ocfs2: Pass struct ocfs2_caching_info to the journal functions.
[safe/jmp/linux-2.6] / fs / ocfs2 / alloc.c
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * alloc.c
5  *
6  * Extent allocs and frees
7  *
8  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public
12  * License as published by the Free Software Foundation; either
13  * version 2 of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public
21  * License along with this program; if not, write to the
22  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23  * Boston, MA 021110-1307, USA.
24  */
25
26 #include <linux/fs.h>
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/swap.h>
31 #include <linux/quotaops.h>
32
33 #define MLOG_MASK_PREFIX ML_DISK_ALLOC
34 #include <cluster/masklog.h>
35
36 #include "ocfs2.h"
37
38 #include "alloc.h"
39 #include "aops.h"
40 #include "blockcheck.h"
41 #include "dlmglue.h"
42 #include "extent_map.h"
43 #include "inode.h"
44 #include "journal.h"
45 #include "localalloc.h"
46 #include "suballoc.h"
47 #include "sysfile.h"
48 #include "file.h"
49 #include "super.h"
50 #include "uptodate.h"
51 #include "xattr.h"
52
53 #include "buffer_head_io.h"
54
55
56 /*
57  * Operations for a specific extent tree type.
58  *
59  * To implement an on-disk btree (extent tree) type in ocfs2, add
60  * an ocfs2_extent_tree_operations structure and the matching
61  * ocfs2_init_<thingy>_extent_tree() function.  That's pretty much it
62  * for the allocation portion of the extent tree.
63  */
64 struct ocfs2_extent_tree_operations {
65         /*
66          * last_eb_blk is the block number of the right most leaf extent
67          * block.  Most on-disk structures containing an extent tree store
68          * this value for fast access.  The ->eo_set_last_eb_blk() and
69          * ->eo_get_last_eb_blk() operations access this value.  They are
70          *  both required.
71          */
72         void (*eo_set_last_eb_blk)(struct ocfs2_extent_tree *et,
73                                    u64 blkno);
74         u64 (*eo_get_last_eb_blk)(struct ocfs2_extent_tree *et);
75
76         /*
77          * The on-disk structure usually keeps track of how many total
78          * clusters are stored in this extent tree.  This function updates
79          * that value.  new_clusters is the delta, and must be
80          * added to the total.  Required.
81          */
82         void (*eo_update_clusters)(struct inode *inode,
83                                    struct ocfs2_extent_tree *et,
84                                    u32 new_clusters);
85
86         /*
87          * If ->eo_insert_check() exists, it is called before rec is
88          * inserted into the extent tree.  It is optional.
89          */
90         int (*eo_insert_check)(struct inode *inode,
91                                struct ocfs2_extent_tree *et,
92                                struct ocfs2_extent_rec *rec);
93         int (*eo_sanity_check)(struct inode *inode, struct ocfs2_extent_tree *et);
94
95         /*
96          * --------------------------------------------------------------
97          * The remaining are internal to ocfs2_extent_tree and don't have
98          * accessor functions
99          */
100
101         /*
102          * ->eo_fill_root_el() takes et->et_object and sets et->et_root_el.
103          * It is required.
104          */
105         void (*eo_fill_root_el)(struct ocfs2_extent_tree *et);
106
107         /*
108          * ->eo_fill_max_leaf_clusters sets et->et_max_leaf_clusters if
109          * it exists.  If it does not, et->et_max_leaf_clusters is set
110          * to 0 (unlimited).  Optional.
111          */
112         void (*eo_fill_max_leaf_clusters)(struct inode *inode,
113                                           struct ocfs2_extent_tree *et);
114 };
115
116
117 /*
118  * Pre-declare ocfs2_dinode_et_ops so we can use it as a sanity check
119  * in the methods.
120  */
121 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et);
122 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et,
123                                          u64 blkno);
124 static void ocfs2_dinode_update_clusters(struct inode *inode,
125                                          struct ocfs2_extent_tree *et,
126                                          u32 clusters);
127 static int ocfs2_dinode_insert_check(struct inode *inode,
128                                      struct ocfs2_extent_tree *et,
129                                      struct ocfs2_extent_rec *rec);
130 static int ocfs2_dinode_sanity_check(struct inode *inode,
131                                      struct ocfs2_extent_tree *et);
132 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et);
133 static struct ocfs2_extent_tree_operations ocfs2_dinode_et_ops = {
134         .eo_set_last_eb_blk     = ocfs2_dinode_set_last_eb_blk,
135         .eo_get_last_eb_blk     = ocfs2_dinode_get_last_eb_blk,
136         .eo_update_clusters     = ocfs2_dinode_update_clusters,
137         .eo_insert_check        = ocfs2_dinode_insert_check,
138         .eo_sanity_check        = ocfs2_dinode_sanity_check,
139         .eo_fill_root_el        = ocfs2_dinode_fill_root_el,
140 };
141
142 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et,
143                                          u64 blkno)
144 {
145         struct ocfs2_dinode *di = et->et_object;
146
147         BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
148         di->i_last_eb_blk = cpu_to_le64(blkno);
149 }
150
151 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et)
152 {
153         struct ocfs2_dinode *di = et->et_object;
154
155         BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
156         return le64_to_cpu(di->i_last_eb_blk);
157 }
158
159 static void ocfs2_dinode_update_clusters(struct inode *inode,
160                                          struct ocfs2_extent_tree *et,
161                                          u32 clusters)
162 {
163         struct ocfs2_dinode *di = et->et_object;
164
165         le32_add_cpu(&di->i_clusters, clusters);
166         spin_lock(&OCFS2_I(inode)->ip_lock);
167         OCFS2_I(inode)->ip_clusters = le32_to_cpu(di->i_clusters);
168         spin_unlock(&OCFS2_I(inode)->ip_lock);
169 }
170
171 static int ocfs2_dinode_insert_check(struct inode *inode,
172                                      struct ocfs2_extent_tree *et,
173                                      struct ocfs2_extent_rec *rec)
174 {
175         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
176
177         BUG_ON(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL);
178         mlog_bug_on_msg(!ocfs2_sparse_alloc(osb) &&
179                         (OCFS2_I(inode)->ip_clusters !=
180                          le32_to_cpu(rec->e_cpos)),
181                         "Device %s, asking for sparse allocation: inode %llu, "
182                         "cpos %u, clusters %u\n",
183                         osb->dev_str,
184                         (unsigned long long)OCFS2_I(inode)->ip_blkno,
185                         rec->e_cpos,
186                         OCFS2_I(inode)->ip_clusters);
187
188         return 0;
189 }
190
191 static int ocfs2_dinode_sanity_check(struct inode *inode,
192                                      struct ocfs2_extent_tree *et)
193 {
194         struct ocfs2_dinode *di = et->et_object;
195
196         BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
197         BUG_ON(!OCFS2_IS_VALID_DINODE(di));
198
199         return 0;
200 }
201
202 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et)
203 {
204         struct ocfs2_dinode *di = et->et_object;
205
206         et->et_root_el = &di->id2.i_list;
207 }
208
209
210 static void ocfs2_xattr_value_fill_root_el(struct ocfs2_extent_tree *et)
211 {
212         struct ocfs2_xattr_value_buf *vb = et->et_object;
213
214         et->et_root_el = &vb->vb_xv->xr_list;
215 }
216
217 static void ocfs2_xattr_value_set_last_eb_blk(struct ocfs2_extent_tree *et,
218                                               u64 blkno)
219 {
220         struct ocfs2_xattr_value_buf *vb = et->et_object;
221
222         vb->vb_xv->xr_last_eb_blk = cpu_to_le64(blkno);
223 }
224
225 static u64 ocfs2_xattr_value_get_last_eb_blk(struct ocfs2_extent_tree *et)
226 {
227         struct ocfs2_xattr_value_buf *vb = et->et_object;
228
229         return le64_to_cpu(vb->vb_xv->xr_last_eb_blk);
230 }
231
232 static void ocfs2_xattr_value_update_clusters(struct inode *inode,
233                                               struct ocfs2_extent_tree *et,
234                                               u32 clusters)
235 {
236         struct ocfs2_xattr_value_buf *vb = et->et_object;
237
238         le32_add_cpu(&vb->vb_xv->xr_clusters, clusters);
239 }
240
241 static struct ocfs2_extent_tree_operations ocfs2_xattr_value_et_ops = {
242         .eo_set_last_eb_blk     = ocfs2_xattr_value_set_last_eb_blk,
243         .eo_get_last_eb_blk     = ocfs2_xattr_value_get_last_eb_blk,
244         .eo_update_clusters     = ocfs2_xattr_value_update_clusters,
245         .eo_fill_root_el        = ocfs2_xattr_value_fill_root_el,
246 };
247
248 static void ocfs2_xattr_tree_fill_root_el(struct ocfs2_extent_tree *et)
249 {
250         struct ocfs2_xattr_block *xb = et->et_object;
251
252         et->et_root_el = &xb->xb_attrs.xb_root.xt_list;
253 }
254
255 static void ocfs2_xattr_tree_fill_max_leaf_clusters(struct inode *inode,
256                                                     struct ocfs2_extent_tree *et)
257 {
258         et->et_max_leaf_clusters =
259                 ocfs2_clusters_for_bytes(inode->i_sb,
260                                          OCFS2_MAX_XATTR_TREE_LEAF_SIZE);
261 }
262
263 static void ocfs2_xattr_tree_set_last_eb_blk(struct ocfs2_extent_tree *et,
264                                              u64 blkno)
265 {
266         struct ocfs2_xattr_block *xb = et->et_object;
267         struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root;
268
269         xt->xt_last_eb_blk = cpu_to_le64(blkno);
270 }
271
272 static u64 ocfs2_xattr_tree_get_last_eb_blk(struct ocfs2_extent_tree *et)
273 {
274         struct ocfs2_xattr_block *xb = et->et_object;
275         struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root;
276
277         return le64_to_cpu(xt->xt_last_eb_blk);
278 }
279
280 static void ocfs2_xattr_tree_update_clusters(struct inode *inode,
281                                              struct ocfs2_extent_tree *et,
282                                              u32 clusters)
283 {
284         struct ocfs2_xattr_block *xb = et->et_object;
285
286         le32_add_cpu(&xb->xb_attrs.xb_root.xt_clusters, clusters);
287 }
288
289 static struct ocfs2_extent_tree_operations ocfs2_xattr_tree_et_ops = {
290         .eo_set_last_eb_blk     = ocfs2_xattr_tree_set_last_eb_blk,
291         .eo_get_last_eb_blk     = ocfs2_xattr_tree_get_last_eb_blk,
292         .eo_update_clusters     = ocfs2_xattr_tree_update_clusters,
293         .eo_fill_root_el        = ocfs2_xattr_tree_fill_root_el,
294         .eo_fill_max_leaf_clusters = ocfs2_xattr_tree_fill_max_leaf_clusters,
295 };
296
297 static void ocfs2_dx_root_set_last_eb_blk(struct ocfs2_extent_tree *et,
298                                           u64 blkno)
299 {
300         struct ocfs2_dx_root_block *dx_root = et->et_object;
301
302         dx_root->dr_last_eb_blk = cpu_to_le64(blkno);
303 }
304
305 static u64 ocfs2_dx_root_get_last_eb_blk(struct ocfs2_extent_tree *et)
306 {
307         struct ocfs2_dx_root_block *dx_root = et->et_object;
308
309         return le64_to_cpu(dx_root->dr_last_eb_blk);
310 }
311
312 static void ocfs2_dx_root_update_clusters(struct inode *inode,
313                                           struct ocfs2_extent_tree *et,
314                                           u32 clusters)
315 {
316         struct ocfs2_dx_root_block *dx_root = et->et_object;
317
318         le32_add_cpu(&dx_root->dr_clusters, clusters);
319 }
320
321 static int ocfs2_dx_root_sanity_check(struct inode *inode,
322                                       struct ocfs2_extent_tree *et)
323 {
324         struct ocfs2_dx_root_block *dx_root = et->et_object;
325
326         BUG_ON(!OCFS2_IS_VALID_DX_ROOT(dx_root));
327
328         return 0;
329 }
330
331 static void ocfs2_dx_root_fill_root_el(struct ocfs2_extent_tree *et)
332 {
333         struct ocfs2_dx_root_block *dx_root = et->et_object;
334
335         et->et_root_el = &dx_root->dr_list;
336 }
337
338 static struct ocfs2_extent_tree_operations ocfs2_dx_root_et_ops = {
339         .eo_set_last_eb_blk     = ocfs2_dx_root_set_last_eb_blk,
340         .eo_get_last_eb_blk     = ocfs2_dx_root_get_last_eb_blk,
341         .eo_update_clusters     = ocfs2_dx_root_update_clusters,
342         .eo_sanity_check        = ocfs2_dx_root_sanity_check,
343         .eo_fill_root_el        = ocfs2_dx_root_fill_root_el,
344 };
345
346 static void __ocfs2_init_extent_tree(struct ocfs2_extent_tree *et,
347                                      struct inode *inode,
348                                      struct buffer_head *bh,
349                                      ocfs2_journal_access_func access,
350                                      void *obj,
351                                      struct ocfs2_extent_tree_operations *ops)
352 {
353         et->et_ops = ops;
354         et->et_root_bh = bh;
355         et->et_root_journal_access = access;
356         if (!obj)
357                 obj = (void *)bh->b_data;
358         et->et_object = obj;
359
360         et->et_ops->eo_fill_root_el(et);
361         if (!et->et_ops->eo_fill_max_leaf_clusters)
362                 et->et_max_leaf_clusters = 0;
363         else
364                 et->et_ops->eo_fill_max_leaf_clusters(inode, et);
365 }
366
367 void ocfs2_init_dinode_extent_tree(struct ocfs2_extent_tree *et,
368                                    struct inode *inode,
369                                    struct buffer_head *bh)
370 {
371         __ocfs2_init_extent_tree(et, inode, bh, ocfs2_journal_access_di,
372                                  NULL, &ocfs2_dinode_et_ops);
373 }
374
375 void ocfs2_init_xattr_tree_extent_tree(struct ocfs2_extent_tree *et,
376                                        struct inode *inode,
377                                        struct buffer_head *bh)
378 {
379         __ocfs2_init_extent_tree(et, inode, bh, ocfs2_journal_access_xb,
380                                  NULL, &ocfs2_xattr_tree_et_ops);
381 }
382
383 void ocfs2_init_xattr_value_extent_tree(struct ocfs2_extent_tree *et,
384                                         struct inode *inode,
385                                         struct ocfs2_xattr_value_buf *vb)
386 {
387         __ocfs2_init_extent_tree(et, inode, vb->vb_bh, vb->vb_access, vb,
388                                  &ocfs2_xattr_value_et_ops);
389 }
390
391 void ocfs2_init_dx_root_extent_tree(struct ocfs2_extent_tree *et,
392                                     struct inode *inode,
393                                     struct buffer_head *bh)
394 {
395         __ocfs2_init_extent_tree(et, inode, bh, ocfs2_journal_access_dr,
396                                  NULL, &ocfs2_dx_root_et_ops);
397 }
398
399 static inline void ocfs2_et_set_last_eb_blk(struct ocfs2_extent_tree *et,
400                                             u64 new_last_eb_blk)
401 {
402         et->et_ops->eo_set_last_eb_blk(et, new_last_eb_blk);
403 }
404
405 static inline u64 ocfs2_et_get_last_eb_blk(struct ocfs2_extent_tree *et)
406 {
407         return et->et_ops->eo_get_last_eb_blk(et);
408 }
409
410 static inline void ocfs2_et_update_clusters(struct inode *inode,
411                                             struct ocfs2_extent_tree *et,
412                                             u32 clusters)
413 {
414         et->et_ops->eo_update_clusters(inode, et, clusters);
415 }
416
417 static inline int ocfs2_et_root_journal_access(handle_t *handle,
418                                                struct ocfs2_caching_info *ci,
419                                                struct ocfs2_extent_tree *et,
420                                                int type)
421 {
422         return et->et_root_journal_access(handle, ci, et->et_root_bh,
423                                           type);
424 }
425
426 static inline int ocfs2_et_insert_check(struct inode *inode,
427                                         struct ocfs2_extent_tree *et,
428                                         struct ocfs2_extent_rec *rec)
429 {
430         int ret = 0;
431
432         if (et->et_ops->eo_insert_check)
433                 ret = et->et_ops->eo_insert_check(inode, et, rec);
434         return ret;
435 }
436
437 static inline int ocfs2_et_sanity_check(struct inode *inode,
438                                         struct ocfs2_extent_tree *et)
439 {
440         int ret = 0;
441
442         if (et->et_ops->eo_sanity_check)
443                 ret = et->et_ops->eo_sanity_check(inode, et);
444         return ret;
445 }
446
447 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc);
448 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
449                                          struct ocfs2_extent_block *eb);
450
451 /*
452  * Structures which describe a path through a btree, and functions to
453  * manipulate them.
454  *
455  * The idea here is to be as generic as possible with the tree
456  * manipulation code.
457  */
458 struct ocfs2_path_item {
459         struct buffer_head              *bh;
460         struct ocfs2_extent_list        *el;
461 };
462
463 #define OCFS2_MAX_PATH_DEPTH    5
464
465 struct ocfs2_path {
466         int                             p_tree_depth;
467         ocfs2_journal_access_func       p_root_access;
468         struct ocfs2_path_item          p_node[OCFS2_MAX_PATH_DEPTH];
469 };
470
471 #define path_root_bh(_path) ((_path)->p_node[0].bh)
472 #define path_root_el(_path) ((_path)->p_node[0].el)
473 #define path_root_access(_path)((_path)->p_root_access)
474 #define path_leaf_bh(_path) ((_path)->p_node[(_path)->p_tree_depth].bh)
475 #define path_leaf_el(_path) ((_path)->p_node[(_path)->p_tree_depth].el)
476 #define path_num_items(_path) ((_path)->p_tree_depth + 1)
477
478 static int ocfs2_find_path(struct inode *inode, struct ocfs2_path *path,
479                            u32 cpos);
480 static void ocfs2_adjust_rightmost_records(struct inode *inode,
481                                            handle_t *handle,
482                                            struct ocfs2_path *path,
483                                            struct ocfs2_extent_rec *insert_rec);
484 /*
485  * Reset the actual path elements so that we can re-use the structure
486  * to build another path. Generally, this involves freeing the buffer
487  * heads.
488  */
489 static void ocfs2_reinit_path(struct ocfs2_path *path, int keep_root)
490 {
491         int i, start = 0, depth = 0;
492         struct ocfs2_path_item *node;
493
494         if (keep_root)
495                 start = 1;
496
497         for(i = start; i < path_num_items(path); i++) {
498                 node = &path->p_node[i];
499
500                 brelse(node->bh);
501                 node->bh = NULL;
502                 node->el = NULL;
503         }
504
505         /*
506          * Tree depth may change during truncate, or insert. If we're
507          * keeping the root extent list, then make sure that our path
508          * structure reflects the proper depth.
509          */
510         if (keep_root)
511                 depth = le16_to_cpu(path_root_el(path)->l_tree_depth);
512         else
513                 path_root_access(path) = NULL;
514
515         path->p_tree_depth = depth;
516 }
517
518 static void ocfs2_free_path(struct ocfs2_path *path)
519 {
520         if (path) {
521                 ocfs2_reinit_path(path, 0);
522                 kfree(path);
523         }
524 }
525
526 /*
527  * All the elements of src into dest. After this call, src could be freed
528  * without affecting dest.
529  *
530  * Both paths should have the same root. Any non-root elements of dest
531  * will be freed.
532  */
533 static void ocfs2_cp_path(struct ocfs2_path *dest, struct ocfs2_path *src)
534 {
535         int i;
536
537         BUG_ON(path_root_bh(dest) != path_root_bh(src));
538         BUG_ON(path_root_el(dest) != path_root_el(src));
539         BUG_ON(path_root_access(dest) != path_root_access(src));
540
541         ocfs2_reinit_path(dest, 1);
542
543         for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
544                 dest->p_node[i].bh = src->p_node[i].bh;
545                 dest->p_node[i].el = src->p_node[i].el;
546
547                 if (dest->p_node[i].bh)
548                         get_bh(dest->p_node[i].bh);
549         }
550 }
551
552 /*
553  * Make the *dest path the same as src and re-initialize src path to
554  * have a root only.
555  */
556 static void ocfs2_mv_path(struct ocfs2_path *dest, struct ocfs2_path *src)
557 {
558         int i;
559
560         BUG_ON(path_root_bh(dest) != path_root_bh(src));
561         BUG_ON(path_root_access(dest) != path_root_access(src));
562
563         for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
564                 brelse(dest->p_node[i].bh);
565
566                 dest->p_node[i].bh = src->p_node[i].bh;
567                 dest->p_node[i].el = src->p_node[i].el;
568
569                 src->p_node[i].bh = NULL;
570                 src->p_node[i].el = NULL;
571         }
572 }
573
574 /*
575  * Insert an extent block at given index.
576  *
577  * This will not take an additional reference on eb_bh.
578  */
579 static inline void ocfs2_path_insert_eb(struct ocfs2_path *path, int index,
580                                         struct buffer_head *eb_bh)
581 {
582         struct ocfs2_extent_block *eb = (struct ocfs2_extent_block *)eb_bh->b_data;
583
584         /*
585          * Right now, no root bh is an extent block, so this helps
586          * catch code errors with dinode trees. The assertion can be
587          * safely removed if we ever need to insert extent block
588          * structures at the root.
589          */
590         BUG_ON(index == 0);
591
592         path->p_node[index].bh = eb_bh;
593         path->p_node[index].el = &eb->h_list;
594 }
595
596 static struct ocfs2_path *ocfs2_new_path(struct buffer_head *root_bh,
597                                          struct ocfs2_extent_list *root_el,
598                                          ocfs2_journal_access_func access)
599 {
600         struct ocfs2_path *path;
601
602         BUG_ON(le16_to_cpu(root_el->l_tree_depth) >= OCFS2_MAX_PATH_DEPTH);
603
604         path = kzalloc(sizeof(*path), GFP_NOFS);
605         if (path) {
606                 path->p_tree_depth = le16_to_cpu(root_el->l_tree_depth);
607                 get_bh(root_bh);
608                 path_root_bh(path) = root_bh;
609                 path_root_el(path) = root_el;
610                 path_root_access(path) = access;
611         }
612
613         return path;
614 }
615
616 static struct ocfs2_path *ocfs2_new_path_from_path(struct ocfs2_path *path)
617 {
618         return ocfs2_new_path(path_root_bh(path), path_root_el(path),
619                               path_root_access(path));
620 }
621
622 static struct ocfs2_path *ocfs2_new_path_from_et(struct ocfs2_extent_tree *et)
623 {
624         return ocfs2_new_path(et->et_root_bh, et->et_root_el,
625                               et->et_root_journal_access);
626 }
627
628 /*
629  * Journal the buffer at depth idx.  All idx>0 are extent_blocks,
630  * otherwise it's the root_access function.
631  *
632  * I don't like the way this function's name looks next to
633  * ocfs2_journal_access_path(), but I don't have a better one.
634  */
635 static int ocfs2_path_bh_journal_access(handle_t *handle,
636                                         struct ocfs2_caching_info *ci,
637                                         struct ocfs2_path *path,
638                                         int idx)
639 {
640         ocfs2_journal_access_func access = path_root_access(path);
641
642         if (!access)
643                 access = ocfs2_journal_access;
644
645         if (idx)
646                 access = ocfs2_journal_access_eb;
647
648         return access(handle, ci, path->p_node[idx].bh,
649                       OCFS2_JOURNAL_ACCESS_WRITE);
650 }
651
652 /*
653  * Convenience function to journal all components in a path.
654  */
655 static int ocfs2_journal_access_path(struct ocfs2_caching_info *ci,
656                                      handle_t *handle,
657                                      struct ocfs2_path *path)
658 {
659         int i, ret = 0;
660
661         if (!path)
662                 goto out;
663
664         for(i = 0; i < path_num_items(path); i++) {
665                 ret = ocfs2_path_bh_journal_access(handle, ci, path, i);
666                 if (ret < 0) {
667                         mlog_errno(ret);
668                         goto out;
669                 }
670         }
671
672 out:
673         return ret;
674 }
675
676 /*
677  * Return the index of the extent record which contains cluster #v_cluster.
678  * -1 is returned if it was not found.
679  *
680  * Should work fine on interior and exterior nodes.
681  */
682 int ocfs2_search_extent_list(struct ocfs2_extent_list *el, u32 v_cluster)
683 {
684         int ret = -1;
685         int i;
686         struct ocfs2_extent_rec *rec;
687         u32 rec_end, rec_start, clusters;
688
689         for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
690                 rec = &el->l_recs[i];
691
692                 rec_start = le32_to_cpu(rec->e_cpos);
693                 clusters = ocfs2_rec_clusters(el, rec);
694
695                 rec_end = rec_start + clusters;
696
697                 if (v_cluster >= rec_start && v_cluster < rec_end) {
698                         ret = i;
699                         break;
700                 }
701         }
702
703         return ret;
704 }
705
706 enum ocfs2_contig_type {
707         CONTIG_NONE = 0,
708         CONTIG_LEFT,
709         CONTIG_RIGHT,
710         CONTIG_LEFTRIGHT,
711 };
712
713
714 /*
715  * NOTE: ocfs2_block_extent_contig(), ocfs2_extents_adjacent() and
716  * ocfs2_extent_contig only work properly against leaf nodes!
717  */
718 static int ocfs2_block_extent_contig(struct super_block *sb,
719                                      struct ocfs2_extent_rec *ext,
720                                      u64 blkno)
721 {
722         u64 blk_end = le64_to_cpu(ext->e_blkno);
723
724         blk_end += ocfs2_clusters_to_blocks(sb,
725                                     le16_to_cpu(ext->e_leaf_clusters));
726
727         return blkno == blk_end;
728 }
729
730 static int ocfs2_extents_adjacent(struct ocfs2_extent_rec *left,
731                                   struct ocfs2_extent_rec *right)
732 {
733         u32 left_range;
734
735         left_range = le32_to_cpu(left->e_cpos) +
736                 le16_to_cpu(left->e_leaf_clusters);
737
738         return (left_range == le32_to_cpu(right->e_cpos));
739 }
740
741 static enum ocfs2_contig_type
742         ocfs2_extent_contig(struct inode *inode,
743                             struct ocfs2_extent_rec *ext,
744                             struct ocfs2_extent_rec *insert_rec)
745 {
746         u64 blkno = le64_to_cpu(insert_rec->e_blkno);
747
748         /*
749          * Refuse to coalesce extent records with different flag
750          * fields - we don't want to mix unwritten extents with user
751          * data.
752          */
753         if (ext->e_flags != insert_rec->e_flags)
754                 return CONTIG_NONE;
755
756         if (ocfs2_extents_adjacent(ext, insert_rec) &&
757             ocfs2_block_extent_contig(inode->i_sb, ext, blkno))
758                         return CONTIG_RIGHT;
759
760         blkno = le64_to_cpu(ext->e_blkno);
761         if (ocfs2_extents_adjacent(insert_rec, ext) &&
762             ocfs2_block_extent_contig(inode->i_sb, insert_rec, blkno))
763                 return CONTIG_LEFT;
764
765         return CONTIG_NONE;
766 }
767
768 /*
769  * NOTE: We can have pretty much any combination of contiguousness and
770  * appending.
771  *
772  * The usefulness of APPEND_TAIL is more in that it lets us know that
773  * we'll have to update the path to that leaf.
774  */
775 enum ocfs2_append_type {
776         APPEND_NONE = 0,
777         APPEND_TAIL,
778 };
779
780 enum ocfs2_split_type {
781         SPLIT_NONE = 0,
782         SPLIT_LEFT,
783         SPLIT_RIGHT,
784 };
785
786 struct ocfs2_insert_type {
787         enum ocfs2_split_type   ins_split;
788         enum ocfs2_append_type  ins_appending;
789         enum ocfs2_contig_type  ins_contig;
790         int                     ins_contig_index;
791         int                     ins_tree_depth;
792 };
793
794 struct ocfs2_merge_ctxt {
795         enum ocfs2_contig_type  c_contig_type;
796         int                     c_has_empty_extent;
797         int                     c_split_covers_rec;
798 };
799
800 static int ocfs2_validate_extent_block(struct super_block *sb,
801                                        struct buffer_head *bh)
802 {
803         int rc;
804         struct ocfs2_extent_block *eb =
805                 (struct ocfs2_extent_block *)bh->b_data;
806
807         mlog(0, "Validating extent block %llu\n",
808              (unsigned long long)bh->b_blocknr);
809
810         BUG_ON(!buffer_uptodate(bh));
811
812         /*
813          * If the ecc fails, we return the error but otherwise
814          * leave the filesystem running.  We know any error is
815          * local to this block.
816          */
817         rc = ocfs2_validate_meta_ecc(sb, bh->b_data, &eb->h_check);
818         if (rc) {
819                 mlog(ML_ERROR, "Checksum failed for extent block %llu\n",
820                      (unsigned long long)bh->b_blocknr);
821                 return rc;
822         }
823
824         /*
825          * Errors after here are fatal.
826          */
827
828         if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
829                 ocfs2_error(sb,
830                             "Extent block #%llu has bad signature %.*s",
831                             (unsigned long long)bh->b_blocknr, 7,
832                             eb->h_signature);
833                 return -EINVAL;
834         }
835
836         if (le64_to_cpu(eb->h_blkno) != bh->b_blocknr) {
837                 ocfs2_error(sb,
838                             "Extent block #%llu has an invalid h_blkno "
839                             "of %llu",
840                             (unsigned long long)bh->b_blocknr,
841                             (unsigned long long)le64_to_cpu(eb->h_blkno));
842                 return -EINVAL;
843         }
844
845         if (le32_to_cpu(eb->h_fs_generation) != OCFS2_SB(sb)->fs_generation) {
846                 ocfs2_error(sb,
847                             "Extent block #%llu has an invalid "
848                             "h_fs_generation of #%u",
849                             (unsigned long long)bh->b_blocknr,
850                             le32_to_cpu(eb->h_fs_generation));
851                 return -EINVAL;
852         }
853
854         return 0;
855 }
856
857 int ocfs2_read_extent_block(struct inode *inode, u64 eb_blkno,
858                             struct buffer_head **bh)
859 {
860         int rc;
861         struct buffer_head *tmp = *bh;
862
863         rc = ocfs2_read_block(INODE_CACHE(inode), eb_blkno, &tmp,
864                               ocfs2_validate_extent_block);
865
866         /* If ocfs2_read_block() got us a new bh, pass it up. */
867         if (!rc && !*bh)
868                 *bh = tmp;
869
870         return rc;
871 }
872
873
874 /*
875  * How many free extents have we got before we need more meta data?
876  */
877 int ocfs2_num_free_extents(struct ocfs2_super *osb,
878                            struct inode *inode,
879                            struct ocfs2_extent_tree *et)
880 {
881         int retval;
882         struct ocfs2_extent_list *el = NULL;
883         struct ocfs2_extent_block *eb;
884         struct buffer_head *eb_bh = NULL;
885         u64 last_eb_blk = 0;
886
887         mlog_entry_void();
888
889         el = et->et_root_el;
890         last_eb_blk = ocfs2_et_get_last_eb_blk(et);
891
892         if (last_eb_blk) {
893                 retval = ocfs2_read_extent_block(inode, last_eb_blk, &eb_bh);
894                 if (retval < 0) {
895                         mlog_errno(retval);
896                         goto bail;
897                 }
898                 eb = (struct ocfs2_extent_block *) eb_bh->b_data;
899                 el = &eb->h_list;
900         }
901
902         BUG_ON(el->l_tree_depth != 0);
903
904         retval = le16_to_cpu(el->l_count) - le16_to_cpu(el->l_next_free_rec);
905 bail:
906         brelse(eb_bh);
907
908         mlog_exit(retval);
909         return retval;
910 }
911
912 /* expects array to already be allocated
913  *
914  * sets h_signature, h_blkno, h_suballoc_bit, h_suballoc_slot, and
915  * l_count for you
916  */
917 static int ocfs2_create_new_meta_bhs(struct ocfs2_super *osb,
918                                      handle_t *handle,
919                                      struct inode *inode,
920                                      int wanted,
921                                      struct ocfs2_alloc_context *meta_ac,
922                                      struct buffer_head *bhs[])
923 {
924         int count, status, i;
925         u16 suballoc_bit_start;
926         u32 num_got;
927         u64 first_blkno;
928         struct ocfs2_extent_block *eb;
929
930         mlog_entry_void();
931
932         count = 0;
933         while (count < wanted) {
934                 status = ocfs2_claim_metadata(osb,
935                                               handle,
936                                               meta_ac,
937                                               wanted - count,
938                                               &suballoc_bit_start,
939                                               &num_got,
940                                               &first_blkno);
941                 if (status < 0) {
942                         mlog_errno(status);
943                         goto bail;
944                 }
945
946                 for(i = count;  i < (num_got + count); i++) {
947                         bhs[i] = sb_getblk(osb->sb, first_blkno);
948                         if (bhs[i] == NULL) {
949                                 status = -EIO;
950                                 mlog_errno(status);
951                                 goto bail;
952                         }
953                         ocfs2_set_new_buffer_uptodate(INODE_CACHE(inode),
954                                                       bhs[i]);
955
956                         status = ocfs2_journal_access_eb(handle, INODE_CACHE(inode), bhs[i],
957                                                          OCFS2_JOURNAL_ACCESS_CREATE);
958                         if (status < 0) {
959                                 mlog_errno(status);
960                                 goto bail;
961                         }
962
963                         memset(bhs[i]->b_data, 0, osb->sb->s_blocksize);
964                         eb = (struct ocfs2_extent_block *) bhs[i]->b_data;
965                         /* Ok, setup the minimal stuff here. */
966                         strcpy(eb->h_signature, OCFS2_EXTENT_BLOCK_SIGNATURE);
967                         eb->h_blkno = cpu_to_le64(first_blkno);
968                         eb->h_fs_generation = cpu_to_le32(osb->fs_generation);
969                         eb->h_suballoc_slot = cpu_to_le16(osb->slot_num);
970                         eb->h_suballoc_bit = cpu_to_le16(suballoc_bit_start);
971                         eb->h_list.l_count =
972                                 cpu_to_le16(ocfs2_extent_recs_per_eb(osb->sb));
973
974                         suballoc_bit_start++;
975                         first_blkno++;
976
977                         /* We'll also be dirtied by the caller, so
978                          * this isn't absolutely necessary. */
979                         status = ocfs2_journal_dirty(handle, bhs[i]);
980                         if (status < 0) {
981                                 mlog_errno(status);
982                                 goto bail;
983                         }
984                 }
985
986                 count += num_got;
987         }
988
989         status = 0;
990 bail:
991         if (status < 0) {
992                 for(i = 0; i < wanted; i++) {
993                         brelse(bhs[i]);
994                         bhs[i] = NULL;
995                 }
996         }
997         mlog_exit(status);
998         return status;
999 }
1000
1001 /*
1002  * Helper function for ocfs2_add_branch() and ocfs2_shift_tree_depth().
