tunnels: fix netns vs proto registration ordering
[safe/jmp/linux-2.6] / fs / nilfs2 / segment.c
1 /*
2  * segment.c - NILFS segment constructor.
3  *
4  * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
19  *
20  * Written by Ryusuke Konishi <ryusuke@osrg.net>
21  *
22  */
23
24 #include <linux/pagemap.h>
25 #include <linux/buffer_head.h>
26 #include <linux/writeback.h>
27 #include <linux/bio.h>
28 #include <linux/completion.h>
29 #include <linux/blkdev.h>
30 #include <linux/backing-dev.h>
31 #include <linux/freezer.h>
32 #include <linux/kthread.h>
33 #include <linux/crc32.h>
34 #include <linux/pagevec.h>
35 #include "nilfs.h"
36 #include "btnode.h"
37 #include "page.h"
38 #include "segment.h"
39 #include "sufile.h"
40 #include "cpfile.h"
41 #include "ifile.h"
42 #include "segbuf.h"
43
44
45 /*
46  * Segment constructor
47  */
48 #define SC_N_INODEVEC   16   /* Size of locally allocated inode vector */
49
50 #define SC_MAX_SEGDELTA 64   /* Upper limit of the number of segments
51                                 appended in collection retry loop */
52
53 /* Construction mode */
54 enum {
55         SC_LSEG_SR = 1, /* Make a logical segment having a super root */
56         SC_LSEG_DSYNC,  /* Flush data blocks of a given file and make
57                            a logical segment without a super root */
58         SC_FLUSH_FILE,  /* Flush data files, leads to segment writes without
59                            creating a checkpoint */
60         SC_FLUSH_DAT,   /* Flush DAT file. This also creates segments without
61                            a checkpoint */
62 };
63
64 /* Stage numbers of dirty block collection */
65 enum {
66         NILFS_ST_INIT = 0,
67         NILFS_ST_GC,            /* Collecting dirty blocks for GC */
68         NILFS_ST_FILE,
69         NILFS_ST_IFILE,
70         NILFS_ST_CPFILE,
71         NILFS_ST_SUFILE,
72         NILFS_ST_DAT,
73         NILFS_ST_SR,            /* Super root */
74         NILFS_ST_DSYNC,         /* Data sync blocks */
75         NILFS_ST_DONE,
76 };
77
78 /* State flags of collection */
79 #define NILFS_CF_NODE           0x0001  /* Collecting node blocks */
80 #define NILFS_CF_IFILE_STARTED  0x0002  /* IFILE stage has started */
81 #define NILFS_CF_SUFREED        0x0004  /* segment usages has been freed */
82 #define NILFS_CF_HISTORY_MASK   (NILFS_CF_IFILE_STARTED | NILFS_CF_SUFREED)
83
84 /* Operations depending on the construction mode and file type */
85 struct nilfs_sc_operations {
86         int (*collect_data)(struct nilfs_sc_info *, struct buffer_head *,
87                             struct inode *);
88         int (*collect_node)(struct nilfs_sc_info *, struct buffer_head *,
89                             struct inode *);
90         int (*collect_bmap)(struct nilfs_sc_info *, struct buffer_head *,
91                             struct inode *);
92         void (*write_data_binfo)(struct nilfs_sc_info *,
93                                  struct nilfs_segsum_pointer *,
94                                  union nilfs_binfo *);
95         void (*write_node_binfo)(struct nilfs_sc_info *,
96                                  struct nilfs_segsum_pointer *,
97                                  union nilfs_binfo *);
98 };
99
100 /*
101  * Other definitions
102  */
103 static void nilfs_segctor_start_timer(struct nilfs_sc_info *);
104 static void nilfs_segctor_do_flush(struct nilfs_sc_info *, int);
105 static void nilfs_segctor_do_immediate_flush(struct nilfs_sc_info *);
106 static void nilfs_dispose_list(struct nilfs_sb_info *, struct list_head *,
107                                int);
108
109 #define nilfs_cnt32_gt(a, b)   \
110         (typecheck(__u32, a) && typecheck(__u32, b) && \
111          ((__s32)(b) - (__s32)(a) < 0))
112 #define nilfs_cnt32_ge(a, b)   \
113         (typecheck(__u32, a) && typecheck(__u32, b) && \
114          ((__s32)(a) - (__s32)(b) >= 0))
115 #define nilfs_cnt32_lt(a, b)  nilfs_cnt32_gt(b, a)
116 #define nilfs_cnt32_le(a, b)  nilfs_cnt32_ge(b, a)
117
118 /*
119  * Transaction
120  */
121 static struct kmem_cache *nilfs_transaction_cachep;
122
123 /**
124  * nilfs_init_transaction_cache - create a cache for nilfs_transaction_info
125  *
126  * nilfs_init_transaction_cache() creates a slab cache for the struct
127  * nilfs_transaction_info.
128  *
129  * Return Value: On success, it returns 0. On error, one of the following
130  * negative error code is returned.
131  *
132  * %-ENOMEM - Insufficient memory available.
133  */
134 int nilfs_init_transaction_cache(void)
135 {
136         nilfs_transaction_cachep =
137                 kmem_cache_create("nilfs2_transaction_cache",
138                                   sizeof(struct nilfs_transaction_info),
139                                   0, SLAB_RECLAIM_ACCOUNT, NULL);
140         return (nilfs_transaction_cachep == NULL) ? -ENOMEM : 0;
141 }
142
143 /**
144  * nilfs_detroy_transaction_cache - destroy the cache for transaction info
145  *
146  * nilfs_destroy_transaction_cache() frees the slab cache for the struct
147  * nilfs_transaction_info.
148  */
149 void nilfs_destroy_transaction_cache(void)
150 {
151         kmem_cache_destroy(nilfs_transaction_cachep);
152 }
153
154 static int nilfs_prepare_segment_lock(struct nilfs_transaction_info *ti)
155 {
156         struct nilfs_transaction_info *cur_ti = current->journal_info;
157         void *save = NULL;
158
159         if (cur_ti) {
160                 if (cur_ti->ti_magic == NILFS_TI_MAGIC)
161                         return ++cur_ti->ti_count;
162                 else {
163                         /*
164                          * If journal_info field is occupied by other FS,
165                          * it is saved and will be restored on
166                          * nilfs_transaction_commit().
167                          */
168                         printk(KERN_WARNING
169                                "NILFS warning: journal info from a different "
170                                "FS\n");
171                         save = current->journal_info;
172                 }
173         }
174         if (!ti) {
175                 ti = kmem_cache_alloc(nilfs_transaction_cachep, GFP_NOFS);
176                 if (!ti)
177                         return -ENOMEM;
178                 ti->ti_flags = NILFS_TI_DYNAMIC_ALLOC;
179         } else {
180                 ti->ti_flags = 0;
181         }
182         ti->ti_count = 0;
183         ti->ti_save = save;
184         ti->ti_magic = NILFS_TI_MAGIC;
185         current->journal_info = ti;
186         return 0;
187 }
188
189 /**
190  * nilfs_transaction_begin - start indivisible file operations.
191  * @sb: super block
192  * @ti: nilfs_transaction_info
193  * @vacancy_check: flags for vacancy rate checks
194  *
195  * nilfs_transaction_begin() acquires a reader/writer semaphore, called
196  * the segment semaphore, to make a segment construction and write tasks
197  * exclusive.  The function is used with nilfs_transaction_commit() in pairs.
198  * The region enclosed by these two functions can be nested.  To avoid a
199  * deadlock, the semaphore is only acquired or released in the outermost call.
200  *
201  * This function allocates a nilfs_transaction_info struct to keep context
202  * information on it.  It is initialized and hooked onto the current task in
203  * the outermost call.  If a pre-allocated struct is given to @ti, it is used
204  * instead; othewise a new struct is assigned from a slab.
205  *
206  * When @vacancy_check flag is set, this function will check the amount of
207  * free space, and will wait for the GC to reclaim disk space if low capacity.
208  *
209  * Return Value: On success, 0 is returned. On error, one of the following
210  * negative error code is returned.
211  *
212  * %-ENOMEM - Insufficient memory available.
213  *
214  * %-ENOSPC - No space left on device
215  */
216 int nilfs_transaction_begin(struct super_block *sb,
217                             struct nilfs_transaction_info *ti,
218                             int vacancy_check)
219 {
220         struct nilfs_sb_info *sbi;
221         struct the_nilfs *nilfs;
222         int ret = nilfs_prepare_segment_lock(ti);
223
224         if (unlikely(ret < 0))
225                 return ret;
226         if (ret > 0)
227                 return 0;
228
229         sbi = NILFS_SB(sb);
230         nilfs = sbi->s_nilfs;
231         down_read(&nilfs->ns_segctor_sem);
232         if (vacancy_check && nilfs_near_disk_full(nilfs)) {
233                 up_read(&nilfs->ns_segctor_sem);
234                 ret = -ENOSPC;
235                 goto failed;
236         }
237         return 0;
238
239  failed:
240         ti = current->journal_info;
241         current->journal_info = ti->ti_save;
242         if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC)
243                 kmem_cache_free(nilfs_transaction_cachep, ti);
244         return ret;
245 }
246
247 /**
248  * nilfs_transaction_commit - commit indivisible file operations.
249  * @sb: super block
250  *
251  * nilfs_transaction_commit() releases the read semaphore which is
252  * acquired by nilfs_transaction_begin(). This is only performed
253  * in outermost call of this function.  If a commit flag is set,
254  * nilfs_transaction_commit() sets a timer to start the segment
255  * constructor.  If a sync flag is set, it starts construction
256  * directly.
257  */
258 int nilfs_transaction_commit(struct super_block *sb)
259 {
260         struct nilfs_transaction_info *ti = current->journal_info;
261         struct nilfs_sb_info *sbi;
262         struct nilfs_sc_info *sci;
263         int err = 0;
264
265         BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC);
266         ti->ti_flags |= NILFS_TI_COMMIT;
267         if (ti->ti_count > 0) {
268                 ti->ti_count--;
269                 return 0;
270         }
271         sbi = NILFS_SB(sb);
272         sci = NILFS_SC(sbi);
273         if (sci != NULL) {
274                 if (ti->ti_flags & NILFS_TI_COMMIT)
275                         nilfs_segctor_start_timer(sci);
276                 if (atomic_read(&sbi->s_nilfs->ns_ndirtyblks) >
277                     sci->sc_watermark)
278                         nilfs_segctor_do_flush(sci, 0);
279         }
280         up_read(&sbi->s_nilfs->ns_segctor_sem);
281         current->journal_info = ti->ti_save;
282
283         if (ti->ti_flags & NILFS_TI_SYNC)
284                 err = nilfs_construct_segment(sb);
285         if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC)
286                 kmem_cache_free(nilfs_transaction_cachep, ti);
287         return err;
288 }
289
290 void nilfs_transaction_abort(struct super_block *sb)
291 {
292         struct nilfs_transaction_info *ti = current->journal_info;
293
294         BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC);
295         if (ti->ti_count > 0) {
296                 ti->ti_count--;
297                 return;
298         }
299         up_read(&NILFS_SB(sb)->s_nilfs->ns_segctor_sem);
300
301         current->journal_info = ti->ti_save;
302         if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC)
303                 kmem_cache_free(nilfs_transaction_cachep, ti);
304 }
305
306 void nilfs_relax_pressure_in_lock(struct super_block *sb)
307 {
308         struct nilfs_sb_info *sbi = NILFS_SB(sb);
309         struct nilfs_sc_info *sci = NILFS_SC(sbi);
310         struct the_nilfs *nilfs = sbi->s_nilfs;
311
312         if (!sci || !sci->sc_flush_request)
313                 return;
314
315         set_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags);
316         up_read(&nilfs->ns_segctor_sem);
317
318         down_write(&nilfs->ns_segctor_sem);
319         if (sci->sc_flush_request &&
320             test_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags)) {
321                 struct nilfs_transaction_info *ti = current->journal_info;
322
323                 ti->ti_flags |= NILFS_TI_WRITER;
324                 nilfs_segctor_do_immediate_flush(sci);
325                 ti->ti_flags &= ~NILFS_TI_WRITER;
326         }
327         downgrade_write(&nilfs->ns_segctor_sem);
328 }
329
330 static void nilfs_transaction_lock(struct nilfs_sb_info *sbi,
331                                    struct nilfs_transaction_info *ti,
332                                    int gcflag)
333 {
334         struct nilfs_transaction_info *cur_ti = current->journal_info;
335
336         WARN_ON(cur_ti);
337         ti->ti_flags = NILFS_TI_WRITER;
338         ti->ti_count = 0;
339         ti->ti_save = cur_ti;
340         ti->ti_magic = NILFS_TI_MAGIC;
341         INIT_LIST_HEAD(&ti->ti_garbage);
342         current->journal_info = ti;
343
344         for (;;) {
345                 down_write(&sbi->s_nilfs->ns_segctor_sem);
346                 if (!test_bit(NILFS_SC_PRIOR_FLUSH, &NILFS_SC(sbi)->sc_flags))
347                         break;
348
349                 nilfs_segctor_do_immediate_flush(NILFS_SC(sbi));
350
351                 up_write(&sbi->s_nilfs->ns_segctor_sem);
352                 yield();
353         }
354         if (gcflag)
355                 ti->ti_flags |= NILFS_TI_GC;
356 }
357
358 static void nilfs_transaction_unlock(struct nilfs_sb_info *sbi)
