nilfs2: change return type of nilfs_commit_chunk
[safe/jmp/linux-2.6] / fs / nilfs2 / segment.c
1 /*
2  * segment.c - NILFS segment constructor.
3  *
4  * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
19  *
20  * Written by Ryusuke Konishi <ryusuke@osrg.net>
21  *
22  */
23
24 #include <linux/pagemap.h>
25 #include <linux/buffer_head.h>
26 #include <linux/writeback.h>
27 #include <linux/bio.h>
28 #include <linux/completion.h>
29 #include <linux/blkdev.h>
30 #include <linux/backing-dev.h>
31 #include <linux/freezer.h>
32 #include <linux/kthread.h>
33 #include <linux/crc32.h>
34 #include <linux/pagevec.h>
35 #include "nilfs.h"
36 #include "btnode.h"
37 #include "page.h"
38 #include "segment.h"
39 #include "sufile.h"
40 #include "cpfile.h"
41 #include "ifile.h"
42 #include "segbuf.h"
43
44
45 /*
46  * Segment constructor
47  */
48 #define SC_N_INODEVEC   16   /* Size of locally allocated inode vector */
49
50 #define SC_MAX_SEGDELTA 64   /* Upper limit of the number of segments
51                                 appended in collection retry loop */
52
53 /* Construction mode */
54 enum {
55         SC_LSEG_SR = 1, /* Make a logical segment having a super root */
56         SC_LSEG_DSYNC,  /* Flush data blocks of a given file and make
57                            a logical segment without a super root */
58         SC_FLUSH_FILE,  /* Flush data files, leads to segment writes without
59                            creating a checkpoint */
60         SC_FLUSH_DAT,   /* Flush DAT file. This also creates segments without
61                            a checkpoint */
62 };
63
64 /* Stage numbers of dirty block collection */
65 enum {
66         NILFS_ST_INIT = 0,
67         NILFS_ST_GC,            /* Collecting dirty blocks for GC */
68         NILFS_ST_FILE,
69         NILFS_ST_IFILE,
70         NILFS_ST_CPFILE,
71         NILFS_ST_SUFILE,
72         NILFS_ST_DAT,
73         NILFS_ST_SR,            /* Super root */
74         NILFS_ST_DSYNC,         /* Data sync blocks */
75         NILFS_ST_DONE,
76 };
77
78 /* State flags of collection */
79 #define NILFS_CF_NODE           0x0001  /* Collecting node blocks */
80 #define NILFS_CF_IFILE_STARTED  0x0002  /* IFILE stage has started */
81 #define NILFS_CF_SUFREED        0x0004  /* segment usages has been freed */
82 #define NILFS_CF_HISTORY_MASK   (NILFS_CF_IFILE_STARTED | NILFS_CF_SUFREED)
83
84 /* Operations depending on the construction mode and file type */
85 struct nilfs_sc_operations {
86         int (*collect_data)(struct nilfs_sc_info *, struct buffer_head *,
87                             struct inode *);
88         int (*collect_node)(struct nilfs_sc_info *, struct buffer_head *,
89                             struct inode *);
90         int (*collect_bmap)(struct nilfs_sc_info *, struct buffer_head *,
91                             struct inode *);
92         void (*write_data_binfo)(struct nilfs_sc_info *,
93                                  struct nilfs_segsum_pointer *,
94                                  union nilfs_binfo *);
95         void (*write_node_binfo)(struct nilfs_sc_info *,
96                                  struct nilfs_segsum_pointer *,
97                                  union nilfs_binfo *);
98 };
99
100 /*
101  * Other definitions
102  */
103 static void nilfs_segctor_start_timer(struct nilfs_sc_info *);
104 static void nilfs_segctor_do_flush(struct nilfs_sc_info *, int);
105 static void nilfs_segctor_do_immediate_flush(struct nilfs_sc_info *);
106 static void nilfs_dispose_list(struct nilfs_sb_info *, struct list_head *,
107                                int);
108
109 #define nilfs_cnt32_gt(a, b)   \
110         (typecheck(__u32, a) && typecheck(__u32, b) && \
111          ((__s32)(b) - (__s32)(a) < 0))
112 #define nilfs_cnt32_ge(a, b)   \
113         (typecheck(__u32, a) && typecheck(__u32, b) && \
114          ((__s32)(a) - (__s32)(b) >= 0))
115 #define nilfs_cnt32_lt(a, b)  nilfs_cnt32_gt(b, a)
116 #define nilfs_cnt32_le(a, b)  nilfs_cnt32_ge(b, a)
117
118 /*
119  * Transaction
120  */
121 static struct kmem_cache *nilfs_transaction_cachep;
122
123 /**
124  * nilfs_init_transaction_cache - create a cache for nilfs_transaction_info
125  *
126  * nilfs_init_transaction_cache() creates a slab cache for the struct
127  * nilfs_transaction_info.
128  *
129  * Return Value: On success, it returns 0. On error, one of the following
130  * negative error code is returned.
131  *
132  * %-ENOMEM - Insufficient memory available.
133  */
134 int nilfs_init_transaction_cache(void)
135 {
136         nilfs_transaction_cachep =
137                 kmem_cache_create("nilfs2_transaction_cache",
138                                   sizeof(struct nilfs_transaction_info),
139                                   0, SLAB_RECLAIM_ACCOUNT, NULL);
140         return (nilfs_transaction_cachep == NULL) ? -ENOMEM : 0;
141 }
142
143 /**
144  * nilfs_detroy_transaction_cache - destroy the cache for transaction info
145  *
146  * nilfs_destroy_transaction_cache() frees the slab cache for the struct
147  * nilfs_transaction_info.
148  */
149 void nilfs_destroy_transaction_cache(void)
150 {
151         kmem_cache_destroy(nilfs_transaction_cachep);
152 }
153
154 static int nilfs_prepare_segment_lock(struct nilfs_transaction_info *ti)
155 {
156         struct nilfs_transaction_info *cur_ti = current->journal_info;
157         void *save = NULL;
158
159         if (cur_ti) {
160                 if (cur_ti->ti_magic == NILFS_TI_MAGIC)
161                         return ++cur_ti->ti_count;
162                 else {
163                         /*
164                          * If journal_info field is occupied by other FS,
165                          * it is saved and will be restored on
166                          * nilfs_transaction_commit().
167                          */
168                         printk(KERN_WARNING
169                                "NILFS warning: journal info from a different "
170                                "FS\n");
171                         save = current->journal_info;
172                 }
173         }
174         if (!ti) {
175                 ti = kmem_cache_alloc(nilfs_transaction_cachep, GFP_NOFS);
176                 if (!ti)
177                         return -ENOMEM;
178                 ti->ti_flags = NILFS_TI_DYNAMIC_ALLOC;
179         } else {
180                 ti->ti_flags = 0;
181         }
182         ti->ti_count = 0;
183         ti->ti_save = save;
184         ti->ti_magic = NILFS_TI_MAGIC;
185         current->journal_info = ti;
186         return 0;
187 }
188
189 /**
190  * nilfs_transaction_begin - start indivisible file operations.
191  * @sb: super block
192  * @ti: nilfs_transaction_info
193  * @vacancy_check: flags for vacancy rate checks
194  *
195  * nilfs_transaction_begin() acquires a reader/writer semaphore, called
196  * the segment semaphore, to make a segment construction and write tasks
197  * exclusive.  The function is used with nilfs_transaction_commit() in pairs.
198  * The region enclosed by these two functions can be nested.  To avoid a
199  * deadlock, the semaphore is only acquired or released in the outermost call.
200  *
201  * This function allocates a nilfs_transaction_info struct to keep context
202  * information on it.  It is initialized and hooked onto the current task in
203  * the outermost call.  If a pre-allocated struct is given to @ti, it is used
204  * instead; othewise a new struct is assigned from a slab.
205  *
206  * When @vacancy_check flag is set, this function will check the amount of
207  * free space, and will wait for the GC to reclaim disk space if low capacity.
208  *
209  * Return Value: On success, 0 is returned. On error, one of the following
210  * negative error code is returned.
211  *
212  * %-ENOMEM - Insufficient memory available.
213  *
214  * %-ENOSPC - No space left on device
215  */
216 int nilfs_transaction_begin(struct super_block *sb,
217                             struct nilfs_transaction_info *ti,
218                             int vacancy_check)
219 {
220         struct nilfs_sb_info *sbi;
221         struct the_nilfs *nilfs;
222         int ret = nilfs_prepare_segment_lock(ti);
223
224         if (unlikely(ret < 0))
225                 return ret;
226         if (ret > 0)
227                 return 0;
228
229         sbi = NILFS_SB(sb);
230         nilfs = sbi->s_nilfs;
231         down_read(&nilfs->ns_segctor_sem);
232         if (vacancy_check && nilfs_near_disk_full(nilfs)) {
233                 up_read(&nilfs->ns_segctor_sem);
234                 ret = -ENOSPC;
235                 goto failed;
236         }
237         return 0;
238
239  failed:
240         ti = current->journal_info;
241         current->journal_info = ti->ti_save;
242         if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC)
243                 kmem_cache_free(nilfs_transaction_cachep, ti);
244         return ret;
245 }
246
247 /**
248  * nilfs_transaction_commit - commit indivisible file operations.
249  * @sb: super block
250  *
251  * nilfs_transaction_commit() releases the read semaphore which is
252  * acquired by nilfs_transaction_begin(). This is only performed
253  * in outermost call of this function.  If a commit flag is set,
254  * nilfs_transaction_commit() sets a timer to start the segment
255  * constructor.  If a sync flag is set, it starts construction
256  * directly.
257  */
258 int nilfs_transaction_commit(struct super_block *sb)
259 {
260         struct nilfs_transaction_info *ti = current->journal_info;
261         struct nilfs_sb_info *sbi;
262         struct nilfs_sc_info *sci;
263         int err = 0;
264
265         BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC);
266         ti->ti_flags |= NILFS_TI_COMMIT;
267         if (ti->ti_count > 0) {
268                 ti->ti_count--;
269                 return 0;
270         }
271         sbi = NILFS_SB(sb);
272         sci = NILFS_SC(sbi);
273         if (sci != NULL) {
274                 if (ti->ti_flags & NILFS_TI_COMMIT)
275                         nilfs_segctor_start_timer(sci);
276                 if (atomic_read(&sbi->s_nilfs->ns_ndirtyblks) >
277                     sci->sc_watermark)
278                         nilfs_segctor_do_flush(sci, 0);
279         }
280         up_read(&sbi->s_nilfs->ns_segctor_sem);
281         current->journal_info = ti->ti_save;
282
283         if (ti->ti_flags & NILFS_TI_SYNC)
284                 err = nilfs_construct_segment(sb);
285         if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC)
286                 kmem_cache_free(nilfs_transaction_cachep, ti);
287         return err;
288 }
289
290 void nilfs_transaction_abort(struct super_block *sb)
291 {
292         struct nilfs_transaction_info *ti = current->journal_info;
293
294         BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC);
295         if (ti->ti_count > 0) {
296                 ti->ti_count--;
297                 return;
298         }
299         up_read(&NILFS_SB(sb)->s_nilfs->ns_segctor_sem);
300
301         current->journal_info = ti->ti_save;
302         if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC)
303                 kmem_cache_free(nilfs_transaction_cachep, ti);
304 }
305
306 void nilfs_relax_pressure_in_lock(struct super_block *sb)
307 {
308         struct nilfs_sb_info *sbi = NILFS_SB(sb);
309         struct nilfs_sc_info *sci = NILFS_SC(sbi);
310         struct the_nilfs *nilfs = sbi->s_nilfs;
311
312         if (!sci || !sci->sc_flush_request)
313                 return;
314
315         set_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags);
316         up_read(&nilfs->ns_segctor_sem);
317
318         down_write(&nilfs->ns_segctor_sem);
319         if (sci->sc_flush_request &&
320             test_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags)) {
321                 struct nilfs_transaction_info *ti = current->journal_info;
322
323                 ti->ti_flags |= NILFS_TI_WRITER;
324                 nilfs_segctor_do_immediate_flush(sci);
325                 ti->ti_flags &= ~NILFS_TI_WRITER;
326         }
327         downgrade_write(&nilfs->ns_segctor_sem);
328 }
329
330 static void nilfs_transaction_lock(struct nilfs_sb_info *sbi,
331                                    struct nilfs_transaction_info *ti,
332                                    int gcflag)
333 {
334         struct nilfs_transaction_info *cur_ti = current->journal_info;
335
336         WARN_ON(cur_ti);
337         ti->ti_flags = NILFS_TI_WRITER;
338         ti->ti_count = 0;
339         ti->ti_save = cur_ti;
340         ti->ti_magic = NILFS_TI_MAGIC;
341         INIT_LIST_HEAD(&ti->ti_garbage);
342         current->journal_info = ti;
343
344         for (;;) {
345                 down_write(&sbi->s_nilfs->ns_segctor_sem);
346                 if (!test_bit(NILFS_SC_PRIOR_FLUSH, &NILFS_SC(sbi)->sc_flags))
347                         break;
348
349                 nilfs_segctor_do_immediate_flush(NILFS_SC(sbi));
350
351                 up_write(&sbi->s_nilfs->ns_segctor_sem);
352                 yield();
353         }
354         if (gcflag)
355                 ti->ti_flags |= NILFS_TI_GC;
356 }
357
358 static void nilfs_transaction_unlock(struct nilfs_sb_info *sbi)
