tree_depth) {
5043                 struct ocfs2_extent_block *eb;
5044
5045                 ret = ocfs2_read_extent_block(et->et_ci,
5046                                               ocfs2_et_get_last_eb_blk(et),
5047                                               &last_eb_bh);
5048                 if (ret) {
5049                         mlog_exit(ret);
5050                         goto out;
5051                 }
5052
5053                 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
5054                 rightmost_el = &eb->h_list;
5055         } else
5056                 rightmost_el = path_root_el(path);
5057
5058         if (rec->e_cpos == split_rec->e_cpos &&
5059             rec->e_leaf_clusters == split_rec->e_leaf_clusters)
5060                 ctxt.c_split_covers_rec = 1;
5061         else
5062                 ctxt.c_split_covers_rec = 0;
5063
5064         ctxt.c_has_empty_extent = ocfs2_is_empty_extent(&el->l_recs[0]);
5065
5066         mlog(0, "index: %d, contig: %u, has_empty: %u, split_covers: %u\n",
5067              split_index, ctxt.c_contig_type, ctxt.c_has_empty_extent,
5068              ctxt.c_split_covers_rec);
5069
5070         if (ctxt.c_contig_type == CONTIG_NONE) {
5071                 if (ctxt.c_split_covers_rec)
5072                         ret = ocfs2_replace_extent_rec(inode, handle,
5073                                                        path, el,
5074                                                        split_index, split_rec);
5075                 else
5076                         ret = ocfs2_split_and_insert(inode, handle, path, et,
5077                                                      &last_eb_bh, split_index,
5078                                                      split_rec, meta_ac);
5079                 if (ret)
5080                         mlog_errno(ret);
5081         } else {
5082                 ret = ocfs2_try_to_merge_extent(inode, handle, path,
5083                                                 split_index, split_rec,
5084                                                 dealloc, &ctxt, et);
5085                 if (ret)
5086                         mlog_errno(ret);
5087         }
5088
5089 out:
5090         brelse(last_eb_bh);
5091         return ret;
5092 }
5093
5094 /*
5095  * Mark the already-existing extent at cpos as written for len clusters.
5096  *
5097  * If the existing extent is larger than the request, initiate a
5098  * split. An attempt will be made at merging with adjacent extents.
5099  *
5100  * The caller is responsible for passing down meta_ac if we'll need it.
5101  */
5102 int ocfs2_mark_extent_written(struct inode *inode,
5103                               struct ocfs2_extent_tree *et,
5104                               handle_t *handle, u32 cpos, u32 len, u32 phys,
5105                               struct ocfs2_alloc_context *meta_ac,
5106                               struct ocfs2_cached_dealloc_ctxt *dealloc)
5107 {
5108         int ret, index;
5109         u64 start_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys);
5110         struct ocfs2_extent_rec split_rec;
5111         struct ocfs2_path *left_path = NULL;
5112         struct ocfs2_extent_list *el;
5113
5114         mlog(0, "Inode %lu cpos %u, len %u, phys %u (%llu)\n",
5115              inode->i_ino, cpos, len, phys, (unsigned long long)start_blkno);
5116
5117         if (!ocfs2_writes_unwritten_extents(OCFS2_SB(inode->i_sb))) {
5118                 ocfs2_error(inode->i_sb, "Inode %llu has unwritten extents "
5119                             "that are being written to, but the feature bit "
5120                             "is not set in the super block.",
5121                             (unsigned long long)OCFS2_I(inode)->ip_blkno);
5122                 ret = -EROFS;
5123                 goto out;
5124         }
5125
5126         /*
5127          * XXX: This should be fixed up so that we just re-insert the
5128          * next extent records.
5129          *
5130          * XXX: This is a hack on the extent tree, maybe it should be
5131          * an op?
5132          */
5133         if (et->et_ops == &ocfs2_dinode_et_ops)
5134                 ocfs2_extent_map_trunc(inode, 0);
5135
5136         left_path = ocfs2_new_path_from_et(et);
5137         if (!left_path) {
5138                 ret = -ENOMEM;
5139                 mlog_errno(ret);
5140                 goto out;
5141         }
5142
5143         ret = ocfs2_find_path(et->et_ci, left_path, cpos);
5144         if (ret) {
5145                 mlog_errno(ret);
5146                 goto out;
5147         }
5148         el = path_leaf_el(left_path);
5149
5150         index = ocfs2_search_extent_list(el, cpos);
5151         if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
5152                 ocfs2_error(inode->i_sb,
5153                             "Inode %llu has an extent at cpos %u which can no "
5154                             "longer be found.\n",
5155                             (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
5156                 ret = -EROFS;
5157                 goto out;
5158         }
5159
5160         memset(&split_rec, 0, sizeof(struct ocfs2_extent_rec));
5161         split_rec.e_cpos = cpu_to_le32(cpos);
5162         split_rec.e_leaf_clusters = cpu_to_le16(len);
5163         split_rec.e_blkno = cpu_to_le64(start_blkno);
5164         split_rec.e_flags = path_leaf_el(left_path)->l_recs[index].e_flags;
5165         split_rec.e_flags &= ~OCFS2_EXT_UNWRITTEN;
5166
5167         ret = __ocfs2_mark_extent_written(inode, et, handle, left_path,
5168                                           index, &split_rec, meta_ac,
5169                                           dealloc);
5170         if (ret)
5171                 mlog_errno(ret);
5172
5173 out:
5174         ocfs2_free_path(left_path);
5175         return ret;
5176 }
5177
5178 static int ocfs2_split_tree(struct inode *inode, struct ocfs2_extent_tree *et,
5179                             handle_t *handle, struct ocfs2_path *path,
5180                             int index, u32 new_range,
5181                             struct ocfs2_alloc_context *meta_ac)
5182 {
5183         int ret, depth, credits = handle->h_buffer_credits;
5184         struct buffer_head *last_eb_bh = NULL;
5185         struct ocfs2_extent_block *eb;
5186         struct ocfs2_extent_list *rightmost_el, *el;
5187         struct ocfs2_extent_rec split_rec;
5188         struct ocfs2_extent_rec *rec;
5189         struct ocfs2_insert_type insert;
5190
5191         /*
5192          * Setup the record to split before we grow the tree.
5193          */
5194         el = path_leaf_el(path);
5195         rec = &el->l_recs[index];
5196         ocfs2_make_right_split_rec(inode->i_sb, &split_rec, new_range, rec);
5197
5198         depth = path->p_tree_depth;
5199         if (depth > 0) {
5200                 ret = ocfs2_read_extent_block(et->et_ci,
5201                                               ocfs2_et_get_last_eb_blk(et),
5202                                               &last_eb_bh);
5203                 if (ret < 0) {
5204                         mlog_errno(ret);
5205                         goto out;
5206                 }
5207
5208                 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
5209                 rightmost_el = &eb->h_list;
5210         } else
5211                 rightmost_el = path_leaf_el(path);
5212
5213         credits += path->p_tree_depth +
5214                    ocfs2_extend_meta_needed(et->et_root_el);
5215         ret = ocfs2_extend_trans(handle, credits);
5216         if (ret) {
5217                 mlog_errno(ret);
5218                 goto out;
5219         }
5220
5221         if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
5222             le16_to_cpu(rightmost_el->l_count)) {
5223                 ret = ocfs2_grow_tree(inode, handle, et, &depth, &last_eb_bh,
5224                                       meta_ac);
5225                 if (ret) {
5226                         mlog_errno(ret);
5227                         goto out;
5228                 }
5229         }
5230
5231         memset(&insert, 0, sizeof(struct ocfs2_insert_type));
5232         insert.ins_appending = APPEND_NONE;
5233         insert.ins_contig = CONTIG_NONE;
5234         insert.ins_split = SPLIT_RIGHT;
5235         insert.ins_tree_depth = depth;
5236
5237         ret = ocfs2_do_insert_extent(inode, handle, et, &split_rec, &insert);
5238         if (ret)
5239                 mlog_errno(ret);
5240
5241 out:
5242         brelse(last_eb_bh);
5243         return ret;
5244 }
5245
5246 static int ocfs2_truncate_rec(struct inode *inode, handle_t *handle,
5247                               struct ocfs2_path *path, int index,
5248                               struct ocfs2_cached_dealloc_ctxt *dealloc,
5249                               u32 cpos, u32 len,
5250                               struct ocfs2_extent_tree *et)
5251 {
5252         int ret;
5253         u32 left_cpos, rec_range, trunc_range;
5254         int wants_rotate = 0, is_rightmost_tree_rec = 0;
5255         struct super_block *sb = inode->i_sb;
5256         struct ocfs2_path *left_path = NULL;
5257         struct ocfs2_extent_list *el = path_leaf_el(path);
5258         struct ocfs2_extent_rec *rec;
5259         struct ocfs2_extent_block *eb;
5260
5261         if (ocfs2_is_empty_extent(&el->l_recs[0]) && index > 0) {
5262                 ret = ocfs2_rotate_tree_left(inode, handle, path, dealloc, et);
5263                 if (ret) {
5264                         mlog_errno(ret);
5265                         goto out;
5266                 }
5267
5268                 index--;
5269         }
5270
5271         if (index == (le16_to_cpu(el->l_next_free_rec) - 1) &&
5272             path->p_tree_depth) {
5273                 /*
5274                  * Check whether this is the rightmost tree record. If
5275                  * we remove all of this record or part of its right
5276                  * edge then an update of the record lengths above it
5277                  * will be required.
5278                  */
5279                 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
5280                 if (eb->h_next_leaf_blk == 0)
5281                         is_rightmost_tree_rec = 1;
5282         }
5283
5284         rec = &el->l_recs[index];
5285         if (index == 0 && path->p_tree_depth &&
5286             le32_to_cpu(rec->e_cpos) == cpos) {
5287                 /*
5288                  * Changing the leftmost offset (via partial or whole
5289                  * record truncate) of an interior (or rightmost) path
5290                  * means we have to update the subtree that is formed
5291                  * by this leaf and the one to it's left.
5292                  *
5293                  * There are two cases we can skip:
5294                  *   1) Path is the leftmost one in our inode tree.
5295                  *   2) The leaf is rightmost and will be empty after
5296                  *      we remove the extent record - the rotate code
5297                  *      knows how to update the newly formed edge.
5298                  */
5299
5300                 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path,
5301                                                     &left_cpos);
5302                 if (ret) {
5303                         mlog_errno(ret);
5304                         goto out;
5305                 }
5306
5307                 if (left_cpos && le16_to_cpu(el->l_next_free_rec) > 1) {
5308                         left_path = ocfs2_new_path_from_path(path);
5309                         if (!left_path) {
5310                                 ret = -ENOMEM;
5311                                 mlog_errno(ret);
5312                                 goto out;
5313                         }
5314
5315                         ret = ocfs2_find_path(et->et_ci, left_path,
5316                                               left_cpos);
5317                         if (ret) {
5318                                 mlog_errno(ret);
5319                                 goto out;
5320                         }
5321                 }
5322         }
5323
5324         ret = ocfs2_extend_rotate_transaction(handle, 0,
5325                                               handle->h_buffer_credits,
5326                                               path);
5327         if (ret) {
5328                 mlog_errno(ret);
5329                 goto out;
5330         }
5331
5332         ret = ocfs2_journal_access_path(et->et_ci, handle, path);
5333         if (ret) {
5334                 mlog_errno(ret);
5335                 goto out;
5336         }
5337
5338         ret = ocfs2_journal_access_path(et->et_ci, handle, left_path);
5339         if (ret) {
5340                 mlog_errno(ret);
5341                 goto out;
5342         }
5343
5344         rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
5345         trunc_range = cpos + len;
5346
5347         if (le32_to_cpu(rec->e_cpos) == cpos && rec_range == trunc_range) {
5348                 int next_free;
5349
5350                 memset(rec, 0, sizeof(*rec));
5351                 ocfs2_cleanup_merge(el, index);
5352                 wants_rotate = 1;
5353
5354                 next_free = le16_to_cpu(el->l_next_free_rec);
5355                 if (is_rightmost_tree_rec && next_free > 1) {
5356                         /*
5357                          * We skip the edge update if this path will
5358                          * be deleted by the rotate code.
