ntfs: clean up ntfs_attr_extend_initialized
[safe/jmp/linux-2.6] / fs / ntfs / file.c
1 /*
2  * file.c - NTFS kernel file operations.  Part of the Linux-NTFS project.
3  *
4  * Copyright (c) 2001-2007 Anton Altaparmakov
5  *
6  * This program/include file is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License as published
8  * by the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program/include file is distributed in the hope that it will be
12  * useful, but WITHOUT ANY WARRANTY; without even the implied warranty
13  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program (in the main directory of the Linux-NTFS
18  * distribution in the file COPYING); if not, write to the Free Software
19  * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
20  */
21
22 #include <linux/buffer_head.h>
23 #include <linux/gfp.h>
24 #include <linux/pagemap.h>
25 #include <linux/pagevec.h>
26 #include <linux/sched.h>
27 #include <linux/swap.h>
28 #include <linux/uio.h>
29 #include <linux/writeback.h>
30
31 #include <asm/page.h>
32 #include <asm/uaccess.h>
33
34 #include "attrib.h"
35 #include "bitmap.h"
36 #include "inode.h"
37 #include "debug.h"
38 #include "lcnalloc.h"
39 #include "malloc.h"
40 #include "mft.h"
41 #include "ntfs.h"
42
43 /**
44  * ntfs_file_open - called when an inode is about to be opened
45  * @vi:         inode to be opened
46  * @filp:       file structure describing the inode
47  *
48  * Limit file size to the page cache limit on architectures where unsigned long
49  * is 32-bits. This is the most we can do for now without overflowing the page
50  * cache page index. Doing it this way means we don't run into problems because
51  * of existing too large files. It would be better to allow the user to read
52  * the beginning of the file but I doubt very much anyone is going to hit this
53  * check on a 32-bit architecture, so there is no point in adding the extra
54  * complexity required to support this.
55  *
56  * On 64-bit architectures, the check is hopefully optimized away by the
57  * compiler.
58  *
59  * After the check passes, just call generic_file_open() to do its work.
60  */
61 static int ntfs_file_open(struct inode *vi, struct file *filp)
62 {
63         if (sizeof(unsigned long) < 8) {
64                 if (i_size_read(vi) > MAX_LFS_FILESIZE)
65                         return -EOVERFLOW;
66         }
67         return generic_file_open(vi, filp);
68 }
69
70 #ifdef NTFS_RW
71
72 /**
73  * ntfs_attr_extend_initialized - extend the initialized size of an attribute
74  * @ni:                 ntfs inode of the attribute to extend
75  * @new_init_size:      requested new initialized size in bytes
76  * @cached_page:        store any allocated but unused page here
77  * @lru_pvec:           lru-buffering pagevec of the caller
78  *
79  * Extend the initialized size of an attribute described by the ntfs inode @ni
80  * to @new_init_size bytes.  This involves zeroing any non-sparse space between
81  * the old initialized size and @new_init_size both in the page cache and on
82  * disk (if relevant complete pages are already uptodate in the page cache then
83  * these are simply marked dirty).
84  *
85  * As a side-effect, the file size (vfs inode->i_size) may be incremented as,
86  * in the resident attribute case, it is tied to the initialized size and, in
87  * the non-resident attribute case, it may not fall below the initialized size.
88  *
89  * Note that if the attribute is resident, we do not need to touch the page
90  * cache at all.  This is because if the page cache page is not uptodate we
91  * bring it uptodate later, when doing the write to the mft record since we
92  * then already have the page mapped.  And if the page is uptodate, the
93  * non-initialized region will already have been zeroed when the page was
94  * brought uptodate and the region may in fact already have been overwritten
95  * with new data via mmap() based writes, so we cannot just zero it.  And since
96  * POSIX specifies that the behaviour of resizing a file whilst it is mmap()ped
97  * is unspecified, we choose not to do zeroing and thus we do not need to touch
98  * the page at all.  For a more detailed explanation see ntfs_truncate() in
99  * fs/ntfs/inode.c.
100  *
101  * Return 0 on success and -errno on error.  In the case that an error is
102  * encountered it is possible that the initialized size will already have been
103  * incremented some way towards @new_init_size but it is guaranteed that if
104  * this is the case, the necessary zeroing will also have happened and that all
105  * metadata is self-consistent.
106  *
107  * Locking: i_mutex on the vfs inode corrseponsind to the ntfs inode @ni must be
108  *          held by the caller.
109  */
110 static int ntfs_attr_extend_initialized(ntfs_inode *ni, const s64 new_init_size)
111 {
112         s64 old_init_size;
113         loff_t old_i_size;
114         pgoff_t index, end_index;
115         unsigned long flags;
116         struct inode *vi = VFS_I(ni);
117         ntfs_inode *base_ni;
118         MFT_RECORD *m = NULL;
119         ATTR_RECORD *a;
120         ntfs_attr_search_ctx *ctx = NULL;
121         struct address_space *mapping;
122         struct page *page = NULL;
123         u8 *kattr;
124         int err;
125         u32 attr_len;
126
127         read_lock_irqsave(&ni->size_lock, flags);
128         old_init_size = ni->initialized_size;
129         old_i_size = i_size_read(vi);
130         BUG_ON(new_init_size > ni->allocated_size);
131         read_unlock_irqrestore(&ni->size_lock, flags);
132         ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, "
133                         "old_initialized_size 0x%llx, "
134                         "new_initialized_size 0x%llx, i_size 0x%llx.",
135                         vi->i_ino, (unsigned)le32_to_cpu(ni->type),
136                         (unsigned long long)old_init_size,
137                         (unsigned long long)new_init_size, old_i_size);
138         if (!NInoAttr(ni))
139                 base_ni = ni;
140         else
141                 base_ni = ni->ext.base_ntfs_ino;
142         /* Use goto to reduce indentation and we need the label below anyway. */
143         if (NInoNonResident(ni))
144                 goto do_non_resident_extend;
145         BUG_ON(old_init_size != old_i_size);
146         m = map_mft_record(base_ni);
147         if (IS_ERR(m)) {
148                 err = PTR_ERR(m);
149                 m = NULL;
150                 goto err_out;
151         }
152         ctx = ntfs_attr_get_search_ctx(base_ni, m);
153         if (unlikely(!ctx)) {
154                 err = -ENOMEM;
155                 goto err_out;
156         }
157         err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
158                         CASE_SENSITIVE, 0, NULL, 0, ctx);
159         if (unlikely(err)) {
160                 if (err == -ENOENT)
161                         err = -EIO;
162                 goto err_out;
163         }
164         m = ctx->mrec;
165         a = ctx->attr;
166         BUG_ON(a->non_resident);
167         /* The total length of the attribute value. */
168         attr_len = le32_to_cpu(a->data.resident.value_length);
169         BUG_ON(old_i_size != (loff_t)attr_len);
170         /*
171          * Do the zeroing in the mft record and update the attribute size in
172          * the mft record.
173          */
174         kattr = (u8*)a + le16_to_cpu(a->data.resident.value_offset);
175         memset(kattr + attr_len, 0, new_init_size - attr_len);
176         a->data.resident.value_length = cpu_to_le32((u32)new_init_size);
177         /* Finally, update the sizes in the vfs and ntfs inodes. */
178         write_lock_irqsave(&ni->size_lock, flags);
179         i_size_write(vi, new_init_size);
180         ni->initialized_size = new_init_size;
181         write_unlock_irqrestore(&ni->size_lock, flags);
182         goto done;
183 do_non_resident_extend:
184         /*
185          * If the new initialized size @new_init_size exceeds the current file
186          * size (vfs inode->i_size), we need to extend the file size to the
187          * new initialized size.
188          */
189         if (new_init_size > old_i_size) {
190                 m = map_mft_record(base_ni);
191                 if (IS_ERR(m)) {
192                         err = PTR_ERR(m);
193                         m = NULL;
194                         goto err_out;
195                 }
196                 ctx = ntfs_attr_get_search_ctx(base_ni, m);
197                 if (unlikely(!ctx)) {
198                         err = -ENOMEM;
199                         goto err_out;
200                 }
201                 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
202                                 CASE_SENSITIVE, 0, NULL, 0, ctx);
203                 if (unlikely(err)) {
204                         if (err == -ENOENT)
205                                 err = -EIO;
206                         goto err_out;
207                 }
208                 m = ctx->mrec;
209                 a = ctx->attr;
210                 BUG_ON(!a->non_resident);
211                 BUG_ON(old_i_size != (loff_t)
212                                 sle64_to_cpu(a->data.non_resident.data_size));
213                 a->data.non_resident.data_size = cpu_to_sle64(new_init_size);
214                 flush_dcache_mft_record_page(ctx->ntfs_ino);
215                 mark_mft_record_dirty(ctx->ntfs_ino);
216                 /* Update the file size in the vfs inode. */
217                 i_size_write(vi, new_init_size);
218                 ntfs_attr_put_search_ctx(ctx);
219                 ctx = NULL;
220                 unmap_mft_record(base_ni);
221                 m = NULL;
222         }
223         mapping = vi->i_mapping;
224         index = old_init_size >> PAGE_CACHE_SHIFT;
225         end_index = (new_init_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
226         do {
227                 /*
228                  * Read the page.  If the page is not present, this will zero
229                  * the uninitialized regions for us.
230                  */
231                 page = read_mapping_page(mapping, index, NULL);
232                 if (IS_ERR(page)) {
233                         err = PTR_ERR(page);
234                         goto init_err_out;
235                 }
236                 if (unlikely(PageError(page))) {
237                         page_cache_release(page);
238                         err = -EIO;
239                         goto init_err_out;
240                 }
241                 /*
242                  * Update the initialized size in the ntfs inode.  This is
243                  * enough to make ntfs_writepage() work.
244                  */
245                 write_lock_irqsave(&ni->size_lock, flags);
246                 ni->initialized_size = (s64)(index + 1) << PAGE_CACHE_SHIFT;
247                 if (ni->initialized_size > new_init_size)
248                         ni->initialized_size = new_init_size;
249                 write_unlock_irqrestore(&ni->size_lock, flags);
250                 /* Set the page dirty so it gets written out. */
251                 set_page_dirty(page);
252                 page_cache_release(page);
253                 /*
254                  * Play nice with the vm and the rest of the system.  This is
255                  * very much needed as we can potentially be modifying the
256                  * initialised size from a very small value to a really huge
257                  * value, e.g.
258                  *      f = open(somefile, O_TRUNC);
259                  *      truncate(f, 10GiB);
260                  *      seek(f, 10GiB);
261                  *      write(f, 1);
262                  * And this would mean we would be marking dirty hundreds of
263                  * thousands of pages or as in the above example more than
264                  * two and a half million pages!
265                  *
266                  * TODO: For sparse pages could optimize this workload by using
267                  * the FsMisc / MiscFs page bit as a "PageIsSparse" bit.  This
268                  * would be set in readpage for sparse pages and here we would
269                  * not need to mark dirty any pages which have this bit set.
270                  * The only caveat is that we have to clear the bit everywhere
271                  * where we allocate any clusters that lie in the page or that
272                  * contain the page.
273                  *
274                  * TODO: An even greater optimization would be for us to only
275                  * call readpage() on pages which are not in sparse regions as
276                  * determined from the runlist.  This would greatly reduce the
277                  * number of pages we read and make dirty in the case of sparse
278                  * files.