1003  *
1004  * Returns the sum of the rightmost extent rec logical offset and
1005  * cluster count.
1006  *
1007  * ocfs2_add_branch() uses this to determine what logical cluster
1008  * value should be populated into the leftmost new branch records.
1009  *
1010  * ocfs2_shift_tree_depth() uses this to determine the # clusters
1011  * value for the new topmost tree record.
1012  */
1013 static inline u32 ocfs2_sum_rightmost_rec(struct ocfs2_extent_list  *el)
1014 {
1015         int i;
1016
1017         i = le16_to_cpu(el->l_next_free_rec) - 1;
1018
1019         return le32_to_cpu(el->l_recs[i].e_cpos) +
1020                 ocfs2_rec_clusters(el, &el->l_recs[i]);
1021 }
1022
1023 /*
1024  * Change range of the branches in the right most path according to the leaf
1025  * extent block's rightmost record.
1026  */
1027 static int ocfs2_adjust_rightmost_branch(handle_t *handle,
1028                                          struct inode *inode,
1029                                          struct ocfs2_extent_tree *et)
1030 {
1031         int status;
1032         struct ocfs2_path *path = NULL;
1033         struct ocfs2_extent_list *el;
1034         struct ocfs2_extent_rec *rec;
1035
1036         path = ocfs2_new_path_from_et(et);
1037         if (!path) {
1038                 status = -ENOMEM;
1039                 return status;
1040         }
1041
1042         status = ocfs2_find_path(inode, path, UINT_MAX);
1043         if (status < 0) {
1044                 mlog_errno(status);
1045                 goto out;
1046         }
1047
1048         status = ocfs2_extend_trans(handle, path_num_items(path) +
1049                                     handle->h_buffer_credits);
1050         if (status < 0) {
1051                 mlog_errno(status);
1052                 goto out;
1053         }
1054
1055         status = ocfs2_journal_access_path(INODE_CACHE(inode), handle, path);
1056         if (status < 0) {
1057                 mlog_errno(status);
1058                 goto out;
1059         }
1060
1061         el = path_leaf_el(path);
1062         rec = &el->l_recs[le32_to_cpu(el->l_next_free_rec) - 1];
1063
1064         ocfs2_adjust_rightmost_records(inode, handle, path, rec);
1065
1066 out:
1067         ocfs2_free_path(path);
1068         return status;
1069 }
1070
1071 /*
1072  * Add an entire tree branch to our inode. eb_bh is the extent block
1073  * to start at, if we don't want to start the branch at the dinode
1074  * structure.
1075  *
1076  * last_eb_bh is required as we have to update it's next_leaf pointer
1077  * for the new last extent block.
1078  *
1079  * the new branch will be 'empty' in the sense that every block will
1080  * contain a single record with cluster count == 0.
1081  */
1082 static int ocfs2_add_branch(struct ocfs2_super *osb,
1083                             handle_t *handle,
1084                             struct inode *inode,
1085                             struct ocfs2_extent_tree *et,
1086                             struct buffer_head *eb_bh,
1087                             struct buffer_head **last_eb_bh,
1088                             struct ocfs2_alloc_context *meta_ac)
1089 {
1090         int status, new_blocks, i;
1091         u64 next_blkno, new_last_eb_blk;
1092         struct buffer_head *bh;
1093         struct buffer_head **new_eb_bhs = NULL;
1094         struct ocfs2_extent_block *eb;
1095         struct ocfs2_extent_list  *eb_el;
1096         struct ocfs2_extent_list  *el;
1097         u32 new_cpos, root_end;
1098
1099         mlog_entry_void();
1100
1101         BUG_ON(!last_eb_bh || !*last_eb_bh);
1102
1103         if (eb_bh) {
1104                 eb = (struct ocfs2_extent_block *) eb_bh->b_data;
1105                 el = &eb->h_list;
1106         } else
1107                 el = et->et_root_el;
1108
1109         /* we never add a branch to a leaf. */
1110         BUG_ON(!el->l_tree_depth);
1111
1112         new_blocks = le16_to_cpu(el->l_tree_depth);
1113
1114         eb = (struct ocfs2_extent_block *)(*last_eb_bh)->b_data;
1115         new_cpos = ocfs2_sum_rightmost_rec(&eb->h_list);
1116         root_end = ocfs2_sum_rightmost_rec(et->et_root_el);
1117
1118         /*
1119          * If there is a gap before the root end and the real end
1120          * of the righmost leaf block, we need to remove the gap
1121          * between new_cpos and root_end first so that the tree
1122          * is consistent after we add a new branch(it will start
1123          * from new_cpos).
1124          */
1125         if (root_end > new_cpos) {
1126                 mlog(0, "adjust the cluster end from %u to %u\n",
1127                      root_end, new_cpos);
1128                 status = ocfs2_adjust_rightmost_branch(handle, inode, et);
1129                 if (status) {
1130                         mlog_errno(status);
1131                         goto bail;
1132                 }
1133         }
1134
1135         /* allocate the number of new eb blocks we need */
1136         new_eb_bhs = kcalloc(new_blocks, sizeof(struct buffer_head *),
1137                              GFP_KERNEL);
1138         if (!new_eb_bhs) {
1139                 status = -ENOMEM;
1140                 mlog_errno(status);
1141                 goto bail;
1142         }
1143
1144         status = ocfs2_create_new_meta_bhs(osb, handle, inode, new_blocks,
1145                                            meta_ac, new_eb_bhs);
1146         if (status < 0) {
1147                 mlog_errno(status);
1148                 goto bail;
1149         }
1150
1151         /* Note: new_eb_bhs[new_blocks - 1] is the guy which will be
1152          * linked with the rest of the tree.
1153          * conversly, new_eb_bhs[0] is the new bottommost leaf.
1154          *
1155          * when we leave the loop, new_last_eb_blk will point to the
1156          * newest leaf, and next_blkno will point to the topmost extent
1157          * block. */
1158         next_blkno = new_last_eb_blk = 0;
1159         for(i = 0; i < new_blocks; i++) {
1160                 bh = new_eb_bhs[i];
1161                 eb = (struct ocfs2_extent_block *) bh->b_data;
1162                 /* ocfs2_create_new_meta_bhs() should create it right! */
1163                 BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb));
1164                 eb_el = &eb->h_list;
1165
1166                 status = ocfs2_journal_access_eb(handle, INODE_CACHE(inode), bh,
1167                                                  OCFS2_JOURNAL_ACCESS_CREATE);
1168                 if (status < 0) {
1169                         mlog_errno(status);
1170                         goto bail;
1171                 }
1172
1173                 eb->h_next_leaf_blk = 0;
1174                 eb_el->l_tree_depth = cpu_to_le16(i);
1175                 eb_el->l_next_free_rec = cpu_to_le16(1);
1176                 /*
1177                  * This actually counts as an empty extent as
1178                  * c_clusters == 0
1179                  */
1180                 eb_el->l_recs[0].e_cpos = cpu_to_le32(new_cpos);
1181                 eb_el->l_recs[0].e_blkno = cpu_to_le64(next_blkno);
1182                 /*
1183                  * eb_el isn't always an interior node, but even leaf
1184                  * nodes want a zero'd flags and reserved field so
1185                  * this gets the whole 32 bits regardless of use.
1186                  */
1187                 eb_el->l_recs[0].e_int_clusters = cpu_to_le32(0);
1188                 if (!eb_el->l_tree_depth)
1189                         new_last_eb_blk = le64_to_cpu(eb->h_blkno);
1190
1191                 status = ocfs2_journal_dirty(handle, bh);
1192                 if (status < 0) {
1193                         mlog_errno(status);
1194                         goto bail;
1195                 }
1196
1197                 next_blkno = le64_to_cpu(eb->h_blkno);
1198         }
1199
1200         /* This is a bit hairy. We want to update up to three blocks
1201          * here without leaving any of them in an inconsistent state
1202          * in case of error. We don't have to worry about
1203          * journal_dirty erroring as it won't unless we've aborted the
1204          * handle (in which case we would never be here) so reserving
1205          * the write with journal_access is all we need to do. */
1206         status = ocfs2_journal_access_eb(handle, INODE_CACHE(inode), *last_eb_bh,
1207                                          OCFS2_JOURNAL_ACCESS_WRITE);
1208         if (status < 0) {
1209                 mlog_errno(status);
1210                 goto bail;
1211         }
1212         status = ocfs2_et_root_journal_access(handle, INODE_CACHE(inode), et,
1213                                               OCFS2_JOURNAL_ACCESS_WRITE);
1214         if (status < 0) {
1215                 mlog_errno(status);
1216                 goto bail;
1217         }
1218         if (eb_bh) {
1219                 status = ocfs2_journal_access_eb(handle, INODE_CACHE(inode), eb_bh,
1220                                                  OCFS2_JOURNAL_ACCESS_WRITE);
1221                 if (status < 0) {
1222                         mlog_errno(status);
1223                         goto bail;
1224                 }
1225         }
1226
1227         /* Link the new branch into the rest of the tree (el will
1228          * either be on the root_bh, or the extent block passed in. */
1229         i = le16_to_cpu(el->l_next_free_rec);
1230         el->l_recs[i].e_blkno = cpu_to_le64(next_blkno);
1231         el->l_recs[i].e_cpos = cpu_to_le32(new_cpos);
1232         el->l_recs[i].e_int_clusters = 0;
1233         le16_add_cpu(&el->l_next_free_rec, 1);
1234
1235         /* fe needs a new last extent block pointer, as does the
1236          * next_leaf on the previously last-extent-block. */
1237         ocfs2_et_set_last_eb_blk(et, new_last_eb_blk);
1238
1239         eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
1240         eb->h_next_leaf_blk = cpu_to_le64(new_last_eb_blk);
1241
1242         status = ocfs2_journal_dirty(handle, *last_eb_bh);
1243         if (status < 0)
1244                 mlog_errno(status);
1245         status = ocfs2_journal_dirty(handle, et->et_root_bh);
1246         if (status < 0)
1247                 mlog_errno(status);
1248         if (eb_bh) {
1249                 status = ocfs2_journal_dirty(handle, eb_bh);
1250                 if (status < 0)
1251                         mlog_errno(status);
1252         }
1253
1254         /*
1255          * Some callers want to track the rightmost leaf so pass it
1256          * back here.
1257          */
1258         brelse(*last_eb_bh);
1259         get_bh(new_eb_bhs[0]);
1260         *last_eb_bh = new_eb_bhs[0];
1261
1262         status = 0;
1263 bail:
1264         if (new_eb_bhs) {
1265                 for (i = 0; i < new_blocks; i++)
1266                         brelse(new_eb_bhs[i]);
1267                 kfree(new_eb_bhs);
1268         }
1269
1270         mlog_exit(status);
1271         return status;
1272 }
1273
1274 /*
1275  * adds another level to the allocation tree.
1276  * returns back the new extent block so you can add a branch to it
1277  * after this call.
1278  */
1279 static int ocfs2_shift_tree_depth(struct ocfs2_super *osb,
1280                                   handle_t *handle,
1281                                   struct inode *inode,
1282                                   struct ocfs2_extent_tree *et,
1283                                   struct ocfs2_alloc_context *meta_ac,
1284                                   struct buffer_head **ret_new_eb_bh)
1285 {
1286         int status, i;
1287         u32 new_clusters;
1288         struct buffer_head *new_eb_bh = NULL;
1289         struct ocfs2_extent_block *eb;
1290         struct ocfs2_extent_list  *root_el;
1291         struct ocfs2_extent_list  *eb_el;
1292
1293         mlog_entry_void();
1294
1295         status = ocfs2_create_new_meta_bhs(osb, handle, inode, 1, meta_ac,
1296                                            &new_eb_bh);
1297         if (status < 0) {
1298                 mlog_errno(status);
1299                 goto bail;
1300         }
1301
1302         eb = (struct ocfs2_extent_block *) new_eb_bh->b_data;
1303         /* ocfs2_create_new_meta_bhs() should create it right! */
1304         BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb));
1305
1306         eb_el = &eb->h_list;
1307         root_el = et->et_root_el;
1308
1309         status = ocfs2_journal_access_eb(handle, INODE_CACHE(inode), new_eb_bh,
1310                                          OCFS2_JOURNAL_ACCESS_CREATE);
1311         if (status < 0) {
1312                 mlog_errno(status);
1313                 goto bail;
1314         }
1315
1316         /* copy the root extent list data into the new extent block */
1317         eb_el->l_tree_depth = root_el->l_tree_depth;
1318         eb_el->l_next_free_rec = root_el->l_next_free_rec;
1319         for (i = 0; i < le16_to_cpu(root_el->l_next_free_rec); i++)
1320                 eb_el->l_recs[i] = root_el->l_recs[i];
1321
1322         status = ocfs2_journal_dirty(handle, new_eb_bh);
1323         if (status < 0) {
1324                 mlog_errno(status);
1325                 goto bail;
1326         }
1327
1328         status = ocfs2_et_root_journal_access(handle, INODE_CACHE(inode), et,
1329                                               OCFS2_JOURNAL_ACCESS_WRITE);
1330         if (status < 0) {
1331                 mlog_errno(status);
1332                 goto bail;
1333         }
1334
1335         new_clusters = ocfs2_sum_rightmost_rec(eb_el);
1336
1337         /* update root_bh now */
1338         le16_add_cpu(&root_el->l_tree_depth, 1);
1339         root_el->l_recs[0].e_cpos = 0;
1340         root_el->l_recs[0].e_blkno = eb->h_blkno;
1341         root_el->l_recs[0].e_int_clusters = cpu_to_le32(new_clusters);
1342         for (i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++)
1343                 memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
1344         root_el->l_next_free_rec = cpu_to_le16(1);
1345
1346         /* If this is our 1st tree depth shift, then last_eb_blk
1347          * becomes the allocated extent block */
1348         if (root_el->l_tree_depth == cpu_to_le16(1))
1349                 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
1350
1351         status = ocfs2_journal_dirty(handle, et->et_root_bh);
1352         if (status < 0) {
1353                 mlog_errno(status);
1354                 goto bail;
1355         }
1356
1357         *ret_new_eb_bh = new_eb_bh;
1358         new_eb_bh = NULL;
1359         status = 0;
1360 bail:
1361         brelse(new_eb_bh);
1362
1363         mlog_exit(status);
1364         return status;
1365 }
1366
1367 /*
1368  * Should only be called when there is no space left in any of the
1369  * leaf nodes. What we want to do is find the lowest tree depth
1370  * non-leaf extent block with room for new records. There are three
1371  * valid results of this search:
1372  *
1373  * 1) a lowest extent block is found, then we pass it back in
1374  *    *lowest_eb_bh and return '0'
1375  *
1376  * 2) the search fails to find anything, but the root_el has room. We
1377  *    pass NULL back in *lowest_eb_bh, but still return '0'
1378  *
1379  * 3) the search fails to find anything AND the root_el is full, in
1380  *    which case we return > 0
1381  *
1382  * return status < 0 indicates an error.
1383  */
1384 static int ocfs2_find_branch_target(struct ocfs2_super *osb,
1385                                     struct inode *inode,
1386                                     struct ocfs2_extent_tree *et,
1387                                     struct buffer_head **target_bh)
1388 {
1389         int status = 0, i;
1390         u64 blkno;
1391         struct ocfs2_extent_block *eb;
1392         struct ocfs2_extent_list  *el;
1393         struct buffer_head *bh = NULL;
1394         struct buffer_head *lowest_bh = NULL;
1395
1396         mlog_entry_void();
1397
1398         *target_bh = NULL;
1399
1400         el = et->et_root_el;
1401
1402         while(le16_to_cpu(el->l_tree_depth) > 1) {
1403                 if (le16_to_cpu(el->l_next_free_rec) == 0) {
1404                         ocfs2_error(inode->i_sb, "Dinode %llu has empty "
1405                                     "extent list (next_free_rec == 0)",
1406                                     (unsigned long long)OCFS2_I(inode)->ip_blkno);
1407                         status = -EIO;
1408                         goto bail;
1409                 }
1410                 i = le16_to_cpu(el->l_next_free_rec) - 1;
1411                 blkno = le64_to_cpu(el->l_recs[i].e_blkno);
1412                 if (!blkno) {
1413                         ocfs2_error(inode->i_sb, "Dinode %llu has extent "
1414                                     "list where extent # %d has no physical "
1415                                     "block start",
1416                                     (unsigned long long)OCFS2_I(inode)->ip_blkno, i);
1417                         status = -EIO;
1418                         goto bail;
1419                 }
1420
1421                 brelse(bh);
1422                 bh = NULL;
1423
1424                 status = ocfs2_read_extent_block(inode, blkno, &bh);
1425                 if (status < 0) {
1426                         mlog_errno(status);
1427                         goto bail;
1428                 }
1429
1430                 eb = (struct ocfs2_extent_block *) bh->b_data;
1431                 el = &eb->h_list;
1432
1433                 if (le16_to_cpu(el->l_next_free_rec) <
1434                     le16_to_cpu(el->l_count)) {
1435                         brelse(lowest_bh);
1436                         lowest_bh = bh;
1437                         get_bh(lowest_bh);
1438                 }
1439         }
1440
1441         /* If we didn't find one and the fe doesn't have any room,
1442          * then return '1' */
1443         el = et->et_root_el;
1444         if (!lowest_bh && (el->l_next_free_rec == el->l_count))
1445                 status = 1;
1446
1447         *target_bh = lowest_bh;
1448 bail:
1449         brelse(bh);
1450
1451         mlog_exit(status);
1452         return status;
1453 }
1454
1455 /*
1456  * Grow a b-tree so that it has more records.
1457  *
1458  * We might shift the tree depth in which case existing paths should
1459  * be considered invalid.
1460  *
1461  * Tree depth after the grow is returned via *final_depth.
1462  *
1463  * *last_eb_bh will be updated by ocfs2_add_branch().
1464  */
1465 static int ocfs2_grow_tree(struct inode *inode, handle_t *handle,
1466                            struct ocfs2_extent_tree *et, int *final_depth,
1467                            struct buffer_head **last_eb_bh,
1468                            struct ocfs2_alloc_context *meta_ac)
1469 {
1470         int ret, shift;
1471         struct ocfs2_extent_list *el = et->et_root_el;
1472         int depth = le16_to_cpu(el->l_tree_depth);
1473         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1474         struct buffer_head *bh = NULL;
1475
1476         BUG_ON(meta_ac == NULL);
1477
1478         shift = ocfs2_find_branch_target(osb, inode, et, &bh);
1479         if (shift < 0) {
1480                 ret = shift;
1481                 mlog_errno(ret);
1482                 goto out;
1483         }
1484
1485         /* We traveled all the way to the bottom of the allocation tree
1486          * and didn't find room for any more extents - we need to add
1487          * another tree level */
1488         if (shift) {
1489                 BUG_ON(bh);
1490                 mlog(0, "need to shift tree depth (current = %d)\n", depth);
1491
1492                 /* ocfs2_shift_tree_depth will return us a buffer with
1493                  * the new extent block (so we can pass that to
1494                  * ocfs2_add_branch). */
1495                 ret = ocfs2_shift_tree_depth(osb, handle, inode, et,
1496                                              meta_ac, &bh);
1497                 if (ret < 0) {
1498                         mlog_errno(ret);
1499                         goto out;
1500                 }
1501                 depth++;
1502                 if (depth == 1) {
1503                         /*
1504                          * Special case: we have room now if we shifted from
1505                          * tree_depth 0, so no more work needs to be done.
1506                          *
1507                          * We won't be calling add_branch, so pass
1508                          * back *last_eb_bh as the new leaf. At depth
1509                          * zero, it should always be null so there's
1510                          * no reason to brelse.
1511                          */
1512                         BUG_ON(*last_eb_bh);
1513                         get_bh(bh);
1514                         *last_eb_bh = bh;
1515                         goto out;
1516                 }
1517         }
1518
1519         /* call ocfs2_add_branch to add the final part of the tree with
1520          * the new data. */
1521         mlog(0, "add branch. bh = %p\n", bh);
1522         ret = ocfs2_add_branch(osb, handle, inode, et, bh, last_eb_bh,
1523                                meta_ac);
1524         if (ret < 0) {
1525                 mlog_errno(ret);
1526                 goto out;
1527         }
1528
1529 out:
1530         if (final_depth)
1531                 *final_depth = depth;
1532         brelse(bh);
1533         return ret;
1534 }
1535
1536 /*
1537  * This function will discard the rightmost extent record.
1538  */
1539 static void ocfs2_shift_records_right(struct ocfs2_extent_list *el)
1540 {
1541         int next_free = le16_to_cpu(el->l_next_free_rec);
1542         int count = le16_to_cpu(el->l_count);
1543         unsigned int num_bytes;
1544
1545         BUG_ON(!next_free);
1546         /* This will cause us to go off the end of our extent list. */
1547         BUG_ON(next_free >= count);
1548
1549         num_bytes = sizeof(struct ocfs2_extent_rec) * next_free;
1550
1551         memmove(&el->l_recs[1], &el->l_recs[0], num_bytes);
1552 }
1553
1554 static void ocfs2_rotate_leaf(struct ocfs2_extent_list *el,
1555                               struct ocfs2_extent_rec *insert_rec)
1556 {
1557         int i, insert_index, next_free, has_empty, num_bytes;
1558         u32 insert_cpos = le32_to_cpu(insert_rec->e_cpos);
1559         struct ocfs2_extent_rec *rec;
1560
1561         next_free = le16_to_cpu(el->l_next_free_rec);
1562         has_empty = ocfs2_is_empty_extent(&el->l_recs[0]);
1563
1564         BUG_ON(!next_free);
1565
1566         /* The tree code before us didn't allow enough room in the leaf. */
1567         BUG_ON(el->l_next_free_rec == el->l_count && !has_empty);
1568
1569         /*
1570          * The easiest way to approach this is to just remove the
1571          * empty extent and temporarily decrement next_free.
1572          */
1573         if (has_empty) {
1574                 /*
1575                  * If next_free was 1 (only an empty extent), this
1576                  * loop won't execute, which is fine. We still want
1577                  * the decrement above to happen.
1578                  */
1579                 for(i = 0; i < (next_free - 1); i++)
1580                         el->l_recs[i] = el->l_recs[i+1];
1581
1582                 next_free--;
1583         }
1584
1585         /*
1586          * Figure out what the new record index should be.
1587          */
1588         for(i = 0; i < next_free; i++) {
1589                 rec = &el->l_recs[i];
1590
1591                 if (insert_cpos < le32_to_cpu(rec->e_cpos))
1592                         break;
1593         }
1594         insert_index = i;
1595
1596         mlog(0, "ins %u: index %d, has_empty %d, next_free %d, count %d\n",
1597              insert_cpos, insert_index, has_empty, next_free, le16_to_cpu(el->l_count));
1598
1599         BUG_ON(insert_index < 0);
1600         BUG_ON(insert_index >= le16_to_cpu(el->l_count));
1601         BUG_ON(insert_index > next_free);
1602
1603         /*
1604          * No need to memmove if we're just adding to the tail.
1605          */
1606         if (insert_index != next_free) {
1607                 BUG_ON(next_free >= le16_to_cpu(el->l_count));
1608
1609                 num_bytes = next_free - insert_index;
1610                 num_bytes *= sizeof(struct ocfs2_extent_rec);
1611                 memmove(&el->l_recs[insert_index + 1],
1612                         &el->l_recs[insert_index],
1613                         num_bytes);
1614         }
1615
1616         /*
1617          * Either we had an empty extent, and need to re-increment or
1618          * there was no empty extent on a non full rightmost leaf node,
1619          * in which case we still need to increment.
1620          */
1621         next_free++;
1622         el->l_next_free_rec = cpu_to_le16(next_free);
1623         /*
1624          * Make sure none of the math above just messed up our tree.
1625          */
1626         BUG_ON(le16_to_cpu(el->l_next_free_rec) > le16_to_cpu(el->l_count));
1627
1628         el->l_recs[insert_index] = *insert_rec;
1629
1630 }
1631
1632 static void ocfs2_remove_empty_extent(struct ocfs2_extent_list *el)
1633 {
1634         int size, num_recs = le16_to_cpu(el->l_next_free_rec);
1635
1636         BUG_ON(num_recs == 0);
1637
1638         if (ocfs2_is_empty_extent(&el->l_recs[0])) {
1639                 num_recs--;
1640                 size = num_recs * sizeof(struct ocfs2_extent_rec);
1641                 memmove(&el->l_recs[0], &el->l_recs[1], size);
1642                 memset(&el->l_recs[num_recs], 0,
1643                        sizeof(struct ocfs2_extent_rec));
1644                 el->l_next_free_rec = cpu_to_le16(num_recs);
1645         }
1646 }
1647
1648 /*
1649  * Create an empty extent record .
1650  *
1651  * l_next_free_rec may be updated.
1652  *
1653  * If an empty extent already exists do nothing.
1654  */
1655 static void ocfs2_create_empty_extent(struct ocfs2_extent_list *el)
1656 {
1657         int next_free = le16_to_cpu(el->l_next_free_rec);
1658
1659         BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
1660
1661         if (next_free == 0)
1662                 goto set_and_inc;
1663
1664         if (ocfs2_is_empty_extent(&el->l_recs[0]))
1665                 return;
1666
1667         mlog_bug_on_msg(el->l_count == el->l_next_free_rec,
1668                         "Asked to create an empty extent in a full list:\n"
1669                         "count = %u, tree depth = %u",
1670                         le16_to_cpu(el->l_count),
1671                         le16_to_cpu(el->l_tree_depth));
1672
1673         ocfs2_shift_records_right(el);
1674
1675 set_and_inc:
1676         le16_add_cpu(&el->l_next_free_rec, 1);
1677         memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
1678 }
1679
1680 /*
1681  * For a rotation which involves two leaf nodes, the "root node" is
1682  * the lowest level tree node which contains a path to both leafs. This
1683  * resulting set of information can be used to form a complete "subtree"
1684  *
1685  * This function is passed two full paths from the dinode down to a
1686  * pair of adjacent leaves. It's task is to figure out which path
1687  * index contains the subtree root - this can be the root index itself
1688  * in a worst-case rotation.
1689  *
1690  * The array index of the subtree root is passed back.
1691  */
1692 static int ocfs2_find_subtree_root(struct inode *inode,
1693                                    struct ocfs2_path *left,
1694                                    struct ocfs2_path *right)
1695 {
1696         int i = 0;
1697
1698         /*
1699          * Check that the caller passed in two paths from the same tree.
1700          */
1701         BUG_ON(path_root_bh(left) != path_root_bh(right));
1702
1703         do {
1704                 i++;
1705
1706                 /*
1707                  * The caller didn't pass two adjacent paths.
1708                  */
1709                 mlog_bug_on_msg(i > left->p_tree_depth,
1710                                 "Inode %lu, left depth %u, right depth %u\n"
1711                                 "left leaf blk %llu, right leaf blk %llu\n",
1712                                 inode->i_ino, left->p_tree_depth,
1713                                 right->p_tree_depth,
1714                                 (unsigned long long)path_leaf_bh(left)->b_blocknr,
1715                                 (unsigned long long)path_leaf_bh(right)->b_blocknr);
1716         } while (left->p_node[i].bh->b_blocknr ==
1717                  right->p_node[i].bh->b_blocknr);
1718
1719         return i - 1;
1720 }
1721
1722 typedef void (path_insert_t)(void *, struct buffer_head *);
1723
1724 /*
1725  * Traverse a btree path in search of cpos, starting at root_el.
1726  *
1727  * This code can be called with a cpos larger than the tree, in which
1728  * case it will return the rightmost path.
1729  */
1730 static int __ocfs2_find_path(struct inode *inode,
1731                              struct ocfs2_extent_list *root_el, u32 cpos,
1732                              path_insert_t *func, void *data)
1733 {
1734         int i, ret = 0;
1735         u32 range;
1736         u64 blkno;
1737         struct buffer_head *bh = NULL;
1738         struct ocfs2_extent_block *eb;
1739         struct ocfs2_extent_list *el;
1740         struct ocfs2_extent_rec *rec;
1741         struct ocfs2_inode_info *oi = OCFS2_I(inode);
1742
1743         el = root_el;
1744         while (el->l_tree_depth) {
1745                 if (le16_to_cpu(el->l_next_free_rec) == 0) {
1746                         ocfs2_error(inode->i_sb,
1747                                     "Inode %llu has empty extent list at "
1748                                     "depth %u\n",
1749                                     (unsigned long long)oi->ip_blkno,
1750                                     le16_to_cpu(el->l_tree_depth));
1751                         ret = -EROFS;
1752                         goto out;
1753
1754                 }
1755
1756                 for(i = 0; i < le16_to_cpu(el->l_next_free_rec) - 1; i++) {
1757                         rec = &el->l_recs[i];
1758
1759                         /*
1760                          * In the case that cpos is off the allocation
1761                          * tree, this should just wind up returning the
1762                          * rightmost record.
1763                          */
1764                         range = le32_to_cpu(rec->e_cpos) +
1765                                 ocfs2_rec_clusters(el, rec);
1766                         if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
1767                             break;
1768                 }
1769
1770                 blkno = le64_to_cpu(el->l_recs[i].e_blkno);
1771                 if (blkno == 0) {
1772                         ocfs2_error(inode->i_sb,
1773                                     "Inode %llu has bad blkno in extent list "
1774                                     "at depth %u (index %d)\n",
1775                                     (unsigned long long)oi->ip_blkno,
1776                                     le16_to_cpu(el->l_tree_depth), i);
1777                         ret = -EROFS;
1778                         goto out;
1779                 }
1780
1781                 brelse(bh);
1782                 bh = NULL;
1783                 ret = ocfs2_read_extent_block(inode, blkno, &bh);
1784                 if (ret) {
1785                         mlog_errno(ret);
1786                         goto out;
1787                 }
1788
1789                 eb = (struct ocfs2_extent_block *) bh->b_data;
1790                 el = &eb->h_list;
1791
1792                 if (le16_to_cpu(el->l_next_free_rec) >
1793                     le16_to_cpu(el->l_count)) {
1794                         ocfs2_error(inode->i_sb,
1795                                     "Inode %llu has bad count in extent list "
1796                                     "at block %llu (next free=%u, count=%u)\n",
1797                                     (unsigned long long)oi->ip_blkno,
1798                                     (unsigned long long)bh->b_blocknr,
1799                                     le16_to_cpu(el->l_next_free_rec),
1800                                     le16_to_cpu(el->l_count));
1801                         ret = -EROFS;
1802                         goto out;
1803                 }
1804
1805                 if (func)
1806                         func(data, bh);
1807         }
1808
1809 out:
1810         /*
1811          * Catch any trailing bh that the loop didn't handle.
1812          */
1813         brelse(bh);
1814
1815         return ret;
1816 }
1817
1818 /*
1819  * Given an initialized path (that is, it has a valid root extent
1820  * list), this function will traverse the btree in search of the path
1821  * which would contain cpos.
1822  *
1823  * The path traveled is recorded in the path structure.
1824  *
1825  * Note that this will not do any comparisons on leaf node extent
1826  * records, so it will work fine in the case that we just added a tree
1827  * branch.
1828  */
1829 struct find_path_data {
1830         int index;
1831         struct ocfs2_path *path;
1832 };
1833 static void find_path_ins(void *data, struct buffer_head *bh)
1834 {
1835         struct find_path_data *fp = data;
1836
1837         get_bh(bh);
1838         ocfs2_path_insert_eb(fp->path, fp->index, bh);
1839         fp->index++;
1840 }
1841 static int ocfs2_find_path(struct inode *inode, struct ocfs2_path *path,
1842                            u32 cpos)
1843 {
1844         struct find_path_data data;
1845
1846         data.index = 1;
1847         data.path = path;
1848         return __ocfs2_find_path(inode, path_root_el(path), cpos,
1849                                  find_path_ins, &data);
1850 }
1851
1852 static void find_leaf_ins(void *data, struct buffer_head *bh)
1853 {
1854         struct ocfs2_extent_block *eb =(struct ocfs2_extent_block *)bh->b_data;
1855         struct ocfs2_extent_list *el = &eb->h_list;
1856         struct buffer_head **ret = data;
1857
1858         /* We want to retain only the leaf block. */
1859         if (le16_to_cpu(el->l_tree_depth) == 0) {
1860                 get_bh(bh);
1861                 *ret = bh;
1862         }
1863 }
1864 /*
1865  * Find the leaf block in the tree which would contain cpos. No
1866  * checking of the actual leaf is done.
1867  *
1868  * Some paths want to call this instead of allocating a path structure
1869  * and calling ocfs2_find_path().
1870  *
1871  * This function doesn't handle non btree extent lists.
1872  */
1873 int ocfs2_find_leaf(struct inode *inode, struct ocfs2_extent_list *root_el,
1874                     u32 cpos, struct buffer_head **leaf_bh)
1875 {
1876         int ret;
1877         struct buffer_head *bh = NULL;
1878
1879         ret = __ocfs2_find_path(inode, root_el, cpos, find_leaf_ins, &bh);
1880         if (ret) {
1881                 mlog_errno(ret);
1882                 goto out;
1883         }
1884
1885         *leaf_bh = bh;
1886 out:
1887         return ret;
1888 }
1889
1890 /*
1891  * Adjust the adjacent records (left_rec, right_rec) involved in a rotation.
1892  *
1893  * Basically, we've moved stuff around at the bottom of the tree and
1894  * we need to fix up the extent records above the changes to reflect
1895  * the new changes.
1896  *
1897  * left_rec: the record on the left.
1898  * left_child_el: is the child list pointed to by left_rec
1899  * right_rec: the record to the right of left_rec
1900  * right_child_el: is the child list pointed to by right_rec
1901  *
1902  * By definition, this only works on interior nodes.