359 {
360         struct nilfs_transaction_info *ti = current->journal_info;
361
362         BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC);
363         BUG_ON(ti->ti_count > 0);
364
365         up_write(&sbi->s_nilfs->ns_segctor_sem);
366         current->journal_info = ti->ti_save;
367         if (!list_empty(&ti->ti_garbage))
368                 nilfs_dispose_list(sbi, &ti->ti_garbage, 0);
369 }
370
371 static void *nilfs_segctor_map_segsum_entry(struct nilfs_sc_info *sci,
372                                             struct nilfs_segsum_pointer *ssp,
373                                             unsigned bytes)
374 {
375         struct nilfs_segment_buffer *segbuf = sci->sc_curseg;
376         unsigned blocksize = sci->sc_super->s_blocksize;
377         void *p;
378
379         if (unlikely(ssp->offset + bytes > blocksize)) {
380                 ssp->offset = 0;
381                 BUG_ON(NILFS_SEGBUF_BH_IS_LAST(ssp->bh,
382                                                &segbuf->sb_segsum_buffers));
383                 ssp->bh = NILFS_SEGBUF_NEXT_BH(ssp->bh);
384         }
385         p = ssp->bh->b_data + ssp->offset;
386         ssp->offset += bytes;
387         return p;
388 }
389
390 /**
391  * nilfs_segctor_reset_segment_buffer - reset the current segment buffer
392  * @sci: nilfs_sc_info
393  */
394 static int nilfs_segctor_reset_segment_buffer(struct nilfs_sc_info *sci)
395 {
396         struct nilfs_segment_buffer *segbuf = sci->sc_curseg;
397         struct buffer_head *sumbh;
398         unsigned sumbytes;
399         unsigned flags = 0;
400         int err;
401
402         if (nilfs_doing_gc())
403                 flags = NILFS_SS_GC;
404         err = nilfs_segbuf_reset(segbuf, flags, sci->sc_seg_ctime);
405         if (unlikely(err))
406                 return err;
407
408         sumbh = NILFS_SEGBUF_FIRST_BH(&segbuf->sb_segsum_buffers);
409         sumbytes = segbuf->sb_sum.sumbytes;
410         sci->sc_finfo_ptr.bh = sumbh;  sci->sc_finfo_ptr.offset = sumbytes;
411         sci->sc_binfo_ptr.bh = sumbh;  sci->sc_binfo_ptr.offset = sumbytes;
412         sci->sc_blk_cnt = sci->sc_datablk_cnt = 0;
413         return 0;
414 }
415
416 static int nilfs_segctor_feed_segment(struct nilfs_sc_info *sci)
417 {
418         sci->sc_nblk_this_inc += sci->sc_curseg->sb_sum.nblocks;
419         if (NILFS_SEGBUF_IS_LAST(sci->sc_curseg, &sci->sc_segbufs))
420                 return -E2BIG; /* The current segment is filled up
421                                   (internal code) */
422         sci->sc_curseg = NILFS_NEXT_SEGBUF(sci->sc_curseg);
423         return nilfs_segctor_reset_segment_buffer(sci);
424 }
425
426 static int nilfs_segctor_add_super_root(struct nilfs_sc_info *sci)
427 {
428         struct nilfs_segment_buffer *segbuf = sci->sc_curseg;
429         int err;
430
431         if (segbuf->sb_sum.nblocks >= segbuf->sb_rest_blocks) {
432                 err = nilfs_segctor_feed_segment(sci);
433                 if (err)
434                         return err;
435                 segbuf = sci->sc_curseg;
436         }
437         err = nilfs_segbuf_extend_payload(segbuf, &sci->sc_super_root);
438         if (likely(!err))
439                 segbuf->sb_sum.flags |= NILFS_SS_SR;
440         return err;
441 }
442
443 /*
444  * Functions for making segment summary and payloads
445  */
446 static int nilfs_segctor_segsum_block_required(
447         struct nilfs_sc_info *sci, const struct nilfs_segsum_pointer *ssp,
448         unsigned binfo_size)
449 {
450         unsigned blocksize = sci->sc_super->s_blocksize;
451         /* Size of finfo and binfo is enough small against blocksize */
452
453         return ssp->offset + binfo_size +
454                 (!sci->sc_blk_cnt ? sizeof(struct nilfs_finfo) : 0) >
455                 blocksize;
456 }
457
458 static void nilfs_segctor_begin_finfo(struct nilfs_sc_info *sci,
459                                       struct inode *inode)
460 {
461         sci->sc_curseg->sb_sum.nfinfo++;
462         sci->sc_binfo_ptr = sci->sc_finfo_ptr;
463         nilfs_segctor_map_segsum_entry(
464                 sci, &sci->sc_binfo_ptr, sizeof(struct nilfs_finfo));
465
466         if (inode->i_sb && !test_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags))
467                 set_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags);
468         /* skip finfo */
469 }
470
471 static void nilfs_segctor_end_finfo(struct nilfs_sc_info *sci,
472                                     struct inode *inode)
473 {
474         struct nilfs_finfo *finfo;
475         struct nilfs_inode_info *ii;
476         struct nilfs_segment_buffer *segbuf;
477
478         if (sci->sc_blk_cnt == 0)
479                 return;
480
481         ii = NILFS_I(inode);
482         finfo = nilfs_segctor_map_segsum_entry(sci, &sci->sc_finfo_ptr,
483                                                  sizeof(*finfo));
484         finfo->fi_ino = cpu_to_le64(inode->i_ino);
485         finfo->fi_nblocks = cpu_to_le32(sci->sc_blk_cnt);
486         finfo->fi_ndatablk = cpu_to_le32(sci->sc_datablk_cnt);
487         finfo->fi_cno = cpu_to_le64(ii->i_cno);
488
489         segbuf = sci->sc_curseg;
490         segbuf->sb_sum.sumbytes = sci->sc_binfo_ptr.offset +
491                 sci->sc_super->s_blocksize * (segbuf->sb_sum.nsumblk - 1);
492         sci->sc_finfo_ptr = sci->sc_binfo_ptr;
493         sci->sc_blk_cnt = sci->sc_datablk_cnt = 0;
494 }
495
496 static int nilfs_segctor_add_file_block(struct nilfs_sc_info *sci,
497                                         struct buffer_head *bh,
498                                         struct inode *inode,
499                                         unsigned binfo_size)
500 {
501         struct nilfs_segment_buffer *segbuf;
502         int required, err = 0;
503
504  retry:
505         segbuf = sci->sc_curseg;
506         required = nilfs_segctor_segsum_block_required(
507                 sci, &sci->sc_binfo_ptr, binfo_size);
508         if (segbuf->sb_sum.nblocks + required + 1 > segbuf->sb_rest_blocks) {
509                 nilfs_segctor_end_finfo(sci, inode);
510                 err = nilfs_segctor_feed_segment(sci);
511                 if (err)
512                         return err;
513                 goto retry;
514         }
515         if (unlikely(required)) {
516                 err = nilfs_segbuf_extend_segsum(segbuf);
517                 if (unlikely(err))
518                         goto failed;
519         }
520         if (sci->sc_blk_cnt == 0)
521                 nilfs_segctor_begin_finfo(sci, inode);
522
523         nilfs_segctor_map_segsum_entry(sci, &sci->sc_binfo_ptr, binfo_size);
524         /* Substitution to vblocknr is delayed until update_blocknr() */
525         nilfs_segbuf_add_file_buffer(segbuf, bh);
526         sci->sc_blk_cnt++;
527  failed:
528         return err;
529 }
530
531 static int nilfs_handle_bmap_error(int err, const char *fname,
532                                    struct inode *inode, struct super_block *sb)
533 {
534         if (err == -EINVAL) {
535                 nilfs_error(sb, fname, "broken bmap (inode=%lu)\n",
536                             inode->i_ino);
537                 err = -EIO;
538         }
539         return err;
540 }
541
542 /*
543  * Callback functions that enumerate, mark, and collect dirty blocks
544  */
545 static int nilfs_collect_file_data(struct nilfs_sc_info *sci,
546                                    struct buffer_head *bh, struct inode *inode)
547 {
548         int err;
549
550         err = nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh);
551         if (unlikely(err < 0))
552                 return nilfs_handle_bmap_error(err, __func__, inode,
553                                                sci->sc_super);
554
555         err = nilfs_segctor_add_file_block(sci, bh, inode,
556                                            sizeof(struct nilfs_binfo_v));
557         if (!err)
558                 sci->sc_datablk_cnt++;
559         return err;
560 }
561
562 static int nilfs_collect_file_node(struct nilfs_sc_info *sci,
563                                    struct buffer_head *bh,
564                                    struct inode *inode)
565 {
566         int err;
567
568         err = nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh);
569         if (unlikely(err < 0))
570                 return nilfs_handle_bmap_error(err, __func__, inode,
571                                                sci->sc_super);
572         return 0;
573 }
574
575 static int nilfs_collect_file_bmap(struct nilfs_sc_info *sci,
576                                    struct buffer_head *bh,
577                                    struct inode *inode)
578 {
579         WARN_ON(!buffer_dirty(bh));
580         return nilfs_segctor_add_file_block(sci, bh, inode, sizeof(__le64));
581 }
582
583 static void nilfs_write_file_data_binfo(struct nilfs_sc_info *sci,
584                                         struct nilfs_segsum_pointer *ssp,
585                                         union nilfs_binfo *binfo)
586 {
587         struct nilfs_binfo_v *binfo_v = nilfs_segctor_map_segsum_entry(
588                 sci, ssp, sizeof(*binfo_v));
589         *binfo_v = binfo->bi_v;
590 }
591
592 static void nilfs_write_file_node_binfo(struct nilfs_sc_info *sci,
593                                         struct nilfs_segsum_pointer *ssp,
594                                         union nilfs_binfo *binfo)
595 {
596         __le64 *vblocknr = nilfs_segctor_map_segsum_entry(
597                 sci, ssp, sizeof(*vblocknr));
598         *vblocknr = binfo->bi_v.bi_vblocknr;
599 }
600
601 struct nilfs_sc_operations nilfs_sc_file_ops = {
602         .collect_data = nilfs_collect_file_data,
603         .collect_node = nilfs_collect_file_node,
604         .collect_bmap = nilfs_collect_file_bmap,
605         .write_data_binfo = nilfs_write_file_data_binfo,
606         .write_node_binfo = nilfs_write_file_node_binfo,
607 };
608
609 static int nilfs_collect_dat_data(struct nilfs_sc_info *sci,
610                                   struct buffer_head *bh, struct inode *inode)
611 {
612         int err;
613
614         err = nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh);
615         if (unlikely(err < 0))
616                 return nilfs_handle_bmap_error(err, __func__, inode,
617                                                sci->sc_super);
618
619         err = nilfs_segctor_add_file_block(sci, bh, inode, sizeof(__le64));
620         if (!err)
621                 sci->sc_datablk_cnt++;
622         return err;
623 }
624
625 static int nilfs_collect_dat_bmap(struct nilfs_sc_info *sci,
626                                   struct buffer_head *bh, struct inode *inode)
627 {
628         WARN_ON(!buffer_dirty(bh));
629         return nilfs_segctor_add_file_block(sci, bh, inode,
630                                             sizeof(struct nilfs_binfo_dat));
631 }
632
633 static void nilfs_write_dat_data_binfo(struct nilfs_sc_info *sci,
634                                        struct nilfs_segsum_pointer *ssp,
635                                        union nilfs_binfo *binfo)
636 {
637         __le64 *blkoff = nilfs_segctor_map_segsum_entry(sci, ssp,
638                                                           sizeof(*blkoff));
639         *blkoff = binfo->bi_dat.bi_blkoff;
640 }
641
642 static void nilfs_write_dat_node_binfo(struct nilfs_sc_info *sci,
643                                        struct nilfs_segsum_pointer *ssp,
644                                        union nilfs_binfo *binfo)
645 {
646         struct nilfs_binfo_dat *binfo_dat =
647                 nilfs_segctor_map_segsum_entry(sci, ssp, sizeof(*binfo_dat));
648         *binfo_dat = binfo->bi_dat;
649 }
650
651 struct nilfs_sc_operations nilfs_sc_dat_ops = {
652         .collect_data = nilfs_collect_dat_data,
653         .collect_node = nilfs_collect_file_node,
654         .collect_bmap = nilfs_collect_dat_bmap,
655         .write_data_binfo = nilfs_write_dat_data_binfo,
656         .write_node_binfo = nilfs_write_dat_node_binfo,
657 };
658
659 struct nilfs_sc_operations nilfs_sc_dsync_ops = {
660         .collect_data = nilfs_collect_file_data,
661         .collect_node = NULL,
662         .collect_bmap = NULL,
663         .write_data_binfo = nilfs_write_file_data_binfo,
664         .write_node_binfo = NULL,
665 };
666
667 static size_t nilfs_lookup_dirty_data_buffers(struct inode *inode,
668                                               struct list_head *listp,
669                                               size_t nlimit,
670                                               loff_t start, loff_t end)
671 {
672         struct address_space *mapping = inode->i_mapping;
673         struct pagevec pvec;
674         pgoff_t index = 0, last = ULONG_MAX;
675         size_t ndirties = 0;
676         int i;
677
678         if (unlikely(start != 0 || end != LLONG_MAX)) {
679                 /*
680                  * A valid range is given for sync-ing data pages. The
681                  * range is rounded to per-page; extra dirty buffers
682                  * may be included if blocksize < pagesize.