279                  */
280                 balance_dirty_pages_ratelimited(mapping);
281                 cond_resched();
282         } while (++index < end_index);
283         read_lock_irqsave(&ni->size_lock, flags);
284         BUG_ON(ni->initialized_size != new_init_size);
285         read_unlock_irqrestore(&ni->size_lock, flags);
286         /* Now bring in sync the initialized_size in the mft record. */
287         m = map_mft_record(base_ni);
288         if (IS_ERR(m)) {
289                 err = PTR_ERR(m);
290                 m = NULL;
291                 goto init_err_out;
292         }
293         ctx = ntfs_attr_get_search_ctx(base_ni, m);
294         if (unlikely(!ctx)) {
295                 err = -ENOMEM;
296                 goto init_err_out;
297         }
298         err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
299                         CASE_SENSITIVE, 0, NULL, 0, ctx);
300         if (unlikely(err)) {
301                 if (err == -ENOENT)
302                         err = -EIO;
303                 goto init_err_out;
304         }
305         m = ctx->mrec;
306         a = ctx->attr;
307         BUG_ON(!a->non_resident);
308         a->data.non_resident.initialized_size = cpu_to_sle64(new_init_size);
309 done:
310         flush_dcache_mft_record_page(ctx->ntfs_ino);
311         mark_mft_record_dirty(ctx->ntfs_ino);
312         if (ctx)
313                 ntfs_attr_put_search_ctx(ctx);
314         if (m)
315                 unmap_mft_record(base_ni);
316         ntfs_debug("Done, initialized_size 0x%llx, i_size 0x%llx.",
317                         (unsigned long long)new_init_size, i_size_read(vi));
318         return 0;
319 init_err_out:
320         write_lock_irqsave(&ni->size_lock, flags);
321         ni->initialized_size = old_init_size;
322         write_unlock_irqrestore(&ni->size_lock, flags);
323 err_out:
324         if (ctx)
325                 ntfs_attr_put_search_ctx(ctx);
326         if (m)
327                 unmap_mft_record(base_ni);
328         ntfs_debug("Failed.  Returning error code %i.", err);
329         return err;
330 }
331
332 /**
333  * ntfs_fault_in_pages_readable -
334  *
335  * Fault a number of userspace pages into pagetables.
336  *
337  * Unlike include/linux/pagemap.h::fault_in_pages_readable(), this one copes
338  * with more than two userspace pages as well as handling the single page case
339  * elegantly.
340  *
341  * If you find this difficult to understand, then think of the while loop being
342  * the following code, except that we do without the integer variable ret:
343  *
344  *      do {
345  *              ret = __get_user(c, uaddr);
346  *              uaddr += PAGE_SIZE;
347  *      } while (!ret && uaddr < end);
348  *
349  * Note, the final __get_user() may well run out-of-bounds of the user buffer,
350  * but _not_ out-of-bounds of the page the user buffer belongs to, and since
351  * this is only a read and not a write, and since it is still in the same page,
352  * it should not matter and this makes the code much simpler.
353  */
354 static inline void ntfs_fault_in_pages_readable(const char __user *uaddr,
355                 int bytes)
356 {
357         const char __user *end;
358         volatile char c;
359
360         /* Set @end to the first byte outside the last page we care about. */
361         end = (const char __user*)PAGE_ALIGN((unsigned long)uaddr + bytes);
362
363         while (!__get_user(c, uaddr) && (uaddr += PAGE_SIZE, uaddr < end))
364                 ;
365 }
366
367 /**
368  * ntfs_fault_in_pages_readable_iovec -
369  *
370  * Same as ntfs_fault_in_pages_readable() but operates on an array of iovecs.
371  */
372 static inline void ntfs_fault_in_pages_readable_iovec(const struct iovec *iov,
373                 size_t iov_ofs, int bytes)
374 {
375         do {
376                 const char __user *buf;
377                 unsigned len;
378
379                 buf = iov->iov_base + iov_ofs;
380                 len = iov->iov_len - iov_ofs;
381                 if (len > bytes)
382                         len = bytes;
383                 ntfs_fault_in_pages_readable(buf, len);
384                 bytes -= len;
385                 iov++;
386                 iov_ofs = 0;
387         } while (bytes);
388 }
389
390 /**
391  * __ntfs_grab_cache_pages - obtain a number of locked pages
392  * @mapping:    address space mapping from which to obtain page cache pages
393  * @index:      starting index in @mapping at which to begin obtaining pages
394  * @nr_pages:   number of page cache pages to obtain
395  * @pages:      array of pages in which to return the obtained page cache pages
396  * @cached_page: allocated but as yet unused page
397  * @lru_pvec:   lru-buffering pagevec of caller
398  *
399  * Obtain @nr_pages locked page cache pages from the mapping @mapping and
400  * starting at index @index.
401  *
402  * If a page is newly created, increment its refcount and add it to the
403  * caller's lru-buffering pagevec @lru_pvec.
404  *
405  * This is the same as mm/filemap.c::__grab_cache_page(), except that @nr_pages
406  * are obtained at once instead of just one page and that 0 is returned on
407  * success and -errno on error.
408  *
409  * Note, the page locks are obtained in ascending page index order.
410  */
411 static inline int __ntfs_grab_cache_pages(struct address_space *mapping,
412                 pgoff_t index, const unsigned nr_pages, struct page **pages,
413                 struct page **cached_page, struct pagevec *lru_pvec)
414 {
415         int err, nr;
416
417         BUG_ON(!nr_pages);
418         err = nr = 0;
419         do {
420                 pages[nr] = find_lock_page(mapping, index);
421                 if (!pages[nr]) {
422                         if (!*cached_page) {
423                                 *cached_page = page_cache_alloc(mapping);
424                                 if (unlikely(!*cached_page)) {
425                                         err = -ENOMEM;
426                                         goto err_out;
427                                 }
428                         }
429                         err = add_to_page_cache(*cached_page, mapping, index,
430                                         GFP_KERNEL);
431                         if (unlikely(err)) {
432                                 if (err == -EEXIST)
433                                         continue;
434                                 goto err_out;
435                         }
436                         pages[nr] = *cached_page;
437                         page_cache_get(*cached_page);
438                         if (unlikely(!pagevec_add(lru_pvec, *cached_page)))
439                                 __pagevec_lru_add_file(lru_pvec);
440                         *cached_page = NULL;
441                 }
442                 index++;
443                 nr++;
444         } while (nr < nr_pages);
445 out:
446         return err;
447 err_out:
448         while (nr > 0) {
449                 unlock_page(pages[--nr]);
450                 page_cache_release(pages[nr]);
451         }
452         goto out;
453 }
454
455 static inline int ntfs_submit_bh_for_read(struct buffer_head *bh)
456 {
457         lock_buffer(bh);
458         get_bh(bh);
459         bh->b_end_io = end_buffer_read_sync;
460         return submit_bh(READ, bh);
461 }
462
463 /**
464  * ntfs_prepare_pages_for_non_resident_write - prepare pages for receiving data
465  * @pages:      array of destination pages
466  * @nr_pages:   number of pages in @pages
467  * @pos:        byte position in file at which the write begins
468  * @bytes:      number of bytes to be written
469  *
470  * This is called for non-resident attributes from ntfs_file_buffered_write()
471  * with i_mutex held on the inode (@pages[0]->mapping->host).  There are
472  * @nr_pages pages in @pages which are locked but not kmap()ped.  The source
473  * data has not yet been copied into the @pages.
474  * 
475  * Need to fill any holes with actual clusters, allocate buffers if necessary,
476  * ensure all the buffers are mapped, and bring uptodate any buffers that are
477  * only partially being written to.
478  *
479  * If @nr_pages is greater than one, we are guaranteed that the cluster size is
480  * greater than PAGE_CACHE_SIZE, that all pages in @pages are entirely inside
481  * the same cluster and that they are the entirety of that cluster, and that
482  * the cluster is sparse, i.e. we need to allocate a cluster to fill the hole.
483  *
484  * i_size is not to be modified yet.
485  *
486  * Return 0 on success or -errno on error.
487  */
488 static int ntfs_prepare_pages_for_non_resident_write(struct page **pages,
489                 unsigned nr_pages, s64 pos, size_t bytes)
490 {
491         VCN vcn, highest_vcn = 0, cpos, cend, bh_cpos, bh_cend;
492         LCN lcn;
493         s64 bh_pos, vcn_len, end, initialized_size;
494         sector_t lcn_block;
495         struct page *page;
496         struct inode *vi;
497         ntfs_inode *ni, *base_ni = NULL;
498         ntfs_volume *vol;
499         runlist_element *rl, *rl2;
500         struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
501         ntfs_attr_search_ctx *ctx = NULL;
502         MFT_RECORD *m = NULL;
503         ATTR_RECORD *a = NULL;
504         unsigned long flags;
505         u32 attr_rec_len = 0;
506         unsigned blocksize, u;
507         int err, mp_size;
508         bool rl_write_locked, was_hole, is_retry;
509         unsigned char blocksize_bits;
510         struct {
511                 u8 runlist_merged:1;
512                 u8 mft_attr_mapped:1;
513                 u8 mp_rebuilt:1;
514                 u8 attr_switched:1;
515         } status = { 0, 0, 0, 0 };
516
517         BUG_ON(!nr_pages);
518         BUG_ON(!pages);
519         BUG_ON(!*pages);
520         vi = pages[0]->mapping->host;
521         ni = NTFS_I(vi);
522         vol = ni->vol;
523         ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, start page "
524                         "index 0x%lx, nr_pages 0x%x, pos 0x%llx, bytes 0x%zx.",
525                         vi->i_ino, ni->type, pages[0]->index, nr_pages,
526                         (long long)pos, bytes);
527         blocksize = vol->sb->s_blocksize;
528         blocksize_bits = vol->sb->s_blocksize_bits;
529         u = 0;
530         do {
531                 page = pages[u];
532                 BUG_ON(!page);
533                 /*
534                  * create_empty_buffers() will create uptodate/dirty buffers if
535                  * the page is uptodate/dirty.
536                  */
537                 if (!page_has_buffers(page)) {
538                         create_empty_buffers(page, blocksize, 0);
539                         if (unlikely(!page_has_buffers(page)))
540                                 return -ENOMEM;
541                 }
542         } while (++u < nr_pages);
543         rl_write_locked = false;
544         rl = NULL;
545         err = 0;
546         vcn = lcn = -1;
547         vcn_len = 0;
548         lcn_block = -1;
549         was_hole = false;
550         cpos = pos >> vol->cluster_size_bits;
551         end = pos + bytes;
552         cend = (end + vol->cluster_size - 1) >> vol->cluster_size_bits;
553         /*
554          * Loop over each page and for each page over each buffer.  Use goto to
555          * reduce indentation.
556          */
557         u = 0;
558 do_next_page:
559         page = pages[u];
560         bh_pos = (s64)page->index << PAGE_CACHE_SHIFT;
561         bh = head = page_buffers(page);
562         do {
563                 VCN cdelta;
564                 s64 bh_end;
565                 unsigned bh_cofs;
566
567                 /* Clear buffer_new on all buffers to reinitialise state. */
568                 if (buffer_new(bh))
569                         clear_buffer_new(bh);
570                 bh_end = bh_pos + blocksize;
571                 bh_cpos = bh_pos >> vol->cluster_size_bits;
572                 bh_cofs = bh_pos & vol->cluster_size_mask;
573                 if (buffer_mapped(bh)) {
574                         /*
575                          * The buffer is already mapped.  If it is uptodate,
576                          * ignore it.
577                          */
578                         if (buffer_uptodate(bh))
579                                 continue;
580                         /*
581                          * The buffer is not uptodate.  If the page is uptodate
582                          * set the buffer uptodate and otherwise ignore it.