1903  */
1904 static void ocfs2_adjust_adjacent_records(struct ocfs2_extent_rec *left_rec,
1905                                   struct ocfs2_extent_list *left_child_el,
1906                                   struct ocfs2_extent_rec *right_rec,
1907                                   struct ocfs2_extent_list *right_child_el)
1908 {
1909         u32 left_clusters, right_end;
1910
1911         /*
1912          * Interior nodes never have holes. Their cpos is the cpos of
1913          * the leftmost record in their child list. Their cluster
1914          * count covers the full theoretical range of their child list
1915          * - the range between their cpos and the cpos of the record
1916          * immediately to their right.
1917          */
1918         left_clusters = le32_to_cpu(right_child_el->l_recs[0].e_cpos);
1919         if (!ocfs2_rec_clusters(right_child_el, &right_child_el->l_recs[0])) {
1920                 BUG_ON(right_child_el->l_tree_depth);
1921                 BUG_ON(le16_to_cpu(right_child_el->l_next_free_rec) <= 1);
1922                 left_clusters = le32_to_cpu(right_child_el->l_recs[1].e_cpos);
1923         }
1924         left_clusters -= le32_to_cpu(left_rec->e_cpos);
1925         left_rec->e_int_clusters = cpu_to_le32(left_clusters);
1926
1927         /*
1928          * Calculate the rightmost cluster count boundary before
1929          * moving cpos - we will need to adjust clusters after
1930          * updating e_cpos to keep the same highest cluster count.
1931          */
1932         right_end = le32_to_cpu(right_rec->e_cpos);
1933         right_end += le32_to_cpu(right_rec->e_int_clusters);
1934
1935         right_rec->e_cpos = left_rec->e_cpos;
1936         le32_add_cpu(&right_rec->e_cpos, left_clusters);
1937
1938         right_end -= le32_to_cpu(right_rec->e_cpos);
1939         right_rec->e_int_clusters = cpu_to_le32(right_end);
1940 }
1941
1942 /*
1943  * Adjust the adjacent root node records involved in a
1944  * rotation. left_el_blkno is passed in as a key so that we can easily
1945  * find it's index in the root list.
1946  */
1947 static void ocfs2_adjust_root_records(struct ocfs2_extent_list *root_el,
1948                                       struct ocfs2_extent_list *left_el,
1949                                       struct ocfs2_extent_list *right_el,
1950                                       u64 left_el_blkno)
1951 {
1952         int i;
1953
1954         BUG_ON(le16_to_cpu(root_el->l_tree_depth) <=
1955                le16_to_cpu(left_el->l_tree_depth));
1956
1957         for(i = 0; i < le16_to_cpu(root_el->l_next_free_rec) - 1; i++) {
1958                 if (le64_to_cpu(root_el->l_recs[i].e_blkno) == left_el_blkno)
1959                         break;
1960         }
1961
1962         /*
1963          * The path walking code should have never returned a root and
1964          * two paths which are not adjacent.
1965          */
1966         BUG_ON(i >= (le16_to_cpu(root_el->l_next_free_rec) - 1));
1967
1968         ocfs2_adjust_adjacent_records(&root_el->l_recs[i], left_el,
1969                                       &root_el->l_recs[i + 1], right_el);
1970 }
1971
1972 /*
1973  * We've changed a leaf block (in right_path) and need to reflect that
1974  * change back up the subtree.
1975  *
1976  * This happens in multiple places:
1977  *   - When we've moved an extent record from the left path leaf to the right
1978  *     path leaf to make room for an empty extent in the left path leaf.
1979  *   - When our insert into the right path leaf is at the leftmost edge
1980  *     and requires an update of the path immediately to it's left. This
1981  *     can occur at the end of some types of rotation and appending inserts.
1982  *   - When we've adjusted the last extent record in the left path leaf and the
1983  *     1st extent record in the right path leaf during cross extent block merge.
1984  */
1985 static void ocfs2_complete_edge_insert(struct inode *inode, handle_t *handle,
1986                                        struct ocfs2_path *left_path,
1987                                        struct ocfs2_path *right_path,
1988                                        int subtree_index)
1989 {
1990         int ret, i, idx;
1991         struct ocfs2_extent_list *el, *left_el, *right_el;
1992         struct ocfs2_extent_rec *left_rec, *right_rec;
1993         struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
1994
1995         /*
1996          * Update the counts and position values within all the
1997          * interior nodes to reflect the leaf rotation we just did.
1998          *
1999          * The root node is handled below the loop.
2000          *
2001          * We begin the loop with right_el and left_el pointing to the
2002          * leaf lists and work our way up.
2003          *
2004          * NOTE: within this loop, left_el and right_el always refer
2005          * to the *child* lists.
2006          */
2007         left_el = path_leaf_el(left_path);
2008         right_el = path_leaf_el(right_path);
2009         for(i = left_path->p_tree_depth - 1; i > subtree_index; i--) {
2010                 mlog(0, "Adjust records at index %u\n", i);
2011
2012                 /*
2013                  * One nice property of knowing that all of these
2014                  * nodes are below the root is that we only deal with
2015                  * the leftmost right node record and the rightmost
2016                  * left node record.
2017                  */
2018                 el = left_path->p_node[i].el;
2019                 idx = le16_to_cpu(left_el->l_next_free_rec) - 1;
2020                 left_rec = &el->l_recs[idx];
2021
2022                 el = right_path->p_node[i].el;
2023                 right_rec = &el->l_recs[0];
2024
2025                 ocfs2_adjust_adjacent_records(left_rec, left_el, right_rec,
2026                                               right_el);
2027
2028                 ret = ocfs2_journal_dirty(handle, left_path->p_node[i].bh);
2029                 if (ret)
2030                         mlog_errno(ret);
2031
2032                 ret = ocfs2_journal_dirty(handle, right_path->p_node[i].bh);
2033                 if (ret)
2034                         mlog_errno(ret);
2035
2036                 /*
2037                  * Setup our list pointers now so that the current
2038                  * parents become children in the next iteration.
2039                  */
2040                 left_el = left_path->p_node[i].el;
2041                 right_el = right_path->p_node[i].el;
2042         }
2043
2044         /*
2045          * At the root node, adjust the two adjacent records which
2046          * begin our path to the leaves.
2047          */
2048
2049         el = left_path->p_node[subtree_index].el;
2050         left_el = left_path->p_node[subtree_index + 1].el;
2051         right_el = right_path->p_node[subtree_index + 1].el;
2052
2053         ocfs2_adjust_root_records(el, left_el, right_el,
2054                                   left_path->p_node[subtree_index + 1].bh->b_blocknr);
2055
2056         root_bh = left_path->p_node[subtree_index].bh;
2057
2058         ret = ocfs2_journal_dirty(handle, root_bh);
2059         if (ret)
2060                 mlog_errno(ret);
2061 }
2062
2063 static int ocfs2_rotate_subtree_right(struct inode *inode,
2064                                       handle_t *handle,
2065                                       struct ocfs2_path *left_path,
2066                                       struct ocfs2_path *right_path,
2067                                       int subtree_index)
2068 {
2069         int ret, i;
2070         struct buffer_head *right_leaf_bh;
2071         struct buffer_head *left_leaf_bh = NULL;
2072         struct buffer_head *root_bh;
2073         struct ocfs2_extent_list *right_el, *left_el;
2074         struct ocfs2_extent_rec move_rec;
2075
2076         left_leaf_bh = path_leaf_bh(left_path);
2077         left_el = path_leaf_el(left_path);
2078
2079         if (left_el->l_next_free_rec != left_el->l_count) {
2080                 ocfs2_error(inode->i_sb,
2081                             "Inode %llu has non-full interior leaf node %llu"
2082                             "(next free = %u)",
2083                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
2084                             (unsigned long long)left_leaf_bh->b_blocknr,
2085                             le16_to_cpu(left_el->l_next_free_rec));
2086                 return -EROFS;
2087         }
2088
2089         /*
2090          * This extent block may already have an empty record, so we
2091          * return early if so.
2092          */
2093         if (ocfs2_is_empty_extent(&left_el->l_recs[0]))
2094                 return 0;
2095
2096         root_bh = left_path->p_node[subtree_index].bh;
2097         BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
2098
2099         ret = ocfs2_path_bh_journal_access(handle, INODE_CACHE(inode), right_path,
2100                                            subtree_index);
2101         if (ret) {
2102                 mlog_errno(ret);
2103                 goto out;
2104         }
2105
2106         for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
2107                 ret = ocfs2_path_bh_journal_access(handle, INODE_CACHE(inode),
2108                                                    right_path, i);
2109                 if (ret) {
2110                         mlog_errno(ret);
2111                         goto out;
2112                 }
2113
2114                 ret = ocfs2_path_bh_journal_access(handle, INODE_CACHE(inode),
2115                                                    left_path, i);
2116                 if (ret) {
2117                         mlog_errno(ret);
2118                         goto out;
2119                 }
2120         }
2121
2122         right_leaf_bh = path_leaf_bh(right_path);
2123         right_el = path_leaf_el(right_path);
2124
2125         /* This is a code error, not a disk corruption. */
2126         mlog_bug_on_msg(!right_el->l_next_free_rec, "Inode %llu: Rotate fails "
2127                         "because rightmost leaf block %llu is empty\n",
2128                         (unsigned long long)OCFS2_I(inode)->ip_blkno,
2129                         (unsigned long long)right_leaf_bh->b_blocknr);
2130
2131         ocfs2_create_empty_extent(right_el);
2132
2133         ret = ocfs2_journal_dirty(handle, right_leaf_bh);
2134         if (ret) {
2135                 mlog_errno(ret);
2136                 goto out;
2137         }
2138
2139         /* Do the copy now. */
2140         i = le16_to_cpu(left_el->l_next_free_rec) - 1;
2141         move_rec = left_el->l_recs[i];
2142         right_el->l_recs[0] = move_rec;
2143
2144         /*
2145          * Clear out the record we just copied and shift everything
2146          * over, leaving an empty extent in the left leaf.
2147          *
2148          * We temporarily subtract from next_free_rec so that the
2149          * shift will lose the tail record (which is now defunct).
2150          */
2151         le16_add_cpu(&left_el->l_next_free_rec, -1);
2152         ocfs2_shift_records_right(left_el);
2153         memset(&left_el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2154         le16_add_cpu(&left_el->l_next_free_rec, 1);
2155
2156         ret = ocfs2_journal_dirty(handle, left_leaf_bh);
2157         if (ret) {
2158                 mlog_errno(ret);
2159                 goto out;
2160         }
2161
2162         ocfs2_complete_edge_insert(inode, handle, left_path, right_path,
2163                                 subtree_index);
2164
2165 out:
2166         return ret;
2167 }
2168
2169 /*
2170  * Given a full path, determine what cpos value would return us a path
2171  * containing the leaf immediately to the left of the current one.
2172  *
2173  * Will return zero if the path passed in is already the leftmost path.
2174  */
2175 static int ocfs2_find_cpos_for_left_leaf(struct super_block *sb,
2176                                          struct ocfs2_path *path, u32 *cpos)
2177 {
2178         int i, j, ret = 0;
2179         u64 blkno;
2180         struct ocfs2_extent_list *el;
2181
2182         BUG_ON(path->p_tree_depth == 0);
2183
2184         *cpos = 0;
2185
2186         blkno = path_leaf_bh(path)->b_blocknr;
2187
2188         /* Start at the tree node just above the leaf and work our way up. */
2189         i = path->p_tree_depth - 1;
2190         while (i >= 0) {
2191                 el = path->p_node[i].el;
2192
2193                 /*
2194                  * Find the extent record just before the one in our
2195                  * path.
2196                  */
2197                 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
2198                         if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
2199                                 if (j == 0) {
2200                                         if (i == 0) {
2201                                                 /*
2202                                                  * We've determined that the
2203                                                  * path specified is already
2204                                                  * the leftmost one - return a
2205                                                  * cpos of zero.
2206                                                  */
2207                                                 goto out;
2208                                         }
2209                                         /*
2210                                          * The leftmost record points to our
2211                                          * leaf - we need to travel up the
2212                                          * tree one level.
2213                                          */
2214                                         goto next_node;
2215                                 }
2216
2217                                 *cpos = le32_to_cpu(el->l_recs[j - 1].e_cpos);
2218                                 *cpos = *cpos + ocfs2_rec_clusters(el,
2219                                                            &el->l_recs[j - 1]);
2220                                 *cpos = *cpos - 1;
2221                                 goto out;
2222                         }
2223                 }
2224
2225                 /*
2226                  * If we got here, we never found a valid node where
2227                  * the tree indicated one should be.
2228                  */
2229                 ocfs2_error(sb,
2230                             "Invalid extent tree at extent block %llu\n",
2231                             (unsigned long long)blkno);
2232                 ret = -EROFS;
2233                 goto out;
2234
2235 next_node:
2236                 blkno = path->p_node[i].bh->b_blocknr;
2237                 i--;
2238         }
2239
2240 out:
2241         return ret;
2242 }
2243
2244 /*
2245  * Extend the transaction by enough credits to complete the rotation,
2246  * and still leave at least the original number of credits allocated
2247  * to this transaction.
2248  */
2249 static int ocfs2_extend_rotate_transaction(handle_t *handle, int subtree_depth,
2250                                            int op_credits,
2251                                            struct ocfs2_path *path)
2252 {
2253         int credits = (path->p_tree_depth - subtree_depth) * 2 + 1 + op_credits;
2254
2255         if (handle->h_buffer_credits < credits)
2256                 return ocfs2_extend_trans(handle, credits);
2257
2258         return 0;
2259 }
2260
2261 /*
2262  * Trap the case where we're inserting into the theoretical range past
2263  * the _actual_ left leaf range. Otherwise, we'll rotate a record
2264  * whose cpos is less than ours into the right leaf.
2265  *
2266  * It's only necessary to look at the rightmost record of the left
2267  * leaf because the logic that calls us should ensure that the
2268  * theoretical ranges in the path components above the leaves are
2269  * correct.
2270  */
2271 static int ocfs2_rotate_requires_path_adjustment(struct ocfs2_path *left_path,
2272                                                  u32 insert_cpos)
2273 {
2274         struct ocfs2_extent_list *left_el;
2275         struct ocfs2_extent_rec *rec;
2276         int next_free;
2277
2278         left_el = path_leaf_el(left_path);
2279         next_free = le16_to_cpu(left_el->l_next_free_rec);
2280         rec = &left_el->l_recs[next_free - 1];
2281
2282         if (insert_cpos > le32_to_cpu(rec->e_cpos))
2283                 return 1;
2284         return 0;
2285 }
2286
2287 static int ocfs2_leftmost_rec_contains(struct ocfs2_extent_list *el, u32 cpos)
2288 {
2289         int next_free = le16_to_cpu(el->l_next_free_rec);
2290         unsigned int range;
2291         struct ocfs2_extent_rec *rec;
2292
2293         if (next_free == 0)
2294                 return 0;
2295
2296         rec = &el->l_recs[0];
2297         if (ocfs2_is_empty_extent(rec)) {
2298                 /* Empty list. */
2299                 if (next_free == 1)
2300                         return 0;
2301                 rec = &el->l_recs[1];
2302         }
2303
2304         range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
2305         if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
2306                 return 1;
2307         return 0;
2308 }
2309
2310 /*
2311  * Rotate all the records in a btree right one record, starting at insert_cpos.
2312  *
2313  * The path to the rightmost leaf should be passed in.
2314  *
2315  * The array is assumed to be large enough to hold an entire path (tree depth).
2316  *
2317  * Upon succesful return from this function:
2318  *
2319  * - The 'right_path' array will contain a path to the leaf block
2320  *   whose range contains e_cpos.
2321  * - That leaf block will have a single empty extent in list index 0.
2322  * - In the case that the rotation requires a post-insert update,
2323  *   *ret_left_path will contain a valid path which can be passed to
2324  *   ocfs2_insert_path().
2325  */
2326 static int ocfs2_rotate_tree_right(struct inode *inode,
2327                                    handle_t *handle,
2328                                    enum ocfs2_split_type split,
2329                                    u32 insert_cpos,
2330                                    struct ocfs2_path *right_path,
2331                                    struct ocfs2_path **ret_left_path)
2332 {
2333         int ret, start, orig_credits = handle->h_buffer_credits;
2334         u32 cpos;
2335         struct ocfs2_path *left_path = NULL;
2336
2337         *ret_left_path = NULL;
2338
2339         left_path = ocfs2_new_path_from_path(right_path);
2340         if (!left_path) {
2341                 ret = -ENOMEM;
2342                 mlog_errno(ret);
2343                 goto out;
2344         }
2345
2346         ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path, &cpos);
2347         if (ret) {
2348                 mlog_errno(ret);
2349                 goto out;
2350         }
2351
2352         mlog(0, "Insert: %u, first left path cpos: %u\n", insert_cpos, cpos);
2353
2354         /*
2355          * What we want to do here is:
2356          *
2357          * 1) Start with the rightmost path.
2358          *
2359          * 2) Determine a path to the leaf block directly to the left
2360          *    of that leaf.
2361          *
2362          * 3) Determine the 'subtree root' - the lowest level tree node
2363          *    which contains a path to both leaves.
2364          *
2365          * 4) Rotate the subtree.
2366          *
2367          * 5) Find the next subtree by considering the left path to be
2368          *    the new right path.
2369          *
2370          * The check at the top of this while loop also accepts
2371          * insert_cpos == cpos because cpos is only a _theoretical_
2372          * value to get us the left path - insert_cpos might very well
2373          * be filling that hole.
2374          *
2375          * Stop at a cpos of '0' because we either started at the
2376          * leftmost branch (i.e., a tree with one branch and a
2377          * rotation inside of it), or we've gone as far as we can in
2378          * rotating subtrees.
2379          */
2380         while (cpos && insert_cpos <= cpos) {
2381                 mlog(0, "Rotating a tree: ins. cpos: %u, left path cpos: %u\n",
2382                      insert_cpos, cpos);
2383
2384                 ret = ocfs2_find_path(inode, left_path, cpos);
2385                 if (ret) {
2386                         mlog_errno(ret);
2387                         goto out;
2388                 }
2389
2390                 mlog_bug_on_msg(path_leaf_bh(left_path) ==
2391                                 path_leaf_bh(right_path),
2392                                 "Inode %lu: error during insert of %u "
2393                                 "(left path cpos %u) results in two identical "
2394                                 "paths ending at %llu\n",
2395                                 inode->i_ino, insert_cpos, cpos,
2396                                 (unsigned long long)
2397                                 path_leaf_bh(left_path)->b_blocknr);
2398
2399                 if (split == SPLIT_NONE &&
2400                     ocfs2_rotate_requires_path_adjustment(left_path,
2401                                                           insert_cpos)) {
2402
2403                         /*
2404                          * We've rotated the tree as much as we
2405                          * should. The rest is up to
2406                          * ocfs2_insert_path() to complete, after the
2407                          * record insertion. We indicate this
2408                          * situation by returning the left path.
2409                          *
2410                          * The reason we don't adjust the records here
2411                          * before the record insert is that an error
2412                          * later might break the rule where a parent
2413                          * record e_cpos will reflect the actual
2414                          * e_cpos of the 1st nonempty record of the
2415                          * child list.
2416                          */
2417                         *ret_left_path = left_path;
2418                         goto out_ret_path;
2419                 }
2420
2421                 start = ocfs2_find_subtree_root(inode, left_path, right_path);
2422
2423                 mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n",
2424                      start,
2425                      (unsigned long long) right_path->p_node[start].bh->b_blocknr,
2426                      right_path->p_tree_depth);
2427
2428                 ret = ocfs2_extend_rotate_transaction(handle, start,
2429                                                       orig_credits, right_path);
2430                 if (ret) {
2431                         mlog_errno(ret);
2432                         goto out;
2433                 }
2434
2435                 ret = ocfs2_rotate_subtree_right(inode, handle, left_path,
2436                                                  right_path, start);
2437                 if (ret) {
2438                         mlog_errno(ret);
2439                         goto out;
2440                 }
2441
2442                 if (split != SPLIT_NONE &&
2443                     ocfs2_leftmost_rec_contains(path_leaf_el(right_path),
2444                                                 insert_cpos)) {
2445                         /*
2446                          * A rotate moves the rightmost left leaf
2447                          * record over to the leftmost right leaf
2448                          * slot. If we're doing an extent split
2449                          * instead of a real insert, then we have to
2450                          * check that the extent to be split wasn't
2451                          * just moved over. If it was, then we can
2452                          * exit here, passing left_path back -
2453                          * ocfs2_split_extent() is smart enough to
2454                          * search both leaves.
2455                          */
2456                         *ret_left_path = left_path;
2457                         goto out_ret_path;
2458                 }
2459
2460                 /*
2461                  * There is no need to re-read the next right path
2462                  * as we know that it'll be our current left
2463                  * path. Optimize by copying values instead.
2464                  */
2465                 ocfs2_mv_path(right_path, left_path);
2466
2467                 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path,
2468                                                     &cpos);
2469                 if (ret) {
2470                         mlog_errno(ret);
2471                         goto out;
2472                 }
2473         }
2474
2475 out:
2476         ocfs2_free_path(left_path);
2477
2478 out_ret_path:
2479         return ret;
2480 }
2481
2482 static int ocfs2_update_edge_lengths(struct inode *inode, handle_t *handle,
2483                                      int subtree_index, struct ocfs2_path *path)
2484 {
2485         int i, idx, ret;
2486         struct ocfs2_extent_rec *rec;
2487         struct ocfs2_extent_list *el;
2488         struct ocfs2_extent_block *eb;
2489         u32 range;
2490
2491         /*
2492          * In normal tree rotation process, we will never touch the
2493          * tree branch above subtree_index and ocfs2_extend_rotate_transaction
2494          * doesn't reserve the credits for them either.
2495          *
2496          * But we do have a special case here which will update the rightmost
2497          * records for all the bh in the path.
2498          * So we have to allocate extra credits and access them.
2499          */
2500         ret = ocfs2_extend_trans(handle,
2501                                  handle->h_buffer_credits + subtree_index);
2502         if (ret) {
2503                 mlog_errno(ret);
2504                 goto out;
2505         }
2506
2507         ret = ocfs2_journal_access_path(INODE_CACHE(inode), handle, path);
2508         if (ret) {
2509                 mlog_errno(ret);
2510                 goto out;
2511         }
2512
2513         /* Path should always be rightmost. */
2514         eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
2515         BUG_ON(eb->h_next_leaf_blk != 0ULL);
2516
2517         el = &eb->h_list;
2518         BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0);
2519         idx = le16_to_cpu(el->l_next_free_rec) - 1;
2520         rec = &el->l_recs[idx];
2521         range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
2522
2523         for (i = 0; i < path->p_tree_depth; i++) {
2524                 el = path->p_node[i].el;
2525                 idx = le16_to_cpu(el->l_next_free_rec) - 1;
2526                 rec = &el->l_recs[idx];
2527
2528                 rec->e_int_clusters = cpu_to_le32(range);
2529                 le32_add_cpu(&rec->e_int_clusters, -le32_to_cpu(rec->e_cpos));
2530
2531                 ocfs2_journal_dirty(handle, path->p_node[i].bh);
2532         }
2533 out:
2534         return ret;
2535 }
2536
2537 static void ocfs2_unlink_path(struct inode *inode, handle_t *handle,
2538                               struct ocfs2_cached_dealloc_ctxt *dealloc,
2539                               struct ocfs2_path *path, int unlink_start)
2540 {
2541         int ret, i;
2542         struct ocfs2_extent_block *eb;
2543         struct ocfs2_extent_list *el;
2544         struct buffer_head *bh;
2545
2546         for(i = unlink_start; i < path_num_items(path); i++) {
2547                 bh = path->p_node[i].bh;
2548
2549                 eb = (struct ocfs2_extent_block *)bh->b_data;
2550                 /*
2551                  * Not all nodes might have had their final count
2552                  * decremented by the caller - handle this here.
2553                  */
2554                 el = &eb->h_list;
2555                 if (le16_to_cpu(el->l_next_free_rec) > 1) {
2556                         mlog(ML_ERROR,
2557                              "Inode %llu, attempted to remove extent block "
2558                              "%llu with %u records\n",
2559                              (unsigned long long)OCFS2_I(inode)->ip_blkno,
2560                              (unsigned long long)le64_to_cpu(eb->h_blkno),
2561                              le16_to_cpu(el->l_next_free_rec));
2562
2563                         ocfs2_journal_dirty(handle, bh);
2564                         ocfs2_remove_from_cache(INODE_CACHE(inode), bh);
2565                         continue;
2566                 }
2567
2568                 el->l_next_free_rec = 0;
2569                 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2570
2571                 ocfs2_journal_dirty(handle, bh);
2572
2573                 ret = ocfs2_cache_extent_block_free(dealloc, eb);
2574                 if (ret)
2575                         mlog_errno(ret);
2576
2577                 ocfs2_remove_from_cache(INODE_CACHE(inode), bh);
2578         }
2579 }
2580
2581 static void ocfs2_unlink_subtree(struct inode *inode, handle_t *handle,
2582                                  struct ocfs2_path *left_path,
2583                                  struct ocfs2_path *right_path,
2584                                  int subtree_index,
2585                                  struct ocfs2_cached_dealloc_ctxt *dealloc)
2586 {
2587         int i;
2588         struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
2589         struct ocfs2_extent_list *root_el = left_path->p_node[subtree_index].el;
2590         struct ocfs2_extent_list *el;
2591         struct ocfs2_extent_block *eb;
2592
2593         el = path_leaf_el(left_path);
2594
2595         eb = (struct ocfs2_extent_block *)right_path->p_node[subtree_index + 1].bh->b_data;
2596
2597         for(i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++)
2598                 if (root_el->l_recs[i].e_blkno == eb->h_blkno)
2599                         break;
2600
2601         BUG_ON(i >= le16_to_cpu(root_el->l_next_free_rec));
2602
2603         memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
2604         le16_add_cpu(&root_el->l_next_free_rec, -1);
2605
2606         eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2607         eb->h_next_leaf_blk = 0;
2608
2609         ocfs2_journal_dirty(handle, root_bh);
2610         ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2611
2612         ocfs2_unlink_path(inode, handle, dealloc, right_path,
2613                           subtree_index + 1);
2614 }
2615
2616 static int ocfs2_rotate_subtree_left(struct inode *inode, handle_t *handle,
2617                                      struct ocfs2_path *left_path,
2618                                      struct ocfs2_path *right_path,
2619                                      int subtree_index,
2620                                      struct ocfs2_cached_dealloc_ctxt *dealloc,
2621                                      int *deleted,
2622                                      struct ocfs2_extent_tree *et)
2623 {
2624         int ret, i, del_right_subtree = 0, right_has_empty = 0;
2625         struct buffer_head *root_bh, *et_root_bh = path_root_bh(right_path);
2626         struct ocfs2_extent_list *right_leaf_el, *left_leaf_el;
2627         struct ocfs2_extent_block *eb;
2628
2629         *deleted = 0;
2630
2631         right_leaf_el = path_leaf_el(right_path);
2632         left_leaf_el = path_leaf_el(left_path);
2633         root_bh = left_path->p_node[subtree_index].bh;
2634         BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
2635
2636         if (!ocfs2_is_empty_extent(&left_leaf_el->l_recs[0]))
2637                 return 0;
2638
2639         eb = (struct ocfs2_extent_block *)path_leaf_bh(right_path)->b_data;
2640         if (ocfs2_is_empty_extent(&right_leaf_el->l_recs[0])) {
2641                 /*
2642                  * It's legal for us to proceed if the right leaf is
2643                  * the rightmost one and it has an empty extent. There
2644                  * are two cases to handle - whether the leaf will be
2645                  * empty after removal or not. If the leaf isn't empty
2646                  * then just remove the empty extent up front. The
2647                  * next block will handle empty leaves by flagging
2648                  * them for unlink.
2649                  *
2650                  * Non rightmost leaves will throw -EAGAIN and the
2651                  * caller can manually move the subtree and retry.
2652                  */
2653
2654                 if (eb->h_next_leaf_blk != 0ULL)
2655                         return -EAGAIN;
2656
2657                 if (le16_to_cpu(right_leaf_el->l_next_free_rec) > 1) {
2658                         ret = ocfs2_journal_access_eb(handle, INODE_CACHE(inode),
2659                                                       path_leaf_bh(right_path),
2660                                                       OCFS2_JOURNAL_ACCESS_WRITE);
2661                         if (ret) {
2662                                 mlog_errno(ret);
2663                                 goto out;
2664                         }
2665
2666                         ocfs2_remove_empty_extent(right_leaf_el);
2667                 } else
2668                         right_has_empty = 1;
2669         }
2670
2671         if (eb->h_next_leaf_blk == 0ULL &&
2672             le16_to_cpu(right_leaf_el->l_next_free_rec) == 1) {
2673                 /*
2674                  * We have to update i_last_eb_blk during the meta
2675                  * data delete.
2676                  */
2677                 ret = ocfs2_et_root_journal_access(handle, INODE_CACHE(inode), et,
2678                                                    OCFS2_JOURNAL_ACCESS_WRITE);
2679                 if (ret) {
2680                         mlog_errno(ret);
2681                         goto out;
2682                 }
2683
2684                 del_right_subtree = 1;
2685         }
2686
2687         /*
2688          * Getting here with an empty extent in the right path implies
2689          * that it's the rightmost path and will be deleted.
2690          */
2691         BUG_ON(right_has_empty && !del_right_subtree);
2692
2693         ret = ocfs2_path_bh_journal_access(handle, INODE_CACHE(inode), right_path,
2694                                            subtree_index);
2695         if (ret) {
2696                 mlog_errno(ret);
2697                 goto out;
2698         }
2699
2700         for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
2701                 ret = ocfs2_path_bh_journal_access(handle, INODE_CACHE(inode),
2702                                                    right_path, i);
2703                 if (ret) {
2704                         mlog_errno(ret);
2705                         goto out;
2706                 }
2707
2708                 ret = ocfs2_path_bh_journal_access(handle, INODE_CACHE(inode),
2709                                                    left_path, i);
2710                 if (ret) {
2711                         mlog_errno(ret);
2712                         goto out;
2713                 }
2714         }
2715
2716         if (!right_has_empty) {
2717                 /*
2718                  * Only do this if we're moving a real
2719                  * record. Otherwise, the action is delayed until
2720                  * after removal of the right path in which case we
2721                  * can do a simple shift to remove the empty extent.
2722                  */
2723                 ocfs2_rotate_leaf(left_leaf_el, &right_leaf_el->l_recs[0]);
2724                 memset(&right_leaf_el->l_recs[0], 0,
2725                        sizeof(struct ocfs2_extent_rec));
2726         }
2727         if (eb->h_next_leaf_blk == 0ULL) {
2728                 /*
2729                  * Move recs over to get rid of empty extent, decrease
2730                  * next_free. This is allowed to remove the last
2731                  * extent in our leaf (setting l_next_free_rec to
2732                  * zero) - the delete code below won't care.
2733                  */
2734                 ocfs2_remove_empty_extent(right_leaf_el);
2735         }
2736
2737         ret = ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2738         if (ret)
2739                 mlog_errno(ret);
2740         ret = ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
2741         if (ret)
2742                 mlog_errno(ret);
2743
2744         if (del_right_subtree) {
2745                 ocfs2_unlink_subtree(inode, handle, left_path, right_path,
2746                                      subtree_index, dealloc);
2747                 ret = ocfs2_update_edge_lengths(inode, handle, subtree_index,
2748                                                 left_path);
2749                 if (ret) {
2750                         mlog_errno(ret);
2751                         goto out;
2752                 }
2753
2754                 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2755                 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
2756
2757                 /*
2758                  * Removal of the extent in the left leaf was skipped
2759                  * above so we could delete the right path
2760                  * 1st.
2761                  */
2762                 if (right_has_empty)
2763                         ocfs2_remove_empty_extent(left_leaf_el);
2764
2765                 ret = ocfs2_journal_dirty(handle, et_root_bh);
2766                 if (ret)
2767                         mlog_errno(ret);
2768
2769                 *deleted = 1;
2770         } else
2771                 ocfs2_complete_edge_insert(inode, handle, left_path, right_path,
2772                                            subtree_index);
2773
2774 out:
2775         return ret;
2776 }
2777
2778 /*
2779  * Given a full path, determine what cpos value would return us a path
2780  * containing the leaf immediately to the right of the current one.
2781  *
2782  * Will return zero if the path passed in is already the rightmost path.
2783  *
2784  * This looks similar, but is subtly different to
2785  * ocfs2_find_cpos_for_left_leaf().
2786  */
2787 static int ocfs2_find_cpos_for_right_leaf(struct super_block *sb,
2788                                           struct ocfs2_path *path, u32 *cpos)
2789 {
2790         int i, j, ret = 0;
2791         u64 blkno;
2792         struct ocfs2_extent_list *el;
2793
2794         *cpos = 0;
2795
2796         if (path->p_tree_depth == 0)
2797                 return 0;
2798
2799         blkno = path_leaf_bh(path)->b_blocknr;
2800
2801         /* Start at the tree node just above the leaf and work our way up. */
2802         i = path->p_tree_depth - 1;
2803         while (i >= 0) {
2804                 int next_free;
2805
2806                 el = path->p_node[i].el;
2807
2808                 /*
2809                  * Find the extent record just after the one in our
2810                  * path.
2811                  */
2812                 next_free = le16_to_cpu(el->l_next_free_rec);
2813                 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
2814                         if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
2815                                 if (j == (next_free - 1)) {
2816                                         if (i == 0) {
2817                                                 /*
2818                                                  * We've determined that the
2819                                                  * path specified is already
2820                                                  * the rightmost one - return a
2821                                                  * cpos of zero.
2822                                                  */
2823                                                 goto out;
2824                                         }
2825                                         /*
2826                                          * The rightmost record points to our
2827                                          * leaf - we need to travel up the
2828                                          * tree one level.
2829                                          */
2830                                         goto next_node;
2831                                 }
2832
2833                                 *cpos = le32_to_cpu(el->l_recs[j + 1].e_cpos);
2834                                 goto out;
2835                         }
2836                 }
2837
2838                 /*
2839                  * If we got here, we never found a valid node where
2840                  * the tree indicated one should be.