5359                          */
5360                         rec = &el->l_recs[next_free - 1];
5361                         ocfs2_adjust_rightmost_records(inode, handle, path,
5362                                                        rec);
5363                 }
5364         } else if (le32_to_cpu(rec->e_cpos) == cpos) {
5365                 /* Remove leftmost portion of the record. */
5366                 le32_add_cpu(&rec->e_cpos, len);
5367                 le64_add_cpu(&rec->e_blkno, ocfs2_clusters_to_blocks(sb, len));
5368                 le16_add_cpu(&rec->e_leaf_clusters, -len);
5369         } else if (rec_range == trunc_range) {
5370                 /* Remove rightmost portion of the record */
5371                 le16_add_cpu(&rec->e_leaf_clusters, -len);
5372                 if (is_rightmost_tree_rec)
5373                         ocfs2_adjust_rightmost_records(inode, handle, path, rec);
5374         } else {
5375                 /* Caller should have trapped this. */
5376                 mlog(ML_ERROR, "Inode %llu: Invalid record truncate: (%u, %u) "
5377                      "(%u, %u)\n", (unsigned long long)OCFS2_I(inode)->ip_blkno,
5378                      le32_to_cpu(rec->e_cpos),
5379                      le16_to_cpu(rec->e_leaf_clusters), cpos, len);
5380                 BUG();
5381         }
5382
5383         if (left_path) {
5384                 int subtree_index;
5385
5386                 subtree_index = ocfs2_find_subtree_root(et, left_path, path);
5387                 ocfs2_complete_edge_insert(handle, left_path, path,
5388                                            subtree_index);
5389         }
5390
5391         ocfs2_journal_dirty(handle, path_leaf_bh(path));
5392
5393         ret = ocfs2_rotate_tree_left(inode, handle, path, dealloc, et);
5394         if (ret) {
5395                 mlog_errno(ret);
5396                 goto out;
5397         }
5398
5399 out:
5400         ocfs2_free_path(left_path);
5401         return ret;
5402 }
5403
5404 int ocfs2_remove_extent(struct inode *inode,
5405                         struct ocfs2_extent_tree *et,
5406                         u32 cpos, u32 len, handle_t *handle,
5407                         struct ocfs2_alloc_context *meta_ac,
5408                         struct ocfs2_cached_dealloc_ctxt *dealloc)
5409 {
5410         int ret, index;
5411         u32 rec_range, trunc_range;
5412         struct ocfs2_extent_rec *rec;
5413         struct ocfs2_extent_list *el;
5414         struct ocfs2_path *path = NULL;
5415
5416         ocfs2_extent_map_trunc(inode, 0);
5417
5418         path = ocfs2_new_path_from_et(et);
5419         if (!path) {
5420                 ret = -ENOMEM;
5421                 mlog_errno(ret);
5422                 goto out;
5423         }
5424
5425         ret = ocfs2_find_path(et->et_ci, path, cpos);
5426         if (ret) {
5427                 mlog_errno(ret);
5428                 goto out;
5429         }
5430
5431         el = path_leaf_el(path);
5432         index = ocfs2_search_extent_list(el, cpos);
5433         if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
5434                 ocfs2_error(inode->i_sb,
5435                             "Inode %llu has an extent at cpos %u which can no "
5436                             "longer be found.\n",
5437                             (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
5438                 ret = -EROFS;
5439                 goto out;
5440         }
5441
5442         /*
5443          * We have 3 cases of extent removal:
5444          *   1) Range covers the entire extent rec
5445          *   2) Range begins or ends on one edge of the extent rec
5446          *   3) Range is in the middle of the extent rec (no shared edges)
5447          *
5448          * For case 1 we remove the extent rec and left rotate to
5449          * fill the hole.
5450          *
5451          * For case 2 we just shrink the existing extent rec, with a
5452          * tree update if the shrinking edge is also the edge of an
5453          * extent block.
5454          *
5455          * For case 3 we do a right split to turn the extent rec into
5456          * something case 2 can handle.
5457          */
5458         rec = &el->l_recs[index];
5459         rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
5460         trunc_range = cpos + len;
5461
5462         BUG_ON(cpos < le32_to_cpu(rec->e_cpos) || trunc_range > rec_range);
5463
5464         mlog(0, "Inode %llu, remove (cpos %u, len %u). Existing index %d "
5465              "(cpos %u, len %u)\n",
5466              (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos, len, index,
5467              le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec));
5468
5469         if (le32_to_cpu(rec->e_cpos) == cpos || rec_range == trunc_range) {
5470                 ret = ocfs2_truncate_rec(inode, handle, path, index, dealloc,
5471                                          cpos, len, et);
5472                 if (ret) {
5473                         mlog_errno(ret);
5474                         goto out;
5475                 }
5476         } else {
5477                 ret = ocfs2_split_tree(inode, et, handle, path, index,
5478                                        trunc_range, meta_ac);
5479                 if (ret) {
5480                         mlog_errno(ret);
5481                         goto out;
5482                 }
5483
5484                 /*
5485                  * The split could have manipulated the tree enough to
5486                  * move the record location, so we have to look for it again.
5487                  */
5488                 ocfs2_reinit_path(path, 1);
5489
5490                 ret = ocfs2_find_path(et->et_ci, path, cpos);
5491                 if (ret) {
5492                         mlog_errno(ret);
5493                         goto out;
5494                 }
5495
5496                 el = path_leaf_el(path);
5497                 index = ocfs2_search_extent_list(el, cpos);
5498                 if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
5499                         ocfs2_error(inode->i_sb,
5500                                     "Inode %llu: split at cpos %u lost record.",
5501                                     (unsigned long long)OCFS2_I(inode)->ip_blkno,
5502                                     cpos);
5503                         ret = -EROFS;
5504                         goto out;
5505                 }
5506
5507                 /*
5508                  * Double check our values here. If anything is fishy,
5509                  * it's easier to catch it at the top level.
5510                  */
5511                 rec = &el->l_recs[index];
5512                 rec_range = le32_to_cpu(rec->e_cpos) +
5513                         ocfs2_rec_clusters(el, rec);
5514                 if (rec_range != trunc_range) {
5515                         ocfs2_error(inode->i_sb,
5516                                     "Inode %llu: error after split at cpos %u"
5517                                     "trunc len %u, existing record is (%u,%u)",
5518                                     (unsigned long long)OCFS2_I(inode)->ip_blkno,
5519                                     cpos, len, le32_to_cpu(rec->e_cpos),
5520                                     ocfs2_rec_clusters(el, rec));
5521                         ret = -EROFS;
5522                         goto out;
5523                 }
5524
5525                 ret = ocfs2_truncate_rec(inode, handle, path, index, dealloc,
5526                                          cpos, len, et);
5527                 if (ret) {
5528                         mlog_errno(ret);
5529                         goto out;
5530                 }
5531         }
5532
5533 out:
5534         ocfs2_free_path(path);
5535         return ret;
5536 }
5537
5538 int ocfs2_remove_btree_range(struct inode *inode,
5539                              struct ocfs2_extent_tree *et,
5540                              u32 cpos, u32 phys_cpos, u32 len,
5541                              struct ocfs2_cached_dealloc_ctxt *dealloc)
5542 {
5543         int ret;
5544         u64 phys_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys_cpos);
5545         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
5546         struct inode *tl_inode = osb->osb_tl_inode;
5547         handle_t *handle;
5548         struct ocfs2_alloc_context *meta_ac = NULL;
5549
5550         ret = ocfs2_lock_allocators(inode, et, 0, 1, NULL, &meta_ac);
5551         if (ret) {
5552                 mlog_errno(ret);
5553                 return ret;
5554         }
5555
5556         mutex_lock(&tl_inode->i_mutex);
5557
5558         if (ocfs2_truncate_log_needs_flush(osb)) {
5559                 ret = __ocfs2_flush_truncate_log(osb);
5560                 if (ret < 0) {
5561                         mlog_errno(ret);
5562                         goto out;
5563                 }
5564         }
5565
5566         handle = ocfs2_start_trans(osb, ocfs2_remove_extent_credits(osb->sb));
5567         if (IS_ERR(handle)) {
5568                 ret = PTR_ERR(handle);
5569                 mlog_errno(ret);
5570                 goto out;
5571         }
5572
5573         ret = ocfs2_et_root_journal_access(handle, et,
5574                                            OCFS2_JOURNAL_ACCESS_WRITE);
5575         if (ret) {
5576                 mlog_errno(ret);
5577                 goto out;
5578         }
5579
5580         vfs_dq_free_space_nodirty(inode,
5581                                   ocfs2_clusters_to_bytes(inode->i_sb, len));
5582
5583         ret = ocfs2_remove_extent(inode, et, cpos, len, handle, meta_ac,
5584                                   dealloc);
5585         if (ret) {
5586                 mlog_errno(ret);
5587                 goto out_commit;
5588         }
5589
5590         ocfs2_et_update_clusters(et, -len);
5591
5592         ret = ocfs2_journal_dirty(handle, et->et_root_bh);
5593         if (ret) {
5594                 mlog_errno(ret);
5595                 goto out_commit;
5596         }
5597
5598         ret = ocfs2_truncate_log_append(osb, handle, phys_blkno, len);
5599         if (ret)
5600                 mlog_errno(ret);
5601
5602 out_commit:
5603         ocfs2_commit_trans(osb, handle);
5604 out:
5605         mutex_unlock(&tl_inode->i_mutex);
5606
5607         if (meta_ac)
5608                 ocfs2_free_alloc_context(meta_ac);
5609
5610         return ret;
5611 }
5612
5613 int ocfs2_truncate_log_needs_flush(struct ocfs2_super *osb)
5614 {
5615         struct buffer_head *tl_bh = osb->osb_tl_bh;
5616         struct ocfs2_dinode *di;
5617         struct ocfs2_truncate_log *tl;
5618
5619         di = (struct ocfs2_dinode *) tl_bh->b_data;
5620         tl = &di->id2.i_dealloc;
5621
5622         mlog_bug_on_msg(le16_to_cpu(tl->tl_used) > le16_to_cpu(tl->tl_count),
5623                         "slot %d, invalid truncate log parameters: used = "
5624                         "%u, count = %u\n", osb->slot_num,
5625                         le16_to_cpu(tl->tl_used), le16_to_cpu(tl->tl_count));
5626         return le16_to_cpu(tl->tl_used) == le16_to_cpu(tl->tl_count);
5627 }
5628
5629 static int ocfs2_truncate_log_can_coalesce(struct ocfs2_truncate_log *tl,
5630                                            unsigned int new_start)
5631 {
5632         unsigned int tail_index;
5633         unsigned int current_tail;
5634
5635         /* No records, nothing to coalesce */
5636         if (!le16_to_cpu(tl->tl_used))
5637                 return 0;
5638
5639         tail_index = le16_to_cpu(tl->tl_used) - 1;
5640         current_tail = le32_to_cpu(tl->tl_recs[tail_index].t_start);
5641         current_tail += le32_to_cpu(tl->tl_recs[tail_index].t_clusters);
5642
5643         return current_tail == new_start;
5644 }
5645
5646 int ocfs2_truncate_log_append(struct ocfs2_super *osb,
5647                               handle_t *handle,
5648                               u64 start_blk,
5649                               unsigned int num_clusters)
5650 {
5651         int status, index;
5652         unsigned int start_cluster, tl_count;
5653         struct inode *tl_inode = osb->osb_tl_inode;
5654         struct buffer_head *tl_bh = osb->osb_tl_bh;
5655         struct ocfs2_dinode *di;
5656         struct ocfs2_truncate_log *tl;
5657
5658         mlog_entry("start_blk = %llu, num_clusters = %u\n",
5659                    (unsigned long long)start_blk, num_clusters);
5660
5661         BUG_ON(mutex_trylock(&tl_inode->i_mutex));
5662
5663         start_cluster = ocfs2_blocks_to_clusters(osb->sb, start_blk);
5664
5665         di = (struct ocfs2_dinode *) tl_bh->b_data;
5666
5667         /* tl_bh is loaded from ocfs2_truncate_log_init().  It's validated
5668          * by the underlying call to ocfs2_read_inode_block(), so any
5669          * corruption is a code bug */
5670         BUG_ON(!OCFS2_IS_VALID_DINODE(di));
5671
5672         tl = &di->id2.i_dealloc;
5673         tl_count = le16_to_cpu(tl->tl_count);
5674         mlog_bug_on_msg(tl_count > ocfs2_truncate_recs_per_inode(osb->sb) ||
5675                         tl_count == 0,
5676                         "Truncate record count on #%llu invalid "
5677                         "wanted %u, actual %u\n",
5678                         (unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
5679                         ocfs2_truncate_recs_per_inode(osb->sb),
5680                         le16_to_cpu(tl->tl_count));
5681
5682         /* Caller should have known to flush before calling us. */
5683         index = le16_to_cpu(tl->tl_used);
5684         if (index >= tl_count) {
5685                 status = -ENOSPC;
5686                 mlog_errno(status);
5687                 goto bail;
5688         }
5689
5690         status = ocfs2_journal_access_di(handle, INODE_CACHE(tl_inode), tl_bh,
5691                                          OCFS2_JOURNAL_ACCESS_WRITE);
5692         if (status < 0) {
5693                 mlog_errno(status);
5694                 goto bail;
5695         }
5696
5697         mlog(0, "Log truncate of %u clusters starting at cluster %u to "
5698              "%llu (index = %d)\n", num_clusters, start_cluster,
5699              (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, index);
5700
5701         if (ocfs2_truncate_log_can_coalesce(tl, start_cluster)) {
5702                 /*
5703                  * Move index back to the record we are coalescing with.