583                          */
584                         if (PageUptodate(page)) {
585                                 set_buffer_uptodate(bh);
586                                 continue;
587                         }
588                         /*
589                          * Neither the page nor the buffer are uptodate.  If
590                          * the buffer is only partially being written to, we
591                          * need to read it in before the write, i.e. now.
592                          */
593                         if ((bh_pos < pos && bh_end > pos) ||
594                                         (bh_pos < end && bh_end > end)) {
595                                 /*
596                                  * If the buffer is fully or partially within
597                                  * the initialized size, do an actual read.
598                                  * Otherwise, simply zero the buffer.
599                                  */
600                                 read_lock_irqsave(&ni->size_lock, flags);
601                                 initialized_size = ni->initialized_size;
602                                 read_unlock_irqrestore(&ni->size_lock, flags);
603                                 if (bh_pos < initialized_size) {
604                                         ntfs_submit_bh_for_read(bh);
605                                         *wait_bh++ = bh;
606                                 } else {
607                                         zero_user(page, bh_offset(bh),
608                                                         blocksize);
609                                         set_buffer_uptodate(bh);
610                                 }
611                         }
612                         continue;
613                 }
614                 /* Unmapped buffer.  Need to map it. */
615                 bh->b_bdev = vol->sb->s_bdev;
616                 /*
617                  * If the current buffer is in the same clusters as the map
618                  * cache, there is no need to check the runlist again.  The
619                  * map cache is made up of @vcn, which is the first cached file
620                  * cluster, @vcn_len which is the number of cached file
621                  * clusters, @lcn is the device cluster corresponding to @vcn,
622                  * and @lcn_block is the block number corresponding to @lcn.
623                  */
624                 cdelta = bh_cpos - vcn;
625                 if (likely(!cdelta || (cdelta > 0 && cdelta < vcn_len))) {
626 map_buffer_cached:
627                         BUG_ON(lcn < 0);
628                         bh->b_blocknr = lcn_block +
629                                         (cdelta << (vol->cluster_size_bits -
630                                         blocksize_bits)) +
631                                         (bh_cofs >> blocksize_bits);
632                         set_buffer_mapped(bh);
633                         /*
634                          * If the page is uptodate so is the buffer.  If the
635                          * buffer is fully outside the write, we ignore it if
636                          * it was already allocated and we mark it dirty so it
637                          * gets written out if we allocated it.  On the other
638                          * hand, if we allocated the buffer but we are not
639                          * marking it dirty we set buffer_new so we can do
640                          * error recovery.
641                          */
642                         if (PageUptodate(page)) {
643                                 if (!buffer_uptodate(bh))
644                                         set_buffer_uptodate(bh);
645                                 if (unlikely(was_hole)) {
646                                         /* We allocated the buffer. */
647                                         unmap_underlying_metadata(bh->b_bdev,
648                                                         bh->b_blocknr);
649                                         if (bh_end <= pos || bh_pos >= end)
650                                                 mark_buffer_dirty(bh);
651                                         else
652                                                 set_buffer_new(bh);
653                                 }
654                                 continue;
655                         }
656                         /* Page is _not_ uptodate. */
657                         if (likely(!was_hole)) {
658                                 /*
659                                  * Buffer was already allocated.  If it is not
660                                  * uptodate and is only partially being written
661                                  * to, we need to read it in before the write,
662                                  * i.e. now.
663                                  */
664                                 if (!buffer_uptodate(bh) && bh_pos < end &&
665                                                 bh_end > pos &&
666                                                 (bh_pos < pos ||
667                                                 bh_end > end)) {
668                                         /*
669                                          * If the buffer is fully or partially
670                                          * within the initialized size, do an
671                                          * actual read.  Otherwise, simply zero
672                                          * the buffer.
673                                          */
674                                         read_lock_irqsave(&ni->size_lock,
675                                                         flags);
676                                         initialized_size = ni->initialized_size;
677                                         read_unlock_irqrestore(&ni->size_lock,
678                                                         flags);
679                                         if (bh_pos < initialized_size) {
680                                                 ntfs_submit_bh_for_read(bh);
681                                                 *wait_bh++ = bh;
682                                         } else {
683                                                 zero_user(page, bh_offset(bh),
684                                                                 blocksize);
685                                                 set_buffer_uptodate(bh);
686                                         }
687                                 }
688                                 continue;
689                         }
690                         /* We allocated the buffer. */
691                         unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
692                         /*
693                          * If the buffer is fully outside the write, zero it,
694                          * set it uptodate, and mark it dirty so it gets
695                          * written out.  If it is partially being written to,
696                          * zero region surrounding the write but leave it to
697                          * commit write to do anything else.  Finally, if the
698                          * buffer is fully being overwritten, do nothing.
699                          */
700                         if (bh_end <= pos || bh_pos >= end) {
701                                 if (!buffer_uptodate(bh)) {
702                                         zero_user(page, bh_offset(bh),
703                                                         blocksize);
704                                         set_buffer_uptodate(bh);
705                                 }
706                                 mark_buffer_dirty(bh);
707                                 continue;
708                         }
709                         set_buffer_new(bh);
710                         if (!buffer_uptodate(bh) &&
711                                         (bh_pos < pos || bh_end > end)) {
712                                 u8 *kaddr;
713                                 unsigned pofs;
714                                         
715                                 kaddr = kmap_atomic(page, KM_USER0);
716                                 if (bh_pos < pos) {
717                                         pofs = bh_pos & ~PAGE_CACHE_MASK;
718                                         memset(kaddr + pofs, 0, pos - bh_pos);
719                                 }
720                                 if (bh_end > end) {
721                                         pofs = end & ~PAGE_CACHE_MASK;
722                                         memset(kaddr + pofs, 0, bh_end - end);
723                                 }
724                                 kunmap_atomic(kaddr, KM_USER0);
725                                 flush_dcache_page(page);
726                         }
727                         continue;
728                 }
729                 /*
730                  * Slow path: this is the first buffer in the cluster.  If it
731                  * is outside allocated size and is not uptodate, zero it and
732                  * set it uptodate.
733                  */
734                 read_lock_irqsave(&ni->size_lock, flags);
735                 initialized_size = ni->allocated_size;
736                 read_unlock_irqrestore(&ni->size_lock, flags);
737                 if (bh_pos > initialized_size) {
738                         if (PageUptodate(page)) {
739                                 if (!buffer_uptodate(bh))
740                                         set_buffer_uptodate(bh);
741                         } else if (!buffer_uptodate(bh)) {
742                                 zero_user(page, bh_offset(bh), blocksize);
743                                 set_buffer_uptodate(bh);
744                         }
745                         continue;
746                 }
747                 is_retry = false;
748                 if (!rl) {
749                         down_read(&ni->runlist.lock);
750 retry_remap:
751                         rl = ni->runlist.rl;
752                 }
753                 if (likely(rl != NULL)) {
754                         /* Seek to element containing target cluster. */
755                         while (rl->length && rl[1].vcn <= bh_cpos)
756                                 rl++;
757                         lcn = ntfs_rl_vcn_to_lcn(rl, bh_cpos);
758                         if (likely(lcn >= 0)) {
759                                 /*
760                                  * Successful remap, setup the map cache and
761                                  * use that to deal with the buffer.
762                                  */
763                                 was_hole = false;
764                                 vcn = bh_cpos;
765                                 vcn_len = rl[1].vcn - vcn;
766                                 lcn_block = lcn << (vol->cluster_size_bits -
767                                                 blocksize_bits);
768                                 cdelta = 0;
769                                 /*
770                                  * If the number of remaining clusters touched
771                                  * by the write is smaller or equal to the
772                                  * number of cached clusters, unlock the
773                                  * runlist as the map cache will be used from
774                                  * now on.
775                                  */
776                                 if (likely(vcn + vcn_len >= cend)) {
777                                         if (rl_write_locked) {
778                                                 up_write(&ni->runlist.lock);
779                                                 rl_write_locked = false;
780                                         } else
781                                                 up_read(&ni->runlist.lock);
782                                         rl = NULL;
783                                 }
784                                 goto map_buffer_cached;
785                         }
786                 } else
787                         lcn = LCN_RL_NOT_MAPPED;
788                 /*
789                  * If it is not a hole and not out of bounds, the runlist is
790                  * probably unmapped so try to map it now.
791                  */
792                 if (unlikely(lcn != LCN_HOLE && lcn != LCN_ENOENT)) {
793                         if (likely(!is_retry && lcn == LCN_RL_NOT_MAPPED)) {
794                                 /* Attempt to map runlist. */
795                                 if (!rl_write_locked) {
796                                         /*
797                                          * We need the runlist locked for
798                                          * writing, so if it is locked for
799                                          * reading relock it now and retry in
800                                          * case it changed whilst we dropped
801                                          * the lock.
802                                          */
803                                         up_read(&ni->runlist.lock);
804                                         down_write(&ni->runlist.lock);
805                                         rl_write_locked = true;
806                                         goto retry_remap;
807                                 }
808                                 err = ntfs_map_runlist_nolock(ni, bh_cpos,
809                                                 NULL);
810                                 if (likely(!err)) {
811                                         is_retry = true;
812                                         goto retry_remap;
813                                 }
814                                 /*
815                                  * If @vcn is out of bounds, pretend @lcn is
816                                  * LCN_ENOENT.  As long as the buffer is out
817                                  * of bounds this will work fine.
818                                  */
819                                 if (err == -ENOENT) {
820                                         lcn = LCN_ENOENT;
821                                         err = 0;
822                                         goto rl_not_mapped_enoent;
823                                 }
824                         } else
825                                 err = -EIO;
826                         /* Failed to map the buffer, even after retrying. */
827                         bh->b_blocknr = -1;
828                         ntfs_error(vol->sb, "Failed to write to inode 0x%lx, "
829                                         "attribute type 0x%x, vcn 0x%llx, "
830                                         "vcn offset 0x%x, because its "
831                                         "location on disk could not be "
832                                         "determined%s (error code %i).",
833                                         ni->mft_no, ni->type,
834                                         (unsigned long long)bh_cpos,
835                                         (unsigned)bh_pos &
836                                         vol->cluster_size_mask,
837                                         is_retry ? " even after retrying" : "",
838                                         err);
839                         break;
840                 }
841 rl_not_mapped_enoent:
842                 /*
843                  * The buffer is in a hole or out of bounds.  We need to fill
844                  * the hole, unless the buffer is in a cluster which is not
845                  * touched by the write, in which case we just leave the buffer
846                  * unmapped.  This can only happen when the cluster size is
847                  * less than the page cache size.
848                  */
849                 if (unlikely(vol->cluster_size < PAGE_CACHE_SIZE)) {
850                         bh_cend = (bh_end + vol->cluster_size - 1) >>
851                                         vol->cluster_size_bits;
852                         if ((bh_cend <= cpos || bh_cpos >= cend)) {
853                                 bh->b_blocknr = -1;
854                                 /*
855                                  * If the buffer is uptodate we skip it.  If it
856                                  * is not but the page is uptodate, we can set
857                                  * the buffer uptodate.  If the page is not
858                                  * uptodate, we can clear the buffer and set it
859                                  * uptodate.  Whether this is worthwhile is
860                                  * debatable and this could be removed.