2841                  */
2842                 ocfs2_error(sb,
2843                             "Invalid extent tree at extent block %llu\n",
2844                             (unsigned long long)blkno);
2845                 ret = -EROFS;
2846                 goto out;
2847
2848 next_node:
2849                 blkno = path->p_node[i].bh->b_blocknr;
2850                 i--;
2851         }
2852
2853 out:
2854         return ret;
2855 }
2856
2857 static int ocfs2_rotate_rightmost_leaf_left(struct inode *inode,
2858                                             handle_t *handle,
2859                                             struct ocfs2_path *path)
2860 {
2861         int ret;
2862         struct buffer_head *bh = path_leaf_bh(path);
2863         struct ocfs2_extent_list *el = path_leaf_el(path);
2864
2865         if (!ocfs2_is_empty_extent(&el->l_recs[0]))
2866                 return 0;
2867
2868         ret = ocfs2_path_bh_journal_access(handle, INODE_CACHE(inode), path,
2869                                            path_num_items(path) - 1);
2870         if (ret) {
2871                 mlog_errno(ret);
2872                 goto out;
2873         }
2874
2875         ocfs2_remove_empty_extent(el);
2876
2877         ret = ocfs2_journal_dirty(handle, bh);
2878         if (ret)
2879                 mlog_errno(ret);
2880
2881 out:
2882         return ret;
2883 }
2884
2885 static int __ocfs2_rotate_tree_left(struct inode *inode,
2886                                     handle_t *handle, int orig_credits,
2887                                     struct ocfs2_path *path,
2888                                     struct ocfs2_cached_dealloc_ctxt *dealloc,
2889                                     struct ocfs2_path **empty_extent_path,
2890                                     struct ocfs2_extent_tree *et)
2891 {
2892         int ret, subtree_root, deleted;
2893         u32 right_cpos;
2894         struct ocfs2_path *left_path = NULL;
2895         struct ocfs2_path *right_path = NULL;
2896
2897         BUG_ON(!ocfs2_is_empty_extent(&(path_leaf_el(path)->l_recs[0])));
2898
2899         *empty_extent_path = NULL;
2900
2901         ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, path,
2902                                              &right_cpos);
2903         if (ret) {
2904                 mlog_errno(ret);
2905                 goto out;
2906         }
2907
2908         left_path = ocfs2_new_path_from_path(path);
2909         if (!left_path) {
2910                 ret = -ENOMEM;
2911                 mlog_errno(ret);
2912                 goto out;
2913         }
2914
2915         ocfs2_cp_path(left_path, path);
2916
2917         right_path = ocfs2_new_path_from_path(path);
2918         if (!right_path) {
2919                 ret = -ENOMEM;
2920                 mlog_errno(ret);
2921                 goto out;
2922         }
2923
2924         while (right_cpos) {
2925                 ret = ocfs2_find_path(inode, right_path, right_cpos);
2926                 if (ret) {
2927                         mlog_errno(ret);
2928                         goto out;
2929                 }
2930
2931                 subtree_root = ocfs2_find_subtree_root(inode, left_path,
2932                                                        right_path);
2933
2934                 mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n",
2935                      subtree_root,
2936                      (unsigned long long)
2937                      right_path->p_node[subtree_root].bh->b_blocknr,
2938                      right_path->p_tree_depth);
2939
2940                 ret = ocfs2_extend_rotate_transaction(handle, subtree_root,
2941                                                       orig_credits, left_path);
2942                 if (ret) {
2943                         mlog_errno(ret);
2944                         goto out;
2945                 }
2946
2947                 /*
2948                  * Caller might still want to make changes to the
2949                  * tree root, so re-add it to the journal here.
2950                  */
2951                 ret = ocfs2_path_bh_journal_access(handle, INODE_CACHE(inode),
2952                                                    left_path, 0);
2953                 if (ret) {
2954                         mlog_errno(ret);
2955                         goto out;
2956                 }
2957
2958                 ret = ocfs2_rotate_subtree_left(inode, handle, left_path,
2959                                                 right_path, subtree_root,
2960                                                 dealloc, &deleted, et);
2961                 if (ret == -EAGAIN) {
2962                         /*
2963                          * The rotation has to temporarily stop due to
2964                          * the right subtree having an empty
2965                          * extent. Pass it back to the caller for a
2966                          * fixup.
2967                          */
2968                         *empty_extent_path = right_path;
2969                         right_path = NULL;
2970                         goto out;
2971                 }
2972                 if (ret) {
2973                         mlog_errno(ret);
2974                         goto out;
2975                 }
2976
2977                 /*
2978                  * The subtree rotate might have removed records on
2979                  * the rightmost edge. If so, then rotation is
2980                  * complete.
2981                  */
2982                 if (deleted)
2983                         break;
2984
2985                 ocfs2_mv_path(left_path, right_path);
2986
2987                 ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, left_path,
2988                                                      &right_cpos);
2989                 if (ret) {
2990                         mlog_errno(ret);
2991                         goto out;
2992                 }
2993         }
2994
2995 out:
2996         ocfs2_free_path(right_path);
2997         ocfs2_free_path(left_path);
2998
2999         return ret;
3000 }
3001
3002 static int ocfs2_remove_rightmost_path(struct inode *inode, handle_t *handle,
3003                                 struct ocfs2_path *path,
3004                                 struct ocfs2_cached_dealloc_ctxt *dealloc,
3005                                 struct ocfs2_extent_tree *et)
3006 {
3007         int ret, subtree_index;
3008         u32 cpos;
3009         struct ocfs2_path *left_path = NULL;
3010         struct ocfs2_extent_block *eb;
3011         struct ocfs2_extent_list *el;
3012
3013
3014         ret = ocfs2_et_sanity_check(inode, et);
3015         if (ret)
3016                 goto out;
3017         /*
3018          * There's two ways we handle this depending on
3019          * whether path is the only existing one.
3020          */
3021         ret = ocfs2_extend_rotate_transaction(handle, 0,
3022                                               handle->h_buffer_credits,
3023                                               path);
3024         if (ret) {
3025                 mlog_errno(ret);
3026                 goto out;
3027         }
3028
3029         ret = ocfs2_journal_access_path(INODE_CACHE(inode), handle, path);
3030         if (ret) {
3031                 mlog_errno(ret);
3032                 goto out;
3033         }
3034
3035         ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, &cpos);
3036         if (ret) {
3037                 mlog_errno(ret);
3038                 goto out;
3039         }
3040
3041         if (cpos) {
3042                 /*
3043                  * We have a path to the left of this one - it needs
3044                  * an update too.
3045                  */
3046                 left_path = ocfs2_new_path_from_path(path);
3047                 if (!left_path) {
3048                         ret = -ENOMEM;
3049                         mlog_errno(ret);
3050                         goto out;
3051                 }
3052
3053                 ret = ocfs2_find_path(inode, left_path, cpos);
3054                 if (ret) {
3055                         mlog_errno(ret);
3056                         goto out;
3057                 }
3058
3059                 ret = ocfs2_journal_access_path(INODE_CACHE(inode), handle, left_path);
3060                 if (ret) {
3061                         mlog_errno(ret);
3062                         goto out;
3063                 }
3064
3065                 subtree_index = ocfs2_find_subtree_root(inode, left_path, path);
3066
3067                 ocfs2_unlink_subtree(inode, handle, left_path, path,
3068                                      subtree_index, dealloc);
3069                 ret = ocfs2_update_edge_lengths(inode, handle, subtree_index,
3070                                                 left_path);
3071                 if (ret) {
3072                         mlog_errno(ret);
3073                         goto out;
3074                 }
3075
3076                 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
3077                 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
3078         } else {
3079                 /*
3080                  * 'path' is also the leftmost path which
3081                  * means it must be the only one. This gets
3082                  * handled differently because we want to
3083                  * revert the inode back to having extents
3084                  * in-line.
3085                  */
3086                 ocfs2_unlink_path(inode, handle, dealloc, path, 1);
3087
3088                 el = et->et_root_el;
3089                 el->l_tree_depth = 0;
3090                 el->l_next_free_rec = 0;
3091                 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
3092
3093                 ocfs2_et_set_last_eb_blk(et, 0);
3094         }
3095
3096         ocfs2_journal_dirty(handle, path_root_bh(path));
3097
3098 out:
3099         ocfs2_free_path(left_path);
3100         return ret;
3101 }
3102
3103 /*
3104  * Left rotation of btree records.
3105  *
3106  * In many ways, this is (unsurprisingly) the opposite of right
3107  * rotation. We start at some non-rightmost path containing an empty
3108  * extent in the leaf block. The code works its way to the rightmost
3109  * path by rotating records to the left in every subtree.
3110  *
3111  * This is used by any code which reduces the number of extent records
3112  * in a leaf. After removal, an empty record should be placed in the
3113  * leftmost list position.
3114  *
3115  * This won't handle a length update of the rightmost path records if
3116  * the rightmost tree leaf record is removed so the caller is
3117  * responsible for detecting and correcting that.
3118  */
3119 static int ocfs2_rotate_tree_left(struct inode *inode, handle_t *handle,
3120                                   struct ocfs2_path *path,
3121                                   struct ocfs2_cached_dealloc_ctxt *dealloc,
3122                                   struct ocfs2_extent_tree *et)
3123 {
3124         int ret, orig_credits = handle->h_buffer_credits;
3125         struct ocfs2_path *tmp_path = NULL, *restart_path = NULL;
3126         struct ocfs2_extent_block *eb;
3127         struct ocfs2_extent_list *el;
3128
3129         el = path_leaf_el(path);
3130         if (!ocfs2_is_empty_extent(&el->l_recs[0]))
3131                 return 0;
3132
3133         if (path->p_tree_depth == 0) {
3134 rightmost_no_delete:
3135                 /*
3136                  * Inline extents. This is trivially handled, so do
3137                  * it up front.
3138                  */
3139                 ret = ocfs2_rotate_rightmost_leaf_left(inode, handle,
3140                                                        path);
3141                 if (ret)
3142                         mlog_errno(ret);
3143                 goto out;
3144         }
3145
3146         /*
3147          * Handle rightmost branch now. There's several cases:
3148          *  1) simple rotation leaving records in there. That's trivial.
3149          *  2) rotation requiring a branch delete - there's no more
3150          *     records left. Two cases of this:
3151          *     a) There are branches to the left.
3152          *     b) This is also the leftmost (the only) branch.
3153          *
3154          *  1) is handled via ocfs2_rotate_rightmost_leaf_left()
3155          *  2a) we need the left branch so that we can update it with the unlink
3156          *  2b) we need to bring the inode back to inline extents.
3157          */
3158
3159         eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
3160         el = &eb->h_list;
3161         if (eb->h_next_leaf_blk == 0) {
3162                 /*
3163                  * This gets a bit tricky if we're going to delete the
3164                  * rightmost path. Get the other cases out of the way
3165                  * 1st.
3166                  */
3167                 if (le16_to_cpu(el->l_next_free_rec) > 1)
3168                         goto rightmost_no_delete;
3169
3170                 if (le16_to_cpu(el->l_next_free_rec) == 0) {
3171                         ret = -EIO;
3172                         ocfs2_error(inode->i_sb,
3173                                     "Inode %llu has empty extent block at %llu",
3174                                     (unsigned long long)OCFS2_I(inode)->ip_blkno,
3175                                     (unsigned long long)le64_to_cpu(eb->h_blkno));
3176                         goto out;
3177                 }
3178
3179                 /*
3180                  * XXX: The caller can not trust "path" any more after
3181                  * this as it will have been deleted. What do we do?
3182                  *
3183                  * In theory the rotate-for-merge code will never get
3184                  * here because it'll always ask for a rotate in a
3185                  * nonempty list.
3186                  */
3187
3188                 ret = ocfs2_remove_rightmost_path(inode, handle, path,
3189                                                   dealloc, et);
3190                 if (ret)
3191                         mlog_errno(ret);
3192                 goto out;
3193         }
3194
3195         /*
3196          * Now we can loop, remembering the path we get from -EAGAIN
3197          * and restarting from there.
3198          */
3199 try_rotate:
3200         ret = __ocfs2_rotate_tree_left(inode, handle, orig_credits, path,
3201                                        dealloc, &restart_path, et);
3202         if (ret && ret != -EAGAIN) {
3203                 mlog_errno(ret);
3204                 goto out;
3205         }
3206
3207         while (ret == -EAGAIN) {
3208                 tmp_path = restart_path;
3209                 restart_path = NULL;
3210
3211                 ret = __ocfs2_rotate_tree_left(inode, handle, orig_credits,
3212                                                tmp_path, dealloc,
3213                                                &restart_path, et);
3214                 if (ret && ret != -EAGAIN) {
3215                         mlog_errno(ret);
3216                         goto out;
3217                 }
3218
3219                 ocfs2_free_path(tmp_path);
3220                 tmp_path = NULL;
3221
3222                 if (ret == 0)
3223                         goto try_rotate;
3224         }
3225
3226 out:
3227         ocfs2_free_path(tmp_path);
3228         ocfs2_free_path(restart_path);
3229         return ret;
3230 }
3231
3232 static void ocfs2_cleanup_merge(struct ocfs2_extent_list *el,
3233                                 int index)
3234 {
3235         struct ocfs2_extent_rec *rec = &el->l_recs[index];
3236         unsigned int size;
3237
3238         if (rec->e_leaf_clusters == 0) {
3239                 /*
3240                  * We consumed all of the merged-from record. An empty
3241                  * extent cannot exist anywhere but the 1st array
3242                  * position, so move things over if the merged-from
3243                  * record doesn't occupy that position.
3244                  *
3245                  * This creates a new empty extent so the caller
3246                  * should be smart enough to have removed any existing
3247                  * ones.
3248                  */
3249                 if (index > 0) {
3250                         BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
3251                         size = index * sizeof(struct ocfs2_extent_rec);
3252                         memmove(&el->l_recs[1], &el->l_recs[0], size);
3253                 }
3254
3255                 /*
3256                  * Always memset - the caller doesn't check whether it
3257                  * created an empty extent, so there could be junk in
3258                  * the other fields.
3259                  */
3260                 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
3261         }
3262 }
3263
3264 static int ocfs2_get_right_path(struct inode *inode,
3265                                 struct ocfs2_path *left_path,
3266                                 struct ocfs2_path **ret_right_path)
3267 {
3268         int ret;
3269         u32 right_cpos;
3270         struct ocfs2_path *right_path = NULL;
3271         struct ocfs2_extent_list *left_el;
3272
3273         *ret_right_path = NULL;
3274
3275         /* This function shouldn't be called for non-trees. */
3276         BUG_ON(left_path->p_tree_depth == 0);
3277
3278         left_el = path_leaf_el(left_path);
3279         BUG_ON(left_el->l_next_free_rec != left_el->l_count);
3280
3281         ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, left_path,
3282                                              &right_cpos);
3283         if (ret) {
3284                 mlog_errno(ret);
3285                 goto out;
3286         }
3287
3288         /* This function shouldn't be called for the rightmost leaf. */
3289         BUG_ON(right_cpos == 0);
3290
3291         right_path = ocfs2_new_path_from_path(left_path);
3292         if (!right_path) {
3293                 ret = -ENOMEM;
3294                 mlog_errno(ret);
3295                 goto out;
3296         }
3297
3298         ret = ocfs2_find_path(inode, right_path, right_cpos);
3299         if (ret) {
3300                 mlog_errno(ret);
3301                 goto out;
3302         }
3303
3304         *ret_right_path = right_path;
3305 out:
3306         if (ret)
3307                 ocfs2_free_path(right_path);
3308         return ret;
3309 }
3310
3311 /*
3312  * Remove split_rec clusters from the record at index and merge them
3313  * onto the beginning of the record "next" to it.
3314  * For index < l_count - 1, the next means the extent rec at index + 1.
3315  * For index == l_count - 1, the "next" means the 1st extent rec of the
3316  * next extent block.
3317  */
3318 static int ocfs2_merge_rec_right(struct inode *inode,
3319                                  struct ocfs2_path *left_path,
3320                                  handle_t *handle,
3321                                  struct ocfs2_extent_rec *split_rec,
3322                                  int index)
3323 {
3324         int ret, next_free, i;
3325         unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
3326         struct ocfs2_extent_rec *left_rec;
3327         struct ocfs2_extent_rec *right_rec;
3328         struct ocfs2_extent_list *right_el;
3329         struct ocfs2_path *right_path = NULL;
3330         int subtree_index = 0;
3331         struct ocfs2_extent_list *el = path_leaf_el(left_path);
3332         struct buffer_head *bh = path_leaf_bh(left_path);
3333         struct buffer_head *root_bh = NULL;
3334
3335         BUG_ON(index >= le16_to_cpu(el->l_next_free_rec));
3336         left_rec = &el->l_recs[index];
3337
3338         if (index == le16_to_cpu(el->l_next_free_rec) - 1 &&
3339             le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count)) {
3340                 /* we meet with a cross extent block merge. */
3341                 ret = ocfs2_get_right_path(inode, left_path, &right_path);
3342                 if (ret) {
3343                         mlog_errno(ret);
3344                         goto out;
3345                 }
3346
3347                 right_el = path_leaf_el(right_path);
3348                 next_free = le16_to_cpu(right_el->l_next_free_rec);
3349                 BUG_ON(next_free <= 0);
3350                 right_rec = &right_el->l_recs[0];
3351                 if (ocfs2_is_empty_extent(right_rec)) {
3352                         BUG_ON(next_free <= 1);
3353                         right_rec = &right_el->l_recs[1];
3354                 }
3355
3356                 BUG_ON(le32_to_cpu(left_rec->e_cpos) +
3357                        le16_to_cpu(left_rec->e_leaf_clusters) !=
3358                        le32_to_cpu(right_rec->e_cpos));
3359
3360                 subtree_index = ocfs2_find_subtree_root(inode,
3361                                                         left_path, right_path);
3362
3363                 ret = ocfs2_extend_rotate_transaction(handle, subtree_index,
3364                                                       handle->h_buffer_credits,
3365                                                       right_path);
3366                 if (ret) {
3367                         mlog_errno(ret);
3368                         goto out;
3369                 }
3370
3371                 root_bh = left_path->p_node[subtree_index].bh;
3372                 BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
3373
3374                 ret = ocfs2_path_bh_journal_access(handle, INODE_CACHE(inode), right_path,
3375                                                    subtree_index);
3376                 if (ret) {
3377                         mlog_errno(ret);
3378                         goto out;
3379                 }
3380
3381                 for (i = subtree_index + 1;
3382                      i < path_num_items(right_path); i++) {
3383                         ret = ocfs2_path_bh_journal_access(handle, INODE_CACHE(inode),
3384                                                            right_path, i);
3385                         if (ret) {
3386                                 mlog_errno(ret);
3387                                 goto out;
3388                         }
3389
3390                         ret = ocfs2_path_bh_journal_access(handle, INODE_CACHE(inode),
3391                                                            left_path, i);
3392                         if (ret) {
3393                                 mlog_errno(ret);
3394                                 goto out;
3395                         }
3396                 }
3397
3398         } else {
3399                 BUG_ON(index == le16_to_cpu(el->l_next_free_rec) - 1);
3400                 right_rec = &el->l_recs[index + 1];
3401         }
3402
3403         ret = ocfs2_path_bh_journal_access(handle, INODE_CACHE(inode), left_path,
3404                                            path_num_items(left_path) - 1);
3405         if (ret) {
3406                 mlog_errno(ret);
3407                 goto out;
3408         }
3409
3410         le16_add_cpu(&left_rec->e_leaf_clusters, -split_clusters);
3411
3412         le32_add_cpu(&right_rec->e_cpos, -split_clusters);
3413         le64_add_cpu(&right_rec->e_blkno,
3414                      -ocfs2_clusters_to_blocks(inode->i_sb, split_clusters));
3415         le16_add_cpu(&right_rec->e_leaf_clusters, split_clusters);
3416
3417         ocfs2_cleanup_merge(el, index);
3418
3419         ret = ocfs2_journal_dirty(handle, bh);
3420         if (ret)
3421                 mlog_errno(ret);
3422
3423         if (right_path) {
3424                 ret = ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
3425                 if (ret)
3426                         mlog_errno(ret);
3427
3428                 ocfs2_complete_edge_insert(inode, handle, left_path,
3429                                            right_path, subtree_index);
3430         }
3431 out:
3432         if (right_path)
3433                 ocfs2_free_path(right_path);
3434         return ret;
3435 }
3436
3437 static int ocfs2_get_left_path(struct inode *inode,
3438                                struct ocfs2_path *right_path,
3439                                struct ocfs2_path **ret_left_path)
3440 {
3441         int ret;
3442         u32 left_cpos;
3443         struct ocfs2_path *left_path = NULL;
3444
3445         *ret_left_path = NULL;
3446
3447         /* This function shouldn't be called for non-trees. */
3448         BUG_ON(right_path->p_tree_depth == 0);
3449
3450         ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb,
3451                                             right_path, &left_cpos);
3452         if (ret) {
3453                 mlog_errno(ret);
3454                 goto out;
3455         }
3456
3457         /* This function shouldn't be called for the leftmost leaf. */
3458         BUG_ON(left_cpos == 0);
3459
3460         left_path = ocfs2_new_path_from_path(right_path);
3461         if (!left_path) {
3462                 ret = -ENOMEM;
3463                 mlog_errno(ret);
3464                 goto out;
3465         }
3466
3467         ret = ocfs2_find_path(inode, left_path, left_cpos);
3468         if (ret) {
3469                 mlog_errno(ret);
3470                 goto out;
3471         }
3472
3473         *ret_left_path = left_path;
3474 out:
3475         if (ret)
3476                 ocfs2_free_path(left_path);
3477         return ret;
3478 }
3479
3480 /*
3481  * Remove split_rec clusters from the record at index and merge them
3482  * onto the tail of the record "before" it.
3483  * For index > 0, the "before" means the extent rec at index - 1.
3484  *
3485  * For index == 0, the "before" means the last record of the previous
3486  * extent block. And there is also a situation that we may need to
3487  * remove the rightmost leaf extent block in the right_path and change
3488  * the right path to indicate the new rightmost path.
3489  */
3490 static int ocfs2_merge_rec_left(struct inode *inode,
3491                                 struct ocfs2_path *right_path,
3492                                 handle_t *handle,
3493                                 struct ocfs2_extent_rec *split_rec,
3494                                 struct ocfs2_cached_dealloc_ctxt *dealloc,
3495                                 struct ocfs2_extent_tree *et,
3496                                 int index)
3497 {
3498         int ret, i, subtree_index = 0, has_empty_extent = 0;
3499         unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
3500         struct ocfs2_extent_rec *left_rec;
3501         struct ocfs2_extent_rec *right_rec;
3502         struct ocfs2_extent_list *el = path_leaf_el(right_path);
3503         struct buffer_head *bh = path_leaf_bh(right_path);
3504         struct buffer_head *root_bh = NULL;
3505         struct ocfs2_path *left_path = NULL;
3506         struct ocfs2_extent_list *left_el;
3507
3508         BUG_ON(index < 0);
3509
3510         right_rec = &el->l_recs[index];
3511         if (index == 0) {
3512                 /* we meet with a cross extent block merge. */
3513                 ret = ocfs2_get_left_path(inode, right_path, &left_path);
3514                 if (ret) {
3515                         mlog_errno(ret);
3516                         goto out;
3517                 }
3518
3519                 left_el = path_leaf_el(left_path);
3520                 BUG_ON(le16_to_cpu(left_el->l_next_free_rec) !=
3521                        le16_to_cpu(left_el->l_count));
3522
3523                 left_rec = &left_el->l_recs[
3524                                 le16_to_cpu(left_el->l_next_free_rec) - 1];
3525                 BUG_ON(le32_to_cpu(left_rec->e_cpos) +
3526                        le16_to_cpu(left_rec->e_leaf_clusters) !=
3527                        le32_to_cpu(split_rec->e_cpos));
3528
3529                 subtree_index = ocfs2_find_subtree_root(inode,
3530                                                         left_path, right_path);
3531
3532                 ret = ocfs2_extend_rotate_transaction(handle, subtree_index,
3533                                                       handle->h_buffer_credits,
3534                                                       left_path);
3535                 if (ret) {
3536                         mlog_errno(ret);
3537                         goto out;
3538                 }
3539
3540                 root_bh = left_path->p_node[subtree_index].bh;
3541                 BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
3542
3543                 ret = ocfs2_path_bh_journal_access(handle, INODE_CACHE(inode), right_path,
3544                                                    subtree_index);
3545                 if (ret) {
3546                         mlog_errno(ret);
3547                         goto out;
3548                 }
3549
3550                 for (i = subtree_index + 1;
3551                      i < path_num_items(right_path); i++) {
3552                         ret = ocfs2_path_bh_journal_access(handle, INODE_CACHE(inode),
3553                                                            right_path, i);
3554                         if (ret) {
3555                                 mlog_errno(ret);
3556                                 goto out;
3557                         }
3558
3559                         ret = ocfs2_path_bh_journal_access(handle, INODE_CACHE(inode),
3560                                                            left_path, i);
3561                         if (ret) {
3562                                 mlog_errno(ret);
3563                                 goto out;
3564                         }
3565                 }
3566         } else {
3567                 left_rec = &el->l_recs[index - 1];
3568                 if (ocfs2_is_empty_extent(&el->l_recs[0]))
3569                         has_empty_extent = 1;
3570         }
3571
3572         ret = ocfs2_path_bh_journal_access(handle, INODE_CACHE(inode), right_path,
3573                                            path_num_items(right_path) - 1);
3574         if (ret) {
3575                 mlog_errno(ret);
3576                 goto out;
3577         }
3578
3579         if (has_empty_extent && index == 1) {
3580                 /*
3581                  * The easy case - we can just plop the record right in.
3582                  */
3583                 *left_rec = *split_rec;
3584
3585                 has_empty_extent = 0;
3586         } else
3587                 le16_add_cpu(&left_rec->e_leaf_clusters, split_clusters);
3588
3589         le32_add_cpu(&right_rec->e_cpos, split_clusters);
3590         le64_add_cpu(&right_rec->e_blkno,
3591                      ocfs2_clusters_to_blocks(inode->i_sb, split_clusters));
3592         le16_add_cpu(&right_rec->e_leaf_clusters, -split_clusters);
3593
3594         ocfs2_cleanup_merge(el, index);
3595
3596         ret = ocfs2_journal_dirty(handle, bh);
3597         if (ret)
3598                 mlog_errno(ret);
3599
3600         if (left_path) {
3601                 ret = ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
3602                 if (ret)
3603                         mlog_errno(ret);
3604
3605                 /*
3606                  * In the situation that the right_rec is empty and the extent
3607                  * block is empty also,  ocfs2_complete_edge_insert can't handle
3608                  * it and we need to delete the right extent block.
3609                  */
3610                 if (le16_to_cpu(right_rec->e_leaf_clusters) == 0 &&
3611                     le16_to_cpu(el->l_next_free_rec) == 1) {
3612
3613                         ret = ocfs2_remove_rightmost_path(inode, handle,
3614                                                           right_path,
3615                                                           dealloc, et);
3616                         if (ret) {
3617                                 mlog_errno(ret);
3618                                 goto out;
3619                         }
3620
3621                         /* Now the rightmost extent block has been deleted.
3622                          * So we use the new rightmost path.
3623                          */
3624                         ocfs2_mv_path(right_path, left_path);
3625                         left_path = NULL;
3626                 } else
3627                         ocfs2_complete_edge_insert(inode, handle, left_path,
3628                                                    right_path, subtree_index);
3629         }
3630 out:
3631         if (left_path)
3632                 ocfs2_free_path(left_path);
3633         return ret;
3634 }
3635
3636 static int ocfs2_try_to_merge_extent(struct inode *inode,
3637                                      handle_t *handle,
3638                                      struct ocfs2_path *path,
3639                                      int split_index,
3640                                      struct ocfs2_extent_rec *split_rec,
3641                                      struct ocfs2_cached_dealloc_ctxt *dealloc,
3642                                      struct ocfs2_merge_ctxt *ctxt,
3643                                      struct ocfs2_extent_tree *et)
3644
3645 {
3646         int ret = 0;
3647         struct ocfs2_extent_list *el = path_leaf_el(path);
3648         struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
3649
3650         BUG_ON(ctxt->c_contig_type == CONTIG_NONE);
3651
3652         if (ctxt->c_split_covers_rec && ctxt->c_has_empty_extent) {
3653                 /*
3654                  * The merge code will need to create an empty
3655                  * extent to take the place of the newly
3656                  * emptied slot. Remove any pre-existing empty
3657                  * extents - having more than one in a leaf is
3658                  * illegal.
3659                  */
3660                 ret = ocfs2_rotate_tree_left(inode, handle, path,
3661                                              dealloc, et);
3662                 if (ret) {
3663                         mlog_errno(ret);
3664                         goto out;
3665                 }
3666                 split_index--;
3667                 rec = &el->l_recs[split_index];
3668         }
3669
3670         if (ctxt->c_contig_type == CONTIG_LEFTRIGHT) {
3671                 /*
3672                  * Left-right contig implies this.
3673                  */
3674                 BUG_ON(!ctxt->c_split_covers_rec);
3675
3676                 /*
3677                  * Since the leftright insert always covers the entire
3678                  * extent, this call will delete the insert record
3679                  * entirely, resulting in an empty extent record added to
3680                  * the extent block.
3681                  *
3682                  * Since the adding of an empty extent shifts
3683                  * everything back to the right, there's no need to
3684                  * update split_index here.
3685                  *
3686                  * When the split_index is zero, we need to merge it to the
3687                  * prevoius extent block. It is more efficient and easier
3688                  * if we do merge_right first and merge_left later.
3689                  */
3690                 ret = ocfs2_merge_rec_right(inode, path,
3691                                             handle, split_rec,
3692                                             split_index);
3693                 if (ret) {
3694                         mlog_errno(ret);
3695                         goto out;
3696                 }
3697
3698                 /*
3699                  * We can only get this from logic error above.
3700                  */
3701                 BUG_ON(!ocfs2_is_empty_extent(&el->l_recs[0]));
3702
3703                 /* The merge left us with an empty extent, remove it. */
3704                 ret = ocfs2_rotate_tree_left(inode, handle, path,
3705                                              dealloc, et);
3706                 if (ret) {
3707                         mlog_errno(ret);
3708                         goto out;
3709                 }
3710
3711                 rec = &el->l_recs[split_index];
3712
3713                 /*
3714                  * Note that we don't pass split_rec here on purpose -
3715                  * we've merged it into the rec already.
3716                  */
3717                 ret = ocfs2_merge_rec_left(inode, path,
3718                                            handle, rec,
3719                                            dealloc, et,
3720                                            split_index);
3721
3722                 if (ret) {
3723                         mlog_errno(ret);
3724                         goto out;
3725                 }
3726
3727                 ret = ocfs2_rotate_tree_left(inode, handle, path,
3728                                              dealloc, et);
3729                 /*
3730                  * Error from this last rotate is not critical, so
3731                  * print but don't bubble it up.
3732                  */
3733                 if (ret)
3734                         mlog_errno(ret);
3735                 ret = 0;
3736         } else {
3737                 /*
3738                  * Merge a record to the left or right.
3739                  *
3740                  * 'contig_type' is relative to the existing record,
3741                  * so for example, if we're "right contig", it's to
3742                  * the record on the left (hence the left merge).
3743                  */
3744                 if (ctxt->c_contig_type == CONTIG_RIGHT) {
3745                         ret = ocfs2_merge_rec_left(inode,
3746                                                    path,
3747                                                    handle, split_rec,
3748                                                    dealloc, et,
3749                                                    split_index);
3750                         if (ret) {
3751                                 mlog_errno(ret);
3752                                 goto out;
3753                         }
3754                 } else {
3755                         ret = ocfs2_merge_rec_right(inode,
3756                                                     path,
3757                                                     handle, split_rec,
3758                                                     split_index);
3759                         if (ret) {
3760                                 mlog_errno(ret);
3761                                 goto out;
3762                         }
3763                 }
3764
3765                 if (ctxt->c_split_covers_rec) {
3766                         /*
3767                          * The merge may have left an empty extent in
3768                          * our leaf. Try to rotate it away.
3769                          */
3770                         ret = ocfs2_rotate_tree_left(inode, handle, path,
3771                                                      dealloc, et);
3772                         if (ret)
3773                                 mlog_errno(ret);
3774                         ret = 0;
3775                 }
3776         }
3777
3778 out:
3779         return ret;
3780 }
3781
3782 static void ocfs2_subtract_from_rec(struct super_block *sb,
3783                                     enum ocfs2_split_type split,
3784                                     struct ocfs2_extent_rec *rec,
3785                                     struct ocfs2_extent_rec *split_rec)
3786 {
3787         u64 len_blocks;
3788
3789         len_blocks = ocfs2_clusters_to_blocks(sb,
3790                                 le16_to_cpu(split_rec->e_leaf_clusters));
3791
3792         if (split == SPLIT_LEFT) {
3793                 /*
3794                  * Region is on the left edge of the existing
3795                  * record.
3796                  */
3797                 le32_add_cpu(&rec->e_cpos,
3798                              le16_to_cpu(split_rec->e_leaf_clusters));
3799                 le64_add_cpu(&rec->e_blkno, len_blocks);
3800                 le16_add_cpu(&rec->e_leaf_clusters,
3801                              -le16_to_cpu(split_rec->e_leaf_clusters));
3802         } else {
3803                 /*
3804                  * Region is on the right edge of the existing
3805                  * record.
3806                  */
3807                 le16_add_cpu(&rec->e_leaf_clusters,
3808                              -le16_to_cpu(split_rec->e_leaf_clusters));
3809         }
3810 }
3811
3812 /*
3813  * Do the final bits of extent record insertion at the target leaf
3814  * list. If this leaf is part of an allocation tree, it is assumed
3815  * that the tree above has been prepared.
3816  */
3817 static void ocfs2_insert_at_leaf(struct ocfs2_extent_rec *insert_rec,
3818                                  struct ocfs2_extent_list *el,
3819                                  struct ocfs2_insert_type *insert,
3820                                  struct inode *inode)
3821 {
3822         int i = insert->ins_contig_index;
3823         unsigned int range;
3824         struct ocfs2_extent_rec *rec;
3825
3826         BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
3827
3828         if (insert->ins_split != SPLIT_NONE) {
3829                 i = ocfs2_search_extent_list(el, le32_to_cpu(insert_rec->e_cpos));
3830                 BUG_ON(i == -1);
3831                 rec = &el->l_recs[i];
3832                 ocfs2_subtract_from_rec(inode->i_sb, insert->ins_split, rec,
3833                                         insert_rec);
3834                 goto rotate;
3835         }
3836
3837         /*
3838          * Contiguous insert - either left or right.