683                  */
684                 index = start >> PAGE_SHIFT;
685                 last = end >> PAGE_SHIFT;
686         }
687         pagevec_init(&pvec, 0);
688  repeat:
689         if (unlikely(index > last) ||
690             !pagevec_lookup_tag(&pvec, mapping, &index, PAGECACHE_TAG_DIRTY,
691                                 min_t(pgoff_t, last - index,
692                                       PAGEVEC_SIZE - 1) + 1))
693                 return ndirties;
694
695         for (i = 0; i < pagevec_count(&pvec); i++) {
696                 struct buffer_head *bh, *head;
697                 struct page *page = pvec.pages[i];
698
699                 if (unlikely(page->index > last))
700                         break;
701
702                 if (mapping->host) {
703                         lock_page(page);
704                         if (!page_has_buffers(page))
705                                 create_empty_buffers(page,
706                                                      1 << inode->i_blkbits, 0);
707                         unlock_page(page);
708                 }
709
710                 bh = head = page_buffers(page);
711                 do {
712                         if (!buffer_dirty(bh))
713                                 continue;
714                         get_bh(bh);
715                         list_add_tail(&bh->b_assoc_buffers, listp);
716                         ndirties++;
717                         if (unlikely(ndirties >= nlimit)) {
718                                 pagevec_release(&pvec);
719                                 cond_resched();
720                                 return ndirties;
721                         }
722                 } while (bh = bh->b_this_page, bh != head);
723         }
724         pagevec_release(&pvec);
725         cond_resched();
726         goto repeat;
727 }
728
729 static void nilfs_lookup_dirty_node_buffers(struct inode *inode,
730                                             struct list_head *listp)
731 {
732         struct nilfs_inode_info *ii = NILFS_I(inode);
733         struct address_space *mapping = &ii->i_btnode_cache;
734         struct pagevec pvec;
735         struct buffer_head *bh, *head;
736         unsigned int i;
737         pgoff_t index = 0;
738
739         pagevec_init(&pvec, 0);
740
741         while (pagevec_lookup_tag(&pvec, mapping, &index, PAGECACHE_TAG_DIRTY,
742                                   PAGEVEC_SIZE)) {
743                 for (i = 0; i < pagevec_count(&pvec); i++) {
744                         bh = head = page_buffers(pvec.pages[i]);
745                         do {
746                                 if (buffer_dirty(bh)) {
747                                         get_bh(bh);
748                                         list_add_tail(&bh->b_assoc_buffers,
749                                                       listp);
750                                 }
751                                 bh = bh->b_this_page;
752                         } while (bh != head);
753                 }
754                 pagevec_release(&pvec);
755                 cond_resched();
756         }
757 }
758
759 static void nilfs_dispose_list(struct nilfs_sb_info *sbi,
760                                struct list_head *head, int force)
761 {
762         struct nilfs_inode_info *ii, *n;
763         struct nilfs_inode_info *ivec[SC_N_INODEVEC], **pii;
764         unsigned nv = 0;
765
766         while (!list_empty(head)) {
767                 spin_lock(&sbi->s_inode_lock);
768                 list_for_each_entry_safe(ii, n, head, i_dirty) {
769                         list_del_init(&ii->i_dirty);
770                         if (force) {
771                                 if (unlikely(ii->i_bh)) {
772                                         brelse(ii->i_bh);
773                                         ii->i_bh = NULL;
774                                 }
775                         } else if (test_bit(NILFS_I_DIRTY, &ii->i_state)) {
776                                 set_bit(NILFS_I_QUEUED, &ii->i_state);
777                                 list_add_tail(&ii->i_dirty,
778                                               &sbi->s_dirty_files);
779                                 continue;
780                         }
781                         ivec[nv++] = ii;
782                         if (nv == SC_N_INODEVEC)
783                                 break;
784                 }
785                 spin_unlock(&sbi->s_inode_lock);
786
787                 for (pii = ivec; nv > 0; pii++, nv--)
788                         iput(&(*pii)->vfs_inode);
789         }
790 }
791
792 static int nilfs_test_metadata_dirty(struct nilfs_sb_info *sbi)
793 {
794         struct the_nilfs *nilfs = sbi->s_nilfs;
795         int ret = 0;
796
797         if (nilfs_mdt_fetch_dirty(sbi->s_ifile))
798                 ret++;
799         if (nilfs_mdt_fetch_dirty(nilfs->ns_cpfile))
800                 ret++;
801         if (nilfs_mdt_fetch_dirty(nilfs->ns_sufile))
802                 ret++;
803         if (ret || nilfs_doing_gc())
804                 if (nilfs_mdt_fetch_dirty(nilfs_dat_inode(nilfs)))
805                         ret++;
806         return ret;
807 }
808
809 static int nilfs_segctor_clean(struct nilfs_sc_info *sci)
810 {
811         return list_empty(&sci->sc_dirty_files) &&
812                 !test_bit(NILFS_SC_DIRTY, &sci->sc_flags) &&
813                 sci->sc_nfreesegs == 0 &&
814                 (!nilfs_doing_gc() || list_empty(&sci->sc_gc_inodes));
815 }
816
817 static int nilfs_segctor_confirm(struct nilfs_sc_info *sci)
818 {
819         struct nilfs_sb_info *sbi = sci->sc_sbi;
820         int ret = 0;
821
822         if (nilfs_test_metadata_dirty(sbi))
823                 set_bit(NILFS_SC_DIRTY, &sci->sc_flags);
824
825         spin_lock(&sbi->s_inode_lock);
826         if (list_empty(&sbi->s_dirty_files) && nilfs_segctor_clean(sci))
827                 ret++;
828
829         spin_unlock(&sbi->s_inode_lock);
830         return ret;
831 }
832
833 static void nilfs_segctor_clear_metadata_dirty(struct nilfs_sc_info *sci)
834 {
835         struct nilfs_sb_info *sbi = sci->sc_sbi;
836         struct the_nilfs *nilfs = sbi->s_nilfs;
837
838         nilfs_mdt_clear_dirty(sbi->s_ifile);
839         nilfs_mdt_clear_dirty(nilfs->ns_cpfile);
840         nilfs_mdt_clear_dirty(nilfs->ns_sufile);
841         nilfs_mdt_clear_dirty(nilfs_dat_inode(nilfs));
842 }
843
844 static int nilfs_segctor_create_checkpoint(struct nilfs_sc_info *sci)
845 {
846         struct the_nilfs *nilfs = sci->sc_sbi->s_nilfs;
847         struct buffer_head *bh_cp;
848         struct nilfs_checkpoint *raw_cp;
849         int err;
850
851         /* XXX: this interface will be changed */
852         err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, nilfs->ns_cno, 1,
853                                           &raw_cp, &bh_cp);
854         if (likely(!err)) {
855                 /* The following code is duplicated with cpfile.  But, it is
856                    needed to collect the checkpoint even if it was not newly
857                    created */
858                 nilfs_mdt_mark_buffer_dirty(bh_cp);
859                 nilfs_mdt_mark_dirty(nilfs->ns_cpfile);
860                 nilfs_cpfile_put_checkpoint(
861                         nilfs->ns_cpfile, nilfs->ns_cno, bh_cp);
862         } else
863                 WARN_ON(err == -EINVAL || err == -ENOENT);
864
865         return err;
866 }
867
868 static int nilfs_segctor_fill_in_checkpoint(struct nilfs_sc_info *sci)
869 {
870         struct nilfs_sb_info *sbi = sci->sc_sbi;
871         struct the_nilfs *nilfs = sbi->s_nilfs;
872         struct buffer_head *bh_cp;
873         struct nilfs_checkpoint *raw_cp;
874         int err;
875
876         err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, nilfs->ns_cno, 0,
877                                           &raw_cp, &bh_cp);
878         if (unlikely(err)) {
879                 WARN_ON(err == -EINVAL || err == -ENOENT);
880                 goto failed_ibh;
881         }
882         raw_cp->cp_snapshot_list.ssl_next = 0;
883         raw_cp->cp_snapshot_list.ssl_prev = 0;
884         raw_cp->cp_inodes_count =
885                 cpu_to_le64(atomic_read(&sbi->s_inodes_count));
886         raw_cp->cp_blocks_count =
887                 cpu_to_le64(atomic_read(&sbi->s_blocks_count));
888         raw_cp->cp_nblk_inc =
889                 cpu_to_le64(sci->sc_nblk_inc + sci->sc_nblk_this_inc);
890         raw_cp->cp_create = cpu_to_le64(sci->sc_seg_ctime);
891         raw_cp->cp_cno = cpu_to_le64(nilfs->ns_cno);
892
893         if (test_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags))
894                 nilfs_checkpoint_clear_minor(raw_cp);
895         else
896                 nilfs_checkpoint_set_minor(raw_cp);
897
898         nilfs_write_inode_common(sbi->s_ifile, &raw_cp->cp_ifile_inode, 1);
899         nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, nilfs->ns_cno, bh_cp);
900         return 0;
901
902  failed_ibh:
903         return err;
904 }
905
906 static void nilfs_fill_in_file_bmap(struct inode *ifile,
907                                     struct nilfs_inode_info *ii)
908
909 {
910         struct buffer_head *ibh;
911         struct nilfs_inode *raw_inode;
912
913         if (test_bit(NILFS_I_BMAP, &ii->i_state)) {
914                 ibh = ii->i_bh;
915                 BUG_ON(!ibh);
916                 raw_inode = nilfs_ifile_map_inode(ifile, ii->vfs_inode.i_ino,
917                                                   ibh);
918                 nilfs_bmap_write(ii->i_bmap, raw_inode);
919                 nilfs_ifile_unmap_inode(ifile, ii->vfs_inode.i_ino, ibh);
920         }
921 }
922
923 static void nilfs_segctor_fill_in_file_bmap(struct nilfs_sc_info *sci,
924                                             struct inode *ifile)
925 {
926         struct nilfs_inode_info *ii;
927
928         list_for_each_entry(ii, &sci->sc_dirty_files, i_dirty) {
929                 nilfs_fill_in_file_bmap(ifile, ii);
930                 set_bit(NILFS_I_COLLECTED, &ii->i_state);
931         }
932 }
933
934 /*
935  * CRC calculation routines
936  */
937 static void nilfs_fill_in_super_root_crc(struct buffer_head *bh_sr, u32 seed)
938 {
939         struct nilfs_super_root *raw_sr =
940                 (struct nilfs_super_root *)bh_sr->b_data;
941         u32 crc;
942
943         crc = crc32_le(seed,
944                        (unsigned char *)raw_sr + sizeof(raw_sr->sr_sum),
945                        NILFS_SR_BYTES - sizeof(raw_sr->sr_sum));
946         raw_sr->sr_sum = cpu_to_le32(crc);
947 }
948
949 static void nilfs_segctor_fill_in_checksums(struct nilfs_sc_info *sci,
950                                             u32 seed)
951 {
952         struct nilfs_segment_buffer *segbuf;
953
954         if (sci->sc_super_root)
955                 nilfs_fill_in_super_root_crc(sci->sc_super_root, seed);
956
957         list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
958                 nilfs_segbuf_fill_in_segsum_crc(segbuf, seed);
959                 nilfs_segbuf_fill_in_data_crc(segbuf, seed);
960         }
961 }
962
963 static void nilfs_segctor_fill_in_super_root(struct nilfs_sc_info *sci,
964                                              struct the_nilfs *nilfs)
965 {
966         struct buffer_head *bh_sr = sci->sc_super_root;
967         struct nilfs_super_root *raw_sr =
968                 (struct nilfs_super_root *)bh_sr->b_data;
969         unsigned isz = nilfs->ns_inode_size;
970
971         raw_sr->sr_bytes = cpu_to_le16(NILFS_SR_BYTES);
972         raw_sr->sr_nongc_ctime
973                 = cpu_to_le64(nilfs_doing_gc() ?
974                               nilfs->ns_nongc_ctime : sci->sc_seg_ctime);
975         raw_sr->sr_flags = 0;
976
977         nilfs_write_inode_common(nilfs_dat_inode(nilfs), (void *)raw_sr +
978                                  NILFS_SR_DAT_OFFSET(isz), 1);
979         nilfs_write_inode_common(nilfs->ns_cpfile, (void *)raw_sr +
980                                  NILFS_SR_CPFILE_OFFSET(isz), 1);
981         nilfs_write_inode_common(nilfs->ns_sufile, (void *)raw_sr +
982                                  NILFS_SR_SUFILE_OFFSET(isz), 1);
983 }
984
985 static void nilfs_redirty_inodes(struct list_head *head)
986 {
987         struct nilfs_inode_info *ii;
988
989         list_for_each_entry(ii, head, i_dirty) {
990                 if (test_bit(NILFS_I_COLLECTED, &ii->i_state))
991                         clear_bit(NILFS_I_COLLECTED, &ii->i_state);
992         }
993 }
994
995 static void nilfs_drop_collected_inodes(struct list_head *head)
996 {
997         struct nilfs_inode_info *ii;
998
999         list_for_each_entry(ii, head, i_dirty) {
1000                 if (!test_and_clear_bit(NILFS_I_COLLECTED, &ii->i_state))
1001                         continue;
1002
1003                 clear_bit(NILFS_I_INODE_DIRTY, &ii->i_state);
1004                 set_bit(NILFS_I_UPDATED, &ii->i_state);
1005         }
1006 }
1007
1008 static int nilfs_segctor_apply_buffers(struct nilfs_sc_info *sci,
1009                                        struct inode *inode,
1010                                        struct list_head *listp,
1011                                        int (*collect)(struct nilfs_sc_info *,
1012                                                       struct buffer_head *,
1013                                                       struct inode *))
1014 {
1015         struct buffer_head *bh, *n;
1016         int err = 0;
1017
1018         if (collect) {
1019                 list_for_each_entry_safe(bh, n, listp, b_assoc_buffers) {
1020                         list_del_init(&bh->b_assoc_buffers);
1021                         err = collect(sci, bh, inode);
1022                         brelse(bh);
1023                         if (unlikely(err))
1024                                 goto dispose_buffers;
1025                 }
1026                 return 0;
1027         }
1028
1029  dispose_buffers:
1030         while (!list_empty(listp)) {