359 {
360         struct nilfs_transaction_info *ti = current->journal_info;
361
362         BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC);
363         BUG_ON(ti->ti_count > 0);
364
365         up_write(&sbi->s_nilfs->ns_segctor_sem);
366         current->journal_info = ti->ti_save;
367         if (!list_empty(&ti->ti_garbage))
368                 nilfs_dispose_list(sbi, &ti->ti_garbage, 0);
369 }
370
371 static void *nilfs_segctor_map_segsum_entry(struct nilfs_sc_info *sci,
372                                             struct nilfs_segsum_pointer *ssp,
373                                             unsigned bytes)
374 {
375         struct nilfs_segment_buffer *segbuf = sci->sc_curseg;
376         unsigned blocksize = sci->sc_super->s_blocksize;
377         void *p;
378
379         if (unlikely(ssp->offset + bytes > blocksize)) {
380                 ssp->offset = 0;
381                 BUG_ON(NILFS_SEGBUF_BH_IS_LAST(ssp->bh,
382                                                &segbuf->sb_segsum_buffers));
383                 ssp->bh = NILFS_SEGBUF_NEXT_BH(ssp->bh);
384         }
385         p = ssp->bh->b_data + ssp->offset;
386         ssp->offset += bytes;
387         return p;
388 }
389
390 /**
391  * nilfs_segctor_reset_segment_buffer - reset the current segment buffer
392  * @sci: nilfs_sc_info
393  */
394 static int nilfs_segctor_reset_segment_buffer(struct nilfs_sc_info *sci)
395 {
396         struct nilfs_segment_buffer *segbuf = sci->sc_curseg;
397         struct buffer_head *sumbh;
398         unsigned sumbytes;
399         unsigned flags = 0;
400         int err;
401
402         if (nilfs_doing_gc())
403                 flags = NILFS_SS_GC;
404         err = nilfs_segbuf_reset(segbuf, flags, sci->sc_seg_ctime);
405         if (unlikely(err))
406                 return err;
407
408         sumbh = NILFS_SEGBUF_FIRST_BH(&segbuf->sb_segsum_buffers);
409         sumbytes = segbuf->sb_sum.sumbytes;
410         sci->sc_finfo_ptr.bh = sumbh;  sci->sc_finfo_ptr.offset = sumbytes;
411         sci->sc_binfo_ptr.bh = sumbh;  sci->sc_binfo_ptr.offset = sumbytes;
412         sci->sc_blk_cnt = sci->sc_datablk_cnt = 0;
413         return 0;
414 }
415
416 static int nilfs_segctor_feed_segment(struct nilfs_sc_info *sci)
417 {
418         sci->sc_nblk_this_inc += sci->sc_curseg->sb_sum.nblocks;
419         if (NILFS_SEGBUF_IS_LAST(sci->sc_curseg, &sci->sc_segbufs))
420                 return -E2BIG; /* The current segment is filled up
421                                   (internal code) */
422         sci->sc_curseg = NILFS_NEXT_SEGBUF(sci->sc_curseg);
423         return nilfs_segctor_reset_segment_buffer(sci);
424 }
425
426 static int nilfs_segctor_add_super_root(struct nilfs_sc_info *sci)
427 {
428         struct nilfs_segment_buffer *segbuf = sci->sc_curseg;
429         int err;
430
431         if (segbuf->sb_sum.nblocks >= segbuf->sb_rest_blocks) {
432                 err = nilfs_segctor_feed_segment(sci);
433                 if (err)
434                         return err;
435                 segbuf = sci->sc_curseg;
436         }
437         err = nilfs_segbuf_extend_payload(segbuf, &sci->sc_super_root);
438         if (likely(!err))
439                 segbuf->sb_sum.flags |= NILFS_SS_SR;
440         return err;
441 }
442
443 /*
444  * Functions for making segment summary and payloads
445  */
446 static int nilfs_segctor_segsum_block_required(
447         struct nilfs_sc_info *sci, const struct nilfs_segsum_pointer *ssp,
448         unsigned binfo_size)
449 {
450         unsigned blocksize = sci->sc_super->s_blocksize;
451         /* Size of finfo and binfo is enough small against blocksize */
452
453         return ssp->offset + binfo_size +
454                 (!sci->sc_blk_cnt ? sizeof(struct nilfs_finfo) : 0) >
455                 blocksize;
456 }
457
458 static void nilfs_segctor_begin_finfo(struct nilfs_sc_info *sci,
459                                       struct inode *inode)
460 {
461         sci->sc_curseg->sb_sum.nfinfo++;
462         sci->sc_binfo_ptr = sci->sc_finfo_ptr;
463         nilfs_segctor_map_segsum_entry(
464                 sci, &sci->sc_binfo_ptr, sizeof(struct nilfs_finfo));
465
466         if (inode->i_sb && !test_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags))
467                 set_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags);
468         /* skip finfo */
469 }
470
471 static void nilfs_segctor_end_finfo(struct nilfs_sc_info *sci,
472                                     struct inode *inode)
473 {
474         struct nilfs_finfo *finfo;
475         struct nilfs_inode_info *ii;
476         struct nilfs_segment_buffer *segbuf;
477
478         if (sci->sc_blk_cnt == 0)
479                 return;
480
481         ii = NILFS_I(inode);
482         finfo = nilfs_segctor_map_segsum_entry(sci, &sci->sc_finfo_ptr,
483                                                  sizeof(*finfo));
484         finfo->fi_ino = cpu_to_le64(inode->i_ino);
485         finfo->fi_nblocks = cpu_to_le32(sci->sc_blk_cnt);
486         finfo->fi_ndatablk = cpu_to_le32(sci->sc_datablk_cnt);
487         finfo->fi_cno = cpu_to_le64(ii->i_cno);
488
489         segbuf = sci->sc_curseg;
490         segbuf->sb_sum.sumbytes = sci->sc_binfo_ptr.offset +
491                 sci->sc_super->s_blocksize * (segbuf->sb_sum.nsumblk - 1);
492         sci->sc_finfo_ptr = sci->sc_binfo_ptr;
493         sci->sc_blk_cnt = sci->sc_datablk_cnt = 0;
494 }
495
496 static int nilfs_segctor_add_file_block(struct nilfs_sc_info *sci,
497                                         struct buffer_head *bh,
498                                         struct inode *inode,
499                                         unsigned binfo_size)
500 {
501         struct nilfs_segment_buffer *segbuf;
502         int required, err = 0;
503
504  retry:
505         segbuf = sci->sc_curseg;
506         required = nilfs_segctor_segsum_block_required(
507                 sci, &sci->sc_binfo_ptr, binfo_size);
508         if (segbuf->sb_sum.nblocks + required + 1 > segbuf->sb_rest_blocks) {
509                 nilfs_segctor_end_finfo(sci, inode);
510                 err = nilfs_segctor_feed_segment(sci);
511                 if (err)
512                         return err;
513                 goto retry;
514         }
515         if (unlikely(required)) {
516                 err = nilfs_segbuf_extend_segsum(segbuf);
517                 if (unlikely(err))
518                         goto failed;
519         }
520         if (sci->sc_blk_cnt == 0)
521                 nilfs_segctor_begin_finfo(sci, inode);
522
523         nilfs_segctor_map_segsum_entry(sci, &sci->sc_binfo_ptr, binfo_size);
524         /* Substitution to vblocknr is delayed until update_blocknr() */
525         nilfs_segbuf_add_file_buffer(segbuf, bh);
526         sci->sc_blk_cnt++;
527  failed:
528         return err;
529 }
530
531 static int nilfs_handle_bmap_error(int err, const char *fname,
532                                    struct inode *inode, struct super_block *sb)
533 {
534         if (err == -EINVAL) {
535                 nilfs_error(sb, fname, "broken bmap (inode=%lu)\n",
536                             inode->i_ino);
537                 err = -EIO;
538         }
539         return err;
540 }
541
542 /*
543  * Callback functions that enumerate, mark, and collect dirty blocks
544  */
545 static int nilfs_collect_file_data(struct nilfs_sc_info *sci,
546                                    struct buffer_head *bh, struct inode *inode)
547 {
548         int err;
549
550         err = nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh);
551         if (unlikely(err < 0))
552                 return nilfs_handle_bmap_error(err, __func__, inode,
553                                                sci->sc_super);
554
555         err = nilfs_segctor_add_file_block(sci, bh, inode,
556                                            sizeof(struct nilfs_binfo_v));
557         if (!err)
558                 sci->sc_datablk_cnt++;
559         return err;
560 }
561
562 static int nilfs_collect_file_node(struct nilfs_sc_info *sci,
563                                    struct buffer_head *bh,
564                                    struct inode *inode)
565 {
566         int err;
567
568         err = nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh);
569         if (unlikely(err < 0))
570                 return nilfs_handle_bmap_error(err, __func__, inode,
571                                                sci->sc_super);
572         return 0;
573 }
574
575 static int nilfs_collect_file_bmap(struct nilfs_sc_info *sci,
576                                    struct buffer_head *bh,
577                                    struct inode *inode)
578 {
579         WARN_ON(!buffer_dirty(bh));
580         return nilfs_segctor_add_file_block(sci, bh, inode, sizeof(__le64));
581 }
582
583 static void nilfs_write_file_data_binfo(struct nilfs_sc_info *sci,
584                                         struct nilfs_segsum_pointer *ssp,
585                                         union nilfs_binfo *binfo)
586 {
587         struct nilfs_binfo_v *binfo_v = nilfs_segctor_map_segsum_entry(
588                 sci, ssp, sizeof(*binfo_v));
589         *binfo_v = binfo->bi_v;
590 }
591
592 static void nilfs_write_file_node_binfo(struct nilfs_sc_info *sci,
593                                         struct nilfs_segsum_pointer *ssp,
594                                         union nilfs_binfo *binfo)
595 {
596         __le64 *vblocknr = nilfs_segctor_map_segsum_entry(
597                 sci, ssp, sizeof(*vblocknr));
598         *vblocknr = binfo->bi_v.bi_vblocknr;
599 }
600
601 struct nilfs_sc_operations nilfs_sc_file_ops = {
602         .collect_data = nilfs_collect_file_data,
603         .collect_node = nilfs_collect_file_node,
604         .collect_bmap = nilfs_collect_file_bmap,
605         .write_data_binfo = nilfs_write_file_data_binfo,
606         .write_node_binfo = nilfs_write_file_node_binfo,
607 };
608
609 static int nilfs_collect_dat_data(struct nilfs_sc_info *sci,
610                                   struct buffer_head *bh, struct inode *inode)
611 {
612         int err;
613
614         err = nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh);
615         if (unlikely(err < 0))
616                 return nilfs_handle_bmap_error(err, __func__, inode,
617                                                sci->sc_super);
618
619         err = nilfs_segctor_add_file_block(sci, bh, inode, sizeof(__le64));
620         if (!err)
621                 sci->sc_datablk_cnt++;
622         return err;
623 }
624
625 static int nilfs_collect_dat_bmap(struct nilfs_sc_info *sci,
626                                   struct buffer_head *bh, struct inode *inode)
627 {
628         WARN_ON(!buffer_dirty(bh));
629         return nilfs_segctor_add_file_block(sci, bh, inode,
630                                             sizeof(struct nilfs_binfo_dat));
631 }
632
633 static void nilfs_write_dat_data_binfo(struct nilfs_sc_info *sci,
634                                        struct nilfs_segsum_pointer *ssp,
635                                        union nilfs_binfo *binfo)
636 {
637         __le64 *blkoff = nilfs_segctor_map_segsum_entry(sci, ssp,
638                                                           sizeof(*blkoff));
639         *blkoff = binfo->bi_dat.bi_blkoff;
640 }
641
642 static void nilfs_write_dat_node_binfo(struct nilfs_sc_info *sci,
643                                        struct nilfs_segsum_pointer *ssp,
644                                        union nilfs_binfo *binfo)
645 {
646         struct nilfs_binfo_dat *binfo_dat =
647                 nilfs_segctor_map_segsum_entry(sci, ssp, sizeof(*binfo_dat));
648         *binfo_dat = binfo->bi_dat;
649 }
650
651 struct nilfs_sc_operations nilfs_sc_dat_ops = {
652         .collect_data = nilfs_collect_dat_data,
653         .collect_node = nilfs_collect_file_node,
654         .collect_bmap = nilfs_collect_dat_bmap,
655         .write_data_binfo = nilfs_write_dat_data_binfo,
656         .write_node_binfo = nilfs_write_dat_node_binfo,
657 };
658
659 struct nilfs_sc_operations nilfs_sc_dsync_ops = {
660         .collect_data = nilfs_collect_file_data,
661         .collect_node = NULL,
662         .collect_bmap = NULL,
663         .write_data_binfo = nilfs_write_file_data_binfo,
664         .write_node_binfo = NULL,
665 };
666
667 static size_t nilfs_lookup_dirty_data_buffers(struct inode *inode,
668                                               struct list_head *listp,
669                                               size_t nlimit,
670                                               loff_t start, loff_t end)
671 {
672         struct address_space *mapping = inode->i_mapping;
673         struct pagevec pvec;
674         pgoff_t index = 0, last = ULONG_MAX;
675         size_t ndirties = 0;
676         int i;
677
678         if (unlikely(start != 0 || end != LLONG_MAX)) {
679                 /*
680                  * A valid range is given for sync-ing data pages. The
681                  * range is rounded to per-page; extra dirty buffers
682                  * may be included if blocksize < pagesize.