5704                  * ocfs2_truncate_log_can_coalesce() guarantees nonzero
5705                  */
5706                 index--;
5707
5708                 num_clusters += le32_to_cpu(tl->tl_recs[index].t_clusters);
5709                 mlog(0, "Coalesce with index %u (start = %u, clusters = %u)\n",
5710                      index, le32_to_cpu(tl->tl_recs[index].t_start),
5711                      num_clusters);
5712         } else {
5713                 tl->tl_recs[index].t_start = cpu_to_le32(start_cluster);
5714                 tl->tl_used = cpu_to_le16(index + 1);
5715         }
5716         tl->tl_recs[index].t_clusters = cpu_to_le32(num_clusters);
5717
5718         status = ocfs2_journal_dirty(handle, tl_bh);
5719         if (status < 0) {
5720                 mlog_errno(status);
5721                 goto bail;
5722         }
5723
5724 bail:
5725         mlog_exit(status);
5726         return status;
5727 }
5728
5729 static int ocfs2_replay_truncate_records(struct ocfs2_super *osb,
5730                                          handle_t *handle,
5731                                          struct inode *data_alloc_inode,
5732                                          struct buffer_head *data_alloc_bh)
5733 {
5734         int status = 0;
5735         int i;
5736         unsigned int num_clusters;
5737         u64 start_blk;
5738         struct ocfs2_truncate_rec rec;
5739         struct ocfs2_dinode *di;
5740         struct ocfs2_truncate_log *tl;
5741         struct inode *tl_inode = osb->osb_tl_inode;
5742         struct buffer_head *tl_bh = osb->osb_tl_bh;
5743
5744         mlog_entry_void();
5745
5746         di = (struct ocfs2_dinode *) tl_bh->b_data;
5747         tl = &di->id2.i_dealloc;
5748         i = le16_to_cpu(tl->tl_used) - 1;
5749         while (i >= 0) {
5750                 /* Caller has given us at least enough credits to
5751                  * update the truncate log dinode */
5752                 status = ocfs2_journal_access_di(handle, INODE_CACHE(tl_inode), tl_bh,
5753                                                  OCFS2_JOURNAL_ACCESS_WRITE);
5754                 if (status < 0) {
5755                         mlog_errno(status);
5756                         goto bail;
5757                 }
5758
5759                 tl->tl_used = cpu_to_le16(i);
5760
5761                 status = ocfs2_journal_dirty(handle, tl_bh);
5762                 if (status < 0) {
5763                         mlog_errno(status);
5764                         goto bail;
5765                 }
5766
5767                 /* TODO: Perhaps we can calculate the bulk of the
5768                  * credits up front rather than extending like
5769                  * this. */
5770                 status = ocfs2_extend_trans(handle,
5771                                             OCFS2_TRUNCATE_LOG_FLUSH_ONE_REC);
5772                 if (status < 0) {
5773                         mlog_errno(status);
5774                         goto bail;
5775                 }
5776
5777                 rec = tl->tl_recs[i];
5778                 start_blk = ocfs2_clusters_to_blocks(data_alloc_inode->i_sb,
5779                                                     le32_to_cpu(rec.t_start));
5780                 num_clusters = le32_to_cpu(rec.t_clusters);
5781
5782                 /* if start_blk is not set, we ignore the record as
5783                  * invalid. */
5784                 if (start_blk) {
5785                         mlog(0, "free record %d, start = %u, clusters = %u\n",
5786                              i, le32_to_cpu(rec.t_start), num_clusters);
5787
5788                         status = ocfs2_free_clusters(handle, data_alloc_inode,
5789                                                      data_alloc_bh, start_blk,
5790                                                      num_clusters);
5791                         if (status < 0) {
5792                                 mlog_errno(status);
5793                                 goto bail;
5794                         }
5795                 }
5796                 i--;
5797         }
5798
5799 bail:
5800         mlog_exit(status);
5801         return status;
5802 }
5803
5804 /* Expects you to already be holding tl_inode->i_mutex */
5805 int __ocfs2_flush_truncate_log(struct ocfs2_super *osb)
5806 {
5807         int status;
5808         unsigned int num_to_flush;
5809         handle_t *handle;
5810         struct inode *tl_inode = osb->osb_tl_inode;
5811         struct inode *data_alloc_inode = NULL;
5812         struct buffer_head *tl_bh = osb->osb_tl_bh;
5813         struct buffer_head *data_alloc_bh = NULL;
5814         struct ocfs2_dinode *di;
5815         struct ocfs2_truncate_log *tl;
5816
5817         mlog_entry_void();
5818
5819         BUG_ON(mutex_trylock(&tl_inode->i_mutex));
5820
5821         di = (struct ocfs2_dinode *) tl_bh->b_data;
5822
5823         /* tl_bh is loaded from ocfs2_truncate_log_init().  It's validated
5824          * by the underlying call to ocfs2_read_inode_block(), so any
5825          * corruption is a code bug */
5826         BUG_ON(!OCFS2_IS_VALID_DINODE(di));
5827
5828         tl = &di->id2.i_dealloc;
5829         num_to_flush = le16_to_cpu(tl->tl_used);
5830         mlog(0, "Flush %u records from truncate log #%llu\n",
5831              num_to_flush, (unsigned long long)OCFS2_I(tl_inode)->ip_blkno);
5832         if (!num_to_flush) {
5833                 status = 0;
5834                 goto out;
5835         }
5836
5837         data_alloc_inode = ocfs2_get_system_file_inode(osb,
5838                                                        GLOBAL_BITMAP_SYSTEM_INODE,
5839                                                        OCFS2_INVALID_SLOT);
5840         if (!data_alloc_inode) {
5841                 status = -EINVAL;
5842                 mlog(ML_ERROR, "Could not get bitmap inode!\n");
5843                 goto out;
5844         }
5845
5846         mutex_lock(&data_alloc_inode->i_mutex);
5847
5848         status = ocfs2_inode_lock(data_alloc_inode, &data_alloc_bh, 1);
5849         if (status < 0) {
5850                 mlog_errno(status);
5851                 goto out_mutex;
5852         }
5853
5854         handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
5855         if (IS_ERR(handle)) {
5856                 status = PTR_ERR(handle);
5857                 mlog_errno(status);
5858                 goto out_unlock;
5859         }
5860
5861         status = ocfs2_replay_truncate_records(osb, handle, data_alloc_inode,
5862                                                data_alloc_bh);
5863         if (status < 0)
5864                 mlog_errno(status);
5865
5866         ocfs2_commit_trans(osb, handle);
5867
5868 out_unlock:
5869         brelse(data_alloc_bh);
5870         ocfs2_inode_unlock(data_alloc_inode, 1);
5871
5872 out_mutex:
5873         mutex_unlock(&data_alloc_inode->i_mutex);
5874         iput(data_alloc_inode);
5875
5876 out:
5877         mlog_exit(status);
5878         return status;
5879 }
5880
5881 int ocfs2_flush_truncate_log(struct ocfs2_super *osb)
5882 {
5883         int status;
5884         struct inode *tl_inode = osb->osb_tl_inode;
5885
5886         mutex_lock(&tl_inode->i_mutex);
5887         status = __ocfs2_flush_truncate_log(osb);
5888         mutex_unlock(&tl_inode->i_mutex);
5889
5890         return status;
5891 }
5892
5893 static void ocfs2_truncate_log_worker(struct work_struct *work)
5894 {
5895         int status;
5896         struct ocfs2_super *osb =
5897                 container_of(work, struct ocfs2_super,
5898                              osb_truncate_log_wq.work);
5899
5900         mlog_entry_void();
5901
5902         status = ocfs2_flush_truncate_log(osb);
5903         if (status < 0)
5904                 mlog_errno(status);
5905         else
5906                 ocfs2_init_inode_steal_slot(osb);
5907
5908         mlog_exit(status);
5909 }
5910
5911 #define OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL (2 * HZ)
5912 void ocfs2_schedule_truncate_log_flush(struct ocfs2_super *osb,
5913                                        int cancel)
5914 {
5915         if (osb->osb_tl_inode) {
5916                 /* We want to push off log flushes while truncates are
5917                  * still running. */
5918                 if (cancel)
5919                         cancel_delayed_work(&osb->osb_truncate_log_wq);
5920
5921                 queue_delayed_work(ocfs2_wq, &osb->osb_truncate_log_wq,
5922                                    OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL);
5923         }
5924 }
5925
5926 static int ocfs2_get_truncate_log_info(struct ocfs2_super *osb,
5927                                        int slot_num,
5928                                        struct inode **tl_inode,
5929                                        struct buffer_head **tl_bh)
5930 {
5931         int status;
5932         struct inode *inode = NULL;
5933         struct buffer_head *bh = NULL;
5934
5935         inode = ocfs2_get_system_file_inode(osb,
5936                                            TRUNCATE_LOG_SYSTEM_INODE,
5937                                            slot_num);
5938         if (!inode) {
5939                 status = -EINVAL;
5940                 mlog(ML_ERROR, "Could not get load truncate log inode!\n");
5941                 goto bail;
5942         }
5943
5944         status = ocfs2_read_inode_block(inode, &bh);
5945         if (status < 0) {
5946                 iput(inode);
5947                 mlog_errno(status);
5948                 goto bail;
5949         }
5950
5951         *tl_inode = inode;
5952         *tl_bh    = bh;
5953 bail:
5954         mlog_exit(status);
5955         return status;
5956 }
5957
5958 /* called during the 1st stage of node recovery. we stamp a clean
5959  * truncate log and pass back a copy for processing later. if the
5960  * truncate log does not require processing, a *tl_copy is set to
5961  * NULL. */
5962 int ocfs2_begin_truncate_log_recovery(struct ocfs2_super *osb,
5963                                       int slot_num,
5964                                       struct ocfs2_dinode **tl_copy)
5965 {
5966         int status;
5967         struct inode *tl_inode = NULL;
5968         struct buffer_head *tl_bh = NULL;
5969         struct ocfs2_dinode *di;
5970         struct ocfs2_truncate_log *tl;
5971
5972         *tl_copy = NULL;
5973
5974         mlog(0, "recover truncate log from slot %d\n", slot_num);
5975
5976         status = ocfs2_get_truncate_log_info(osb, slot_num, &tl_inode, &tl_bh);
5977         if (status < 0) {
5978                 mlog_errno(status);
5979                 goto bail;
5980         }
5981
5982         di = (struct ocfs2_dinode *) tl_bh->b_data;
5983
5984         /* tl_bh is loaded from ocfs2_get_truncate_log_info().  It's
5985          * validated by the underlying call to ocfs2_read_inode_block(),
5986          * so any corruption is a code bug */
5987         BUG_ON(!OCFS2_IS_VALID_DINODE(di));
5988
5989         tl = &di->id2.i_dealloc;
5990         if (le16_to_cpu(tl->tl_used)) {
5991                 mlog(0, "We'll have %u logs to recover\n",
5992                      le16_to_cpu(tl->tl_used));
5993