1031                 bh = list_entry(listp->next, struct buffer_head,
1032                                 b_assoc_buffers);
1033                 list_del_init(&bh->b_assoc_buffers);
1034                 brelse(bh);
1035         }
1036         return err;
1037 }
1038
1039 static size_t nilfs_segctor_buffer_rest(struct nilfs_sc_info *sci)
1040 {
1041         /* Remaining number of blocks within segment buffer */
1042         return sci->sc_segbuf_nblocks -
1043                 (sci->sc_nblk_this_inc + sci->sc_curseg->sb_sum.nblocks);
1044 }
1045
1046 static int nilfs_segctor_scan_file(struct nilfs_sc_info *sci,
1047                                    struct inode *inode,
1048                                    struct nilfs_sc_operations *sc_ops)
1049 {
1050         LIST_HEAD(data_buffers);
1051         LIST_HEAD(node_buffers);
1052         int err;
1053
1054         if (!(sci->sc_stage.flags & NILFS_CF_NODE)) {
1055                 size_t n, rest = nilfs_segctor_buffer_rest(sci);
1056
1057                 n = nilfs_lookup_dirty_data_buffers(
1058                         inode, &data_buffers, rest + 1, 0, LLONG_MAX);
1059                 if (n > rest) {
1060                         err = nilfs_segctor_apply_buffers(
1061                                 sci, inode, &data_buffers,
1062                                 sc_ops->collect_data);
1063                         BUG_ON(!err); /* always receive -E2BIG or true error */
1064                         goto break_or_fail;
1065                 }
1066         }
1067         nilfs_lookup_dirty_node_buffers(inode, &node_buffers);
1068
1069         if (!(sci->sc_stage.flags & NILFS_CF_NODE)) {
1070                 err = nilfs_segctor_apply_buffers(
1071                         sci, inode, &data_buffers, sc_ops->collect_data);
1072                 if (unlikely(err)) {
1073                         /* dispose node list */
1074                         nilfs_segctor_apply_buffers(
1075                                 sci, inode, &node_buffers, NULL);
1076                         goto break_or_fail;
1077                 }
1078                 sci->sc_stage.flags |= NILFS_CF_NODE;
1079         }
1080         /* Collect node */
1081         err = nilfs_segctor_apply_buffers(
1082                 sci, inode, &node_buffers, sc_ops->collect_node);
1083         if (unlikely(err))
1084                 goto break_or_fail;
1085
1086         nilfs_bmap_lookup_dirty_buffers(NILFS_I(inode)->i_bmap, &node_buffers);
1087         err = nilfs_segctor_apply_buffers(
1088                 sci, inode, &node_buffers, sc_ops->collect_bmap);
1089         if (unlikely(err))
1090                 goto break_or_fail;
1091
1092         nilfs_segctor_end_finfo(sci, inode);
1093         sci->sc_stage.flags &= ~NILFS_CF_NODE;
1094
1095  break_or_fail:
1096         return err;
1097 }
1098
1099 static int nilfs_segctor_scan_file_dsync(struct nilfs_sc_info *sci,
1100                                          struct inode *inode)
1101 {
1102         LIST_HEAD(data_buffers);
1103         size_t n, rest = nilfs_segctor_buffer_rest(sci);
1104         int err;
1105
1106         n = nilfs_lookup_dirty_data_buffers(inode, &data_buffers, rest + 1,
1107                                             sci->sc_dsync_start,
1108                                             sci->sc_dsync_end);
1109
1110         err = nilfs_segctor_apply_buffers(sci, inode, &data_buffers,
1111                                           nilfs_collect_file_data);
1112         if (!err) {
1113                 nilfs_segctor_end_finfo(sci, inode);
1114                 BUG_ON(n > rest);
1115                 /* always receive -E2BIG or true error if n > rest */
1116         }
1117         return err;
1118 }
1119
1120 static int nilfs_segctor_collect_blocks(struct nilfs_sc_info *sci, int mode)
1121 {
1122         struct nilfs_sb_info *sbi = sci->sc_sbi;
1123         struct the_nilfs *nilfs = sbi->s_nilfs;
1124         struct list_head *head;
1125         struct nilfs_inode_info *ii;
1126         size_t ndone;
1127         int err = 0;
1128
1129         switch (sci->sc_stage.scnt) {
1130         case NILFS_ST_INIT:
1131                 /* Pre-processes */
1132                 sci->sc_stage.flags = 0;
1133
1134                 if (!test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags)) {
1135                         sci->sc_nblk_inc = 0;
1136                         sci->sc_curseg->sb_sum.flags = NILFS_SS_LOGBGN;
1137                         if (mode == SC_LSEG_DSYNC) {
1138                                 sci->sc_stage.scnt = NILFS_ST_DSYNC;
1139                                 goto dsync_mode;
1140                         }
1141                 }
1142
1143                 sci->sc_stage.dirty_file_ptr = NULL;
1144                 sci->sc_stage.gc_inode_ptr = NULL;
1145                 if (mode == SC_FLUSH_DAT) {
1146                         sci->sc_stage.scnt = NILFS_ST_DAT;
1147                         goto dat_stage;
1148                 }
1149                 sci->sc_stage.scnt++;  /* Fall through */
1150         case NILFS_ST_GC:
1151                 if (nilfs_doing_gc()) {
1152                         head = &sci->sc_gc_inodes;
1153                         ii = list_prepare_entry(sci->sc_stage.gc_inode_ptr,
1154                                                 head, i_dirty);
1155                         list_for_each_entry_continue(ii, head, i_dirty) {
1156                                 err = nilfs_segctor_scan_file(
1157                                         sci, &ii->vfs_inode,
1158                                         &nilfs_sc_file_ops);
1159                                 if (unlikely(err)) {
1160                                         sci->sc_stage.gc_inode_ptr = list_entry(
1161                                                 ii->i_dirty.prev,
1162                                                 struct nilfs_inode_info,
1163                                                 i_dirty);
1164                                         goto break_or_fail;
1165                                 }
1166                                 set_bit(NILFS_I_COLLECTED, &ii->i_state);
1167                         }
1168                         sci->sc_stage.gc_inode_ptr = NULL;
1169                 }
1170                 sci->sc_stage.scnt++;  /* Fall through */
1171         case NILFS_ST_FILE:
1172                 head = &sci->sc_dirty_files;
1173                 ii = list_prepare_entry(sci->sc_stage.dirty_file_ptr, head,
1174                                         i_dirty);
1175                 list_for_each_entry_continue(ii, head, i_dirty) {
1176                         clear_bit(NILFS_I_DIRTY, &ii->i_state);
1177
1178                         err = nilfs_segctor_scan_file(sci, &ii->vfs_inode,
1179                                                       &nilfs_sc_file_ops);
1180                         if (unlikely(err)) {
1181                                 sci->sc_stage.dirty_file_ptr =
1182                                         list_entry(ii->i_dirty.prev,
1183                                                    struct nilfs_inode_info,
1184                                                    i_dirty);
1185                                 goto break_or_fail;
1186                         }
1187                         /* sci->sc_stage.dirty_file_ptr = NILFS_I(inode); */
1188                         /* XXX: required ? */
1189                 }
1190                 sci->sc_stage.dirty_file_ptr = NULL;
1191                 if (mode == SC_FLUSH_FILE) {
1192                         sci->sc_stage.scnt = NILFS_ST_DONE;
1193                         return 0;
1194                 }
1195                 sci->sc_stage.scnt++;
1196                 sci->sc_stage.flags |= NILFS_CF_IFILE_STARTED;
1197                 /* Fall through */
1198         case NILFS_ST_IFILE:
1199                 err = nilfs_segctor_scan_file(sci, sbi->s_ifile,
1200                                               &nilfs_sc_file_ops);
1201                 if (unlikely(err))
1202                         break;
1203                 sci->sc_stage.scnt++;
1204                 /* Creating a checkpoint */
1205                 err = nilfs_segctor_create_checkpoint(sci);
1206                 if (unlikely(err))
1207                         break;
1208                 /* Fall through */
1209         case NILFS_ST_CPFILE:
1210                 err = nilfs_segctor_scan_file(sci, nilfs->ns_cpfile,
1211                                               &nilfs_sc_file_ops);
1212                 if (unlikely(err))
1213                         break;
1214                 sci->sc_stage.scnt++;  /* Fall through */
1215         case NILFS_ST_SUFILE:
1216                 err = nilfs_sufile_freev(nilfs->ns_sufile, sci->sc_freesegs,
1217                                          sci->sc_nfreesegs, &ndone);
1218                 if (unlikely(err)) {
1219                         nilfs_sufile_cancel_freev(nilfs->ns_sufile,
1220                                                   sci->sc_freesegs, ndone,
1221                                                   NULL);
1222                         break;
1223                 }
1224                 sci->sc_stage.flags |= NILFS_CF_SUFREED;
1225
1226                 err = nilfs_segctor_scan_file(sci, nilfs->ns_sufile,
1227                                               &nilfs_sc_file_ops);
1228                 if (unlikely(err))
1229                         break;
1230                 sci->sc_stage.scnt++;  /* Fall through */
1231         case NILFS_ST_DAT:
1232  dat_stage:
1233                 err = nilfs_segctor_scan_file(sci, nilfs_dat_inode(nilfs),
1234                                               &nilfs_sc_dat_ops);
1235                 if (unlikely(err))
1236                         break;
1237                 if (mode == SC_FLUSH_DAT) {
1238                         sci->sc_stage.scnt = NILFS_ST_DONE;
1239                         return 0;
1240                 }
1241                 sci->sc_stage.scnt++;  /* Fall through */
1242         case NILFS_ST_SR:
1243                 if (mode == SC_LSEG_SR) {
1244                         /* Appending a super root */
1245                         err = nilfs_segctor_add_super_root(sci);
1246                         if (unlikely(err))
1247                                 break;
1248                 }
1249                 /* End of a logical segment */
1250                 sci->sc_curseg->sb_sum.flags |= NILFS_SS_LOGEND;
1251                 sci->sc_stage.scnt = NILFS_ST_DONE;
1252                 return 0;
1253         case NILFS_ST_DSYNC:
1254  dsync_mode:
1255                 sci->sc_curseg->sb_sum.flags |= NILFS_SS_SYNDT;
1256                 ii = sci->sc_dsync_inode;
1257                 if (!test_bit(NILFS_I_BUSY, &ii->i_state))
1258                         break;
1259
1260                 err = nilfs_segctor_scan_file_dsync(sci, &ii->vfs_inode);
1261                 if (unlikely(err))
1262                         break;
1263                 sci->sc_curseg->sb_sum.flags |= NILFS_SS_LOGEND;
1264                 sci->sc_stage.scnt = NILFS_ST_DONE;
1265                 return 0;
1266         case NILFS_ST_DONE:
1267                 return 0;
1268         default:
1269                 BUG();
1270         }
1271
1272  break_or_fail:
1273         return err;
1274 }
1275
1276 static int nilfs_segctor_begin_construction(struct nilfs_sc_info *sci,
1277                                             struct the_nilfs *nilfs)
1278 {
1279         struct nilfs_segment_buffer *segbuf, *n;
1280         __u64 nextnum;
1281         int err;
1282
1283         if (list_empty(&sci->sc_segbufs)) {
1284                 segbuf = nilfs_segbuf_new(sci->sc_super);
1285                 if (unlikely(!segbuf))
1286                         return -ENOMEM;
1287                 list_add(&segbuf->sb_list, &sci->sc_segbufs);
1288         } else
1289                 segbuf = NILFS_FIRST_SEGBUF(&sci->sc_segbufs);
1290
1291         nilfs_segbuf_map(segbuf, nilfs->ns_segnum, nilfs->ns_pseg_offset,
1292                          nilfs);
1293
1294         if (segbuf->sb_rest_blocks < NILFS_PSEG_MIN_BLOCKS) {
1295                 nilfs_shift_to_next_segment(nilfs);
1296                 nilfs_segbuf_map(segbuf, nilfs->ns_segnum, 0, nilfs);
1297         }
1298         sci->sc_segbuf_nblocks = segbuf->sb_rest_blocks;
1299
1300         err = nilfs_sufile_mark_dirty(nilfs->ns_sufile, segbuf->sb_segnum);
1301         if (unlikely(err))
1302                 return err;
1303
1304         if (nilfs->ns_segnum == nilfs->ns_nextnum) {
1305                 /* Start from the head of a new full segment */
1306                 err = nilfs_sufile_alloc(nilfs->ns_sufile, &nextnum);
1307                 if (unlikely(err))
1308                         return err;
1309         } else
1310                 nextnum = nilfs->ns_nextnum;
1311
1312         segbuf->sb_sum.seg_seq = nilfs->ns_seg_seq;
1313         nilfs_segbuf_set_next_segnum(segbuf, nextnum, nilfs);
1314
1315         /* truncating segment buffers */
1316         list_for_each_entry_safe_continue(segbuf, n, &sci->sc_segbufs,
1317                                           sb_list) {
1318                 list_del_init(&segbuf->sb_list);
1319                 nilfs_segbuf_free(segbuf);
1320         }
1321         return 0;
1322 }
1323
1324 static int nilfs_segctor_extend_segments(struct nilfs_sc_info *sci,
1325                                          struct the_nilfs *nilfs, int nadd)
1326 {
1327         struct nilfs_segment_buffer *segbuf, *prev, *n;
1328         struct inode *sufile = nilfs->ns_sufile;
1329         __u64 nextnextnum;
1330         LIST_HEAD(list);
1331         int err, ret, i;
1332
1333         prev = NILFS_LAST_SEGBUF(&sci->sc_segbufs);
1334         /*
1335          * Since the segment specified with nextnum might be allocated during
1336          * the previous construction, the buffer including its segusage may
1337          * not be dirty.  The following call ensures that the buffer is dirty
1338          * and will pin the buffer on memory until the sufile is written.