861                                  */
862                                 if (PageUptodate(page)) {
863                                         if (!buffer_uptodate(bh))
864                                                 set_buffer_uptodate(bh);
865                                 } else if (!buffer_uptodate(bh)) {
866                                         zero_user(page, bh_offset(bh),
867                                                 blocksize);
868                                         set_buffer_uptodate(bh);
869                                 }
870                                 continue;
871                         }
872                 }
873                 /*
874                  * Out of bounds buffer is invalid if it was not really out of
875                  * bounds.
876                  */
877                 BUG_ON(lcn != LCN_HOLE);
878                 /*
879                  * We need the runlist locked for writing, so if it is locked
880                  * for reading relock it now and retry in case it changed
881                  * whilst we dropped the lock.
882                  */
883                 BUG_ON(!rl);
884                 if (!rl_write_locked) {
885                         up_read(&ni->runlist.lock);
886                         down_write(&ni->runlist.lock);
887                         rl_write_locked = true;
888                         goto retry_remap;
889                 }
890                 /* Find the previous last allocated cluster. */
891                 BUG_ON(rl->lcn != LCN_HOLE);
892                 lcn = -1;
893                 rl2 = rl;
894                 while (--rl2 >= ni->runlist.rl) {
895                         if (rl2->lcn >= 0) {
896                                 lcn = rl2->lcn + rl2->length;
897                                 break;
898                         }
899                 }
900                 rl2 = ntfs_cluster_alloc(vol, bh_cpos, 1, lcn, DATA_ZONE,
901                                 false);
902                 if (IS_ERR(rl2)) {
903                         err = PTR_ERR(rl2);
904                         ntfs_debug("Failed to allocate cluster, error code %i.",
905                                         err);
906                         break;
907                 }
908                 lcn = rl2->lcn;
909                 rl = ntfs_runlists_merge(ni->runlist.rl, rl2);
910                 if (IS_ERR(rl)) {
911                         err = PTR_ERR(rl);
912                         if (err != -ENOMEM)
913                                 err = -EIO;
914                         if (ntfs_cluster_free_from_rl(vol, rl2)) {
915                                 ntfs_error(vol->sb, "Failed to release "
916                                                 "allocated cluster in error "
917                                                 "code path.  Run chkdsk to "
918                                                 "recover the lost cluster.");
919                                 NVolSetErrors(vol);
920                         }
921                         ntfs_free(rl2);
922                         break;
923                 }
924                 ni->runlist.rl = rl;
925                 status.runlist_merged = 1;
926                 ntfs_debug("Allocated cluster, lcn 0x%llx.",
927                                 (unsigned long long)lcn);
928                 /* Map and lock the mft record and get the attribute record. */
929                 if (!NInoAttr(ni))
930                         base_ni = ni;
931                 else
932                         base_ni = ni->ext.base_ntfs_ino;
933                 m = map_mft_record(base_ni);
934                 if (IS_ERR(m)) {
935                         err = PTR_ERR(m);
936                         break;
937                 }
938                 ctx = ntfs_attr_get_search_ctx(base_ni, m);
939                 if (unlikely(!ctx)) {
940                         err = -ENOMEM;
941                         unmap_mft_record(base_ni);
942                         break;
943                 }
944                 status.mft_attr_mapped = 1;
945                 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
946                                 CASE_SENSITIVE, bh_cpos, NULL, 0, ctx);
947                 if (unlikely(err)) {
948                         if (err == -ENOENT)
949                                 err = -EIO;
950                         break;
951                 }
952                 m = ctx->mrec;
953                 a = ctx->attr;
954                 /*
955                  * Find the runlist element with which the attribute extent
956                  * starts.  Note, we cannot use the _attr_ version because we
957                  * have mapped the mft record.  That is ok because we know the
958                  * runlist fragment must be mapped already to have ever gotten
959                  * here, so we can just use the _rl_ version.
960                  */
961                 vcn = sle64_to_cpu(a->data.non_resident.lowest_vcn);
962                 rl2 = ntfs_rl_find_vcn_nolock(rl, vcn);
963                 BUG_ON(!rl2);
964                 BUG_ON(!rl2->length);
965                 BUG_ON(rl2->lcn < LCN_HOLE);
966                 highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn);
967                 /*
968                  * If @highest_vcn is zero, calculate the real highest_vcn
969                  * (which can really be zero).
970                  */
971                 if (!highest_vcn)
972                         highest_vcn = (sle64_to_cpu(
973                                         a->data.non_resident.allocated_size) >>
974                                         vol->cluster_size_bits) - 1;
975                 /*
976                  * Determine the size of the mapping pairs array for the new
977                  * extent, i.e. the old extent with the hole filled.
978                  */
979                 mp_size = ntfs_get_size_for_mapping_pairs(vol, rl2, vcn,
980                                 highest_vcn);
981                 if (unlikely(mp_size <= 0)) {
982                         if (!(err = mp_size))
983                                 err = -EIO;
984                         ntfs_debug("Failed to get size for mapping pairs "
985                                         "array, error code %i.", err);
986                         break;
987                 }
988                 /*
989                  * Resize the attribute record to fit the new mapping pairs
990                  * array.
991                  */
992                 attr_rec_len = le32_to_cpu(a->length);
993                 err = ntfs_attr_record_resize(m, a, mp_size + le16_to_cpu(
994                                 a->data.non_resident.mapping_pairs_offset));
995                 if (unlikely(err)) {
996                         BUG_ON(err != -ENOSPC);
997                         // TODO: Deal with this by using the current attribute
998                         // and fill it with as much of the mapping pairs
999                         // array as possible.  Then loop over each attribute
1000                         // extent rewriting the mapping pairs arrays as we go
1001                         // along and if when we reach the end we have not
1002                         // enough space, try to resize the last attribute
1003                         // extent and if even that fails, add a new attribute
1004                         // extent.
1005                         // We could also try to resize at each step in the hope
1006                         // that we will not need to rewrite every single extent.
1007                         // Note, we may need to decompress some extents to fill
1008                         // the runlist as we are walking the extents...
1009                         ntfs_error(vol->sb, "Not enough space in the mft "
1010                                         "record for the extended attribute "
1011                                         "record.  This case is not "
1012                                         "implemented yet.");
1013                         err = -EOPNOTSUPP;
1014                         break ;
1015                 }
1016                 status.mp_rebuilt = 1;
1017                 /*
1018                  * Generate the mapping pairs array directly into the attribute
1019                  * record.
1020                  */
1021                 err = ntfs_mapping_pairs_build(vol, (u8*)a + le16_to_cpu(
1022                                 a->data.non_resident.mapping_pairs_offset),
1023                                 mp_size, rl2, vcn, highest_vcn, NULL);
1024                 if (unlikely(err)) {
1025                         ntfs_error(vol->sb, "Cannot fill hole in inode 0x%lx, "
1026                                         "attribute type 0x%x, because building "
1027                                         "the mapping pairs failed with error "
1028                                         "code %i.", vi->i_ino,
1029                                         (unsigned)le32_to_cpu(ni->type), err);
1030                         err = -EIO;
1031                         break;
1032                 }
1033                 /* Update the highest_vcn but only if it was not set. */
1034                 if (unlikely(!a->data.non_resident.highest_vcn))
1035                         a->data.non_resident.highest_vcn =
1036                                         cpu_to_sle64(highest_vcn);
1037                 /*
1038                  * If the attribute is sparse/compressed, update the compressed
1039                  * size in the ntfs_inode structure and the attribute record.
1040                  */
1041                 if (likely(NInoSparse(ni) || NInoCompressed(ni))) {
1042                         /*
1043                          * If we are not in the first attribute extent, switch
1044                          * to it, but first ensure the changes will make it to
1045                          * disk later.
1046                          */
1047                         if (a->data.non_resident.lowest_vcn) {
1048                                 flush_dcache_mft_record_page(ctx->ntfs_ino);
1049                                 mark_mft_record_dirty(ctx->ntfs_ino);
1050                                 ntfs_attr_reinit_search_ctx(ctx);
1051                                 err = ntfs_attr_lookup(ni->type, ni->name,
1052                                                 ni->name_len, CASE_SENSITIVE,
1053                                                 0, NULL, 0, ctx);
1054                                 if (unlikely(err)) {
1055                                         status.attr_switched = 1;
1056                                         break;
1057                                 }
1058                                 /* @m is not used any more so do not set it. */
1059                                 a = ctx->attr;
1060                         }
1061                         write_lock_irqsave(&ni->size_lock, flags);
1062                         ni->itype.compressed.size += vol->cluster_size;
1063                         a->data.non_resident.compressed_size =
1064                                         cpu_to_sle64(ni->itype.compressed.size);
1065                         write_unlock_irqrestore(&ni->size_lock, flags);
1066                 }
1067                 /* Ensure the changes make it to disk. */
1068                 flush_dcache_mft_record_page(ctx->ntfs_ino);
1069                 mark_mft_record_dirty(ctx->ntfs_ino);
1070                 ntfs_attr_put_search_ctx(ctx);
1071                 unmap_mft_record(base_ni);
1072                 /* Successfully filled the hole. */
1073                 status.runlist_merged = 0;
1074                 status.mft_attr_mapped = 0;
1075                 status.mp_rebuilt = 0;
1076                 /* Setup the map cache and use that to deal with the buffer. */
1077                 was_hole = true;
1078                 vcn = bh_cpos;
1079                 vcn_len = 1;
1080                 lcn_block = lcn << (vol->cluster_size_bits - blocksize_bits);
1081                 cdelta = 0;
1082                 /*
1083                  * If the number of remaining clusters in the @pages is smaller
1084                  * or equal to the number of cached clusters, unlock the
1085                  * runlist as the map cache will be used from now on.
1086                  */
1087                 if (likely(vcn + vcn_len >= cend)) {
1088                         up_write(&ni->runlist.lock);
1089                         rl_write_locked = false;
1090                         rl = NULL;
1091                 }
1092                 goto map_buffer_cached;
1093         } while (bh_pos += blocksize, (bh = bh->b_this_page) != head);
1094         /* If there are no errors, do the next page. */
1095         if (likely(!err && ++u < nr_pages))
1096                 goto do_next_page;
1097         /* If there are no errors, release the runlist lock if we took it. */
1098         if (likely(!err)) {
1099                 if (unlikely(rl_write_locked)) {
1100                         up_write(&ni->runlist.lock);
1101                         rl_write_locked = false;
1102                 } else if (unlikely(rl))
1103                         up_read(&ni->runlist.lock);
1104                 rl = NULL;
1105         }
1106         /* If we issued read requests, let them complete. */
1107         read_lock_irqsave(&ni->size_lock, flags);
1108         initialized_size = ni->initialized_size;
1109         read_unlock_irqrestore(&ni->size_lock, flags);
1110         while (wait_bh > wait) {
1111                 bh = *--wait_bh;
1112                 wait_on_buffer(bh);
1113                 if (likely(buffer_uptodate(bh))) {
1114                         page = bh->b_page;
1115                         bh_pos = ((s64)page->index << PAGE_CACHE_SHIFT) +
1116                                         bh_offset(bh);
1117                         /*
1118                          * If the buffer overflows the initialized size, need
1119                          * to zero the overflowing region.