5994                 *tl_copy = kmalloc(tl_bh->b_size, GFP_KERNEL);
5995                 if (!(*tl_copy)) {
5996                         status = -ENOMEM;
5997                         mlog_errno(status);
5998                         goto bail;
5999                 }
6000
6001                 /* Assuming the write-out below goes well, this copy
6002                  * will be passed back to recovery for processing. */
6003                 memcpy(*tl_copy, tl_bh->b_data, tl_bh->b_size);
6004
6005                 /* All we need to do to clear the truncate log is set
6006                  * tl_used. */
6007                 tl->tl_used = 0;
6008
6009                 ocfs2_compute_meta_ecc(osb->sb, tl_bh->b_data, &di->i_check);
6010                 status = ocfs2_write_block(osb, tl_bh, INODE_CACHE(tl_inode));
6011                 if (status < 0) {
6012                         mlog_errno(status);
6013                         goto bail;
6014                 }
6015         }
6016
6017 bail:
6018         if (tl_inode)
6019                 iput(tl_inode);
6020         brelse(tl_bh);
6021
6022         if (status < 0 && (*tl_copy)) {
6023                 kfree(*tl_copy);
6024                 *tl_copy = NULL;
6025         }
6026
6027         mlog_exit(status);
6028         return status;
6029 }
6030
6031 int ocfs2_complete_truncate_log_recovery(struct ocfs2_super *osb,
6032                                          struct ocfs2_dinode *tl_copy)
6033 {
6034         int status = 0;
6035         int i;
6036         unsigned int clusters, num_recs, start_cluster;
6037         u64 start_blk;
6038         handle_t *handle;
6039         struct inode *tl_inode = osb->osb_tl_inode;
6040         struct ocfs2_truncate_log *tl;
6041
6042         mlog_entry_void();
6043
6044         if (OCFS2_I(tl_inode)->ip_blkno == le64_to_cpu(tl_copy->i_blkno)) {
6045                 mlog(ML_ERROR, "Asked to recover my own truncate log!\n");
6046                 return -EINVAL;
6047         }
6048
6049         tl = &tl_copy->id2.i_dealloc;
6050         num_recs = le16_to_cpu(tl->tl_used);
6051         mlog(0, "cleanup %u records from %llu\n", num_recs,
6052              (unsigned long long)le64_to_cpu(tl_copy->i_blkno));
6053
6054         mutex_lock(&tl_inode->i_mutex);
6055         for(i = 0; i < num_recs; i++) {
6056                 if (ocfs2_truncate_log_needs_flush(osb)) {
6057                         status = __ocfs2_flush_truncate_log(osb);
6058                         if (status < 0) {
6059                                 mlog_errno(status);
6060                                 goto bail_up;
6061                         }
6062                 }
6063
6064                 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
6065                 if (IS_ERR(handle)) {
6066                         status = PTR_ERR(handle);
6067                         mlog_errno(status);
6068                         goto bail_up;
6069                 }
6070
6071                 clusters = le32_to_cpu(tl->tl_recs[i].t_clusters);
6072                 start_cluster = le32_to_cpu(tl->tl_recs[i].t_start);
6073                 start_blk = ocfs2_clusters_to_blocks(osb->sb, start_cluster);
6074
6075                 status = ocfs2_truncate_log_append(osb, handle,
6076                                                    start_blk, clusters);
6077                 ocfs2_commit_trans(osb, handle);
6078                 if (status < 0) {
6079                         mlog_errno(status);
6080                         goto bail_up;
6081                 }
6082         }
6083
6084 bail_up:
6085         mutex_unlock(&tl_inode->i_mutex);
6086
6087         mlog_exit(status);
6088         return status;
6089 }
6090
6091 void ocfs2_truncate_log_shutdown(struct ocfs2_super *osb)
6092 {
6093         int status;
6094         struct inode *tl_inode = osb->osb_tl_inode;
6095
6096         mlog_entry_void();
6097
6098         if (tl_inode) {
6099                 cancel_delayed_work(&osb->osb_truncate_log_wq);
6100                 flush_workqueue(ocfs2_wq);
6101
6102                 status = ocfs2_flush_truncate_log(osb);
6103                 if (status < 0)
6104                         mlog_errno(status);
6105
6106                 brelse(osb->osb_tl_bh);
6107                 iput(osb->osb_tl_inode);
6108         }
6109
6110         mlog_exit_void();
6111 }
6112
6113 int ocfs2_truncate_log_init(struct ocfs2_super *osb)
6114 {
6115         int status;
6116         struct inode *tl_inode = NULL;
6117         struct buffer_head *tl_bh = NULL;
6118
6119         mlog_entry_void();
6120
6121         status = ocfs2_get_truncate_log_info(osb,
6122                                              osb->slot_num,
6123                                              &tl_inode,
6124                                              &tl_bh);
6125         if (status < 0)
6126                 mlog_errno(status);
6127
6128         /* ocfs2_truncate_log_shutdown keys on the existence of
6129          * osb->osb_tl_inode so we don't set any of the osb variables
6130          * until we're sure all is well. */
6131         INIT_DELAYED_WORK(&osb->osb_truncate_log_wq,
6132                           ocfs2_truncate_log_worker);
6133         osb->osb_tl_bh    = tl_bh;
6134         osb->osb_tl_inode = tl_inode;
6135
6136         mlog_exit(status);
6137         return status;
6138 }
6139
6140 /*
6141  * Delayed de-allocation of suballocator blocks.
6142  *
6143  * Some sets of block de-allocations might involve multiple suballocator inodes.
6144  *
6145  * The locking for this can get extremely complicated, especially when
6146  * the suballocator inodes to delete from aren't known until deep
6147  * within an unrelated codepath.
6148  *
6149  * ocfs2_extent_block structures are a good example of this - an inode
6150  * btree could have been grown by any number of nodes each allocating
6151  * out of their own suballoc inode.
6152  *
6153  * These structures allow the delay of block de-allocation until a
6154  * later time, when locking of multiple cluster inodes won't cause
6155  * deadlock.
6156  */
6157
6158 /*
6159  * Describe a single bit freed from a suballocator.  For the block
6160  * suballocators, it represents one block.  For the global cluster
6161  * allocator, it represents some clusters and free_bit indicates
6162  * clusters number.
6163  */
6164 struct ocfs2_cached_block_free {
6165         struct ocfs2_cached_block_free          *free_next;
6166         u64                                     free_blk;
6167         unsigned int                            free_bit;
6168 };
6169
6170 struct ocfs2_per_slot_free_list {
6171         struct ocfs2_per_slot_free_list         *f_next_suballocator;
6172         int                                     f_inode_type;
6173         int                                     f_slot;
6174         struct ocfs2_cached_block_free          *f_first;
6175 };
6176
6177 static int ocfs2_free_cached_blocks(struct ocfs2_super *osb,
6178                                     int sysfile_type,
6179                                     int slot,
6180                                     struct ocfs2_cached_block_free *head)
6181 {
6182         int ret;
6183         u64 bg_blkno;
6184         handle_t *handle;
6185         struct inode *inode;
6186         struct buffer_head *di_bh = NULL;
6187         struct ocfs2_cached_block_free *tmp;
6188
6189         inode = ocfs2_get_system_file_inode(osb, sysfile_type, slot);
6190         if (!inode) {
6191                 ret = -EINVAL;
6192                 mlog_errno(ret);
6193                 goto out;
6194         }
6195
6196         mutex_lock(&inode->i_mutex);
6197
6198         ret = ocfs2_inode_lock(inode, &di_bh, 1);
6199         if (ret) {
6200                 mlog_errno(ret);
6201                 goto out_mutex;
6202         }
6203
6204         handle = ocfs2_start_trans(osb, OCFS2_SUBALLOC_FREE);
6205         if (IS_ERR(handle)) {
6206                 ret = PTR_ERR(handle);
6207                 mlog_errno(ret);
6208                 goto out_unlock;
6209         }
6210
6211         while (head) {
6212                 bg_blkno = ocfs2_which_suballoc_group(head->free_blk,
6213                                                       head->free_bit);
6214                 mlog(0, "Free bit: (bit %u, blkno %llu)\n",
6215                      head->free_bit, (unsigned long long)head->free_blk);
6216
6217                 ret = ocfs2_free_suballoc_bits(handle, inode, di_bh,
6218                                                head->free_bit, bg_blkno, 1);
6219                 if (ret) {
6220                         mlog_errno(ret);
6221                         goto out_journal;
6222                 }
6223
6224                 ret = ocfs2_extend_trans(handle, OCFS2_SUBALLOC_FREE);
6225                 if (ret) {
6226                         mlog_errno(ret);
6227                         goto out_journal;
6228                 }
6229
6230                 tmp = head;
6231                 head = head->free_next;
6232                 kfree(tmp);
6233         }
6234
6235 out_journal:
6236         ocfs2_commit_trans(osb, handle);
6237
6238 out_unlock:
6239         ocfs2_inode_unlock(inode, 1);
6240         brelse(di_bh);
6241 out_mutex:
6242         mutex_unlock(&inode->i_mutex);
6243         iput(inode);
6244 out:
6245         while(head) {
6246                 /* Premature exit may have left some dangling items. */
6247                 tmp = head;
6248                 head = head->free_next;
6249                 kfree(tmp);
6250         }
6251
6252         return ret;
6253 }
6254
6255 int ocfs2_cache_cluster_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt,
6256                                 u64 blkno, unsigned int bit)
6257 {
6258         int ret = 0;
6259         struct ocfs2_cached_block_free *item;
6260
6261         item = kmalloc(sizeof(*item), GFP_NOFS);
6262         if (item == NULL) {
6263                 ret = -ENOMEM;
6264                 mlog_errno(ret);
6265                 return ret;
6266         }
6267
6268         mlog(0, "Insert clusters: (bit %u, blk %llu)\n",
6269              bit, (unsigned long long)blkno);
6270
6271         item->free_blk = blkno;
6272         item->free_bit = bit;
6273         item->free_next = ctxt->c_global_allocator;
6274
6275         ctxt->c_global_allocator = item;
6276         return ret;
6277 }
6278
6279 static int ocfs2_free_cached_clusters(struct ocfs2_super *osb,
6280                                       struct ocfs2_cached_block_free *head)
6281 {
6282         struct ocfs2_cached_block_free *tmp;
6283         struct inode *tl_inode = osb->osb_tl_inode;
6284         handle_t *handle;
6285         int ret = 0;
6286
6287         mutex_lock(&tl_inode->i_mutex);
6288
6289         while (head) {
6290                 if (ocfs2_truncate_log_needs_flush(osb)) {
6291                         ret = __ocfs2_flush_truncate_log(osb);
6292                         if (ret < 0) {
6293                                 mlog_errno(ret);
6294                                 break;
6295                         }
6296                 }
6297
6298                 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
6299                 if (IS_ERR(handle)) {