1339          */
1340         err = nilfs_sufile_mark_dirty(sufile, prev->sb_nextnum);
1341         if (unlikely(err))
1342                 return err;
1343
1344         for (i = 0; i < nadd; i++) {
1345                 /* extend segment info */
1346                 err = -ENOMEM;
1347                 segbuf = nilfs_segbuf_new(sci->sc_super);
1348                 if (unlikely(!segbuf))
1349                         goto failed;
1350
1351                 /* map this buffer to region of segment on-disk */
1352                 nilfs_segbuf_map(segbuf, prev->sb_nextnum, 0, nilfs);
1353                 sci->sc_segbuf_nblocks += segbuf->sb_rest_blocks;
1354
1355                 /* allocate the next next full segment */
1356                 err = nilfs_sufile_alloc(sufile, &nextnextnum);
1357                 if (unlikely(err))
1358                         goto failed_segbuf;
1359
1360                 segbuf->sb_sum.seg_seq = prev->sb_sum.seg_seq + 1;
1361                 nilfs_segbuf_set_next_segnum(segbuf, nextnextnum, nilfs);
1362
1363                 list_add_tail(&segbuf->sb_list, &list);
1364                 prev = segbuf;
1365         }
1366         list_splice(&list, sci->sc_segbufs.prev);
1367         return 0;
1368
1369  failed_segbuf:
1370         nilfs_segbuf_free(segbuf);
1371  failed:
1372         list_for_each_entry_safe(segbuf, n, &list, sb_list) {
1373                 ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
1374                 WARN_ON(ret); /* never fails */
1375                 list_del_init(&segbuf->sb_list);
1376                 nilfs_segbuf_free(segbuf);
1377         }
1378         return err;
1379 }
1380
1381 static void nilfs_segctor_free_incomplete_segments(struct nilfs_sc_info *sci,
1382                                                    struct the_nilfs *nilfs)
1383 {
1384         struct nilfs_segment_buffer *segbuf;
1385         int ret, done = 0;
1386
1387         segbuf = NILFS_FIRST_SEGBUF(&sci->sc_segbufs);
1388         if (nilfs->ns_nextnum != segbuf->sb_nextnum) {
1389                 ret = nilfs_sufile_free(nilfs->ns_sufile, segbuf->sb_nextnum);
1390                 WARN_ON(ret); /* never fails */
1391         }
1392         if (segbuf->sb_io_error) {
1393                 /* Case 1: The first segment failed */
1394                 if (segbuf->sb_pseg_start != segbuf->sb_fseg_start)
1395                         /* Case 1a:  Partial segment appended into an existing
1396                            segment */
1397                         nilfs_terminate_segment(nilfs, segbuf->sb_fseg_start,
1398                                                 segbuf->sb_fseg_end);
1399                 else /* Case 1b:  New full segment */
1400                         set_nilfs_discontinued(nilfs);
1401                 done++;
1402         }
1403
1404         list_for_each_entry_continue(segbuf, &sci->sc_segbufs, sb_list) {
1405                 ret = nilfs_sufile_free(nilfs->ns_sufile, segbuf->sb_nextnum);
1406                 WARN_ON(ret); /* never fails */
1407                 if (!done && segbuf->sb_io_error) {
1408                         if (segbuf->sb_segnum != nilfs->ns_nextnum)
1409                                 /* Case 2: extended segment (!= next) failed */
1410                                 nilfs_sufile_set_error(nilfs->ns_sufile,
1411                                                        segbuf->sb_segnum);
1412                         done++;
1413                 }
1414         }
1415 }
1416
1417 static void nilfs_segctor_clear_segment_buffers(struct nilfs_sc_info *sci)
1418 {
1419         struct nilfs_segment_buffer *segbuf;
1420
1421         list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list)
1422                 nilfs_segbuf_clear(segbuf);
1423         sci->sc_super_root = NULL;
1424 }
1425
1426 static void nilfs_segctor_destroy_segment_buffers(struct nilfs_sc_info *sci)
1427 {
1428         struct nilfs_segment_buffer *segbuf;
1429
1430         while (!list_empty(&sci->sc_segbufs)) {
1431                 segbuf = NILFS_FIRST_SEGBUF(&sci->sc_segbufs);
1432                 list_del_init(&segbuf->sb_list);
1433                 nilfs_segbuf_free(segbuf);
1434         }
1435         /* sci->sc_curseg = NULL; */
1436 }
1437
1438 static void nilfs_segctor_end_construction(struct nilfs_sc_info *sci,
1439                                            struct the_nilfs *nilfs, int err)
1440 {
1441         if (unlikely(err)) {
1442                 nilfs_segctor_free_incomplete_segments(sci, nilfs);
1443                 if (sci->sc_stage.flags & NILFS_CF_SUFREED) {
1444                         int ret;
1445
1446                         ret = nilfs_sufile_cancel_freev(nilfs->ns_sufile,
1447                                                         sci->sc_freesegs,
1448                                                         sci->sc_nfreesegs,
1449                                                         NULL);
1450                         WARN_ON(ret); /* do not happen */
1451                 }
1452         }
1453         nilfs_segctor_clear_segment_buffers(sci);
1454 }
1455
1456 static void nilfs_segctor_update_segusage(struct nilfs_sc_info *sci,
1457                                           struct inode *sufile)
1458 {
1459         struct nilfs_segment_buffer *segbuf;
1460         unsigned long live_blocks;
1461         int ret;
1462
1463         list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
1464                 live_blocks = segbuf->sb_sum.nblocks +
1465                         (segbuf->sb_pseg_start - segbuf->sb_fseg_start);
1466                 ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum,
1467                                                      live_blocks,
1468                                                      sci->sc_seg_ctime);
1469                 WARN_ON(ret); /* always succeed because the segusage is dirty */
1470         }
1471 }
1472
1473 static void nilfs_segctor_cancel_segusage(struct nilfs_sc_info *sci,
1474                                           struct inode *sufile)
1475 {
1476         struct nilfs_segment_buffer *segbuf;
1477         int ret;
1478
1479         segbuf = NILFS_FIRST_SEGBUF(&sci->sc_segbufs);
1480         ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum,
1481                                              segbuf->sb_pseg_start -
1482                                              segbuf->sb_fseg_start, 0);
1483         WARN_ON(ret); /* always succeed because the segusage is dirty */
1484
1485         list_for_each_entry_continue(segbuf, &sci->sc_segbufs, sb_list) {
1486                 ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum,
1487                                                      0, 0);
1488                 WARN_ON(ret); /* always succeed */
1489         }
1490 }
1491
1492 static void nilfs_segctor_truncate_segments(struct nilfs_sc_info *sci,
1493                                             struct nilfs_segment_buffer *last,
1494                                             struct inode *sufile)
1495 {
1496         struct nilfs_segment_buffer *segbuf = last, *n;
1497         int ret;
1498
1499         list_for_each_entry_safe_continue(segbuf, n, &sci->sc_segbufs,
1500                                           sb_list) {
1501                 list_del_init(&segbuf->sb_list);
1502                 sci->sc_segbuf_nblocks -= segbuf->sb_rest_blocks;
1503                 ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
1504                 WARN_ON(ret);
1505                 nilfs_segbuf_free(segbuf);
1506         }
1507 }
1508
1509
1510 static int nilfs_segctor_collect(struct nilfs_sc_info *sci,
1511                                  struct the_nilfs *nilfs, int mode)
1512 {
1513         struct nilfs_cstage prev_stage = sci->sc_stage;
1514         int err, nadd = 1;
1515
1516         /* Collection retry loop */
1517         for (;;) {
1518                 sci->sc_super_root = NULL;
1519                 sci->sc_nblk_this_inc = 0;
1520                 sci->sc_curseg = NILFS_FIRST_SEGBUF(&sci->sc_segbufs);
1521
1522                 err = nilfs_segctor_reset_segment_buffer(sci);
1523                 if (unlikely(err))
1524                         goto failed;
1525
1526                 err = nilfs_segctor_collect_blocks(sci, mode);
1527                 sci->sc_nblk_this_inc += sci->sc_curseg->sb_sum.nblocks;
1528                 if (!err)
1529                         break;
1530
1531                 if (unlikely(err != -E2BIG))
1532                         goto failed;
1533
1534                 /* The current segment is filled up */
1535                 if (mode != SC_LSEG_SR || sci->sc_stage.scnt < NILFS_ST_CPFILE)
1536                         break;
1537
1538                 if (sci->sc_stage.flags & NILFS_CF_SUFREED) {
1539                         err = nilfs_sufile_cancel_freev(nilfs->ns_sufile,
1540                                                         sci->sc_freesegs,
1541                                                         sci->sc_nfreesegs,
1542                                                         NULL);
1543                         WARN_ON(err); /* do not happen */
1544                 }
1545                 nilfs_segctor_clear_segment_buffers(sci);
1546
1547                 err = nilfs_segctor_extend_segments(sci, nilfs, nadd);
1548                 if (unlikely(err))
1549                         return err;
1550
1551                 nadd = min_t(int, nadd << 1, SC_MAX_SEGDELTA);
1552                 sci->sc_stage = prev_stage;
1553         }
1554         nilfs_segctor_truncate_segments(sci, sci->sc_curseg, nilfs->ns_sufile);
1555         return 0;
1556
1557  failed:
1558         return err;
1559 }
1560
1561 static void nilfs_list_replace_buffer(struct buffer_head *old_bh,
1562                                       struct buffer_head *new_bh)
1563 {
1564         BUG_ON(!list_empty(&new_bh->b_assoc_buffers));
1565
1566         list_replace_init(&old_bh->b_assoc_buffers, &new_bh->b_assoc_buffers);
1567         /* The caller must release old_bh */
1568 }
1569
1570 static int
1571 nilfs_segctor_update_payload_blocknr(struct nilfs_sc_info *sci,
1572                                      struct nilfs_segment_buffer *segbuf,
1573                                      int mode)
1574 {
1575         struct inode *inode = NULL;
1576         sector_t blocknr;
1577         unsigned long nfinfo = segbuf->sb_sum.nfinfo;
1578         unsigned long nblocks = 0, ndatablk = 0;
1579         struct nilfs_sc_operations *sc_op = NULL;
1580         struct nilfs_segsum_pointer ssp;
1581         struct nilfs_finfo *finfo = NULL;
1582         union nilfs_binfo binfo;
1583         struct buffer_head *bh, *bh_org;
1584         ino_t ino = 0;
1585         int err = 0;
1586
1587         if (!nfinfo)
1588                 goto out;
1589
1590         blocknr = segbuf->sb_pseg_start + segbuf->sb_sum.nsumblk;
1591         ssp.bh = NILFS_SEGBUF_FIRST_BH(&segbuf->sb_segsum_buffers);
1592         ssp.offset = sizeof(struct nilfs_segment_summary);
1593
1594         list_for_each_entry(bh, &segbuf->sb_payload_buffers, b_assoc_buffers) {
1595                 if (bh == sci->sc_super_root)
1596                         break;
1597                 if (!finfo) {
1598                         finfo = nilfs_segctor_map_segsum_entry(
1599                                 sci, &ssp, sizeof(*finfo));
1600                         ino = le64_to_cpu(finfo->fi_ino);
1601                         nblocks = le32_to_cpu(finfo->fi_nblocks);
1602                         ndatablk = le32_to_cpu(finfo->fi_ndatablk);
1603
1604                         if (buffer_nilfs_node(bh))
1605                                 inode = NILFS_BTNC_I(bh->b_page->mapping);
1606                         else
1607                                 inode = NILFS_AS_I(bh->b_page->mapping);
1608
1609                         if (mode == SC_LSEG_DSYNC)
1610                                 sc_op = &nilfs_sc_dsync_ops;
1611                         else if (ino == NILFS_DAT_INO)
1612                                 sc_op = &nilfs_sc_dat_ops;
1613                         else /* file blocks */
1614                                 sc_op = &nilfs_sc_file_ops;
1615                 }
1616                 bh_org = bh;
1617                 get_bh(bh_org);
1618                 err = nilfs_bmap_assign(NILFS_I(inode)->i_bmap, &bh, blocknr,
1619                                         &binfo);
1620                 if (bh != bh_org)
1621                         nilfs_list_replace_buffer(bh_org, bh);
1622                 brelse(bh_org);
1623                 if (unlikely(err))
1624                         goto failed_bmap;
1625
1626                 if (ndatablk > 0)
1627                         sc_op->write_data_binfo(sci, &ssp, &binfo);
1628                 else
1629                         sc_op->write_node_binfo(sci, &ssp, &binfo);
1630
1631                 blocknr++;
1632                 if (--nblocks == 0) {
1633                         finfo = NULL;
1634                         if (--nfinfo == 0)
1635                                 break;
1636                 } else if (ndatablk > 0)
1637                         ndatablk--;
1638         }
1639  out:
1640         return 0;
1641
1642  failed_bmap:
1643         err = nilfs_handle_bmap_error(err, __func__, inode, sci->sc_super);
1644         return err;
1645 }
1646
1647 static int nilfs_segctor_assign(struct nilfs_sc_info *sci, int mode)
1648 {
1649         struct nilfs_segment_buffer *segbuf;
1650         int err;
1651
1652         list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
1653                 err = nilfs_segctor_update_payload_blocknr(sci, segbuf, mode);
1654                 if (unlikely(err))
1655                         return err;
1656                 nilfs_segbuf_fill_in_segsum(segbuf);
1657         }
1658         return 0;
1659 }
1660
1661 static int
1662 nilfs_copy_replace_page_buffers(struct page *page, struct list_head *out)
1663 {
1664         struct page *clone_page;
1665         struct buffer_head *bh, *head, *bh2;
1666         void *kaddr;
1667
1668         bh = head = page_buffers(page);
1669
1670         clone_page = nilfs_alloc_private_page(bh->b_bdev, bh->b_size, 0);
1671         if (unlikely(!clone_page))
1672                 return -ENOMEM;
1673
1674         bh2 = page_buffers(clone_page);
1675         kaddr = kmap_atomic(page, KM_USER0);
1676         do {
1677                 if (list_empty(&bh->b_assoc_buffers))
1678                         continue;
1679                 get_bh(bh2);
1680                 page_cache_get(clone_page); /* for each bh */
1681                 memcpy(bh2->b_data, kaddr + bh_offset(bh), bh2->b_size);
1682                 bh2->b_blocknr = bh->b_blocknr;
1683                 list_replace(&bh->b_assoc_buffers, &bh2->b_assoc_buffers);
1684                 list_add_tail(&bh->b_assoc_buffers, out);
1685         } while (bh = bh->b_this_page, bh2 = bh2->b_this_page, bh != head);
1686         kunmap_atomic(kaddr, KM_USER0);
1687
1688         if (!TestSetPageWriteback(clone_page))
1689                 inc_zone_page_state(clone_page, NR_WRITEBACK);
1690         unlock_page(clone_page);
1691
1692         return 0;
1693 }
1694
1695 static int nilfs_test_page_to_be_frozen(struct page *page)
1696 {
1697         struct address_space *mapping = page->mapping;
1698
1699         if (!mapping || !mapping->host || S_ISDIR(mapping->host->i_mode))
1700                 return 0;
1701
1702         if (page_mapped(page)) {
1703                 ClearPageChecked(page);
1704                 return 1;
1705         }
1706         return PageChecked(page);
1707 }
1708
1709 static int nilfs_begin_page_io(struct page *page, struct list_head *out)
1710 {
1711         if (!page || PageWriteback(page))
1712                 /* For split b-tree node pages, this function may be called
1713                    twice.  We ignore the 2nd or later calls by this check. */
1714                 return 0;
1715
1716         lock_page(page);
1717         clear_page_dirty_for_io(page);
1718         set_page_writeback(page);
1719         unlock_page(page);
1720
1721         if (nilfs_test_page_to_be_frozen(page)) {
1722                 int err = nilfs_copy_replace_page_buffers(page, out);
1723                 if (unlikely(err))
1724                         return err;
1725         }
1726         return 0;
1727 }
1728
1729 static int nilfs_segctor_prepare_write(struct nilfs_sc_info *sci,
1730                                        struct page **failed_page)
1731 {
1732         struct nilfs_segment_buffer *segbuf;
1733         struct page *bd_page = NULL, *fs_page = NULL;
1734         struct list_head *list = &sci->sc_copied_buffers;
1735         int err;
1736
1737         *failed_page = NULL;
1738         list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
1739                 struct buffer_head *bh;
1740
1741                 list_for_each_entry(bh, &segbuf->sb_segsum_buffers,
1742                                     b_assoc_buffers) {
1743                         if (bh->b_page != bd_page) {
1744                                 if (bd_page) {
1745                                         lock_page(bd_page);
1746                                         clear_page_dirty_for_io(bd_page);
1747                                         set_page_writeback(bd_page);
1748                                         unlock_page(bd_page);
1749                                 }
1750                                 bd_page = bh->b_page;
1751                         }
1752                 }
1753
1754                 list_for_each_entry(bh, &segbuf->sb_payload_buffers,
1755                                     b_assoc_buffers) {
1756                         if (bh == sci->sc_super_root) {
1757                                 if (bh->b_page != bd_page) {
1758                                         lock_page(bd_page);
1759                                         clear_page_dirty_for_io(bd_page);
1760                                         set_page_writeback(bd_page);
1761                                         unlock_page(bd_page);
1762                                         bd_page = bh->b_page;
1763                                 }
1764                                 break;
1765                         }
1766                         if (bh->b_page != fs_page) {
1767                                 err = nilfs_begin_page_io(fs_page, list);
1768                                 if (unlikely(err)) {
1769                                         *failed_page = fs_page;
1770                                         goto out;
1771                                 }
1772                                 fs_page = bh->b_page;
1773                         }
1774                 }
1775         }
1776         if (bd_page) {
1777                 lock_page(bd_page);
1778                 clear_page_dirty_for_io(bd_page);
1779                 set_page_writeback(bd_page);
1780                 unlock_page(bd_page);
1781         }
1782         err = nilfs_begin_page_io(fs_page, list);
1783         if (unlikely(err))
1784                 *failed_page = fs_page;
1785  out:
1786         return err;
1787 }
1788
1789 static int nilfs_segctor_write(struct nilfs_sc_info *sci,
1790                                struct backing_dev_info *bdi)
1791 {
1792         struct nilfs_segment_buffer *segbuf;
1793         struct nilfs_write_info wi;
1794         int err, res;
1795
1796         wi.sb = sci->sc_super;
1797         wi.bh_sr = sci->sc_super_root;
1798         wi.bdi = bdi;
1799
1800         list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
1801                 nilfs_segbuf_prepare_write(segbuf, &wi);
1802                 err = nilfs_segbuf_write(segbuf, &wi);
1803
1804                 res = nilfs_segbuf_wait(segbuf, &wi);
1805                 err = err ? : res;
1806                 if (err)
1807                         return err;
1808         }
1809         return 0;
1810 }
1811
1812 static void __nilfs_end_page_io(struct page *page, int err)
1813 {
1814         if (!err) {
1815                 if (!nilfs_page_buffers_clean(page))
1816                         __set_page_dirty_nobuffers(page);
1817                 ClearPageError(page);
1818         } else {
1819                 __set_page_dirty_nobuffers(page);
1820                 SetPageError(page);
1821         }
1822
1823         if (buffer_nilfs_allocated(page_buffers(page))) {
1824                 if (TestClearPageWriteback(page))
1825                         dec_zone_page_state(page, NR_WRITEBACK);
1826         } else
1827                 end_page_writeback(page);
1828 }
1829
1830 static void nilfs_end_page_io(struct page *page, int err)
1831 {
1832         if (!page)
1833                 return;
1834
1835         if (buffer_nilfs_node(page_buffers(page)) && !PageWriteback(page)) {
1836                 /*
1837                  * For b-tree node pages, this function may be called twice
1838                  * or more because they might be split in a segment.