1120                          */
1121                         if (unlikely(bh_pos + blocksize > initialized_size)) {
1122                                 int ofs = 0;
1123
1124                                 if (likely(bh_pos < initialized_size))
1125                                         ofs = initialized_size - bh_pos;
1126                                 zero_user_segment(page, bh_offset(bh) + ofs,
1127                                                 blocksize);
1128                         }
1129                 } else /* if (unlikely(!buffer_uptodate(bh))) */
1130                         err = -EIO;
1131         }
1132         if (likely(!err)) {
1133                 /* Clear buffer_new on all buffers. */
1134                 u = 0;
1135                 do {
1136                         bh = head = page_buffers(pages[u]);
1137                         do {
1138                                 if (buffer_new(bh))
1139                                         clear_buffer_new(bh);
1140                         } while ((bh = bh->b_this_page) != head);
1141                 } while (++u < nr_pages);
1142                 ntfs_debug("Done.");
1143                 return err;
1144         }
1145         if (status.attr_switched) {
1146                 /* Get back to the attribute extent we modified. */
1147                 ntfs_attr_reinit_search_ctx(ctx);
1148                 if (ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1149                                 CASE_SENSITIVE, bh_cpos, NULL, 0, ctx)) {
1150                         ntfs_error(vol->sb, "Failed to find required "
1151                                         "attribute extent of attribute in "
1152                                         "error code path.  Run chkdsk to "
1153                                         "recover.");
1154                         write_lock_irqsave(&ni->size_lock, flags);
1155                         ni->itype.compressed.size += vol->cluster_size;
1156                         write_unlock_irqrestore(&ni->size_lock, flags);
1157                         flush_dcache_mft_record_page(ctx->ntfs_ino);
1158                         mark_mft_record_dirty(ctx->ntfs_ino);
1159                         /*
1160                          * The only thing that is now wrong is the compressed
1161                          * size of the base attribute extent which chkdsk
1162                          * should be able to fix.
1163                          */
1164                         NVolSetErrors(vol);
1165                 } else {
1166                         m = ctx->mrec;
1167                         a = ctx->attr;
1168                         status.attr_switched = 0;
1169                 }
1170         }
1171         /*
1172          * If the runlist has been modified, need to restore it by punching a
1173          * hole into it and we then need to deallocate the on-disk cluster as
1174          * well.  Note, we only modify the runlist if we are able to generate a
1175          * new mapping pairs array, i.e. only when the mapped attribute extent
1176          * is not switched.
1177          */
1178         if (status.runlist_merged && !status.attr_switched) {
1179                 BUG_ON(!rl_write_locked);
1180                 /* Make the file cluster we allocated sparse in the runlist. */
1181                 if (ntfs_rl_punch_nolock(vol, &ni->runlist, bh_cpos, 1)) {
1182                         ntfs_error(vol->sb, "Failed to punch hole into "
1183                                         "attribute runlist in error code "
1184                                         "path.  Run chkdsk to recover the "
1185                                         "lost cluster.");
1186                         NVolSetErrors(vol);
1187                 } else /* if (success) */ {
1188                         status.runlist_merged = 0;
1189                         /*
1190                          * Deallocate the on-disk cluster we allocated but only
1191                          * if we succeeded in punching its vcn out of the
1192                          * runlist.
1193                          */
1194                         down_write(&vol->lcnbmp_lock);
1195                         if (ntfs_bitmap_clear_bit(vol->lcnbmp_ino, lcn)) {
1196                                 ntfs_error(vol->sb, "Failed to release "
1197                                                 "allocated cluster in error "
1198                                                 "code path.  Run chkdsk to "
1199                                                 "recover the lost cluster.");
1200                                 NVolSetErrors(vol);
1201                         }
1202                         up_write(&vol->lcnbmp_lock);
1203                 }
1204         }
1205         /*
1206          * Resize the attribute record to its old size and rebuild the mapping
1207          * pairs array.  Note, we only can do this if the runlist has been
1208          * restored to its old state which also implies that the mapped
1209          * attribute extent is not switched.
1210          */
1211         if (status.mp_rebuilt && !status.runlist_merged) {
1212                 if (ntfs_attr_record_resize(m, a, attr_rec_len)) {
1213                         ntfs_error(vol->sb, "Failed to restore attribute "
1214                                         "record in error code path.  Run "
1215                                         "chkdsk to recover.");
1216                         NVolSetErrors(vol);
1217                 } else /* if (success) */ {
1218                         if (ntfs_mapping_pairs_build(vol, (u8*)a +
1219                                         le16_to_cpu(a->data.non_resident.
1220                                         mapping_pairs_offset), attr_rec_len -
1221                                         le16_to_cpu(a->data.non_resident.
1222                                         mapping_pairs_offset), ni->runlist.rl,
1223                                         vcn, highest_vcn, NULL)) {
1224                                 ntfs_error(vol->sb, "Failed to restore "
1225                                                 "mapping pairs array in error "
1226                                                 "code path.  Run chkdsk to "
1227                                                 "recover.");
1228                                 NVolSetErrors(vol);
1229                         }
1230                         flush_dcache_mft_record_page(ctx->ntfs_ino);
1231                         mark_mft_record_dirty(ctx->ntfs_ino);
1232                 }
1233         }
1234         /* Release the mft record and the attribute. */
1235         if (status.mft_attr_mapped) {
1236                 ntfs_attr_put_search_ctx(ctx);
1237                 unmap_mft_record(base_ni);
1238         }
1239         /* Release the runlist lock. */
1240         if (rl_write_locked)
1241                 up_write(&ni->runlist.lock);
1242         else if (rl)
1243                 up_read(&ni->runlist.lock);
1244         /*
1245          * Zero out any newly allocated blocks to avoid exposing stale data.
1246          * If BH_New is set, we know that the block was newly allocated above
1247          * and that it has not been fully zeroed and marked dirty yet.
1248          */
1249         nr_pages = u;
1250         u = 0;
1251         end = bh_cpos << vol->cluster_size_bits;
1252         do {
1253                 page = pages[u];
1254                 bh = head = page_buffers(page);
1255                 do {
1256                         if (u == nr_pages &&
1257                                         ((s64)page->index << PAGE_CACHE_SHIFT) +
1258                                         bh_offset(bh) >= end)
1259                                 break;
1260                         if (!buffer_new(bh))
1261                                 continue;
1262                         clear_buffer_new(bh);
1263                         if (!buffer_uptodate(bh)) {
1264                                 if (PageUptodate(page))
1265                                         set_buffer_uptodate(bh);
1266                                 else {
1267                                         zero_user(page, bh_offset(bh),
1268                                                         blocksize);
1269                                         set_buffer_uptodate(bh);
1270                                 }
1271                         }
1272                         mark_buffer_dirty(bh);
1273                 } while ((bh = bh->b_this_page) != head);
1274         } while (++u <= nr_pages);
1275         ntfs_error(vol->sb, "Failed.  Returning error code %i.", err);
1276         return err;
1277 }
1278
1279 /*
1280  * Copy as much as we can into the pages and return the number of bytes which
1281  * were successfully copied.  If a fault is encountered then clear the pages
1282  * out to (ofs + bytes) and return the number of bytes which were copied.
1283  */
1284 static inline size_t ntfs_copy_from_user(struct page **pages,
1285                 unsigned nr_pages, unsigned ofs, const char __user *buf,
1286                 size_t bytes)
1287 {
1288         struct page **last_page = pages + nr_pages;
1289         char *addr;
1290         size_t total = 0;
1291         unsigned len;
1292         int left;
1293
1294         do {
1295                 len = PAGE_CACHE_SIZE - ofs;
1296                 if (len > bytes)
1297                         len = bytes;
1298                 addr = kmap_atomic(*pages, KM_USER0);
1299                 left = __copy_from_user_inatomic(addr + ofs, buf, len);
1300                 kunmap_atomic(addr, KM_USER0);
1301                 if (unlikely(left)) {
1302                         /* Do it the slow way. */
1303                         addr = kmap(*pages);
1304                         left = __copy_from_user(addr + ofs, buf, len);
1305                         kunmap(*pages);
1306                         if (unlikely(left))
1307                                 goto err_out;
1308                 }
1309                 total += len;
1310                 bytes -= len;
1311                 if (!bytes)
1312                         break;
1313                 buf += len;
1314                 ofs = 0;
1315         } while (++pages < last_page);
1316 out:
1317         return total;
1318 err_out:
1319         total += len - left;
1320         /* Zero the rest of the target like __copy_from_user(). */
1321         while (++pages < last_page) {
1322                 bytes -= len;
1323                 if (!bytes)
1324                         break;
1325                 len = PAGE_CACHE_SIZE;
1326                 if (len > bytes)
1327                         len = bytes;
1328                 zero_user(*pages, 0, len);
1329         }
1330         goto out;
1331 }
1332
1333 static size_t __ntfs_copy_from_user_iovec_inatomic(char *vaddr,
1334                 const struct iovec *iov, size_t iov_ofs, size_t bytes)
1335 {
1336         size_t total = 0;
1337
1338         while (1) {
1339                 const char __user *buf = iov->iov_base + iov_ofs;
1340                 unsigned len;
1341                 size_t left;
1342
1343                 len = iov->iov_len - iov_ofs;
1344                 if (len > bytes)
1345                         len = bytes;
1346                 left = __copy_from_user_inatomic(vaddr, buf, len);
1347                 total += len;
1348                 bytes -= len;
1349                 vaddr += len;
1350                 if (unlikely(left)) {
1351                         total -= left;
1352                         break;
1353                 }
1354                 if (!bytes)
1355                         break;
1356                 iov++;
1357                 iov_ofs = 0;
1358         }
1359         return total;
1360 }
1361
1362 static inline void ntfs_set_next_iovec(const struct iovec **iovp,
1363                 size_t *iov_ofsp, size_t bytes)
1364 {
1365         const struct iovec *iov = *iovp;
1366         size_t iov_ofs = *iov_ofsp;
1367
1368         while (bytes) {
1369                 unsigned len;
1370
1371                 len = iov->iov_len - iov_ofs;
1372                 if (len > bytes)
1373                         len = bytes;
1374                 bytes -= len;
1375                 iov_ofs += len;
1376                 if (iov->iov_len == iov_ofs) {
1377                         iov++;
1378                         iov_ofs = 0;
1379                 }
1380         }
1381         *iovp = iov;
1382         *iov_ofsp = iov_ofs;
1383 }
1384
1385 /*
1386  * This has the same side-effects and return value as ntfs_copy_from_user().
1387  * The difference is that on a fault we need to memset the remainder of the
1388  * pages (out to offset + bytes), to emulate ntfs_copy_from_user()'s
1389  * single-segment behaviour.
1390  *
1391  * We call the same helper (__ntfs_copy_from_user_iovec_inatomic()) both
1392  * when atomic and when not atomic.  This is ok because
1393  * __ntfs_copy_from_user_iovec_inatomic() calls __copy_from_user_inatomic()
1394  * and it is ok to call this when non-atomic.
1395  * Infact, the only difference between __copy_from_user_inatomic() and
1396  * __copy_from_user() is that the latter calls might_sleep() and the former
1397  * should not zero the tail of the buffer on error.  And on many
1398  * architectures __copy_from_user_inatomic() is just defined to
1399  * __copy_from_user() so it makes no difference at all on those architectures.
1400  */
1401 static inline size_t ntfs_copy_from_user_iovec(struct page **pages,
1402                 unsigned nr_pages, unsigned ofs, const struct iovec **iov,
1403                 size_t *iov_ofs, size_t bytes)
1404 {
1405         struct page **last_page = pages + nr_pages;
1406         char *addr;
1407         size_t copied, len, total = 0;
1408
1409         do {
1410                 len = PAGE_CACHE_SIZE - ofs;
1411                 if (len > bytes)
1412                         len = bytes;
1413                 addr = kmap_atomic(*pages, KM_USER0);
1414                 copied = __ntfs_copy_from_user_iovec_inatomic(addr + ofs,
1415                                 *iov, *iov_ofs, len);
1416                 kunmap_atomic(addr, KM_USER0);
1417                 if (unlikely(copied != len)) {
1418                         /* Do it the slow way. */
1419                         addr = kmap(*pages);
1420                         copied = __ntfs_copy_from_user_iovec_inatomic(addr + ofs,
1421                                         *iov, *iov_ofs, len);
1422                         /*
1423                          * Zero the rest of the target like __copy_from_user().