6300                         ret = PTR_ERR(handle);
6301                         mlog_errno(ret);
6302                         break;
6303                 }
6304
6305                 ret = ocfs2_truncate_log_append(osb, handle, head->free_blk,
6306                                                 head->free_bit);
6307
6308                 ocfs2_commit_trans(osb, handle);
6309                 tmp = head;
6310                 head = head->free_next;
6311                 kfree(tmp);
6312
6313                 if (ret < 0) {
6314                         mlog_errno(ret);
6315                         break;
6316                 }
6317         }
6318
6319         mutex_unlock(&tl_inode->i_mutex);
6320
6321         while (head) {
6322                 /* Premature exit may have left some dangling items. */
6323                 tmp = head;
6324                 head = head->free_next;
6325                 kfree(tmp);
6326         }
6327
6328         return ret;
6329 }
6330
6331 int ocfs2_run_deallocs(struct ocfs2_super *osb,
6332                        struct ocfs2_cached_dealloc_ctxt *ctxt)
6333 {
6334         int ret = 0, ret2;
6335         struct ocfs2_per_slot_free_list *fl;
6336
6337         if (!ctxt)
6338                 return 0;
6339
6340         while (ctxt->c_first_suballocator) {
6341                 fl = ctxt->c_first_suballocator;
6342
6343                 if (fl->f_first) {
6344                         mlog(0, "Free items: (type %u, slot %d)\n",
6345                              fl->f_inode_type, fl->f_slot);
6346                         ret2 = ocfs2_free_cached_blocks(osb,
6347                                                         fl->f_inode_type,
6348                                                         fl->f_slot,
6349                                                         fl->f_first);
6350                         if (ret2)
6351                                 mlog_errno(ret2);
6352                         if (!ret)
6353                                 ret = ret2;
6354                 }
6355
6356                 ctxt->c_first_suballocator = fl->f_next_suballocator;
6357                 kfree(fl);
6358         }
6359
6360         if (ctxt->c_global_allocator) {
6361                 ret2 = ocfs2_free_cached_clusters(osb,
6362                                                   ctxt->c_global_allocator);
6363                 if (ret2)
6364                         mlog_errno(ret2);
6365                 if (!ret)
6366                         ret = ret2;
6367
6368                 ctxt->c_global_allocator = NULL;
6369         }
6370
6371         return ret;
6372 }
6373
6374 static struct ocfs2_per_slot_free_list *
6375 ocfs2_find_per_slot_free_list(int type,
6376                               int slot,
6377                               struct ocfs2_cached_dealloc_ctxt *ctxt)
6378 {
6379         struct ocfs2_per_slot_free_list *fl = ctxt->c_first_suballocator;
6380
6381         while (fl) {
6382                 if (fl->f_inode_type == type && fl->f_slot == slot)
6383                         return fl;
6384
6385                 fl = fl->f_next_suballocator;
6386         }
6387
6388         fl = kmalloc(sizeof(*fl), GFP_NOFS);
6389         if (fl) {
6390                 fl->f_inode_type = type;
6391                 fl->f_slot = slot;
6392                 fl->f_first = NULL;
6393                 fl->f_next_suballocator = ctxt->c_first_suballocator;
6394
6395                 ctxt->c_first_suballocator = fl;
6396         }
6397         return fl;
6398 }
6399
6400 static int ocfs2_cache_block_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt,
6401                                      int type, int slot, u64 blkno,
6402                                      unsigned int bit)
6403 {
6404         int ret;
6405         struct ocfs2_per_slot_free_list *fl;
6406         struct ocfs2_cached_block_free *item;
6407
6408         fl = ocfs2_find_per_slot_free_list(type, slot, ctxt);
6409         if (fl == NULL) {
6410                 ret = -ENOMEM;
6411                 mlog_errno(ret);
6412                 goto out;
6413         }
6414
6415         item = kmalloc(sizeof(*item), GFP_NOFS);
6416         if (item == NULL) {
6417                 ret = -ENOMEM;
6418                 mlog_errno(ret);
6419                 goto out;
6420         }
6421
6422         mlog(0, "Insert: (type %d, slot %u, bit %u, blk %llu)\n",
6423              type, slot, bit, (unsigned long long)blkno);
6424
6425         item->free_blk = blkno;
6426         item->free_bit = bit;
6427         item->free_next = fl->f_first;
6428
6429         fl->f_first = item;
6430
6431         ret = 0;
6432 out:
6433         return ret;
6434 }
6435
6436 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
6437                                          struct ocfs2_extent_block *eb)
6438 {
6439         return ocfs2_cache_block_dealloc(ctxt, EXTENT_ALLOC_SYSTEM_INODE,
6440                                          le16_to_cpu(eb->h_suballoc_slot),
6441                                          le64_to_cpu(eb->h_blkno),
6442                                          le16_to_cpu(eb->h_suballoc_bit));
6443 }
6444
6445 /* This function will figure out whether the currently last extent
6446  * block will be deleted, and if it will, what the new last extent
6447  * block will be so we can update his h_next_leaf_blk field, as well
6448  * as the dinodes i_last_eb_blk */
6449 static int ocfs2_find_new_last_ext_blk(struct inode *inode,
6450                                        unsigned int clusters_to_del,
6451                                        struct ocfs2_path *path,
6452                                        struct buffer_head **new_last_eb)
6453 {
6454         int next_free, ret = 0;
6455         u32 cpos;
6456         struct ocfs2_extent_rec *rec;
6457         struct ocfs2_extent_block *eb;
6458         struct ocfs2_extent_list *el;
6459         struct buffer_head *bh = NULL;
6460
6461         *new_last_eb = NULL;
6462
6463         /* we have no tree, so of course, no last_eb. */
6464         if (!path->p_tree_depth)
6465                 goto out;
6466
6467         /* trunc to zero special case - this makes tree_depth = 0
6468          * regardless of what it is.  */
6469         if (OCFS2_I(inode)->ip_clusters == clusters_to_del)
6470                 goto out;
6471
6472         el = path_leaf_el(path);
6473         BUG_ON(!el->l_next_free_rec);
6474
6475         /*
6476          * Make sure that this extent list will actually be empty
6477          * after we clear away the data. We can shortcut out if
6478          * there's more than one non-empty extent in the
6479          * list. Otherwise, a check of the remaining extent is
6480          * necessary.
6481          */
6482         next_free = le16_to_cpu(el->l_next_free_rec);
6483         rec = NULL;
6484         if (ocfs2_is_empty_extent(&el->l_recs[0])) {
6485                 if (next_free > 2)
6486                         goto out;
6487
6488                 /* We may have a valid extent in index 1, check it. */
6489                 if (next_free == 2)
6490                         rec = &el->l_recs[1];
6491
6492                 /*
6493                  * Fall through - no more nonempty extents, so we want
6494                  * to delete this leaf.
6495                  */
6496         } else {
6497                 if (next_free > 1)
6498                         goto out;
6499
6500                 rec = &el->l_recs[0];
6501         }
6502
6503         if (rec) {
6504                 /*
6505                  * Check it we'll only be trimming off the end of this
6506                  * cluster.
6507                  */
6508                 if (le16_to_cpu(rec->e_leaf_clusters) > clusters_to_del)
6509                         goto out;
6510         }
6511
6512         ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, &cpos);
6513         if (ret) {
6514                 mlog_errno(ret);
6515                 goto out;
6516         }
6517
6518         ret = ocfs2_find_leaf(INODE_CACHE(inode), path_root_el(path), cpos, &bh);
6519         if (ret) {
6520                 mlog_errno(ret);
6521                 goto out;
6522         }
6523
6524         eb = (struct ocfs2_extent_block *) bh->b_data;
6525         el = &eb->h_list;
6526
6527         /* ocfs2_find_leaf() gets the eb from ocfs2_read_extent_block().
6528          * Any corruption is a code bug. */
6529         BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb));
6530
6531         *new_last_eb = bh;
6532         get_bh(*new_last_eb);
6533         mlog(0, "returning block %llu, (cpos: %u)\n",
6534              (unsigned long long)le64_to_cpu(eb->h_blkno), cpos);
6535 out:
6536         brelse(bh);
6537
6538         return ret;
6539 }
6540
6541 /*
6542  * Trim some clusters off the rightmost edge of a tree. Only called
6543  * during truncate.
6544  *
6545  * The caller needs to:
6546  *   - start journaling of each path component.
6547  *   - compute and fully set up any new last ext block
6548  */
6549 static int ocfs2_trim_tree(struct inode *inode, struct ocfs2_path *path,
6550                            handle_t *handle, struct ocfs2_truncate_context *tc,
6551                            u32 clusters_to_del, u64 *delete_start)
6552 {
6553         int ret, i, index = path->p_tree_depth;
6554         u32 new_edge = 0;
6555         u64 deleted_eb = 0;
6556         struct buffer_head *bh;
6557         struct ocfs2_extent_list *el;
6558         struct ocfs2_extent_rec *rec;
6559
6560         *delete_start = 0;
6561
6562         while (index >= 0) {
6563                 bh = path->p_node[index].bh;
6564                 el = path->p_node[index].el;
6565
6566                 mlog(0, "traveling tree (index = %d, block = %llu)\n",
6567                      index,  (unsigned long long)bh->b_blocknr);
6568
6569                 BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0);
6570
6571                 if (index !=
6572                     (path->p_tree_depth - le16_to_cpu(el->l_tree_depth))) {
6573                         ocfs2_error(inode->i_sb,
6574                                     "Inode %lu has invalid ext. block %llu",
6575                                     inode->i_ino,
6576                                     (unsigned long long)bh->b_blocknr);
6577                         ret = -EROFS;
6578                         goto out;
6579                 }
6580
6581 find_tail_record:
6582                 i = le16_to_cpu(el->l_next_free_rec) - 1;
6583                 rec = &el->l_recs[i];
6584
6585                 mlog(0, "Extent list before: record %d: (%u, %u, %llu), "
6586                      "next = %u\n", i, le32_to_cpu(rec->e_cpos),
6587                      ocfs2_rec_clusters(el, rec),
6588                      (unsigned long long)le64_to_cpu(rec->e_blkno),
6589                      le16_to_cpu(el->l_next_free_rec));
6590
6591                 BUG_ON(ocfs2_rec_clusters(el, rec) < clusters_to_del);
6592
6593                 if (le16_to_cpu(el->l_tree_depth) == 0) {
6594                         /*
6595                          * If the leaf block contains a single empty
6596                          * extent and no records, we can just remove
6597                          * the block.