1839                  */
1840                 if (PageDirty(page)) {
1841                         /*
1842                          * For pages holding split b-tree node buffers, dirty
1843                          * flag on the buffers may be cleared discretely.
1844                          * In that case, the page is once redirtied for
1845                          * remaining buffers, and it must be cancelled if
1846                          * all the buffers get cleaned later.
1847                          */
1848                         lock_page(page);
1849                         if (nilfs_page_buffers_clean(page))
1850                                 __nilfs_clear_page_dirty(page);
1851                         unlock_page(page);
1852                 }
1853                 return;
1854         }
1855
1856         __nilfs_end_page_io(page, err);
1857 }
1858
1859 static void nilfs_clear_copied_buffers(struct list_head *list, int err)
1860 {
1861         struct buffer_head *bh, *head;
1862         struct page *page;
1863
1864         while (!list_empty(list)) {
1865                 bh = list_entry(list->next, struct buffer_head,
1866                                 b_assoc_buffers);
1867                 page = bh->b_page;
1868                 page_cache_get(page);
1869                 head = bh = page_buffers(page);
1870                 do {
1871                         if (!list_empty(&bh->b_assoc_buffers)) {
1872                                 list_del_init(&bh->b_assoc_buffers);
1873                                 if (!err) {
1874                                         set_buffer_uptodate(bh);
1875                                         clear_buffer_dirty(bh);
1876                                         clear_buffer_nilfs_volatile(bh);
1877                                 }
1878                                 brelse(bh); /* for b_assoc_buffers */
1879                         }
1880                 } while ((bh = bh->b_this_page) != head);
1881
1882                 __nilfs_end_page_io(page, err);
1883                 page_cache_release(page);
1884         }
1885 }
1886
1887 static void nilfs_segctor_abort_write(struct nilfs_sc_info *sci,
1888                                       struct page *failed_page, int err)
1889 {
1890         struct nilfs_segment_buffer *segbuf;
1891         struct page *bd_page = NULL, *fs_page = NULL;
1892
1893         list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
1894                 struct buffer_head *bh;
1895
1896                 list_for_each_entry(bh, &segbuf->sb_segsum_buffers,
1897                                     b_assoc_buffers) {
1898                         if (bh->b_page != bd_page) {
1899                                 if (bd_page)
1900                                         end_page_writeback(bd_page);
1901                                 bd_page = bh->b_page;
1902                         }
1903                 }
1904
1905                 list_for_each_entry(bh, &segbuf->sb_payload_buffers,
1906                                     b_assoc_buffers) {
1907                         if (bh == sci->sc_super_root) {
1908                                 if (bh->b_page != bd_page) {
1909                                         end_page_writeback(bd_page);
1910                                         bd_page = bh->b_page;
1911                                 }
1912                                 break;
1913                         }
1914                         if (bh->b_page != fs_page) {
1915                                 nilfs_end_page_io(fs_page, err);
1916                                 if (fs_page && fs_page == failed_page)
1917                                         goto done;
1918                                 fs_page = bh->b_page;
1919                         }
1920                 }
1921         }
1922         if (bd_page)
1923                 end_page_writeback(bd_page);
1924
1925         nilfs_end_page_io(fs_page, err);
1926  done:
1927         nilfs_clear_copied_buffers(&sci->sc_copied_buffers, err);
1928 }
1929
1930 static void nilfs_set_next_segment(struct the_nilfs *nilfs,
1931                                    struct nilfs_segment_buffer *segbuf)
1932 {
1933         nilfs->ns_segnum = segbuf->sb_segnum;
1934         nilfs->ns_nextnum = segbuf->sb_nextnum;
1935         nilfs->ns_pseg_offset = segbuf->sb_pseg_start - segbuf->sb_fseg_start
1936                 + segbuf->sb_sum.nblocks;
1937         nilfs->ns_seg_seq = segbuf->sb_sum.seg_seq;
1938         nilfs->ns_ctime = segbuf->sb_sum.ctime;
1939 }
1940
1941 static void nilfs_segctor_complete_write(struct nilfs_sc_info *sci)
1942 {
1943         struct nilfs_segment_buffer *segbuf;
1944         struct page *bd_page = NULL, *fs_page = NULL;
1945         struct nilfs_sb_info *sbi = sci->sc_sbi;
1946         struct the_nilfs *nilfs = sbi->s_nilfs;
1947         int update_sr = (sci->sc_super_root != NULL);
1948
1949         list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
1950                 struct buffer_head *bh;
1951
1952                 list_for_each_entry(bh, &segbuf->sb_segsum_buffers,
1953                                     b_assoc_buffers) {
1954                         set_buffer_uptodate(bh);
1955                         clear_buffer_dirty(bh);
1956                         if (bh->b_page != bd_page) {
1957                                 if (bd_page)
1958                                         end_page_writeback(bd_page);
1959                                 bd_page = bh->b_page;
1960                         }
1961                 }
1962                 /*
1963                  * We assume that the buffers which belong to the same page
1964                  * continue over the buffer list.
1965                  * Under this assumption, the last BHs of pages is
1966                  * identifiable by the discontinuity of bh->b_page
1967                  * (page != fs_page).
1968                  *
1969                  * For B-tree node blocks, however, this assumption is not
1970                  * guaranteed.  The cleanup code of B-tree node pages needs
1971                  * special care.
1972                  */
1973                 list_for_each_entry(bh, &segbuf->sb_payload_buffers,
1974                                     b_assoc_buffers) {
1975                         set_buffer_uptodate(bh);
1976                         clear_buffer_dirty(bh);
1977                         clear_buffer_nilfs_volatile(bh);
1978                         if (bh == sci->sc_super_root) {
1979                                 if (bh->b_page != bd_page) {
1980                                         end_page_writeback(bd_page);
1981                                         bd_page = bh->b_page;
1982                                 }
1983                                 break;
1984                         }
1985                         if (bh->b_page != fs_page) {
1986                                 nilfs_end_page_io(fs_page, 0);
1987                                 fs_page = bh->b_page;
1988                         }
1989                 }
1990
1991                 if (!NILFS_SEG_SIMPLEX(&segbuf->sb_sum)) {
1992                         if (NILFS_SEG_LOGBGN(&segbuf->sb_sum)) {
1993                                 set_bit(NILFS_SC_UNCLOSED, &sci->sc_flags);
1994                                 sci->sc_lseg_stime = jiffies;
1995                         }
1996                         if (NILFS_SEG_LOGEND(&segbuf->sb_sum))
1997                                 clear_bit(NILFS_SC_UNCLOSED, &sci->sc_flags);
1998                 }
1999         }
2000         /*
2001          * Since pages may continue over multiple segment buffers,
2002          * end of the last page must be checked outside of the loop.
2003          */
2004         if (bd_page)
2005                 end_page_writeback(bd_page);
2006
2007         nilfs_end_page_io(fs_page, 0);
2008
2009         nilfs_clear_copied_buffers(&sci->sc_copied_buffers, 0);
2010
2011         nilfs_drop_collected_inodes(&sci->sc_dirty_files);
2012
2013         if (nilfs_doing_gc()) {
2014                 nilfs_drop_collected_inodes(&sci->sc_gc_inodes);
2015                 if (update_sr)
2016                         nilfs_commit_gcdat_inode(nilfs);
2017         } else
2018                 nilfs->ns_nongc_ctime = sci->sc_seg_ctime;
2019
2020         sci->sc_nblk_inc += sci->sc_nblk_this_inc;
2021
2022         segbuf = NILFS_LAST_SEGBUF(&sci->sc_segbufs);
2023         nilfs_set_next_segment(nilfs, segbuf);
2024
2025         if (update_sr) {
2026                 nilfs_set_last_segment(nilfs, segbuf->sb_pseg_start,
2027                                        segbuf->sb_sum.seg_seq, nilfs->ns_cno++);
2028                 sbi->s_super->s_dirt = 1;
2029
2030                 clear_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags);
2031                 clear_bit(NILFS_SC_DIRTY, &sci->sc_flags);
2032                 set_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags);
2033         } else
2034                 clear_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags);
2035 }
2036
2037 static int nilfs_segctor_check_in_files(struct nilfs_sc_info *sci,
2038                                         struct nilfs_sb_info *sbi)
2039 {
2040         struct nilfs_inode_info *ii, *n;
2041         __u64 cno = sbi->s_nilfs->ns_cno;
2042
2043         spin_lock(&sbi->s_inode_lock);
2044  retry:
2045         list_for_each_entry_safe(ii, n, &sbi->s_dirty_files, i_dirty) {
2046                 if (!ii->i_bh) {
2047                         struct buffer_head *ibh;
2048                         int err;
2049
2050                         spin_unlock(&sbi->s_inode_lock);
2051                         err = nilfs_ifile_get_inode_block(
2052                                 sbi->s_ifile, ii->vfs_inode.i_ino, &ibh);
2053                         if (unlikely(err)) {
2054                                 nilfs_warning(sbi->s_super, __func__,
2055                                               "failed to get inode block.\n");
2056                                 return err;
2057                         }
2058                         nilfs_mdt_mark_buffer_dirty(ibh);
2059                         nilfs_mdt_mark_dirty(sbi->s_ifile);
2060                         spin_lock(&sbi->s_inode_lock);
2061                         if (likely(!ii->i_bh))
2062                                 ii->i_bh = ibh;
2063                         else
2064                                 brelse(ibh);
2065                         goto retry;
2066                 }
2067                 ii->i_cno = cno;
2068
2069                 clear_bit(NILFS_I_QUEUED, &ii->i_state);
2070                 set_bit(NILFS_I_BUSY, &ii->i_state);
2071                 list_del(&ii->i_dirty);
2072                 list_add_tail(&ii->i_dirty, &sci->sc_dirty_files);
2073         }
2074         spin_unlock(&sbi->s_inode_lock);
2075
2076         NILFS_I(sbi->s_ifile)->i_cno = cno;
2077
2078         return 0;
2079 }
2080
2081 static void nilfs_segctor_check_out_files(struct nilfs_sc_info *sci,
2082                                           struct nilfs_sb_info *sbi)
2083 {
2084         struct nilfs_transaction_info *ti = current->journal_info;
2085         struct nilfs_inode_info *ii, *n;
2086         __u64 cno = sbi->s_nilfs->ns_cno;
2087
2088         spin_lock(&sbi->s_inode_lock);
2089         list_for_each_entry_safe(ii, n, &sci->sc_dirty_files, i_dirty) {
2090                 if (!test_and_clear_bit(NILFS_I_UPDATED, &ii->i_state) ||
2091                     test_bit(NILFS_I_DIRTY, &ii->i_state)) {
2092                         /* The current checkpoint number (=nilfs->ns_cno) is
2093                            changed between check-in and check-out only if the
2094                            super root is written out.  So, we can update i_cno
2095                            for the inodes that remain in the dirty list. */
2096                         ii->i_cno = cno;
2097                         continue;
2098                 }
2099                 clear_bit(NILFS_I_BUSY, &ii->i_state);
2100                 brelse(ii->i_bh);
2101                 ii->i_bh = NULL;
2102                 list_del(&ii->i_dirty);
2103                 list_add_tail(&ii->i_dirty, &ti->ti_garbage);
2104         }
2105         spin_unlock(&sbi->s_inode_lock);
2106 }
2107
2108 /*
2109  * Main procedure of segment constructor
2110  */
2111 static int nilfs_segctor_do_construct(struct nilfs_sc_info *sci, int mode)
2112 {
2113         struct nilfs_sb_info *sbi = sci->sc_sbi;
2114         struct the_nilfs *nilfs = sbi->s_nilfs;
2115         struct page *failed_page;
2116         int err, has_sr = 0;
2117
2118         sci->sc_stage.scnt = NILFS_ST_INIT;
2119
2120         err = nilfs_segctor_check_in_files(sci, sbi);
2121         if (unlikely(err))
2122                 goto out;
2123
2124         if (nilfs_test_metadata_dirty(sbi))
2125                 set_bit(NILFS_SC_DIRTY, &sci->sc_flags);
2126
2127         if (nilfs_segctor_clean(sci))
2128                 goto out;
2129
2130         do {
2131                 sci->sc_stage.flags &= ~NILFS_CF_HISTORY_MASK;
2132
2133                 err = nilfs_segctor_begin_construction(sci, nilfs);
2134                 if (unlikely(err))
2135                         goto out;
2136
2137                 /* Update time stamp */
2138                 sci->sc_seg_ctime = get_seconds();
2139
2140                 err = nilfs_segctor_collect(sci, nilfs, mode);
2141                 if (unlikely(err))
2142                         goto failed;
2143
2144                 has_sr = (sci->sc_super_root != NULL);
2145
2146                 /* Avoid empty segment */
2147                 if (sci->sc_stage.scnt == NILFS_ST_DONE &&
2148                     NILFS_SEG_EMPTY(&sci->sc_curseg->sb_sum)) {
2149                         nilfs_segctor_end_construction(sci, nilfs, 1);
2150                         goto out;
2151                 }
2152
2153                 err = nilfs_segctor_assign(sci, mode);
2154                 if (unlikely(err))
2155                         goto failed;
2156
2157                 if (sci->sc_stage.flags & NILFS_CF_IFILE_STARTED)
2158                         nilfs_segctor_fill_in_file_bmap(sci, sbi->s_ifile);
2159
2160                 if (has_sr) {
2161                         err = nilfs_segctor_fill_in_checkpoint(sci);
2162                         if (unlikely(err))
2163                                 goto failed_to_make_up;
2164
2165                         nilfs_segctor_fill_in_super_root(sci, nilfs);
2166                 }
2167                 nilfs_segctor_update_segusage(sci, nilfs->ns_sufile);
2168
2169                 /* Write partial segments */
2170                 err = nilfs_segctor_prepare_write(sci, &failed_page);
2171                 if (unlikely(err))
2172                         goto failed_to_write;
2173
2174                 nilfs_segctor_fill_in_checksums(sci, nilfs->ns_crc_seed);
2175
2176                 err = nilfs_segctor_write(sci, nilfs->ns_bdi);
2177                 if (unlikely(err))
2178                         goto failed_to_write;
2179
2180                 nilfs_segctor_complete_write(sci);
2181
2182                 /* Commit segments */
2183                 if (has_sr)
2184                         nilfs_segctor_clear_metadata_dirty(sci);
2185
2186                 nilfs_segctor_end_construction(sci, nilfs, 0);
2187
2188         } while (sci->sc_stage.scnt != NILFS_ST_DONE);
2189
2190  out:
2191         nilfs_segctor_destroy_segment_buffers(sci);
2192         nilfs_segctor_check_out_files(sci, sbi);
2193         return err;
2194
2195  failed_to_write:
2196         nilfs_segctor_abort_write(sci, failed_page, err);
2197         nilfs_segctor_cancel_segusage(sci, nilfs->ns_sufile);
2198
2199  failed_to_make_up:
2200         if (sci->sc_stage.flags & NILFS_CF_IFILE_STARTED)
2201                 nilfs_redirty_inodes(&sci->sc_dirty_files);
2202
2203  failed:
2204         if (nilfs_doing_gc())
2205                 nilfs_redirty_inodes(&sci->sc_gc_inodes);
2206         nilfs_segctor_end_construction(sci, nilfs, err);
2207         goto out;
2208 }
2209
2210 /**
2211  * nilfs_secgtor_start_timer - set timer of background write
2212  * @sci: nilfs_sc_info
2213  *
2214  * If the timer has already been set, it ignores the new request.