683                  */
684                 index = start >> PAGE_SHIFT;
685                 last = end >> PAGE_SHIFT;
686         }
687         pagevec_init(&pvec, 0);
688  repeat:
689         if (unlikely(index > last) ||
690             !pagevec_lookup_tag(&pvec, mapping, &index, PAGECACHE_TAG_DIRTY,
691                                 min_t(pgoff_t, last - index,
692                                       PAGEVEC_SIZE - 1) + 1))
693                 return ndirties;
694
695         for (i = 0; i < pagevec_count(&pvec); i++) {
696                 struct buffer_head *bh, *head;
697                 struct page *page = pvec.pages[i];
698
699                 if (unlikely(page->index > last))
700                         break;
701
702                 if (mapping->host) {
703                         lock_page(page);
704                         if (!page_has_buffers(page))
705                                 create_empty_buffers(page,
706                                                      1 << inode->i_blkbits, 0);
707                         unlock_page(page);
708                 }
709
710                 bh = head = page_buffers(page);
711                 do {
712                         if (!buffer_dirty(bh))
713                                 continue;
714                         get_bh(bh);
715                         list_add_tail(&bh->b_assoc_buffers, listp);
716                         ndirties++;
717                         if (unlikely(ndirties >= nlimit)) {
718                                 pagevec_release(&pvec);
719                                 cond_resched();
720                                 return ndirties;
721                         }
722                 } while (bh = bh->b_this_page, bh != head);
723         }
724         pagevec_release(&pvec);
725         cond_resched();
726         goto repeat;
727 }
728
729 static void nilfs_lookup_dirty_node_buffers(struct inode *inode,
730                                             struct list_head *listp)
731 {
732         struct nilfs_inode_info *ii = NILFS_I(inode);
733         struct address_space *mapping = &ii->i_btnode_cache;
734         struct pagevec pvec;
735         struct buffer_head *bh, *head;
736         unsigned int i;
737         pgoff_t index = 0;
738
739         pagevec_init(&pvec, 0);
740
741         while (pagevec_lookup_tag(&pvec, mapping, &index, PAGECACHE_TAG_DIRTY,
742                                   PAGEVEC_SIZE)) {
743                 for (i = 0; i < pagevec_count(&pvec); i++) {
744                         bh = head = page_buffers(pvec.pages[i]);
745                         do {
746                                 if (buffer_dirty(bh)) {
747                                         get_bh(bh);
748                                         list_add_tail(&bh->b_assoc_buffers,
749                                                       listp);
750                                 }
751                                 bh = bh->b_this_page;
752                         } while (bh != head);
753                 }
754                 pagevec_release(&pvec);
755                 cond_resched();
756         }
757 }
758
759 static void nilfs_dispose_list(struct nilfs_sb_info *sbi,
760                                struct list_head *head, int force)
761 {
762         struct nilfs_inode_info *ii, *n;
763         struct nilfs_inode_info *ivec[SC_N_INODEVEC], **pii;
764         unsigned nv = 0;
765
766         while (!list_empty(head)) {
767                 spin_lock(&sbi->s_inode_lock);
768                 list_for_each_entry_safe(ii, n, head, i_dirty) {
769                         list_del_init(&ii->i_dirty);
770                         if (force) {
771                                 if (unlikely(ii->i_bh)) {
772                                         brelse(ii->i_bh);
773                                         ii->i_bh = NULL;
774                                 }
775                         } else if (test_bit(NILFS_I_DIRTY, &ii->i_state)) {
776                                 set_bit(NILFS_I_QUEUED, &ii->i_state);
777                                 list_add_tail(&ii->i_dirty,
778                                               &sbi->s_dirty_files);
779                                 continue;
780                         }
781                         ivec[nv++] = ii;
782                         if (nv == SC_N_INODEVEC)
783                                 break;
784                 }
785                 spin_unlock(&sbi->s_inode_lock);
786
787                 for (pii = ivec; nv > 0; pii++, nv--)
788                         iput(&(*pii)->vfs_inode);
789         }
790 }
791
792 static int nilfs_test_metadata_dirty(struct nilfs_sb_info *sbi)
793 {
794         struct the_nilfs *nilfs = sbi->s_nilfs;
795         int ret = 0;
796
797         if (nilfs_mdt_fetch_dirty(sbi->s_ifile))
798                 ret++;
799         if (nilfs_mdt_fetch_dirty(nilfs->ns_cpfile))
800                 ret++;
801         if (nilfs_mdt_fetch_dirty(nilfs->ns_sufile))
802                 ret++;
803         if (ret || nilfs_doing_gc())
804                 if (nilfs_mdt_fetch_dirty(nilfs_dat_inode(nilfs)))
805                         ret++;
806         return ret;
807 }
808
809 static int nilfs_segctor_clean(struct nilfs_sc_info *sci)
810 {
811         return list_empty(&sci->sc_dirty_files) &&
812                 !test_bit(NILFS_SC_DIRTY, &sci->sc_flags) &&
813                 sci->sc_nfreesegs == 0 &&
814                 (!nilfs_doing_gc() || list_empty(&sci->sc_gc_inodes));
815 }
816
817 static int nilfs_segctor_confirm(struct nilfs_sc_info *sci)
818 {
819         struct nilfs_sb_info *sbi = sci->sc_sbi;
820         int ret = 0;
821
822         if (nilfs_test_metadata_dirty(sbi))
823                 set_bit(NILFS_SC_DIRTY, &sci->sc_flags);
824
825         spin_lock(&sbi->s_inode_lock);
826         if (list_empty(&sbi->s_dirty_files) && nilfs_segctor_clean(sci))
827                 ret++;
828
829         spin_unlock(&sbi->s_inode_lock);
830         return ret;
831 }
832
833 static void nilfs_segctor_clear_metadata_dirty(struct nilfs_sc_info *sci)
834 {
835         struct nilfs_sb_info *sbi = sci->sc_sbi;
836         struct the_nilfs *nilfs = sbi->s_nilfs;
837
838         nilfs_mdt_clear_dirty(sbi->s_ifile);
839         nilfs_mdt_clear_dirty(nilfs->ns_cpfile);
840         nilfs_mdt_clear_dirty(nilfs->ns_sufile);
841         nilfs_mdt_clear_dirty(nilfs_dat_inode(nilfs));
842 }
843
844 static int nilfs_segctor_create_checkpoint(struct nilfs_sc_info *sci)
845 {
846         struct the_nilfs *nilfs = sci->sc_sbi->s_nilfs;
847         struct buffer_head *bh_cp;
848         struct nilfs_checkpoint *raw_cp;
849         int err;
850
851         /* XXX: this interface will be changed */
852         err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, nilfs->ns_cno, 1,
853                                           &raw_cp, &bh_cp);
854         if (likely(!err)) {
855                 /* The following code is duplicated with cpfile.  But, it is
856                    needed to collect the checkpoint even if it was not newly
857                    created */
858                 nilfs_mdt_mark_buffer_dirty(bh_cp);
859                 nilfs_mdt_mark_dirty(nilfs->ns_cpfile);
860                 nilfs_cpfile_put_checkpoint(
861                         nilfs->ns_cpfile, nilfs->ns_cno, bh_cp);
862         } else
863                 WARN_ON(err == -EINVAL || err == -ENOENT);
864
865         return err;
866 }
867
868 static int nilfs_segctor_fill_in_checkpoint(struct nilfs_sc_info *sci)
869 {
870         struct nilfs_sb_info *sbi = sci->sc_sbi;
871         struct the_nilfs *nilfs = sbi->s_nilfs;
872         struct buffer_head *bh_cp;
873         struct nilfs_checkpoint *raw_cp;
874         int err;
875
876         err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, nilfs->ns_cno, 0,
877                                           &raw_cp, &bh_cp);
878         if (unlikely(err)) {
879                 WARN_ON(err == -EINVAL || err == -ENOENT);
880                 goto failed_ibh;
881         }
882         raw_cp->cp_snapshot_list.ssl_next = 0;
883         raw_cp->cp_snapshot_list.ssl_prev = 0;
884         raw_cp->cp_inodes_count =
885                 cpu_to_le64(atomic_read(&sbi->s_inodes_count));
886         raw_cp->cp_blocks_count =
887                 cpu_to_le64(atomic_read(&sbi->s_blocks_count));
888         raw_cp->cp_nblk_inc =
889                 cpu_to_le64(sci->sc_nblk_inc + sci->sc_nblk_this_inc);
890         raw_cp->cp_create = cpu_to_le64(sci->sc_seg_ctime);
891         raw_cp->cp_cno = cpu_to_le64(nilfs->ns_cno);
892
893         if (test_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags))
894                 nilfs_checkpoint_clear_minor(raw_cp);
895         else
896                 nilfs_checkpoint_set_minor(raw_cp);
897
898         nilfs_write_inode_common(sbi->s_ifile, &raw_cp->cp_ifile_inode, 1);
899         nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, nilfs->ns_cno, bh_cp);
900         return 0;
901
902  failed_ibh:
903         return err;
904 }
905
906 static void nilfs_fill_in_file_bmap(struct inode *ifile,
907                                     struct nilfs_inode_info *ii)
908
909 {
910         struct buffer_head *ibh;
911         struct nilfs_inode *raw_inode;
912
913         if (test_bit(NILFS_I_BMAP, &ii->i_state)) {
914                 ibh = ii->i_bh;
915                 BUG_ON(!ibh);
916                 raw_inode = nilfs_ifile_map_inode(ifile, ii->vfs_inode.i_ino,
917                                                   ibh);
918                 nilfs_bmap_write(ii->i_bmap, raw_inode);
919                 nilfs_ifile_unmap_inode(ifile, ii->vfs_inode.i_ino, ibh);
920         }
921 }
922
923 static void nilfs_segctor_fill_in_file_bmap(struct nilfs_sc_info *sci,
924                                             struct inode *ifile)
925 {
926         struct nilfs_inode_info *ii;
927
928         list_for_each_entry(ii, &sci->sc_dirty_files, i_dirty) {
929                 nilfs_fill_in_file_bmap(ifile, ii);
930                 set_bit(NILFS_I_COLLECTED, &ii->i_state);
931         }
932 }
933
934 /*
935  * CRC calculation routines
936  */
937 static void nilfs_fill_in_super_root_crc(struct buffer_head *bh_sr, u32 seed)
938 {
939         struct nilfs_super_root *raw_sr =
940                 (struct nilfs_super_root *)bh_sr->b_data;
941         u32 crc;
942
943         crc = crc32_le(seed,
944                        (unsigned char *)raw_sr + sizeof(raw_sr->sr_sum),
945                        NILFS_SR_BYTES - sizeof(raw_sr->sr_sum));
946         raw_sr->sr_sum = cpu_to_le32(crc);
947 }
948
949 static void nilfs_segctor_fill_in_checksums(struct nilfs_sc_info *sci,
950                                             u32 seed)
951 {
952         struct nilfs_segment_buffer *segbuf;
953
954         if (sci->sc_super_root)
955                 nilfs_fill_in_super_root_crc(sci->sc_super_root, seed);
956
957         list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
958                 nilfs_segbuf_fill_in_segsum_crc(segbuf, seed);
959                 nilfs_segbuf_fill_in_data_crc(segbuf, seed);
960         }
961 }
962
963 static void nilfs_segctor_fill_in_super_root(struct nilfs_sc_info *sci,
964                                              struct the_nilfs *nilfs)
965 {
966         struct buffer_head *bh_sr = sci->sc_super_root;
967         struct nilfs_super_root *raw_sr =
968                 (struct nilfs_super_root *)bh_sr->b_data;
969         unsigned isz = nilfs->ns_inode_size;
970
971         raw_sr->sr_bytes = cpu_to_le16(NILFS_SR_BYTES);
972         raw_sr->sr_nongc_ctime
973                 = cpu_to_le64(nilfs_doing_gc() ?
974                               nilfs->ns_nongc_ctime : sci->sc_seg_ctime);
975         raw_sr->sr_flags = 0;
976
977         nilfs_write_inode_common(nilfs_dat_inode(nilfs), (void *)raw_sr +
978                                  NILFS_SR_DAT_OFFSET(isz), 1);
979         nilfs_write_inode_common(nilfs->ns_cpfile, (void *)raw_sr +
980                                  NILFS_SR_CPFILE_OFFSET(isz), 1);
981         nilfs_write_inode_common(nilfs->ns_sufile, (void *)raw_sr +
982                                  NILFS_SR_SUFILE_OFFSET(isz), 1);
983 }
984
985 static void nilfs_redirty_inodes(struct list_head *head)
986 {
987         struct nilfs_inode_info *ii;
988
989         list_for_each_entry(ii, head, i_dirty) {
990                 if (test_bit(NILFS_I_COLLECTED, &ii->i_state))
991                         clear_bit(NILFS_I_COLLECTED, &ii->i_state);
992         }
993 }
994
995 static void nilfs_drop_collected_inodes(struct list_head *head)
996 {
997         struct nilfs_inode_info *ii;
998
999         list_for_each_entry(ii, head, i_dirty) {
1000                 if (!test_and_clear_bit(NILFS_I_COLLECTED, &ii->i_state))
1001                         continue;
1002
1003                 clear_bit(NILFS_I_INODE_DIRTY, &ii->i_state);
1004                 set_bit(NILFS_I_UPDATED, &ii->i_state);
1005         }
1006 }
1007
1008 static int nilfs_segctor_apply_buffers(struct nilfs_sc_info *sci,
1009                                        struct inode *inode,
1010                                        struct list_head *listp,
1011                                        int (*collect)(struct nilfs_sc_info *,
1012                                                       struct buffer_head *,
1013                                                       struct inode *))
1014 {
1015         struct buffer_head *bh, *n;
1016         int err = 0;
1017
1018         if (collect) {
1019                 list_for_each_entry_safe(bh, n, listp, b_assoc_buffers) {
1020                         list_del_init(&bh->b_assoc_buffers);
1021                         err = collect(sci, bh, inode);
1022                         brelse(bh);
1023                         if (unlikely(err))
1024                                 goto dispose_buffers;
1025                 }
1026                 return 0;
1027         }
1028
1029  dispose_buffers:
1030         while (!list_empty(listp)) {
1031                 bh = list_entry(listp->next, struct buffer_head,
1032                                 b_assoc_buffers);
1033                 list_del_init(&bh->b_assoc_buffers);
1034                 brelse(bh);
1035         }
1036         return err;
1037 }
1038
1039 static size_t nilfs_segctor_buffer_rest(struct nilfs_sc_info *sci)