3839          */
3840         if (insert->ins_contig != CONTIG_NONE) {
3841                 rec = &el->l_recs[i];
3842                 if (insert->ins_contig == CONTIG_LEFT) {
3843                         rec->e_blkno = insert_rec->e_blkno;
3844                         rec->e_cpos = insert_rec->e_cpos;
3845                 }
3846                 le16_add_cpu(&rec->e_leaf_clusters,
3847                              le16_to_cpu(insert_rec->e_leaf_clusters));
3848                 return;
3849         }
3850
3851         /*
3852          * Handle insert into an empty leaf.
3853          */
3854         if (le16_to_cpu(el->l_next_free_rec) == 0 ||
3855             ((le16_to_cpu(el->l_next_free_rec) == 1) &&
3856              ocfs2_is_empty_extent(&el->l_recs[0]))) {
3857                 el->l_recs[0] = *insert_rec;
3858                 el->l_next_free_rec = cpu_to_le16(1);
3859                 return;
3860         }
3861
3862         /*
3863          * Appending insert.
3864          */
3865         if (insert->ins_appending == APPEND_TAIL) {
3866                 i = le16_to_cpu(el->l_next_free_rec) - 1;
3867                 rec = &el->l_recs[i];
3868                 range = le32_to_cpu(rec->e_cpos)
3869                         + le16_to_cpu(rec->e_leaf_clusters);
3870                 BUG_ON(le32_to_cpu(insert_rec->e_cpos) < range);
3871
3872                 mlog_bug_on_msg(le16_to_cpu(el->l_next_free_rec) >=
3873                                 le16_to_cpu(el->l_count),
3874                                 "inode %lu, depth %u, count %u, next free %u, "
3875                                 "rec.cpos %u, rec.clusters %u, "
3876                                 "insert.cpos %u, insert.clusters %u\n",
3877                                 inode->i_ino,
3878                                 le16_to_cpu(el->l_tree_depth),
3879                                 le16_to_cpu(el->l_count),
3880                                 le16_to_cpu(el->l_next_free_rec),
3881                                 le32_to_cpu(el->l_recs[i].e_cpos),
3882                                 le16_to_cpu(el->l_recs[i].e_leaf_clusters),
3883                                 le32_to_cpu(insert_rec->e_cpos),
3884                                 le16_to_cpu(insert_rec->e_leaf_clusters));
3885                 i++;
3886                 el->l_recs[i] = *insert_rec;
3887                 le16_add_cpu(&el->l_next_free_rec, 1);
3888                 return;
3889         }
3890
3891 rotate:
3892         /*
3893          * Ok, we have to rotate.
3894          *
3895          * At this point, it is safe to assume that inserting into an
3896          * empty leaf and appending to a leaf have both been handled
3897          * above.
3898          *
3899          * This leaf needs to have space, either by the empty 1st
3900          * extent record, or by virtue of an l_next_rec < l_count.
3901          */
3902         ocfs2_rotate_leaf(el, insert_rec);
3903 }
3904
3905 static void ocfs2_adjust_rightmost_records(struct inode *inode,
3906                                            handle_t *handle,
3907                                            struct ocfs2_path *path,
3908                                            struct ocfs2_extent_rec *insert_rec)
3909 {
3910         int ret, i, next_free;
3911         struct buffer_head *bh;
3912         struct ocfs2_extent_list *el;
3913         struct ocfs2_extent_rec *rec;
3914
3915         /*
3916          * Update everything except the leaf block.
3917          */
3918         for (i = 0; i < path->p_tree_depth; i++) {
3919                 bh = path->p_node[i].bh;
3920                 el = path->p_node[i].el;
3921
3922                 next_free = le16_to_cpu(el->l_next_free_rec);
3923                 if (next_free == 0) {
3924                         ocfs2_error(inode->i_sb,
3925                                     "Dinode %llu has a bad extent list",
3926                                     (unsigned long long)OCFS2_I(inode)->ip_blkno);
3927                         ret = -EIO;
3928                         return;
3929                 }
3930
3931                 rec = &el->l_recs[next_free - 1];
3932
3933                 rec->e_int_clusters = insert_rec->e_cpos;
3934                 le32_add_cpu(&rec->e_int_clusters,
3935                              le16_to_cpu(insert_rec->e_leaf_clusters));
3936                 le32_add_cpu(&rec->e_int_clusters,
3937                              -le32_to_cpu(rec->e_cpos));
3938
3939                 ret = ocfs2_journal_dirty(handle, bh);
3940                 if (ret)
3941                         mlog_errno(ret);
3942
3943         }
3944 }
3945
3946 static int ocfs2_append_rec_to_path(struct inode *inode, handle_t *handle,
3947                                     struct ocfs2_extent_rec *insert_rec,
3948                                     struct ocfs2_path *right_path,
3949                                     struct ocfs2_path **ret_left_path)
3950 {
3951         int ret, next_free;
3952         struct ocfs2_extent_list *el;
3953         struct ocfs2_path *left_path = NULL;
3954
3955         *ret_left_path = NULL;
3956
3957         /*
3958          * This shouldn't happen for non-trees. The extent rec cluster
3959          * count manipulation below only works for interior nodes.
3960          */
3961         BUG_ON(right_path->p_tree_depth == 0);
3962
3963         /*
3964          * If our appending insert is at the leftmost edge of a leaf,
3965          * then we might need to update the rightmost records of the
3966          * neighboring path.
3967          */
3968         el = path_leaf_el(right_path);
3969         next_free = le16_to_cpu(el->l_next_free_rec);
3970         if (next_free == 0 ||
3971             (next_free == 1 && ocfs2_is_empty_extent(&el->l_recs[0]))) {
3972                 u32 left_cpos;
3973
3974                 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path,
3975                                                     &left_cpos);
3976                 if (ret) {
3977                         mlog_errno(ret);
3978                         goto out;
3979                 }
3980
3981                 mlog(0, "Append may need a left path update. cpos: %u, "
3982                      "left_cpos: %u\n", le32_to_cpu(insert_rec->e_cpos),
3983                      left_cpos);
3984
3985                 /*
3986                  * No need to worry if the append is already in the
3987                  * leftmost leaf.
3988                  */
3989                 if (left_cpos) {
3990                         left_path = ocfs2_new_path_from_path(right_path);
3991                         if (!left_path) {
3992                                 ret = -ENOMEM;
3993                                 mlog_errno(ret);
3994                                 goto out;
3995                         }
3996
3997                         ret = ocfs2_find_path(inode, left_path, left_cpos);
3998                         if (ret) {
3999                                 mlog_errno(ret);
4000                                 goto out;
4001                         }
4002
4003                         /*
4004                          * ocfs2_insert_path() will pass the left_path to the
4005                          * journal for us.
4006                          */
4007                 }
4008         }
4009
4010         ret = ocfs2_journal_access_path(INODE_CACHE(inode), handle, right_path);
4011         if (ret) {
4012                 mlog_errno(ret);
4013                 goto out;
4014         }
4015
4016         ocfs2_adjust_rightmost_records(inode, handle, right_path, insert_rec);
4017
4018         *ret_left_path = left_path;
4019         ret = 0;
4020 out:
4021         if (ret != 0)
4022                 ocfs2_free_path(left_path);
4023
4024         return ret;
4025 }
4026
4027 static void ocfs2_split_record(struct inode *inode,
4028                                struct ocfs2_path *left_path,
4029                                struct ocfs2_path *right_path,
4030                                struct ocfs2_extent_rec *split_rec,
4031                                enum ocfs2_split_type split)
4032 {
4033         int index;
4034         u32 cpos = le32_to_cpu(split_rec->e_cpos);
4035         struct ocfs2_extent_list *left_el = NULL, *right_el, *insert_el, *el;
4036         struct ocfs2_extent_rec *rec, *tmprec;
4037
4038         right_el = path_leaf_el(right_path);
4039         if (left_path)
4040                 left_el = path_leaf_el(left_path);
4041
4042         el = right_el;
4043         insert_el = right_el;
4044         index = ocfs2_search_extent_list(el, cpos);
4045         if (index != -1) {
4046                 if (index == 0 && left_path) {
4047                         BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
4048
4049                         /*
4050                          * This typically means that the record
4051                          * started in the left path but moved to the
4052                          * right as a result of rotation. We either
4053                          * move the existing record to the left, or we
4054                          * do the later insert there.
4055                          *
4056                          * In this case, the left path should always
4057                          * exist as the rotate code will have passed
4058                          * it back for a post-insert update.
4059                          */
4060
4061                         if (split == SPLIT_LEFT) {
4062                                 /*
4063                                  * It's a left split. Since we know
4064                                  * that the rotate code gave us an
4065                                  * empty extent in the left path, we
4066                                  * can just do the insert there.
4067                                  */
4068                                 insert_el = left_el;
4069                         } else {
4070                                 /*
4071                                  * Right split - we have to move the
4072                                  * existing record over to the left
4073                                  * leaf. The insert will be into the
4074                                  * newly created empty extent in the
4075                                  * right leaf.
4076                                  */
4077                                 tmprec = &right_el->l_recs[index];
4078                                 ocfs2_rotate_leaf(left_el, tmprec);
4079                                 el = left_el;
4080
4081                                 memset(tmprec, 0, sizeof(*tmprec));
4082                                 index = ocfs2_search_extent_list(left_el, cpos);
4083                                 BUG_ON(index == -1);
4084                         }
4085                 }
4086         } else {
4087                 BUG_ON(!left_path);
4088                 BUG_ON(!ocfs2_is_empty_extent(&left_el->l_recs[0]));
4089                 /*
4090                  * Left path is easy - we can just allow the insert to
4091                  * happen.
4092                  */
4093                 el = left_el;
4094                 insert_el = left_el;
4095                 index = ocfs2_search_extent_list(el, cpos);
4096                 BUG_ON(index == -1);
4097         }
4098
4099         rec = &el->l_recs[index];
4100         ocfs2_subtract_from_rec(inode->i_sb, split, rec, split_rec);
4101         ocfs2_rotate_leaf(insert_el, split_rec);
4102 }
4103
4104 /*
4105  * This function only does inserts on an allocation b-tree. For tree
4106  * depth = 0, ocfs2_insert_at_leaf() is called directly.
4107  *
4108  * right_path is the path we want to do the actual insert
4109  * in. left_path should only be passed in if we need to update that
4110  * portion of the tree after an edge insert.
4111  */
4112 static int ocfs2_insert_path(struct inode *inode,
4113                              handle_t *handle,
4114                              struct ocfs2_path *left_path,
4115                              struct ocfs2_path *right_path,
4116                              struct ocfs2_extent_rec *insert_rec,
4117                              struct ocfs2_insert_type *insert)
4118 {
4119         int ret, subtree_index;
4120         struct buffer_head *leaf_bh = path_leaf_bh(right_path);
4121
4122         if (left_path) {
4123                 int credits = handle->h_buffer_credits;
4124
4125                 /*
4126                  * There's a chance that left_path got passed back to
4127                  * us without being accounted for in the
4128                  * journal. Extend our transaction here to be sure we
4129                  * can change those blocks.
4130                  */
4131                 credits += left_path->p_tree_depth;
4132
4133                 ret = ocfs2_extend_trans(handle, credits);
4134                 if (ret < 0) {
4135                         mlog_errno(ret);
4136                         goto out;
4137                 }
4138
4139                 ret = ocfs2_journal_access_path(INODE_CACHE(inode), handle, left_path);
4140                 if (ret < 0) {
4141                         mlog_errno(ret);
4142                         goto out;
4143                 }
4144         }
4145
4146         /*
4147          * Pass both paths to the journal. The majority of inserts
4148          * will be touching all components anyway.
4149          */
4150         ret = ocfs2_journal_access_path(INODE_CACHE(inode), handle, right_path);
4151         if (ret < 0) {
4152                 mlog_errno(ret);
4153                 goto out;
4154         }
4155
4156         if (insert->ins_split != SPLIT_NONE) {
4157                 /*
4158                  * We could call ocfs2_insert_at_leaf() for some types
4159                  * of splits, but it's easier to just let one separate
4160                  * function sort it all out.
4161                  */
4162                 ocfs2_split_record(inode, left_path, right_path,
4163                                    insert_rec, insert->ins_split);
4164
4165                 /*
4166                  * Split might have modified either leaf and we don't
4167                  * have a guarantee that the later edge insert will
4168                  * dirty this for us.
4169                  */
4170                 if (left_path)
4171                         ret = ocfs2_journal_dirty(handle,
4172                                                   path_leaf_bh(left_path));
4173                         if (ret)
4174                                 mlog_errno(ret);
4175         } else
4176                 ocfs2_insert_at_leaf(insert_rec, path_leaf_el(right_path),
4177                                      insert, inode);
4178
4179         ret = ocfs2_journal_dirty(handle, leaf_bh);
4180         if (ret)
4181                 mlog_errno(ret);
4182
4183         if (left_path) {
4184                 /*
4185                  * The rotate code has indicated that we need to fix
4186                  * up portions of the tree after the insert.
4187                  *
4188                  * XXX: Should we extend the transaction here?
4189                  */
4190                 subtree_index = ocfs2_find_subtree_root(inode, left_path,
4191                                                         right_path);
4192                 ocfs2_complete_edge_insert(inode, handle, left_path,
4193                                            right_path, subtree_index);
4194         }
4195
4196         ret = 0;
4197 out:
4198         return ret;
4199 }
4200
4201 static int ocfs2_do_insert_extent(struct inode *inode,
4202                                   handle_t *handle,
4203                                   struct ocfs2_extent_tree *et,
4204                                   struct ocfs2_extent_rec *insert_rec,
4205                                   struct ocfs2_insert_type *type)
4206 {
4207         int ret, rotate = 0;
4208         u32 cpos;
4209         struct ocfs2_path *right_path = NULL;
4210         struct ocfs2_path *left_path = NULL;
4211         struct ocfs2_extent_list *el;
4212
4213         el = et->et_root_el;
4214
4215         ret = ocfs2_et_root_journal_access(handle, INODE_CACHE(inode), et,
4216                                            OCFS2_JOURNAL_ACCESS_WRITE);
4217         if (ret) {
4218                 mlog_errno(ret);
4219                 goto out;
4220         }
4221
4222         if (le16_to_cpu(el->l_tree_depth) == 0) {
4223                 ocfs2_insert_at_leaf(insert_rec, el, type, inode);
4224                 goto out_update_clusters;
4225         }
4226
4227         right_path = ocfs2_new_path_from_et(et);
4228         if (!right_path) {
4229                 ret = -ENOMEM;
4230                 mlog_errno(ret);
4231                 goto out;
4232         }
4233
4234         /*
4235          * Determine the path to start with. Rotations need the
4236          * rightmost path, everything else can go directly to the
4237          * target leaf.
4238          */
4239         cpos = le32_to_cpu(insert_rec->e_cpos);
4240         if (type->ins_appending == APPEND_NONE &&
4241             type->ins_contig == CONTIG_NONE) {
4242                 rotate = 1;
4243                 cpos = UINT_MAX;
4244         }
4245
4246         ret = ocfs2_find_path(inode, right_path, cpos);
4247         if (ret) {
4248                 mlog_errno(ret);
4249                 goto out;
4250         }
4251
4252         /*
4253          * Rotations and appends need special treatment - they modify
4254          * parts of the tree's above them.
4255          *
4256          * Both might pass back a path immediate to the left of the
4257          * one being inserted to. This will be cause
4258          * ocfs2_insert_path() to modify the rightmost records of
4259          * left_path to account for an edge insert.
4260          *
4261          * XXX: When modifying this code, keep in mind that an insert
4262          * can wind up skipping both of these two special cases...
4263          */
4264         if (rotate) {
4265                 ret = ocfs2_rotate_tree_right(inode, handle, type->ins_split,
4266                                               le32_to_cpu(insert_rec->e_cpos),
4267                                               right_path, &left_path);
4268                 if (ret) {
4269                         mlog_errno(ret);
4270                         goto out;
4271                 }
4272
4273                 /*
4274                  * ocfs2_rotate_tree_right() might have extended the
4275                  * transaction without re-journaling our tree root.
4276                  */
4277                 ret = ocfs2_et_root_journal_access(handle, INODE_CACHE(inode), et,
4278                                                    OCFS2_JOURNAL_ACCESS_WRITE);
4279                 if (ret) {
4280                         mlog_errno(ret);
4281                         goto out;
4282                 }
4283         } else if (type->ins_appending == APPEND_TAIL
4284                    && type->ins_contig != CONTIG_LEFT) {
4285                 ret = ocfs2_append_rec_to_path(inode, handle, insert_rec,
4286                                                right_path, &left_path);
4287                 if (ret) {
4288                         mlog_errno(ret);
4289                         goto out;
4290                 }
4291         }
4292
4293         ret = ocfs2_insert_path(inode, handle, left_path, right_path,
4294                                 insert_rec, type);
4295         if (ret) {
4296                 mlog_errno(ret);
4297                 goto out;
4298         }
4299
4300 out_update_clusters:
4301         if (type->ins_split == SPLIT_NONE)
4302                 ocfs2_et_update_clusters(inode, et,
4303                                          le16_to_cpu(insert_rec->e_leaf_clusters));
4304
4305         ret = ocfs2_journal_dirty(handle, et->et_root_bh);
4306         if (ret)
4307                 mlog_errno(ret);
4308
4309 out:
4310         ocfs2_free_path(left_path);
4311         ocfs2_free_path(right_path);
4312
4313         return ret;
4314 }
4315
4316 static enum ocfs2_contig_type
4317 ocfs2_figure_merge_contig_type(struct inode *inode, struct ocfs2_path *path,
4318                                struct ocfs2_extent_list *el, int index,
4319                                struct ocfs2_extent_rec *split_rec)
4320 {
4321         int status;
4322         enum ocfs2_contig_type ret = CONTIG_NONE;
4323         u32 left_cpos, right_cpos;
4324         struct ocfs2_extent_rec *rec = NULL;
4325         struct ocfs2_extent_list *new_el;
4326         struct ocfs2_path *left_path = NULL, *right_path = NULL;
4327         struct buffer_head *bh;
4328         struct ocfs2_extent_block *eb;
4329
4330         if (index > 0) {
4331                 rec = &el->l_recs[index - 1];
4332         } else if (path->p_tree_depth > 0) {
4333                 status = ocfs2_find_cpos_for_left_leaf(inode->i_sb,
4334                                                        path, &left_cpos);
4335                 if (status)
4336                         goto out;
4337
4338                 if (left_cpos != 0) {
4339                         left_path = ocfs2_new_path_from_path(path);
4340                         if (!left_path)
4341                                 goto out;
4342
4343                         status = ocfs2_find_path(inode, left_path, left_cpos);
4344                         if (status)
4345                                 goto out;
4346
4347                         new_el = path_leaf_el(left_path);
4348
4349                         if (le16_to_cpu(new_el->l_next_free_rec) !=
4350                             le16_to_cpu(new_el->l_count)) {
4351                                 bh = path_leaf_bh(left_path);
4352                                 eb = (struct ocfs2_extent_block *)bh->b_data;
4353                                 ocfs2_error(inode->i_sb,
4354                                             "Extent block #%llu has an "
4355                                             "invalid l_next_free_rec of "
4356                                             "%d.  It should have "
4357                                             "matched the l_count of %d",
4358                                             (unsigned long long)le64_to_cpu(eb->h_blkno),
4359                                             le16_to_cpu(new_el->l_next_free_rec),
4360                                             le16_to_cpu(new_el->l_count));
4361                                 status = -EINVAL;
4362                                 goto out;
4363                         }
4364                         rec = &new_el->l_recs[
4365                                 le16_to_cpu(new_el->l_next_free_rec) - 1];
4366                 }
4367         }
4368
4369         /*
4370          * We're careful to check for an empty extent record here -
4371          * the merge code will know what to do if it sees one.
4372          */
4373         if (rec) {
4374                 if (index == 1 && ocfs2_is_empty_extent(rec)) {
4375                         if (split_rec->e_cpos == el->l_recs[index].e_cpos)
4376                                 ret = CONTIG_RIGHT;
4377                 } else {
4378                         ret = ocfs2_extent_contig(inode, rec, split_rec);
4379                 }
4380         }
4381
4382         rec = NULL;
4383         if (index < (le16_to_cpu(el->l_next_free_rec) - 1))
4384                 rec = &el->l_recs[index + 1];
4385         else if (le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count) &&
4386                  path->p_tree_depth > 0) {
4387                 status = ocfs2_find_cpos_for_right_leaf(inode->i_sb,
4388                                                         path, &right_cpos);
4389                 if (status)
4390                         goto out;
4391
4392                 if (right_cpos == 0)
4393                         goto out;
4394
4395                 right_path = ocfs2_new_path_from_path(path);
4396                 if (!right_path)
4397                         goto out;
4398
4399                 status = ocfs2_find_path(inode, right_path, right_cpos);
4400                 if (status)
4401                         goto out;
4402
4403                 new_el = path_leaf_el(right_path);
4404                 rec = &new_el->l_recs[0];
4405                 if (ocfs2_is_empty_extent(rec)) {
4406                         if (le16_to_cpu(new_el->l_next_free_rec) <= 1) {
4407                                 bh = path_leaf_bh(right_path);
4408                                 eb = (struct ocfs2_extent_block *)bh->b_data;
4409                                 ocfs2_error(inode->i_sb,
4410                                             "Extent block #%llu has an "
4411                                             "invalid l_next_free_rec of %d",
4412                                             (unsigned long long)le64_to_cpu(eb->h_blkno),
4413                                             le16_to_cpu(new_el->l_next_free_rec));
4414                                 status = -EINVAL;
4415                                 goto out;
4416                         }
4417                         rec = &new_el->l_recs[1];
4418                 }
4419         }
4420
4421         if (rec) {
4422                 enum ocfs2_contig_type contig_type;
4423
4424                 contig_type = ocfs2_extent_contig(inode, rec, split_rec);
4425
4426                 if (contig_type == CONTIG_LEFT && ret == CONTIG_RIGHT)
4427                         ret = CONTIG_LEFTRIGHT;
4428                 else if (ret == CONTIG_NONE)
4429                         ret = contig_type;
4430         }
4431
4432 out:
4433         if (left_path)
4434                 ocfs2_free_path(left_path);
4435         if (right_path)
4436                 ocfs2_free_path(right_path);
4437
4438         return ret;
4439 }
4440
4441 static void ocfs2_figure_contig_type(struct inode *inode,
4442                                      struct ocfs2_insert_type *insert,
4443                                      struct ocfs2_extent_list *el,
4444                                      struct ocfs2_extent_rec *insert_rec,
4445                                      struct ocfs2_extent_tree *et)
4446 {
4447         int i;
4448         enum ocfs2_contig_type contig_type = CONTIG_NONE;
4449
4450         BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
4451
4452         for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
4453                 contig_type = ocfs2_extent_contig(inode, &el->l_recs[i],
4454                                                   insert_rec);
4455                 if (contig_type != CONTIG_NONE) {
4456                         insert->ins_contig_index = i;
4457                         break;
4458                 }
4459         }
4460         insert->ins_contig = contig_type;
4461
4462         if (insert->ins_contig != CONTIG_NONE) {
4463                 struct ocfs2_extent_rec *rec =
4464                                 &el->l_recs[insert->ins_contig_index];
4465                 unsigned int len = le16_to_cpu(rec->e_leaf_clusters) +
4466                                    le16_to_cpu(insert_rec->e_leaf_clusters);
4467
4468                 /*
4469                  * Caller might want us to limit the size of extents, don't
4470                  * calculate contiguousness if we might exceed that limit.
4471                  */
4472                 if (et->et_max_leaf_clusters &&
4473                     (len > et->et_max_leaf_clusters))
4474                         insert->ins_contig = CONTIG_NONE;
4475         }
4476 }
4477
4478 /*
4479  * This should only be called against the righmost leaf extent list.
4480  *
4481  * ocfs2_figure_appending_type() will figure out whether we'll have to
4482  * insert at the tail of the rightmost leaf.
4483  *
4484  * This should also work against the root extent list for tree's with 0
4485  * depth. If we consider the root extent list to be the rightmost leaf node
4486  * then the logic here makes sense.
4487  */
4488 static void ocfs2_figure_appending_type(struct ocfs2_insert_type *insert,
4489                                         struct ocfs2_extent_list *el,
4490                                         struct ocfs2_extent_rec *insert_rec)
4491 {
4492         int i;
4493         u32 cpos = le32_to_cpu(insert_rec->e_cpos);
4494         struct ocfs2_extent_rec *rec;
4495
4496         insert->ins_appending = APPEND_NONE;
4497
4498         BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
4499
4500         if (!el->l_next_free_rec)
4501                 goto set_tail_append;
4502
4503         if (ocfs2_is_empty_extent(&el->l_recs[0])) {
4504                 /* Were all records empty? */
4505                 if (le16_to_cpu(el->l_next_free_rec) == 1)
4506                         goto set_tail_append;
4507         }
4508
4509         i = le16_to_cpu(el->l_next_free_rec) - 1;
4510         rec = &el->l_recs[i];
4511
4512         if (cpos >=
4513             (le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)))
4514                 goto set_tail_append;
4515
4516         return;
4517
4518 set_tail_append:
4519         insert->ins_appending = APPEND_TAIL;
4520 }
4521
4522 /*
4523  * Helper function called at the begining of an insert.
4524  *
4525  * This computes a few things that are commonly used in the process of
4526  * inserting into the btree:
4527  *   - Whether the new extent is contiguous with an existing one.
4528  *   - The current tree depth.
4529  *   - Whether the insert is an appending one.
4530  *   - The total # of free records in the tree.
4531  *
4532  * All of the information is stored on the ocfs2_insert_type
4533  * structure.
4534  */
4535 static int ocfs2_figure_insert_type(struct inode *inode,
4536                                     struct ocfs2_extent_tree *et,
4537                                     struct buffer_head **last_eb_bh,
4538                                     struct ocfs2_extent_rec *insert_rec,
4539                                     int *free_records,
4540                                     struct ocfs2_insert_type *insert)
4541 {
4542         int ret;
4543         struct ocfs2_extent_block *eb;
4544         struct ocfs2_extent_list *el;
4545         struct ocfs2_path *path = NULL;
4546         struct buffer_head *bh = NULL;
4547
4548         insert->ins_split = SPLIT_NONE;
4549
4550         el = et->et_root_el;
4551         insert->ins_tree_depth = le16_to_cpu(el->l_tree_depth);
4552
4553         if (el->l_tree_depth) {
4554                 /*
4555                  * If we have tree depth, we read in the
4556                  * rightmost extent block ahead of time as
4557                  * ocfs2_figure_insert_type() and ocfs2_add_branch()
4558                  * may want it later.
4559                  */
4560                 ret = ocfs2_read_extent_block(inode,
4561                                               ocfs2_et_get_last_eb_blk(et),
4562                                               &bh);
4563                 if (ret) {
4564                         mlog_exit(ret);
4565                         goto out;
4566                 }
4567                 eb = (struct ocfs2_extent_block *) bh->b_data;
4568                 el = &eb->h_list;
4569         }
4570
4571         /*
4572          * Unless we have a contiguous insert, we'll need to know if
4573          * there is room left in our allocation tree for another
4574          * extent record.
4575          *
4576          * XXX: This test is simplistic, we can search for empty
4577          * extent records too.
4578          */
4579         *free_records = le16_to_cpu(el->l_count) -
4580                 le16_to_cpu(el->l_next_free_rec);
4581
4582         if (!insert->ins_tree_depth) {
4583                 ocfs2_figure_contig_type(inode, insert, el, insert_rec, et);
4584                 ocfs2_figure_appending_type(insert, el, insert_rec);
4585                 return 0;
4586         }
4587
4588         path = ocfs2_new_path_from_et(et);
4589         if (!path) {
4590                 ret = -ENOMEM;
4591                 mlog_errno(ret);
4592                 goto out;
4593         }
4594
4595         /*
4596          * In the case that we're inserting past what the tree
4597          * currently accounts for, ocfs2_find_path() will return for
4598          * us the rightmost tree path. This is accounted for below in
4599          * the appending code.
4600          */
4601         ret = ocfs2_find_path(inode, path, le32_to_cpu(insert_rec->e_cpos));
4602         if (ret) {
4603                 mlog_errno(ret);
4604                 goto out;
4605         }
4606
4607         el = path_leaf_el(path);
4608
4609         /*
4610          * Now that we have the path, there's two things we want to determine:
4611          * 1) Contiguousness (also set contig_index if this is so)
4612          *
4613          * 2) Are we doing an append? We can trivially break this up
4614          *     into two types of appends: simple record append, or a
4615          *     rotate inside the tail leaf.
4616          */
4617         ocfs2_figure_contig_type(inode, insert, el, insert_rec, et);
4618
4619         /*
4620          * The insert code isn't quite ready to deal with all cases of
4621          * left contiguousness. Specifically, if it's an insert into
4622          * the 1st record in a leaf, it will require the adjustment of
4623          * cluster count on the last record of the path directly to it's
4624          * left. For now, just catch that case and fool the layers
4625          * above us. This works just fine for tree_depth == 0, which
4626          * is why we allow that above.
4627          */
4628         if (insert->ins_contig == CONTIG_LEFT &&
4629             insert->ins_contig_index == 0)
4630                 insert->ins_contig = CONTIG_NONE;
4631
4632         /*
4633          * Ok, so we can simply compare against last_eb to figure out
4634          * whether the path doesn't exist. This will only happen in
4635          * the case that we're doing a tail append, so maybe we can
4636          * take advantage of that information somehow.
4637          */
4638         if (ocfs2_et_get_last_eb_blk(et) ==
4639             path_leaf_bh(path)->b_blocknr) {
4640                 /*
4641                  * Ok, ocfs2_find_path() returned us the rightmost
4642                  * tree path. This might be an appending insert. There are
4643                  * two cases:
4644                  *    1) We're doing a true append at the tail:
4645                  *      -This might even be off the end of the leaf
4646                  *    2) We're "appending" by rotating in the tail
4647                  */
4648                 ocfs2_figure_appending_type(insert, el, insert_rec);
4649         }
4650
4651 out:
4652         ocfs2_free_path(path);
4653
4654         if (ret == 0)
4655                 *last_eb_bh = bh;
4656         else
4657                 brelse(bh);
4658         return ret;
4659 }
4660
4661 /*
4662  * Insert an extent into an inode btree.
4663  *
4664  * The caller needs to update fe->i_clusters
4665  */
4666 int ocfs2_insert_extent(struct ocfs2_super *osb,
4667                         handle_t *handle,
4668                         struct inode *inode,
4669                         struct ocfs2_extent_tree *et,
4670                         u32 cpos,
4671                         u64 start_blk,
4672                         u32 new_clusters,
4673                         u8 flags,
4674                         struct ocfs2_alloc_context *meta_ac)
4675 {
4676         int status;
4677         int uninitialized_var(free_records);
4678         struct buffer_head *last_eb_bh = NULL;
4679         struct ocfs2_insert_type insert = {0, };
4680         struct ocfs2_extent_rec rec;
4681
4682         mlog(0, "add %u clusters at position %u to inode %llu\n",
4683              new_clusters, cpos, (unsigned long long)OCFS2_I(inode)->ip_blkno);
4684
4685         memset(&rec, 0, sizeof(rec));
4686         rec.e_cpos = cpu_to_le32(cpos);
4687         rec.e_blkno = cpu_to_le64(start_blk);
4688         rec.e_leaf_clusters = cpu_to_le16(new_clusters);
4689         rec.e_flags = flags;
4690         status = ocfs2_et_insert_check(inode, et, &rec);
4691         if (status) {
4692                 mlog_errno(status);
4693                 goto bail;
4694         }
4695
4696         status = ocfs2_figure_insert_type(inode, et, &last_eb_bh, &rec,
4697                                           &free_records, &insert);
4698         if (status < 0) {
4699                 mlog_errno(status);
4700                 goto bail;
4701         }
4702
4703         mlog(0, "Insert.appending: %u, Insert.Contig: %u, "
4704              "Insert.contig_index: %d, Insert.free_records: %d, "
4705              "Insert.tree_depth: %d\n",
4706              insert.ins_appending, insert.ins_contig, insert.ins_contig_index,
4707              free_records, insert.ins_tree_depth);
4708
4709         if (insert.ins_contig == CONTIG_NONE && free_records == 0) {
4710                 status = ocfs2_grow_tree(inode, handle, et,
4711                                          &insert.ins_tree_depth, &last_eb_bh,
4712                                          meta_ac);
4713                 if (status) {
4714                         mlog_errno(status);
4715                         goto bail;
4716                 }
4717         }
4718
4719         /* Finally, we can add clusters. This might rotate the tree for us. */
4720         status = ocfs2_do_insert_extent(inode, handle, et, &rec, &insert);
4721         if (status < 0)
4722                 mlog_errno(status);
4723         else if (et->et_ops == &ocfs2_dinode_et_ops)
4724                 ocfs2_extent_map_insert_rec(inode, &rec);
4725
4726 bail:
4727         brelse(last_eb_bh);
4728
4729         mlog_exit(status);
4730         return status;
4731 }
4732
4733 /*
4734  * Allcate and add clusters into the extent b-tree.
4735  * The new clusters(clusters_to_add) will be inserted at logical_offset.
4736  * The extent b-tree's root is specified by et, and
4737  * it is not limited to the file storage. Any extent tree can use this
4738  * function if it implements the proper ocfs2_extent_tree.