1424                          */
1425                         memset(addr + ofs + copied, 0, len - copied);
1426                         kunmap(*pages);
1427                         if (unlikely(copied != len))
1428                                 goto err_out;
1429                 }
1430                 total += len;
1431                 bytes -= len;
1432                 if (!bytes)
1433                         break;
1434                 ntfs_set_next_iovec(iov, iov_ofs, len);
1435                 ofs = 0;
1436         } while (++pages < last_page);
1437 out:
1438         return total;
1439 err_out:
1440         total += copied;
1441         /* Zero the rest of the target like __copy_from_user(). */
1442         while (++pages < last_page) {
1443                 bytes -= len;
1444                 if (!bytes)
1445                         break;
1446                 len = PAGE_CACHE_SIZE;
1447                 if (len > bytes)
1448                         len = bytes;
1449                 zero_user(*pages, 0, len);
1450         }
1451         goto out;
1452 }
1453
1454 static inline void ntfs_flush_dcache_pages(struct page **pages,
1455                 unsigned nr_pages)
1456 {
1457         BUG_ON(!nr_pages);
1458         /*
1459          * Warning: Do not do the decrement at the same time as the call to
1460          * flush_dcache_page() because it is a NULL macro on i386 and hence the
1461          * decrement never happens so the loop never terminates.
1462          */
1463         do {
1464                 --nr_pages;
1465                 flush_dcache_page(pages[nr_pages]);
1466         } while (nr_pages > 0);
1467 }
1468
1469 /**
1470  * ntfs_commit_pages_after_non_resident_write - commit the received data
1471  * @pages:      array of destination pages
1472  * @nr_pages:   number of pages in @pages
1473  * @pos:        byte position in file at which the write begins
1474  * @bytes:      number of bytes to be written
1475  *
1476  * See description of ntfs_commit_pages_after_write(), below.
1477  */
1478 static inline int ntfs_commit_pages_after_non_resident_write(
1479                 struct page **pages, const unsigned nr_pages,
1480                 s64 pos, size_t bytes)
1481 {
1482         s64 end, initialized_size;
1483         struct inode *vi;
1484         ntfs_inode *ni, *base_ni;
1485         struct buffer_head *bh, *head;
1486         ntfs_attr_search_ctx *ctx;
1487         MFT_RECORD *m;
1488         ATTR_RECORD *a;
1489         unsigned long flags;
1490         unsigned blocksize, u;
1491         int err;
1492
1493         vi = pages[0]->mapping->host;
1494         ni = NTFS_I(vi);
1495         blocksize = vi->i_sb->s_blocksize;
1496         end = pos + bytes;
1497         u = 0;
1498         do {
1499                 s64 bh_pos;
1500                 struct page *page;
1501                 bool partial;
1502
1503                 page = pages[u];
1504                 bh_pos = (s64)page->index << PAGE_CACHE_SHIFT;
1505                 bh = head = page_buffers(page);
1506                 partial = false;
1507                 do {
1508                         s64 bh_end;
1509
1510                         bh_end = bh_pos + blocksize;
1511                         if (bh_end <= pos || bh_pos >= end) {
1512                                 if (!buffer_uptodate(bh))
1513                                         partial = true;
1514                         } else {
1515                                 set_buffer_uptodate(bh);
1516                                 mark_buffer_dirty(bh);
1517                         }
1518                 } while (bh_pos += blocksize, (bh = bh->b_this_page) != head);
1519                 /*
1520                  * If all buffers are now uptodate but the page is not, set the
1521                  * page uptodate.
1522                  */
1523                 if (!partial && !PageUptodate(page))
1524                         SetPageUptodate(page);
1525         } while (++u < nr_pages);
1526         /*
1527          * Finally, if we do not need to update initialized_size or i_size we
1528          * are finished.
1529          */
1530         read_lock_irqsave(&ni->size_lock, flags);
1531         initialized_size = ni->initialized_size;
1532         read_unlock_irqrestore(&ni->size_lock, flags);
1533         if (end <= initialized_size) {
1534                 ntfs_debug("Done.");
1535                 return 0;
1536         }
1537         /*
1538          * Update initialized_size/i_size as appropriate, both in the inode and
1539          * the mft record.
1540          */
1541         if (!NInoAttr(ni))
1542                 base_ni = ni;
1543         else
1544                 base_ni = ni->ext.base_ntfs_ino;
1545         /* Map, pin, and lock the mft record. */
1546         m = map_mft_record(base_ni);
1547         if (IS_ERR(m)) {
1548                 err = PTR_ERR(m);
1549                 m = NULL;
1550                 ctx = NULL;
1551                 goto err_out;
1552         }
1553         BUG_ON(!NInoNonResident(ni));
1554         ctx = ntfs_attr_get_search_ctx(base_ni, m);
1555         if (unlikely(!ctx)) {
1556                 err = -ENOMEM;
1557                 goto err_out;
1558         }
1559         err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1560                         CASE_SENSITIVE, 0, NULL, 0, ctx);
1561         if (unlikely(err)) {
1562                 if (err == -ENOENT)
1563                         err = -EIO;
1564                 goto err_out;
1565         }
1566         a = ctx->attr;
1567         BUG_ON(!a->non_resident);
1568         write_lock_irqsave(&ni->size_lock, flags);
1569         BUG_ON(end > ni->allocated_size);
1570         ni->initialized_size = end;
1571         a->data.non_resident.initialized_size = cpu_to_sle64(end);
1572         if (end > i_size_read(vi)) {
1573                 i_size_write(vi, end);
1574                 a->data.non_resident.data_size =
1575                                 a->data.non_resident.initialized_size;
1576         }
1577         write_unlock_irqrestore(&ni->size_lock, flags);
1578         /* Mark the mft record dirty, so it gets written back. */
1579         flush_dcache_mft_record_page(ctx->ntfs_ino);
1580         mark_mft_record_dirty(ctx->ntfs_ino);
1581         ntfs_attr_put_search_ctx(ctx);
1582         unmap_mft_record(base_ni);
1583         ntfs_debug("Done.");
1584         return 0;
1585 err_out:
1586         if (ctx)
1587                 ntfs_attr_put_search_ctx(ctx);
1588         if (m)
1589                 unmap_mft_record(base_ni);
1590         ntfs_error(vi->i_sb, "Failed to update initialized_size/i_size (error "
1591                         "code %i).", err);
1592         if (err != -ENOMEM)
1593                 NVolSetErrors(ni->vol);
1594         return err;
1595 }
1596
1597 /**
1598  * ntfs_commit_pages_after_write - commit the received data
1599  * @pages:      array of destination pages
1600  * @nr_pages:   number of pages in @pages
1601  * @pos:        byte position in file at which the write begins
1602  * @bytes:      number of bytes to be written
1603  *
1604  * This is called from ntfs_file_buffered_write() with i_mutex held on the inode
1605  * (@pages[0]->mapping->host).  There are @nr_pages pages in @pages which are
1606  * locked but not kmap()ped.  The source data has already been copied into the
1607  * @page.  ntfs_prepare_pages_for_non_resident_write() has been called before
1608  * the data was copied (for non-resident attributes only) and it returned
1609  * success.
1610  *
1611  * Need to set uptodate and mark dirty all buffers within the boundary of the
1612  * write.  If all buffers in a page are uptodate we set the page uptodate, too.
1613  *
1614  * Setting the buffers dirty ensures that they get written out later when
1615  * ntfs_writepage() is invoked by the VM.
1616  *
1617  * Finally, we need to update i_size and initialized_size as appropriate both
1618  * in the inode and the mft record.
1619  *
1620  * This is modelled after fs/buffer.c::generic_commit_write(), which marks
1621  * buffers uptodate and dirty, sets the page uptodate if all buffers in the
1622  * page are uptodate, and updates i_size if the end of io is beyond i_size.  In
1623  * that case, it also marks the inode dirty.
1624  *
1625  * If things have gone as outlined in
1626  * ntfs_prepare_pages_for_non_resident_write(), we do not need to do any page
1627  * content modifications here for non-resident attributes.  For resident
1628  * attributes we need to do the uptodate bringing here which we combine with
1629  * the copying into the mft record which means we save one atomic kmap.
1630  *
1631  * Return 0 on success or -errno on error.
1632  */
1633 static int ntfs_commit_pages_after_write(struct page **pages,
1634                 const unsigned nr_pages, s64 pos, size_t bytes)
1635 {
1636         s64 end, initialized_size;
1637         loff_t i_size;
1638         struct inode *vi;
1639         ntfs_inode *ni, *base_ni;
1640         struct page *page;
1641         ntfs_attr_search_ctx *ctx;
1642         MFT_RECORD *m;
1643         ATTR_RECORD *a;
1644         char *kattr, *kaddr;
1645         unsigned long flags;
1646         u32 attr_len;
1647         int err;
1648
1649         BUG_ON(!nr_pages);
1650         BUG_ON(!pages);
1651         page = pages[0];
1652         BUG_ON(!page);
1653         vi = page->mapping->host;
1654         ni = NTFS_I(vi);
1655         ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, start page "
1656                         "index 0x%lx, nr_pages 0x%x, pos 0x%llx, bytes 0x%zx.",
1657                         vi->i_ino, ni->type, page->index, nr_pages,
1658                         (long long)pos, bytes);
1659         if (NInoNonResident(ni))
1660                 return ntfs_commit_pages_after_non_resident_write(pages,
1661                                 nr_pages, pos, bytes);
1662         BUG_ON(nr_pages > 1);
1663         /*
1664          * Attribute is resident, implying it is not compressed, encrypted, or
1665          * sparse.
1666          */
1667         if (!NInoAttr(ni))
1668                 base_ni = ni;
1669         else
1670                 base_ni = ni->ext.base_ntfs_ino;
1671         BUG_ON(NInoNonResident(ni));
1672         /* Map, pin, and lock the mft record. */
1673         m = map_mft_record(base_ni);
1674         if (IS_ERR(m)) {
1675                 err = PTR_ERR(m);
1676                 m = NULL;
1677                 ctx = NULL;
1678                 goto err_out;
1679         }
1680         ctx = ntfs_attr_get_search_ctx(base_ni, m);
1681         if (unlikely(!ctx)) {
1682                 err = -ENOMEM;
1683                 goto err_out;
1684         }
1685         err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1686                         CASE_SENSITIVE, 0, NULL, 0, ctx);
1687         if (unlikely(err)) {
1688                 if (err == -ENOENT)
1689                         err = -EIO;
1690                 goto err_out;
1691         }
1692         a = ctx->attr;
1693         BUG_ON(a->non_resident);
1694         /* The total length of the attribute value. */
1695         attr_len = le32_to_cpu(a->data.resident.value_length);
1696         i_size = i_size_read(vi);
1697         BUG_ON(attr_len != i_size);
1698         BUG_ON(pos > attr_len);
1699         end = pos + bytes;
1700         BUG_ON(end > le32_to_cpu(a->length) -
1701                         le16_to_cpu(a->data.resident.value_offset));
1702         kattr = (u8*)a + le16_to_cpu(a->data.resident.value_offset);
1703         kaddr = kmap_atomic(page, KM_USER0);
1704         /* Copy the received data from the page to the mft record. */
1705         memcpy(kattr + pos, kaddr + pos, bytes);
1706         /* Update the attribute length if necessary. */
1707         if (end > attr_len) {
1708                 attr_len = end;
1709                 a->data.resident.value_length = cpu_to_le32(attr_len);
1710         }
1711         /*
1712          * If the page is not uptodate, bring the out of bounds area(s)
1713          * uptodate by copying data from the mft record to the page.