1040 {
1041         /* Remaining number of blocks within segment buffer */
1042         return sci->sc_segbuf_nblocks -
1043                 (sci->sc_nblk_this_inc + sci->sc_curseg->sb_sum.nblocks);
1044 }
1045
1046 static int nilfs_segctor_scan_file(struct nilfs_sc_info *sci,
1047                                    struct inode *inode,
1048                                    struct nilfs_sc_operations *sc_ops)
1049 {
1050         LIST_HEAD(data_buffers);
1051         LIST_HEAD(node_buffers);
1052         int err;
1053
1054         if (!(sci->sc_stage.flags & NILFS_CF_NODE)) {
1055                 size_t n, rest = nilfs_segctor_buffer_rest(sci);
1056
1057                 n = nilfs_lookup_dirty_data_buffers(
1058                         inode, &data_buffers, rest + 1, 0, LLONG_MAX);
1059                 if (n > rest) {
1060                         err = nilfs_segctor_apply_buffers(
1061                                 sci, inode, &data_buffers,
1062                                 sc_ops->collect_data);
1063                         BUG_ON(!err); /* always receive -E2BIG or true error */
1064                         goto break_or_fail;
1065                 }
1066         }
1067         nilfs_lookup_dirty_node_buffers(inode, &node_buffers);
1068
1069         if (!(sci->sc_stage.flags & NILFS_CF_NODE)) {
1070                 err = nilfs_segctor_apply_buffers(
1071                         sci, inode, &data_buffers, sc_ops->collect_data);
1072                 if (unlikely(err)) {
1073                         /* dispose node list */
1074                         nilfs_segctor_apply_buffers(
1075                                 sci, inode, &node_buffers, NULL);
1076                         goto break_or_fail;
1077                 }
1078                 sci->sc_stage.flags |= NILFS_CF_NODE;
1079         }
1080         /* Collect node */
1081         err = nilfs_segctor_apply_buffers(
1082                 sci, inode, &node_buffers, sc_ops->collect_node);
1083         if (unlikely(err))
1084                 goto break_or_fail;
1085
1086         nilfs_bmap_lookup_dirty_buffers(NILFS_I(inode)->i_bmap, &node_buffers);
1087         err = nilfs_segctor_apply_buffers(
1088                 sci, inode, &node_buffers, sc_ops->collect_bmap);
1089         if (unlikely(err))
1090                 goto break_or_fail;
1091
1092         nilfs_segctor_end_finfo(sci, inode);
1093         sci->sc_stage.flags &= ~NILFS_CF_NODE;
1094
1095  break_or_fail:
1096         return err;
1097 }
1098
1099 static int nilfs_segctor_scan_file_dsync(struct nilfs_sc_info *sci,
1100                                          struct inode *inode)
1101 {
1102         LIST_HEAD(data_buffers);
1103         size_t n, rest = nilfs_segctor_buffer_rest(sci);
1104         int err;
1105
1106         n = nilfs_lookup_dirty_data_buffers(inode, &data_buffers, rest + 1,
1107                                             sci->sc_dsync_start,
1108                                             sci->sc_dsync_end);
1109
1110         err = nilfs_segctor_apply_buffers(sci, inode, &data_buffers,
1111                                           nilfs_collect_file_data);
1112         if (!err) {
1113                 nilfs_segctor_end_finfo(sci, inode);
1114                 BUG_ON(n > rest);
1115                 /* always receive -E2BIG or true error if n > rest */
1116         }
1117         return err;
1118 }
1119
1120 static int nilfs_segctor_collect_blocks(struct nilfs_sc_info *sci, int mode)
1121 {
1122         struct nilfs_sb_info *sbi = sci->sc_sbi;
1123         struct the_nilfs *nilfs = sbi->s_nilfs;
1124         struct list_head *head;
1125         struct nilfs_inode_info *ii;
1126         size_t ndone;
1127         int err = 0;
1128
1129         switch (sci->sc_stage.scnt) {
1130         case NILFS_ST_INIT:
1131                 /* Pre-processes */
1132                 sci->sc_stage.flags = 0;
1133
1134                 if (!test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags)) {
1135                         sci->sc_nblk_inc = 0;
1136                         sci->sc_curseg->sb_sum.flags = NILFS_SS_LOGBGN;
1137                         if (mode == SC_LSEG_DSYNC) {
1138                                 sci->sc_stage.scnt = NILFS_ST_DSYNC;
1139                                 goto dsync_mode;
1140                         }
1141                 }
1142
1143                 sci->sc_stage.dirty_file_ptr = NULL;
1144                 sci->sc_stage.gc_inode_ptr = NULL;
1145                 if (mode == SC_FLUSH_DAT) {
1146                         sci->sc_stage.scnt = NILFS_ST_DAT;
1147                         goto dat_stage;
1148                 }
1149                 sci->sc_stage.scnt++;  /* Fall through */
1150         case NILFS_ST_GC:
1151                 if (nilfs_doing_gc()) {
1152                         head = &sci->sc_gc_inodes;
1153                         ii = list_prepare_entry(sci->sc_stage.gc_inode_ptr,
1154                                                 head, i_dirty);
1155                         list_for_each_entry_continue(ii, head, i_dirty) {
1156                                 err = nilfs_segctor_scan_file(
1157                                         sci, &ii->vfs_inode,
1158                                         &nilfs_sc_file_ops);
1159                                 if (unlikely(err)) {
1160                                         sci->sc_stage.gc_inode_ptr = list_entry(
1161                                                 ii->i_dirty.prev,
1162                                                 struct nilfs_inode_info,
1163                                                 i_dirty);
1164                                         goto break_or_fail;
1165                                 }
1166                                 set_bit(NILFS_I_COLLECTED, &ii->i_state);
1167                         }
1168                         sci->sc_stage.gc_inode_ptr = NULL;
1169                 }
1170                 sci->sc_stage.scnt++;  /* Fall through */
1171         case NILFS_ST_FILE:
1172                 head = &sci->sc_dirty_files;
1173                 ii = list_prepare_entry(sci->sc_stage.dirty_file_ptr, head,
1174                                         i_dirty);
1175                 list_for_each_entry_continue(ii, head, i_dirty) {
1176                         clear_bit(NILFS_I_DIRTY, &ii->i_state);
1177
1178                         err = nilfs_segctor_scan_file(sci, &ii->vfs_inode,
1179                                                       &nilfs_sc_file_ops);
1180                         if (unlikely(err)) {
1181                                 sci->sc_stage.dirty_file_ptr =
1182                                         list_entry(ii->i_dirty.prev,
1183                                                    struct nilfs_inode_info,
1184                                                    i_dirty);
1185                                 goto break_or_fail;
1186                         }
1187                         /* sci->sc_stage.dirty_file_ptr = NILFS_I(inode); */
1188                         /* XXX: required ? */
1189                 }
1190                 sci->sc_stage.dirty_file_ptr = NULL;
1191                 if (mode == SC_FLUSH_FILE) {
1192                         sci->sc_stage.scnt = NILFS_ST_DONE;
1193                         return 0;
1194                 }
1195                 sci->sc_stage.scnt++;
1196                 sci->sc_stage.flags |= NILFS_CF_IFILE_STARTED;
1197                 /* Fall through */
1198         case NILFS_ST_IFILE:
1199                 err = nilfs_segctor_scan_file(sci, sbi->s_ifile,
1200                                               &nilfs_sc_file_ops);
1201                 if (unlikely(err))
1202                         break;
1203                 sci->sc_stage.scnt++;
1204                 /* Creating a checkpoint */
1205                 err = nilfs_segctor_create_checkpoint(sci);
1206                 if (unlikely(err))
1207                         break;
1208                 /* Fall through */
1209         case NILFS_ST_CPFILE:
1210                 err = nilfs_segctor_scan_file(sci, nilfs->ns_cpfile,
1211                                               &nilfs_sc_file_ops);
1212                 if (unlikely(err))
1213                         break;
1214                 sci->sc_stage.scnt++;  /* Fall through */
1215         case NILFS_ST_SUFILE:
1216                 err = nilfs_sufile_freev(nilfs->ns_sufile, sci->sc_freesegs,
1217                                          sci->sc_nfreesegs, &ndone);
1218                 if (unlikely(err)) {
1219                         nilfs_sufile_cancel_freev(nilfs->ns_sufile,
1220                                                   sci->sc_freesegs, ndone,
1221                                                   NULL);
1222                         break;
1223                 }
1224                 sci->sc_stage.flags |= NILFS_CF_SUFREED;
1225
1226                 err = nilfs_segctor_scan_file(sci, nilfs->ns_sufile,
1227                                               &nilfs_sc_file_ops);
1228                 if (unlikely(err))
1229                         break;
1230                 sci->sc_stage.scnt++;  /* Fall through */
1231         case NILFS_ST_DAT:
1232  dat_stage:
1233                 err = nilfs_segctor_scan_file(sci, nilfs_dat_inode(nilfs),
1234                                               &nilfs_sc_dat_ops);
1235                 if (unlikely(err))
1236                         break;
1237                 if (mode == SC_FLUSH_DAT) {
1238                         sci->sc_stage.scnt = NILFS_ST_DONE;
1239                         return 0;
1240                 }
1241                 sci->sc_stage.scnt++;  /* Fall through */
1242         case NILFS_ST_SR:
1243                 if (mode == SC_LSEG_SR) {
1244                         /* Appending a super root */
1245                         err = nilfs_segctor_add_super_root(sci);
1246                         if (unlikely(err))
1247                                 break;
1248                 }
1249                 /* End of a logical segment */
1250                 sci->sc_curseg->sb_sum.flags |= NILFS_SS_LOGEND;
1251                 sci->sc_stage.scnt = NILFS_ST_DONE;
1252                 return 0;
1253         case NILFS_ST_DSYNC:
1254  dsync_mode:
1255                 sci->sc_curseg->sb_sum.flags |= NILFS_SS_SYNDT;
1256                 ii = sci->sc_dsync_inode;
1257                 if (!test_bit(NILFS_I_BUSY, &ii->i_state))
1258                         break;
1259
1260                 err = nilfs_segctor_scan_file_dsync(sci, &ii->vfs_inode);
1261                 if (unlikely(err))
1262                         break;
1263                 sci->sc_curseg->sb_sum.flags |= NILFS_SS_LOGEND;
1264                 sci->sc_stage.scnt = NILFS_ST_DONE;
1265                 return 0;
1266         case NILFS_ST_DONE:
1267                 return 0;
1268         default:
1269                 BUG();
1270         }
1271
1272  break_or_fail:
1273         return err;
1274 }
1275
1276 /**
1277  * nilfs_segctor_begin_construction - setup segment buffer to make a new log
1278  * @sci: nilfs_sc_info
1279  * @nilfs: nilfs object
1280  */
1281 static int nilfs_segctor_begin_construction(struct nilfs_sc_info *sci,
1282                                             struct the_nilfs *nilfs)
1283 {
1284         struct nilfs_segment_buffer *segbuf, *prev;
1285         __u64 nextnum;
1286         int err, alloc = 0;
1287
1288         segbuf = nilfs_segbuf_new(sci->sc_super);
1289         if (unlikely(!segbuf))
1290                 return -ENOMEM;
1291
1292         if (list_empty(&sci->sc_write_logs)) {
1293                 nilfs_segbuf_map(segbuf, nilfs->ns_segnum,
1294                                  nilfs->ns_pseg_offset, nilfs);
1295                 if (segbuf->sb_rest_blocks < NILFS_PSEG_MIN_BLOCKS) {
1296                         nilfs_shift_to_next_segment(nilfs);
1297                         nilfs_segbuf_map(segbuf, nilfs->ns_segnum, 0, nilfs);
1298                 }
1299
1300                 segbuf->sb_sum.seg_seq = nilfs->ns_seg_seq;
1301                 nextnum = nilfs->ns_nextnum;
1302
1303                 if (nilfs->ns_segnum == nilfs->ns_nextnum)
1304                         /* Start from the head of a new full segment */
1305                         alloc++;
1306         } else {
1307                 /* Continue logs */
1308                 prev = NILFS_LAST_SEGBUF(&sci->sc_write_logs);
1309                 nilfs_segbuf_map_cont(segbuf, prev);
1310                 segbuf->sb_sum.seg_seq = prev->sb_sum.seg_seq;
1311                 nextnum = prev->sb_nextnum;
1312
1313                 if (segbuf->sb_rest_blocks < NILFS_PSEG_MIN_BLOCKS) {
1314                         nilfs_segbuf_map(segbuf, prev->sb_nextnum, 0, nilfs);
1315                         segbuf->sb_sum.seg_seq++;
1316                         alloc++;
1317                 }
1318         }
1319
1320         err = nilfs_sufile_mark_dirty(nilfs->ns_sufile, segbuf->sb_segnum);
1321         if (err)
1322                 goto failed;
1323
1324         if (alloc) {
1325                 err = nilfs_sufile_alloc(nilfs->ns_sufile, &nextnum);
1326                 if (err)
1327                         goto failed;
1328         }
1329         nilfs_segbuf_set_next_segnum(segbuf, nextnum, nilfs);
1330
1331         BUG_ON(!list_empty(&sci->sc_segbufs));
1332         list_add_tail(&segbuf->sb_list, &sci->sc_segbufs);
1333         sci->sc_segbuf_nblocks = segbuf->sb_rest_blocks;
1334         return 0;
1335
1336  failed:
1337         nilfs_segbuf_free(segbuf);
1338         return err;
1339 }
1340
1341 static int nilfs_segctor_extend_segments(struct nilfs_sc_info *sci,
1342                                          struct the_nilfs *nilfs, int nadd)
1343 {
1344         struct nilfs_segment_buffer *segbuf, *prev;
1345         struct inode *sufile = nilfs->ns_sufile;
1346         __u64 nextnextnum;
1347         LIST_HEAD(list);
1348         int err, ret, i;
1349
1350         prev = NILFS_LAST_SEGBUF(&sci->sc_segbufs);
1351         /*
1352          * Since the segment specified with nextnum might be allocated during
1353          * the previous construction, the buffer including its segusage may
1354          * not be dirty.  The following call ensures that the buffer is dirty
1355          * and will pin the buffer on memory until the sufile is written.