4739  */
4740 int ocfs2_add_clusters_in_btree(struct ocfs2_super *osb,
4741                                 struct inode *inode,
4742                                 u32 *logical_offset,
4743                                 u32 clusters_to_add,
4744                                 int mark_unwritten,
4745                                 struct ocfs2_extent_tree *et,
4746                                 handle_t *handle,
4747                                 struct ocfs2_alloc_context *data_ac,
4748                                 struct ocfs2_alloc_context *meta_ac,
4749                                 enum ocfs2_alloc_restarted *reason_ret)
4750 {
4751         int status = 0;
4752         int free_extents;
4753         enum ocfs2_alloc_restarted reason = RESTART_NONE;
4754         u32 bit_off, num_bits;
4755         u64 block;
4756         u8 flags = 0;
4757
4758         BUG_ON(!clusters_to_add);
4759
4760         if (mark_unwritten)
4761                 flags = OCFS2_EXT_UNWRITTEN;
4762
4763         free_extents = ocfs2_num_free_extents(osb, inode, et);
4764         if (free_extents < 0) {
4765                 status = free_extents;
4766                 mlog_errno(status);
4767                 goto leave;
4768         }
4769
4770         /* there are two cases which could cause us to EAGAIN in the
4771          * we-need-more-metadata case:
4772          * 1) we haven't reserved *any*
4773          * 2) we are so fragmented, we've needed to add metadata too
4774          *    many times. */
4775         if (!free_extents && !meta_ac) {
4776                 mlog(0, "we haven't reserved any metadata!\n");
4777                 status = -EAGAIN;
4778                 reason = RESTART_META;
4779                 goto leave;
4780         } else if ((!free_extents)
4781                    && (ocfs2_alloc_context_bits_left(meta_ac)
4782                        < ocfs2_extend_meta_needed(et->et_root_el))) {
4783                 mlog(0, "filesystem is really fragmented...\n");
4784                 status = -EAGAIN;
4785                 reason = RESTART_META;
4786                 goto leave;
4787         }
4788
4789         status = __ocfs2_claim_clusters(osb, handle, data_ac, 1,
4790                                         clusters_to_add, &bit_off, &num_bits);
4791         if (status < 0) {
4792                 if (status != -ENOSPC)
4793                         mlog_errno(status);
4794                 goto leave;
4795         }
4796
4797         BUG_ON(num_bits > clusters_to_add);
4798
4799         /* reserve our write early -- insert_extent may update the tree root */
4800         status = ocfs2_et_root_journal_access(handle, INODE_CACHE(inode), et,
4801                                               OCFS2_JOURNAL_ACCESS_WRITE);
4802         if (status < 0) {
4803                 mlog_errno(status);
4804                 goto leave;
4805         }
4806
4807         block = ocfs2_clusters_to_blocks(osb->sb, bit_off);
4808         mlog(0, "Allocating %u clusters at block %u for inode %llu\n",
4809              num_bits, bit_off, (unsigned long long)OCFS2_I(inode)->ip_blkno);
4810         status = ocfs2_insert_extent(osb, handle, inode, et,
4811                                      *logical_offset, block,
4812                                      num_bits, flags, meta_ac);
4813         if (status < 0) {
4814                 mlog_errno(status);
4815                 goto leave;
4816         }
4817
4818         status = ocfs2_journal_dirty(handle, et->et_root_bh);
4819         if (status < 0) {
4820                 mlog_errno(status);
4821                 goto leave;
4822         }
4823
4824         clusters_to_add -= num_bits;
4825         *logical_offset += num_bits;
4826
4827         if (clusters_to_add) {
4828                 mlog(0, "need to alloc once more, wanted = %u\n",
4829                      clusters_to_add);
4830                 status = -EAGAIN;
4831                 reason = RESTART_TRANS;
4832         }
4833
4834 leave:
4835         mlog_exit(status);
4836         if (reason_ret)
4837                 *reason_ret = reason;
4838         return status;
4839 }
4840
4841 static void ocfs2_make_right_split_rec(struct super_block *sb,
4842                                        struct ocfs2_extent_rec *split_rec,
4843                                        u32 cpos,
4844                                        struct ocfs2_extent_rec *rec)
4845 {
4846         u32 rec_cpos = le32_to_cpu(rec->e_cpos);
4847         u32 rec_range = rec_cpos + le16_to_cpu(rec->e_leaf_clusters);
4848
4849         memset(split_rec, 0, sizeof(struct ocfs2_extent_rec));
4850
4851         split_rec->e_cpos = cpu_to_le32(cpos);
4852         split_rec->e_leaf_clusters = cpu_to_le16(rec_range - cpos);
4853
4854         split_rec->e_blkno = rec->e_blkno;
4855         le64_add_cpu(&split_rec->e_blkno,
4856                      ocfs2_clusters_to_blocks(sb, cpos - rec_cpos));
4857
4858         split_rec->e_flags = rec->e_flags;
4859 }
4860
4861 static int ocfs2_split_and_insert(struct inode *inode,
4862                                   handle_t *handle,
4863                                   struct ocfs2_path *path,
4864                                   struct ocfs2_extent_tree *et,
4865                                   struct buffer_head **last_eb_bh,
4866                                   int split_index,
4867                                   struct ocfs2_extent_rec *orig_split_rec,
4868                                   struct ocfs2_alloc_context *meta_ac)
4869 {
4870         int ret = 0, depth;
4871         unsigned int insert_range, rec_range, do_leftright = 0;
4872         struct ocfs2_extent_rec tmprec;
4873         struct ocfs2_extent_list *rightmost_el;
4874         struct ocfs2_extent_rec rec;
4875         struct ocfs2_extent_rec split_rec = *orig_split_rec;
4876         struct ocfs2_insert_type insert;
4877         struct ocfs2_extent_block *eb;
4878
4879 leftright:
4880         /*
4881          * Store a copy of the record on the stack - it might move
4882          * around as the tree is manipulated below.
4883          */
4884         rec = path_leaf_el(path)->l_recs[split_index];
4885
4886         rightmost_el = et->et_root_el;
4887
4888         depth = le16_to_cpu(rightmost_el->l_tree_depth);
4889         if (depth) {
4890                 BUG_ON(!(*last_eb_bh));
4891                 eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
4892                 rightmost_el = &eb->h_list;
4893         }
4894
4895         if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
4896             le16_to_cpu(rightmost_el->l_count)) {
4897                 ret = ocfs2_grow_tree(inode, handle, et,
4898                                       &depth, last_eb_bh, meta_ac);
4899                 if (ret) {
4900                         mlog_errno(ret);
4901                         goto out;
4902                 }
4903         }
4904
4905         memset(&insert, 0, sizeof(struct ocfs2_insert_type));
4906         insert.ins_appending = APPEND_NONE;
4907         insert.ins_contig = CONTIG_NONE;
4908         insert.ins_tree_depth = depth;
4909
4910         insert_range = le32_to_cpu(split_rec.e_cpos) +
4911                 le16_to_cpu(split_rec.e_leaf_clusters);
4912         rec_range = le32_to_cpu(rec.e_cpos) +
4913                 le16_to_cpu(rec.e_leaf_clusters);
4914
4915         if (split_rec.e_cpos == rec.e_cpos) {
4916                 insert.ins_split = SPLIT_LEFT;
4917         } else if (insert_range == rec_range) {
4918                 insert.ins_split = SPLIT_RIGHT;
4919         } else {
4920                 /*
4921                  * Left/right split. We fake this as a right split
4922                  * first and then make a second pass as a left split.
4923                  */
4924                 insert.ins_split = SPLIT_RIGHT;
4925
4926                 ocfs2_make_right_split_rec(inode->i_sb, &tmprec, insert_range,
4927                                            &rec);
4928
4929                 split_rec = tmprec;
4930
4931                 BUG_ON(do_leftright);
4932                 do_leftright = 1;
4933         }
4934
4935         ret = ocfs2_do_insert_extent(inode, handle, et, &split_rec, &insert);
4936         if (ret) {
4937                 mlog_errno(ret);
4938                 goto out;
4939         }
4940
4941         if (do_leftright == 1) {
4942                 u32 cpos;
4943                 struct ocfs2_extent_list *el;
4944
4945                 do_leftright++;
4946                 split_rec = *orig_split_rec;
4947
4948                 ocfs2_reinit_path(path, 1);
4949
4950                 cpos = le32_to_cpu(split_rec.e_cpos);
4951                 ret = ocfs2_find_path(inode, path, cpos);
4952                 if (ret) {
4953                         mlog_errno(ret);
4954                         goto out;
4955                 }
4956
4957                 el = path_leaf_el(path);
4958                 split_index = ocfs2_search_extent_list(el, cpos);
4959                 goto leftright;
4960         }
4961 out:
4962
4963         return ret;
4964 }
4965
4966 static int ocfs2_replace_extent_rec(struct inode *inode,
4967                                     handle_t *handle,
4968                                     struct ocfs2_path *path,
4969                                     struct ocfs2_extent_list *el,
4970                                     int split_index,
4971                                     struct ocfs2_extent_rec *split_rec)
4972 {
4973         int ret;
4974
4975         ret = ocfs2_path_bh_journal_access(handle, INODE_CACHE(inode), path,
4976                                            path_num_items(path) - 1);
4977         if (ret) {
4978                 mlog_errno(ret);
4979                 goto out;
4980         }
4981
4982         el->l_recs[split_index] = *split_rec;
4983
4984         ocfs2_journal_dirty(handle, path_leaf_bh(path));
4985 out:
4986         return ret;
4987 }
4988
4989 /*
4990  * Mark part or all of the extent record at split_index in the leaf
4991  * pointed to by path as written. This removes the unwritten
4992  * extent flag.
4993  *
4994  * Care is taken to handle contiguousness so as to not grow the tree.
4995  *
4996  * meta_ac is not strictly necessary - we only truly need it if growth
4997  * of the tree is required. All other cases will degrade into a less
4998  * optimal tree layout.
4999  *
5000  * last_eb_bh should be the rightmost leaf block for any extent
5001  * btree. Since a split may grow the tree or a merge might shrink it,
5002  * the caller cannot trust the contents of that buffer after this call.
5003  *
5004  * This code is optimized for readability - several passes might be
5005  * made over certain portions of the tree. All of those blocks will
5006  * have been brought into cache (and pinned via the journal), so the
5007  * extra overhead is not expressed in terms of disk reads.
5008  */
5009 static int __ocfs2_mark_extent_written(struct inode *inode,
5010                                        struct ocfs2_extent_tree *et,
5011                                        handle_t *handle,
5012                                        struct ocfs2_path *path,
5013                                        int split_index,
5014                                        struct ocfs2_extent_rec *split_rec,
5015                                        struct ocfs2_alloc_context *meta_ac,
5016                                        struct ocfs2_cached_dealloc_ctxt *dealloc)
5017 {
5018         int ret = 0;
5019         struct ocfs2_extent_list *el = path_leaf_el(path);
5020         struct buffer_head *last_eb_bh = NULL;
5021         struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
5022         struct ocfs2_merge_ctxt ctxt;
5023         struct ocfs2_extent_list *rightmost_el;
5024
5025         if (!(rec->e_flags & OCFS2_EXT_UNWRITTEN)) {
5026                 ret = -EIO;
5027                 mlog_errno(ret);
5028                 goto out;
5029         }
5030
5031         if (le32_to_cpu(rec->e_cpos) > le32_to_cpu(split_rec->e_cpos) ||
5032             ((le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)) <
5033              (le32_to_cpu(split_rec->e_cpos) + le16_to_cpu(split_rec->e_leaf_clusters)))) {
5034                 ret = -EIO;
5035                 mlog_errno(ret);
5036                 goto out;
5037         }
5038
5039         ctxt.c_contig_type = ocfs2_figure_merge_contig_type(inode, path, el,
5040                                                             split_index,
5041                                                             split_rec);
5042
5043         /*
5044          * The core merge / split code wants to know how much room is
5045          * left in this inodes allocation tree, so we pass the
5046          * rightmost extent list.
5047          */
5048         if (path->p_tree_depth) {
5049                 struct ocfs2_extent_block *eb;
5050
5051                 ret = ocfs2_read_extent_block(inode,
5052                                               ocfs2_et_get_last_eb_blk(et),
5053                                               &last_eb_bh);
5054                 if (ret) {
5055                         mlog_exit(ret);
5056                         goto out;
5057                 }
5058
5059                 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
5060                 rightmost_el = &eb->h_list;
5061         } else
5062                 rightmost_el = path_root_el(path);
5063
5064         if (rec->e_cpos == split_rec->e_cpos &&
5065             rec->e_leaf_clusters == split_rec->e_leaf_clusters)
5066                 ctxt.c_split_covers_rec = 1;
5067         else
5068                 ctxt.c_split_covers_rec = 0;
5069
5070         ctxt.c_has_empty_extent = ocfs2_is_empty_extent(&el->l_recs[0]);
5071
5072         mlog(0, "index: %d, contig: %u, has_empty: %u, split_covers: %u\n",
5073              split_index, ctxt.c_contig_type, ctxt.c_has_empty_extent,
5074              ctxt.c_split_covers_rec);
5075
5076         if (ctxt.c_contig_type == CONTIG_NONE) {
5077                 if (ctxt.c_split_covers_rec)
5078                         ret = ocfs2_replace_extent_rec(inode, handle,
5079                                                        path, el,
5080                                                        split_index, split_rec);
5081                 else
5082                         ret = ocfs2_split_and_insert(inode, handle, path, et,
5083                                                      &last_eb_bh, split_index,
5084                                                      split_rec, meta_ac);
5085                 if (ret)
5086                         mlog_errno(ret);
5087         } else {
5088                 ret = ocfs2_try_to_merge_extent(inode, handle, path,
5089                                                 split_index, split_rec,
5090                                                 dealloc, &ctxt, et);
5091                 if (ret)
5092                         mlog_errno(ret);
5093         }
5094
5095 out:
5096         brelse(last_eb_bh);
5097         return ret;
5098 }
5099
5100 /*
5101  * Mark the already-existing extent at cpos as written for len clusters.
5102  *
5103  * If the existing extent is larger than the request, initiate a
5104  * split. An attempt will be made at merging with adjacent extents.
5105  *
5106  * The caller is responsible for passing down meta_ac if we'll need it.
5107  */
5108 int ocfs2_mark_extent_written(struct inode *inode,
5109                               struct ocfs2_extent_tree *et,
5110                               handle_t *handle, u32 cpos, u32 len, u32 phys,
5111                               struct ocfs2_alloc_context *meta_ac,
5112                               struct ocfs2_cached_dealloc_ctxt *dealloc)
5113 {
5114         int ret, index;
5115         u64 start_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys);
5116         struct ocfs2_extent_rec split_rec;
5117         struct ocfs2_path *left_path = NULL;
5118         struct ocfs2_extent_list *el;
5119
5120         mlog(0, "Inode %lu cpos %u, len %u, phys %u (%llu)\n",
5121              inode->i_ino, cpos, len, phys, (unsigned long long)start_blkno);
5122
5123         if (!ocfs2_writes_unwritten_extents(OCFS2_SB(inode->i_sb))) {
5124                 ocfs2_error(inode->i_sb, "Inode %llu has unwritten extents "
5125                             "that are being written to, but the feature bit "
5126                             "is not set in the super block.",
5127                             (unsigned long long)OCFS2_I(inode)->ip_blkno);
5128                 ret = -EROFS;
5129                 goto out;
5130         }
5131
5132         /*
5133          * XXX: This should be fixed up so that we just re-insert the
5134          * next extent records.
5135          *
5136          * XXX: This is a hack on the extent tree, maybe it should be
5137          * an op?
5138          */
5139         if (et->et_ops == &ocfs2_dinode_et_ops)
5140                 ocfs2_extent_map_trunc(inode, 0);
5141
5142         left_path = ocfs2_new_path_from_et(et);
5143         if (!left_path) {
5144                 ret = -ENOMEM;
5145                 mlog_errno(ret);
5146                 goto out;
5147         }
5148
5149         ret = ocfs2_find_path(inode, left_path, cpos);
5150         if (ret) {
5151                 mlog_errno(ret);
5152                 goto out;
5153         }
5154         el = path_leaf_el(left_path);
5155
5156         index = ocfs2_search_extent_list(el, cpos);
5157         if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
5158                 ocfs2_error(inode->i_sb,
5159                             "Inode %llu has an extent at cpos %u which can no "
5160                             "longer be found.\n",
5161                             (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
5162                 ret = -EROFS;
5163                 goto out;
5164         }
5165
5166         memset(&split_rec, 0, sizeof(struct ocfs2_extent_rec));
5167         split_rec.e_cpos = cpu_to_le32(cpos);
5168         split_rec.e_leaf_clusters = cpu_to_le16(len);
5169         split_rec.e_blkno = cpu_to_le64(start_blkno);
5170         split_rec.e_flags = path_leaf_el(left_path)->l_recs[index].e_flags;
5171         split_rec.e_flags &= ~OCFS2_EXT_UNWRITTEN;
5172
5173         ret = __ocfs2_mark_extent_written(inode, et, handle, left_path,
5174                                           index, &split_rec, meta_ac,
5175                                           dealloc);
5176         if (ret)
5177                 mlog_errno(ret);
5178
5179 out:
5180         ocfs2_free_path(left_path);
5181         return ret;
5182 }
5183
5184 static int ocfs2_split_tree(struct inode *inode, struct ocfs2_extent_tree *et,
5185                             handle_t *handle, struct ocfs2_path *path,
5186                             int index, u32 new_range,
5187                             struct ocfs2_alloc_context *meta_ac)
5188 {
5189         int ret, depth, credits = handle->h_buffer_credits;
5190         struct buffer_head *last_eb_bh = NULL;
5191         struct ocfs2_extent_block *eb;
5192         struct ocfs2_extent_list *rightmost_el, *el;
5193         struct ocfs2_extent_rec split_rec;
5194         struct ocfs2_extent_rec *rec;
5195         struct ocfs2_insert_type insert;
5196
5197         /*
5198          * Setup the record to split before we grow the tree.
5199          */
5200         el = path_leaf_el(path);
5201         rec = &el->l_recs[index];
5202         ocfs2_make_right_split_rec(inode->i_sb, &split_rec, new_range, rec);
5203
5204         depth = path->p_tree_depth;
5205         if (depth > 0) {
5206                 ret = ocfs2_read_extent_block(inode,
5207                                               ocfs2_et_get_last_eb_blk(et),
5208                                               &last_eb_bh);
5209                 if (ret < 0) {
5210                         mlog_errno(ret);
5211                         goto out;
5212                 }
5213
5214                 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
5215                 rightmost_el = &eb->h_list;
5216         } else
5217                 rightmost_el = path_leaf_el(path);
5218
5219         credits += path->p_tree_depth +
5220                    ocfs2_extend_meta_needed(et->et_root_el);
5221         ret = ocfs2_extend_trans(handle, credits);
5222         if (ret) {
5223                 mlog_errno(ret);
5224                 goto out;
5225         }
5226
5227         if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
5228             le16_to_cpu(rightmost_el->l_count)) {
5229                 ret = ocfs2_grow_tree(inode, handle, et, &depth, &last_eb_bh,
5230                                       meta_ac);
5231                 if (ret) {
5232                         mlog_errno(ret);
5233                         goto out;
5234                 }
5235         }
5236
5237         memset(&insert, 0, sizeof(struct ocfs2_insert_type));
5238         insert.ins_appending = APPEND_NONE;
5239         insert.ins_contig = CONTIG_NONE;
5240         insert.ins_split = SPLIT_RIGHT;
5241         insert.ins_tree_depth = depth;
5242
5243         ret = ocfs2_do_insert_extent(inode, handle, et, &split_rec, &insert);
5244         if (ret)
5245                 mlog_errno(ret);
5246
5247 out:
5248         brelse(last_eb_bh);
5249         return ret;
5250 }
5251
5252 static int ocfs2_truncate_rec(struct inode *inode, handle_t *handle,
5253                               struct ocfs2_path *path, int index,
5254                               struct ocfs2_cached_dealloc_ctxt *dealloc,
5255                               u32 cpos, u32 len,
5256                               struct ocfs2_extent_tree *et)
5257 {
5258         int ret;
5259         u32 left_cpos, rec_range, trunc_range;
5260         int wants_rotate = 0, is_rightmost_tree_rec = 0;
5261         struct super_block *sb = inode->i_sb;
5262         struct ocfs2_path *left_path = NULL;
5263         struct ocfs2_extent_list *el = path_leaf_el(path);
5264         struct ocfs2_extent_rec *rec;
5265         struct ocfs2_extent_block *eb;
5266
5267         if (ocfs2_is_empty_extent(&el->l_recs[0]) && index > 0) {
5268                 ret = ocfs2_rotate_tree_left(inode, handle, path, dealloc, et);
5269                 if (ret) {
5270                         mlog_errno(ret);
5271                         goto out;
5272                 }
5273
5274                 index--;
5275         }
5276
5277         if (index == (le16_to_cpu(el->l_next_free_rec) - 1) &&
5278             path->p_tree_depth) {
5279                 /*
5280                  * Check whether this is the rightmost tree record. If
5281                  * we remove all of this record or part of its right
5282                  * edge then an update of the record lengths above it
5283                  * will be required.
5284                  */
5285                 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
5286                 if (eb->h_next_leaf_blk == 0)
5287                         is_rightmost_tree_rec = 1;
5288         }
5289
5290         rec = &el->l_recs[index];
5291         if (index == 0 && path->p_tree_depth &&
5292             le32_to_cpu(rec->e_cpos) == cpos) {
5293                 /*
5294                  * Changing the leftmost offset (via partial or whole
5295                  * record truncate) of an interior (or rightmost) path
5296                  * means we have to update the subtree that is formed
5297                  * by this leaf and the one to it's left.
5298                  *
5299                  * There are two cases we can skip:
5300                  *   1) Path is the leftmost one in our inode tree.
5301                  *   2) The leaf is rightmost and will be empty after
5302                  *      we remove the extent record - the rotate code
5303                  *      knows how to update the newly formed edge.
5304                  */
5305
5306                 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path,
5307                                                     &left_cpos);
5308                 if (ret) {
5309                         mlog_errno(ret);
5310                         goto out;
5311                 }
5312
5313                 if (left_cpos && le16_to_cpu(el->l_next_free_rec) > 1) {
5314                         left_path = ocfs2_new_path_from_path(path);
5315                         if (!left_path) {
5316                                 ret = -ENOMEM;
5317                                 mlog_errno(ret);
5318                                 goto out;
5319                         }
5320
5321                         ret = ocfs2_find_path(inode, left_path, left_cpos);
5322                         if (ret) {
5323                                 mlog_errno(ret);
5324                                 goto out;
5325                         }
5326                 }
5327         }
5328
5329         ret = ocfs2_extend_rotate_transaction(handle, 0,
5330                                               handle->h_buffer_credits,
5331                                               path);
5332         if (ret) {
5333                 mlog_errno(ret);
5334                 goto out;
5335         }
5336
5337         ret = ocfs2_journal_access_path(INODE_CACHE(inode), handle, path);
5338         if (ret) {
5339                 mlog_errno(ret);
5340                 goto out;
5341         }
5342
5343         ret = ocfs2_journal_access_path(INODE_CACHE(inode), handle, left_path);
5344         if (ret) {
5345                 mlog_errno(ret);
5346                 goto out;
5347         }
5348
5349         rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
5350         trunc_range = cpos + len;
5351
5352         if (le32_to_cpu(rec->e_cpos) == cpos && rec_range == trunc_range) {
5353                 int next_free;
5354
5355                 memset(rec, 0, sizeof(*rec));
5356                 ocfs2_cleanup_merge(el, index);
5357                 wants_rotate = 1;
5358
5359                 next_free = le16_to_cpu(el->l_next_free_rec);
5360                 if (is_rightmost_tree_rec && next_free > 1) {
5361                         /*
5362                          * We skip the edge update if this path will
5363                          * be deleted by the rotate code.
5364                          */
5365                         rec = &el->l_recs[next_free - 1];
5366                         ocfs2_adjust_rightmost_records(inode, handle, path,
5367                                                        rec);
5368                 }
5369         } else if (le32_to_cpu(rec->e_cpos) == cpos) {
5370                 /* Remove leftmost portion of the record. */
5371                 le32_add_cpu(&rec->e_cpos, len);
5372                 le64_add_cpu(&rec->e_blkno, ocfs2_clusters_to_blocks(sb, len));
5373                 le16_add_cpu(&rec->e_leaf_clusters, -len);
5374         } else if (rec_range == trunc_range) {
5375                 /* Remove rightmost portion of the record */
5376                 le16_add_cpu(&rec->e_leaf_clusters, -len);
5377                 if (is_rightmost_tree_rec)
5378                         ocfs2_adjust_rightmost_records(inode, handle, path, rec);
5379         } else {
5380                 /* Caller should have trapped this. */
5381                 mlog(ML_ERROR, "Inode %llu: Invalid record truncate: (%u, %u) "
5382                      "(%u, %u)\n", (unsigned long long)OCFS2_I(inode)->ip_blkno,
5383                      le32_to_cpu(rec->e_cpos),
5384                      le16_to_cpu(rec->e_leaf_clusters), cpos, len);
5385                 BUG();
5386         }
5387
5388         if (left_path) {
5389                 int subtree_index;
5390
5391                 subtree_index = ocfs2_find_subtree_root(inode, left_path, path);
5392                 ocfs2_complete_edge_insert(inode, handle, left_path, path,
5393                                            subtree_index);
5394         }
5395
5396         ocfs2_journal_dirty(handle, path_leaf_bh(path));
5397
5398         ret = ocfs2_rotate_tree_left(inode, handle, path, dealloc, et);
5399         if (ret) {
5400                 mlog_errno(ret);
5401                 goto out;
5402         }
5403
5404 out:
5405         ocfs2_free_path(left_path);
5406         return ret;
5407 }
5408
5409 int ocfs2_remove_extent(struct inode *inode,
5410                         struct ocfs2_extent_tree *et,
5411                         u32 cpos, u32 len, handle_t *handle,
5412                         struct ocfs2_alloc_context *meta_ac,
5413                         struct ocfs2_cached_dealloc_ctxt *dealloc)
5414 {
5415         int ret, index;
5416         u32 rec_range, trunc_range;
5417         struct ocfs2_extent_rec *rec;
5418         struct ocfs2_extent_list *el;
5419         struct ocfs2_path *path = NULL;
5420
5421         ocfs2_extent_map_trunc(inode, 0);
5422
5423         path = ocfs2_new_path_from_et(et);
5424         if (!path) {
5425                 ret = -ENOMEM;
5426                 mlog_errno(ret);
5427                 goto out;
5428         }
5429
5430         ret = ocfs2_find_path(inode, path, cpos);
5431         if (ret) {
5432                 mlog_errno(ret);
5433                 goto out;
5434         }
5435
5436         el = path_leaf_el(path);
5437         index = ocfs2_search_extent_list(el, cpos);
5438         if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
5439                 ocfs2_error(inode->i_sb,
5440                             "Inode %llu has an extent at cpos %u which can no "
5441                             "longer be found.\n",
5442                             (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
5443                 ret = -EROFS;
5444                 goto out;
5445         }
5446
5447         /*
5448          * We have 3 cases of extent removal:
5449          *   1) Range covers the entire extent rec
5450          *   2) Range begins or ends on one edge of the extent rec
5451          *   3) Range is in the middle of the extent rec (no shared edges)
5452          *
5453          * For case 1 we remove the extent rec and left rotate to
5454          * fill the hole.
5455          *
5456          * For case 2 we just shrink the existing extent rec, with a
5457          * tree update if the shrinking edge is also the edge of an
5458          * extent block.
5459          *
5460          * For case 3 we do a right split to turn the extent rec into
5461          * something case 2 can handle.
5462          */
5463         rec = &el->l_recs[index];
5464         rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
5465         trunc_range = cpos + len;
5466
5467         BUG_ON(cpos < le32_to_cpu(rec->e_cpos) || trunc_range > rec_range);
5468
5469         mlog(0, "Inode %llu, remove (cpos %u, len %u). Existing index %d "
5470              "(cpos %u, len %u)\n",
5471              (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos, len, index,
5472              le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec));
5473
5474         if (le32_to_cpu(rec->e_cpos) == cpos || rec_range == trunc_range) {
5475                 ret = ocfs2_truncate_rec(inode, handle, path, index, dealloc,
5476                                          cpos, len, et);
5477                 if (ret) {
5478                         mlog_errno(ret);
5479                         goto out;
5480                 }
5481         } else {
5482                 ret = ocfs2_split_tree(inode, et, handle, path, index,
5483                                        trunc_range, meta_ac);
5484                 if (ret) {
5485                         mlog_errno(ret);
5486                         goto out;
5487                 }
5488
5489                 /*
5490                  * The split could have manipulated the tree enough to
5491                  * move the record location, so we have to look for it again.
5492                  */
5493                 ocfs2_reinit_path(path, 1);
5494
5495                 ret = ocfs2_find_path(inode, path, cpos);
5496                 if (ret) {
5497                         mlog_errno(ret);
5498                         goto out;
5499                 }
5500
5501                 el = path_leaf_el(path);
5502                 index = ocfs2_search_extent_list(el, cpos);
5503                 if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
5504                         ocfs2_error(inode->i_sb,
5505                                     "Inode %llu: split at cpos %u lost record.",
5506                                     (unsigned long long)OCFS2_I(inode)->ip_blkno,
5507                                     cpos);
5508                         ret = -EROFS;
5509                         goto out;
5510                 }
5511
5512                 /*
5513                  * Double check our values here. If anything is fishy,
5514                  * it's easier to catch it at the top level.
5515                  */
5516                 rec = &el->l_recs[index];
5517                 rec_range = le32_to_cpu(rec->e_cpos) +
5518                         ocfs2_rec_clusters(el, rec);
5519                 if (rec_range != trunc_range) {
5520                         ocfs2_error(inode->i_sb,
5521                                     "Inode %llu: error after split at cpos %u"
5522                                     "trunc len %u, existing record is (%u,%u)",
5523                                     (unsigned long long)OCFS2_I(inode)->ip_blkno,
5524                                     cpos, len, le32_to_cpu(rec->e_cpos),
5525                                     ocfs2_rec_clusters(el, rec));
5526                         ret = -EROFS;
5527                         goto out;
5528                 }
5529
5530                 ret = ocfs2_truncate_rec(inode, handle, path, index, dealloc,
5531                                          cpos, len, et);
5532                 if (ret) {
5533                         mlog_errno(ret);
5534                         goto out;
5535                 }
5536         }
5537
5538 out:
5539         ocfs2_free_path(path);
5540         return ret;
5541 }
5542
5543 int ocfs2_remove_btree_range(struct inode *inode,
5544                              struct ocfs2_extent_tree *et,
5545                              u32 cpos, u32 phys_cpos, u32 len,
5546                              struct ocfs2_cached_dealloc_ctxt *dealloc)
5547 {
5548         int ret;
5549         u64 phys_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys_cpos);
5550         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
5551         struct inode *tl_inode = osb->osb_tl_inode;
5552         handle_t *handle;
5553         struct ocfs2_alloc_context *meta_ac = NULL;
5554
5555         ret = ocfs2_lock_allocators(inode, et, 0, 1, NULL, &meta_ac);
5556         if (ret) {
5557                 mlog_errno(ret);
5558                 return ret;
5559         }
5560
5561         mutex_lock(&tl_inode->i_mutex);
5562
5563         if (ocfs2_truncate_log_needs_flush(osb)) {
5564                 ret = __ocfs2_flush_truncate_log(osb);
5565                 if (ret < 0) {
5566                         mlog_errno(ret);
5567                         goto out;
5568                 }
5569         }
5570
5571         handle = ocfs2_start_trans(osb, ocfs2_remove_extent_credits(osb->sb));
5572         if (IS_ERR(handle)) {
5573                 ret = PTR_ERR(handle);
5574                 mlog_errno(ret);
5575                 goto out;
5576         }
5577
5578         ret = ocfs2_et_root_journal_access(handle, INODE_CACHE(inode), et,
5579                                            OCFS2_JOURNAL_ACCESS_WRITE);
5580         if (ret) {
5581                 mlog_errno(ret);
5582                 goto out;
5583         }
5584
5585         vfs_dq_free_space_nodirty(inode,
5586                                   ocfs2_clusters_to_bytes(inode->i_sb, len));
5587
5588         ret = ocfs2_remove_extent(inode, et, cpos, len, handle, meta_ac,
5589                                   dealloc);
5590         if (ret) {
5591                 mlog_errno(ret);
5592                 goto out_commit;
5593         }
5594
5595         ocfs2_et_update_clusters(inode, et, -len);
5596
5597         ret = ocfs2_journal_dirty(handle, et->et_root_bh);
5598         if (ret) {
5599                 mlog_errno(ret);
5600                 goto out_commit;
5601         }
5602
5603         ret = ocfs2_truncate_log_append(osb, handle, phys_blkno, len);
5604         if (ret)
5605                 mlog_errno(ret);
5606
5607 out_commit:
5608         ocfs2_commit_trans(osb, handle);
5609 out:
5610         mutex_unlock(&tl_inode->i_mutex);
5611
5612         if (meta_ac)
5613                 ocfs2_free_alloc_context(meta_ac);
5614
5615         return ret;
5616 }
5617
5618 int ocfs2_truncate_log_needs_flush(struct ocfs2_super *osb)
5619 {
5620         struct buffer_head *tl_bh = osb->osb_tl_bh;
5621         struct ocfs2_dinode *di;
5622         struct ocfs2_truncate_log *tl;
5623
5624         di = (struct ocfs2_dinode *) tl_bh->b_data;
5625         tl = &di->id2.i_dealloc;
5626
5627         mlog_bug_on_msg(le16_to_cpu(tl->tl_used) > le16_to_cpu(tl->tl_count),
5628                         "slot %d, invalid truncate log parameters: used = "
5629                         "%u, count = %u\n", osb->slot_num,
5630                         le16_to_cpu(tl->tl_used), le16_to_cpu(tl->tl_count));
5631         return le16_to_cpu(tl->tl_used) == le16_to_cpu(tl->tl_count);
5632 }
5633
5634 static int ocfs2_truncate_log_can_coalesce(struct ocfs2_truncate_log *tl,
5635                                            unsigned int new_start)
5636 {
5637         unsigned int tail_index;
5638         unsigned int current_tail;
5639
5640         /* No records, nothing to coalesce */
5641         if (!le16_to_cpu(tl->tl_used))
5642                 return 0;
5643
5644         tail_index = le16_to_cpu(tl->tl_used) - 1;
5645         current_tail = le32_to_cpu(tl->tl_recs[tail_index].t_start);
5646         current_tail += le32_to_cpu(tl->tl_recs[tail_index].t_clusters);
5647
5648         return current_tail == new_start;
5649 }
5650
5651 int ocfs2_truncate_log_append(struct ocfs2_super *osb,
5652                               handle_t *handle,
5653                               u64 start_blk,
5654                               unsigned int num_clusters)
5655 {
5656         int status, index;
5657         unsigned int start_cluster, tl_count;
5658         struct inode *tl_inode = osb->osb_tl_inode;
5659         struct buffer_head *tl_bh = osb->osb_tl_bh;
5660         struct ocfs2_dinode *di;
5661         struct ocfs2_truncate_log *tl;
5662
5663         mlog_entry("start_blk = %llu, num_clusters = %u\n",
5664                    (unsigned long long)start_blk, num_clusters);
5665
5666         BUG_ON(mutex_trylock(&tl_inode->i_mutex));
5667
5668         start_cluster = ocfs2_blocks_to_clusters(osb->sb, start_blk);
5669
5670         di = (struct ocfs2_dinode *) tl_bh->b_data;
5671
5672         /* tl_bh is loaded from ocfs2_truncate_log_init().  It's validated
5673          * by the underlying call to ocfs2_read_inode_block(), so any
5674          * corruption is a code bug */
5675         BUG_ON(!OCFS2_IS_VALID_DINODE(di));
5676
5677         tl = &di->id2.i_dealloc;
5678         tl_count = le16_to_cpu(tl->tl_count);
5679         mlog_bug_on_msg(tl_count > ocfs2_truncate_recs_per_inode(osb->sb) ||
5680                         tl_count == 0,
5681                         "Truncate record count on #%llu invalid "
5682                         "wanted %u, actual %u\n",
5683                         (unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
5684                         ocfs2_truncate_recs_per_inode(osb->sb),
5685                         le16_to_cpu(tl->tl_count));
5686
5687         /* Caller should have known to flush before calling us. */
5688         index = le16_to_cpu(tl->tl_used);
5689         if (index >= tl_count) {
5690                 status = -ENOSPC;
5691                 mlog_errno(status);
5692                 goto bail;
5693         }
5694
5695         status = ocfs2_journal_access_di(handle, INODE_CACHE(tl_inode), tl_bh,
5696                                          OCFS2_JOURNAL_ACCESS_WRITE);
5697         if (status < 0) {
5698                 mlog_errno(status);
5699                 goto bail;
5700         }
5701
5702         mlog(0, "Log truncate of %u clusters starting at cluster %u to "
5703              "%llu (index = %d)\n", num_clusters, start_cluster,
5704              (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, index);
5705
5706         if (ocfs2_truncate_log_can_coalesce(tl, start_cluster)) {
5707                 /*
5708                  * Move index back to the record we are coalescing with.