6598                          */
6599                         if (i == 0 && ocfs2_is_empty_extent(rec)) {
6600                                 memset(rec, 0,
6601                                        sizeof(struct ocfs2_extent_rec));
6602                                 el->l_next_free_rec = cpu_to_le16(0);
6603
6604                                 goto delete;
6605                         }
6606
6607                         /*
6608                          * Remove any empty extents by shifting things
6609                          * left. That should make life much easier on
6610                          * the code below. This condition is rare
6611                          * enough that we shouldn't see a performance
6612                          * hit.
6613                          */
6614                         if (ocfs2_is_empty_extent(&el->l_recs[0])) {
6615                                 le16_add_cpu(&el->l_next_free_rec, -1);
6616
6617                                 for(i = 0;
6618                                     i < le16_to_cpu(el->l_next_free_rec); i++)
6619                                         el->l_recs[i] = el->l_recs[i + 1];
6620
6621                                 memset(&el->l_recs[i], 0,
6622                                        sizeof(struct ocfs2_extent_rec));
6623
6624                                 /*
6625                                  * We've modified our extent list. The
6626                                  * simplest way to handle this change
6627                                  * is to being the search from the
6628                                  * start again.
6629                                  */
6630                                 goto find_tail_record;
6631                         }
6632
6633                         le16_add_cpu(&rec->e_leaf_clusters, -clusters_to_del);
6634
6635                         /*
6636                          * We'll use "new_edge" on our way back up the
6637                          * tree to know what our rightmost cpos is.
6638                          */
6639                         new_edge = le16_to_cpu(rec->e_leaf_clusters);
6640                         new_edge += le32_to_cpu(rec->e_cpos);
6641
6642                         /*
6643                          * The caller will use this to delete data blocks.
6644                          */
6645                         *delete_start = le64_to_cpu(rec->e_blkno)
6646                                 + ocfs2_clusters_to_blocks(inode->i_sb,
6647                                         le16_to_cpu(rec->e_leaf_clusters));
6648
6649                         /*
6650                          * If it's now empty, remove this record.
6651                          */
6652                         if (le16_to_cpu(rec->e_leaf_clusters) == 0) {
6653                                 memset(rec, 0,
6654                                        sizeof(struct ocfs2_extent_rec));
6655                                 le16_add_cpu(&el->l_next_free_rec, -1);
6656                         }
6657                 } else {
6658                         if (le64_to_cpu(rec->e_blkno) == deleted_eb) {
6659                                 memset(rec, 0,
6660                                        sizeof(struct ocfs2_extent_rec));
6661                                 le16_add_cpu(&el->l_next_free_rec, -1);
6662
6663                                 goto delete;
6664                         }
6665
6666                         /* Can this actually happen? */
6667                         if (le16_to_cpu(el->l_next_free_rec) == 0)
6668                                 goto delete;
6669
6670                         /*
6671                          * We never actually deleted any clusters
6672                          * because our leaf was empty. There's no
6673                          * reason to adjust the rightmost edge then.
6674                          */
6675                         if (new_edge == 0)
6676                                 goto delete;
6677
6678                         rec->e_int_clusters = cpu_to_le32(new_edge);
6679                         le32_add_cpu(&rec->e_int_clusters,
6680                                      -le32_to_cpu(rec->e_cpos));
6681
6682                          /*
6683                           * A deleted child record should have been
6684                           * caught above.
6685                           */
6686                          BUG_ON(le32_to_cpu(rec->e_int_clusters) == 0);
6687                 }
6688
6689 delete:
6690                 ret = ocfs2_journal_dirty(handle, bh);
6691                 if (ret) {
6692                         mlog_errno(ret);
6693                         goto out;
6694                 }
6695
6696                 mlog(0, "extent list container %llu, after: record %d: "
6697                      "(%u, %u, %llu), next = %u.\n",
6698                      (unsigned long long)bh->b_blocknr, i,
6699                      le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec),
6700                      (unsigned long long)le64_to_cpu(rec->e_blkno),
6701                      le16_to_cpu(el->l_next_free_rec));
6702
6703                 /*
6704                  * We must be careful to only attempt delete of an
6705                  * extent block (and not the root inode block).
6706                  */
6707                 if (index > 0 && le16_to_cpu(el->l_next_free_rec) == 0) {
6708                         struct ocfs2_extent_block *eb =
6709                                 (struct ocfs2_extent_block *)bh->b_data;
6710
6711                         /*
6712                          * Save this for use when processing the
6713                          * parent block.
6714                          */
6715                         deleted_eb = le64_to_cpu(eb->h_blkno);
6716
6717                         mlog(0, "deleting this extent block.\n");
6718
6719                         ocfs2_remove_from_cache(INODE_CACHE(inode), bh);
6720
6721                         BUG_ON(ocfs2_rec_clusters(el, &el->l_recs[0]));
6722                         BUG_ON(le32_to_cpu(el->l_recs[0].e_cpos));
6723                         BUG_ON(le64_to_cpu(el->l_recs[0].e_blkno));
6724
6725                         ret = ocfs2_cache_extent_block_free(&tc->tc_dealloc, eb);
6726                         /* An error here is not fatal. */
6727                         if (ret < 0)
6728                                 mlog_errno(ret);
6729                 } else {
6730                         deleted_eb = 0;
6731                 }
6732
6733                 index--;
6734         }
6735
6736         ret = 0;
6737 out:
6738         return ret;
6739 }
6740
6741 static int ocfs2_do_truncate(struct ocfs2_super *osb,
6742                              unsigned int clusters_to_del,
6743                              struct inode *inode,
6744                              struct buffer_head *fe_bh,
6745                              handle_t *handle,
6746                              struct ocfs2_truncate_context *tc,
6747                              struct ocfs2_path *path)
6748 {
6749         int status;
6750         struct ocfs2_dinode *fe;
6751         struct ocfs2_extent_block *last_eb = NULL;
6752         struct ocfs2_extent_list *el;
6753         struct buffer_head *last_eb_bh = NULL;
6754         u64 delete_blk = 0;
6755
6756         fe = (struct ocfs2_dinode *) fe_bh->b_data;
6757
6758         status = ocfs2_find_new_last_ext_blk(inode, clusters_to_del,
6759                                              path, &last_eb_bh);
6760         if (status < 0) {
6761                 mlog_errno(status);
6762                 goto bail;
6763         }
6764
6765         /*
6766          * Each component will be touched, so we might as well journal
6767          * here to avoid having to handle errors later.
6768          */
6769         status = ocfs2_journal_access_path(INODE_CACHE(inode), handle, path);
6770         if (status < 0) {
6771                 mlog_errno(status);
6772                 goto bail;
6773         }
6774
6775         if (last_eb_bh) {
6776                 status = ocfs2_journal_access_eb(handle, INODE_CACHE(inode), last_eb_bh,
6777                                                  OCFS2_JOURNAL_ACCESS_WRITE);
6778                 if (status < 0) {
6779                         mlog_errno(status);
6780                         goto bail;
6781                 }
6782
6783                 last_eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
6784         }
6785
6786         el = &(fe->id2.i_list);
6787
6788         /*
6789          * Lower levels depend on this never happening, but it's best
6790          * to check it up here before changing the tree.
6791          */
6792         if (el->l_tree_depth && el->l_recs[0].e_int_clusters == 0) {
6793                 ocfs2_error(inode->i_sb,
6794                             "Inode %lu has an empty extent record, depth %u\n",
6795                             inode->i_ino, le16_to_cpu(el->l_tree_depth));
6796                 status = -EROFS;
6797                 goto bail;
6798         }
6799
6800         vfs_dq_free_space_nodirty(inode,
6801                         ocfs2_clusters_to_bytes(osb->sb, clusters_to_del));
6802         spin_lock(&OCFS2_I(inode)->ip_lock);
6803         OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters) -
6804                                       clusters_to_del;
6805         spin_unlock(&OCFS2_I(inode)->ip_lock);
6806         le32_add_cpu(&fe->i_clusters, -clusters_to_del);
6807         inode->i_blocks = ocfs2_inode_sector_count(inode);
6808
6809         status = ocfs2_trim_tree(inode, path, handle, tc,
6810                                  clusters_to_del, &delete_blk);
6811         if (status) {
6812                 mlog_errno(status);
6813                 goto bail;
6814         }
6815
6816         if (le32_to_cpu(fe->i_clusters) == 0) {
6817                 /* trunc to zero is a special case. */
6818                 el->l_tree_depth = 0;
6819                 fe->i_last_eb_blk = 0;
6820         } else if (last_eb)
6821                 fe->i_last_eb_blk = last_eb->h_blkno;
6822
6823         status = ocfs2_journal_dirty(handle, fe_bh);
6824         if (status < 0) {
6825                 mlog_errno(status);
6826                 goto bail;
6827         }
6828
6829         if (last_eb) {
6830                 /* If there will be a new last extent block, then by
6831                  * definition, there cannot be any leaves to the right of
6832                  * him. */
6833                 last_eb->h_next_leaf_blk = 0;
6834                 status = ocfs2_journal_dirty(handle, last_eb_bh);
6835                 if (status < 0) {
6836                         mlog_errno(status);
6837                         goto bail;
6838                 }
6839         }
6840
6841         if (delete_blk) {
6842                 status = ocfs2_truncate_log_append(osb, handle, delete_blk,
6843                                                    clusters_to_del);
6844                 if (status < 0) {
6845                         mlog_errno(status);
6846                         goto bail;
6847                 }
6848         }
6849         status = 0;
6850 bail:
6851         brelse(last_eb_bh);
6852         mlog_exit(status);
6853         return status;
6854 }
6855
6856 static int ocfs2_zero_func(handle_t *handle, struct buffer_head *bh)
6857 {
6858         set_buffer_uptodate(bh);
6859         mark_buffer_dirty(bh);
6860         return 0;
6861 }
6862
6863 static void ocfs2_map_and_dirty_page(struct inode *inode, handle_t *handle,
6864                                      unsigned int from, unsigned int to,
6865                                      struct page *page, int zero, u64 *phys)
6866 {
6867         int ret, partial = 0;
6868
6869         ret = ocfs2_map_page_blocks(page, phys, inode, from, to, 0);
6870         if (ret)
6871                 mlog_errno(ret);
6872
6873         if (zero)
6874                 zero_user_segment(page, from, to);
6875
6876         /*
6877          * Need to set the buffers we zero'd into uptodate
6878          * here if they aren't - ocfs2_map_page_blocks()
6879          * might've skipped some
6880          */
6881         ret = walk_page_buffers(handle, page_buffers(page),
6882                                 from, to, &partial,
6883                                 ocfs2_zero_func);
6884         if (ret < 0)
6885                 mlog_errno(ret);
6886         else if (ocfs2_should_order_data(inode)) {
6887                 ret = ocfs2_jbd2_file_inode(handle, inode);
6888                 if (ret < 0)
6889                         mlog_errno(ret);
6890         }
6891
6892         if (!partial)
6893                 SetPageUptodate(page);
6894
6895         flush_dcache_page(page);
6896 }
6897
6898 static void ocfs2_zero_cluster_pages(struct inode *inode, loff_t start,
6899                                      loff_t end, struct page **pages,
6900                                      int numpages, u64 phys, handle_t *handle)
6901 {
6902         int i;
6903         struct page *page;
6904         unsigned int from, to = PAGE_CACHE_SIZE;
6905         struct super_block *sb = inode->i_sb;
6906
6907         BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb)));
6908
6909         if (numpages == 0)
6910                 goto out;
6911
6912         to = PAGE_CACHE_SIZE;
6913         for(i = 0; i < numpages; i++) {
6914                 page = pages[i];
6915
6916                 from = start & (PAGE_CACHE_SIZE - 1);
6917                 if ((end >> PAGE_CACHE_SHIFT) == page->index)
6918                         to = end & (PAGE_CACHE_SIZE - 1);
6919
6920                 BUG_ON(from > PAGE_CACHE_SIZE);
6921                 BUG_ON(to > PAGE_CACHE_SIZE);
6922
6923                 ocfs2_map_and_dirty_page(inode, handle, from, to, page, 1,
6924                                          &phys);
6925
6926                 start = (page->index + 1) << PAGE_CACHE_SHIFT;
6927         }
6928 out:
6929         if (pages)
6930                 ocfs2_unlock_and_free_pages(pages, numpages);
6931 }
6932
6933 static int ocfs2_grab_eof_pages(struct inode *inode, loff_t start, loff_t end,
6934                                 struct page **pages, int *num)
6935 {
6936         int numpages, ret = 0;
6937         struct super_block *sb = inode->i_sb;
6938         struct address_space *mapping = inode->i_mapping;
6939         unsigned long index;
6940         loff_t last_page_bytes;
6941
6942         BUG_ON(start > end);
6943
6944         BUG_ON(start >> OCFS2_SB(sb)->s_clustersize_bits !=
6945                (end - 1) >> OCFS2_SB(sb)->s_clustersize_bits);
6946
6947         numpages = 0;
6948         last_page_bytes = PAGE_ALIGN(end);
6949         index = start >> PAGE_CACHE_SHIFT;
6950         do {
6951                 pages[numpages] = grab_cache_page(mapping, index);
6952                 if (!pages[numpages]) {
6953                         ret = -ENOMEM;
6954                         mlog_errno(ret);
6955                         goto out;
6956                 }
6957
6958                 numpages++;
6959                 index++;
6960         } while (index < (last_page_bytes >> PAGE_CACHE_SHIFT));
6961
6962 out:
6963         if (ret != 0) {
6964                 if (pages)
6965                         ocfs2_unlock_and_free_pages(pages, numpages);
6966                 numpages = 0;
6967         }
6968
6969         *num = numpages;
6970
6971         return ret;
6972 }
6973
6974 /*
6975  * Zero the area past i_size but still within an allocated
6976  * cluster. This avoids exposing nonzero data on subsequent file
6977  * extends.