1356          */
1357         err = nilfs_sufile_mark_dirty(sufile, prev->sb_nextnum);
1358         if (unlikely(err))
1359                 return err;
1360
1361         for (i = 0; i < nadd; i++) {
1362                 /* extend segment info */
1363                 err = -ENOMEM;
1364                 segbuf = nilfs_segbuf_new(sci->sc_super);
1365                 if (unlikely(!segbuf))
1366                         goto failed;
1367
1368                 /* map this buffer to region of segment on-disk */
1369                 nilfs_segbuf_map(segbuf, prev->sb_nextnum, 0, nilfs);
1370                 sci->sc_segbuf_nblocks += segbuf->sb_rest_blocks;
1371
1372                 /* allocate the next next full segment */
1373                 err = nilfs_sufile_alloc(sufile, &nextnextnum);
1374                 if (unlikely(err))
1375                         goto failed_segbuf;
1376
1377                 segbuf->sb_sum.seg_seq = prev->sb_sum.seg_seq + 1;
1378                 nilfs_segbuf_set_next_segnum(segbuf, nextnextnum, nilfs);
1379
1380                 list_add_tail(&segbuf->sb_list, &list);
1381                 prev = segbuf;
1382         }
1383         list_splice_tail(&list, &sci->sc_segbufs);
1384         return 0;
1385
1386  failed_segbuf:
1387         nilfs_segbuf_free(segbuf);
1388  failed:
1389         list_for_each_entry(segbuf, &list, sb_list) {
1390                 ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
1391                 WARN_ON(ret); /* never fails */
1392         }
1393         nilfs_destroy_logs(&list);
1394         return err;
1395 }
1396
1397 static void nilfs_free_incomplete_logs(struct list_head *logs,
1398                                        struct the_nilfs *nilfs)
1399 {
1400         struct nilfs_segment_buffer *segbuf, *prev;
1401         struct inode *sufile = nilfs->ns_sufile;
1402         int ret;
1403
1404         segbuf = NILFS_FIRST_SEGBUF(logs);
1405         if (nilfs->ns_nextnum != segbuf->sb_nextnum) {
1406                 ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
1407                 WARN_ON(ret); /* never fails */
1408         }
1409         if (atomic_read(&segbuf->sb_err)) {
1410                 /* Case 1: The first segment failed */
1411                 if (segbuf->sb_pseg_start != segbuf->sb_fseg_start)
1412                         /* Case 1a:  Partial segment appended into an existing
1413                            segment */
1414                         nilfs_terminate_segment(nilfs, segbuf->sb_fseg_start,
1415                                                 segbuf->sb_fseg_end);
1416                 else /* Case 1b:  New full segment */
1417                         set_nilfs_discontinued(nilfs);
1418         }
1419
1420         prev = segbuf;
1421         list_for_each_entry_continue(segbuf, logs, sb_list) {
1422                 if (prev->sb_nextnum != segbuf->sb_nextnum) {
1423                         ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
1424                         WARN_ON(ret); /* never fails */
1425                 }
1426                 if (atomic_read(&segbuf->sb_err) &&
1427                     segbuf->sb_segnum != nilfs->ns_nextnum)
1428                         /* Case 2: extended segment (!= next) failed */
1429                         nilfs_sufile_set_error(sufile, segbuf->sb_segnum);
1430                 prev = segbuf;
1431         }
1432 }
1433
1434 static void nilfs_segctor_update_segusage(struct nilfs_sc_info *sci,
1435                                           struct inode *sufile)
1436 {
1437         struct nilfs_segment_buffer *segbuf;
1438         unsigned long live_blocks;
1439         int ret;
1440
1441         list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
1442                 live_blocks = segbuf->sb_sum.nblocks +
1443                         (segbuf->sb_pseg_start - segbuf->sb_fseg_start);
1444                 ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum,
1445                                                      live_blocks,
1446                                                      sci->sc_seg_ctime);
1447                 WARN_ON(ret); /* always succeed because the segusage is dirty */
1448         }
1449 }
1450
1451 static void nilfs_cancel_segusage(struct list_head *logs, struct inode *sufile)
1452 {
1453         struct nilfs_segment_buffer *segbuf;
1454         int ret;
1455
1456         segbuf = NILFS_FIRST_SEGBUF(logs);
1457         ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum,
1458                                              segbuf->sb_pseg_start -
1459                                              segbuf->sb_fseg_start, 0);
1460         WARN_ON(ret); /* always succeed because the segusage is dirty */
1461
1462         list_for_each_entry_continue(segbuf, logs, sb_list) {
1463                 ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum,
1464                                                      0, 0);
1465                 WARN_ON(ret); /* always succeed */
1466         }
1467 }
1468
1469 static void nilfs_segctor_truncate_segments(struct nilfs_sc_info *sci,
1470                                             struct nilfs_segment_buffer *last,
1471                                             struct inode *sufile)
1472 {
1473         struct nilfs_segment_buffer *segbuf = last;
1474         int ret;
1475
1476         list_for_each_entry_continue(segbuf, &sci->sc_segbufs, sb_list) {
1477                 sci->sc_segbuf_nblocks -= segbuf->sb_rest_blocks;
1478                 ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
1479                 WARN_ON(ret);
1480         }
1481         nilfs_truncate_logs(&sci->sc_segbufs, last);
1482 }
1483
1484
1485 static int nilfs_segctor_collect(struct nilfs_sc_info *sci,
1486                                  struct the_nilfs *nilfs, int mode)
1487 {
1488         struct nilfs_cstage prev_stage = sci->sc_stage;
1489         int err, nadd = 1;
1490
1491         /* Collection retry loop */
1492         for (;;) {
1493                 sci->sc_super_root = NULL;
1494                 sci->sc_nblk_this_inc = 0;
1495                 sci->sc_curseg = NILFS_FIRST_SEGBUF(&sci->sc_segbufs);
1496
1497                 err = nilfs_segctor_reset_segment_buffer(sci);
1498                 if (unlikely(err))
1499                         goto failed;
1500
1501                 err = nilfs_segctor_collect_blocks(sci, mode);
1502                 sci->sc_nblk_this_inc += sci->sc_curseg->sb_sum.nblocks;
1503                 if (!err)
1504                         break;
1505
1506                 if (unlikely(err != -E2BIG))
1507                         goto failed;
1508
1509                 /* The current segment is filled up */
1510                 if (mode != SC_LSEG_SR || sci->sc_stage.scnt < NILFS_ST_CPFILE)
1511                         break;
1512
1513                 if (sci->sc_stage.flags & NILFS_CF_SUFREED) {
1514                         err = nilfs_sufile_cancel_freev(nilfs->ns_sufile,
1515                                                         sci->sc_freesegs,
1516                                                         sci->sc_nfreesegs,
1517                                                         NULL);
1518                         WARN_ON(err); /* do not happen */
1519                 }
1520                 nilfs_clear_logs(&sci->sc_segbufs);
1521
1522                 err = nilfs_segctor_extend_segments(sci, nilfs, nadd);
1523                 if (unlikely(err))
1524                         return err;
1525
1526                 nadd = min_t(int, nadd << 1, SC_MAX_SEGDELTA);
1527                 sci->sc_stage = prev_stage;
1528         }
1529         nilfs_segctor_truncate_segments(sci, sci->sc_curseg, nilfs->ns_sufile);
1530         return 0;
1531
1532  failed:
1533         return err;
1534 }
1535
1536 static void nilfs_list_replace_buffer(struct buffer_head *old_bh,
1537                                       struct buffer_head *new_bh)
1538 {
1539         BUG_ON(!list_empty(&new_bh->b_assoc_buffers));
1540
1541         list_replace_init(&old_bh->b_assoc_buffers, &new_bh->b_assoc_buffers);
1542         /* The caller must release old_bh */
1543 }
1544
1545 static int
1546 nilfs_segctor_update_payload_blocknr(struct nilfs_sc_info *sci,
1547                                      struct nilfs_segment_buffer *segbuf,
1548                                      int mode)
1549 {
1550         struct inode *inode = NULL;
1551         sector_t blocknr;
1552         unsigned long nfinfo = segbuf->sb_sum.nfinfo;
1553         unsigned long nblocks = 0, ndatablk = 0;
1554         struct nilfs_sc_operations *sc_op = NULL;
1555         struct nilfs_segsum_pointer ssp;
1556         struct nilfs_finfo *finfo = NULL;
1557         union nilfs_binfo binfo;
1558         struct buffer_head *bh, *bh_org;
1559         ino_t ino = 0;
1560         int err = 0;
1561
1562         if (!nfinfo)
1563                 goto out;
1564
1565         blocknr = segbuf->sb_pseg_start + segbuf->sb_sum.nsumblk;
1566         ssp.bh = NILFS_SEGBUF_FIRST_BH(&segbuf->sb_segsum_buffers);
1567         ssp.offset = sizeof(struct nilfs_segment_summary);
1568
1569         list_for_each_entry(bh, &segbuf->sb_payload_buffers, b_assoc_buffers) {
1570                 if (bh == sci->sc_super_root)
1571                         break;
1572                 if (!finfo) {
1573                         finfo = nilfs_segctor_map_segsum_entry(
1574                                 sci, &ssp, sizeof(*finfo));
1575                         ino = le64_to_cpu(finfo->fi_ino);
1576                         nblocks = le32_to_cpu(finfo->fi_nblocks);
1577                         ndatablk = le32_to_cpu(finfo->fi_ndatablk);
1578
1579                         if (buffer_nilfs_node(bh))
1580                                 inode = NILFS_BTNC_I(bh->b_page->mapping);
1581                         else
1582                                 inode = NILFS_AS_I(bh->b_page->mapping);
1583
1584                         if (mode == SC_LSEG_DSYNC)
1585                                 sc_op = &nilfs_sc_dsync_ops;
1586                         else if (ino == NILFS_DAT_INO)
1587                                 sc_op = &nilfs_sc_dat_ops;
1588                         else /* file blocks */
1589                                 sc_op = &nilfs_sc_file_ops;
1590                 }
1591                 bh_org = bh;
1592                 get_bh(bh_org);
1593                 err = nilfs_bmap_assign(NILFS_I(inode)->i_bmap, &bh, blocknr,
1594                                         &binfo);
1595                 if (bh != bh_org)
1596                         nilfs_list_replace_buffer(bh_org, bh);
1597                 brelse(bh_org);
1598                 if (unlikely(err))
1599                         goto failed_bmap;
1600
1601                 if (ndatablk > 0)
1602                         sc_op->write_data_binfo(sci, &ssp, &binfo);
1603                 else
1604                         sc_op->write_node_binfo(sci, &ssp, &binfo);
1605
1606                 blocknr++;
1607                 if (--nblocks == 0) {
1608                         finfo = NULL;
1609                         if (--nfinfo == 0)
1610                                 break;
1611                 } else if (ndatablk > 0)
1612                         ndatablk--;
1613         }
1614  out:
1615         return 0;
1616
1617  failed_bmap:
1618         err = nilfs_handle_bmap_error(err, __func__, inode, sci->sc_super);
1619         return err;
1620 }
1621
1622 static int nilfs_segctor_assign(struct nilfs_sc_info *sci, int mode)
1623 {
1624         struct nilfs_segment_buffer *segbuf;
1625         int err;
1626
1627         list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
1628                 err = nilfs_segctor_update_payload_blocknr(sci, segbuf, mode);
1629                 if (unlikely(err))
1630                         return err;
1631                 nilfs_segbuf_fill_in_segsum(segbuf);
1632         }
1633         return 0;
1634 }
1635
1636 static int
1637 nilfs_copy_replace_page_buffers(struct page *page, struct list_head *out)
1638 {
1639         struct page *clone_page;
1640         struct buffer_head *bh, *head, *bh2;
1641         void *kaddr;
1642
1643         bh = head = page_buffers(page);
1644
1645         clone_page = nilfs_alloc_private_page(bh->b_bdev, bh->b_size, 0);
1646         if (unlikely(!clone_page))
1647                 return -ENOMEM;
1648
1649         bh2 = page_buffers(clone_page);
1650         kaddr = kmap_atomic(page, KM_USER0);
1651         do {
1652                 if (list_empty(&bh->b_assoc_buffers))
1653                         continue;
1654                 get_bh(bh2);
1655                 page_cache_get(clone_page); /* for each bh */
1656                 memcpy(bh2->b_data, kaddr + bh_offset(bh), bh2->b_size);
1657                 bh2->b_blocknr = bh->b_blocknr;
1658                 list_replace(&bh->b_assoc_buffers, &bh2->b_assoc_buffers);
1659                 list_add_tail(&bh->b_assoc_buffers, out);
1660         } while (bh = bh->b_this_page, bh2 = bh2->b_this_page, bh != head);
1661         kunmap_atomic(kaddr, KM_USER0);
1662
1663         if (!TestSetPageWriteback(clone_page))
1664                 inc_zone_page_state(clone_page, NR_WRITEBACK);
1665         unlock_page(clone_page);
1666
1667         return 0;
1668 }
1669
1670 static int nilfs_test_page_to_be_frozen(struct page *page)
1671 {
1672         struct address_space *mapping = page->mapping;
1673
1674         if (!mapping || !mapping->host || S_ISDIR(mapping->host->i_mode))
1675                 return 0;
1676
1677         if (page_mapped(page)) {
1678                 ClearPageChecked(page);
1679                 return 1;
1680         }
1681         return PageChecked(page);
1682 }
1683
1684 static int nilfs_begin_page_io(struct page *page, struct list_head *out)
1685 {
1686         if (!page || PageWriteback(page))
1687                 /* For split b-tree node pages, this function may be called
1688                    twice.  We ignore the 2nd or later calls by this check. */
1689                 return 0;
1690
1691         lock_page(page);
1692         clear_page_dirty_for_io(page);
1693         set_page_writeback(page);
1694         unlock_page(page);
1695
1696         if (nilfs_test_page_to_be_frozen(page)) {
1697                 int err = nilfs_copy_replace_page_buffers(page, out);
1698                 if (unlikely(err))
1699                         return err;
1700         }
1701         return 0;
1702 }
1703
1704 static int nilfs_segctor_prepare_write(struct nilfs_sc_info *sci,
1705                                        struct page **failed_page)
1706 {
1707         struct nilfs_segment_buffer *segbuf;
1708         struct page *bd_page = NULL, *fs_page = NULL;
1709         struct list_head *list = &sci->sc_copied_buffers;
1710         int err;
1711
1712         *failed_page = NULL;
1713         list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
1714                 struct buffer_head *bh;
1715
1716                 list_for_each_entry(bh, &segbuf->sb_segsum_buffers,
1717                                     b_assoc_buffers) {
1718                         if (bh->b_page != bd_page) {
1719                                 if (bd_page) {
1720                                         lock_page(bd_page);
1721                                         clear_page_dirty_for_io(bd_page);
1722                                         set_page_writeback(bd_page);
1723                                         unlock_page(bd_page);
1724                                 }
1725                                 bd_page = bh->b_page;
1726                         }
1727                 }
1728
1729                 list_for_each_entry(bh, &segbuf->sb_payload_buffers,
1730                                     b_assoc_buffers) {
1731                         if (bh == sci->sc_super_root) {
1732                                 if (bh->b_page != bd_page) {
1733                                         lock_page(bd_page);
1734                                         clear_page_dirty_for_io(bd_page);
1735                                         set_page_writeback(bd_page);
1736                                         unlock_page(bd_page);
1737                                         bd_page = bh->b_page;
1738                                 }
1739                                 break;
1740                         }
1741                         if (bh->b_page != fs_page) {
1742                                 err = nilfs_begin_page_io(fs_page, list);
1743                                 if (unlikely(err)) {
1744                                         *failed_page = fs_page;
1745                                         goto out;
1746                                 }
1747                                 fs_page = bh->b_page;
1748                         }
1749                 }
1750         }
1751         if (bd_page) {
1752                 lock_page(bd_page);
1753                 clear_page_dirty_for_io(bd_page);
1754                 set_page_writeback(bd_page);
1755                 unlock_page(bd_page);
1756         }
1757         err = nilfs_begin_page_io(fs_page, list);
1758         if (unlikely(err))
1759                 *failed_page = fs_page;
1760  out:
1761         return err;
1762 }
1763
1764 static int nilfs_segctor_write(struct nilfs_sc_info *sci,
1765                                struct the_nilfs *nilfs)
1766 {
1767         struct nilfs_segment_buffer *segbuf;
1768         int ret = 0;
1769
1770         list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
1771                 ret = nilfs_segbuf_write(segbuf, nilfs);
1772                 if (ret)
1773                         break;
1774         }
1775         list_splice_tail_init(&sci->sc_segbufs, &sci->sc_write_logs);
1776         return ret;
1777 }
1778
1779 static void __nilfs_end_page_io(struct page *page, int err)
1780 {
1781         if (!err) {
1782                 if (!nilfs_page_buffers_clean(page))
1783                         __set_page_dirty_nobuffers(page);
1784                 ClearPageError(page);
1785         } else {
1786                 __set_page_dirty_nobuffers(page);
1787                 SetPageError(page);
1788         }
1789
1790         if (buffer_nilfs_allocated(page_buffers(page))) {
1791                 if (TestClearPageWriteback(page))
1792                         dec_zone_page_state(page, NR_WRITEBACK);
1793         } else
1794                 end_page_writeback(page);
1795 }
1796
1797 static void nilfs_end_page_io(struct page *page, int err)
1798 {
1799         if (!page)
1800                 return;
1801
1802         if (buffer_nilfs_node(page_buffers(page)) && !PageWriteback(page)) {
1803                 /*
1804                  * For b-tree node pages, this function may be called twice
1805                  * or more because they might be split in a segment.
1806                  */
1807                 if (PageDirty(page)) {
1808                         /*
1809                          * For pages holding split b-tree node buffers, dirty
1810                          * flag on the buffers may be cleared discretely.
1811                          * In that case, the page is once redirtied for
1812                          * remaining buffers, and it must be cancelled if
1813                          * all the buffers get cleaned later.