1714          */
1715         if (!PageUptodate(page)) {
1716                 if (pos > 0)
1717                         memcpy(kaddr, kattr, pos);
1718                 if (end < attr_len)
1719                         memcpy(kaddr + end, kattr + end, attr_len - end);
1720                 /* Zero the region outside the end of the attribute value. */
1721                 memset(kaddr + attr_len, 0, PAGE_CACHE_SIZE - attr_len);
1722                 flush_dcache_page(page);
1723                 SetPageUptodate(page);
1724         }
1725         kunmap_atomic(kaddr, KM_USER0);
1726         /* Update initialized_size/i_size if necessary. */
1727         read_lock_irqsave(&ni->size_lock, flags);
1728         initialized_size = ni->initialized_size;
1729         BUG_ON(end > ni->allocated_size);
1730         read_unlock_irqrestore(&ni->size_lock, flags);
1731         BUG_ON(initialized_size != i_size);
1732         if (end > initialized_size) {
1733                 write_lock_irqsave(&ni->size_lock, flags);
1734                 ni->initialized_size = end;
1735                 i_size_write(vi, end);
1736                 write_unlock_irqrestore(&ni->size_lock, flags);
1737         }
1738         /* Mark the mft record dirty, so it gets written back. */
1739         flush_dcache_mft_record_page(ctx->ntfs_ino);
1740         mark_mft_record_dirty(ctx->ntfs_ino);
1741         ntfs_attr_put_search_ctx(ctx);
1742         unmap_mft_record(base_ni);
1743         ntfs_debug("Done.");
1744         return 0;
1745 err_out:
1746         if (err == -ENOMEM) {
1747                 ntfs_warning(vi->i_sb, "Error allocating memory required to "
1748                                 "commit the write.");
1749                 if (PageUptodate(page)) {
1750                         ntfs_warning(vi->i_sb, "Page is uptodate, setting "
1751                                         "dirty so the write will be retried "
1752                                         "later on by the VM.");
1753                         /*
1754                          * Put the page on mapping->dirty_pages, but leave its
1755                          * buffers' dirty state as-is.
1756                          */
1757                         __set_page_dirty_nobuffers(page);
1758                         err = 0;
1759                 } else
1760                         ntfs_error(vi->i_sb, "Page is not uptodate.  Written "
1761                                         "data has been lost.");
1762         } else {
1763                 ntfs_error(vi->i_sb, "Resident attribute commit write failed "
1764                                 "with error %i.", err);
1765                 NVolSetErrors(ni->vol);
1766         }
1767         if (ctx)
1768                 ntfs_attr_put_search_ctx(ctx);
1769         if (m)
1770                 unmap_mft_record(base_ni);
1771         return err;
1772 }
1773
1774 /**
1775  * ntfs_file_buffered_write -
1776  *
1777  * Locking: The vfs is holding ->i_mutex on the inode.
1778  */
1779 static ssize_t ntfs_file_buffered_write(struct kiocb *iocb,
1780                 const struct iovec *iov, unsigned long nr_segs,
1781                 loff_t pos, loff_t *ppos, size_t count)
1782 {
1783         struct file *file = iocb->ki_filp;
1784         struct address_space *mapping = file->f_mapping;
1785         struct inode *vi = mapping->host;
1786         ntfs_inode *ni = NTFS_I(vi);
1787         ntfs_volume *vol = ni->vol;
1788         struct page *pages[NTFS_MAX_PAGES_PER_CLUSTER];
1789         struct page *cached_page = NULL;
1790         char __user *buf = NULL;
1791         s64 end, ll;
1792         VCN last_vcn;
1793         LCN lcn;
1794         unsigned long flags;
1795         size_t bytes, iov_ofs = 0;      /* Offset in the current iovec. */
1796         ssize_t status, written;
1797         unsigned nr_pages;
1798         int err;
1799         struct pagevec lru_pvec;
1800
1801         ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, "
1802                         "pos 0x%llx, count 0x%lx.",
1803                         vi->i_ino, (unsigned)le32_to_cpu(ni->type),
1804                         (unsigned long long)pos, (unsigned long)count);
1805         if (unlikely(!count))
1806                 return 0;
1807         BUG_ON(NInoMstProtected(ni));
1808         /*
1809          * If the attribute is not an index root and it is encrypted or
1810          * compressed, we cannot write to it yet.  Note we need to check for
1811          * AT_INDEX_ALLOCATION since this is the type of both directory and
1812          * index inodes.
1813          */
1814         if (ni->type != AT_INDEX_ALLOCATION) {
1815                 /* If file is encrypted, deny access, just like NT4. */
1816                 if (NInoEncrypted(ni)) {
1817                         /*
1818                          * Reminder for later: Encrypted files are _always_
1819                          * non-resident so that the content can always be
1820                          * encrypted.
1821                          */
1822                         ntfs_debug("Denying write access to encrypted file.");
1823                         return -EACCES;
1824                 }
1825                 if (NInoCompressed(ni)) {
1826                         /* Only unnamed $DATA attribute can be compressed. */
1827                         BUG_ON(ni->type != AT_DATA);
1828                         BUG_ON(ni->name_len);
1829                         /*
1830                          * Reminder for later: If resident, the data is not
1831                          * actually compressed.  Only on the switch to non-
1832                          * resident does compression kick in.  This is in
1833                          * contrast to encrypted files (see above).
1834                          */
1835                         ntfs_error(vi->i_sb, "Writing to compressed files is "
1836                                         "not implemented yet.  Sorry.");
1837                         return -EOPNOTSUPP;
1838                 }
1839         }
1840         /*
1841          * If a previous ntfs_truncate() failed, repeat it and abort if it
1842          * fails again.
1843          */
1844         if (unlikely(NInoTruncateFailed(ni))) {
1845                 down_write(&vi->i_alloc_sem);
1846                 err = ntfs_truncate(vi);
1847                 up_write(&vi->i_alloc_sem);
1848                 if (err || NInoTruncateFailed(ni)) {
1849                         if (!err)
1850                                 err = -EIO;
1851                         ntfs_error(vol->sb, "Cannot perform write to inode "
1852                                         "0x%lx, attribute type 0x%x, because "
1853                                         "ntfs_truncate() failed (error code "
1854                                         "%i).", vi->i_ino,
1855                                         (unsigned)le32_to_cpu(ni->type), err);
1856                         return err;
1857                 }
1858         }
1859         /* The first byte after the write. */
1860         end = pos + count;
1861         /*
1862          * If the write goes beyond the allocated size, extend the allocation
1863          * to cover the whole of the write, rounded up to the nearest cluster.
1864          */
1865         read_lock_irqsave(&ni->size_lock, flags);
1866         ll = ni->allocated_size;
1867         read_unlock_irqrestore(&ni->size_lock, flags);
1868         if (end > ll) {
1869                 /* Extend the allocation without changing the data size. */
1870                 ll = ntfs_attr_extend_allocation(ni, end, -1, pos);
1871                 if (likely(ll >= 0)) {
1872                         BUG_ON(pos >= ll);
1873                         /* If the extension was partial truncate the write. */
1874                         if (end > ll) {
1875                                 ntfs_debug("Truncating write to inode 0x%lx, "
1876                                                 "attribute type 0x%x, because "
1877                                                 "the allocation was only "
1878                                                 "partially extended.",
1879                                                 vi->i_ino, (unsigned)
1880                                                 le32_to_cpu(ni->type));
1881                                 end = ll;
1882                                 count = ll - pos;
1883                         }
1884                 } else {
1885                         err = ll;
1886                         read_lock_irqsave(&ni->size_lock, flags);
1887                         ll = ni->allocated_size;
1888                         read_unlock_irqrestore(&ni->size_lock, flags);
1889                         /* Perform a partial write if possible or fail. */
1890                         if (pos < ll) {
1891                                 ntfs_debug("Truncating write to inode 0x%lx, "
1892                                                 "attribute type 0x%x, because "
1893                                                 "extending the allocation "
1894                                                 "failed (error code %i).",
1895                                                 vi->i_ino, (unsigned)
1896                                                 le32_to_cpu(ni->type), err);
1897                                 end = ll;
1898                                 count = ll - pos;
1899                         } else {
1900                                 ntfs_error(vol->sb, "Cannot perform write to "
1901                                                 "inode 0x%lx, attribute type "
1902                                                 "0x%x, because extending the "
1903                                                 "allocation failed (error "
1904                                                 "code %i).", vi->i_ino,
1905                                                 (unsigned)
1906                                                 le32_to_cpu(ni->type), err);
1907                                 return err;
1908                         }
1909                 }
1910         }
1911         pagevec_init(&lru_pvec, 0);
1912         written = 0;
1913         /*
1914          * If the write starts beyond the initialized size, extend it up to the
1915          * beginning of the write and initialize all non-sparse space between
1916          * the old initialized size and the new one.  This automatically also
1917          * increments the vfs inode->i_size to keep it above or equal to the
1918          * initialized_size.
1919          */
1920         read_lock_irqsave(&ni->size_lock, flags);
1921         ll = ni->initialized_size;
1922         read_unlock_irqrestore(&ni->size_lock, flags);
1923         if (pos > ll) {
1924                 err = ntfs_attr_extend_initialized(ni, pos);
1925                 if (err < 0) {
1926                         ntfs_error(vol->sb, "Cannot perform write to inode "
1927                                         "0x%lx, attribute type 0x%x, because "
1928                                         "extending the initialized size "
1929                                         "failed (error code %i).", vi->i_ino,
1930                                         (unsigned)le32_to_cpu(ni->type), err);
1931                         status = err;
1932                         goto err_out;
1933                 }
1934         }
1935         /*
1936          * Determine the number of pages per cluster for non-resident
1937          * attributes.
1938          */
1939         nr_pages = 1;
1940         if (vol->cluster_size > PAGE_CACHE_SIZE && NInoNonResident(ni))
1941                 nr_pages = vol->cluster_size >> PAGE_CACHE_SHIFT;
1942         /* Finally, perform the actual write. */
1943         last_vcn = -1;
1944         if (likely(nr_segs == 1))
1945                 buf = iov->iov_base;
1946         do {
1947                 VCN vcn;
1948                 pgoff_t idx, start_idx;
1949                 unsigned ofs, do_pages, u;
1950                 size_t copied;
1951
1952                 start_idx = idx = pos >> PAGE_CACHE_SHIFT;
1953                 ofs = pos & ~PAGE_CACHE_MASK;
1954                 bytes = PAGE_CACHE_SIZE - ofs;
1955                 do_pages = 1;
1956                 if (nr_pages > 1) {
1957                         vcn = pos >> vol->cluster_size_bits;
1958                         if (vcn != last_vcn) {
1959                                 last_vcn = vcn;
1960                                 /*
1961                                  * Get the lcn of the vcn the write is in.  If
1962                                  * it is a hole, need to lock down all pages in
1963                                  * the cluster.