5709                  * ocfs2_truncate_log_can_coalesce() guarantees nonzero
5710                  */
5711                 index--;
5712
5713                 num_clusters += le32_to_cpu(tl->tl_recs[index].t_clusters);
5714                 mlog(0, "Coalesce with index %u (start = %u, clusters = %u)\n",
5715                      index, le32_to_cpu(tl->tl_recs[index].t_start),
5716                      num_clusters);
5717         } else {
5718                 tl->tl_recs[index].t_start = cpu_to_le32(start_cluster);
5719                 tl->tl_used = cpu_to_le16(index + 1);
5720         }
5721         tl->tl_recs[index].t_clusters = cpu_to_le32(num_clusters);
5722
5723         status = ocfs2_journal_dirty(handle, tl_bh);
5724         if (status < 0) {
5725                 mlog_errno(status);
5726                 goto bail;
5727         }
5728
5729 bail:
5730         mlog_exit(status);
5731         return status;
5732 }
5733
5734 static int ocfs2_replay_truncate_records(struct ocfs2_super *osb,
5735                                          handle_t *handle,
5736                                          struct inode *data_alloc_inode,
5737                                          struct buffer_head *data_alloc_bh)
5738 {
5739         int status = 0;
5740         int i;
5741         unsigned int num_clusters;
5742         u64 start_blk;
5743         struct ocfs2_truncate_rec rec;
5744         struct ocfs2_dinode *di;
5745         struct ocfs2_truncate_log *tl;
5746         struct inode *tl_inode = osb->osb_tl_inode;
5747         struct buffer_head *tl_bh = osb->osb_tl_bh;
5748
5749         mlog_entry_void();
5750
5751         di = (struct ocfs2_dinode *) tl_bh->b_data;
5752         tl = &di->id2.i_dealloc;
5753         i = le16_to_cpu(tl->tl_used) - 1;
5754         while (i >= 0) {
5755                 /* Caller has given us at least enough credits to
5756                  * update the truncate log dinode */
5757                 status = ocfs2_journal_access_di(handle, INODE_CACHE(tl_inode), tl_bh,
5758                                                  OCFS2_JOURNAL_ACCESS_WRITE);
5759                 if (status < 0) {
5760                         mlog_errno(status);
5761                         goto bail;
5762                 }
5763
5764                 tl->tl_used = cpu_to_le16(i);
5765
5766                 status = ocfs2_journal_dirty(handle, tl_bh);
5767                 if (status < 0) {
5768                         mlog_errno(status);
5769                         goto bail;
5770                 }
5771
5772                 /* TODO: Perhaps we can calculate the bulk of the
5773                  * credits up front rather than extending like
5774                  * this. */
5775                 status = ocfs2_extend_trans(handle,
5776                                             OCFS2_TRUNCATE_LOG_FLUSH_ONE_REC);
5777                 if (status < 0) {
5778                         mlog_errno(status);
5779                         goto bail;
5780                 }
5781
5782                 rec = tl->tl_recs[i];
5783                 start_blk = ocfs2_clusters_to_blocks(data_alloc_inode->i_sb,
5784                                                     le32_to_cpu(rec.t_start));
5785                 num_clusters = le32_to_cpu(rec.t_clusters);
5786
5787                 /* if start_blk is not set, we ignore the record as
5788                  * invalid. */
5789                 if (start_blk) {
5790                         mlog(0, "free record %d, start = %u, clusters = %u\n",
5791                              i, le32_to_cpu(rec.t_start), num_clusters);
5792
5793                         status = ocfs2_free_clusters(handle, data_alloc_inode,
5794                                                      data_alloc_bh, start_blk,
5795                                                      num_clusters);
5796                         if (status < 0) {
5797                                 mlog_errno(status);
5798                                 goto bail;
5799                         }
5800                 }
5801                 i--;
5802         }
5803
5804 bail:
5805         mlog_exit(status);
5806         return status;
5807 }
5808
5809 /* Expects you to already be holding tl_inode->i_mutex */
5810 int __ocfs2_flush_truncate_log(struct ocfs2_super *osb)
5811 {
5812         int status;
5813         unsigned int num_to_flush;
5814         handle_t *handle;
5815         struct inode *tl_inode = osb->osb_tl_inode;
5816         struct inode *data_alloc_inode = NULL;
5817         struct buffer_head *tl_bh = osb->osb_tl_bh;
5818         struct buffer_head *data_alloc_bh = NULL;
5819         struct ocfs2_dinode *di;
5820         struct ocfs2_truncate_log *tl;
5821
5822         mlog_entry_void();
5823
5824         BUG_ON(mutex_trylock(&tl_inode->i_mutex));
5825
5826         di = (struct ocfs2_dinode *) tl_bh->b_data;
5827
5828         /* tl_bh is loaded from ocfs2_truncate_log_init().  It's validated
5829          * by the underlying call to ocfs2_read_inode_block(), so any
5830          * corruption is a code bug */
5831         BUG_ON(!OCFS2_IS_VALID_DINODE(di));
5832
5833         tl = &di->id2.i_dealloc;
5834         num_to_flush = le16_to_cpu(tl->tl_used);
5835         mlog(0, "Flush %u records from truncate log #%llu\n",
5836              num_to_flush, (unsigned long long)OCFS2_I(tl_inode)->ip_blkno);
5837         if (!num_to_flush) {
5838                 status = 0;
5839                 goto out;
5840         }
5841
5842         data_alloc_inode = ocfs2_get_system_file_inode(osb,
5843                                                        GLOBAL_BITMAP_SYSTEM_INODE,
5844                                                        OCFS2_INVALID_SLOT);
5845         if (!data_alloc_inode) {
5846                 status = -EINVAL;
5847                 mlog(ML_ERROR, "Could not get bitmap inode!\n");
5848                 goto out;
5849         }
5850
5851         mutex_lock(&data_alloc_inode->i_mutex);
5852
5853         status = ocfs2_inode_lock(data_alloc_inode, &data_alloc_bh, 1);
5854         if (status < 0) {
5855                 mlog_errno(status);
5856                 goto out_mutex;
5857         }
5858
5859         handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
5860         if (IS_ERR(handle)) {
5861                 status = PTR_ERR(handle);
5862                 mlog_errno(status);
5863                 goto out_unlock;
5864         }
5865
5866         status = ocfs2_replay_truncate_records(osb, handle, data_alloc_inode,
5867                                                data_alloc_bh);
5868         if (status < 0)
5869                 mlog_errno(status);
5870
5871         ocfs2_commit_trans(osb, handle);
5872
5873 out_unlock:
5874         brelse(data_alloc_bh);
5875         ocfs2_inode_unlock(data_alloc_inode, 1);
5876
5877 out_mutex:
5878         mutex_unlock(&data_alloc_inode->i_mutex);
5879         iput(data_alloc_inode);
5880
5881 out:
5882         mlog_exit(status);
5883         return status;
5884 }
5885
5886 int ocfs2_flush_truncate_log(struct ocfs2_super *osb)
5887 {
5888         int status;
5889         struct inode *tl_inode = osb->osb_tl_inode;
5890
5891         mutex_lock(&tl_inode->i_mutex);
5892         status = __ocfs2_flush_truncate_log(osb);
5893         mutex_unlock(&tl_inode->i_mutex);
5894
5895         return status;
5896 }
5897
5898 static void ocfs2_truncate_log_worker(struct work_struct *work)
5899 {
5900         int status;
5901         struct ocfs2_super *osb =
5902                 container_of(work, struct ocfs2_super,
5903                              osb_truncate_log_wq.work);
5904
5905         mlog_entry_void();
5906
5907         status = ocfs2_flush_truncate_log(osb);
5908         if (status < 0)
5909                 mlog_errno(status);
5910         else
5911                 ocfs2_init_inode_steal_slot(osb);
5912
5913         mlog_exit(status);
5914 }
5915
5916 #define OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL (2 * HZ)
5917 void ocfs2_schedule_truncate_log_flush(struct ocfs2_super *osb,
5918                                        int cancel)
5919 {
5920         if (osb->osb_tl_inode) {
5921                 /* We want to push off log flushes while truncates are
5922                  * still running. */
5923                 if (cancel)
5924                         cancel_delayed_work(&osb->osb_truncate_log_wq);
5925
5926                 queue_delayed_work(ocfs2_wq, &osb->osb_truncate_log_wq,
5927                                    OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL);
5928         }
5929 }
5930
5931 static int ocfs2_get_truncate_log_info(struct ocfs2_super *osb,
5932                                        int slot_num,
5933                                        struct inode **tl_inode,
5934                                        struct buffer_head **tl_bh)
5935 {
5936         int status;
5937         struct inode *inode = NULL;
5938         struct buffer_head *bh = NULL;
5939
5940         inode = ocfs2_get_system_file_inode(osb,
5941                                            TRUNCATE_LOG_SYSTEM_INODE,
5942                                            slot_num);
5943         if (!inode) {
5944                 status = -EINVAL;
5945                 mlog(ML_ERROR, "Could not get load truncate log inode!\n");
5946                 goto bail;
5947         }
5948
5949         status = ocfs2_read_inode_block(inode, &bh);
5950         if (status < 0) {
5951                 iput(inode);
5952                 mlog_errno(status);
5953                 goto bail;
5954         }
5955
5956         *tl_inode = inode;
5957         *tl_bh    = bh;
5958 bail:
5959         mlog_exit(status);
5960         return status;
5961 }
5962
5963 /* called during the 1st stage of node recovery. we stamp a clean
5964  * truncate log and pass back a copy for processing later. if the
5965  * truncate log does not require processing, a *tl_copy is set to
5966  * NULL. */
5967 int ocfs2_begin_truncate_log_recovery(struct ocfs2_super *osb,
5968                                       int slot_num,
5969                                       struct ocfs2_dinode **tl_copy)
5970 {
5971         int status;
5972         struct inode *tl_inode = NULL;
5973         struct buffer_head *tl_bh = NULL;
5974         struct ocfs2_dinode *di;
5975         struct ocfs2_truncate_log *tl;
5976
5977         *tl_copy = NULL;
5978
5979         mlog(0, "recover truncate log from slot %d\n", slot_num);
5980
5981         status = ocfs2_get_truncate_log_info(osb, slot_num, &tl_inode, &tl_bh);
5982         if (status < 0) {
5983                 mlog_errno(status);
5984                 goto bail;
5985         }
5986
5987         di = (struct ocfs2_dinode *) tl_bh->b_data;
5988
5989         /* tl_bh is loaded from ocfs2_get_truncate_log_info().  It's
5990          * validated by the underlying call to ocfs2_read_inode_block(),
5991          * so any corruption is a code bug */
5992         BUG_ON(!OCFS2_IS_VALID_DINODE(di));
5993
5994         tl = &di->id2.i_dealloc;
5995         if (le16_to_cpu(tl->tl_used)) {
5996                 mlog(0, "We'll have %u logs to recover\n",
5997                      le16_to_cpu(tl->tl_used));
5998
5999                 *tl_copy = kmalloc(tl_bh->b_size, GFP_KERNEL);
6000                 if (!(*tl_copy)) {
6001                         status = -ENOMEM;
6002                         mlog_errno(status);
6003                         goto bail;
6004                 }
6005
6006                 /* Assuming the write-out below goes well, this copy
6007                  * will be passed back to recovery for processing. */
6008                 memcpy(*tl_copy, tl_bh->b_data, tl_bh->b_size);
6009
6010                 /* All we need to do to clear the truncate log is set
6011                  * tl_used. */
6012                 tl->tl_used = 0;
6013
6014                 ocfs2_compute_meta_ecc(osb->sb, tl_bh->b_data, &di->i_check);
6015                 status = ocfs2_write_block(osb, tl_bh, INODE_CACHE(tl_inode));
6016                 if (status < 0) {
6017                         mlog_errno(status);
6018                         goto bail;
6019                 }
6020         }
6021
6022 bail:
6023         if (tl_inode)
6024                 iput(tl_inode);
6025         brelse(tl_bh);
6026
6027         if (status < 0 && (*tl_copy)) {
6028                 kfree(*tl_copy);
6029                 *tl_copy = NULL;
6030         }
6031
6032         mlog_exit(status);
6033         return status;
6034 }
6035
6036 int ocfs2_complete_truncate_log_recovery(struct ocfs2_super *osb,
6037                                          struct ocfs2_dinode *tl_copy)
6038 {
6039         int status = 0;
6040         int i;
6041         unsigned int clusters, num_recs, start_cluster;
6042         u64 start_blk;
6043         handle_t *handle;
6044         struct inode *tl_inode = osb->osb_tl_inode;
6045         struct ocfs2_truncate_log *tl;
6046
6047         mlog_entry_void();
6048
6049         if (OCFS2_I(tl_inode)->ip_blkno == le64_to_cpu(tl_copy->i_blkno)) {
6050                 mlog(ML_ERROR, "Asked to recover my own truncate log!\n");
6051                 return -EINVAL;
6052         }
6053
6054         tl = &tl_copy->id2.i_dealloc;
6055         num_recs = le16_to_cpu(tl->tl_used);
6056         mlog(0, "cleanup %u records from %llu\n", num_recs,
6057              (unsigned long long)le64_to_cpu(tl_copy->i_blkno));
6058
6059         mutex_lock(&tl_inode->i_mutex);
6060         for(i = 0; i < num_recs; i++) {
6061                 if (ocfs2_truncate_log_needs_flush(osb)) {
6062                         status = __ocfs2_flush_truncate_log(osb);
6063                         if (status < 0) {
6064                                 mlog_errno(status);
6065                                 goto bail_up;
6066                         }
6067                 }
6068
6069                 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
6070                 if (IS_ERR(handle)) {
6071                         status = PTR_ERR(handle);
6072                         mlog_errno(status);
6073                         goto bail_up;
6074                 }
6075
6076                 clusters = le32_to_cpu(tl->tl_recs[i].t_clusters);
6077                 start_cluster = le32_to_cpu(tl->tl_recs[i].t_start);
6078                 start_blk = ocfs2_clusters_to_blocks(osb->sb, start_cluster);
6079
6080                 status = ocfs2_truncate_log_append(osb, handle,
6081                                                    start_blk, clusters);
6082                 ocfs2_commit_trans(osb, handle);
6083                 if (status < 0) {
6084                         mlog_errno(status);
6085                         goto bail_up;
6086                 }
6087         }
6088
6089 bail_up:
6090         mutex_unlock(&tl_inode->i_mutex);
6091
6092         mlog_exit(status);
6093         return status;
6094 }
6095
6096 void ocfs2_truncate_log_shutdown(struct ocfs2_super *osb)
6097 {
6098         int status;
6099         struct inode *tl_inode = osb->osb_tl_inode;
6100
6101         mlog_entry_void();
6102
6103         if (tl_inode) {
6104                 cancel_delayed_work(&osb->osb_truncate_log_wq);
6105                 flush_workqueue(ocfs2_wq);
6106
6107                 status = ocfs2_flush_truncate_log(osb);
6108                 if (status < 0)
6109                         mlog_errno(status);
6110
6111                 brelse(osb->osb_tl_bh);
6112                 iput(osb->osb_tl_inode);
6113         }
6114
6115         mlog_exit_void();
6116 }
6117
6118 int ocfs2_truncate_log_init(struct ocfs2_super *osb)
6119 {
6120         int status;
6121         struct inode *tl_inode = NULL;
6122         struct buffer_head *tl_bh = NULL;
6123
6124         mlog_entry_void();
6125
6126         status = ocfs2_get_truncate_log_info(osb,
6127                                              osb->slot_num,
6128                                              &tl_inode,
6129                                              &tl_bh);
6130         if (status < 0)
6131                 mlog_errno(status);
6132
6133         /* ocfs2_truncate_log_shutdown keys on the existence of
6134          * osb->osb_tl_inode so we don't set any of the osb variables
6135          * until we're sure all is well. */
6136         INIT_DELAYED_WORK(&osb->osb_truncate_log_wq,
6137                           ocfs2_truncate_log_worker);
6138         osb->osb_tl_bh    = tl_bh;
6139         osb->osb_tl_inode = tl_inode;
6140
6141         mlog_exit(status);
6142         return status;
6143 }
6144
6145 /*
6146  * Delayed de-allocation of suballocator blocks.
6147  *
6148  * Some sets of block de-allocations might involve multiple suballocator inodes.
6149  *
6150  * The locking for this can get extremely complicated, especially when
6151  * the suballocator inodes to delete from aren't known until deep
6152  * within an unrelated codepath.
6153  *
6154  * ocfs2_extent_block structures are a good example of this - an inode
6155  * btree could have been grown by any number of nodes each allocating
6156  * out of their own suballoc inode.
6157  *
6158  * These structures allow the delay of block de-allocation until a
6159  * later time, when locking of multiple cluster inodes won't cause
6160  * deadlock.
6161  */
6162
6163 /*
6164  * Describe a single bit freed from a suballocator.  For the block
6165  * suballocators, it represents one block.  For the global cluster
6166  * allocator, it represents some clusters and free_bit indicates
6167  * clusters number.
6168  */
6169 struct ocfs2_cached_block_free {
6170         struct ocfs2_cached_block_free          *free_next;
6171         u64                                     free_blk;
6172         unsigned int                            free_bit;
6173 };
6174
6175 struct ocfs2_per_slot_free_list {
6176         struct ocfs2_per_slot_free_list         *f_next_suballocator;
6177         int                                     f_inode_type;
6178         int                                     f_slot;
6179         struct ocfs2_cached_block_free          *f_first;
6180 };
6181
6182 static int ocfs2_free_cached_blocks(struct ocfs2_super *osb,
6183                                     int sysfile_type,
6184                                     int slot,
6185                                     struct ocfs2_cached_block_free *head)
6186 {
6187         int ret;
6188         u64 bg_blkno;
6189         handle_t *handle;
6190         struct inode *inode;
6191         struct buffer_head *di_bh = NULL;
6192         struct ocfs2_cached_block_free *tmp;
6193
6194         inode = ocfs2_get_system_file_inode(osb, sysfile_type, slot);
6195         if (!inode) {
6196                 ret = -EINVAL;
6197                 mlog_errno(ret);
6198                 goto out;
6199         }
6200
6201         mutex_lock(&inode->i_mutex);
6202
6203         ret = ocfs2_inode_lock(inode, &di_bh, 1);
6204         if (ret) {
6205                 mlog_errno(ret);
6206                 goto out_mutex;
6207         }
6208
6209         handle = ocfs2_start_trans(osb, OCFS2_SUBALLOC_FREE);
6210         if (IS_ERR(handle)) {
6211                 ret = PTR_ERR(handle);
6212                 mlog_errno(ret);
6213                 goto out_unlock;
6214         }
6215
6216         while (head) {
6217                 bg_blkno = ocfs2_which_suballoc_group(head->free_blk,
6218                                                       head->free_bit);
6219                 mlog(0, "Free bit: (bit %u, blkno %llu)\n",
6220                      head->free_bit, (unsigned long long)head->free_blk);
6221
6222                 ret = ocfs2_free_suballoc_bits(handle, inode, di_bh,
6223                                                head->free_bit, bg_blkno, 1);
6224                 if (ret) {
6225                         mlog_errno(ret);
6226                         goto out_journal;
6227                 }
6228
6229                 ret = ocfs2_extend_trans(handle, OCFS2_SUBALLOC_FREE);
6230                 if (ret) {
6231                         mlog_errno(ret);
6232                         goto out_journal;
6233                 }
6234
6235                 tmp = head;
6236                 head = head->free_next;
6237                 kfree(tmp);
6238         }
6239
6240 out_journal:
6241         ocfs2_commit_trans(osb, handle);
6242
6243 out_unlock:
6244         ocfs2_inode_unlock(inode, 1);
6245         brelse(di_bh);
6246 out_mutex:
6247         mutex_unlock(&inode->i_mutex);
6248         iput(inode);
6249 out:
6250         while(head) {
6251                 /* Premature exit may have left some dangling items. */
6252                 tmp = head;
6253                 head = head->free_next;
6254                 kfree(tmp);
6255         }
6256
6257         return ret;
6258 }
6259
6260 int ocfs2_cache_cluster_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt,
6261                                 u64 blkno, unsigned int bit)
6262 {
6263         int ret = 0;
6264         struct ocfs2_cached_block_free *item;
6265
6266         item = kmalloc(sizeof(*item), GFP_NOFS);
6267         if (item == NULL) {
6268                 ret = -ENOMEM;
6269                 mlog_errno(ret);
6270                 return ret;
6271         }
6272
6273         mlog(0, "Insert clusters: (bit %u, blk %llu)\n",
6274              bit, (unsigned long long)blkno);
6275
6276         item->free_blk = blkno;
6277         item->free_bit = bit;
6278         item->free_next = ctxt->c_global_allocator;
6279
6280         ctxt->c_global_allocator = item;
6281         return ret;
6282 }
6283
6284 static int ocfs2_free_cached_clusters(struct ocfs2_super *osb,
6285                                       struct ocfs2_cached_block_free *head)
6286 {
6287         struct ocfs2_cached_block_free *tmp;
6288         struct inode *tl_inode = osb->osb_tl_inode;
6289         handle_t *handle;
6290         int ret = 0;
6291
6292         mutex_lock(&tl_inode->i_mutex);
6293
6294         while (head) {
6295                 if (ocfs2_truncate_log_needs_flush(osb)) {
6296                         ret = __ocfs2_flush_truncate_log(osb);
6297                         if (ret < 0) {
6298                                 mlog_errno(ret);
6299                                 break;
6300                         }
6301                 }
6302
6303                 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
6304                 if (IS_ERR(handle)) {
6305                         ret = PTR_ERR(handle);
6306                         mlog_errno(ret);
6307                         break;
6308                 }
6309
6310                 ret = ocfs2_truncate_log_append(osb, handle, head->free_blk,
6311                                                 head->free_bit);
6312
6313                 ocfs2_commit_trans(osb, handle);
6314                 tmp = head;
6315                 head = head->free_next;
6316                 kfree(tmp);
6317
6318                 if (ret < 0) {
6319                         mlog_errno(ret);
6320                         break;
6321                 }
6322         }
6323
6324         mutex_unlock(&tl_inode->i_mutex);
6325
6326         while (head) {
6327                 /* Premature exit may have left some dangling items. */
6328                 tmp = head;
6329                 head = head->free_next;
6330                 kfree(tmp);
6331         }
6332
6333         return ret;
6334 }
6335
6336 int ocfs2_run_deallocs(struct ocfs2_super *osb,
6337                        struct ocfs2_cached_dealloc_ctxt *ctxt)
6338 {
6339         int ret = 0, ret2;
6340         struct ocfs2_per_slot_free_list *fl;
6341
6342         if (!ctxt)
6343                 return 0;
6344
6345         while (ctxt->c_first_suballocator) {
6346                 fl = ctxt->c_first_suballocator;
6347
6348                 if (fl->f_first) {
6349                         mlog(0, "Free items: (type %u, slot %d)\n",
6350                              fl->f_inode_type, fl->f_slot);
6351                         ret2 = ocfs2_free_cached_blocks(osb,
6352                                                         fl->f_inode_type,
6353                                                         fl->f_slot,
6354                                                         fl->f_first);
6355                         if (ret2)
6356                                 mlog_errno(ret2);
6357                         if (!ret)
6358                                 ret = ret2;
6359                 }
6360
6361                 ctxt->c_first_suballocator = fl->f_next_suballocator;
6362                 kfree(fl);
6363         }
6364
6365         if (ctxt->c_global_allocator) {
6366                 ret2 = ocfs2_free_cached_clusters(osb,
6367                                                   ctxt->c_global_allocator);
6368                 if (ret2)
6369                         mlog_errno(ret2);
6370                 if (!ret)
6371                         ret = ret2;
6372
6373                 ctxt->c_global_allocator = NULL;
6374         }
6375
6376         return ret;
6377 }
6378
6379 static struct ocfs2_per_slot_free_list *
6380 ocfs2_find_per_slot_free_list(int type,
6381                               int slot,
6382                               struct ocfs2_cached_dealloc_ctxt *ctxt)
6383 {
6384         struct ocfs2_per_slot_free_list *fl = ctxt->c_first_suballocator;
6385
6386         while (fl) {
6387                 if (fl->f_inode_type == type && fl->f_slot == slot)
6388                         return fl;
6389
6390                 fl = fl->f_next_suballocator;
6391         }
6392
6393         fl = kmalloc(sizeof(*fl), GFP_NOFS);
6394         if (fl) {
6395                 fl->f_inode_type = type;
6396                 fl->f_slot = slot;
6397                 fl->f_first = NULL;
6398                 fl->f_next_suballocator = ctxt->c_first_suballocator;
6399
6400                 ctxt->c_first_suballocator = fl;
6401         }
6402         return fl;
6403 }
6404
6405 static int ocfs2_cache_block_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt,
6406                                      int type, int slot, u64 blkno,
6407                                      unsigned int bit)
6408 {
6409         int ret;
6410         struct ocfs2_per_slot_free_list *fl;
6411         struct ocfs2_cached_block_free *item;
6412
6413         fl = ocfs2_find_per_slot_free_list(type, slot, ctxt);
6414         if (fl == NULL) {
6415                 ret = -ENOMEM;
6416                 mlog_errno(ret);
6417                 goto out;
6418         }
6419
6420         item = kmalloc(sizeof(*item), GFP_NOFS);
6421         if (item == NULL) {
6422                 ret = -ENOMEM;
6423                 mlog_errno(ret);
6424                 goto out;
6425         }
6426
6427         mlog(0, "Insert: (type %d, slot %u, bit %u, blk %llu)\n",
6428              type, slot, bit, (unsigned long long)blkno);
6429
6430         item->free_blk = blkno;
6431         item->free_bit = bit;
6432         item->free_next = fl->f_first;
6433
6434         fl->f_first = item;
6435
6436         ret = 0;
6437 out:
6438         return ret;
6439 }
6440
6441 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
6442                                          struct ocfs2_extent_block *eb)
6443 {
6444         return ocfs2_cache_block_dealloc(ctxt, EXTENT_ALLOC_SYSTEM_INODE,
6445                                          le16_to_cpu(eb->h_suballoc_slot),
6446                                          le64_to_cpu(eb->h_blkno),
6447                                          le16_to_cpu(eb->h_suballoc_bit));
6448 }
6449
6450 /* This function will figure out whether the currently last extent
6451  * block will be deleted, and if it will, what the new last extent
6452  * block will be so we can update his h_next_leaf_blk field, as well
6453  * as the dinodes i_last_eb_blk */
6454 static int ocfs2_find_new_last_ext_blk(struct inode *inode,
6455                                        unsigned int clusters_to_del,
6456                                        struct ocfs2_path *path,
6457                                        struct buffer_head **new_last_eb)
6458 {
6459         int next_free, ret = 0;
6460         u32 cpos;
6461         struct ocfs2_extent_rec *rec;
6462         struct ocfs2_extent_block *eb;
6463         struct ocfs2_extent_list *el;
6464         struct buffer_head *bh = NULL;
6465
6466         *new_last_eb = NULL;
6467
6468         /* we have no tree, so of course, no last_eb. */
6469         if (!path->p_tree_depth)
6470                 goto out;
6471
6472         /* trunc to zero special case - this makes tree_depth = 0
6473          * regardless of what it is.  */
6474         if (OCFS2_I(inode)->ip_clusters == clusters_to_del)
6475                 goto out;
6476
6477         el = path_leaf_el(path);
6478         BUG_ON(!el->l_next_free_rec);
6479
6480         /*
6481          * Make sure that this extent list will actually be empty
6482          * after we clear away the data. We can shortcut out if
6483          * there's more than one non-empty extent in the
6484          * list. Otherwise, a check of the remaining extent is
6485          * necessary.
6486          */
6487         next_free = le16_to_cpu(el->l_next_free_rec);
6488         rec = NULL;
6489         if (ocfs2_is_empty_extent(&el->l_recs[0])) {
6490                 if (next_free > 2)
6491                         goto out;
6492
6493                 /* We may have a valid extent in index 1, check it. */
6494                 if (next_free == 2)
6495                         rec = &el->l_recs[1];
6496
6497                 /*
6498                  * Fall through - no more nonempty extents, so we want
6499                  * to delete this leaf.
6500                  */
6501         } else {
6502                 if (next_free > 1)
6503                         goto out;
6504
6505                 rec = &el->l_recs[0];
6506         }
6507
6508         if (rec) {
6509                 /*
6510                  * Check it we'll only be trimming off the end of this
6511                  * cluster.
6512                  */
6513                 if (le16_to_cpu(rec->e_leaf_clusters) > clusters_to_del)
6514                         goto out;
6515         }
6516
6517         ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, &cpos);
6518         if (ret) {
6519                 mlog_errno(ret);
6520                 goto out;
6521         }
6522
6523         ret = ocfs2_find_leaf(inode, path_root_el(path), cpos, &bh);
6524         if (ret) {
6525                 mlog_errno(ret);
6526                 goto out;
6527         }
6528
6529         eb = (struct ocfs2_extent_block *) bh->b_data;
6530         el = &eb->h_list;
6531
6532         /* ocfs2_find_leaf() gets the eb from ocfs2_read_extent_block().
6533          * Any corruption is a code bug. */
6534         BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb));
6535
6536         *new_last_eb = bh;
6537         get_bh(*new_last_eb);
6538         mlog(0, "returning block %llu, (cpos: %u)\n",
6539              (unsigned long long)le64_to_cpu(eb->h_blkno), cpos);
6540 out:
6541         brelse(bh);
6542
6543         return ret;
6544 }
6545
6546 /*
6547  * Trim some clusters off the rightmost edge of a tree. Only called
6548  * during truncate.
6549  *
6550  * The caller needs to:
6551  *   - start journaling of each path component.
6552  *   - compute and fully set up any new last ext block
6553  */
6554 static int ocfs2_trim_tree(struct inode *inode, struct ocfs2_path *path,
6555                            handle_t *handle, struct ocfs2_truncate_context *tc,
6556                            u32 clusters_to_del, u64 *delete_start)
6557 {
6558         int ret, i, index = path->p_tree_depth;
6559         u32 new_edge = 0;
6560         u64 deleted_eb = 0;
6561         struct buffer_head *bh;
6562         struct ocfs2_extent_list *el;
6563         struct ocfs2_extent_rec *rec;
6564
6565         *delete_start = 0;
6566
6567         while (index >= 0) {
6568                 bh = path->p_node[index].bh;
6569                 el = path->p_node[index].el;
6570
6571                 mlog(0, "traveling tree (index = %d, block = %llu)\n",
6572                      index,  (unsigned long long)bh->b_blocknr);
6573
6574                 BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0);
6575
6576                 if (index !=
6577                     (path->p_tree_depth - le16_to_cpu(el->l_tree_depth))) {
6578                         ocfs2_error(inode->i_sb,
6579                                     "Inode %lu has invalid ext. block %llu",
6580                                     inode->i_ino,
6581                                     (unsigned long long)bh->b_blocknr);
6582                         ret = -EROFS;
6583                         goto out;
6584                 }
6585
6586 find_tail_record:
6587                 i = le16_to_cpu(el->l_next_free_rec) - 1;
6588                 rec = &el->l_recs[i];
6589
6590                 mlog(0, "Extent list before: record %d: (%u, %u, %llu), "
6591                      "next = %u\n", i, le32_to_cpu(rec->e_cpos),
6592                      ocfs2_rec_clusters(el, rec),
6593                      (unsigned long long)le64_to_cpu(rec->e_blkno),
6594                      le16_to_cpu(el->l_next_free_rec));
6595
6596                 BUG_ON(ocfs2_rec_clusters(el, rec) < clusters_to_del);
6597
6598                 if (le16_to_cpu(el->l_tree_depth) == 0) {
6599                         /*
6600                          * If the leaf block contains a single empty
6601                          * extent and no records, we can just remove
6602                          * the block.