1814                          */
1815                         lock_page(page);
1816                         if (nilfs_page_buffers_clean(page))
1817                                 __nilfs_clear_page_dirty(page);
1818                         unlock_page(page);
1819                 }
1820                 return;
1821         }
1822
1823         __nilfs_end_page_io(page, err);
1824 }
1825
1826 static void nilfs_clear_copied_buffers(struct list_head *list, int err)
1827 {
1828         struct buffer_head *bh, *head;
1829         struct page *page;
1830
1831         while (!list_empty(list)) {
1832                 bh = list_entry(list->next, struct buffer_head,
1833                                 b_assoc_buffers);
1834                 page = bh->b_page;
1835                 page_cache_get(page);
1836                 head = bh = page_buffers(page);
1837                 do {
1838                         if (!list_empty(&bh->b_assoc_buffers)) {
1839                                 list_del_init(&bh->b_assoc_buffers);
1840                                 if (!err) {
1841                                         set_buffer_uptodate(bh);
1842                                         clear_buffer_dirty(bh);
1843                                         clear_buffer_nilfs_volatile(bh);
1844                                 }
1845                                 brelse(bh); /* for b_assoc_buffers */
1846                         }
1847                 } while ((bh = bh->b_this_page) != head);
1848
1849                 __nilfs_end_page_io(page, err);
1850                 page_cache_release(page);
1851         }
1852 }
1853
1854 static void nilfs_abort_logs(struct list_head *logs, struct page *failed_page,
1855                              struct buffer_head *bh_sr, int err)
1856 {
1857         struct nilfs_segment_buffer *segbuf;
1858         struct page *bd_page = NULL, *fs_page = NULL;
1859         struct buffer_head *bh;
1860
1861         if (list_empty(logs))
1862                 return;
1863
1864         list_for_each_entry(segbuf, logs, sb_list) {
1865                 list_for_each_entry(bh, &segbuf->sb_segsum_buffers,
1866                                     b_assoc_buffers) {
1867                         if (bh->b_page != bd_page) {
1868                                 if (bd_page)
1869                                         end_page_writeback(bd_page);
1870                                 bd_page = bh->b_page;
1871                         }
1872                 }
1873
1874                 list_for_each_entry(bh, &segbuf->sb_payload_buffers,
1875                                     b_assoc_buffers) {
1876                         if (bh == bh_sr) {
1877                                 if (bh->b_page != bd_page) {
1878                                         end_page_writeback(bd_page);
1879                                         bd_page = bh->b_page;
1880                                 }
1881                                 break;
1882                         }
1883                         if (bh->b_page != fs_page) {
1884                                 nilfs_end_page_io(fs_page, err);
1885                                 if (fs_page && fs_page == failed_page)
1886                                         return;
1887                                 fs_page = bh->b_page;
1888                         }
1889                 }
1890         }
1891         if (bd_page)
1892                 end_page_writeback(bd_page);
1893
1894         nilfs_end_page_io(fs_page, err);
1895 }
1896
1897 static void nilfs_segctor_abort_construction(struct nilfs_sc_info *sci,
1898                                              struct the_nilfs *nilfs, int err)
1899 {
1900         LIST_HEAD(logs);
1901         int ret;
1902
1903         list_splice_tail_init(&sci->sc_write_logs, &logs);
1904         ret = nilfs_wait_on_logs(&logs);
1905         if (ret)
1906                 nilfs_abort_logs(&logs, NULL, sci->sc_super_root, ret);
1907
1908         list_splice_tail_init(&sci->sc_segbufs, &logs);
1909         nilfs_cancel_segusage(&logs, nilfs->ns_sufile);
1910         nilfs_free_incomplete_logs(&logs, nilfs);
1911         nilfs_clear_copied_buffers(&sci->sc_copied_buffers, err);
1912
1913         if (sci->sc_stage.flags & NILFS_CF_SUFREED) {
1914                 ret = nilfs_sufile_cancel_freev(nilfs->ns_sufile,
1915                                                 sci->sc_freesegs,
1916                                                 sci->sc_nfreesegs,
1917                                                 NULL);
1918                 WARN_ON(ret); /* do not happen */
1919         }
1920
1921         nilfs_destroy_logs(&logs);
1922         sci->sc_super_root = NULL;
1923 }
1924
1925 static void nilfs_set_next_segment(struct the_nilfs *nilfs,
1926                                    struct nilfs_segment_buffer *segbuf)
1927 {
1928         nilfs->ns_segnum = segbuf->sb_segnum;
1929         nilfs->ns_nextnum = segbuf->sb_nextnum;
1930         nilfs->ns_pseg_offset = segbuf->sb_pseg_start - segbuf->sb_fseg_start
1931                 + segbuf->sb_sum.nblocks;
1932         nilfs->ns_seg_seq = segbuf->sb_sum.seg_seq;
1933         nilfs->ns_ctime = segbuf->sb_sum.ctime;
1934 }
1935
1936 static void nilfs_segctor_complete_write(struct nilfs_sc_info *sci)
1937 {
1938         struct nilfs_segment_buffer *segbuf;
1939         struct page *bd_page = NULL, *fs_page = NULL;
1940         struct nilfs_sb_info *sbi = sci->sc_sbi;
1941         struct the_nilfs *nilfs = sbi->s_nilfs;
1942         int update_sr = (sci->sc_super_root != NULL);
1943
1944         list_for_each_entry(segbuf, &sci->sc_write_logs, sb_list) {
1945                 struct buffer_head *bh;
1946
1947                 list_for_each_entry(bh, &segbuf->sb_segsum_buffers,
1948                                     b_assoc_buffers) {
1949                         set_buffer_uptodate(bh);
1950                         clear_buffer_dirty(bh);
1951                         if (bh->b_page != bd_page) {
1952                                 if (bd_page)
1953                                         end_page_writeback(bd_page);
1954                                 bd_page = bh->b_page;
1955                         }
1956                 }
1957                 /*
1958                  * We assume that the buffers which belong to the same page
1959                  * continue over the buffer list.
1960                  * Under this assumption, the last BHs of pages is
1961                  * identifiable by the discontinuity of bh->b_page
1962                  * (page != fs_page).
1963                  *
1964                  * For B-tree node blocks, however, this assumption is not
1965                  * guaranteed.  The cleanup code of B-tree node pages needs
1966                  * special care.
1967                  */
1968                 list_for_each_entry(bh, &segbuf->sb_payload_buffers,
1969                                     b_assoc_buffers) {
1970                         set_buffer_uptodate(bh);
1971                         clear_buffer_dirty(bh);
1972                         clear_buffer_nilfs_volatile(bh);
1973                         if (bh == sci->sc_super_root) {
1974                                 if (bh->b_page != bd_page) {
1975                                         end_page_writeback(bd_page);
1976                                         bd_page = bh->b_page;
1977                                 }
1978                                 break;
1979                         }
1980                         if (bh->b_page != fs_page) {
1981                                 nilfs_end_page_io(fs_page, 0);
1982                                 fs_page = bh->b_page;
1983                         }
1984                 }
1985
1986                 if (!NILFS_SEG_SIMPLEX(&segbuf->sb_sum)) {
1987                         if (NILFS_SEG_LOGBGN(&segbuf->sb_sum)) {
1988                                 set_bit(NILFS_SC_UNCLOSED, &sci->sc_flags);
1989                                 sci->sc_lseg_stime = jiffies;
1990                         }
1991                         if (NILFS_SEG_LOGEND(&segbuf->sb_sum))
1992                                 clear_bit(NILFS_SC_UNCLOSED, &sci->sc_flags);
1993                 }
1994         }
1995         /*
1996          * Since pages may continue over multiple segment buffers,
1997          * end of the last page must be checked outside of the loop.
1998          */
1999         if (bd_page)
2000                 end_page_writeback(bd_page);
2001
2002         nilfs_end_page_io(fs_page, 0);
2003
2004         nilfs_clear_copied_buffers(&sci->sc_copied_buffers, 0);
2005
2006         nilfs_drop_collected_inodes(&sci->sc_dirty_files);
2007
2008         if (nilfs_doing_gc()) {
2009                 nilfs_drop_collected_inodes(&sci->sc_gc_inodes);
2010                 if (update_sr)
2011                         nilfs_commit_gcdat_inode(nilfs);
2012         } else
2013                 nilfs->ns_nongc_ctime = sci->sc_seg_ctime;
2014
2015         sci->sc_nblk_inc += sci->sc_nblk_this_inc;
2016
2017         segbuf = NILFS_LAST_SEGBUF(&sci->sc_write_logs);
2018         nilfs_set_next_segment(nilfs, segbuf);
2019
2020         if (update_sr) {
2021                 nilfs_set_last_segment(nilfs, segbuf->sb_pseg_start,
2022                                        segbuf->sb_sum.seg_seq, nilfs->ns_cno++);
2023                 sbi->s_super->s_dirt = 1;
2024
2025                 clear_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags);
2026                 clear_bit(NILFS_SC_DIRTY, &sci->sc_flags);
2027                 set_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags);
2028                 nilfs_segctor_clear_metadata_dirty(sci);
2029         } else
2030                 clear_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags);
2031 }
2032
2033 static int nilfs_segctor_wait(struct nilfs_sc_info *sci)
2034 {
2035         int ret;
2036
2037         ret = nilfs_wait_on_logs(&sci->sc_write_logs);
2038         if (!ret) {
2039                 nilfs_segctor_complete_write(sci);
2040                 nilfs_destroy_logs(&sci->sc_write_logs);
2041         }
2042         return ret;
2043 }
2044
2045 static int nilfs_segctor_check_in_files(struct nilfs_sc_info *sci,
2046                                         struct nilfs_sb_info *sbi)
2047 {
2048         struct nilfs_inode_info *ii, *n;
2049         __u64 cno = sbi->s_nilfs->ns_cno;
2050
2051         spin_lock(&sbi->s_inode_lock);
2052  retry:
2053         list_for_each_entry_safe(ii, n, &sbi->s_dirty_files, i_dirty) {
2054                 if (!ii->i_bh) {
2055                         struct buffer_head *ibh;
2056                         int err;
2057
2058                         spin_unlock(&sbi->s_inode_lock);
2059                         err = nilfs_ifile_get_inode_block(
2060                                 sbi->s_ifile, ii->vfs_inode.i_ino, &ibh);
2061                         if (unlikely(err)) {
2062                                 nilfs_warning(sbi->s_super, __func__,
2063                                               "failed to get inode block.\n");
2064                                 return err;
2065                         }
2066                         nilfs_mdt_mark_buffer_dirty(ibh);
2067                         nilfs_mdt_mark_dirty(sbi->s_ifile);
2068                         spin_lock(&sbi->s_inode_lock);
2069                         if (likely(!ii->i_bh))
2070                                 ii->i_bh = ibh;
2071                         else
2072                                 brelse(ibh);
2073                         goto retry;
2074                 }
2075                 ii->i_cno = cno;
2076
2077                 clear_bit(NILFS_I_QUEUED, &ii->i_state);
2078                 set_bit(NILFS_I_BUSY, &ii->i_state);
2079                 list_del(&ii->i_dirty);
2080                 list_add_tail(&ii->i_dirty, &sci->sc_dirty_files);
2081         }
2082         spin_unlock(&sbi->s_inode_lock);
2083
2084         NILFS_I(sbi->s_ifile)->i_cno = cno;
2085
2086         return 0;
2087 }
2088
2089 static void nilfs_segctor_check_out_files(struct nilfs_sc_info *sci,
2090                                           struct nilfs_sb_info *sbi)
2091 {
2092         struct nilfs_transaction_info *ti = current->journal_info;
2093         struct nilfs_inode_info *ii, *n;
2094         __u64 cno = sbi->s_nilfs->ns_cno;
2095
2096         spin_lock(&sbi->s_inode_lock);
2097         list_for_each_entry_safe(ii, n, &sci->sc_dirty_files, i_dirty) {
2098                 if (!test_and_clear_bit(NILFS_I_UPDATED, &ii->i_state) ||
2099                     test_bit(NILFS_I_DIRTY, &ii->i_state)) {
2100                         /* The current checkpoint number (=nilfs->ns_cno) is
2101                            changed between check-in and check-out only if the
2102                            super root is written out.  So, we can update i_cno
2103                            for the inodes that remain in the dirty list. */
2104                         ii->i_cno = cno;
2105                         continue;
2106                 }
2107                 clear_bit(NILFS_I_BUSY, &ii->i_state);
2108                 brelse(ii->i_bh);
2109                 ii->i_bh = NULL;
2110                 list_del(&ii->i_dirty);
2111                 list_add_tail(&ii->i_dirty, &ti->ti_garbage);
2112         }
2113         spin_unlock(&sbi->s_inode_lock);
2114 }
2115
2116 /*
2117  * Main procedure of segment constructor
2118  */
2119 static int nilfs_segctor_do_construct(struct nilfs_sc_info *sci, int mode)
2120 {
2121         struct nilfs_sb_info *sbi = sci->sc_sbi;
2122         struct the_nilfs *nilfs = sbi->s_nilfs;
2123         struct page *failed_page;
2124         int err, has_sr = 0;
2125
2126         sci->sc_stage.scnt = NILFS_ST_INIT;
2127
2128         err = nilfs_segctor_check_in_files(sci, sbi);
2129         if (unlikely(err))
2130                 goto out;
2131
2132         if (nilfs_test_metadata_dirty(sbi))
2133                 set_bit(NILFS_SC_DIRTY, &sci->sc_flags);
2134
2135         if (nilfs_segctor_clean(sci))
2136                 goto out;
2137
2138         do {
2139                 sci->sc_stage.flags &= ~NILFS_CF_HISTORY_MASK;
2140
2141                 err = nilfs_segctor_begin_construction(sci, nilfs);
2142                 if (unlikely(err))
2143                         goto out;
2144
2145                 /* Update time stamp */
2146                 sci->sc_seg_ctime = get_seconds();
2147
2148                 err = nilfs_segctor_collect(sci, nilfs, mode);
2149                 if (unlikely(err))
2150                         goto failed;
2151
2152                 has_sr = (sci->sc_super_root != NULL);
2153
2154                 /* Avoid empty segment */
2155                 if (sci->sc_stage.scnt == NILFS_ST_DONE &&
2156                     NILFS_SEG_EMPTY(&sci->sc_curseg->sb_sum)) {
2157                         nilfs_segctor_abort_construction(sci, nilfs, 1);
2158                         goto out;
2159                 }
2160
2161                 err = nilfs_segctor_assign(sci, mode);
2162                 if (unlikely(err))
2163                         goto failed;
2164
2165                 if (sci->sc_stage.flags & NILFS_CF_IFILE_STARTED)
2166                         nilfs_segctor_fill_in_file_bmap(sci, sbi->s_ifile);
2167
2168                 if (has_sr) {
2169                         err = nilfs_segctor_fill_in_checkpoint(sci);
2170                         if (unlikely(err))
2171                                 goto failed_to_write;
2172
2173                         nilfs_segctor_fill_in_super_root(sci, nilfs);
2174                 }
2175                 nilfs_segctor_update_segusage(sci, nilfs->ns_sufile);
2176
2177                 /* Write partial segments */
2178                 err = nilfs_segctor_prepare_write(sci, &failed_page);
2179                 if (err) {
2180                         nilfs_abort_logs(&sci->sc_segbufs, failed_page,
2181                                          sci->sc_super_root, err);
2182                         goto failed_to_write;
2183                 }
2184                 nilfs_segctor_fill_in_checksums(sci, nilfs->ns_crc_seed);
2185
2186                 err = nilfs_segctor_write(sci, nilfs);
2187                 if (unlikely(err))
2188                         goto failed_to_write;
2189
2190                 if (sci->sc_stage.scnt == NILFS_ST_DONE ||
2191                     nilfs->ns_blocksize_bits != PAGE_CACHE_SHIFT) {
2192                         /*
2193                          * At this point, we avoid double buffering
2194                          * for blocksize < pagesize because page dirty
2195                          * flag is turned off during write and dirty
2196                          * buffers are not properly collected for
2197                          * pages crossing over segments.