6978  *
6979  * We need to call this before i_size is updated on the inode because
6980  * otherwise block_write_full_page() will skip writeout of pages past
6981  * i_size. The new_i_size parameter is passed for this reason.
6982  */
6983 int ocfs2_zero_range_for_truncate(struct inode *inode, handle_t *handle,
6984                                   u64 range_start, u64 range_end)
6985 {
6986         int ret = 0, numpages;
6987         struct page **pages = NULL;
6988         u64 phys;
6989         unsigned int ext_flags;
6990         struct super_block *sb = inode->i_sb;
6991
6992         /*
6993          * File systems which don't support sparse files zero on every
6994          * extend.
6995          */
6996         if (!ocfs2_sparse_alloc(OCFS2_SB(sb)))
6997                 return 0;
6998
6999         pages = kcalloc(ocfs2_pages_per_cluster(sb),
7000                         sizeof(struct page *), GFP_NOFS);
7001         if (pages == NULL) {
7002                 ret = -ENOMEM;
7003                 mlog_errno(ret);
7004                 goto out;
7005         }
7006
7007         if (range_start == range_end)
7008                 goto out;
7009
7010         ret = ocfs2_extent_map_get_blocks(inode,
7011                                           range_start >> sb->s_blocksize_bits,
7012                                           &phys, NULL, &ext_flags);
7013         if (ret) {
7014                 mlog_errno(ret);
7015                 goto out;
7016         }
7017
7018         /*
7019          * Tail is a hole, or is marked unwritten. In either case, we
7020          * can count on read and write to return/push zero's.
7021          */
7022         if (phys == 0 || ext_flags & OCFS2_EXT_UNWRITTEN)
7023                 goto out;
7024
7025         ret = ocfs2_grab_eof_pages(inode, range_start, range_end, pages,
7026                                    &numpages);
7027         if (ret) {
7028                 mlog_errno(ret);
7029                 goto out;
7030         }
7031
7032         ocfs2_zero_cluster_pages(inode, range_start, range_end, pages,
7033                                  numpages, phys, handle);
7034
7035         /*
7036          * Initiate writeout of the pages we zero'd here. We don't
7037          * wait on them - the truncate_inode_pages() call later will
7038          * do that for us.
7039          */
7040         ret = do_sync_mapping_range(inode->i_mapping, range_start,
7041                                     range_end - 1, SYNC_FILE_RANGE_WRITE);
7042         if (ret)
7043                 mlog_errno(ret);
7044
7045 out:
7046         if (pages)
7047                 kfree(pages);
7048
7049         return ret;
7050 }
7051
7052 static void ocfs2_zero_dinode_id2_with_xattr(struct inode *inode,
7053                                              struct ocfs2_dinode *di)
7054 {
7055         unsigned int blocksize = 1 << inode->i_sb->s_blocksize_bits;
7056         unsigned int xattrsize = le16_to_cpu(di->i_xattr_inline_size);
7057
7058         if (le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_XATTR_FL)
7059                 memset(&di->id2, 0, blocksize -
7060                                     offsetof(struct ocfs2_dinode, id2) -
7061                                     xattrsize);
7062         else
7063                 memset(&di->id2, 0, blocksize -
7064                                     offsetof(struct ocfs2_dinode, id2));
7065 }
7066
7067 void ocfs2_dinode_new_extent_list(struct inode *inode,
7068                                   struct ocfs2_dinode *di)
7069 {
7070         ocfs2_zero_dinode_id2_with_xattr(inode, di);
7071         di->id2.i_list.l_tree_depth = 0;
7072         di->id2.i_list.l_next_free_rec = 0;
7073         di->id2.i_list.l_count = cpu_to_le16(
7074                 ocfs2_extent_recs_per_inode_with_xattr(inode->i_sb, di));
7075 }
7076
7077 void ocfs2_set_inode_data_inline(struct inode *inode, struct ocfs2_dinode *di)
7078 {
7079         struct ocfs2_inode_info *oi = OCFS2_I(inode);
7080         struct ocfs2_inline_data *idata = &di->id2.i_data;
7081
7082         spin_lock(&oi->ip_lock);
7083         oi->ip_dyn_features |= OCFS2_INLINE_DATA_FL;
7084         di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
7085         spin_unlock(&oi->ip_lock);
7086
7087         /*
7088          * We clear the entire i_data structure here so that all
7089          * fields can be properly initialized.
7090          */
7091         ocfs2_zero_dinode_id2_with_xattr(inode, di);
7092
7093         idata->id_count = cpu_to_le16(
7094                         ocfs2_max_inline_data_with_xattr(inode->i_sb, di));
7095 }
7096
7097 int ocfs2_convert_inline_data_to_extents(struct inode *inode,
7098                                          struct buffer_head *di_bh)
7099 {
7100         int ret, i, has_data, num_pages = 0;
7101         handle_t *handle;
7102         u64 uninitialized_var(block);
7103         struct ocfs2_inode_info *oi = OCFS2_I(inode);
7104         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
7105         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
7106         struct ocfs2_alloc_context *data_ac = NULL;
7107         struct page **pages = NULL;
7108         loff_t end = osb->s_clustersize;
7109         struct ocfs2_extent_tree et;
7110         int did_quota = 0;
7111
7112         has_data = i_size_read(inode) ? 1 : 0;
7113
7114         if (has_data) {
7115                 pages = kcalloc(ocfs2_pages_per_cluster(osb->sb),
7116                                 sizeof(struct page *), GFP_NOFS);
7117                 if (pages == NULL) {
7118                         ret = -ENOMEM;
7119                         mlog_errno(ret);
7120                         goto out;
7121                 }
7122
7123                 ret = ocfs2_reserve_clusters(osb, 1, &data_ac);
7124                 if (ret) {
7125                         mlog_errno(ret);
7126                         goto out;
7127                 }
7128         }
7129
7130         handle = ocfs2_start_trans(osb,
7131                                    ocfs2_inline_to_extents_credits(osb->sb));
7132         if (IS_ERR(handle)) {
7133                 ret = PTR_ERR(handle);
7134                 mlog_errno(ret);
7135                 goto out_unlock;
7136         }
7137
7138         ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
7139                                       OCFS2_JOURNAL_ACCESS_WRITE);
7140         if (ret) {
7141                 mlog_errno(ret);
7142                 goto out_commit;
7143         }
7144
7145         if (has_data) {
7146                 u32 bit_off, num;
7147                 unsigned int page_end;
7148                 u64 phys;
7149
7150                 if (vfs_dq_alloc_space_nodirty(inode,
7151                                        ocfs2_clusters_to_bytes(osb->sb, 1))) {
7152                         ret = -EDQUOT;
7153                         goto out_commit;
7154                 }
7155                 did_quota = 1;
7156
7157                 ret = ocfs2_claim_clusters(osb, handle, data_ac, 1, &bit_off,
7158                                            &num);
7159                 if (ret) {
7160                         mlog_errno(ret);
7161                         goto out_commit;
7162                 }
7163
7164                 /*
7165                  * Save two copies, one for insert, and one that can
7166                  * be changed by ocfs2_map_and_dirty_page() below.
7167                  */
7168                 block = phys = ocfs2_clusters_to_blocks(inode->i_sb, bit_off);
7169
7170                 /*
7171                  * Non sparse file systems zero on extend, so no need
7172                  * to do that now.
7173                  */
7174                 if (!ocfs2_sparse_alloc(osb) &&
7175                     PAGE_CACHE_SIZE < osb->s_clustersize)
7176                         end = PAGE_CACHE_SIZE;
7177
7178                 ret = ocfs2_grab_eof_pages(inode, 0, end, pages, &num_pages);
7179                 if (ret) {
7180                         mlog_errno(ret);
7181                         goto out_commit;
7182                 }
7183
7184                 /*
7185                  * This should populate the 1st page for us and mark
7186                  * it up to date.
7187                  */
7188                 ret = ocfs2_read_inline_data(inode, pages[0], di_bh);
7189                 if (ret) {
7190                         mlog_errno(ret);
7191                         goto out_commit;
7192                 }
7193
7194                 page_end = PAGE_CACHE_SIZE;
7195                 if (PAGE_CACHE_SIZE > osb->s_clustersize)
7196                         page_end = osb->s_clustersize;
7197
7198                 for (i = 0; i < num_pages; i++)
7199                         ocfs2_map_and_dirty_page(inode, handle, 0, page_end,
7200                                                  pages[i], i > 0, &phys);
7201         }
7202
7203         spin_lock(&oi->ip_lock);
7204         oi->ip_dyn_features &= ~OCFS2_INLINE_DATA_FL;
7205         di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
7206         spin_unlock(&oi->ip_lock);
7207
7208         ocfs2_dinode_new_extent_list(inode, di);
7209
7210         ocfs2_journal_dirty(handle, di_bh);
7211
7212         if (has_data) {
7213                 /*
7214                  * An error at this point should be extremely rare. If
7215                  * this proves to be false, we could always re-build
7216                  * the in-inode data from our pages.