6603                          */
6604                         if (i == 0 && ocfs2_is_empty_extent(rec)) {
6605                                 memset(rec, 0,
6606                                        sizeof(struct ocfs2_extent_rec));
6607                                 el->l_next_free_rec = cpu_to_le16(0);
6608
6609                                 goto delete;
6610                         }
6611
6612                         /*
6613                          * Remove any empty extents by shifting things
6614                          * left. That should make life much easier on
6615                          * the code below. This condition is rare
6616                          * enough that we shouldn't see a performance
6617                          * hit.
6618                          */
6619                         if (ocfs2_is_empty_extent(&el->l_recs[0])) {
6620                                 le16_add_cpu(&el->l_next_free_rec, -1);
6621
6622                                 for(i = 0;
6623                                     i < le16_to_cpu(el->l_next_free_rec); i++)
6624                                         el->l_recs[i] = el->l_recs[i + 1];
6625
6626                                 memset(&el->l_recs[i], 0,
6627                                        sizeof(struct ocfs2_extent_rec));
6628
6629                                 /*
6630                                  * We've modified our extent list. The
6631                                  * simplest way to handle this change
6632                                  * is to being the search from the
6633                                  * start again.
6634                                  */
6635                                 goto find_tail_record;
6636                         }
6637
6638                         le16_add_cpu(&rec->e_leaf_clusters, -clusters_to_del);
6639
6640                         /*
6641                          * We'll use "new_edge" on our way back up the
6642                          * tree to know what our rightmost cpos is.
6643                          */
6644                         new_edge = le16_to_cpu(rec->e_leaf_clusters);
6645                         new_edge += le32_to_cpu(rec->e_cpos);
6646
6647                         /*
6648                          * The caller will use this to delete data blocks.
6649                          */
6650                         *delete_start = le64_to_cpu(rec->e_blkno)
6651                                 + ocfs2_clusters_to_blocks(inode->i_sb,
6652                                         le16_to_cpu(rec->e_leaf_clusters));
6653
6654                         /*
6655                          * If it's now empty, remove this record.
6656                          */
6657                         if (le16_to_cpu(rec->e_leaf_clusters) == 0) {
6658                                 memset(rec, 0,
6659                                        sizeof(struct ocfs2_extent_rec));
6660                                 le16_add_cpu(&el->l_next_free_rec, -1);
6661                         }
6662                 } else {
6663                         if (le64_to_cpu(rec->e_blkno) == deleted_eb) {
6664                                 memset(rec, 0,
6665                                        sizeof(struct ocfs2_extent_rec));
6666                                 le16_add_cpu(&el->l_next_free_rec, -1);
6667
6668                                 goto delete;
6669                         }
6670
6671                         /* Can this actually happen? */
6672                         if (le16_to_cpu(el->l_next_free_rec) == 0)
6673                                 goto delete;
6674
6675                         /*
6676                          * We never actually deleted any clusters
6677                          * because our leaf was empty. There's no
6678                          * reason to adjust the rightmost edge then.
6679                          */
6680                         if (new_edge == 0)
6681                                 goto delete;
6682
6683                         rec->e_int_clusters = cpu_to_le32(new_edge);
6684                         le32_add_cpu(&rec->e_int_clusters,
6685                                      -le32_to_cpu(rec->e_cpos));
6686
6687                          /*
6688                           * A deleted child record should have been
6689                           * caught above.
6690                           */
6691                          BUG_ON(le32_to_cpu(rec->e_int_clusters) == 0);
6692                 }
6693
6694 delete:
6695                 ret = ocfs2_journal_dirty(handle, bh);
6696                 if (ret) {
6697                         mlog_errno(ret);
6698                         goto out;
6699                 }
6700
6701                 mlog(0, "extent list container %llu, after: record %d: "
6702                      "(%u, %u, %llu), next = %u.\n",
6703                      (unsigned long long)bh->b_blocknr, i,
6704                      le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec),
6705                      (unsigned long long)le64_to_cpu(rec->e_blkno),
6706                      le16_to_cpu(el->l_next_free_rec));
6707
6708                 /*
6709                  * We must be careful to only attempt delete of an
6710                  * extent block (and not the root inode block).
6711                  */
6712                 if (index > 0 && le16_to_cpu(el->l_next_free_rec) == 0) {
6713                         struct ocfs2_extent_block *eb =
6714                                 (struct ocfs2_extent_block *)bh->b_data;
6715
6716                         /*
6717                          * Save this for use when processing the
6718                          * parent block.
6719                          */
6720                         deleted_eb = le64_to_cpu(eb->h_blkno);
6721
6722                         mlog(0, "deleting this extent block.\n");
6723
6724                         ocfs2_remove_from_cache(INODE_CACHE(inode), bh);
6725
6726                         BUG_ON(ocfs2_rec_clusters(el, &el->l_recs[0]));
6727                         BUG_ON(le32_to_cpu(el->l_recs[0].e_cpos));
6728                         BUG_ON(le64_to_cpu(el->l_recs[0].e_blkno));
6729
6730                         ret = ocfs2_cache_extent_block_free(&tc->tc_dealloc, eb);
6731                         /* An error here is not fatal. */
6732                         if (ret < 0)
6733                                 mlog_errno(ret);
6734                 } else {
6735                         deleted_eb = 0;
6736                 }
6737
6738                 index--;
6739         }
6740
6741         ret = 0;
6742 out:
6743         return ret;
6744 }
6745
6746 static int ocfs2_do_truncate(struct ocfs2_super *osb,
6747                              unsigned int clusters_to_del,
6748                              struct inode *inode,
6749                              struct buffer_head *fe_bh,
6750                              handle_t *handle,
6751                              struct ocfs2_truncate_context *tc,
6752                              struct ocfs2_path *path)
6753 {
6754         int status;
6755         struct ocfs2_dinode *fe;
6756         struct ocfs2_extent_block *last_eb = NULL;
6757         struct ocfs2_extent_list *el;
6758         struct buffer_head *last_eb_bh = NULL;
6759         u64 delete_blk = 0;
6760
6761         fe = (struct ocfs2_dinode *) fe_bh->b_data;
6762
6763         status = ocfs2_find_new_last_ext_blk(inode, clusters_to_del,
6764                                              path, &last_eb_bh);
6765         if (status < 0) {
6766                 mlog_errno(status);
6767                 goto bail;
6768         }
6769
6770         /*
6771          * Each component will be touched, so we might as well journal
6772          * here to avoid having to handle errors later.
6773          */
6774         status = ocfs2_journal_access_path(INODE_CACHE(inode), handle, path);
6775         if (status < 0) {
6776                 mlog_errno(status);
6777                 goto bail;
6778         }
6779
6780         if (last_eb_bh) {
6781                 status = ocfs2_journal_access_eb(handle, INODE_CACHE(inode), last_eb_bh,
6782                                                  OCFS2_JOURNAL_ACCESS_WRITE);
6783                 if (status < 0) {
6784                         mlog_errno(status);
6785                         goto bail;
6786                 }
6787
6788                 last_eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
6789         }
6790
6791         el = &(fe->id2.i_list);
6792
6793         /*
6794          * Lower levels depend on this never happening, but it's best
6795          * to check it up here before changing the tree.
6796          */
6797         if (el->l_tree_depth && el->l_recs[0].e_int_clusters == 0) {
6798                 ocfs2_error(inode->i_sb,
6799                             "Inode %lu has an empty extent record, depth %u\n",
6800                             inode->i_ino, le16_to_cpu(el->l_tree_depth));
6801                 status = -EROFS;
6802                 goto bail;
6803         }
6804
6805         vfs_dq_free_space_nodirty(inode,
6806                         ocfs2_clusters_to_bytes(osb->sb, clusters_to_del));
6807         spin_lock(&OCFS2_I(inode)->ip_lock);
6808         OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters) -
6809                                       clusters_to_del;
6810         spin_unlock(&OCFS2_I(inode)->ip_lock);
6811         le32_add_cpu(&fe->i_clusters, -clusters_to_del);
6812         inode->i_blocks = ocfs2_inode_sector_count(inode);
6813
6814         status = ocfs2_trim_tree(inode, path, handle, tc,
6815                                  clusters_to_del, &delete_blk);
6816         if (status) {
6817                 mlog_errno(status);
6818                 goto bail;
6819         }
6820
6821         if (le32_to_cpu(fe->i_clusters) == 0) {
6822                 /* trunc to zero is a special case. */
6823                 el->l_tree_depth = 0;
6824                 fe->i_last_eb_blk = 0;
6825         } else if (last_eb)
6826                 fe->i_last_eb_blk = last_eb->h_blkno;
6827
6828         status = ocfs2_journal_dirty(handle, fe_bh);
6829         if (status < 0) {
6830                 mlog_errno(status);
6831                 goto bail;
6832         }
6833
6834         if (last_eb) {
6835                 /* If there will be a new last extent block, then by
6836                  * definition, there cannot be any leaves to the right of
6837                  * him. */
6838                 last_eb->h_next_leaf_blk = 0;
6839                 status = ocfs2_journal_dirty(handle, last_eb_bh);
6840                 if (status < 0) {
6841                         mlog_errno(status);
6842                         goto bail;
6843                 }
6844         }
6845
6846         if (delete_blk) {
6847                 status = ocfs2_truncate_log_append(osb, handle, delete_blk,
6848                                                    clusters_to_del);
6849                 if (status < 0) {
6850                         mlog_errno(status);
6851                         goto bail;
6852                 }
6853         }
6854         status = 0;
6855 bail:
6856         brelse(last_eb_bh);
6857         mlog_exit(status);
6858         return status;
6859 }
6860
6861 static int ocfs2_zero_func(handle_t *handle, struct buffer_head *bh)
6862 {
6863         set_buffer_uptodate(bh);
6864         mark_buffer_dirty(bh);
6865         return 0;
6866 }
6867
6868 static void ocfs2_map_and_dirty_page(struct inode *inode, handle_t *handle,
6869                                      unsigned int from, unsigned int to,
6870                                      struct page *page, int zero, u64 *phys)
6871 {
6872         int ret, partial = 0;
6873
6874         ret = ocfs2_map_page_blocks(page, phys, inode, from, to, 0);
6875         if (ret)
6876                 mlog_errno(ret);
6877
6878         if (zero)
6879                 zero_user_segment(page, from, to);
6880
6881         /*
6882          * Need to set the buffers we zero'd into uptodate
6883          * here if they aren't - ocfs2_map_page_blocks()
6884          * might've skipped some
6885          */
6886         ret = walk_page_buffers(handle, page_buffers(page),
6887                                 from, to, &partial,
6888                                 ocfs2_zero_func);
6889         if (ret < 0)
6890                 mlog_errno(ret);
6891         else if (ocfs2_should_order_data(inode)) {
6892                 ret = ocfs2_jbd2_file_inode(handle, inode);
6893                 if (ret < 0)
6894                         mlog_errno(ret);
6895         }
6896
6897         if (!partial)
6898                 SetPageUptodate(page);
6899
6900         flush_dcache_page(page);
6901 }
6902
6903 static void ocfs2_zero_cluster_pages(struct inode *inode, loff_t start,
6904                                      loff_t end, struct page **pages,
6905                                      int numpages, u64 phys, handle_t *handle)
6906 {
6907         int i;
6908         struct page *page;
6909         unsigned int from, to = PAGE_CACHE_SIZE;
6910         struct super_block *sb = inode->i_sb;
6911
6912         BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb)));
6913
6914         if (numpages == 0)
6915                 goto out;
6916
6917         to = PAGE_CACHE_SIZE;
6918         for(i = 0; i < numpages; i++) {
6919                 page = pages[i];
6920
6921                 from = start & (PAGE_CACHE_SIZE - 1);
6922                 if ((end >> PAGE_CACHE_SHIFT) == page->index)
6923                         to = end & (PAGE_CACHE_SIZE - 1);
6924
6925                 BUG_ON(from > PAGE_CACHE_SIZE);
6926                 BUG_ON(to > PAGE_CACHE_SIZE);
6927
6928                 ocfs2_map_and_dirty_page(inode, handle, from, to, page, 1,
6929                                          &phys);
6930
6931                 start = (page->index + 1) << PAGE_CACHE_SHIFT;
6932         }
6933 out:
6934         if (pages)
6935                 ocfs2_unlock_and_free_pages(pages, numpages);
6936 }
6937
6938 static int ocfs2_grab_eof_pages(struct inode *inode, loff_t start, loff_t end,
6939                                 struct page **pages, int *num)
6940 {
6941         int numpages, ret = 0;
6942         struct super_block *sb = inode->i_sb;
6943         struct address_space *mapping = inode->i_mapping;
6944         unsigned long index;
6945         loff_t last_page_bytes;
6946
6947         BUG_ON(start > end);
6948
6949         BUG_ON(start >> OCFS2_SB(sb)->s_clustersize_bits !=
6950                (end - 1) >> OCFS2_SB(sb)->s_clustersize_bits);
6951
6952         numpages = 0;
6953         last_page_bytes = PAGE_ALIGN(end);
6954         index = start >> PAGE_CACHE_SHIFT;
6955         do {
6956                 pages[numpages] = grab_cache_page(mapping, index);
6957                 if (!pages[numpages]) {
6958                         ret = -ENOMEM;
6959                         mlog_errno(ret);
6960                         goto out;
6961                 }
6962
6963                 numpages++;
6964                 index++;
6965         } while (index < (last_page_bytes >> PAGE_CACHE_SHIFT));
6966
6967 out:
6968         if (ret != 0) {
6969                 if (pages)
6970                         ocfs2_unlock_and_free_pages(pages, numpages);
6971                 numpages = 0;
6972         }
6973
6974         *num = numpages;
6975
6976         return ret;
6977 }
6978
6979 /*
6980  * Zero the area past i_size but still within an allocated
6981  * cluster. This avoids exposing nonzero data on subsequent file
6982  * extends.
6983  *
6984  * We need to call this before i_size is updated on the inode because
6985  * otherwise block_write_full_page() will skip writeout of pages past
6986  * i_size. The new_i_size parameter is passed for this reason.
6987  */
6988 int ocfs2_zero_range_for_truncate(struct inode *inode, handle_t *handle,
6989                                   u64 range_start, u64 range_end)
6990 {
6991         int ret = 0, numpages;
6992         struct page **pages = NULL;
6993         u64 phys;
6994         unsigned int ext_flags;
6995         struct super_block *sb = inode->i_sb;
6996
6997         /*
6998          * File systems which don't support sparse files zero on every
6999          * extend.
7000          */
7001         if (!ocfs2_sparse_alloc(OCFS2_SB(sb)))
7002                 return 0;
7003
7004         pages = kcalloc(ocfs2_pages_per_cluster(sb),
7005                         sizeof(struct page *), GFP_NOFS);
7006         if (pages == NULL) {
7007                 ret = -ENOMEM;
7008                 mlog_errno(ret);
7009                 goto out;
7010         }
7011
7012         if (range_start == range_end)
7013                 goto out;
7014
7015         ret = ocfs2_extent_map_get_blocks(inode,
7016                                           range_start >> sb->s_blocksize_bits,
7017                                           &phys, NULL, &ext_flags);
7018         if (ret) {
7019                 mlog_errno(ret);
7020                 goto out;
7021         }
7022
7023         /*
7024          * Tail is a hole, or is marked unwritten. In either case, we
7025          * can count on read and write to return/push zero's.
7026          */
7027         if (phys == 0 || ext_flags & OCFS2_EXT_UNWRITTEN)
7028                 goto out;
7029
7030         ret = ocfs2_grab_eof_pages(inode, range_start, range_end, pages,
7031                                    &numpages);
7032         if (ret) {
7033                 mlog_errno(ret);
7034                 goto out;
7035         }
7036
7037         ocfs2_zero_cluster_pages(inode, range_start, range_end, pages,
7038                                  numpages, phys, handle);
7039
7040         /*
7041          * Initiate writeout of the pages we zero'd here. We don't
7042          * wait on them - the truncate_inode_pages() call later will
7043          * do that for us.
7044          */
7045         ret = do_sync_mapping_range(inode->i_mapping, range_start,
7046                                     range_end - 1, SYNC_FILE_RANGE_WRITE);
7047         if (ret)
7048                 mlog_errno(ret);
7049
7050 out:
7051         if (pages)
7052                 kfree(pages);
7053
7054         return ret;
7055 }
7056
7057 static void ocfs2_zero_dinode_id2_with_xattr(struct inode *inode,
7058                                              struct ocfs2_dinode *di)
7059 {
7060         unsigned int blocksize = 1 << inode->i_sb->s_blocksize_bits;
7061         unsigned int xattrsize = le16_to_cpu(di->i_xattr_inline_size);
7062
7063         if (le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_XATTR_FL)
7064                 memset(&di->id2, 0, blocksize -
7065                                     offsetof(struct ocfs2_dinode, id2) -
7066                                     xattrsize);
7067         else
7068                 memset(&di->id2, 0, blocksize -
7069                                     offsetof(struct ocfs2_dinode, id2));
7070 }
7071
7072 void ocfs2_dinode_new_extent_list(struct inode *inode,
7073                                   struct ocfs2_dinode *di)
7074 {
7075         ocfs2_zero_dinode_id2_with_xattr(inode, di);
7076         di->id2.i_list.l_tree_depth = 0;
7077         di->id2.i_list.l_next_free_rec = 0;
7078         di->id2.i_list.l_count = cpu_to_le16(
7079                 ocfs2_extent_recs_per_inode_with_xattr(inode->i_sb, di));
7080 }
7081
7082 void ocfs2_set_inode_data_inline(struct inode *inode, struct ocfs2_dinode *di)
7083 {
7084         struct ocfs2_inode_info *oi = OCFS2_I(inode);
7085         struct ocfs2_inline_data *idata = &di->id2.i_data;
7086
7087         spin_lock(&oi->ip_lock);
7088         oi->ip_dyn_features |= OCFS2_INLINE_DATA_FL;
7089         di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
7090         spin_unlock(&oi->ip_lock);
7091
7092         /*
7093          * We clear the entire i_data structure here so that all
7094          * fields can be properly initialized.
7095          */
7096         ocfs2_zero_dinode_id2_with_xattr(inode, di);
7097
7098         idata->id_count = cpu_to_le16(
7099                         ocfs2_max_inline_data_with_xattr(inode->i_sb, di));
7100 }
7101
7102 int ocfs2_convert_inline_data_to_extents(struct inode *inode,
7103                                          struct buffer_head *di_bh)
7104 {
7105         int ret, i, has_data, num_pages = 0;
7106         handle_t *handle;
7107         u64 uninitialized_var(block);
7108         struct ocfs2_inode_info *oi = OCFS2_I(inode);
7109         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
7110         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
7111         struct ocfs2_alloc_context *data_ac = NULL;
7112         struct page **pages = NULL;
7113         loff_t end = osb->s_clustersize;
7114         struct ocfs2_extent_tree et;
7115         int did_quota = 0;
7116
7117         has_data = i_size_read(inode) ? 1 : 0;
7118
7119         if (has_data) {
7120                 pages = kcalloc(ocfs2_pages_per_cluster(osb->sb),
7121                                 sizeof(struct page *), GFP_NOFS);
7122                 if (pages == NULL) {
7123                         ret = -ENOMEM;
7124                         mlog_errno(ret);
7125                         goto out;
7126                 }
7127
7128                 ret = ocfs2_reserve_clusters(osb, 1, &data_ac);
7129                 if (ret) {
7130                         mlog_errno(ret);
7131                         goto out;
7132                 }
7133         }
7134
7135         handle = ocfs2_start_trans(osb,
7136                                    ocfs2_inline_to_extents_credits(osb->sb));
7137         if (IS_ERR(handle)) {
7138                 ret = PTR_ERR(handle);
7139                 mlog_errno(ret);
7140                 goto out_unlock;
7141         }
7142
7143         ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
7144                                       OCFS2_JOURNAL_ACCESS_WRITE);
7145         if (ret) {
7146                 mlog_errno(ret);
7147                 goto out_commit;
7148         }
7149
7150         if (has_data) {
7151                 u32 bit_off, num;
7152                 unsigned int page_end;
7153                 u64 phys;
7154
7155                 if (vfs_dq_alloc_space_nodirty(inode,
7156                                        ocfs2_clusters_to_bytes(osb->sb, 1))) {
7157                         ret = -EDQUOT;
7158                         goto out_commit;
7159                 }
7160                 did_quota = 1;
7161
7162                 ret = ocfs2_claim_clusters(osb, handle, data_ac, 1, &bit_off,
7163                                            &num);
7164                 if (ret) {
7165                         mlog_errno(ret);
7166                         goto out_commit;
7167                 }
7168
7169                 /*
7170                  * Save two copies, one for insert, and one that can
7171                  * be changed by ocfs2_map_and_dirty_page() below.
7172                  */
7173                 block = phys = ocfs2_clusters_to_blocks(inode->i_sb, bit_off);
7174
7175                 /*
7176                  * Non sparse file systems zero on extend, so no need
7177                  * to do that now.
7178                  */
7179                 if (!ocfs2_sparse_alloc(osb) &&
7180                     PAGE_CACHE_SIZE < osb->s_clustersize)
7181                         end = PAGE_CACHE_SIZE;
7182
7183                 ret = ocfs2_grab_eof_pages(inode, 0, end, pages, &num_pages);
7184                 if (ret) {
7185                         mlog_errno(ret);
7186                         goto out_commit;
7187                 }
7188
7189                 /*
7190                  * This should populate the 1st page for us and mark
7191                  * it up to date.
7192                  */
7193                 ret = ocfs2_read_inline_data(inode, pages[0], di_bh);
7194                 if (ret) {
7195                         mlog_errno(ret);
7196                         goto out_commit;
7197                 }
7198
7199                 page_end = PAGE_CACHE_SIZE;
7200                 if (PAGE_CACHE_SIZE > osb->s_clustersize)
7201                         page_end = osb->s_clustersize;
7202
7203                 for (i = 0; i < num_pages; i++)
7204                         ocfs2_map_and_dirty_page(inode, handle, 0, page_end,
7205                                                  pages[i], i > 0, &phys);
7206         }
7207
7208         spin_lock(&oi->ip_lock);
7209         oi->ip_dyn_features &= ~OCFS2_INLINE_DATA_FL;
7210         di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
7211         spin_unlock(&oi->ip_lock);
7212
7213         ocfs2_dinode_new_extent_list(inode, di);
7214
7215         ocfs2_journal_dirty(handle, di_bh);
7216
7217         if (has_data) {
7218                 /*
7219                  * An error at this point should be extremely rare. If
7220                  * this proves to be false, we could always re-build
7221                  * the in-inode data from our pages.
7222                  */
7223                 ocfs2_init_dinode_extent_tree(&et, inode, di_bh);
7224                 ret = ocfs2_insert_extent(osb, handle, inode, &et,
7225                                           0, block, 1, 0, NULL);
7226                 if (ret) {
7227                         mlog_errno(ret);
7228                         goto out_commit;
7229                 }
7230
7231                 inode->i_blocks = ocfs2_inode_sector_count(inode);
7232         }
7233
7234 out_commit:
7235         if (ret < 0 && did_quota)
7236                 vfs_dq_free_space_nodirty(inode,
7237                                           ocfs2_clusters_to_bytes(osb->sb, 1));
7238
7239         ocfs2_commit_trans(osb, handle);
7240
7241 out_unlock:
7242         if (data_ac)
7243                 ocfs2_free_alloc_context(data_ac);
7244
7245 out:
7246         if (pages) {
7247                 ocfs2_unlock_and_free_pages(pages, num_pages);
7248                 kfree(pages);
7249         }
7250
7251         return ret;
7252 }
7253
7254 /*
7255  * It is expected, that by the time you call this function,
7256  * inode->i_size and fe->i_size have been adjusted.
7257  *
7258  * WARNING: This will kfree the truncate context
7259  */
7260 int ocfs2_commit_truncate(struct ocfs2_super *osb,
7261                           struct inode *inode,
7262                           struct buffer_head *fe_bh,
7263                           struct ocfs2_truncate_context *tc)
7264 {
7265         int status, i, credits, tl_sem = 0;
7266         u32 clusters_to_del, new_highest_cpos, range;
7267         struct ocfs2_extent_list *el;
7268         handle_t *handle = NULL;
7269         struct inode *tl_inode = osb->osb_tl_inode;
7270         struct ocfs2_path *path = NULL;
7271         struct ocfs2_dinode *di = (struct ocfs2_dinode *)fe_bh->b_data;
7272
7273         mlog_entry_void();
7274
7275         new_highest_cpos = ocfs2_clusters_for_bytes(osb->sb,
7276                                                      i_size_read(inode));
7277
7278         path = ocfs2_new_path(fe_bh, &di->id2.i_list,
7279                               ocfs2_journal_access_di);
7280         if (!path) {
7281                 status = -ENOMEM;
7282                 mlog_errno(status);
7283                 goto bail;
7284         }
7285
7286         ocfs2_extent_map_trunc(inode, new_highest_cpos);
7287
7288 start:
7289         /*
7290          * Check that we still have allocation to delete.
7291          */
7292         if (OCFS2_I(inode)->ip_clusters == 0) {
7293                 status = 0;
7294                 goto bail;
7295         }
7296
7297         /*
7298          * Truncate always works against the rightmost tree branch.
7299          */
7300         status = ocfs2_find_path(inode, path, UINT_MAX);
7301         if (status) {
7302                 mlog_errno(status);
7303                 goto bail;
7304         }
7305
7306         mlog(0, "inode->ip_clusters = %u, tree_depth = %u\n",
7307              OCFS2_I(inode)->ip_clusters, path->p_tree_depth);
7308
7309         /*
7310          * By now, el will point to the extent list on the bottom most
7311          * portion of this tree. Only the tail record is considered in
7312          * each pass.
7313          *
7314          * We handle the following cases, in order:
7315          * - empty extent: delete the remaining branch
7316          * - remove the entire record
7317          * - remove a partial record
7318          * - no record needs to be removed (truncate has completed)
7319          */
7320         el = path_leaf_el(path);
7321         if (le16_to_cpu(el->l_next_free_rec) == 0) {
7322                 ocfs2_error(inode->i_sb,
7323                             "Inode %llu has empty extent block at %llu\n",
7324                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
7325                             (unsigned long long)path_leaf_bh(path)->b_blocknr);
7326                 status = -EROFS;
7327                 goto bail;
7328         }
7329
7330         i = le16_to_cpu(el->l_next_free_rec) - 1;
7331         range = le32_to_cpu(el->l_recs[i].e_cpos) +
7332                 ocfs2_rec_clusters(el, &el->l_recs[i]);
7333         if (i == 0 && ocfs2_is_empty_extent(&el->l_recs[i])) {
7334                 clusters_to_del = 0;
7335         } else if (le32_to_cpu(el->l_recs[i].e_cpos) >= new_highest_cpos) {
7336                 clusters_to_del = ocfs2_rec_clusters(el, &el->l_recs[i]);
7337         } else if (range > new_highest_cpos) {
7338                 clusters_to_del = (ocfs2_rec_clusters(el, &el->l_recs[i]) +
7339                                    le32_to_cpu(el->l_recs[i].e_cpos)) -
7340                                   new_highest_cpos;
7341         } else {
7342                 status = 0;
7343                 goto bail;
7344         }
7345
7346         mlog(0, "clusters_to_del = %u in this pass, tail blk=%llu\n",
7347              clusters_to_del, (unsigned long long)path_leaf_bh(path)->b_blocknr);
7348
7349         mutex_lock(&tl_inode->i_mutex);
7350         tl_sem = 1;
7351         /* ocfs2_truncate_log_needs_flush guarantees us at least one
7352          * record is free for use. If there isn't any, we flush to get
7353          * an empty truncate log.  */
7354         if (ocfs2_truncate_log_needs_flush(osb)) {
7355                 status = __ocfs2_flush_truncate_log(osb);
7356                 if (status < 0) {
7357                         mlog_errno(status);
7358                         goto bail;
7359                 }
7360         }
7361
7362         credits = ocfs2_calc_tree_trunc_credits(osb->sb, clusters_to_del,
7363                                                 (struct ocfs2_dinode *)fe_bh->b_data,
7364                                                 el);
7365         handle = ocfs2_start_trans(osb, credits);
7366         if (IS_ERR(handle)) {
7367                 status = PTR_ERR(handle);
7368                 handle = NULL;
7369                 mlog_errno(status);
7370                 goto bail;
7371         }
7372
7373         status = ocfs2_do_truncate(osb, clusters_to_del, inode, fe_bh, handle,
7374                                    tc, path);
7375         if (status < 0) {
7376                 mlog_errno(status);
7377                 goto bail;
7378         }
7379
7380         mutex_unlock(&tl_inode->i_mutex);
7381         tl_sem = 0;
7382
7383         ocfs2_commit_trans(osb, handle);
7384         handle = NULL;
7385
7386         ocfs2_reinit_path(path, 1);
7387
7388         /*
7389          * The check above will catch the case where we've truncated
7390          * away all allocation.
7391          */
7392         goto start;
7393
7394 bail:
7395
7396         ocfs2_schedule_truncate_log_flush(osb, 1);
7397
7398         if (tl_sem)
7399                 mutex_unlock(&tl_inode->i_mutex);
7400
7401         if (handle)
7402                 ocfs2_commit_trans(osb, handle);
7403
7404         ocfs2_run_deallocs(osb, &tc->tc_dealloc);
7405
7406         ocfs2_free_path(path);
7407
7408         /* This will drop the ext_alloc cluster lock for us */
7409         ocfs2_free_truncate_context(tc);
7410
7411         mlog_exit(status);
7412         return status;
7413 }
7414
7415 /*
7416  * Expects the inode to already be locked.
7417  */
7418 int ocfs2_prepare_truncate(struct ocfs2_super *osb,
7419                            struct inode *inode,
7420                            struct buffer_head *fe_bh,
7421                            struct ocfs2_truncate_context **tc)
7422 {
7423         int status;
7424         unsigned int new_i_clusters;
7425         struct ocfs2_dinode *fe;
7426         struct ocfs2_extent_block *eb;
7427         struct buffer_head *last_eb_bh = NULL;
7428
7429         mlog_entry_void();
7430
7431         *tc = NULL;
7432
7433         new_i_clusters = ocfs2_clusters_for_bytes(osb->sb,
7434                                                   i_size_read(inode));
7435         fe = (struct ocfs2_dinode *) fe_bh->b_data;
7436
7437         mlog(0, "fe->i_clusters = %u, new_i_clusters = %u, fe->i_size ="
7438              "%llu\n", le32_to_cpu(fe->i_clusters), new_i_clusters,
7439              (unsigned long long)le64_to_cpu(fe->i_size));
7440
7441         *tc = kzalloc(sizeof(struct ocfs2_truncate_context), GFP_KERNEL);
7442         if (!(*tc)) {
7443                 status = -ENOMEM;
7444                 mlog_errno(status);
7445                 goto bail;
7446         }
7447         ocfs2_init_dealloc_ctxt(&(*tc)->tc_dealloc);
7448
7449         if (fe->id2.i_list.l_tree_depth) {
7450                 status = ocfs2_read_extent_block(inode,
7451                                                  le64_to_cpu(fe->i_last_eb_blk),
7452                                                  &last_eb_bh);
7453                 if (status < 0) {
7454                         mlog_errno(status);
7455                         goto bail;
7456                 }
7457                 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
7458         }
7459
7460         (*tc)->tc_last_eb_bh = last_eb_bh;
7461
7462         status = 0;
7463 bail:
7464         if (status < 0) {
7465                 if (*tc)
7466                         ocfs2_free_truncate_context(*tc);
7467                 *tc = NULL;
7468         }
7469         mlog_exit_void();
7470         return status;
7471 }
7472
7473 /*
7474  * 'start' is inclusive, 'end' is not.
7475  */
7476 int ocfs2_truncate_inline(struct inode *inode, struct buffer_head *di_bh,
7477                           unsigned int start, unsigned int end, int trunc)
7478 {
7479         int ret;
7480         unsigned int numbytes;
7481         handle_t *handle;
7482         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
7483         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
7484         struct ocfs2_inline_data *idata = &di->id2.i_data;
7485
7486         if (end > i_size_read(inode))
7487                 end = i_size_read(inode);
7488
7489         BUG_ON(start >= end);
7490
7491         if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) ||
7492             !(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL) ||
7493             !ocfs2_supports_inline_data(osb)) {
7494                 ocfs2_error(inode->i_sb,
7495                             "Inline data flags for inode %llu don't agree! "
7496                             "Disk: 0x%x, Memory: 0x%x, Superblock: 0x%x\n",
7497                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
7498                             le16_to_cpu(di->i_dyn_features),
7499                             OCFS2_I(inode)->ip_dyn_features,
7500                             osb->s_feature_incompat);
7501                 ret = -EROFS;
7502                 goto out;
7503         }
7504
7505         handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
7506         if (IS_ERR(handle)) {
7507                 ret = PTR_ERR(handle);
7508                 mlog_errno(ret);
7509                 goto out;
7510         }
7511
7512         ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
7513                                       OCFS2_JOURNAL_ACCESS_WRITE);
7514         if (ret) {
7515                 mlog_errno(ret);
7516                 goto out_commit;
7517         }
7518
7519         numbytes = end - start;
7520         memset(idata->id_data + start, 0, numbytes);
7521
7522         /*
7523          * No need to worry about the data page here - it's been
7524          * truncated already and inline data doesn't need it for
7525          * pushing zero's to disk, so we'll let readpage pick it up
7526          * later.
7527          */
7528         if (trunc) {
7529                 i_size_write(inode, start);
7530                 di->i_size = cpu_to_le64(start);
7531         }
7532
7533         inode->i_blocks = ocfs2_inode_sector_count(inode);
7534         inode->i_ctime = inode->i_mtime = CURRENT_TIME;
7535
7536         di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec);
7537         di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
7538
7539         ocfs2_journal_dirty(handle, di_bh);
7540
7541 out_commit:
7542         ocfs2_commit_trans(osb, handle);
7543
7544 out:
7545         return ret;
7546 }
7547
7548 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc)
7549 {
7550         /*
7551          * The caller is responsible for completing deallocation
7552          * before freeing the context.
7553          */
7554         if (tc->tc_dealloc.c_first_suballocator != NULL)
7555                 mlog(ML_NOTICE,
7556                      "Truncate completion has non-empty dealloc context\n");
7557
7558         brelse(tc->tc_last_eb_bh);
7559
7560         kfree(tc);
7561 }