2198                          */
2199                         err = nilfs_segctor_wait(sci);
2200                         if (err)
2201                                 goto failed_to_write;
2202                 }
2203         } while (sci->sc_stage.scnt != NILFS_ST_DONE);
2204
2205         sci->sc_super_root = NULL;
2206
2207  out:
2208         nilfs_segctor_check_out_files(sci, sbi);
2209         return err;
2210
2211  failed_to_write:
2212         if (sci->sc_stage.flags & NILFS_CF_IFILE_STARTED)
2213                 nilfs_redirty_inodes(&sci->sc_dirty_files);
2214
2215  failed:
2216         if (nilfs_doing_gc())
2217                 nilfs_redirty_inodes(&sci->sc_gc_inodes);
2218         nilfs_segctor_abort_construction(sci, nilfs, err);
2219         goto out;
2220 }
2221
2222 /**
2223  * nilfs_secgtor_start_timer - set timer of background write
2224  * @sci: nilfs_sc_info
2225  *
2226  * If the timer has already been set, it ignores the new request.
2227  * This function MUST be called within a section locking the segment
2228  * semaphore.
2229  */
2230 static void nilfs_segctor_start_timer(struct nilfs_sc_info *sci)
2231 {
2232         spin_lock(&sci->sc_state_lock);
2233         if (sci->sc_timer && !(sci->sc_state & NILFS_SEGCTOR_COMMIT)) {
2234                 sci->sc_timer->expires = jiffies + sci->sc_interval;
2235                 add_timer(sci->sc_timer);
2236                 sci->sc_state |= NILFS_SEGCTOR_COMMIT;
2237         }
2238         spin_unlock(&sci->sc_state_lock);
2239 }
2240
2241 static void nilfs_segctor_do_flush(struct nilfs_sc_info *sci, int bn)
2242 {
2243         spin_lock(&sci->sc_state_lock);
2244         if (!(sci->sc_flush_request & (1 << bn))) {
2245                 unsigned long prev_req = sci->sc_flush_request;
2246
2247                 sci->sc_flush_request |= (1 << bn);
2248                 if (!prev_req)
2249                         wake_up(&sci->sc_wait_daemon);
2250         }
2251         spin_unlock(&sci->sc_state_lock);
2252 }
2253
2254 /**
2255  * nilfs_flush_segment - trigger a segment construction for resource control
2256  * @sb: super block
2257  * @ino: inode number of the file to be flushed out.
2258  */
2259 void nilfs_flush_segment(struct super_block *sb, ino_t ino)
2260 {
2261         struct nilfs_sb_info *sbi = NILFS_SB(sb);
2262         struct nilfs_sc_info *sci = NILFS_SC(sbi);
2263
2264         if (!sci || nilfs_doing_construction())
2265                 return;
2266         nilfs_segctor_do_flush(sci, NILFS_MDT_INODE(sb, ino) ? ino : 0);
2267                                         /* assign bit 0 to data files */
2268 }
2269
2270 struct nilfs_segctor_wait_request {
2271         wait_queue_t    wq;
2272         __u32           seq;
2273         int             err;
2274         atomic_t        done;
2275 };
2276
2277 static int nilfs_segctor_sync(struct nilfs_sc_info *sci)
2278 {
2279         struct nilfs_segctor_wait_request wait_req;
2280         int err = 0;
2281
2282         spin_lock(&sci->sc_state_lock);
2283         init_wait(&wait_req.wq);
2284         wait_req.err = 0;
2285         atomic_set(&wait_req.done, 0);
2286         wait_req.seq = ++sci->sc_seq_request;
2287         spin_unlock(&sci->sc_state_lock);
2288
2289         init_waitqueue_entry(&wait_req.wq, current);
2290         add_wait_queue(&sci->sc_wait_request, &wait_req.wq);
2291         set_current_state(TASK_INTERRUPTIBLE);
2292         wake_up(&sci->sc_wait_daemon);
2293
2294         for (;;) {
2295                 if (atomic_read(&wait_req.done)) {
2296                         err = wait_req.err;
2297                         break;
2298                 }
2299                 if (!signal_pending(current)) {
2300                         schedule();
2301                         continue;
2302                 }
2303                 err = -ERESTARTSYS;
2304                 break;
2305         }
2306         finish_wait(&sci->sc_wait_request, &wait_req.wq);
2307         return err;
2308 }
2309
2310 static void nilfs_segctor_wakeup(struct nilfs_sc_info *sci, int err)
2311 {
2312         struct nilfs_segctor_wait_request *wrq, *n;
2313         unsigned long flags;
2314
2315         spin_lock_irqsave(&sci->sc_wait_request.lock, flags);
2316         list_for_each_entry_safe(wrq, n, &sci->sc_wait_request.task_list,
2317                                  wq.task_list) {
2318                 if (!atomic_read(&wrq->done) &&
2319                     nilfs_cnt32_ge(sci->sc_seq_done, wrq->seq)) {
2320                         wrq->err = err;
2321                         atomic_set(&wrq->done, 1);
2322                 }
2323                 if (atomic_read(&wrq->done)) {
2324                         wrq->wq.func(&wrq->wq,
2325                                      TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
2326                                      0, NULL);
2327                 }
2328         }
2329         spin_unlock_irqrestore(&sci->sc_wait_request.lock, flags);
2330 }
2331
2332 /**
2333  * nilfs_construct_segment - construct a logical segment
2334  * @sb: super block
2335  *
2336  * Return Value: On success, 0 is retured. On errors, one of the following
2337  * negative error code is returned.
2338  *
2339  * %-EROFS - Read only filesystem.
2340  *
2341  * %-EIO - I/O error
2342  *
2343  * %-ENOSPC - No space left on device (only in a panic state).
2344  *
2345  * %-ERESTARTSYS - Interrupted.
2346  *
2347  * %-ENOMEM - Insufficient memory available.
2348  */
2349 int nilfs_construct_segment(struct super_block *sb)
2350 {
2351         struct nilfs_sb_info *sbi = NILFS_SB(sb);
2352         struct nilfs_sc_info *sci = NILFS_SC(sbi);
2353         struct nilfs_transaction_info *ti;
2354         int err;
2355
2356         if (!sci)
2357                 return -EROFS;
2358
2359         /* A call inside transactions causes a deadlock. */
2360         BUG_ON((ti = current->journal_info) && ti->ti_magic == NILFS_TI_MAGIC);
2361
2362         err = nilfs_segctor_sync(sci);
2363         return err;
2364 }
2365
2366 /**
2367  * nilfs_construct_dsync_segment - construct a data-only logical segment
2368  * @sb: super block
2369  * @inode: inode whose data blocks should be written out
2370  * @start: start byte offset
2371  * @end: end byte offset (inclusive)
2372  *
2373  * Return Value: On success, 0 is retured. On errors, one of the following
2374  * negative error code is returned.
2375  *
2376  * %-EROFS - Read only filesystem.
2377  *
2378  * %-EIO - I/O error
2379  *
2380  * %-ENOSPC - No space left on device (only in a panic state).
2381  *
2382  * %-ERESTARTSYS - Interrupted.
2383  *
2384  * %-ENOMEM - Insufficient memory available.
2385  */
2386 int nilfs_construct_dsync_segment(struct super_block *sb, struct inode *inode,
2387                                   loff_t start, loff_t end)
2388 {
2389         struct nilfs_sb_info *sbi = NILFS_SB(sb);
2390         struct nilfs_sc_info *sci = NILFS_SC(sbi);
2391         struct nilfs_inode_info *ii;
2392         struct nilfs_transaction_info ti;
2393         int err = 0;
2394
2395         if (!sci)
2396                 return -EROFS;
2397
2398         nilfs_transaction_lock(sbi, &ti, 0);
2399
2400         ii = NILFS_I(inode);
2401         if (test_bit(NILFS_I_INODE_DIRTY, &ii->i_state) ||
2402             nilfs_test_opt(sbi, STRICT_ORDER) ||
2403             test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags) ||
2404             nilfs_discontinued(sbi->s_nilfs)) {
2405                 nilfs_transaction_unlock(sbi);
2406                 err = nilfs_segctor_sync(sci);
2407                 return err;
2408         }
2409
2410         spin_lock(&sbi->s_inode_lock);
2411         if (!test_bit(NILFS_I_QUEUED, &ii->i_state) &&
2412             !test_bit(NILFS_I_BUSY, &ii->i_state)) {
2413                 spin_unlock(&sbi->s_inode_lock);
2414                 nilfs_transaction_unlock(sbi);
2415                 return 0;
2416         }
2417         spin_unlock(&sbi->s_inode_lock);
2418         sci->sc_dsync_inode = ii;
2419         sci->sc_dsync_start = start;
2420         sci->sc_dsync_end = end;
2421
2422         err = nilfs_segctor_do_construct(sci, SC_LSEG_DSYNC);
2423
2424         nilfs_transaction_unlock(sbi);
2425         return err;
2426 }
2427
2428 struct nilfs_segctor_req {
2429         int mode;
2430         __u32 seq_accepted;
2431         int sc_err;  /* construction failure */
2432         int sb_err;  /* super block writeback failure */
2433 };
2434
2435 #define FLUSH_FILE_BIT  (0x1) /* data file only */
2436 #define FLUSH_DAT_BIT   (1 << NILFS_DAT_INO) /* DAT only */
2437
2438 static void nilfs_segctor_accept(struct nilfs_sc_info *sci,
2439                                  struct nilfs_segctor_req *req)
2440 {
2441         req->sc_err = req->sb_err = 0;
2442         spin_lock(&sci->sc_state_lock);
2443         req->seq_accepted = sci->sc_seq_request;
2444         spin_unlock(&sci->sc_state_lock);
2445
2446         if (sci->sc_timer)
2447                 del_timer_sync(sci->sc_timer);
2448 }
2449
2450 static void nilfs_segctor_notify(struct nilfs_sc_info *sci,
2451                                  struct nilfs_segctor_req *req)
2452 {
2453         /* Clear requests (even when the construction failed) */
2454         spin_lock(&sci->sc_state_lock);
2455
2456         if (req->mode == SC_LSEG_SR) {
2457                 sci->sc_state &= ~NILFS_SEGCTOR_COMMIT;
2458                 sci->sc_seq_done = req->seq_accepted;
2459                 nilfs_segctor_wakeup(sci, req->sc_err ? : req->sb_err);
2460                 sci->sc_flush_request = 0;
2461         } else {
2462                 if (req->mode == SC_FLUSH_FILE)
2463                         sci->sc_flush_request &= ~FLUSH_FILE_BIT;
2464                 else if (req->mode == SC_FLUSH_DAT)
2465                         sci->sc_flush_request &= ~FLUSH_DAT_BIT;
2466
2467                 /* re-enable timer if checkpoint creation was not done */
2468                 if (sci->sc_timer && (sci->sc_state & NILFS_SEGCTOR_COMMIT) &&
2469                     time_before(jiffies, sci->sc_timer->expires))
2470                         add_timer(sci->sc_timer);
2471         }
2472         spin_unlock(&sci->sc_state_lock);
2473 }
2474
2475 static int nilfs_segctor_construct(struct nilfs_sc_info *sci,
2476                                    struct nilfs_segctor_req *req)
2477 {
2478         struct nilfs_sb_info *sbi = sci->sc_sbi;
2479         struct the_nilfs *nilfs = sbi->s_nilfs;
2480         int err = 0;
2481
2482         if (nilfs_discontinued(nilfs))
2483                 req->mode = SC_LSEG_SR;
2484         if (!nilfs_segctor_confirm(sci)) {
2485                 err = nilfs_segctor_do_construct(sci, req->mode);
2486                 req->sc_err = err;
2487         }
2488         if (likely(!err)) {
2489                 if (req->mode != SC_FLUSH_DAT)
2490                         atomic_set(&nilfs->ns_ndirtyblks, 0);
2491                 if (test_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags) &&
2492                     nilfs_discontinued(nilfs)) {
2493                         down_write(&nilfs->ns_sem);
2494                         req->sb_err = nilfs_commit_super(sbi,
2495                                         nilfs_altsb_need_update(nilfs));
2496                         up_write(&nilfs->ns_sem);
2497                 }
2498         }
2499         return err;
2500 }
2501
2502 static void nilfs_construction_timeout(unsigned long data)
2503 {
2504         struct task_struct *p = (struct task_struct *)data;
2505         wake_up_process(p);
2506 }
2507
2508 static void
2509 nilfs_remove_written_gcinodes(struct the_nilfs *nilfs, struct list_head *head)
2510 {
2511         struct nilfs_inode_info *ii, *n;
2512
2513         list_for_each_entry_safe(ii, n, head, i_dirty) {
2514                 if (!test_bit(NILFS_I_UPDATED, &ii->i_state))
2515                         continue;
2516                 hlist_del_init(&ii->vfs_inode.i_hash);
2517                 list_del_init(&ii->i_dirty);
2518                 nilfs_clear_gcinode(&ii->vfs_inode);
2519         }
2520 }
2521
2522 int nilfs_clean_segments(struct super_block *sb, struct nilfs_argv *argv,
2523                          void **kbufs)
2524 {
2525         struct nilfs_sb_info *sbi = NILFS_SB(sb);
2526         struct nilfs_sc_info *sci = NILFS_SC(sbi);
2527         struct the_nilfs *nilfs = sbi->s_nilfs;
2528         struct nilfs_transaction_info ti;
2529         struct nilfs_segctor_req req = { .mode = SC_LSEG_SR };
2530         int err;
2531
2532         if (unlikely(!sci))
2533                 return -EROFS;
2534
2535         nilfs_transaction_lock(sbi, &ti, 1);
2536
2537         err = nilfs_init_gcdat_inode(nilfs);
2538         if (unlikely(err))
2539                 goto out_unlock;
2540
2541         err = nilfs_ioctl_prepare_clean_segments(nilfs, argv, kbufs);
2542         if (unlikely(err))
2543                 goto out_unlock;
2544
2545         sci->sc_freesegs = kbufs[4];
2546         sci->sc_nfreesegs = argv[4].v_nmembs;
2547         list_splice_tail_init(&nilfs->ns_gc_inodes, &sci->sc_gc_inodes);
2548
2549         for (;;) {
2550                 nilfs_segctor_accept(sci, &req);
2551                 err = nilfs_segctor_construct(sci, &req);
2552                 nilfs_remove_written_gcinodes(nilfs, &sci->sc_gc_inodes);
2553                 nilfs_segctor_notify(sci, &req);
2554
2555                 if (likely(!err))
2556                         break;
2557
2558                 nilfs_warning(sb, __func__,
2559                               "segment construction failed. (err=%d)", err);
2560                 set_current_state(TASK_INTERRUPTIBLE);
2561                 schedule_timeout(sci->sc_interval);
2562         }
2563
2564  out_unlock:
2565         sci->sc_freesegs = NULL;
2566         sci->sc_nfreesegs = 0;
2567         nilfs_clear_gcdat_inode(nilfs);
2568         nilfs_transaction_unlock(sbi);
2569         return err;
2570 }
2571
2572 static void nilfs_segctor_thread_construct(struct nilfs_sc_info *sci, int mode)
2573 {
2574         struct nilfs_sb_info *sbi = sci->sc_sbi;
2575         struct nilfs_transaction_info ti;
2576         struct nilfs_segctor_req req = { .mode = mode };
2577
2578         nilfs_transaction_lock(sbi, &ti, 0);
2579
2580         nilfs_segctor_accept(sci, &req);
2581         nilfs_segctor_construct(sci, &req);
2582         nilfs_segctor_notify(sci, &req);
2583
2584         /*
2585          * Unclosed segment should be retried.  We do this using sc_timer.