7217                  */
7218                 ocfs2_init_dinode_extent_tree(&et, inode, di_bh);
7219                 ret = ocfs2_insert_extent(osb, handle, inode, &et,
7220                                           0, block, 1, 0, NULL);
7221                 if (ret) {
7222                         mlog_errno(ret);
7223                         goto out_commit;
7224                 }
7225
7226                 inode->i_blocks = ocfs2_inode_sector_count(inode);
7227         }
7228
7229 out_commit:
7230         if (ret < 0 && did_quota)
7231                 vfs_dq_free_space_nodirty(inode,
7232                                           ocfs2_clusters_to_bytes(osb->sb, 1));
7233
7234         ocfs2_commit_trans(osb, handle);
7235
7236 out_unlock:
7237         if (data_ac)
7238                 ocfs2_free_alloc_context(data_ac);
7239
7240 out:
7241         if (pages) {
7242                 ocfs2_unlock_and_free_pages(pages, num_pages);
7243                 kfree(pages);
7244         }
7245
7246         return ret;
7247 }
7248
7249 /*
7250  * It is expected, that by the time you call this function,
7251  * inode->i_size and fe->i_size have been adjusted.
7252  *
7253  * WARNING: This will kfree the truncate context
7254  */
7255 int ocfs2_commit_truncate(struct ocfs2_super *osb,
7256                           struct inode *inode,
7257                           struct buffer_head *fe_bh,
7258                           struct ocfs2_truncate_context *tc)
7259 {
7260         int status, i, credits, tl_sem = 0;
7261         u32 clusters_to_del, new_highest_cpos, range;
7262         struct ocfs2_extent_list *el;
7263         handle_t *handle = NULL;
7264         struct inode *tl_inode = osb->osb_tl_inode;
7265         struct ocfs2_path *path = NULL;
7266         struct ocfs2_dinode *di = (struct ocfs2_dinode *)fe_bh->b_data;
7267
7268         mlog_entry_void();
7269
7270         new_highest_cpos = ocfs2_clusters_for_bytes(osb->sb,
7271                                                      i_size_read(inode));
7272
7273         path = ocfs2_new_path(fe_bh, &di->id2.i_list,
7274                               ocfs2_journal_access_di);
7275         if (!path) {
7276                 status = -ENOMEM;
7277                 mlog_errno(status);
7278                 goto bail;
7279         }
7280
7281         ocfs2_extent_map_trunc(inode, new_highest_cpos);
7282
7283 start:
7284         /*
7285          * Check that we still have allocation to delete.
7286          */
7287         if (OCFS2_I(inode)->ip_clusters == 0) {
7288                 status = 0;
7289                 goto bail;
7290         }
7291
7292         /*
7293          * Truncate always works against the rightmost tree branch.
7294          */
7295         status = ocfs2_find_path(INODE_CACHE(inode), path, UINT_MAX);
7296         if (status) {
7297                 mlog_errno(status);
7298                 goto bail;
7299         }
7300
7301         mlog(0, "inode->ip_clusters = %u, tree_depth = %u\n",
7302              OCFS2_I(inode)->ip_clusters, path->p_tree_depth);
7303
7304         /*
7305          * By now, el will point to the extent list on the bottom most
7306          * portion of this tree. Only the tail record is considered in
7307          * each pass.
7308          *
7309          * We handle the following cases, in order:
7310          * - empty extent: delete the remaining branch
7311          * - remove the entire record
7312          * - remove a partial record
7313          * - no record needs to be removed (truncate has completed)
7314          */
7315         el = path_leaf_el(path);
7316         if (le16_to_cpu(el->l_next_free_rec) == 0) {
7317                 ocfs2_error(inode->i_sb,
7318                             "Inode %llu has empty extent block at %llu\n",
7319                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
7320                             (unsigned long long)path_leaf_bh(path)->b_blocknr);
7321                 status = -EROFS;
7322                 goto bail;
7323         }
7324
7325         i = le16_to_cpu(el->l_next_free_rec) - 1;
7326         range = le32_to_cpu(el->l_recs[i].e_cpos) +
7327                 ocfs2_rec_clusters(el, &el->l_recs[i]);
7328         if (i == 0 && ocfs2_is_empty_extent(&el->l_recs[i])) {
7329                 clusters_to_del = 0;
7330         } else if (le32_to_cpu(el->l_recs[i].e_cpos) >= new_highest_cpos) {
7331                 clusters_to_del = ocfs2_rec_clusters(el, &el->l_recs[i]);
7332         } else if (range > new_highest_cpos) {
7333                 clusters_to_del = (ocfs2_rec_clusters(el, &el->l_recs[i]) +
7334                                    le32_to_cpu(el->l_recs[i].e_cpos)) -
7335                                   new_highest_cpos;
7336         } else {
7337                 status = 0;
7338                 goto bail;
7339         }
7340
7341         mlog(0, "clusters_to_del = %u in this pass, tail blk=%llu\n",
7342              clusters_to_del, (unsigned long long)path_leaf_bh(path)->b_blocknr);
7343
7344         mutex_lock(&tl_inode->i_mutex);
7345         tl_sem = 1;
7346         /* ocfs2_truncate_log_needs_flush guarantees us at least one
7347          * record is free for use. If there isn't any, we flush to get
7348          * an empty truncate log.  */
7349         if (ocfs2_truncate_log_needs_flush(osb)) {
7350                 status = __ocfs2_flush_truncate_log(osb);
7351                 if (status < 0) {
7352                         mlog_errno(status);
7353                         goto bail;
7354                 }
7355         }
7356
7357         credits = ocfs2_calc_tree_trunc_credits(osb->sb, clusters_to_del,
7358                                                 (struct ocfs2_dinode *)fe_bh->b_data,
7359                                                 el);
7360         handle = ocfs2_start_trans(osb, credits);
7361         if (IS_ERR(handle)) {
7362                 status = PTR_ERR(handle);
7363                 handle = NULL;
7364                 mlog_errno(status);
7365                 goto bail;
7366         }
7367
7368         status = ocfs2_do_truncate(osb, clusters_to_del, inode, fe_bh, handle,
7369                                    tc, path);
7370         if (status < 0) {
7371                 mlog_errno(status);
7372                 goto bail;
7373         }
7374
7375         mutex_unlock(&tl_inode->i_mutex);
7376         tl_sem = 0;
7377
7378         ocfs2_commit_trans(osb, handle);
7379         handle = NULL;
7380
7381         ocfs2_reinit_path(path, 1);
7382
7383         /*
7384          * The check above will catch the case where we've truncated
7385          * away all allocation.
7386          */
7387         goto start;
7388
7389 bail:
7390
7391         ocfs2_schedule_truncate_log_flush(osb, 1);
7392
7393         if (tl_sem)
7394                 mutex_unlock(&tl_inode->i_mutex);
7395
7396         if (handle)
7397                 ocfs2_commit_trans(osb, handle);
7398
7399         ocfs2_run_deallocs(osb, &tc->tc_dealloc);
7400
7401         ocfs2_free_path(path);
7402
7403         /* This will drop the ext_alloc cluster lock for us */
7404         ocfs2_free_truncate_context(tc);
7405
7406         mlog_exit(status);
7407         return status;
7408 }
7409
7410 /*
7411  * Expects the inode to already be locked.
7412  */
7413 int ocfs2_prepare_truncate(struct ocfs2_super *osb,
7414                            struct inode *inode,
7415                            struct buffer_head *fe_bh,
7416                            struct ocfs2_truncate_context **tc)
7417 {
7418         int status;
7419         unsigned int new_i_clusters;
7420         struct ocfs2_dinode *fe;
7421         struct ocfs2_extent_block *eb;
7422         struct buffer_head *last_eb_bh = NULL;
7423
7424         mlog_entry_void();
7425
7426         *tc = NULL;
7427
7428         new_i_clusters = ocfs2_clusters_for_bytes(osb->sb,
7429                                                   i_size_read(inode));
7430         fe = (struct ocfs2_dinode *) fe_bh->b_data;
7431
7432         mlog(0, "fe->i_clusters = %u, new_i_clusters = %u, fe->i_size ="
7433              "%llu\n", le32_to_cpu(fe->i_clusters), new_i_clusters,
7434              (unsigned long long)le64_to_cpu(fe->i_size));
7435
7436         *tc = kzalloc(sizeof(struct ocfs2_truncate_context), GFP_KERNEL);
7437         if (!(*tc)) {
7438                 status = -ENOMEM;
7439                 mlog_errno(status);
7440                 goto bail;
7441         }
7442         ocfs2_init_dealloc_ctxt(&(*tc)->tc_dealloc);
7443
7444         if (fe->id2.i_list.l_tree_depth) {
7445                 status = ocfs2_read_extent_block(INODE_CACHE(inode),
7446                                                  le64_to_cpu(fe->i_last_eb_blk),
7447                                                  &last_eb_bh);
7448                 if (status < 0) {
7449                         mlog_errno(status);
7450                         goto bail;
7451                 }
7452                 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
7453         }
7454
7455         (*tc)->tc_last_eb_bh = last_eb_bh;
7456
7457         status = 0;
7458 bail:
7459         if (status < 0) {
7460                 if (*tc)
7461                         ocfs2_free_truncate_context(*tc);
7462                 *tc = NULL;
7463         }
7464         mlog_exit_void();
7465         return status;
7466 }
7467
7468 /*
7469  * 'start' is inclusive, 'end' is not.
7470  */
7471 int ocfs2_truncate_inline(struct inode *inode, struct buffer_head *di_bh,
7472                           unsigned int start, unsigned int end, int trunc)
7473 {
7474         int ret;
7475         unsigned int numbytes;
7476         handle_t *handle;
7477         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
7478         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
7479         struct ocfs2_inline_data *idata = &di->id2.i_data;
7480
7481         if (end > i_size_read(inode))
7482                 end = i_size_read(inode);
7483
7484         BUG_ON(start >= end);
7485
7486         if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) ||
7487             !(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL) ||
7488             !ocfs2_supports_inline_data(osb)) {
7489                 ocfs2_error(inode->i_sb,
7490                             "Inline data flags for inode %llu don't agree! "
7491                             "Disk: 0x%x, Memory: 0x%x, Superblock: 0x%x\n",
7492                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
7493                             le16_to_cpu(di->i_dyn_features),
7494                             OCFS2_I(inode)->ip_dyn_features,
7495                             osb->s_feature_incompat);
7496                 ret = -EROFS;
7497                 goto out;
7498         }
7499
7500         handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
7501         if (IS_ERR(handle)) {
7502                 ret = PTR_ERR(handle);
7503                 mlog_errno(ret);
7504                 goto out;
7505         }
7506
7507         ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
7508                                       OCFS2_JOURNAL_ACCESS_WRITE);
7509         if (ret) {
7510                 mlog_errno(ret);
7511                 goto out_commit;
7512         }
7513
7514         numbytes = end - start;
7515         memset(idata->id_data + start, 0, numbytes);
7516
7517         /*
7518          * No need to worry about the data page here - it's been
7519          * truncated already and inline data doesn't need it for
7520          * pushing zero's to disk, so we'll let readpage pick it up
7521          * later.
7522          */
7523         if (trunc) {
7524                 i_size_write(inode, start);
7525                 di->i_size = cpu_to_le64(start);
7526         }
7527
7528         inode->i_blocks = ocfs2_inode_sector_count(inode);
7529         inode->i_ctime = inode->i_mtime = CURRENT_TIME;
7530
7531         di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec);
7532         di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
7533
7534         ocfs2_journal_dirty(handle, di_bh);
7535
7536 out_commit:
7537         ocfs2_commit_trans(osb, handle);
7538
7539 out:
7540         return ret;
7541 }
7542
7543 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc)
7544 {
7545         /*
7546          * The caller is responsible for completing deallocation
7547          * before freeing the context.
7548          */
7549         if (tc->tc_dealloc.c_first_suballocator != NULL)
7550                 mlog(ML_NOTICE,
7551                      "Truncate completion has non-empty dealloc context\n");
7552
7553         brelse(tc->tc_last_eb_bh);
7554
7555         kfree(tc);
7556 }