2215  * This function MUST be called within a section locking the segment
2216  * semaphore.
2217  */
2218 static void nilfs_segctor_start_timer(struct nilfs_sc_info *sci)
2219 {
2220         spin_lock(&sci->sc_state_lock);
2221         if (sci->sc_timer && !(sci->sc_state & NILFS_SEGCTOR_COMMIT)) {
2222                 sci->sc_timer->expires = jiffies + sci->sc_interval;
2223                 add_timer(sci->sc_timer);
2224                 sci->sc_state |= NILFS_SEGCTOR_COMMIT;
2225         }
2226         spin_unlock(&sci->sc_state_lock);
2227 }
2228
2229 static void nilfs_segctor_do_flush(struct nilfs_sc_info *sci, int bn)
2230 {
2231         spin_lock(&sci->sc_state_lock);
2232         if (!(sci->sc_flush_request & (1 << bn))) {
2233                 unsigned long prev_req = sci->sc_flush_request;
2234
2235                 sci->sc_flush_request |= (1 << bn);
2236                 if (!prev_req)
2237                         wake_up(&sci->sc_wait_daemon);
2238         }
2239         spin_unlock(&sci->sc_state_lock);
2240 }
2241
2242 /**
2243  * nilfs_flush_segment - trigger a segment construction for resource control
2244  * @sb: super block
2245  * @ino: inode number of the file to be flushed out.
2246  */
2247 void nilfs_flush_segment(struct super_block *sb, ino_t ino)
2248 {
2249         struct nilfs_sb_info *sbi = NILFS_SB(sb);
2250         struct nilfs_sc_info *sci = NILFS_SC(sbi);
2251
2252         if (!sci || nilfs_doing_construction())
2253                 return;
2254         nilfs_segctor_do_flush(sci, NILFS_MDT_INODE(sb, ino) ? ino : 0);
2255                                         /* assign bit 0 to data files */
2256 }
2257
2258 struct nilfs_segctor_wait_request {
2259         wait_queue_t    wq;
2260         __u32           seq;
2261         int             err;
2262         atomic_t        done;
2263 };
2264
2265 static int nilfs_segctor_sync(struct nilfs_sc_info *sci)
2266 {
2267         struct nilfs_segctor_wait_request wait_req;
2268         int err = 0;
2269
2270         spin_lock(&sci->sc_state_lock);
2271         init_wait(&wait_req.wq);
2272         wait_req.err = 0;
2273         atomic_set(&wait_req.done, 0);
2274         wait_req.seq = ++sci->sc_seq_request;
2275         spin_unlock(&sci->sc_state_lock);
2276
2277         init_waitqueue_entry(&wait_req.wq, current);
2278         add_wait_queue(&sci->sc_wait_request, &wait_req.wq);
2279         set_current_state(TASK_INTERRUPTIBLE);
2280         wake_up(&sci->sc_wait_daemon);
2281
2282         for (;;) {
2283                 if (atomic_read(&wait_req.done)) {
2284                         err = wait_req.err;
2285                         break;
2286                 }
2287                 if (!signal_pending(current)) {
2288                         schedule();
2289                         continue;
2290                 }
2291                 err = -ERESTARTSYS;
2292                 break;
2293         }
2294         finish_wait(&sci->sc_wait_request, &wait_req.wq);
2295         return err;
2296 }
2297
2298 static void nilfs_segctor_wakeup(struct nilfs_sc_info *sci, int err)
2299 {
2300         struct nilfs_segctor_wait_request *wrq, *n;
2301         unsigned long flags;
2302
2303         spin_lock_irqsave(&sci->sc_wait_request.lock, flags);
2304         list_for_each_entry_safe(wrq, n, &sci->sc_wait_request.task_list,
2305                                  wq.task_list) {
2306                 if (!atomic_read(&wrq->done) &&
2307                     nilfs_cnt32_ge(sci->sc_seq_done, wrq->seq)) {
2308                         wrq->err = err;
2309                         atomic_set(&wrq->done, 1);
2310                 }
2311                 if (atomic_read(&wrq->done)) {
2312                         wrq->wq.func(&wrq->wq,
2313                                      TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
2314                                      0, NULL);
2315                 }
2316         }
2317         spin_unlock_irqrestore(&sci->sc_wait_request.lock, flags);
2318 }
2319
2320 /**
2321  * nilfs_construct_segment - construct a logical segment
2322  * @sb: super block
2323  *
2324  * Return Value: On success, 0 is retured. On errors, one of the following
2325  * negative error code is returned.
2326  *
2327  * %-EROFS - Read only filesystem.
2328  *
2329  * %-EIO - I/O error
2330  *
2331  * %-ENOSPC - No space left on device (only in a panic state).
2332  *
2333  * %-ERESTARTSYS - Interrupted.
2334  *
2335  * %-ENOMEM - Insufficient memory available.
2336  */
2337 int nilfs_construct_segment(struct super_block *sb)
2338 {
2339         struct nilfs_sb_info *sbi = NILFS_SB(sb);
2340         struct nilfs_sc_info *sci = NILFS_SC(sbi);
2341         struct nilfs_transaction_info *ti;
2342         int err;
2343
2344         if (!sci)
2345                 return -EROFS;
2346
2347         /* A call inside transactions causes a deadlock. */
2348         BUG_ON((ti = current->journal_info) && ti->ti_magic == NILFS_TI_MAGIC);
2349
2350         err = nilfs_segctor_sync(sci);
2351         return err;
2352 }
2353
2354 /**
2355  * nilfs_construct_dsync_segment - construct a data-only logical segment
2356  * @sb: super block
2357  * @inode: inode whose data blocks should be written out
2358  * @start: start byte offset
2359  * @end: end byte offset (inclusive)
2360  *
2361  * Return Value: On success, 0 is retured. On errors, one of the following
2362  * negative error code is returned.
2363  *
2364  * %-EROFS - Read only filesystem.
2365  *
2366  * %-EIO - I/O error
2367  *
2368  * %-ENOSPC - No space left on device (only in a panic state).
2369  *
2370  * %-ERESTARTSYS - Interrupted.
2371  *
2372  * %-ENOMEM - Insufficient memory available.
2373  */
2374 int nilfs_construct_dsync_segment(struct super_block *sb, struct inode *inode,
2375                                   loff_t start, loff_t end)
2376 {
2377         struct nilfs_sb_info *sbi = NILFS_SB(sb);
2378         struct nilfs_sc_info *sci = NILFS_SC(sbi);
2379         struct nilfs_inode_info *ii;
2380         struct nilfs_transaction_info ti;
2381         int err = 0;
2382
2383         if (!sci)
2384                 return -EROFS;
2385
2386         nilfs_transaction_lock(sbi, &ti, 0);
2387
2388         ii = NILFS_I(inode);
2389         if (test_bit(NILFS_I_INODE_DIRTY, &ii->i_state) ||
2390             nilfs_test_opt(sbi, STRICT_ORDER) ||
2391             test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags) ||
2392             nilfs_discontinued(sbi->s_nilfs)) {
2393                 nilfs_transaction_unlock(sbi);
2394                 err = nilfs_segctor_sync(sci);
2395                 return err;
2396         }
2397
2398         spin_lock(&sbi->s_inode_lock);
2399         if (!test_bit(NILFS_I_QUEUED, &ii->i_state) &&
2400             !test_bit(NILFS_I_BUSY, &ii->i_state)) {
2401                 spin_unlock(&sbi->s_inode_lock);
2402                 nilfs_transaction_unlock(sbi);
2403                 return 0;
2404         }
2405         spin_unlock(&sbi->s_inode_lock);
2406         sci->sc_dsync_inode = ii;
2407         sci->sc_dsync_start = start;
2408         sci->sc_dsync_end = end;
2409
2410         err = nilfs_segctor_do_construct(sci, SC_LSEG_DSYNC);
2411
2412         nilfs_transaction_unlock(sbi);
2413         return err;
2414 }
2415
2416 struct nilfs_segctor_req {
2417         int mode;
2418         __u32 seq_accepted;
2419         int sc_err;  /* construction failure */
2420         int sb_err;  /* super block writeback failure */
2421 };
2422
2423 #define FLUSH_FILE_BIT  (0x1) /* data file only */
2424 #define FLUSH_DAT_BIT   (1 << NILFS_DAT_INO) /* DAT only */
2425
2426 static void nilfs_segctor_accept(struct nilfs_sc_info *sci,
2427                                  struct nilfs_segctor_req *req)
2428 {
2429         req->sc_err = req->sb_err = 0;
2430         spin_lock(&sci->sc_state_lock);
2431         req->seq_accepted = sci->sc_seq_request;
2432         spin_unlock(&sci->sc_state_lock);
2433
2434         if (sci->sc_timer)
2435                 del_timer_sync(sci->sc_timer);
2436 }
2437
2438 static void nilfs_segctor_notify(struct nilfs_sc_info *sci,
2439                                  struct nilfs_segctor_req *req)
2440 {
2441         /* Clear requests (even when the construction failed) */
2442         spin_lock(&sci->sc_state_lock);
2443
2444         if (req->mode == SC_LSEG_SR) {
2445                 sci->sc_state &= ~NILFS_SEGCTOR_COMMIT;
2446                 sci->sc_seq_done = req->seq_accepted;
2447                 nilfs_segctor_wakeup(sci, req->sc_err ? : req->sb_err);
2448                 sci->sc_flush_request = 0;
2449         } else {
2450                 if (req->mode == SC_FLUSH_FILE)
2451                         sci->sc_flush_request &= ~FLUSH_FILE_BIT;
2452                 else if (req->mode == SC_FLUSH_DAT)
2453                         sci->sc_flush_request &= ~FLUSH_DAT_BIT;
2454
2455                 /* re-enable timer if checkpoint creation was not done */
2456                 if (sci->sc_timer && (sci->sc_state & NILFS_SEGCTOR_COMMIT) &&
2457                     time_before(jiffies, sci->sc_timer->expires))
2458                         add_timer(sci->sc_timer);
2459         }
2460         spin_unlock(&sci->sc_state_lock);
2461 }
2462
2463 static int nilfs_segctor_construct(struct nilfs_sc_info *sci,
2464                                    struct nilfs_segctor_req *req)
2465 {
2466         struct nilfs_sb_info *sbi = sci->sc_sbi;
2467         struct the_nilfs *nilfs = sbi->s_nilfs;
2468         int err = 0;
2469
2470         if (nilfs_discontinued(nilfs))
2471                 req->mode = SC_LSEG_SR;
2472         if (!nilfs_segctor_confirm(sci)) {
2473                 err = nilfs_segctor_do_construct(sci, req->mode);
2474                 req->sc_err = err;
2475         }
2476         if (likely(!err)) {
2477                 if (req->mode != SC_FLUSH_DAT)
2478                         atomic_set(&nilfs->ns_ndirtyblks, 0);
2479                 if (test_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags) &&
2480                     nilfs_discontinued(nilfs)) {
2481                         down_write(&nilfs->ns_sem);
2482                         req->sb_err = nilfs_commit_super(sbi,
2483                                         nilfs_altsb_need_update(nilfs));
2484                         up_write(&nilfs->ns_sem);
2485                 }
2486         }
2487         return err;
2488 }
2489
2490 static void nilfs_construction_timeout(unsigned long data)
2491 {
2492         struct task_struct *p = (struct task_struct *)data;
2493         wake_up_process(p);
2494 }
2495
2496 static void
2497 nilfs_remove_written_gcinodes(struct the_nilfs *nilfs, struct list_head *head)
2498 {
2499         struct nilfs_inode_info *ii, *n;
2500
2501         list_for_each_entry_safe(ii, n, head, i_dirty) {
2502                 if (!test_bit(NILFS_I_UPDATED, &ii->i_state))
2503                         continue;
2504                 hlist_del_init(&ii->vfs_inode.i_hash);
2505                 list_del_init(&ii->i_dirty);
2506                 nilfs_clear_gcinode(&ii->vfs_inode);
2507         }
2508 }
2509
2510 int nilfs_clean_segments(struct super_block *sb, struct nilfs_argv *argv,
2511                          void **kbufs)
2512 {
2513         struct nilfs_sb_info *sbi = NILFS_SB(sb);
2514         struct nilfs_sc_info *sci = NILFS_SC(sbi);
2515         struct the_nilfs *nilfs = sbi->s_nilfs;
2516         struct nilfs_transaction_info ti;
2517         struct nilfs_segctor_req req = { .mode = SC_LSEG_SR };
2518         int err;
2519
2520         if (unlikely(!sci))
2521                 return -EROFS;
2522
2523         nilfs_transaction_lock(sbi, &ti, 1);
2524
2525         err = nilfs_init_gcdat_inode(nilfs);
2526         if (unlikely(err))
2527                 goto out_unlock;
2528
2529         err = nilfs_ioctl_prepare_clean_segments(nilfs, argv, kbufs);
2530         if (unlikely(err))
2531                 goto out_unlock;
2532
2533         sci->sc_freesegs = kbufs[4];
2534         sci->sc_nfreesegs = argv[4].v_nmembs;
2535         list_splice_init(&nilfs->ns_gc_inodes, sci->sc_gc_inodes.prev);
2536
2537         for (;;) {
2538                 nilfs_segctor_accept(sci, &req);
2539                 err = nilfs_segctor_construct(sci, &req);
2540                 nilfs_remove_written_gcinodes(nilfs, &sci->sc_gc_inodes);
2541                 nilfs_segctor_notify(sci, &req);
2542
2543                 if (likely(!err))
2544                         break;
2545
2546                 nilfs_warning(sb, __func__,
2547                               "segment construction failed. (err=%d)", err);
2548                 set_current_state(TASK_INTERRUPTIBLE);
2549                 schedule_timeout(sci->sc_interval);
2550         }
2551
2552  out_unlock:
2553         sci->sc_freesegs = NULL;
2554         sci->sc_nfreesegs = 0;
2555         nilfs_clear_gcdat_inode(nilfs);
2556         nilfs_transaction_unlock(sbi);
2557         return err;
2558 }
2559
2560 static void nilfs_segctor_thread_construct(struct nilfs_sc_info *sci, int mode)
2561 {
2562         struct nilfs_sb_info *sbi = sci->sc_sbi;
2563         struct nilfs_transaction_info ti;
2564         struct nilfs_segctor_req req = { .mode = mode };
2565
2566         nilfs_transaction_lock(sbi, &ti, 0);
2567
2568         nilfs_segctor_accept(sci, &req);
2569         nilfs_segctor_construct(sci, &req);
2570         nilfs_segctor_notify(sci, &req);
2571
2572         /*
2573          * Unclosed segment should be retried.  We do this using sc_timer.