2586          * Timeout of sc_timer will invoke complete construction which leads
2587          * to close the current logical segment.
2588          */
2589         if (test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags))
2590                 nilfs_segctor_start_timer(sci);
2591
2592         nilfs_transaction_unlock(sbi);
2593 }
2594
2595 static void nilfs_segctor_do_immediate_flush(struct nilfs_sc_info *sci)
2596 {
2597         int mode = 0;
2598         int err;
2599
2600         spin_lock(&sci->sc_state_lock);
2601         mode = (sci->sc_flush_request & FLUSH_DAT_BIT) ?
2602                 SC_FLUSH_DAT : SC_FLUSH_FILE;
2603         spin_unlock(&sci->sc_state_lock);
2604
2605         if (mode) {
2606                 err = nilfs_segctor_do_construct(sci, mode);
2607
2608                 spin_lock(&sci->sc_state_lock);
2609                 sci->sc_flush_request &= (mode == SC_FLUSH_FILE) ?
2610                         ~FLUSH_FILE_BIT : ~FLUSH_DAT_BIT;
2611                 spin_unlock(&sci->sc_state_lock);
2612         }
2613         clear_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags);
2614 }
2615
2616 static int nilfs_segctor_flush_mode(struct nilfs_sc_info *sci)
2617 {
2618         if (!test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags) ||
2619             time_before(jiffies, sci->sc_lseg_stime + sci->sc_mjcp_freq)) {
2620                 if (!(sci->sc_flush_request & ~FLUSH_FILE_BIT))
2621                         return SC_FLUSH_FILE;
2622                 else if (!(sci->sc_flush_request & ~FLUSH_DAT_BIT))
2623                         return SC_FLUSH_DAT;
2624         }
2625         return SC_LSEG_SR;
2626 }
2627
2628 /**
2629  * nilfs_segctor_thread - main loop of the segment constructor thread.
2630  * @arg: pointer to a struct nilfs_sc_info.
2631  *
2632  * nilfs_segctor_thread() initializes a timer and serves as a daemon
2633  * to execute segment constructions.
2634  */
2635 static int nilfs_segctor_thread(void *arg)
2636 {
2637         struct nilfs_sc_info *sci = (struct nilfs_sc_info *)arg;
2638         struct timer_list timer;
2639         int timeout = 0;
2640
2641         init_timer(&timer);
2642         timer.data = (unsigned long)current;
2643         timer.function = nilfs_construction_timeout;
2644         sci->sc_timer = &timer;
2645
2646         /* start sync. */
2647         sci->sc_task = current;
2648         wake_up(&sci->sc_wait_task); /* for nilfs_segctor_start_thread() */
2649         printk(KERN_INFO
2650                "segctord starting. Construction interval = %lu seconds, "
2651                "CP frequency < %lu seconds\n",
2652                sci->sc_interval / HZ, sci->sc_mjcp_freq / HZ);
2653
2654         spin_lock(&sci->sc_state_lock);
2655  loop:
2656         for (;;) {
2657                 int mode;
2658
2659                 if (sci->sc_state & NILFS_SEGCTOR_QUIT)
2660                         goto end_thread;
2661
2662                 if (timeout || sci->sc_seq_request != sci->sc_seq_done)
2663                         mode = SC_LSEG_SR;
2664                 else if (!sci->sc_flush_request)
2665                         break;
2666                 else
2667                         mode = nilfs_segctor_flush_mode(sci);
2668
2669                 spin_unlock(&sci->sc_state_lock);
2670                 nilfs_segctor_thread_construct(sci, mode);
2671                 spin_lock(&sci->sc_state_lock);
2672                 timeout = 0;
2673         }
2674
2675
2676         if (freezing(current)) {
2677                 spin_unlock(&sci->sc_state_lock);
2678                 refrigerator();
2679                 spin_lock(&sci->sc_state_lock);
2680         } else {
2681                 DEFINE_WAIT(wait);
2682                 int should_sleep = 1;
2683                 struct the_nilfs *nilfs;
2684
2685                 prepare_to_wait(&sci->sc_wait_daemon, &wait,
2686                                 TASK_INTERRUPTIBLE);
2687
2688                 if (sci->sc_seq_request != sci->sc_seq_done)
2689                         should_sleep = 0;
2690                 else if (sci->sc_flush_request)
2691                         should_sleep = 0;
2692                 else if (sci->sc_state & NILFS_SEGCTOR_COMMIT)
2693                         should_sleep = time_before(jiffies,
2694                                                    sci->sc_timer->expires);
2695
2696                 if (should_sleep) {
2697                         spin_unlock(&sci->sc_state_lock);
2698                         schedule();
2699                         spin_lock(&sci->sc_state_lock);
2700                 }
2701                 finish_wait(&sci->sc_wait_daemon, &wait);
2702                 timeout = ((sci->sc_state & NILFS_SEGCTOR_COMMIT) &&
2703                            time_after_eq(jiffies, sci->sc_timer->expires));
2704                 nilfs = sci->sc_sbi->s_nilfs;
2705                 if (sci->sc_super->s_dirt && nilfs_sb_need_update(nilfs))
2706                         set_nilfs_discontinued(nilfs);
2707         }
2708         goto loop;
2709
2710  end_thread:
2711         spin_unlock(&sci->sc_state_lock);
2712         del_timer_sync(sci->sc_timer);
2713         sci->sc_timer = NULL;
2714
2715         /* end sync. */
2716         sci->sc_task = NULL;
2717         wake_up(&sci->sc_wait_task); /* for nilfs_segctor_kill_thread() */
2718         return 0;
2719 }
2720
2721 static int nilfs_segctor_start_thread(struct nilfs_sc_info *sci)
2722 {
2723         struct task_struct *t;
2724
2725         t = kthread_run(nilfs_segctor_thread, sci, "segctord");
2726         if (IS_ERR(t)) {
2727                 int err = PTR_ERR(t);
2728
2729                 printk(KERN_ERR "NILFS: error %d creating segctord thread\n",
2730                        err);
2731                 return err;
2732         }
2733         wait_event(sci->sc_wait_task, sci->sc_task != NULL);
2734         return 0;
2735 }
2736
2737 static void nilfs_segctor_kill_thread(struct nilfs_sc_info *sci)
2738 {
2739         sci->sc_state |= NILFS_SEGCTOR_QUIT;
2740
2741         while (sci->sc_task) {
2742                 wake_up(&sci->sc_wait_daemon);
2743                 spin_unlock(&sci->sc_state_lock);
2744                 wait_event(sci->sc_wait_task, sci->sc_task == NULL);
2745                 spin_lock(&sci->sc_state_lock);
2746         }
2747 }
2748
2749 static int nilfs_segctor_init(struct nilfs_sc_info *sci)
2750 {
2751         sci->sc_seq_done = sci->sc_seq_request;
2752
2753         return nilfs_segctor_start_thread(sci);
2754 }
2755
2756 /*
2757  * Setup & clean-up functions
2758  */
2759 static struct nilfs_sc_info *nilfs_segctor_new(struct nilfs_sb_info *sbi)
2760 {
2761         struct nilfs_sc_info *sci;
2762
2763         sci = kzalloc(sizeof(*sci), GFP_KERNEL);
2764         if (!sci)
2765                 return NULL;
2766
2767         sci->sc_sbi = sbi;
2768         sci->sc_super = sbi->s_super;
2769
2770         init_waitqueue_head(&sci->sc_wait_request);
2771         init_waitqueue_head(&sci->sc_wait_daemon);
2772         init_waitqueue_head(&sci->sc_wait_task);
2773         spin_lock_init(&sci->sc_state_lock);
2774         INIT_LIST_HEAD(&sci->sc_dirty_files);
2775         INIT_LIST_HEAD(&sci->sc_segbufs);
2776         INIT_LIST_HEAD(&sci->sc_write_logs);
2777         INIT_LIST_HEAD(&sci->sc_gc_inodes);
2778         INIT_LIST_HEAD(&sci->sc_copied_buffers);
2779
2780         sci->sc_interval = HZ * NILFS_SC_DEFAULT_TIMEOUT;
2781         sci->sc_mjcp_freq = HZ * NILFS_SC_DEFAULT_SR_FREQ;
2782         sci->sc_watermark = NILFS_SC_DEFAULT_WATERMARK;
2783
2784         if (sbi->s_interval)
2785                 sci->sc_interval = sbi->s_interval;
2786         if (sbi->s_watermark)
2787                 sci->sc_watermark = sbi->s_watermark;
2788         return sci;
2789 }
2790
2791 static void nilfs_segctor_write_out(struct nilfs_sc_info *sci)
2792 {
2793         int ret, retrycount = NILFS_SC_CLEANUP_RETRY;
2794
2795         /* The segctord thread was stopped and its timer was removed.
2796            But some tasks remain. */
2797         do {
2798                 struct nilfs_sb_info *sbi = sci->sc_sbi;
2799                 struct nilfs_transaction_info ti;
2800                 struct nilfs_segctor_req req = { .mode = SC_LSEG_SR };
2801
2802                 nilfs_transaction_lock(sbi, &ti, 0);
2803                 nilfs_segctor_accept(sci, &req);
2804                 ret = nilfs_segctor_construct(sci, &req);
2805                 nilfs_segctor_notify(sci, &req);
2806                 nilfs_transaction_unlock(sbi);
2807
2808         } while (ret && retrycount-- > 0);
2809 }
2810
2811 /**
2812  * nilfs_segctor_destroy - destroy the segment constructor.
2813  * @sci: nilfs_sc_info
2814  *
2815  * nilfs_segctor_destroy() kills the segctord thread and frees
2816  * the nilfs_sc_info struct.
2817  * Caller must hold the segment semaphore.
2818  */
2819 static void nilfs_segctor_destroy(struct nilfs_sc_info *sci)
2820 {
2821         struct nilfs_sb_info *sbi = sci->sc_sbi;
2822         int flag;
2823
2824         up_write(&sbi->s_nilfs->ns_segctor_sem);
2825
2826         spin_lock(&sci->sc_state_lock);
2827         nilfs_segctor_kill_thread(sci);
2828         flag = ((sci->sc_state & NILFS_SEGCTOR_COMMIT) || sci->sc_flush_request
2829                 || sci->sc_seq_request != sci->sc_seq_done);
2830         spin_unlock(&sci->sc_state_lock);
2831
2832         if (flag || nilfs_segctor_confirm(sci))
2833                 nilfs_segctor_write_out(sci);
2834
2835         WARN_ON(!list_empty(&sci->sc_copied_buffers));
2836
2837         if (!list_empty(&sci->sc_dirty_files)) {
2838                 nilfs_warning(sbi->s_super, __func__,
2839                               "dirty file(s) after the final construction\n");
2840                 nilfs_dispose_list(sbi, &sci->sc_dirty_files, 1);
2841         }
2842
2843         WARN_ON(!list_empty(&sci->sc_segbufs));
2844         WARN_ON(!list_empty(&sci->sc_write_logs));
2845
2846         down_write(&sbi->s_nilfs->ns_segctor_sem);
2847
2848         kfree(sci);
2849 }
2850
2851 /**
2852  * nilfs_attach_segment_constructor - attach a segment constructor
2853  * @sbi: nilfs_sb_info
2854  *
2855  * nilfs_attach_segment_constructor() allocates a struct nilfs_sc_info,
2856  * initilizes it, and starts the segment constructor.
2857  *
2858  * Return Value: On success, 0 is returned. On error, one of the following
2859  * negative error code is returned.
2860  *
2861  * %-ENOMEM - Insufficient memory available.
2862  */
2863 int nilfs_attach_segment_constructor(struct nilfs_sb_info *sbi)
2864 {
2865         struct the_nilfs *nilfs = sbi->s_nilfs;
2866         int err;
2867
2868         /* Each field of nilfs_segctor is cleared through the initialization
2869            of super-block info */
2870         sbi->s_sc_info = nilfs_segctor_new(sbi);
2871         if (!sbi->s_sc_info)
2872                 return -ENOMEM;
2873
2874         nilfs_attach_writer(nilfs, sbi);
2875         err = nilfs_segctor_init(NILFS_SC(sbi));
2876         if (err) {
2877                 nilfs_detach_writer(nilfs, sbi);
2878                 kfree(sbi->s_sc_info);
2879                 sbi->s_sc_info = NULL;
2880         }
2881         return err;
2882 }
2883
2884 /**
2885  * nilfs_detach_segment_constructor - destroy the segment constructor
2886  * @sbi: nilfs_sb_info
2887  *
2888  * nilfs_detach_segment_constructor() kills the segment constructor daemon,
2889  * frees the struct nilfs_sc_info, and destroy the dirty file list.
2890  */
2891 void nilfs_detach_segment_constructor(struct nilfs_sb_info *sbi)
2892 {
2893         struct the_nilfs *nilfs = sbi->s_nilfs;
2894         LIST_HEAD(garbage_list);
2895
2896         down_write(&nilfs->ns_segctor_sem);
2897         if (NILFS_SC(sbi)) {
2898                 nilfs_segctor_destroy(NILFS_SC(sbi));
2899                 sbi->s_sc_info = NULL;
2900         }
2901
2902         /* Force to free the list of dirty files */
2903         spin_lock(&sbi->s_inode_lock);
2904         if (!list_empty(&sbi->s_dirty_files)) {
2905                 list_splice_init(&sbi->s_dirty_files, &garbage_list);
2906                 nilfs_warning(sbi->s_super, __func__,
2907                               "Non empty dirty list after the last "
2908                               "segment construction\n");
2909         }
2910         spin_unlock(&sbi->s_inode_lock);
2911         up_write(&nilfs->ns_segctor_sem);
2912
2913         nilfs_dispose_list(sbi, &garbage_list, 1);
2914         nilfs_detach_writer(nilfs, sbi);
2915 }