1964                                  */
1965                                 down_read(&ni->runlist.lock);
1966                                 lcn = ntfs_attr_vcn_to_lcn_nolock(ni, pos >>
1967                                                 vol->cluster_size_bits, false);
1968                                 up_read(&ni->runlist.lock);
1969                                 if (unlikely(lcn < LCN_HOLE)) {
1970                                         status = -EIO;
1971                                         if (lcn == LCN_ENOMEM)
1972                                                 status = -ENOMEM;
1973                                         else
1974                                                 ntfs_error(vol->sb, "Cannot "
1975                                                         "perform write to "
1976                                                         "inode 0x%lx, "
1977                                                         "attribute type 0x%x, "
1978                                                         "because the attribute "
1979                                                         "is corrupt.",
1980                                                         vi->i_ino, (unsigned)
1981                                                         le32_to_cpu(ni->type));
1982                                         break;
1983                                 }
1984                                 if (lcn == LCN_HOLE) {
1985                                         start_idx = (pos & ~(s64)
1986                                                         vol->cluster_size_mask)
1987                                                         >> PAGE_CACHE_SHIFT;
1988                                         bytes = vol->cluster_size - (pos &
1989                                                         vol->cluster_size_mask);
1990                                         do_pages = nr_pages;
1991                                 }
1992                         }
1993                 }
1994                 if (bytes > count)
1995                         bytes = count;
1996                 /*
1997                  * Bring in the user page(s) that we will copy from _first_.
1998                  * Otherwise there is a nasty deadlock on copying from the same
1999                  * page(s) as we are writing to, without it/them being marked
2000                  * up-to-date.  Note, at present there is nothing to stop the
2001                  * pages being swapped out between us bringing them into memory
2002                  * and doing the actual copying.
2003                  */
2004                 if (likely(nr_segs == 1))
2005                         ntfs_fault_in_pages_readable(buf, bytes);
2006                 else
2007                         ntfs_fault_in_pages_readable_iovec(iov, iov_ofs, bytes);
2008                 /* Get and lock @do_pages starting at index @start_idx. */
2009                 status = __ntfs_grab_cache_pages(mapping, start_idx, do_pages,
2010                                 pages, &cached_page, &lru_pvec);
2011                 if (unlikely(status))
2012                         break;
2013                 /*
2014                  * For non-resident attributes, we need to fill any holes with
2015                  * actual clusters and ensure all bufferes are mapped.  We also
2016                  * need to bring uptodate any buffers that are only partially
2017                  * being written to.
2018                  */
2019                 if (NInoNonResident(ni)) {
2020                         status = ntfs_prepare_pages_for_non_resident_write(
2021                                         pages, do_pages, pos, bytes);
2022                         if (unlikely(status)) {
2023                                 loff_t i_size;
2024
2025                                 do {
2026                                         unlock_page(pages[--do_pages]);
2027                                         page_cache_release(pages[do_pages]);
2028                                 } while (do_pages);
2029                                 /*
2030                                  * The write preparation may have instantiated
2031                                  * allocated space outside i_size.  Trim this
2032                                  * off again.  We can ignore any errors in this
2033                                  * case as we will just be waisting a bit of
2034                                  * allocated space, which is not a disaster.
2035                                  */
2036                                 i_size = i_size_read(vi);
2037                                 if (pos + bytes > i_size)
2038                                         vmtruncate(vi, i_size);
2039                                 break;
2040                         }
2041                 }
2042                 u = (pos >> PAGE_CACHE_SHIFT) - pages[0]->index;
2043                 if (likely(nr_segs == 1)) {
2044                         copied = ntfs_copy_from_user(pages + u, do_pages - u,
2045                                         ofs, buf, bytes);
2046                         buf += copied;
2047                 } else
2048                         copied = ntfs_copy_from_user_iovec(pages + u,
2049                                         do_pages - u, ofs, &iov, &iov_ofs,
2050                                         bytes);
2051                 ntfs_flush_dcache_pages(pages + u, do_pages - u);
2052                 status = ntfs_commit_pages_after_write(pages, do_pages, pos,
2053                                 bytes);
2054                 if (likely(!status)) {
2055                         written += copied;
2056                         count -= copied;
2057                         pos += copied;
2058                         if (unlikely(copied != bytes))
2059                                 status = -EFAULT;
2060                 }
2061                 do {
2062                         unlock_page(pages[--do_pages]);
2063                         mark_page_accessed(pages[do_pages]);
2064                         page_cache_release(pages[do_pages]);
2065                 } while (do_pages);
2066                 if (unlikely(status))
2067                         break;
2068                 balance_dirty_pages_ratelimited(mapping);
2069                 cond_resched();
2070         } while (count);
2071 err_out:
2072         *ppos = pos;
2073         if (cached_page)
2074                 page_cache_release(cached_page);
2075         pagevec_lru_add_file(&lru_pvec);
2076         ntfs_debug("Done.  Returning %s (written 0x%lx, status %li).",
2077                         written ? "written" : "status", (unsigned long)written,
2078                         (long)status);
2079         return written ? written : status;
2080 }
2081
2082 /**
2083  * ntfs_file_aio_write_nolock -
2084  */
2085 static ssize_t ntfs_file_aio_write_nolock(struct kiocb *iocb,
2086                 const struct iovec *iov, unsigned long nr_segs, loff_t *ppos)
2087 {
2088         struct file *file = iocb->ki_filp;
2089         struct address_space *mapping = file->f_mapping;
2090         struct inode *inode = mapping->host;
2091         loff_t pos;
2092         size_t count;           /* after file limit checks */
2093         ssize_t written, err;
2094
2095         count = 0;
2096         err = generic_segment_checks(iov, &nr_segs, &count, VERIFY_READ);
2097         if (err)
2098                 return err;
2099         pos = *ppos;
2100         vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2101         /* We can write back this queue in page reclaim. */
2102         current->backing_dev_info = mapping->backing_dev_info;
2103         written = 0;
2104         err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2105         if (err)
2106                 goto out;
2107         if (!count)
2108                 goto out;
2109         err = file_remove_suid(file);
2110         if (err)
2111                 goto out;
2112         file_update_time(file);
2113         written = ntfs_file_buffered_write(iocb, iov, nr_segs, pos, ppos,
2114                         count);
2115 out:
2116         current->backing_dev_info = NULL;
2117         return written ? written : err;
2118 }
2119
2120 /**
2121  * ntfs_file_aio_write -
2122  */
2123 static ssize_t ntfs_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2124                 unsigned long nr_segs, loff_t pos)
2125 {
2126         struct file *file = iocb->ki_filp;
2127         struct address_space *mapping = file->f_mapping;
2128         struct inode *inode = mapping->host;
2129         ssize_t ret;
2130
2131         BUG_ON(iocb->ki_pos != pos);
2132
2133         mutex_lock(&inode->i_mutex);
2134         ret = ntfs_file_aio_write_nolock(iocb, iov, nr_segs, &iocb->ki_pos);
2135         mutex_unlock(&inode->i_mutex);
2136         if (ret > 0) {
2137                 int err = generic_write_sync(file, pos, ret);
2138                 if (err < 0)
2139                         ret = err;
2140         }
2141         return ret;
2142 }
2143
2144 /**
2145  * ntfs_file_fsync - sync a file to disk
2146  * @filp:       file to be synced
2147  * @dentry:     dentry describing the file to sync
2148  * @datasync:   if non-zero only flush user data and not metadata
2149  *
2150  * Data integrity sync of a file to disk.  Used for fsync, fdatasync, and msync
2151  * system calls.  This function is inspired by fs/buffer.c::file_fsync().
2152  *
2153  * If @datasync is false, write the mft record and all associated extent mft
2154  * records as well as the $DATA attribute and then sync the block device.
2155  *
2156  * If @datasync is true and the attribute is non-resident, we skip the writing
2157  * of the mft record and all associated extent mft records (this might still
2158  * happen due to the write_inode_now() call).
2159  *
2160  * Also, if @datasync is true, we do not wait on the inode to be written out
2161  * but we always wait on the page cache pages to be written out.
2162  *
2163  * Note: In the past @filp could be NULL so we ignore it as we don't need it
2164  * anyway.
2165  *
2166  * Locking: Caller must hold i_mutex on the inode.
2167  *
2168  * TODO: We should probably also write all attribute/index inodes associated
2169  * with this inode but since we have no simple way of getting to them we ignore
2170  * this problem for now.
2171  */
2172 static int ntfs_file_fsync(struct file *filp, struct dentry *dentry,
2173                 int datasync)
2174 {
2175         struct inode *vi = dentry->d_inode;
2176         int err, ret = 0;
2177
2178         ntfs_debug("Entering for inode 0x%lx.", vi->i_ino);
2179         BUG_ON(S_ISDIR(vi->i_mode));
2180         if (!datasync || !NInoNonResident(NTFS_I(vi)))
2181                 ret = __ntfs_write_inode(vi, 1);
2182         write_inode_now(vi, !datasync);
2183         /*
2184          * NOTE: If we were to use mapping->private_list (see ext2 and
2185          * fs/buffer.c) for dirty blocks then we could optimize the below to be
2186          * sync_mapping_buffers(vi->i_mapping).
2187          */
2188         err = sync_blockdev(vi->i_sb->s_bdev);
2189         if (unlikely(err && !ret))
2190                 ret = err;
2191         if (likely(!ret))
2192                 ntfs_debug("Done.");
2193         else
2194                 ntfs_warning(vi->i_sb, "Failed to f%ssync inode 0x%lx.  Error "
2195                                 "%u.", datasync ? "data" : "", vi->i_ino, -ret);
2196         return ret;
2197 }
2198
2199 #endif /* NTFS_RW */
2200
2201 const struct file_operations ntfs_file_ops = {
2202         .llseek         = generic_file_llseek,   /* Seek inside file. */
2203         .read           = do_sync_read,          /* Read from file. */
2204         .aio_read       = generic_file_aio_read, /* Async read from file. */
2205 #ifdef NTFS_RW
2206         .write          = do_sync_write,         /* Write to file. */
2207         .aio_write      = ntfs_file_aio_write,   /* Async write to file. */
2208         /*.release      = ,*/                    /* Last file is closed.  See
2209                                                     fs/ext2/file.c::
2210                                                     ext2_release_file() for
2211                                                     how to use this to discard
2212                                                     preallocated space for
2213                                                     write opened files. */
2214         .fsync          = ntfs_file_fsync,       /* Sync a file to disk. */
2215         /*.aio_fsync    = ,*/                    /* Sync all outstanding async
2216                                                     i/o operations on a
2217                                                     kiocb. */
2218 #endif /* NTFS_RW */
2219         /*.ioctl        = ,*/                    /* Perform function on the
2220                                                     mounted filesystem. */
2221         .mmap           = generic_file_mmap,     /* Mmap file. */
2222         .open           = ntfs_file_open,        /* Open file. */
2223         .splice_read    = generic_file_splice_read /* Zero-copy data send with
2224                                                     the data source being on
2225                                                     the ntfs partition.  We do
2226                                                     not need to care about the
2227                                                     data destination. */
2228         /*.sendpage     = ,*/                    /* Zero-copy data send with
2229                                                     the data destination being
2230                                                     on the ntfs partition.  We
2231                                                     do not need to care about
2232                                                     the data source. */
2233 };
2234
2235 const struct inode_operations ntfs_file_inode_ops = {
2236 #ifdef NTFS_RW
2237         .truncate       = ntfs_truncate_vfs,
2238         .setattr        = ntfs_setattr,
2239 #endif /* NTFS_RW */
2240 };
2241
2242 const struct file_operations ntfs_empty_file_ops = {};
2243
2244 const struct inode_operations ntfs_empty_inode_ops = {};