2574          * Timeout of sc_timer will invoke complete construction which leads
2575          * to close the current logical segment.
2576          */
2577         if (test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags))
2578                 nilfs_segctor_start_timer(sci);
2579
2580         nilfs_transaction_unlock(sbi);
2581 }
2582
2583 static void nilfs_segctor_do_immediate_flush(struct nilfs_sc_info *sci)
2584 {
2585         int mode = 0;
2586         int err;
2587
2588         spin_lock(&sci->sc_state_lock);
2589         mode = (sci->sc_flush_request & FLUSH_DAT_BIT) ?
2590                 SC_FLUSH_DAT : SC_FLUSH_FILE;
2591         spin_unlock(&sci->sc_state_lock);
2592
2593         if (mode) {
2594                 err = nilfs_segctor_do_construct(sci, mode);
2595
2596                 spin_lock(&sci->sc_state_lock);
2597                 sci->sc_flush_request &= (mode == SC_FLUSH_FILE) ?
2598                         ~FLUSH_FILE_BIT : ~FLUSH_DAT_BIT;
2599                 spin_unlock(&sci->sc_state_lock);
2600         }
2601         clear_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags);
2602 }
2603
2604 static int nilfs_segctor_flush_mode(struct nilfs_sc_info *sci)
2605 {
2606         if (!test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags) ||
2607             time_before(jiffies, sci->sc_lseg_stime + sci->sc_mjcp_freq)) {
2608                 if (!(sci->sc_flush_request & ~FLUSH_FILE_BIT))
2609                         return SC_FLUSH_FILE;
2610                 else if (!(sci->sc_flush_request & ~FLUSH_DAT_BIT))
2611                         return SC_FLUSH_DAT;
2612         }
2613         return SC_LSEG_SR;
2614 }
2615
2616 /**
2617  * nilfs_segctor_thread - main loop of the segment constructor thread.
2618  * @arg: pointer to a struct nilfs_sc_info.
2619  *
2620  * nilfs_segctor_thread() initializes a timer and serves as a daemon
2621  * to execute segment constructions.
2622  */
2623 static int nilfs_segctor_thread(void *arg)
2624 {
2625         struct nilfs_sc_info *sci = (struct nilfs_sc_info *)arg;
2626         struct timer_list timer;
2627         int timeout = 0;
2628
2629         init_timer(&timer);
2630         timer.data = (unsigned long)current;
2631         timer.function = nilfs_construction_timeout;
2632         sci->sc_timer = &timer;
2633
2634         /* start sync. */
2635         sci->sc_task = current;
2636         wake_up(&sci->sc_wait_task); /* for nilfs_segctor_start_thread() */
2637         printk(KERN_INFO
2638                "segctord starting. Construction interval = %lu seconds, "
2639                "CP frequency < %lu seconds\n",
2640                sci->sc_interval / HZ, sci->sc_mjcp_freq / HZ);
2641
2642         spin_lock(&sci->sc_state_lock);
2643  loop:
2644         for (;;) {
2645                 int mode;
2646
2647                 if (sci->sc_state & NILFS_SEGCTOR_QUIT)
2648                         goto end_thread;
2649
2650                 if (timeout || sci->sc_seq_request != sci->sc_seq_done)
2651                         mode = SC_LSEG_SR;
2652                 else if (!sci->sc_flush_request)
2653                         break;
2654                 else
2655                         mode = nilfs_segctor_flush_mode(sci);
2656
2657                 spin_unlock(&sci->sc_state_lock);
2658                 nilfs_segctor_thread_construct(sci, mode);
2659                 spin_lock(&sci->sc_state_lock);
2660                 timeout = 0;
2661         }
2662
2663
2664         if (freezing(current)) {
2665                 spin_unlock(&sci->sc_state_lock);
2666                 refrigerator();
2667                 spin_lock(&sci->sc_state_lock);
2668         } else {
2669                 DEFINE_WAIT(wait);
2670                 int should_sleep = 1;
2671                 struct the_nilfs *nilfs;
2672
2673                 prepare_to_wait(&sci->sc_wait_daemon, &wait,
2674                                 TASK_INTERRUPTIBLE);
2675
2676                 if (sci->sc_seq_request != sci->sc_seq_done)
2677                         should_sleep = 0;
2678                 else if (sci->sc_flush_request)
2679                         should_sleep = 0;
2680                 else if (sci->sc_state & NILFS_SEGCTOR_COMMIT)
2681                         should_sleep = time_before(jiffies,
2682                                                    sci->sc_timer->expires);
2683
2684                 if (should_sleep) {
2685                         spin_unlock(&sci->sc_state_lock);
2686                         schedule();
2687                         spin_lock(&sci->sc_state_lock);
2688                 }
2689                 finish_wait(&sci->sc_wait_daemon, &wait);
2690                 timeout = ((sci->sc_state & NILFS_SEGCTOR_COMMIT) &&
2691                            time_after_eq(jiffies, sci->sc_timer->expires));
2692                 nilfs = sci->sc_sbi->s_nilfs;
2693                 if (sci->sc_super->s_dirt && nilfs_sb_need_update(nilfs))
2694                         set_nilfs_discontinued(nilfs);
2695         }
2696         goto loop;
2697
2698  end_thread:
2699         spin_unlock(&sci->sc_state_lock);
2700         del_timer_sync(sci->sc_timer);
2701         sci->sc_timer = NULL;
2702
2703         /* end sync. */
2704         sci->sc_task = NULL;
2705         wake_up(&sci->sc_wait_task); /* for nilfs_segctor_kill_thread() */
2706         return 0;
2707 }
2708
2709 static int nilfs_segctor_start_thread(struct nilfs_sc_info *sci)
2710 {
2711         struct task_struct *t;
2712
2713         t = kthread_run(nilfs_segctor_thread, sci, "segctord");
2714         if (IS_ERR(t)) {
2715                 int err = PTR_ERR(t);
2716
2717                 printk(KERN_ERR "NILFS: error %d creating segctord thread\n",
2718                        err);
2719                 return err;
2720         }
2721         wait_event(sci->sc_wait_task, sci->sc_task != NULL);
2722         return 0;
2723 }
2724
2725 static void nilfs_segctor_kill_thread(struct nilfs_sc_info *sci)
2726 {
2727         sci->sc_state |= NILFS_SEGCTOR_QUIT;
2728
2729         while (sci->sc_task) {
2730                 wake_up(&sci->sc_wait_daemon);
2731                 spin_unlock(&sci->sc_state_lock);
2732                 wait_event(sci->sc_wait_task, sci->sc_task == NULL);
2733                 spin_lock(&sci->sc_state_lock);
2734         }
2735 }
2736
2737 static int nilfs_segctor_init(struct nilfs_sc_info *sci)
2738 {
2739         sci->sc_seq_done = sci->sc_seq_request;
2740
2741         return nilfs_segctor_start_thread(sci);
2742 }
2743
2744 /*
2745  * Setup & clean-up functions
2746  */
2747 static struct nilfs_sc_info *nilfs_segctor_new(struct nilfs_sb_info *sbi)
2748 {
2749         struct nilfs_sc_info *sci;
2750
2751         sci = kzalloc(sizeof(*sci), GFP_KERNEL);
2752         if (!sci)
2753                 return NULL;
2754
2755         sci->sc_sbi = sbi;
2756         sci->sc_super = sbi->s_super;
2757
2758         init_waitqueue_head(&sci->sc_wait_request);
2759         init_waitqueue_head(&sci->sc_wait_daemon);
2760         init_waitqueue_head(&sci->sc_wait_task);
2761         spin_lock_init(&sci->sc_state_lock);
2762         INIT_LIST_HEAD(&sci->sc_dirty_files);
2763         INIT_LIST_HEAD(&sci->sc_segbufs);
2764         INIT_LIST_HEAD(&sci->sc_gc_inodes);
2765         INIT_LIST_HEAD(&sci->sc_copied_buffers);
2766
2767         sci->sc_interval = HZ * NILFS_SC_DEFAULT_TIMEOUT;
2768         sci->sc_mjcp_freq = HZ * NILFS_SC_DEFAULT_SR_FREQ;
2769         sci->sc_watermark = NILFS_SC_DEFAULT_WATERMARK;
2770
2771         if (sbi->s_interval)
2772                 sci->sc_interval = sbi->s_interval;
2773         if (sbi->s_watermark)
2774                 sci->sc_watermark = sbi->s_watermark;
2775         return sci;
2776 }
2777
2778 static void nilfs_segctor_write_out(struct nilfs_sc_info *sci)
2779 {
2780         int ret, retrycount = NILFS_SC_CLEANUP_RETRY;
2781
2782         /* The segctord thread was stopped and its timer was removed.
2783            But some tasks remain. */
2784         do {
2785                 struct nilfs_sb_info *sbi = sci->sc_sbi;
2786                 struct nilfs_transaction_info ti;
2787                 struct nilfs_segctor_req req = { .mode = SC_LSEG_SR };
2788
2789                 nilfs_transaction_lock(sbi, &ti, 0);
2790                 nilfs_segctor_accept(sci, &req);
2791                 ret = nilfs_segctor_construct(sci, &req);
2792                 nilfs_segctor_notify(sci, &req);
2793                 nilfs_transaction_unlock(sbi);
2794
2795         } while (ret && retrycount-- > 0);
2796 }
2797
2798 /**
2799  * nilfs_segctor_destroy - destroy the segment constructor.
2800  * @sci: nilfs_sc_info
2801  *
2802  * nilfs_segctor_destroy() kills the segctord thread and frees
2803  * the nilfs_sc_info struct.
2804  * Caller must hold the segment semaphore.
2805  */
2806 static void nilfs_segctor_destroy(struct nilfs_sc_info *sci)
2807 {
2808         struct nilfs_sb_info *sbi = sci->sc_sbi;
2809         int flag;
2810
2811         up_write(&sbi->s_nilfs->ns_segctor_sem);
2812
2813         spin_lock(&sci->sc_state_lock);
2814         nilfs_segctor_kill_thread(sci);
2815         flag = ((sci->sc_state & NILFS_SEGCTOR_COMMIT) || sci->sc_flush_request
2816                 || sci->sc_seq_request != sci->sc_seq_done);
2817         spin_unlock(&sci->sc_state_lock);
2818
2819         if (flag || nilfs_segctor_confirm(sci))
2820                 nilfs_segctor_write_out(sci);
2821
2822         WARN_ON(!list_empty(&sci->sc_copied_buffers));
2823
2824         if (!list_empty(&sci->sc_dirty_files)) {
2825                 nilfs_warning(sbi->s_super, __func__,
2826                               "dirty file(s) after the final construction\n");
2827                 nilfs_dispose_list(sbi, &sci->sc_dirty_files, 1);
2828         }
2829
2830         WARN_ON(!list_empty(&sci->sc_segbufs));
2831
2832         down_write(&sbi->s_nilfs->ns_segctor_sem);
2833
2834         kfree(sci);
2835 }
2836
2837 /**
2838  * nilfs_attach_segment_constructor - attach a segment constructor
2839  * @sbi: nilfs_sb_info
2840  *
2841  * nilfs_attach_segment_constructor() allocates a struct nilfs_sc_info,
2842  * initilizes it, and starts the segment constructor.
2843  *
2844  * Return Value: On success, 0 is returned. On error, one of the following
2845  * negative error code is returned.
2846  *
2847  * %-ENOMEM - Insufficient memory available.
2848  */
2849 int nilfs_attach_segment_constructor(struct nilfs_sb_info *sbi)
2850 {
2851         struct the_nilfs *nilfs = sbi->s_nilfs;
2852         int err;
2853
2854         /* Each field of nilfs_segctor is cleared through the initialization
2855            of super-block info */
2856         sbi->s_sc_info = nilfs_segctor_new(sbi);
2857         if (!sbi->s_sc_info)
2858                 return -ENOMEM;
2859
2860         nilfs_attach_writer(nilfs, sbi);
2861         err = nilfs_segctor_init(NILFS_SC(sbi));
2862         if (err) {
2863                 nilfs_detach_writer(nilfs, sbi);
2864                 kfree(sbi->s_sc_info);
2865                 sbi->s_sc_info = NULL;
2866         }
2867         return err;
2868 }
2869
2870 /**
2871  * nilfs_detach_segment_constructor - destroy the segment constructor
2872  * @sbi: nilfs_sb_info
2873  *
2874  * nilfs_detach_segment_constructor() kills the segment constructor daemon,
2875  * frees the struct nilfs_sc_info, and destroy the dirty file list.
2876  */
2877 void nilfs_detach_segment_constructor(struct nilfs_sb_info *sbi)
2878 {
2879         struct the_nilfs *nilfs = sbi->s_nilfs;
2880         LIST_HEAD(garbage_list);
2881
2882         down_write(&nilfs->ns_segctor_sem);
2883         if (NILFS_SC(sbi)) {
2884                 nilfs_segctor_destroy(NILFS_SC(sbi));
2885                 sbi->s_sc_info = NULL;
2886         }
2887
2888         /* Force to free the list of dirty files */
2889         spin_lock(&sbi->s_inode_lock);
2890         if (!list_empty(&sbi->s_dirty_files)) {
2891                 list_splice_init(&sbi->s_dirty_files, &garbage_list);
2892                 nilfs_warning(sbi->s_super, __func__,
2893                               "Non empty dirty list after the last "
2894                               "segment construction\n");
2895         }
2896         spin_unlock(&sbi->s_inode_lock);
2897         up_write(&nilfs->ns_segctor_sem);
2898
2899         nilfs_dispose_list(sbi, &garbage_list, 1);
2900         nilfs_detach_writer(nilfs, sbi);
2901 }